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Abstract

In this paper we study a general bin packing game with an inter-
est matrix, which is a generalization of all the currently known bin
packing games. In this game, there are some items with positive sizes
and identical bins with unit capacity as in the classical bin packing
problem; additionally we are given an interest matrix with rational
entries, whose element aij stands for how much item i likes item j.
The payoff of item i is the sum of aij over all items j in the same
bin with item i, and each item wants to stay in a bin where it can
fit and its payoff is maximized. We find that if the matrix is sym-
metric, a Nash Equilibrium (NE) always exists. However the PoA

(Price of Anarchy) may be very large, therefore we consider several
special cases and give bounds for PoA. We present some results for the
asymmetric case, too. Moreover we introduce a new metric, called the
Price of Harmony (PoH for short), which we think is more accurate
to describe the quality of an NE in the new model.
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1 Introduction

In the classical bin packing problem, there are n items with positive
rational sizes s1, s2, ..., sn, where each item has size at most 1, and infinitely
many bins with unit capacity are available. The items have to be packed
into bins in a feasible way, what means that the sum of sizes of the items
being packed in any bin Bk (called the level of the bin) does not exceed the
capacity of the bin; i.e., the quantity s(Bk) =

∑

i∈Bk
si is at most 1. The

goal is to minimize the number of bins. There are many papers on this topic;
we refer to [8, 5, 6, 2] for details.

The first bin packing game was introduced by Bilò [1]. Later another
version was proposed by Ma et al. [9], and recently a general version was
developed by Dósa and Epstein [3]. We call these bin packing games (or
models) as BPG1, BPG2, and BPG3, respectively.

In case of the BPG1 model, the items in the same bin pay unit cost in
total for being in that bin. The items share the cost proportionally to their
sizes: a bigger item pays more, a smaller item pays less, i.e. an item with
size si pays si/s(Bk) for being in bin Bk.

In case of the BPG2 model, the cost of any bin is again 1, but the items
of any bin pay the same price for being in this bin, i.e. any item pays 1/t if
there are t items in the bin.

In case of model BPG3, each item i has two parameters si and ui, where
si is the size of the item (as usually), and a nonnegative weight ui is also
specified for item i. Then, for being in a bin Bk, the items in Bk pay pro-
portionally to their weights rather than to their sizes or their cardinality;
i.e., item i pays ui/Uk cost for being in Bk, where Uk =

∑

i∈Bk
ui. This is a

common generalization of the two previous models BPG1 and BPG2, since
if ui = si for any item, we get model BPG1, or if ui = 1 for any item, we get
model BPG2.

Generalized Bin Packing Game. We introduce a new type of bin
packing games. This new game is even more general than BPG3, thus we
call it Generalized Bin Packing Game and abbreviate it as GBPG for short.

The motivation of this new model is to express that people make their
decisions not only considering money or cost, but they often also take into
account how much they like a certain situation. Let us consider the next
simple example: There is a party where the people sit down at tables (tables
= bins). Then a person is interested not only in the cost of sitting at some
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table (and paying for the food and drinks he will have), but would also like to
enjoy the party, and therefore chooses a table where he/she finds the people
appealing, i.e., if his/her profit can be improved, then he/she would like to
move to another situation.

Shortly, we think that in many situations the main organizing power is not
(only) the money or cost of something, but also the interest or “sympathy”
what people follow.

Formally, an instance I of GBPG is given as follows. There are n items
with sizes si for 1 ≤ i ≤ n, where 0 < si ≤ 1, and an n × n rational matrix
A = [aij ], called the interest matrix, is also given. The payoff of item i is
pi =

∑

j∈Bk
aij if i is packed into bin Bk. And we define the total payoff

P =
∑n

i=1 pi. Each item wants to stay in a bin where it can fit and its payoff
is maximized. All bins are assumed to be identical with unit capacity. In the
discussion below we assume that aij ≥ 0 for all i and j, although some facts
remain valid for negative values, too. (Some remarks of this kind will be
given.) We note that aii is also taken into account when defining the payoff
pi of item i.

A packing of the items is called a Nash Equilibrium [10], or NE for short,
if no item can improve its payoff by moving to another bin in which it can
fit. Moreover, if all the items are packed into the minimum number of bins,
we call this packing an optimum packing, and denote its value by b∗. We
denote the number of bins in a Nash Equilibrium as bNE .

It should be noted that neither all equilibria are the optimal packings, nor
all the optimal packing are NE, although in some cases they may coincide.

Price of Anarchy (PoA). An often used metric in case of bin packing
games is the Price of Anarchy (PoA, for short); it measures how large an NE
can be compared to an optimal packing, when b∗ gets large. More exactly,

PoA = lim sup
b∗→∞,∀NE

{

bNE

b∗

}

.

There are further metrics, too, such as price of stability (PoS), strong
price of anarchy, and so on, cf. e.g. [3]. In this paper, however, we only deal
with PoA from the mentioned ones. Moreover we introduce a new metric for
which we coin the name ‘Price of Harmony’ (PoH), which is more accurate
to describe the quality of an NE and leads to a more sensitive analysis of
the game; we define this metric a bit later.
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aij = general max{si, sj} min{si, sj} max{ui, uj} ui + uj

PoA ∞ [1.6416, 1.6428] ∞ [1.6966, 1.723] [1.6966, 2]
PoH - [1.55, 1.6428] ∞ [1, 1.723] [1, 2]

Table 1: Summary of bounds on PoA and PoH , where [a, b] means that the
lower bound is a and the upper bound is b.

Previous results. For the bin packing game BPG1, Bilò [1] proved that
i) this game admits an NE, ii) there is a worst NE with a cost at least
1.6b∗, and iii) the cost of any NE is at most 1.6667b∗+2. Later Epstein and
Kleiman [7] obtained stronger estimates, proving that there is an NE which
uses 1.6416b∗ bins, but on the other hand the cost of any NE is bounded
above by 1.6428b∗ + 2, i.e. the PoA is in [1.6416, 1.6428].

For the BPG2 model it was proven in [9] that its PoA is at most 1.7;
moreover, from any initial feasible packing, making an arbitrarily chosen
feasible move as long as at least one exists, the process always reaches an
NE in at most O(n2) selfish steps by the items. This result got further
improved in [4].

In case of model BPG3 [3], it was shown that many kinds of Nash equlibria
(NE, Strong NE, Strongly Pareto Optimal NE and Weakly Pareto Optimal
NE) exist. For the case of unit weights (which is equivalent to model BPG2),
the PoA is in [1.6966, 1.6994]; and for unrestricted weights, both of the lower
and upper bounds are 1.7. For other results, we refer to [4, 12].

Our Contribution. When the interest matrix is symmetric, we prove
that there exists an NE for any instance. Generally, the value of PoA can
be arbitrarily large, therefore we consider several specific types of the interest
matrix [aij ]. The results are listed in Table 1, where si is the size of item i
and ui is the weight of item i. The bounds for ai,j = max{si, sj} are quoted
from [7], since we can prove the bound by using exactly the same instance
as in [7]. The lower bound in the last two columns is from [3], since if we set
ui = 1 for all i, the lower bound 1.6966 follows directly.

Moreover, we introduce and study the behavior of a new metric for our
general game, which we call the Price of Harmony, or PoH for short, which
is defined later. It measures the quality of an NE in the new model, simul-
taneously taking two criteria of the number bins used and the total payoff
into account.

Lastly, we investigate the case of asymmetric matrices and find that an
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NE does not exist for some instances. We give a sufficient condition to
recognize this situation of non-existing NE. On the other hand we also give
a sufficient condition which guarantees that the model with an asymmetric
interest matrix can be converted to a model with a symmetric one.

2 Preliminaries

In this section, we first recall the definition of a classical algorithm for
the bin packing problem, recall several important results for bin packing, and
then prove that the game we study is a generalization of all the known bin
packing games.

First Fit for Bin Packing. For an input I of bin packing, let ALG(I)
be the number of bins used by algorithm ALG to pack this input, and let
b∗ denote the number of bins by an optimal algorithm. Algorithm First Fit
(FF) is a classical algorithm, which packs each item into the first bin where
it fits. (If the item does not fit into any opened bin, it is packed into a new
bin.) First Ullmann [11] proved that FF (I) ≤ 1.7 b∗+3. Then, after several
attempts to decrease the additive constant, finally Dósa and Sgall [5] proved
that FF (I) ≤ 1.7 b∗, what means that the absolute approximation ratio of
FF is at most 1.7. In another work, Dósa and Sgall [6] give a matching lower
bound, thus the bound 1.7 is tight.

There are “better” algorithms, as well, for both the asymptotic and ab-
solute approximation ratios. (The asymptotic approximation ratio of an
algorithm ALG is the smallest R for which ALG(I) ≤ R · b∗+C holds for all
inputs I, where C is a suitably chosen constant, independent of the inputs.)
For further details we recommend the survey [2].

2.1 Relation to the Earlier Models

The players in the games introduced earlier wish to minimize their costs,
while in our game the players wish to maximize their payoff. In spite of this,
the former bin packing game models can be considered as special cases of
Model GBPG, in the following way:

• BPG1 model: let aij = si · sj for all i; or aij = sj for all i.

• BPG2 model: let aij = 1 for all i; or aij = si for all i.
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• BPG3 model: let aij = ui · uj for all i; or aij = uj for all i.

We only prove this claim for the BPG1 model; the assertions for the other
two models can be shown in a similar way.

Lemma 1 For j, if aij = si · sj for all i, or if aij = sj for all i, then our
game is equivalent to the BPG1 model in the sense that an NE for GBPG is
also an NE for BPG1, and vice versa.

Proof. Suppose that aij = si · sj, and an item i is packed into bin Bk. Then
the payoff of this item is pi =

∑

j∈Bk
(si · sj) = si · s(Bk). This item intends

to go into another bin Bl if its payoff will be bigger there (and item i fits
there). This new payoff is p′i =

∑

j∈Bl
(si ·sj)+s2i = si · (s(Bl)+si). Thus the

movement is possible if and only if p′i > pi, i.e. s(Bl) + si > s(Bk). This is
exactly the same case (when the movement is possible) like the one in model
BPG1.

2.2 New Definition: the Price of Harmony

After this pre-treatment, we find general properties of the new model,
and then we investigate several special versions of interest. Before that,
we introduce a new metric: the PoH , to measure the quality of a packing,
which appears to be useful for this new general packing game. We find several
properties and quantitative bounds for it.

Let b be the number of bins in an NE, and let b∗ be the number of optimal
bins, i.e. the minimum number of bins in a feasible packing, disregarding the
interest matrix. Recall that P =

∑n
i=1 pi, where pi is the payoff of item i.

Let P ∗ be the largest P .

Example 2 Let n be even, and consider n very small items 1, . . . , n, each of
size 2/n. Define the interest ai,i+n/2 = 1 for all 1 ≤ i ≤ n/2, and let ai,j = 0
for all the other pairs (i, j) of items. This instance admits two extreme Nash
Equilibria of quite different nature.

(i) Sparse packing (P = P ∗, b ≫ b∗). We use n/2 bins, each bin Bi con-
tains the items i and i + n/2. Then no item intends to move because
its payoff would decrease.
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(ii) Dense packing (b = b∗, P ≪ P ∗). We use just two bins, pack the items
1, . . . , n/2 into B1 and the items n/2+1, . . . , n into B2. Then no item
can move because both bins are full, moreover the opening of a new bin
would not increase the payoff.

Thus, both packings are NE, the sparse one with optimal P = n/2 but with
very large b = n/2, while the dense one with optimal b = 2 but extremely
poor P = 0.

Thus it makes sense to consider both parameters together. We do this by
the next definition.

Definition 3 (Price of Harmony) Given a packing, define P =
∑n

i=1 pi,
where pi is the payoff of item i. Let P ∗ be the largest P . Price of Har-
mony(PoH) is defined as below:

PoH = lim sup
b∗→∞,∀NE

{

α |
bNE

b∗
≥ α,

P ∗

PNE

≥ α,

}

,

where NE stands for a Nash Equilibrium and PNE is the total payoff in an
NE.

Some concrete examples are given in Propositions 10 and 12.

Corollary 4 For any game, PoH ≤ PoA.

3 General bounds for the symmetric case

We prove that for any symmetric matrix A, there always exists an NE
for our model GBPG. We give the proof by using a potential function.

Definition 5 (Potential function of a packing.) We consider the total
payoff of items — defined as P =

∑

i pi — to be the potential of the packing.

This approach can be used not only to prove the existence of an NE, but
also to estimate the number of steps to converge to an NE from any unstable
state.
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Theorem 6 If matrix A is symmetric, then GBPG always has an NE. More-
over, if all entries aij of A are rational, and the least common multiple of
their denominators is q, then an NE is reached from any feasible initial
packing after making at most q n2maxi,j{aij/2} feasible steps, which can be
chosen arbitrarily as long as the packing is not an NE.

Proof. The high-level idea is to associate each feasible packing with a
potential in such a way that the potential function is upper-bounded by a
value computable from the input, and to prove that once an item moves from
one bin to another, the total potential strictly increases. If this property
holds, then no previous state can occur again, thus an NE surely exists.
Since there is an upper bound on the total payoff and each greedy step will
increase the total payoff by some fix value ∆ > 0, after some finite number
of steps we would come to a configuration that allows no more greedy step,
and this configuration is at an NE.

Recall that if item i is packed into bin Bk, then its payoff is pi =
∑

j∈Bk
aij .

We define a potential function as

P =

n
∑

i=1

pi ≤ n2max
i,j

{aij}.

Next we prove that if item i moves from bin Bk to bin Bh, then the value
of P increases. Before moving from bin Bk to bin Bh, let pj be the payoff of
item j and P =

∑

i∈I pi. After the movement, let p′j be the payoff of item
j and P ′ =

∑

i∈I p
′
i. Without danger of confusion, we also let Bk and Bh

denote the set of items in the bins Bk and Bh before the move, and B′
k and

B′
h be those after the move.
Observe that for item j which is not packed in bin Bk or Bh, its payoff

does not change. Then we have
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P ′ − P =
∑

j∈B′

k

p′j +
∑

j∈B′

h

p′j −
∑

j∈Bk

pj −
∑

j∈Bh

pj

= (
∑

j∈B′

h

p′j −
∑

j∈Bh

pj) + (
∑

j∈B′

k

p′j −
∑

j∈Bk

pj)

= (p′i +
∑

j∈Bh

aji)− (pi +
∑

j∈B′

k

aji)

= (p′i − pi) + (
∑

j∈Bh

aij −
∑

j∈B′

k

aij) by aij = aji

= (p′i − pi) + (aii +
∑

j∈Bh

aij − aii −
∑

j∈B′

k

aij)

= (p′i − pi) + (p′i − pi) = 2(p′i − pi) > 0.

For the number of convergence steps, suppose that A is a rational matrix.
Let ∆ > 0 be the smallest integer such that ∆aij is integer for all entries of
A. Then ∆(p′i − pi) ≥ 1, and the potential function will increase by at least
2/∆ after each selfish movement. After at most ∆n2maxi,j{aij/2} steps, we
will have an NE.

Remark 1 One can observe that the above proof works even when matrix
A has zero or negative entries. A natural interpretation of this extension is
that aij is positive if person i likes person j, and is negative if i dislikes j.

Remark 2 Example 2(i) shows that, for arbitrarily large k, there exists an
interest matrix A, for which the PoA is bigger than k, even if aij ∈ {0, 1}
is required for all 1 ≤ i, j ≤ n.

Recall that if all entries in the interest matrix A have the same value
aij = 1 (i.e. we consider the BPG2 model), the PoA is upper-bounded by
1.6994 [3]. However, we find that the PoA can be very large even if almost
all entries are aij = 1 and all the other elements satisfy aij = 1 − δ where
δ > 0 could be arbitrarily small. The exact conditions for “almost all entries”
are given in the proposition below. Beside giving the proof considering the
PoA, we show the stronger result that even the PoH can be very large.
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Proposition 7 Given 0 < δ ≤ 1/2, let k be an integer for which kδ > 1.
Then there is a symmetric matrix A with size n×n, where n = k4, in which
aij = 1 for at least (1− 1/k) · n2 different pairs (i, j), moreover aij = 1 − δ
for all the other entries, and the PoH is at least k2 − 1.

Proof. First we give a short and simple proof for a special version, which
gives an insight into the proof in the general version. Let p = 1 − δ = 0.5
for the sake of simplicity. Suppose that there are many bins, and each bin
contains three items of size 1/n. Let aii = 1 for all 1 ≤ i ≤ n, aij = 1 if the
items share a bin, and aij = 0.5 otherwise. Then the payoff of any item is
pi = 3, and this payoff decreases to 2.5 if an item moves to any other bin.
On the other hand, all items can fit into one bin, and this latter packing
has total payoff 1

2
(n2 + 3n), moreover it decreases the number of bins from

n/3 to 1. Thus, the PoH can be arbitrarily large, by choosing the original
packing. Note that in that packing we have only three items per bin, and
consequently the number of aij = 1 entries is not large enough compared to
the number of entries with aij = 0.5. To ensure that the non-unit entries are
sparse, we need a more careful construction, where there are many items in
each bin. Below we give this complete proof, in details.

Recall that we have kδ > 1 by assumption. We construct a packing, with
n = k4 items and k2 bins. In each bin there are k2 very small items, of size
1/k4 each, thus all items fit into one bin.

Since the interest matrix contains only nonnegative entries, the biggest
value of the total payoff is given if all items are in one bin.

We will have either aij = 1 or aij = p, where 1−δ = p < 1. For simplicity,
let us say that aij = 1 if i and j know each other; otherwise if aij = p, we
say they do not know each other. Let each item know all items in the same
bin (including itself); and suppose that any item knows exactly k2 − k items
in any other bin.

This construction is possible to be made in many different ways. Here
we describe one: Partition the contents of each bin Bi into k parts, say
Bi,1, Bi,2, ..., Bi,k where each part Bi,ℓ contains exactly k items. We require
that, for any choice of subscripts i, i′, ℓ, ℓ′ with 1 ≤ i 6= i′ ≤ k2 and 1 ≤ ℓ, ℓ′ ≤
k an item from Bi,ℓ knows an item from Bi′,ℓ′ if and only if ℓ 6= ℓ′.

We claim that no item has the intention to move. Consider any item i.
The payoff for this item is exactly pi = k2. If this item moves into another
bin, its payoff will be there (k2− k)+ 1+ k · (1− δ) = k2+1− kδ < k2, since
kδ > 1. Thus the claim holds, i.e. the packing is an NE.
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Now let us count the number of entries with aij = p in the matrix; we
need to show that this number is at most n2/k. Indeed, between any two bins
there are only k3 pairs where aij = p holds, and no such pair occurs inside
any bin. Moreover, an ordered pair of bins can be chosen in k2 · (k2 − 1)
different ways. Thus, the number of entries with aij = p satisfies

k5 · (k2 − 1) < k7 = n2/k,

i.e., the total number of all the pairs with aij = 1 is at least (1− 1/k) · n2.
Thus it follows that the conditions of the lemma hold. On the other hand,

since all contents of the current k2 bins fit into one single bin, we obtain that
PoA ≥ k2.

Now we show that even the PoH is very big. For this, we must show that
the current packing is also “weak” regarding the value of the total payoff of
the items.

We have seen that the payoff of any item is pi = k2. Thus the total
payoff given for all items (which is the value of the potential function is
P = k4 · k2 = k6. If all items were packed into one bin (which is possible),
the payoff of any item would be p′i = k4 − (k − 1)k · δ, since any item
knows almost all items, with exception only (k − 1) times k items, thus
we need to decrease k4 with (k − 1)k · δ. For this latter payoff, we get
p′i = k4 − (k − 1)k · δ > k4 − k2 · δ > k4 − k2, since δ < 1/2. Thus
P ∗ > k4 · (k4 − k2) = k8 − k6, and thus P ∗/P > k2 − 1.

Remark 3 In the previous proposition we have seen that although in model
BPG2 the PoA is bounded, changing the entries of the interest matrix only
in a small percentage and only slightly, this damages the PoA, and even the
PoH to be unbounded.

What is the case with model BPG1, if we make a similar small change?
This question will be investigated in the next proposition. We show that
again there is an NE for which the PoH is arbitrarily large. The proof is
similar, namely the construction is almost the same.

Proposition 8 Let 0 < δ < 1 be an arbitrary constant, and let T be an
arbitrarily large value. Then there exists an n× n symmetric matrix A, for
which aij = si · sj for at least (1 − δ) · n2 different pairs (i, j), and aij = 0
holds for the other pairs (i, j), and the PoH is bigger than T .
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Proof. Given δ, let us chose an integer k > 1, for which kδ > 1 holds.
Let n = k4. We construct a packing, with k2 bins, and k2 very small items
with size si = ε = 1/k4 = 1/n in any bin. The biggest value of the potential
function is given if all items are in one bin. As in the proof of Proposition
7, suppose that any item knows all items in the same bin (including itself),
and any item knows exactly k2 − k items in any other bin, the construction
is made in the same way as before in the proof of Proposition 7. Then we
set aij = si · sj if the items i and j know each other, and aij = 0 otherwise.

We claim that no item intends to move. Consider an item i in a certain
bin; the payoff pi for this item is exactly si · k

2ε = k2ε2. If this item moves
into another bin, its payoff will be there si · (k

2 − k + 1)ε = (k2 − k + 1)ε2

which is smaller than pi, since k > 1. Thus the packing is an NE.
We have seen that the number of aij = 0 entries of the matrix is at most

n2/k, and PoA ≥ k2 > T for large enough k.
Now we show that also the PoH is very big. We have seen that the

payoff of any item is pi = k2ε2. Thus the total payoff given for all items in
the actual NE is P = k4 · k2ε2 = k6ε2. Consider the packing where all items
are packed into one bin. The payoff of any item is p′i = (k4 − (k− 1)k) · ε2 >
(k2−1)k2ε2, since any item knows all but (k−1)k exceptional ones. Therefore
P ∗ > k4 · (k2 − 1)k2ε2 = (k8 − k6)ε2. Thus P ∗/P > k2 − 1 > T , for large
enough k.

After having proved Propositions 7 and 8, let us have a comment. There
are two “classical” settings: models BPG1 and BPG2. For these, we know
that the PoA is below 1.7. On the other hand, there exists a choice of the
matrix (aij), which is “almost the same” as in BPG1 as in BPG2, but the
PoH is blown up to infinity. In the following we show that this does not
mean that the PoA or PoH is always bad if we deviate from these two
special versions. For this, we turn to define and investigate special cases of
our new model.

4 Special symmetric models

Now we give lower and upper estimates on the PoA and PoH for several
special cases of GBPG, e.g. if aij = max{si, sj}, aij = min{si, sj}, aij =
max{ui, uj}, or aij = ui + uj, where ui is the weight of item i, which may be
different from its size si. These special settings need some explanation.
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Let us consider the special case aij = max{ui, uj}, where ui means how
much a person or item i is important. This is a natural case, where the items
correspond to persons, some of them are famous while the others are not
famous. If we assume that ui = 1 if a person i is famous, and ui = p < 1
otherwise, we model the situation that people like to be in the presence
of famous or important persons. Or, more generally, any person gets an
“importance index”, this is the ui value. Then, the happiness between two
persons, i and j is defined as aij = max{ui, uj}.

In order to explore the relationship between a matrix A and the corre-
sponding value of PoA, we begin with the setting aij = max{si, sj}. We
prove that the PoA is at most 1.7, and find that some earlier results also
remain valid for this model. Contrary to this, for the model aij = min{si, sj}
we get that it is substantially different as the PoA can be arbitrarily large.

4.1 The special case aij = max{si, sj}

In this subsection we consider the special case aij = max{si, sj} and we
get estimates for both the PoA and the PoH .

Proposition 9 If aij = max{si, sj}, then PoA is at most 1.7.

Proof. Our key observation is as follows: For any bin in a given packing,
the payoff of the smallest item is the total size of items in the bin, and
the payoff of any other item in the bin is at least this value. Consider an
NE with bins B1, B2, ..., Bm. Assume that the bins are sorted such that
s(B1) ≥ s(B2) ≥ ... ≥ s(Bm). We claim that no item in Bk fits into Bh for
any h < k, i.e. the packing can be viewed as a result of FF packing. Let i be
the smallest item in Bk, and suppose for a contradiction that it fits into Bh.
In Bk, the payoff of item i is pi = s(Bk), whereas the payoff of this item is at
least s(Bh) + si > s(Bk) if it moves to Bh; this contradicts the assumption
that we are in an NE state. Thus the claim follows. As we know that the
asymptotic approximation ratio of FF (and even the absolute approximation
ratio of FF) is 1.7, we obtain that the PoA in the current model is at most
1.7.

Proposition 10 If aij = max{si, sj} then PoA ≥ 19/12 ≈ 1.5833, and the
PoH still exceeds 14/9 ≈ 1.555.
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Proof. In order to prove our statement we give a construction. In the
optimum packing (when we use as few number of bins as possible), there
are 12k bins, each having a large item α = 1/2 + ε, and two medium sized
items, β = 1/4 + ε and γ = 1/4− 2ε, where k is a positive integer. Since all
such bins are full, this is naturally an optimum packing. Now we construct
an NE, by packing all these items. In this packing there are 3k bins, each
having four γ items, moreover 4k bins, each having three β items, and finally
12k bins having only a large item α. It is easy to see that all items are
packed in this new packing. We prove that this packing is an NE. It is easy
to see that a large item does not fit into any other bin. A β item can fit
only into a bin where there is only a large item, but the payoff of a β item
would be decreased from 3

4
+ 3ǫ to 3

4
+ 2ǫ if it moves. So this kind of item is

not intended in the movement. The γ item also can move only into such bin
where there is only a large item, but it is neither intended to move. Thus
the packing is indeed an NE. For the number of bins we get b∗ = 12k, while
b = 19k, and the statement follows for the PoA.

Let us count the total payoff in the two packings. For the optimum
packing (regarding the number of used bins) we get: P = 12k · ((3/2 +
3ε) + (1 + 3ε) + 1) = 6k (7 + 12ε). For the NE we get: PNE = 3k · 4 ·
(1 − 8ε) + 4k · 3 · (3/4 + 3ε) + 12k · (1/2 + ε) = 3k (9− 16ε). Thus PoH ≥
2 (7 + 12ε) / (9− 16ε) > 14/9.

Remark 4 We find that using the methods in [1], one can get 1.6 ≤ PoA ≤
1.667; and using the methods in [7], one can further get 1.6416 ≤ PoA ≤
1.6428.

4.2 The special case aij = 1 or aij = p for some 0 ≤ p < 1

Another special (and natural) choice is the next model, where the items
correspond to persons, some of them are famous while the other are not
famous. Here, by setting aij = 1 if and only if at least one of i and j is
famous, we model the situation that people like to be in the presence of
famous persons. For another application, suppose there are families (adults
and children) in groups. Being in a group (like in case of traveling, e.g. with
the same train but being distributed into several passenger cars) it is safer
for a child if there is at least one adult in the group. Then aij = 1 if any of
i and j is adult, otherwise aij = p < 1 (possibly p = 0) if both i and j are
children.

14



Proposition 11 In the considered model, the PoA is at most 2.

Proof. Now we give a simple proof to show that the PoA is at most
2. We will prove later that even in a more general setting, the PoA is at
most 31/18. Consider an NE, assume there are two bins, say B1 and B2,
such that the total level is at most 1. Let the cardinality of items in the two
bins in consideration be, say k1 and k2, respectively. Suppose without loss of
generality that k1 ≥ k2. If there is no famous people in any of the bins, any
item in the second bin is intended to move to the first bin (and it fits), we
got a contradiction. Suppose there is famous people, say i, in bin B2. Then
the payoff for item i is just k2 in the actual packing, and it will be improved
to k1 + 1 > k2 if i moves to the other bin, a contradiction. Finally suppose
there is a famous person in B1, and there is not in B2. Then any item in B2

wants to move to B1, a contradiction again.

Remark 5 Regarding the lower bound, we can find the next: Since the con-
sidered special case is still the generalization of model BPG2, any lower bound
for that also holds for this. There, 1.6966 is a lower bound, thus this value
is also lower bound for now for the PoA.

Next we show that the PoH is not too small either.

Proposition 12 The PoH is at least 1.5 in the considered model.

Proof. We make the next construction: Let ε be a suitable chosen small
real value. Let the next items (1/2 + ε, 1/3 + ε, 1/7 + ε) be in any optimal
bin. Each item is chosen to be famous, except the items of the smallest size.
Thus aij = 1 for all (i, j) pairs, except if both i and j have size of 1/7 + ε.
We will choose the value of p later. Let b∗ be the number of optimal bins,
let it be chosen as b∗ = 6k with some integer k.

Now let us pack the items by the Harmonic algorithm (for short H). We
show that this is an NE with suitable chosen value of p. There are k bins
with 6 items, 3k bins with 2 items in each and finally 6k bins with a single
item. No item can move into an earlier bin, because of the size constraint.
No item is intended to move into a later bin, except possibly the items of the
smallest size. Here, we choose p = 1/2. So regarding an item of the smallest
size, its payoff will be at most 3 if it moves to another bin with some famous
item. But currently the payoff of this item is just equal to 3, thus the item
does not move. Thus the claim holds.
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For the number of created bins by H we get H = (1+3+6)k = 10k. Thus
H/b∗ = 10/6 = 5/3. Thus we need to show that P ∗/PH is not below 1.5. In
case of the optimum packing, there are 3 items in each bin, and pi = 3 for any
item. There are 3 · 6k = 18k items in total, so the total payoff is P = 54k in
case of the optimal packing. It means that P ∗ ≥ 54k. Let us see the value of
total payoff in the H packing. Here we get PH = k ·6·3+3k ·22+6k ·12 = 36k,
thus P ∗/PH ≥ 3/2, which proves our statement regarding the PoH .

4.3 A common generalization of the two special cases

In this subsection we consider a model, which is a common generalization
of the models of the two previous subsections. Assume that each item i is
associated with two parameters, the size si and the weight ui > 0, and let
aij = max{ui, uj}. If ui = si for any item, we get the model of Subsection
4.1. On the other hand, if ui = 1 if item i is famous and ui = p otherwise,
we get the model of Subsection 4.2. Below we analyze the upper bound of
the PoA.

Theorem 13 Assume that each item i is associated with two parameters,
the size si and the weight ui > 0. If aij = max{ui, uj}, then the PoA is at
most 31

18
< 1.723.

Proof. Let us consider an NE with bins B1, B2, ..., Bm. Given a bin Bj ,
let the total weight and total size of the items in Bj be u(Bj) and s(Bj),
respectively; and let the number of items in Bj be |Bj|. Suppose that there
are two bins, say B1 and B2, such that s(B1) + s(B2) ≤ 1. Assume without
loss of generality that u(B1) ≥ u(B2). Let i be the item with the smallest
weight in B2. The payoff of i is exactly u(B2), and it becomes at least
u(B1) + ui > u(B2) if the item moves to B1, contradicting the assumption
that the packing is an NE. Consequently, s(B1) + s(B2) > 1 holds for any
two bins. Moreover, we have the following properties.

1. If item i is packed into Bj , its payoff satisfies pi ≥ u(Bj) and equality
holds only if i has the minimum weight in Bj .

2. If item k has the smallest or second smallest weight in Bj , then pk <
u(Bj) + uk.
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Now we divide the bins into four groups:

G1 = {Bj | 0 < s(Bj) ≤ 1/2}, G2 = {Bj | 1/2 < s(Bj) ≤ 2/3},

G3 = {Bj | 2/3 < s(Bj) ≤ 3/4}, G4 = {Bj | s(Bj) > 3/4}.

Claim 1. |G1| ≤ 1.

Proof: This follows from the fact that, as we have shown the beginning of
the argument, any two bins satisfy s(B1) + s(B2) > 1 in any NE. �

Define G1
2 = {Bj | Bj ∈ G2, |Bj| = 1}, G1

3 = {Bj | Bj ∈ G3, |Bj| = 1},

G2+
2 = {Bj | Bj ∈ G2, |Bj| ≥ 2}, G2+

3 = {Bj | Bj ∈ G3, |Bj| ≥ 2}.

Claim 2. The sole item in each bin of G1
2 ∪ G1

3 has a size larger than 1/2
(by definition).

Claim 3. |G2+
2 | ≤ 1.

Proof: Suppose for a contradiction that at least two bins, say B1 and B2

belong to G2+
2 ; assume without loss of generality that u(B1) ≥ u(B2). From

the definition of G2+
2 , we see that the item with the smallest weight or the

second smallest weight has a size at most 1
3
. Let item k be the item. If item

k moves to bin B1, then its payoff is at least u(B1) + uk ≥ u(B2) + uk > pk,
where pk is the payoff of item k in bin B2. So it is not difficult to see that
the item in B2 has an incentive to move to bin B1. Hence the assumption is
false and |G2+

2 | ≤ 1. �

Claim 4. With the exception of at most one bin, in each bin of G2+
3 , both

the item with the minimum weight and the second minimum weight have
size larger than 1/4.

Proof: Consider any two bins of G2+
3 , say B1 and B2. Assume without loss

of generality that u(B1) ≥ u(B2). In B2, if any item i with the smallest
or the second smallest weight has a size at most 1

4
, then its payoff will get

improved from at most u(B2)+ui to at least u(B1)+ui, by Properties 1 and
2. Therefore each of them has a size larger than 1/4. �

Now we can proceed further with the proof of the theorem. We have an
upper bound

bNE = |G1|+ |G1
2|+ |G1

3|+ |G2+
2 |+ |G2+

3 |+ |G4|

≤ 2 + |G1
2|+ |G1

3|+ |G2+
3 |+ |G4|,

17



and a lower bound

b∗ ≥
|G1

2|+ |G1
3|

2
+

2|G2+
3 |

3
+

3|G4|

4
. (1)

The size of each item in the bins of G1
2 ∪G1

3 is larger than 1/2; let us call
these items big items. Hence, there are |G1

2|+ |G1
3| big items. In each bin of

G2+
3 , except at most one bin, there are at least two items with a size larger

than 1/4 each; let us call these items medium-sized items. Hence, there are
at least 2(|G2+

3 | − 1) medium-sized items. Note that no two big items can be
packed into the same bin, therefore

b∗ ≥ |G1
2|+ |G1

3|. (2)

Case 1. |G1
2|+ |G1

3| ≥ 2(|G2+
3 | − 1). Then we also have

b∗ ≥ 2|G2+
3 | − 2. (3)

We multiply the inequalities (1), (2), (3) by 24
18
, 6

18
, and 1

18
, respectively.

Adding them we obtain

31

18
b∗ ≥ |G1

2|+ |G1
3|+ |G2+

3 |+ |G4| − 1/9,

thus

bNE ≤ |G1
2|+ |G1

3|+ |G2+
3 |+ |G4|+ 2 ≤

31

18
b∗ +

19

9
< 1.723 · b∗ + 2.12.

Case 2. |G1
2| + |G1

3| < 2(|G2+
3 | − 1). Now, in any feasible packing, at most

one medium-sized item can be packed with a big item into the same bin,

and the remaining medium-sized items need at least
2(|G2+

3
|−1)−|G1

2
|−|G1

3
|

3
bins.

Therefore,

b∗ ≥ |G1
2|+ |G1

3|+
2(|G2+

3 | − 1)− |G1
2| − |G1

3|

3

=
2(|G1

2|+ |G1
3|)

3
|+

2|G2+
3 | − 2

3
. (4)

Now we multiply the inequalities (1), (2), and (4) by 24
18
, 4

18
, and 3

18
,

respectively. Adding them we obtain

31

18
b∗ ≥ |G1

2|+ |G1
3|+ |G2+

3 |+ |G4| − 1/9,

therefore we also have bNE ≤ 31
18
b∗ + 19

9
< 1.723b∗ + 2.12.
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Proposition 14 Assume that si ≥ sj implies ui ≥ uj for any two items i
and j. If aij = max{ui, uj}, then the PoA is at most 1.7.

Proof. The proof can be done in the same argument as the proof for the
model of Subsection 4.1, replacing the si sizes by the ui values.

4.4 The special case aij = min{si, sj}

Now we turn to consider the special case aij = min{si, sj}. In this special
case, instead of “how i and j like each other”, the situation is as “how i and j
dislike each other”. We again find estimates for both the PoA and the PoH .

Proposition 15 If aij = min{si, sj}, then the PoA, and even the PoH can
be arbitrarily large.

Proof. We give the proof by constructing a class of bad instances. Con-
sider a packing with c bins.

Let each bin Bk (1 ≤ k ≤ c) contain k + 1 items whose sizes are αk =
2ε

k(k+1)
(so α1 = ε, α2 = ε/3, α3 = ε/6, and so on), where ε is a small

positive constant. It is easy to see that the sequence (αk)k≥1 is strictly
decreasing. The heart of the matter is that the actual packing is an NE,
whereas all items can be packed into one bin if ǫ is sufficiently small. Let
1 ≤ k ≤ c be an arbitrary index, and consider item i in bin Bk. We get
pi = (k + 1) · αk. Suppose that item i moves to another bin, say with index
l. Here l < k is not possible, because then the payoff of i would change to
p′i = (l+2) ·αk ≤ (k+1) ·αk, hence the item does not intend to move there.
Otherwise, if l > k, then the payoff changes to

p′i = (l + 1) · αl + αk = (l + 1) ·
2ǫ

l(l + 1)
+ αk =

2ǫ

l
+ αk

<
2ǫ

(k + 1)
+ αk = k ·

2ǫ

k(k + 1)
+ αk = k · αk + αk

= (k + 1) · αk = pi.

We claim that this is at most pi = k · αk + αk, it suffices to show that
(l + 1) · αl ≤ k · αk. After dividing by 2ε, this is the same as l+1

l(l+1)
≤ 1

k+1
,

or k + 1 ≤ l, which trivially holds. Consequently, item i does not intend to
move in this latter case either. Since all items fit into one bin, the PoA is
not smaller than the number of bins in our actual NE, that is c. Thus, we
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obtain that PoA in the current model can be any large, as c can be chosen
arbitrarily large.

Now we show that the PoH is also big. In the present packing, the payoff
of an item i, being in bin Bk, is pi = (k + 1) · αk =

2ε
k
. Since there are k + 1

items in this bin (with the same size), the total payoff of items in this bin is
2(k+1)

k
ε. Then the total payoff for the packing is

P = 2ε

c
∑

k=1

k + 1

k
≤ 2ε

c
∑

k=1

k + k

k
= 4cε.

Now let us consider the optimal packing where all items are in one bin.
Let us consider an arbitrary item i, and suppose it was packed in bin Bk in
the NE. Note that this item is smaller than any item which were packed
into any earlier bin, and item i is bigger than any item that was packed into
any later bin. Thus, when we compute the payoff of item i, aij = si = αk,
if j is packed into not later bin, and aij ≥ αc ≥ 0 otherwise. There are
2 + 3 + ... + (k + 1) = k (k + 3) /2 items in not later bins. Thus the payoff
of item i is p′i ≥ k (k + 3) /2 · αk =

k+3
k+1

ε. Since there were k + 1 items in bin
Bk, the total payoff of all items in bin Bk is at least (k + 3) ε. And thus the
total payoff for this packing is at least

P ′ ≥ ε

c
∑

k=1

(k + 3) > ε

c
∑

k=1

k = εc(c+ 1)/2.

Comparing P and P ′ we get

P ′/P ≥
εc(c+ 1)/2

4cε
= (c+ 1)/8,

which can be arbitrarily big, if c is chosen big enough.

4.5 A model for summing the weights

Finally we consider the case aij = ui + uj, where ui > 0 is the weight of
item i. In this version if item i is packed together in a bin B with k other
items, then its payoff is k · ui +

∑

j∈B uj.
Below we give estimate for the PoA.

Proposition 16 Assume that aij = ui + uj, where ui > 0 is the weight of
item i. Then PoA is at most 2.
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Proof. It suffices to show that the average level of bins in any NE is
larger than 1/2. Consider an NE, and assume for a contradiction that there
are two bins, say B1 and B2, such that their total level is at most 1. Let
u(B1) and u(B2) be defined as u(B1) =

∑

j∈B1
uj and u(B2) =

∑

j∈B2
uj,

respectively; we assume without loss of generality that u(B1) ≥ u(B2). Let
l and k be the numbers of items in B1 and B2, respectively. Suppose first
that l ≥ k, and let i be an arbitrary item in B2. We claim that i would like
to move to B1. The actual payoff for item i is

pi =
∑

j∈B2

aij =
∑

j∈B2

(ui + uj) = k · ui + u(B2).

If i moves to bin B1, its payoff will be there

p′i =
∑

j∈B1

aij + aii =
∑

j∈B1

(ui + uj) + 2ui = (l + 2) · ui + u(B1),

which is bigger than pi, thus the claim is verified. This contradicts the
assumption that the packing is an NE, therefore we must have l < k. Let
i be the item in B1 for which ui is the biggest, and j be the item in B2, for
which uj is the smallest. Then

ui ≥ u(B1)/l ≥ u(B2)/l > u(B2)/k ≥ uj. (5)

If we move i from B1 to B2, its payoff changes by

c1 = pi
′ − pi = (k · ui + u(B2) + 2ui)− (l · ui + u(B1))

= (k + 2− l)ui + u(B2)− u(B1);

and if we move j from B2 to B1, its payoff changes by

c2 = pj
′ − pj = (l · uj + u(B1) + 2uj)− (k · uj + u(B2))

= (l + 2− k)uj + u(B1)− u(B2).

Moreover, from (5) we have

c1 + c2 = 2(ui + uj) + (k − l)(ui − uj) > 0.

This means that at least one of items i and j will improve its payoff by
moving to the other bin, a contradiction.
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5 Asymmetric case

In this section we deal with the case where the matrix A is not symmetric.
First we observe by giving an example that NE may not always exist; more
precisely, from a suitably chosen initial packing, NE is not reached after
any sequence of selfish steps. Then we describe a sufficient condition which
ensures that there exists an initial packing and an infinite sequence of feasible
steps which never lead to an NE, and we find by another example that the
condition is not necessary. Finally we also give a sufficient condition, where
NE always exist.

Example 17 If there are negative values in the matrix, even for the simplest
instance: two bins and two items 1 and 2, each with size 0.5, and ai,i = 1,
a1,2 = 1 and a2,1 = −1, we can see there is no NE (1 pursuits 2, 2 escapes,
and so on).

So in the following, we assume all aij are non-negative.

Example 18 The following instance admits an initial packing which never
terminates with an NE, independent of the value of the parameter p < 1.
Take three items 1, 2, and 3, each with size 0.5. Let ai,i = 1 for i = 1, 2, 3,
a1,2 = a2,3 = a3,1 = 1, and a2,1 = a3,2 = a1,3 = p.

Proof. Assume that the three items are packed in three distinct bins.
Then item 1 moves to share a bin with item 2. Then item 2 leaves item 1
alone and moves to share a bin with item 3. Then item 3 leaves item 2 alone
and moves to share a bin with item 1. Then item 1 moves and again shares a
bin with item 2, and the movement can be continued to infinity. Then there
is no NE for the above instance.

In the following we give a generalization of the instance in Example 18,
where NE does not exits after any sequence of selfish steps. This part is
related to line graphs.

Partial Line Graph. According to standard terminology, the vertices
in the line graph L(G) of G represent the edges of G, and two vertices of
L(G) are adjacent if and only if the corresponding edges of G share a vertex.
So, each edge in L(G) identifies three vertices, say vi, vj , vk in G, and two
edges vivj , vivk on them, sharing one vertex vi. Originally in G the edges
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A =

1 1 1 ǫ

1−ǫ 1 p ǫ

p 1 1 ǫ

ǫ ǫ ǫ ǫ 3

1

4

2

e2,4 e2,3 e3,4

e1,2 e1,3

e1,4

Figure 1: Matrix, Compatibility Graph and Partial Line Graph

are undirected; but now their common vertex vi specifies the ordered pairs
(i, j), (i, k). In case if aij = aik, we remove the corresponding edge from
L(G); and if equality does not hold, then we orient the edge of L(G) from
the smaller to the larger a-value; see Fig. 1 for an illustration. We denote
by H = (X,F ) the oriented graph obtained in this way. (This H , obviously,
does not contain cycles of length 2.)

Compatibility Graph. Let I = (A, S) be an instance of GBPG. We
define the compatibility graph to represent the pairs of items which can occur
together in a bin. This undirected graph, which we denote by G = (V,E), is
described by the following rules:

• the vertices are v1, v2, ..., vn, indexed according to the items;

• an unordered vertex pair vivj is an edge if and only if si + sj ≤ 1.

Theorem 19 Let I be an instance of GBPG, and let H = (X,F ) be the
oriented partial line graph as described above. If H contains a directed (cycli-
cally oriented) cycle, then there exists an initial packing of the items and an
infinite sequence of feasible steps along which NE is never reached.

Proof. Let C = x1x2 ... xℓ be a directed cycle in H . We assume, without
loss of generality, that C is a shortest cycle in H . Each xk (1 ≤ k ≤ ℓ)
corresponds to some edge ek := vikvjk of G, and we have ek ∩ ek+1 6= ∅ for all
1 ≤ k ≤ ℓ (subscript addition is taken modulo ℓ throughout the proof). We
further observe:

Claim. For all k we have ek ∩ ek+1 6= ek+1 ∩ ek+2.

Proof. Suppose for a contradiction that ek ∩ ek+1 = ek+1 ∩ ek+2 = vk, and
assume that ei = vkvji for i = k, k + 1, k + 2. Then, by the construction of
H , we have

ak,jk < ak,jk+1
< ak,jk+2

.
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As a consequence, also xkxk+2 is an arc inH , because ek and ek+2 share vk and
the corresponding s-values satisfy the required inequality. This contradicts
the assumption that C is a shortest cycle in H , and hence the claim follows.
�

To prove the theorem we start with the initial packing where the two
items corresponding to the vertices of e1 are in the same bin, and all the
other items are in mutually distinct bins. The claim implies that moving the
item of e1 ∩ e2 from its bin to the bin of e2 \ e1 is feasible. More generally,
from a bin whose contents are the two items belonging to ek, it is feasible to
move ek ∩ ek+1 to the bin of ek+1 \ ek, for any 1 ≤ k ≤ ℓ. Consequently, in
the first ℓ − 1 bins the first ℓ items can circulate forever, without reaching
NE at any time.

Remark 6 If all entries of S are positive, then the conclusion of Theorem
19 also holds with the trivial initial packing which puts each item into a
distinct bin. In fact it is sufficient that at least one pair of consecutive vertices
involved in the cycle of H be adjacent with a directed edge of positive weight
(that is, one of their aij or aji should be positive, the other one may even be
negative). Then, if each item is packed into a distinct bin, we can start the
moving procedure with creating this positive edge inside one bin.

Remark 7 The line graph of the input can be constructed in linear time in
terms of the input size, and it can also be tested in polynomial time whether
the line graph contains a directed cycle.

We note, however, that the above theorem does not solve the following
question: Given the sizes and matrix A, is it true that NE exists from a
given packing? Can this question be answered in polynomial time? We give
a further type of instance, without a directed cycle in the line graph, and
prove that NE never occurs after any sequence of selfish movements.

Proposition 20 Even when the partial line graph of an instance contains
no directed cycles, NE may not occur after any number of steps of selfish
improvement.

Proof. There are four items, each with size 1/3 and the matrix A is
exactly the same as the one in Fig. 1, where 0 < p < 1 is fixed, and 0 < ε <
(1− p)/2 is also fixed. There is no directed cycle in Fig. 1.
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We prove this by the next sequence of steps. Initially, B1 = {1, 2} and
B2 = {3, 4}, i.e. we have only two bins, items 1, 2 are packed into B1, and
items 3, 4 are packed into B2. At this moment item 1 intends to move, as he
likes item 2 and item 3 equally, but he meets also item 4 in the other bin,
and a14 is positive. Thus item 1 moves, and we get B1 = {2}, B2 = {1, 3, 4}.
Then item 3 intends to move, since a32 = 1 > p+ ε = a31 + a34. Thus item 3
moves, and after the movement we get the packing B1 = {2, 3}, B2 = {1, 4}.
At this moment item 4 intends to move, as a41 = ε < ε + ε = a43 + a42,
thus item 4 moves, and we get the next packing: B1 = {2, 3, 4}, B2 = {1}.
Finally, item 2 intends to move since a21 = 1 − ε > p + ε = a23 + a24, thus
item 2 moves, and we get the packing B1 = {3, 4}, B2 = {1, 2}. It means
that the contents of B1 and B2 are swapped, and thus the sequence of the
movements can be continued to infinity.

Next we give a sufficient condition, which ensures that the game in an
asymmetric case can be converted to a symmetric game.

Proposition 21 Assume that aij > 0 for any pair (i, j). If there is a uni-

variate function g : N → R+ such that
aij
aji

= g(i)
g(j)

, then the asymmetric case

can be transformed to the symmetric case, and hence NE exists.

Proof. Given a game (G1) with an asymmetric matrix A = [aij ] that
satisfies the condition, we construct a new game (G2) with a matrix A′ =
[aij/g(i)] that is symmetric. Given a state of G1, the payoff of item i is
pi =

∑

j aij , where j is packed into the same bin with i. We construct a state
for G2 such that each item is packed in the same bin as in the state of G1,
and then the payoff of item i is p′i =

∑

j aij/g(i) = 1/g(i)
∑

j aij . In G1, i
moves to another bin to improves its payoff by a > 0 if and only if in G2,
i does the same action and improve its payoff by a/g(i) > 0. We conclude
that the equilibria of the two games are in one-to-one correspondence, and
the result follows.

Remark 8 If aij = si, let g(i) = si. If aij = sj, let g(i) = 1/si. So,
in the two cases above, NE always exists. These are known cases. We can
give several further choices for aij and g(i), for which it is easy to verify
the sufficient condition. For instance, if aij = s2i sj, let g(i) = si; or if
aij = si(si+sj), let g(i) = si. But currently we do not have a characterization
of all possible polynomials of si and sj, for which the condition holds.
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6 Conclusions and further research

In this paper we introduced a new type of bin packing game, which is a
common generalization of all the previously considered bin packing games.
We proved general bounds and also studied several special types of the game.
There are several open questions left, let us mention some of them.

1. What are the tight bounds on PoA and PoH for the models studied?

2. Determine the algorithmic complexity of the following decision prob-
lems.

Given I, an instance of GBPG, together with an initial packing,

(a) is it true that NE is reached after a suitable sequence of steps?

(b) is it true that NE is reached after a finite number of steps, no
matter which feasible step is chosen at any time?

Is any of these problems polynomial-time solvable?

Finally we make some short further notes. We defined the payoff of an
item i as the sum of the aij values for all j items which are in common bin
with item i. But this is not the only option. The payoff of item i could be
also defined as

2.1 pi = maxj∈Bk
aij if item i is packed into bin Bk.

2.2 pi = minj∈Bk
aij if item i is packed into bin Bk.

The explanation can be that people try to be close (in a common group)
to some people whom they like very much, or try to avoid to be close to people
they dislike. In this sense not the total “payoff” is taken into account, but
no matter the other people being there, they want to be in the presence of
someone, or they do not want to be in the presence of someone.

Many other types of payoff functions composed of the aij may also be of
interest.
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