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EULER CHARACTERISTICS OF HILBERT SCHEMES OF POINTS ON

SIMPLE SURFACE SINGULARITIES

ÁDÁM GYENGE, ANDRÁS NÉMETHI, AND BALÁZS SZENDRŐI

Abstract. We study the geometry and topology of Hilbert schemes of points on the orbifold
surface [C2/G], respectively the singular quotient surface C2/G, where G < SL(2,C) is a finite
subgroup of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the
orbifold into affine space strata indexed by a certain combinatorial set, the set of Young walls.
The generating series of Euler characteristics of Hilbert schemes of points of the singular surface
of type A or D is computed in terms of an explicit formula involving a specialized character of
the basic representation of the corresponding affine Lie algebra; we conjecture that the same

result holds also in type E. Our results are consistent with known results in type A, and are
new for type D.
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1. Orbifold singularities and their Hilbert schemes

1.1. Quotient surface singularities, Hilbert schemes and generating series. Let G <
GL(2,C) be a finite subgroup and denote by C2/G the corresponding quotient variety. There are
two different types of Hilbert scheme attached to this data. First, there is the classical Hilbert
scheme Hilb(C2/G) of the quotient space. This is the moduli space of ideals in OC2/G(C2/G) =

C[x, y]G of finite colength. We call this the coarse Hilbert scheme of points. It decomposes as

Hilb(C2/G) =
⊔

m∈N

Hilbm(C2/G)

into components that are quasiprojective but singular varieties indexed by “the number of points”,
the codimension m of the ideal. Second, there is the moduli space of G-invariant finite colength
subschemes of C2, the invariant part of Hilb(C2) under the lifted action of G. This Hilbert scheme
is also well known and is variously called the orbifold Hilbert scheme [43] or equivariant Hilbert
scheme [18]. We denote it by Hilb([C2/G]). This space also decomposes as

Hilb([C2/G]) =
⊔

ρ∈Rep(G)

Hilbρ([C2/G]),

where

Hilbρ([C2/G]) = {I ∈ Hilb(C2)G : H0(OC2/I) ≃G ρ}

for any finite-dimensional representation ρ ∈ Rep(G) of G; here Hilb(C2)G is the set of G-invariant
ideals of C[x, y], and ≃G means G-equivariant isomorphism. Being components of fixed point sets
of a finite group acting on smooth quasiprojective varieties, the orbifold Hilbert schemes themselves
are smooth and quasiprojective [5].

There is a natural pushforward map between the two kinds of Hilbert scheme: each J ∈
Hilb([C2/G]) can be mapped to its G-invariant part, giving a morphism [4, 3.4]

p∗ : Hilb([C2/G]) → Hilb(C2/G)
J 7→ JG = J ∩C[x, y]G

called the quotient-scheme map. There is also a set-theoretic pullback map, which however does
not preserve flatness in families, so it is not a morphism between the Hilbert schemes: the inclusion
i : C[x, y]G ⊂ C[x, y] induces a pullback map on the ideals, and its image is contained in the set of
G-equivariant ideals, leading to a map of sets

i∗ : Hilb(C2/G)(C) → Hilb([C2/G])(C)
I 7→ i∗I = C[x, y].I

Since for I �C[x, y]G, we clearly have (C[x, y].I)G = I, the composite p∗ ◦ i
∗ is the identity on the

set of ideals of the invariant ring.
We collect the topological Euler characteristics of the two versions of the Hilbert scheme into

two generating functions. Let ρ0, . . . , ρn ∈ Rep(G) denote the (isomorphism classes of) irreducible
representations of G, with ρ0 the trivial representation.
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Definition 1.1. (a) The orbifold generating series of the orbifold [C2/G] is

Z[C2/G](q0, . . . , qn) =

∞∑

m0,...,mn=0

χ
(
Hilbm0ρ0+...+mnρn([C2/G])

)
qm0
0 · . . . · qmn

n .

(b) The coarse generating series of the singularity C2/G is

ZC2/G(q) =

∞∑

m=0

χ
(
Hilbm(C2/G)

)
qm.

Remark 1.2. For a smooth variety X , the generating series

ZX(q) =

∞∑

m=0

χ (Hilbm(X)) qm

of the Euler characteristics of Hilbert schemes of points of X , as well as various refinements of
this series, have been extensively studied. In particular, for a nonsingular curve C, we have
MacDonald’s result [32]

ZC(q) = (1 − q)−χ(C),

whereas for a nonsingular surface S we have (a specialization of) Göttsche’s formula [16]

(1) ZS(q) =

(
∞∏

m=1

(1− qm)−1

)χ(S)

.

There are also results for higher-dimensional varieties [6].
For singular varieties X , the series ZX(q) is much less studied. For a singular curve C with a

finite set {P1, . . . , Pk} of planar singularities however, we have the beautiful conjecture of Oblomkov
and Shende [39], proved by Maulik [33], which takes the form

(2) ZC(q) = (1 − q)−χ(C)
k∏

j=1

Z(Pi,C)(q).

Here Z(Pi,C)(q) are highly nontrivial local terms that depend only on the embedded topological
type of the link of the singularity Pi ∈ C.

1.2. Simple surface singularities. In this paper we are only concerned with finite subgroups
G < SL(2,C). See [19] for some partial results for some other finite groups. As it is well known,
finite subgroups of SL(2,C) are classified into three types: type An for n ≥ 1, type Dn for n ≥ 4
and type En for n = 6, 7, 8. The type of the singularity can be parametrized by a simply-laced
irreducible Dynkin diagram with n nodes, arising from an irreducible simply laced root system ∆.
We denote the corresponding group by G∆ < SL(2,C); all other data corresponding to the chosen
type will also be labelled by the subscript ∆. Irreducible representations ρ0, . . . , ρn of G∆ are
then labelled by vertices of the affine Dynkin diagram associated with ∆. The singularity C2/G∆

is known as a simple (Kleinian, surface) singularity; we will refer to the corresponding orbifold
[C2/G∆] as the simple singularity orbifold.

As we recall in Appendix A.3, the following result is known.

Theorem 1.3 ([37]). Let [C2/G∆] be a simple singularity orbifold. Then its orbifold generating
series can be expressed as

(3) Z[C2/G∆](q0, . . . , qn) =

(
∞∏

m=1

(1− qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn

qm1
1 · · · · · qmn

n (q1/2)m
⊤·C∆·m,

where q =
∏n

i=0 q
di

i with di = dim ρi, and C∆ is the finite type Cartan matrix corresponding to ∆.

Our first main result is a strengthening of this theorem. Given a Dynkin diagram ∆ of type A
or D, we will recall below in 2.2, respectively 3.2, the definition of a certain combinatorial set, the
set of Young walls Z∆ of type ∆.
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Theorem 1.4. Let [C2/G∆] be a simple singularity orbifold, where ∆ is of type An for n ≥ 1 or
Dn for n ≥ 4. Then there exists a decomposition

Hilb([C2/G∆]) =
⊔

Y ∈Z∆

Hilb([C2/G∆])Y

into locally closed strata indexed by the set of Young walls Z∆ of the appropriate type. Each stratum
is isomorphic to an affine space of a certain dimension, and in particular has Euler characteristic
χ(Hilb([C2/G∆])Y ) = 1.

For type A, the set of Young walls is simply the set of finite partitions, represented as Young
diagrams, equipped with a diagonal labelling. In this case, Theorem 1.4 is well known; the decom-
position in type A is not unique, but depends on a choice of a one-dimensional subtorus of the
full torus (C∗)2 acting on the affine plane C2. For completeness, we summarize the details in 2.2.
On the other hand, the type D case appears to be new; in this case, our decomposition is unique,
there is no further choice to make.

Remark 1.5. The orbifold Hilbert schemes of points for G < SL(2,C) are well known to be
Nakajima quiver varieties for the corresponding affine quiver. As it was shown in [40], certain
Lagrangian subvarieties in Nakajima quiver varieties are isomorphic to quiver Grassmannians for
the preprojective algebra of the same type, parametrizing submodules of certain fixed modules.
On the other hand, results of the recent papers [30, 31] imply that every quiver Grassmannian of
a representation of a quiver of affine type D has a decomposition into affine spaces. The relation
between this decomposition and ours deserves further investigation.

As we will explain combinatorially in 2.3, respectively 7.2, and via representation theory in A.1-
A.2, the right hand side of (3) enumerates the set of Young walls Z∆ of the appropriate type. Thus
Theorem 1.4 implies Theorem 1.3.

Remark 1.6. In type A, it is easy to refine formula (3) to a formula involving the Betti num-
bers [13], or the motives [18], of the orbifold Hilbert schemes. We leave the study of such a
refinement in type D to future work; compare Remark 4.4.

The second main result of our paper is the following formula, which says that the coarse gener-
ating series is a very particular specialization of the orbifold one.

Theorem 1.7. Let C2/G∆ be a simple singularity, where ∆ is of type An for n ≥ 1 or Dn for
n ≥ 4. Let h∨ be the (dual) Coxeter number of the corresponding finite root system (one less than
the dimension of the corresponding simple Lie algebra divided by n). Then

ZC2/G∆
(q) =

(
∞∏

m=1

(1− qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn

ζm1+m2+···+mn(q1/2)m
⊤·C∆·m,

where ζ = exp
(

2πi
1+h∨

)
and C∆ is the finite type Cartan matrix corresponding to ∆.

Thus ZC2/G∆
(q) is obtained from Z[C2/G∆](q0, . . . , qn) by the substitutions

q1 = · · · = qn = exp

(
2πi

1 + h∨

)
, q0 = q exp


− 2πi

1 + h∨

∑

i6=0

dimρi


 .

In type A, the formula in Theorem 1.7 is not new: it was proved directly (in a slight disguise) by
Dijkgraaf and Sulkowski in [8] and also recently, using completely different methods, by Toda in
[42]. Our main contribution is the general Lie-theoretic formulation, as well as a proof in type D;
we also provide a direct combinatorial proof in type A, which appears to be new.

One can check directly that the generating series in Theorem 1.7 has also integer coefficients for
E6, E7 and E8 to a high power in q. This motivates the following.

Conjecture 1.8. Let C2/G∆ be a simple singularity of type En for n = 6, 7, 8. Let h∨ be the
(dual) Coxeter number of the corresponding finite root system. Then, as for other types,

ZC2/G∆
(q) =

(
∞∏

m=1

(1− qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn

ζm1+m2+···+mn(q1/2)m
⊤·C∆·m,
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where ζ = exp
(

2πi
1+h∨

)
and C∆ is the finite type Cartan matrix corresponding to ∆.

The key tool in our proof of Theorem 1.7 for types A and D is the combinatorics of Young walls,
in particular their abacus representation. We are not aware of such explicit combinatorics in type
E. We hope to return to this question in later work.

Remark 1.9. We are dealing here with Hilbert schemes, parametrizing rank r = 1 sheaves on the
orbifold or singular surface. In the relationship between the instantons on algebraic surfaces and
affine Lie algebras, level equals rank [17]. Indeed the (extended) basic represenatation underlying
the Young wall combinatorics (see Appendix) has level l = 1. Thus the substitution above is by the

root of unity ζ = exp
(

2πi
l+h∨

)
, with l = 1 and h∨ the (dual) Coxeter number. There is an intriguing

analogy here with the Verlinde formula, which uses a similar substitution, into characters of Lie
algebras, by a root of unity ζ = exp( 2πi

l+h∨ ), where l again is the level, and h∨ the (dual) Coxeter
number of the root system of the Lie algebra of the gauge group. The geometric significance of
this observation, if any, is left for future research.

Remark 1.10. Given the results above, it is easy to write down a global formula analogous to (2)
for a singular surface with canonical singularities. This formula, as well as its modularity, are
discussed in the announcement [21].

1.3. Some terminology and structure of the paper. We work over the field C of complex
numbers. We call a regular map f : X → Y a trivial affine fibration with fibre Ak, if there is an
isomorphism X ∼= Y × Ak with f being the first projection.

The structure of the rest of the paper is as follows. In Section 2, we give a new proof of Theo-
rem 1.7 in type A, which has the advantage that it generelizes away from that case. The rest of
the paper treats the case of type D. In Section 3, we introduce Schubert-style cell decompositions
of Grassmannians of homogeneous summands of C[x, y]. In Section 4 we give a cell decomposition
of the orbifold Hilbert scheme, proving Theorem 1.4. In Section 5, we discuss some special subsets
of the strata and their geometry. A decomposition of the coarse Hilbert scheme is given in Sec-
tion 6. In Section 7, the proof of Theorem 1.7 is completed using combinatorial enumeration. The
representation theoretic background is briefly summarized in Appendix A. Some relevant facts on
joins of projective varieties are discussed in Appendix B.

Acknowledgements. The authors would like to thank Gwyn Bellamy, Alastair Craw, Eugene
Gorsky, Ian Grojnowski, Kevin McGerty, Iain Gordon, Tomas Nevins and Tamás Szamuely for
helpful comments and discussions. Á.Gy. was partially supported by the Lendület program (Mo-
mentum Programme) of the Hungarian Academy of Sciences and by ERC Advanced Grant LDT-
Bud (awarded to András Stipsicz). A.N. was partially supported by OTKA Grants 100796 and
K112735. B.Sz. was partially supported by EPSRC Programme Grant EP/I033343/1.

2. Type An

2.1. Type A basics. Let ∆ be the root system of type An. Choosing a primitive (n+1)-st root of
unity ω, the corresponding subgroup G∆ of SL(2,C), a cyclic subgroup of order n+1, is generated
by the matrix

σ =

(
ω 0
0 ω−1

)
.

All irreducible representations of G∆ are one dimensional, and they are simply given by ρj : σ 7→ ωj,

for j ∈ {0, . . . , n}. The corresponding McKay quiver is the cyclic Dynkin diagram of type Ã
(1)
n .

The group G∆ acts on C2; the quotient variety C2/G∆ has an An singularity at the origin.
The matrix σ clearly commutes with the diagonal two-torus T = (C∗)2, and so T acts on the
quotient C2/G∆ and the orbifold [C2/G∆]. Consequently T also acts on the orbifold Hilbert
scheme Hilb([C2/G∆]) and the (reduced) coarse Hilbert scheme Hilb(C2/G∆) as well.

2.2. Partitions, torus-fixed points and decompositions. Consider the set N× N of pairs of
non-negative integers; we will draw this set as a set of blocks on the plane, occupying the non-
negative quadrant. Label blocks diagonally with (n+ 1) labels 0, . . . , n as in the picture; the block
with coordinates (i, j) is labelled with (i− j) mod (n+1). We will call this the pattern of type An.
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0 1 n−1 n

n 0 n−2n−1

0 1

n 0

1 2

0 1

.

..
.
..

. . . . . .

.

..

Let P denote the set of partitions. Given a partition λ = (λ1, . . . , λk) ∈ P , with λ1 ≥ . . . ≥ λk
positive integers, we consider its Young (or Ferrers) diagram, the subset of N × N which consists
of the λi lowest blocks in column i− 1. The blocks in λ also get labelled by the n+ 1 labels. Let
Z∆ denote the resulting set of (n + 1)-labelled partitions, including the empty partition. For a
labelled partition λ ∈ Z∆, let wtj(λ) denote the number of blocks in λ labelled j, and define the
multiweight of λ to be wt(λ) = (wt0(λ), . . . ,wtn(λ)).

Proposition 2.1. The torus T acts with isolated fixed points on Hilb([C2/G∆]), parametrized by
the set Z∆ of (n + 1)-labelled partitions. More precisely, for k0, . . . , kn non-negative integers and

ρ = ⊕n
j=0ρ

⊕ki

i , the T -fixed points on Hilbρ([C2/G∆]) are parametrized by (n+1)-labelled partitions
of multiweight (k0, . . . , kn).

Proof. We just sketch the proof, which is well known [10, 13]. It is clear that the T -fixed points
on Hilb([C2/G∆]), which coincide with the T -fixed points on Hilb(C2), are the monomial ideals
in C[x, y] of finite colength. The monomial ideals are enumerated in turn by Young diagrams of
partitions. The labelling of each block gives the weight of the G∆-action on the corresponding
monomial, proving the refined statement. �

Corollary 2.2. There exist a locally closed decomposition, depending on a choice specified below,
of Hilb([C2/G∆]) into strata indexed by the set of (n + 1)-labelled partitions. Each stratum is
isomorphic to an affine space.

Proof. Again, this is well known [38]. Fixing a representation ρ, choose a sufficiently general one-
dimensional subtorus T0 ⊂ T which has positive weight on both x and y. For general T0 ⊂ T ,
the fixed point set on Hilbρ([C2/G∆]) is unchanged and in particular consists of a finite number
of isolated points. Choosing positive weights on x, y ensures that all limits of T0-orbits at t = 0
in Hilb([C2/G∆]) exist, even though Hilbρ([C2/G∆]) is non-compact. Since Hilbρ([C2/G∆]) is
smooth, the result follows by taking the Bia lynicki-Birula decomposition of Hilbρ([C2/G∆]) given
by the T0-action. �

Denote by

Z∆(q0, . . . , qn) =
∑

λ∈Z∆

qwt(λ)

the generating series of (n+ 1)-labelled partitions, where we used multi-index notation

qwt(λ) =
n∏

i=0

q
wti(λ)
i .

From either of the previous two statements, we immediately deduce the following.

Corollary 2.3. Let [C2/G∆] be a simple singularity orbifold of type A. Then its orbifold generating
series can be expressed as

(4) Z[C2/G∆](q0, . . . , qn) = Z∆(q0, . . . , qn).

According to [13] the generating series of (n+ 1)-labelled partitions has the following form:

(5) Z∆(q0, . . . , qn) =

∑∞
m=(m1,...,mn)∈Zk q

m1
1 · · · · · qmn

n (q1/2)m
⊤·C·m

∏∞
m=1(1 − qm)n+1

,
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where q = q0 · · · · · qn and C is the (finite) Cartan matrix of type An; for a sketch proof, see the
end of 2.3 below. In particular, (4) and (5) imply Theorem 1.3 for type A.

We now turn to the coarse Hilbert scheme. Let us define a subset Z0
∆ of the set of (n + 1)-

labelled partitions Z∆ as follows. An (n+ 1)-labelled partition λ ∈ Z∆ will be called 0-generated
(a slight misnomer, this should be really be “complement-0-generated”) if the complement of λ
inside N × N can be completely covered by translates of N × N to blocks labelled 0 contained in
this complement. Equivalently, an (n + 1)-labelled partition λ is 0-generated, if all its addable
blocks (blocks whose addition gives another partition) are labelled 0. It is immediately seen that
this condition is equivalent to the corresponding monomial ideal I �C[x, y] being generated by its
invariant part I ∩C[x, y]G∆ . Indeed, we have the following.

Proposition 2.4. The torus T acts with isolated fixed points on Hilb(C2/G∆), which are in
bijection with the set Z0

∆ of 0-generated (n + 1)-labelled partitions. More precisely, for a non-

negative integer k, the T -fixed points on Hilbk(C2/G∆) are parametrized by 0-generated (n + 1)-
labelled partitions λ with 0-weight wt0(λ) = k.

Proof. This is immediate from the above discussion. The T -fixed points of Hilb(C2/G∆) are the
monomial ideals I of C[x, y]G∆ of finite colength. Inside C[x, y], the ideals they generate correspond
to partitions which are 0-generated. The ring C[x, y]G∆ has a basis consisting of monomials with
corresponding blocks labelled 0 inside C[x, y]; thus the codimension of a monomial ideal I inside
C[x, y]G∆ is simply the number of blocks denoted 0. �

Denoting by

Z0
∆(q) =

∑

λ∈Z0
∆

qwt0(λ)

the corresponding specialization of the generating series of 0-generated (n+ 1)-labelled partitions,
we deduce the following.

Corollary 2.5. Let [C2/G∆] be a simple singularity orbifold of type A. Then the coarse generating
series can be expressed as

(6) ZC2/G∆
(q) = Z0

∆(q).

Proof of Theorem 1.7 for the An case. The (dual) Coxeter number of the type An root system is
h∨ = n + 1. Thus Theorem 1.7 for this case follows from Corollary 2.5, formula (5), and the
combinatorial Proposition 2.7 below, which computes the series Z0

∆(q). �

Remark 2.6. The single variable generating series ZC2/G∆
in type A was calculated by Toda in [42]

using threefold machinery including a flop formula for Donaldson–Thomas invariants of certain
Calabi–Yau threefolds. He does not mention any connection to Lie theory. The combinatorics,
and the one-variable formula for Z0

∆(q), were already known to Dijkgraaf and Sulkowski [8]. They
do not give the interpretation of the combinatorial formula in terms of Hilbert schemes, though
they are clearly motivated by closely related ideas. Their proof is different, using the method of
Andrews [2] in place of the abacus combinatorics we use below. We believe that already in type
A, our new proof is preferable since it directly exhibits the clear connection between the orbifold
and coarse generating series. Also, as we show later, this method generalizes away from type A.

2.3. Abacus of type An. We now introduce some standard combinatorics related to the type A
root system, which will allow us to relate the generating series Z∆ of (n+ 1)-labelled partitions to
the specialized series Z0

∆ of 0-generated partitions. We follow the notations of [29].
The abacus of type An is the arrangement of the set of integers in (n+ 1) columns according to

the following pattern.
...

...
...

...
−2n− 1 −2n . . . −n− 2 −n− 1
−n −n+ 1 . . . −1 0
1 2 . . . n n+ 1

n+ 2 n+ 3 . . . 2n+ 1 2n+ 2
...

...
...

...
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Each integer in this pattern is called a position. For any integer 1 ≤ k ≤ n+ 1 the set of positions
in the k-th column of the abacus is called the k-th runner. An abacus configuration is a set of
beads, denoted by ©, placed on the positions, with each position occupied by at most one bead.

To an (n + 1)-labelled partition λ = (λ1, . . . , λk) ∈ Z∆ we associate its abacus representation
(sometimes also called Maya diagram) as follows: place a bead in position λi − i + 1 for all i,
interpreting λi as 0 for i > k. Alternatively, the abacus representation can be described by tracing
the outer profile of the Young diagram of a partition: the occupied positions occur where the profile
moves “down”, whereas the empty positions are where the profile moves “right”. In the abacus
representation of a partition, the number of occupied positive positions is always equal to the
number of absent nonpositive positions; we call such abacus configurations balanced. Conversely,
it is easy to see that any balanced configuration represents a unique (n+ 1)-labelled partition, an
element of Z∆.

For n = 0, we obtain a representation of partitions on a single runner; this is sometimes called
the Dirac sea representation of partitions.

The (n+ 1)-core of a labelled partition λ ∈ Z∆ is the partition obtained from λ by successively
removing border strips of length n + 1, leaving a partition at each step, until this is no longer
possible. Here a border strip is a skew Young diagram which does not contain 2×2 blocks and which
contains exactly one j-labelled block for all labels j. The removal of a border strip corresponds in
the abacus representation to shifting one of the beads up on its runner, if there is an empty space
on the runner above it. In this way, the core of a partition corresponds to the bead configuration in
which all the beads are shifted up as much as possible; this in particular shows that the (n+1)-core
of a partition is well-defined. We denote by C∆ the set of (n+ 1)-core partitions, and

c : Z∆ → C∆

the map which takes an (n+ 1)-labelled partition to its (n+ 1)-core.
Given an (n+1)-core λ, we can read the (n+1) runners of its abacus rrepresentation separately.

These will not necessarily be balanced. The i-th one will be shifted from the balanced position by
a certain integer number ai steps, which is negative if the shift is toward the negative positions
(upwards), and positive otherwise. These numbers satisfy

∑n
i=0 ai = 0, since the original abacus

configuration was balanced. The set {a1, . . . , an} completely determines the partition, so we get a
bijection

(7) C∆ ←→

{
n∑

i=0

ai = 0

}
⊂ Zn+1.

We will represent an (n+ 1)-core partition by the corresponding (n+ 1)-tuple a = (a0, . . . , an).
On the other hand, for an arbitrary partition, on each runner we have a partition up to shift,

so we get a bijection

Z∆ ←→ C∆ × P
n+1.

This corresponds to the structure of formula (5) above; its denominator is the generating series
of (n+ 1)-tuples of (unlabelled) partitions, whereas its numerator (after eliminating a variable) is
exactly a sum over a ∈ C∆. The multiweight of a core partition corresponding to an element a is
given by the quadratic expression Q(a) in the exponent of the numerator of (5). For more details,
see Bijections 1-2 in [14, §2].

2.4. Relating partitions to 0-generated partitions. The purpose of this section is to prove
the following, completely combinatorial statement.

Proposition 2.7. Let ∆ be of type An, and let ξ be a primitive (n+ 2)-nd root of unity. Then the
generating series of 0-generated partitions can be computed from that of all (n+ 1)-labelled ones by
the following substitution:

Z0
∆(q) = Z∆(q0, . . . , qn)

∣∣∣
q0=ξ−nq,q1=···=qn=ξ

.

We start by combinatorially relating partitions to 0-generated partitions. Z0
∆ is clearly a subset

of Z∆, but there is also a map

p : Z∆ → Z
0
∆
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defined as follows: for an arbitrary partition λ, let p(λ) be the smallest 0-generated partition
containing it. Since the set of 0-generated partitions is closed under intersection, p(λ) is well-
defined, and it can be constructed as follows: p(λ) is the complement of the unions of the translates
of N × N to 0-labelled blocks in the complement of λ. It is clear that p(λ) can equivalently be
obtained by adding all possible addable blocks to λ of labels different from 0.

Remark 2.8. The map p can also be described in the language of ideals. If the monomial ideal
I�C[x, y] corresponds to the partition λ, then the monomial ideal i∗p∗I = (I∩C[x, y]G∆).C[x, y]�
C[x, y] corresponds to the partition p(λ).

Lemma 2.9. The bead configurations corresponding to 0-generated partitions are exactly those
which have all beads right-justified on each row, with no empty position to the right of a filled
position. The map p : Z∆ → Z0

∆ can be described in the abacus representation by the process of
pushing all beads of an abacus configuration as far right as possible.

Proof. This follows from the description of the map from a partition to its abacus representation
using the profile of the partition. Indeed, a 0-generated partition has a profile which only turns
from “down” to “right” at 0-labelled blocks. In other words, the only time when a string of filled
positions can be followed by an empty position is when the last filled position is on the rightmost
runner. In other words, there cannot be empty positions to the right of filled positions in a row.
The proof of the second statement is similar. �

Remark 2.10. As explained above, the maps c : Z∆ → C∆ and p : Z∆ → Z0
∆ have natural

descriptions on abacus configurations: c corresponds to pushing beads all the way up within their
column, whereas p corresponds to pushing beads all the way to the right within their row. It is
then clear that there is also a third map Z∆ → 0Z∆ ⊂ Z∆, dual to p, defined on the abacus by
pushing beads all the way to the left. On labelled partitions this corresponds to the operation
of removing all possible blocks with labels different from 0. This dual constuction occured in the
literature earlier in [15].

Proof of Proposition 2.7. We will prove the substitution formula on the fibres of the map p : Z∆ →
Z0

∆. In other words, we need to show that for any given λ0 ∈ Z0
∆, we have

(8)
∑

µ∈p−1(λ0)

qwt(µ)
∣∣∣
q1=···=qn=ξ,q0=ξ−nq

= qwt0(λ0).

As a first step, we reduce the computation to 0-generated cores. Given an arbitrary 0-generated
partition λ, by the first part of Lemma 2.9 its core ν = c(λ) is also 0-generated, and the corre-
sponding abacus configuration can be obtained by permuting the rows of the configuration of λ.
Fix one such permutation σ of the rows. Then, using the second part of Lemma 2.9, we can use
the row permutation σ to define a bijection

σ̃ : p−1(λ)→ p−1(ν)

between (abacus representations of) partitions in the fibres, mapping λ itself to ν.
The difference between the partitions λ and ν is a certain number of border strips, each removal

represented by pushing up one bead on some runner by one step. Each border strip contains one
block of each label, so the total number of times we need to push up a bead by one step on the
different runners is N = wt0(λ) − wt0(ν). Thus, with q = q0 · . . . · qn as in the substitution above,
we can write

qwt(λ) = qwt0(λ)−wt0(ν)qwt(ν).

On the other hand, it is easy to see that in fact for any µ ∈ p−1(λ), the corresponding σ̃(µ) can
also be obtained by pushing up beads exactly N times, one step at a time, the difference being
just in the runners on which these shifts are performed. This means that each µ differs from σ̃(µ)
by the same number N = wt(λ)− wt(ν) of border strips. Therefore, we have

∑

µ∈p−1(λ)

qwt(µ) = qwt0(λ)−wt0(ν)
∑

µ∈p−1(ν)

qwt(µ).

This is clearly compatible with (8) and reduces the argument to 0-generated core partitions.
Fix a 0-generated core λ ∈ Z0

∆∩C∆; using Lemma 2.9 again, the corresponding (n+1)-tuple is a
set of nondecreasing integers a = (a0, . . . , an) summing to 0. The fibre p−1(λ) consists of partitions
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whose abacus representation contains the same number of beads in each row as λ. The shift of one
bead to the left results in the removal in the partition of a block labelled i, with 1 ≤ i ≤ n. After
substitution, this multiplies the contribution of the diagram on the right hand side of (8) by ξ−1.
If we fix all but one row, which contains k beads, then these contributions add up to

n−k+1∑

n1=0

n1∑

n2=0

· · ·

nk−1∑

nk=0

(ξ−1)n1+···+nk =

(
n+ 1

k

)

ξ−1

,

where
(
m
r

)
z

= [m]z!
[r]z![m−r]z!

is the Gaussian binomial coefficient, with [m]z = 1−zm

1−z .

The number of rows containing exactly k beads in the configuration corresponding to λ is
an+1−k − an−k. Therefore, the total contribution of the preimages, the left hand side of (8), is

∑

µ∈p−1(λ)

qwt(µ)
∣∣∣
q1=···=qn=ξ,q0=ξ−nq

=
n∏

k=1

(
n+ 1

k

)an+1−k−an−k

ξ−1

qwt(λ)
∣∣∣
q1=···=qn=ξ,q0=ξ−nq

=
n∏

l=0

(( n+1
n+1−l

)
ξ−1(

n+1
n−l

)
ξ−1

)al

qwt(λ)
∣∣∣
q1=···=qn=ξ,q0=ξ−nq

=

n∏

l=0

(
1− ξ−l−1

1− ξl−n−1

)al

qwt(λ)
∣∣∣
q1=···=qn=ξ,q0=ξ−nq

=

n∏

l=1

(
1− ξ−n−1

1− ξ−1

1− ξ−l−1

1− ξl−n−1

)al

qwt(λ)
∣∣∣
q1=···=qn=ξ,q0=ξ−nq

= ξ−
∑

n
l=1 lalqwt(λ)

∣∣∣
q1=···=qn=ξ,q0=ξ−nq

,

where in the second equality we used
(
n+1
0

)
z

=
(
n+1
n+1

)
z

= 1, in the penultimate equality we used

a0 = −a1 − · · · − an, and in the last equality we used

1− ξ−n−1

1− ξ−1

1− ξ−l−1

1− ξl−n−1
= ξ−l,

which can be checked to hold for ξ a primitive (n + 2)-nd root of unity. Incidentally, as the
multiplicative order of ξ is exactly n+ 2, all the denominators appearing above are non-vanishing.
Finally, according to [14, §2], we have

qwt(λ) = q
Q(a)

2 qa1+···+an

1 · . . . · qan
n ,

where again q = q0 · . . . · qn and Q : Zn → Z is the quadratic form associated to C∆. Since q0
appears only in q on the right hand side, it is clear that Q(a)

2 = wt0(λ). Hence,

q
Q(a)

2 qa1+···+an

1 . . . qan
n

∣∣∣
q1=···=qn=ξ

= qwt0(λ)ξ
∑

n
l=1 lal .

This concludes the proof. �

3. Type Dn: ideals and Young walls

3.1. The binary dihedral group. Fix an integer n ≥ 4, and let ∆ be the root system of type
Dn. For ε a fixed primitive (2n− 4)-th root of unity, the corresponding subgroup G∆ of SL(2,C)
can be generated by the following two elements σ and τ :

σ =

(
ε 0
0 ε−1

)
, τ =

(
0 1
−1 0

)
.

The group G∆ has order 4n − 8, and is often called the binary dihedral group. We label its irre-
ducible representations as shown in Table 1. There is a distinguished 2-dimensional representation,
the defining representation ρnat = ρ2. See [23, 7] for more detailed information.

We will often meet the involution on the set of representations of G∆ which is given by tensor
product with the sign representation ρ1: on the set of indices {0, . . . , n}, this is the involution j 7→
κ(j) which swaps 0 and 1 and n− 1 and n, fixing other values {2, . . . , n− 2}. Given j ∈ {0, . . . , n},
we denote κ(j, k) = κkn(j); this is an involution which is nontrivial when k and n are odd, and
trivial otherwise. The special case k = 1 will also be denoted as j = κn(j).
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ρ Tr(1) Tr(σ) Tr(τ)
ρ0 1 1 1
ρ1 1 1 −1
ρ2 2 ε+ ε−1 0
...

...

ρn−2 2 εn−3 + ε−(n−3) 0
ρn−1 1 −1 −in

ρn 1 −1 in

Table 1. Labelling the representations of the group G∆

The following identities will be useful:

(9) ρ⊗2
n−1
∼= ρ⊗2

n
∼= ρ0, ρn−1 ⊗ ρn ∼= ρ1, ρ1 ⊗ ρn−1

∼= ρn, ρ1 ⊗ ρn ∼= ρn−1, ρ⊗2
1
∼= ρ0.

3.2. Young wall pattern and Young walls. We describe here the type D analogue of the set
of labelled partitions used in type A, following [25, 27]. In this section, we only describe the
combinatorics; see Appendix A for the representation-theoretic significance of this set.

First we define the Young wall pattern of type1 Dn, the analogue of the (n+ 1)-labelled positive
quadrant lattice of type An used above. This is the following infinite pattern, consisting of two
types of blocks: half-blocks carrying possible labels j ∈ {0, 1, n − 1, n}, and full blocks carrying
possible labels 1 < j < n− 1:

2

n−2

n−2

2

2

...

...

2

n−2

n−2

2

2

...

...

2

n−2

n−2

2

2

...

...

2

n−2

n−2

2

2

...

...

2

n−2

n−2

2

2

...

...

2

n−2

n−2

2

2

...

...

2

n−2

n−2

2

2

...

...

2

n−2

n−2

2

2

...

...

0
1

n−1
n

0
1

0
1

n−1
n

0
1

0
1

n−1
n

0
1

0
1

n−1
n

0
1

1
0

n
n−1

1
0

1
0

n
n−1

1
0

1
0

n
n−1

1
0

1
0

n
n−1

1
0

. . .

...

Next, we define the set of Young walls2 of type Dn. A Young wall of type Dn is a subset Y of
the infinite Young wall of type Dn, satisfying the following rules.

(YW1) Y contains all grey half-blocks, and a finite number of the white blocks and half-blocks.
(YW2) Y consists of continuous columns of blocks, with no block placed on top of a missing block

or half-block.
(YW3) Except for the leftmost column, there are no free positions to the left of any block or half-

block. Here the rows of half-blocks are thought of as two parallel rows; only half-blocks of
the same orientation have to be present.

1The combinatorics introduced in this section should really be called type D̃
(1)
n , but we do not wish to overburden

the notation. Also we have reflected the pattern in a vertical axis compared to the pictures of [25, 27].
2In [25, 27], these arrangements are called proper Young walls. Since we will not meet any other Young wall, we

will drop the adjective proper for brevity.
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(YW4) A full column is a column with a full block or both half-blocks present at its top; then no
two full columns have the same height3.

Let Z∆ denote the set of all Young walls of type Dn. For any Y ∈ Z∆ and label j ∈ {0, . . . , n}
let wtj(Y ) be the number of white half-blocks, respectively blocks, of label j. These are collected
into the multi-weight vector wt(Y ) = (wt0(Y ), . . . , wtn(Y )). The total weight of Y is the sum

|Y | =
n∑

j=0

wtj(Y ),

and for the formal variables q0, . . . , qn,

qwt(Y ) =

n∏

j=0

q
wtj(Y )
j .

3.3. Decomposition of C[x, y] and the transformed Young wall pattern. The group G∆

acts on the affine plane C2 via the defining representation ρnat = ρ2. Let S = C[x, y] be the
coordinate ring of the plane, then S = ⊕m≥0Sm where Sm is the mth symmetric power of ρnat,
the space of homogeneous polynomials of degree m of the coordinates x, y.

We further decompose

Sm =

n⊕

j=0

Sm[ρj ]

into subrepresentations indexed by irreducible representations. We will also use this notation for
linear subspaces: for U ⊂ Sm a linear subspace, U [ρj] = U ∩Sm[ρj ]. We will call an element f ∈ S
degree homogeneous, if f ∈ Sm for some m; we call it degree and weight homogeneous, if f ∈ Sm[ρj ]
for some m, j.

The decomposition of S into G∆-summands can be read off very conveniently from the trans-
formed Young wall pattern. The transformation is an affine one, involving a shear: reflect the
original Young wall pattern in the line x = y in the plane, translate the nth row by n to the right,
and remove the grey triangles of the original pattern. In this way, we get the following picture:

...

. . .

2 n−2 n−2 2 2. . . . . .

2 n−2 n−2 2 2. . . . . .

2 n−2 n−2 2 2. . . . . .

2 n−2 n−2 2 2. . . . . .

0 n−1
n 0

1

0 n−1
n 0

1

1 n
n−1 1

0

1 n
n−1 1

0

As it can be checked readily, this is a representation of S and its decomposition into G∆-
representations. The homogeneous components Sm are along the antidiagonals. For 1 < i < n− 1,
a full block labelled j below the diagonal, together with its mirror image, correspond to a 2-
dimensional representation ρj . For j ∈ {0, 1, n − 1, n}, a full block labelled j on the diagonal,
as well as a half-block labelled j below the diagonal with its mirror image, corresponds to a one-
dimensional representation. The dimension of Sm[ρj ] is the same as the total number of full blocks
labelled j on the mth diagonal in the transformed Young wall pattern, counting mirror images
also.

It is easy to translate the conditions (YW1)-(YW4) into the combinatorics of the transformed
pattern; see Proposition 3.7 and Remark 3.8 below. Pictures of some small Young walls in the
transformed pattern can be found below in Examples 4.5-4.9 below.

3.4. Subspaces and operators. For each non-negative integer m and irreducible representa-
tion ρj , consider the space Pm,j of nontrivial G∆-invariant subspaces of minimal dimension in
Sm[ρj ]. Specifically, if ρj is one-dimensional, then these will be lines, and Pm,j is simply the pro-
jectivization PSm[ρj]. If ρj is two-dimensional, then Pm,j is a closed subvariety of Gr(2, Sm[ρj ]).
It is easy to see that in this case also, Pm,j is isomorphic to a projective space.

3This is the properness condition of [25].
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More generally, let Gr
m,j be the space of (r − 1)-dimensional projective subspaces of Pm,j . If

ρj is one-dimensional, then this is the Grassmannian Gr(r, Sm[ρj ]). When ρj is two-dimensional,
then Gr

m,j is a closed subvariety of Gr(2r, Sm[ρj ]) isomorphic to a Grassmannian of rank r. Clearly

G1
m,j = Pm,j .
For 0 ≤ j ≤ n, we introduce operators Lj : Gr(S) → Gr(S) on the Grassmannian Gr(S) of all

linear subspaces of the vector space S as follows: for v ∈ Gr(S), we set

(1) L0v = v;
(2) L1v = xy · v;
(3) for 1 < j < n− 1, Ljv = 〈xj−1 · v, yj−1 · v〉;
(4) Ln−1v = (xn−2 − inyn−2) · v;
(5) Lnv = (xn−2 + inyn−2) · v.

Sometimes we will use the notation L2 = L2,x + L2,y for the x- and y-component of the op-
erator L2, i.e. multiplication with x, respectively y. The operators above restrict to operators
L0 : Gr(Sm)→ Gr(Sm), L1 : Gr(Sm)→ Gr(Sm+2), Lj : Gr(Sm)→ Gr(Sm+j−1) for 1 < j < n− 1,
and Ln−1, Ln : Gr(Sm)→ Gr(Sm+n−2) on the Grassmannians of the graded pieces Sm. To simplify
notation, if we do not write the space to which these operators are applied, then application to
〈1〉 is meant. So, for example, the symbol L2

1 standing alone denotes the vector subspace 〈x2y2〉 of
S4, while L2 alone denotes the two-dimensional vector subspace 〈x, y〉 of S1. For a linear subspace
v of S, the sum

∑
j∈I Ljv denotes the subspace of S generated by the images Ljv. We use the

operator notation also for a set of subspaces; the meaning should be clear from the context.

3.5. Cell decompositions of equivariant Grassmannians. We start this section by defining
decompositions of the Grassmannians Pm,j of nontrivial G∆-invariant subspaces of minimal dimen-
sion in Sm[ρj ]. Given (m, j), let Bm,j denote the set of pairs of non-negative integers (k, l) such
that k+ l = m, l ≥ k, and the block position (k, l) on the m-th antidiagonal on or below the main
diagonal contains a block or half block of color j. Here k is the row index, l is the column index,
and both of them in a nonnegative integer. It clearly follows from our setup that

dimPm,j = |Bm,j| − 1.

Proposition 3.1. Given (m, j), there exists a locally closed stratification

Pm,j =
⊔

(k,l)∈Bm,j

Vk,l,j ,

which is a standard stratification of the projective space Pm,j into affine spaces Vk,l,j of decreasing
dimension.

We will call Vk,l,j the cells of Pm,j . The decomposition will be defined inductively, based on the
following Lemma. Recall that j 7→ κ(j) denotes the involution on {0, . . . , n} which swaps 0 and 1
and n− 1 and n.

Lemma 3.2. For any l ≥ 0 and any j ∈ [0, n], we have an injection

L1 : Pl−2,j → Pl,κ(j).

This map is an isomorphism except in the case when the block or half-block in the bottom row of
the transformed Young wall pattern on the l-th antidiagonal has label j, in which case the image
has codimension one.

Proof. It is clear that multiplication by L1 induces an injection, so we simply need to check the
dimensions. The statement then clearly follows by looking at the transformed Young wall pattern:
multiplication by L1 corresponds to shifting the (l− 2)-nd diagonal up by one diagonal step to the
l-th diagonal; the number of blocks or half-blocks labelled j is identical, unless the new (half-)block
has label j, and then the codimension is exactly one. �

Remark 3.3. The half-block in the bottom row of the transformed Young wall pattern in the
l-th antidiagonal has label j = 0, 1 for l ≡ 0 mod (2n − 4) except at (0, 0) where only 0 occurs.
Half-blocks labelled j = (n − 1), n occur for l ≡ n− 2 mod (2n− 4). For j ∈ [2, n− 2], there are
full blocks labelled j in the bottom row on antidiagonals for l ≡ j − 1 or 2n− 3− j mod (2n− 4).
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Proof of Proposition 3.1. Nontrivial cells V0,l,j need to be defined exactly when the block or half-
block in the bottom row of the transformed Young wall pattern in the l-th antidiagonal has label j.
In these cases, we set the cells along the bottom row to be

V0,l,j = Pl,j \ L1Pl−2,κ(j).

Once the cells V0,k,j along the bottom row are defined, we define the general cells for all 0 ≤ j ≤ n,
all l and k by

Vk,k+l,j = Lk
1V0,l,κk(j).

What this says is that the cells are shifted up diagonally by L1, taking into account that L1 multi-
plies by the sign representation, so shifts the indices by the appropriate power of the involution κ.
By induction, we obtain a decomposition of Pm,j with the stated properties. �

As it is well known, a decomposition of a projectivization of a vector space into affine cells is
equivalent to giving a flag in the space itself. This induces a natural decomposition of all higher rank
Grassmannians into Schubert cells, which are known to be affine. Thus our cell decomposition of
Pm,j induces cell decompositions of all Gr

m,j . Since the cells in the first decomposition are indexed
by the set Bm,j , the cells in the second will be indexed by subsets of Bm,j of size r. A Schubert
cell of Gr

m,j corresponding to a subset S = {(k1, l1), . . . (kr, lr)} ⊂ Bm,j will consist of those (r−1)-
dimensional projective subspaces of Pm,j that intersect Vki,li,j nontrivially for all 1 ≤ i ≤ r. We
will denote the cell corresponding to S in Gr

m,j by VS,j . We obtain a locally closed decomposition

Gr
m,j =

⊔

S⊆Bm,j

|S|=r

VS,j .

Occasionally, when it is clear from the context that S is a subset of Bm,j, we will supress the index
j and write just VS for the Schubert cells of Gr

m,j .
We will call a Schubert cell maximal if it intersects the maximal dimensional cell of Pm,j nontriv-

ially. Such a cell corresponds to subsets S ⊂ Bm,j which contain (kmin, l) where kmin is minimal
among the first components of the elements of Bm,j. The intersection with Vkmin,l,j of a subspace
corresponding to a point in a maximal Schubert cell is an affine subspace of Vkmin,l,j . Conversely,
to any affine subspace of Vkmin,l,j , there corresponds a point in a maximal Schubert cell given by
the completion of the subspace in Pm,j .

For a maximal subset S, denote by S ⊂ Bm,j the set of indices which we get by deleting (kmin, l)

from S. S is empty, if |S| = 1. Define the codimension one projective subspace

Pm,j =
⊔

{(k,l)∈Bm,j : k>kmin}

Vk,l,j ⊂ Pm,j = Pm,j \ Vkmin,l,j .

For each (r− 1)-dimensional subspace U ⊂ Pm,j intersecting the affine space Vkmin,l,j nontrivially,

let U = U ∩ Pm,j.

Lemma 3.4. The map ω : VS,j → VS,j defined by ω(U) = U is a trivial affine fibration with fibre

A|Bm,j |−|S|.

We can think of this map as associating to an affine subspace of Vkmin,l,j its set of “ideal
points at infinity”. We define the mapping ω : VS,j → VS,j as the identity for those index sets and

the corresponding cells which are not maximal. In such cases, S = S considered as a subset of
Bm,j \ {(kmin, l)}.

Consider the fibre ω−1(U) over a point U ∈ VS , which we will also denote by VS |U below. This

fibre consists of those subspaces U ⊆ Pm,j which intersect Pm,j in U , i.e. when considered as

an affine subspace of Vkmin,l,j , they have U as their set of “points at infinity”. We will denote

the set of such subspaces also by Vkmin,l,j/U . This notation means that we take the cosets in

Vkmin,l,j of an arbitrary affine subspace U ⊂ Vkmin,l,j with U = Pm,j ∩ U . The affine structure on

Vkmin,l,j descends to an affine structure on Vkmin,l,j/U which does not depend on the particular
affine subspace U whose cosets were taken.

We also need a description of the affine subspaces of the cells Vk,l,j for k > kmin. The relevant
Schubert cells in this case are indexed by those subsets S of Bm,j which contain (k, l) but do not
contain any (k′, l′) for k′ < k. Hence, the index set Bm,j is first truncated by deleting the pairs
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(k′, l′) with k′ < k. We will denote the result as Bm,j(k). Then, the maximal Schubert cells for
Vk,l,j correspond to those subsets S ⊆ Bm,j(k) of the truncated index set which contain (k, l). For

these, S is defined by removing (k, l) from S. There is still a morphism ω : VS,j → VS,j which is
defined in the same way as above; its global structure and the description of its fibres is analogous
to the previous special case.

Note that the notation S is ambiguous at this point: any maximal subset S ⊆ Bm,j(k) can also
be considered as a nonmaximal subset of Bm,j(k

′) for k′ < k. If we view S as a subset of Bm,j(k),

then S = S \ {(k,m− k)}. On the other hand, if we view it as a nonmaximal subset of Bm,j(k
′)

for k′ < k, then S = S. We have decided not to introduce extra notation; when this notation gets
used below, we will always specify the reference point k explicitly.

3.6. The Young wall associated to a homogeneous ideal. In this section, we study ideals
generated by degree- and weight-homogeneous polynomials; we will call such ideals simply homo-
geneous ideals. Here is the main definition of this section.

Definition 3.5. Consider a homogeneous G∆-invariant ideal I � C[x, y]. Let YI denote the fol-
lowing subset of the transformed Young wall pattern of type Dn: for each block or half-block
(k, l) of label j, with k + l = m, include this block or half-block in YI if and only if I ∩ Sm[ρj ]
does not intersect the preimage in Sm[ρj ] of the stratum Vk,l,j ⊂ Pm,j from the stratification of
Proposition 3.1. YI will be called the profile of I.

It will be useful to introduce a little bit of extra notation, and to reformulate this definition in
the new notation. Given a homogeneous G∆-invariant ideal I, let Im,j be the set of G∆-invariant
subspaces of minimal dimension in I ∩ Sm[ρj ]. Then as I ∩ Sm[ρj ] ⊂ Sm[ρj ] is a linear subspace,
Im,j ⊂ Pm,j is a projective linear subspace. Then the definition simply says that a block or half-
block (k, l) labelled j is included in YI if and only if Im,j ∩Vk,l,j = ∅, for m = k+ l as before. Since
{Vk,l,j} is a standard stratification of the projective space Pm,j into affine spaces, {Im,j ∩ Vk,l,j}
is also a standard stratification of its projective linear subspace Im,j into affine spaces, and so has
the same number of strata as its affine dimension. We conclude

Lemma 3.6. For all m, j, the number of absent blocks or half-blocks of label j on the m-th diagonal
equals dim(I ∩ Sm[ρj ]).

Proposition 3.7. Given a homogeneous G∆-invariant ideal I � C[x, y], the associated subset YI
of the transformed Young wall pattern of type Dn has the following properties.

(1) If a full or half block is missing, then all the blocks above-right from it on the diagonal are
missing.4

(2) If a full block is missing, then all full or half blocks to the right of it are missing, and at
least one (full or half) block immediately above it is missing.

(3) If a half block is missing, then the full block to the right of it is missing.
(4) If both half-blocks sharing the same block position are missing, then the full block immedi-

ately above this position is missing.

In particular, if I is of finite codimension, then YI is a Young wall of type Dn, an element of the
set Z∆.

Remark 3.8. As it can be checked from the definitions, the relationship between the directions
in the original and transformed Young wall patterns is the following: (right, up, diagonally right
and down) in the original correspond after transformation to (diagonally right and up, right, up)
respectively. This way, it is easy to check the correspondence between the rules for Young walls
from 3.2 and this proposition.

Proof of Proposition 3.7. Fix a homogeneous invariant ideal I � C[x, y] and let YI be the corre-
sponding subset of the Young wall pattern. Property (1) of YI follows by applying L1, recalling
the inductive nature of the stratification of Pm,j using L1. The inductice construction also implies
that it suffices to check properties (2)-(4) for blocks missing on the bottom row.

Let us next prove (2) in the general case, when a full block in position (0, l) in representation
j ∈ [3, n− 3] is missing from YI ; by the choice of j, both above and to the right of this block there
are also full blocks. Since the block at (0, l) is missing, there is an invariant 2-dimensional subspace

4Again, for a missing half block only the half blocks of the same orientation have to be missing.
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u ∈ Il,j ∩ V0,l,j contained in I. Since u is in the lowest stratum V0,l,j of Pl,j , it has a basis one of
whose members at least is not divisible by xy; without loss of generality, we may assume that this
polynomial is xap where a is a non-negative integer and p a polynomial in x, y not divisible by x, y.
Now we can write

L2u = u+ ⊕ u−
with u+ ∈ Il+1,j+1 and u− ∈ Il+1,j−1. Then u+ must contain a polynomial with xa+1p as nonzero
summand, so it cannot be in the image of L1; so we have u+ ∈ V0,l+1,j+1. Similarly, u− must
contain a polynomial with xayp as nonzero summand, so it cannot be in the image of L2

1 and so
u− ∈ V1,l,j−1. Thus indeed both the blocks in positions (0, l+ 1) and (1, l) are missing as claimed.

Let us now consider what changes if j is chosen such that there are half-blocks around. Suppose
first that the half-blocks happen to lie to the right of our block labelled j. Then we have a
decomposition

L2u = u1+ ⊕ u
2
+ ⊕ u−,

with ui+ both one-dimensional. In this case, it is easy to check that the polynomial xa+1p cannot

itself generate a one-dimensional eigenspace, so both ui+ will contain a polynomial with xa+1p as
nonzero summand. Thus neither of these subspaces can be in the image of L1, and so must lie in
the large stratum. Hence both these blocks are missing.

Suppose now that the half-blocks happen to lie above our block labelled j. Then L2u is either
three- or four-dimensional. In the general case, it has dimension four and there is a decomposition

L2u = u1− ⊕ u
2
− ⊕ u+

with ui− both one-dimensional. In special situations L2u is only three dimensional, and one of the

ui−’s is missing (see Lemma 4.20 below for a detailed analysis). In any case, xa+1p will lie in u+,
forcing that subspace to be in the large stratum. The other relevant polynomial xayp may or may
not generate a one-dimensional invariant subspace, depending on the values of a, p; so at least one,
possibly both, of u1−, u

2
− lies in the image of L1 but not L2

1, forcing them to lie in the corresponding
stratum. So at least one, but possibly both, of the corresponding half-blocks must be missing. We
remark here that the other ui−, if present, can be divisible by a higher power of L1. This implies
that in this case the ideal generated by u may have nontrivial intersection with the cells Vk,l,j even
with l > 0.

The proofs of (3)-(4) follow the same pattern; we omit the details. Finally if I is of finite
codimension, then it contains Sm for m large enough, and so YI contains only finitely many blocks
and half-blocks. �

4. Type Dn: decomposition of the orbifold Hilbert scheme

4.1. The decomposition. The aim of this section is to prove the following result, which gives a
constructive proof of Theorem 1.4 for type Dn.

Theorem 4.1. Let G∆ be the subgroup of SL(2,C) of type Dn. Then there is a locally closed
decomposition

Hilb([C2/G∆]) =
⊔

Y ∈Z∆

Hilb([C2/G∆])Y

of the equivariant Hilbert scheme Hilb([C2/G∆]) into strata indexed bijectively by the set Z∆ of
Young walls of type Dn, with each stratum Hilb([C2/G∆])Y a non-empty affine space.

Proof. The affine plane C2 carries the diagonal T = C∗-action, which commutes with the G∆-
action. The action of T lifts to all the equivariant Hilbert schemes Hilbρ([C2/G∆]) which are
themselves nonsingular. Thus the fixed point set

Hilb([C2/G∆])T = ⊔ρHilbρ([C2/G∆])T

is also a union of nonsingular varieties, and it consists of points representing homogeneous invariant
ideals. The construction of 3.6 associates a Young wall Y to each homogeneous invariant ideal
I � C[x, y]. Since the construction uses a locally closed decomposition of the projective spaces
Pm,j , the Young wall Y also depends in a locally closed way on the ideal I, and thus we obtain a
decomposition

Hilb([C2/G∆])T =
⊔

Y ∈Z∆

ZY
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into reduced locally closed subvarieties, where ZY ⊂ Hilb([C2/G∆])T is the locus of homogeneous
invariant ideals I with associated Young wall Y .

Let Hilb([C2/G])Y ⊂ Hilb([C2/G]) denote the locus of ideals which flow to ZY under the action
of the torus T . Then by the Bia lynicki-Birula theorem [3], there is a regular map Hilb([C2/G])Y →
ZY which is a Zariski locally trivial fibration with affine space fibres, and a compatible T -action on
the fibres. By Theorem 4.3 below, the base is an affine space as well. Hence, by [3, Sect.3, Remarks],
Hilb([C2/G])Y is an algebraic vector bundle over this base, and hence trivial (Serre–Quillen–Suslin)
[28]. Theorem 4.1 follows. �

Remark 4.2. (1) As Hilb([C2/G∆]) = Hilb(C2)G∆ ⊂ Hilb(C2) is a smooth subvariety, the
universal family over Hilb(C2) restricts to a universal family over the equivariant Hilbert
scheme Hilb([C2/G∆]). This restricts to a universal family of homogeneous invariant ideals
U �OHilb([C2/G∆])T ⊗C[x, y] over the T -fixed point set. Restricting this universal family U
to each of the strata constructed above gives flat families of homogeneous invariant ideals
UY �OZY

⊗C[x, y] over each stratum ZY . It follows from the construction that the families
UY are universal for flat families of homogeneous invariant ideals with associated Young
wall Y . We will have occasion to use the universal property of the strata ZY below.

(2) The diagonal T = C∗-action on C2 induces the usual monomial grading on C[x, y], and
when I is homogeneous, also on the quotient C[x, y]/I. For a G∆-invariant ideal I, this
quotient is a G∆-representation. In the homogeneous G∆-invariant case, the quotient has a
multigraded Hilbert function: a Z-grading induced by the T = C∗-action and a grading (or
rather labelling) by the set {ρ0, . . . , ρn}. By Lemma 3.6, the multigraded Hilbert function
of a homogeneous invariant ideal I �C[x, y] is determined by its associated Young wall Y .

The following is the main technical result of this section.

Theorem 4.3. For each Y ∈ Z∆, the stratum ZY constructed above is isomorphic to a nonempty
affine space.

Remark 4.4. We note that our proof of Theorem 4.3 below certainly provides some information
about the dimension of the affine space ZY , and thus of the affine space Hilb([C2/G∆])Y . We leave
the study of these quantities, which could lead to a refinement of Theorem 1.3 in the Grothendieck
ring of varieties for type Dn, for further study.

Our proof of Theorem 4.3, discussed below following some preparation, is a direct inductive
proof. We start with a series of examples which exhibit the range of issues our proof will have to
tackle; the discussions use results to be proved further below. Throughout we take the simplest
example n = 4, which exhibits all the nontrivial features.

Example 4.5. Let Y1 be the triangle of size 3.

2

2

0

1

0

4
3

An invariant homogeneous ideal I corresponding to this Young wall necessarily has a generator
in V0,3,2 ⊂ P3,2. The latter is a projective line whose points can be represented by expressions
α0L2L3 + α1L2L4. The affine line V0,3,2 is given by α0 + α1 6= 0. It is straightforward to check
that a general point in V0,3,2, that is, when [α0 : α1] 6∈ {[1 : 0], [0 : 1]}, indeed generates an ideal
I with Young wall Y1. However, when α0 or α1 become zero, then I does not intersect V1,3,4,
respectively V1,3,3, even though it should, so we have to add another generator to I from within
the corresponding cell (see Proposition 4.22(5) below). Both these cells are points, so there is no
further choice to make and thus the space ZY1 is isomorphic to an affine line. This example already
illustrates the fact that even within a single stratum ZY , the minimal number of generators of an
ideal I with Young wall Y can vary.

Example 4.6. Let Y2 be the triangle of size 4. In this case, we get ZY2
∼= ZY1

∼= A1, the affine
line of Example 4.5, due to the isomorphism V0,3,2 ∼= V0,4,0 × V0,4,1, see Proposition 4.22(2) below,
or repeat the same argument as above.
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Example 4.7. Let Y3 be the triangle of size 5.

2 2

2

2

2

2

0

1

0

1

0

4
3

4
3

3
4

0
1

For each fixed ideal I with associated Young wall Y3 must necessarily have an generator f ∈ I such
that [f ] ∈ V0,5,2. By construction, V0,5,2 is an affine plane. This generator is, up to scalar, unique,
since the block of label 2 in position (0, 5) is the only one with this label missing from the degree
5 antidiagonal. In other words, I5,2 ∩ V0,5,2 should be a point, otherwise the points at infinity of
I5,2 ∩V0,5,2 would intersect the other cells of degree 5 which is not allowed because of the shape of
the Young wall. I must also intersect both V1,5,0 and V1,5,1, and again in essentially unique points,
the corresponding blocks being the only 0/1 blocks missing from the degree 6 antidiagonal. This
puts the following constraint on the allowed [f ] ∈ V0,5,2. Use the isomorphism L−1

1 which maps
V1,5,0 ⊔ V1,5,1, a disjoint union of an affine line and a point, to V0,4,1 ⊔ V0,4,0. Map this locus into
V0,5,2, an affine plane, to obtain M0

1 ⊔M
0
0 ⊂ V0,5,2 by taking the ideals generated by them (the

curious notation M0
1 ⊔M

0
0 for this locus is used here to be consistent with the general setup later,

see the definitions after Lemma 4.23). Then by Proposition 4.22(2) below, the ideal 〈f〉 intersects
P6,0 and P6,1 at most in the correct cells V1,5,0 and V1,5,1 if and only if [f ] ∈ V0,5,2 lies on the linear
join of the affine line M0

0 and the point M0
1 inside the affine plane V0,5,2 but not on M0

1 ⊔M
0
0 . This

join is the plane V0,5,2 minus a punctured affine line M1 \M0
1 , where M1 is the line parallel to M0

0 ,
going through M0

1 . On this join, but away from the locus M0
0 ⊔M

0
1 itself, we can set I = 〈f〉 to

indeed get an ideal with Young wall Y3. On the locus M0
0 ⊔M

0
1 however, the ideal 〈f〉 itself will

not actually meet both cells, so we have to add an arbitrary generator of the missed cell to f to
obtain an ideal of the correct Young wall. Over the affine line M0

0 , there is no choice, since V1,5,0 is
a point. But over the point M0

1 , we still have V1,5,0, in other words an affine line, worth of choices.
This sofar tells us that ZY3 is the disjoint union of V0,5,2 \M1

∼= A2 \ A1 and V1,5,0 ∼= A1.

M0
1

M0
0M1

To fully work out the geometry of ZY3 , note that P5,2
∼= P2 can be parametrized by expersions

α0L2L
2
3 + α1L2L3L4 + α2L2L

2
4. The locus V0,5,2 ⊂ P5,2 is given by α0 + α1 + α2 6= 0. The image

of V0,4,0 in these coordinates is M0
0 = {(α0, 0, α1) : α0 + α1 6= 0}, while the image of V0,4,1 is

M0
1 = {(0, 1, 0)}. The linear combinations of the points in M0

0 and M0
1 cover the whole affine

plane V0,5,2, except a punctured line. For a general linear combination a · (α0, 0, α1) + b · (0, 1, 0),
the ideal generated by the corresponding f intersects V1,5,0×V1,5,1 in (L1L3L4, α0L1L

2
3 +α1L1L

2
4).

For (a, b) = (1, 0) we have to have an extra generator in V1,5,0, while for (a, b) = (0, 1) we need an
extra generator in V1,5,1.

Consider a family of ideals which approaches the point M0
1 from the direction (α0, 0, α1). Then

it can be shown by explicit calculation that the limit ideal contains the subspace generated by
α0L1L

2
3 + α1L1L

2
4 ∈ V1,5,1. This shows that ZY3 can be obtained by blowing up the affine plane

V0,5,2 in its point M0
1 , and removing the proper transform of the punctured line M1 \M

0
1 from

this blowup. Thus ZY3
∼= A2. From the blowup construction, we also obtain a canonical morphism

ZY3 → A1, the restriction of the morphism Bl0A
2 → P1 to the exceptional curve of the blowup.

Example 4.8. Let Y ′
3 be the Young wall
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2

2

2

2

2

2

0

1

0

4
3

4
3

3
4

0
1

1

0

There is necessarily still a unique generator in V0,5,2. The difference compared to Y3 is that there is
now no intersection with V1,5,1 but an intersection with V3,3,1. The cells of the 0/1-blocks missing
from the degree six diagonal are V1,5,0 and V3,3,1, both of which are zero dimensional. As before,

we pull back these using L−1
1 , take the linear combinations of their images in P5,2, and intersect

this line with V0,5,2. This is exactly the line M1 from Example 4.7. This has one special point,
M0

1 . If the new generator is (in the subspace represented by) this point, then it will not generate
an ideal with shape Y , except if we keep the unique element of V3,3,0 as a generator. In any case,
ZY ′

3

∼= M1
∼= A1.

Example 4.9. As a final example, it is well known that the minimal resolution of the singu-
larity C2/G∆ is given by the component Hilbρreg ([C2/G]) of Hilb([C2/G]) corresponding to the
regular representation [26]. The C∗-fixed set on the minimal resolution consists of the P1 within
the exceptional locus corresponding to the central node in the Dynkin diagram, as well as three
isolated points on the other three P1’s. The following five Young walls contribute for the regular
representation.

0 2
3

4
2

1
0 2

3
4

2

1

0 2
3

4

1 2

0 2
4

1 2
3

0 2
3

1 2
4

A quick computation shows that ZY is a point in each case, except for the last Young wall in
the first row, when it is an affine line (as in Example 4.5 except that in this case there is also a
generator in V2,2,0). This affine line contains the point corresponding to the Young wall next to it
in its closure, giving the central P1.

4.2. Incidence varieties. The purpose of this section is to introduce some incidence varieties
inside products of the Schubert cells defined in 3.5. We state some propositions regarding these
incidence varieties and morphisms between them, whose proofs we defer to 4.5 below. We discuss
four different cases.

Case 4.2.1 Assume that m ≡ 0 mod n− 2 is a nonnegative integer, such that at position (0,m)
there is a divided block with labels (c1, c2). Let c be the label of the block at position (1,m). Let
Sc ⊆ Bm+1,c be a nonempty maximal subset. Let S1 ⊆ Bm,c1 and S2 ⊆ Bm,c2 be two maximal
subsets which are allowed by Sc. This means, by definition, that each block above every composite
block whose two halves are both contained in S1∪S2, and each block to the right of every composite
block at least one half-block of which in S1 ∪ S2, is in Sc.

Consider the incidence varieties

XSc

S1,S2
= {(U1, U2, Uc) : (U1, U2) ∩ Pm+1,c ⊆ Uc} ⊆ VS1 × VS2 × VSc,c,

and
Y Sc

S1,S2
= {(U1, U2, Uc) : (U1, U2) ∩ Pm+1,c ⊆ Uc} ⊆ VS1

× VS2
× VSc,c.

Using the maps ω from Lemma 3.4, these varieties fit into the diagram

XSc

S1,S2
⊆ VS1 × VS2 × VSc,c

Id×Id×ω
−−−−−−−−→ VS1 × VS2 × VSc,cyω×ω×Id

yω×ω×Id

Y Sc

S1,S2
⊆ VS1

× VS2
× VSc,c

Id×Id×ω
−−−−−−−−→ VS1

× VS2
× VSc,c

.

Proposition 4.10. (1) The image of XSc

S1,S2
under the vertical morphism VS1×VS2×VSc,c →

VS1
× VS2

× VSc,c is precisely Y Sc

S1,S2
.
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(2) The induced morphism XSc

S1,S2
→ Y Sc

S1,S2
is a trivial fibration over its image with affine

fibers of dimension |Sc| − |S1| − |S2|+ 1.

(3) The horizontal morphism XSc

S1,S2
→ VS1 × VS2 × VSc,c

is injective.

Case 4.2.2 Let m ≡ 0 mod n − 2, but this time consider only one half block of label c0 = κ(c)
at the position (0,m). Let Sc ⊆ Bm+2,c be a nonempty maximal subset, and S ⊆ Bm,κ(c) be a
maximal subset which is allowed by Sc. This means that for each block in S there is a block in Sc

at the top right corner. In analogy with the previous case, let

XSc

S = {(U,Uc) : (U) ∩ Pm+2,c ⊆ Uc} ⊆ VS × VSc,c ,

and
Y Sc

S
= {(U,Uc) : (U) ∩ Pm+2,c ⊆ Uc} ⊆ VS × VSc,c ,

which fit into the diagram

XSc

S ⊆ VS × VSc,c
Id×ω
−−−−−−→ VS × VSc,cyω×Id

yω×Id

Y Sc

S
⊆ VS × VSc,c

Id×ω
−−−−−−→ VS × VSc,c

.

Proposition 4.11. (1) The image of XSc

S under the vertical morphism VS×VSc,c → VS×VSc,c

is exactly Y Sc

S
.

(2) The induced morphism XSc

S → Y Sc

S
is a trivial fibration over its image with affine fibers of

dimension |Sc| − |S|.
(3) The horizontal morphism XSc

S → VS × VSc,c
is injective.

Case 4.2.3 Let m ≡ 1 mod n − 2, and c1 and c2 the labels of the divided block immediately
above the block at position (0,m). Let S1 ⊆ Bm+1,c1 , S2 ⊆ Bm+1,c2 be nonempty subsets at least
one of which is maximal. Let moreover, S ⊆ Bm,j be a maximal subset which is allowed by S1

and S2. In this case, this means the following: for each block b in S, there is a divided block of
with labels (c1, c2) in the pattern either immediately above or to the right of b. In the first case,
we require that at least one of these half-blocks is in S1 ∪ S2. In the second case, we require that
both are contained in S1 ∪ S2.

Given this data, we define

XS1,S2

S = {(U,U1, U2) : (U) ∩ Pm+1,c1 ⊆ U1, (U) ∩ Pm+1,c2 ⊆ U2} ⊆ VS × VS1,c1 × VS2,c2 ,

and

Y S1,S2

S
= {(U,U1, U2) : (U) ∩ Pm+1,c1 ⊆ U1, (U) ∩ Pm+1,c2 ⊆ U2} ⊆ VS × VS1,c1 × VS2,c2 .

We now have the following diagram:

XS1,S2

S ⊆ VS × VS1,c1 × VS2,c2
Id×ω×ω
−−−−−−−−→ VS × VS1,c1

× VS2,c2yω×Id×Id

yω×Id×Id

Y S1,S2

S
⊆ VS × VS1,c1 × VS2,c2

Id×ω×ω
−−−−−−−−→ VS × VS1,c1

× VS2,c2
.

Proposition 4.12. (1) The image of XS1,S2

S under the vertical morphism VS × VS1,c1 ×

VS2,c2 → VS × VS1,c1 × VS2,c2 is exactly Y S1,S2

S
.

(2) The induced morphism XS1,S2

S → Y S1,S2

S
is a trivial fibration with fibers isomorphic to

affine spaces of dimension |S1|+ |S2| − |S|.

We remark that the analogue of (3) of Propositions 4.10 and 4.11 is not true in this case. What

happens to XS1,S2

S when we project VS1,c1 ×VS2,c2 to VS1,c1
×VS2,c2

will be the subject of 5 below.

Case 4.2.4 Finally, assume m 6≡ 0, 1 mod n − 2 with a full block in position (0,m). Let c be
the label of the full block immediately above this position, and Sc ⊆ Bm+1,c a nonempty maximal
subset. Let moreover S ⊆ Bm,j be a maximal subset which is allowed by Sc; in this case, this
means that above every block of S there is a block in Sc. Consider the incidence varieties

XSc

S = {(U,Uc) : (U) ∩ Pm+1,c ⊆ Uc} ⊆ VS × VSc,c
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and
Y Sc

S
= {(U,Uc) : (U) ∩ Pm+1,c ⊆ Uc} ⊆ VS × VSc,c.

There is the following diagram:

XSc

S ⊆ VS × VSc,c
Id×ω
−−−−−−→ VS × VSc,cyω×Id

yω×Id

Y Sc

S
⊆ VS × VSc,c

Id×ω
−−−−−−→ VS × VSc,c

.

Proposition 4.13. (1) The image of XSc

S under the vertical morphism VS×VSc,c → VS×VSc,c

is exactly Y Sc

S
.

(2) The induced morphism XSc

S → Y Sc

S
is a trivial fibration over its image with affine fibers of

dimension |Sc| − |S|.
(3) The horizontal morphism XSc

S → VS × VSc,c
is injective.

4.3. Proof of Theorem 4.3. In this section we prove Theorem 4.3, thus completing the proof
of Theorem 4.1, using the constructions and results stated in 4.2. Given a Young wall Y ∈ Z∆,
we need to show that the corresponding stratum ZY is an affine space. The following is the key
combinatorial definition which underlies much of the rest of the paper.

Definition 4.14. Consider the Young wall Y , as usual in the transformed pattern. The salient
blocks of Y are those blocks in the complement of Y , whose absence from Y does not follow from
the shape of the rows below it, and which are at the leftmost positions in their rows with this
property. In particular, these are

• missing half blocks under which there is a block in Y ;
• missing undivided full blocks under which there is a block in Y ;
• missing divided full blocks immediately to the right of the boundary of Y ;
• the leftmost missing block(s) in the bottom row.

Given an ideal I ∈ ZY , it is easy to see that I is necessarily generated by elements lying in cells
corresponding to the salient blocks of Y . In most cases it is also true that all cells corresponding to
salient blocks must contain a generator, but not always; we have already seen Example 4.5, where
the divided missing blocks at position (1, 3) are salient blocks of Y3, since they lie immediately to
the right of the boundary of Y3, but the corresponding cells do not necessarily contain generators
of an ideal I ∈ ZY3 .

We start our analysis by defining maps from the strata ZY to the Grassmannian cells defined
in 3.5. Consider an arbitrary block or half-block of label j at position (k, l) in the Young wall
pattern. Let S(k, l, j) ⊆ Bk+l,j be the set of blocks of label j from the (k + l)-th antidiagonal
which are not in Y and are above and including the position (k, l). S(k, l, j) is called the index
set of (k, l) in Y . If the block of label j at position (k, l) is not contained in Y , then the index set
S = S(k, l, j) contains (k, l) as well. By the correspondence discussed at the end of 3.5 between the
maximal Schubert cells of the relevant Grassmannian for Vk,l,j and subsets of Bk+l,j(k) which do
contain (k, l), there is a maximal Schubert cell VS,j corresponding to S. The affine cell VS,j ⊂ Gr

k+l,j

for r = |S| parameterizes certain affine subspaces of Vk,l,j , or, equivalently, projective subspaces of
Pk+l,j , the projectivization of the space of degree (k+l) homogeneous polynomials which transform
in the representation ρj with respect to G∆. The correspondence is by projective closure of the
corresponding affine subspace of Vk,l,j .

Lemma 4.15. For any block or half-block at position (k, l) which is not contained in Y and has
index set S = S(k, l, j), there is a morphism

ZY → VS,j
I 7→ I ∩ Vk,l,j .

Proof. Assume first for simplicity that (k, l) = (0,m). Let UY � (OZY
⊗ C[x, y]) be the universal

family of homogeneous ideals over ZY introduced in Remark 4.2. Consider the subfamily V =
UY ∩ (OZY

⊗ Sm[ρj ]). This is a family of subspaces of dimension r dim ρj in Sm[ρj ] parameterized
by ZY , where r = |S|. It is known, that the morphisms from ZY to the equivariant Grassmannian
Gr

m,j of Sm[ρj ] are in one-to-one correspondence with G∆ invariant subbundles of OZY
⊗Sm[ρj ] of
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rank r dim ρj [9, p. 88, Theorem 2.4]. Hence, there is a classifying morphism ZY → Gr
m,j inducing

V .
By the definition of ZY , the multigraded Hilbert polynomial of UY is constant. The Hilbert

polynomial encodes the dimensions of the intersections with the cells of Pm,j . Therefore, over
closed points of ZY the elements of the family V , when considered as projective subspaces of Pm,j,
intersect exactly the cells Vki,li,j for each element (ki, li) ∈ S. As in 3.5, these projective subspaces
are represented by points in the Schubert cell VS,j ⊂ Gr

m,j . Hence, the image of the classifying
morphism of V is inside the cell VS,j . By the construction, the classifying morphism is just the
same as taking the intersection of Im,j with V0,m,j . This is denoted as I ∩ V0,m,j above.

The general case follows similarly. �

We will prove Theorem 4.1 by induction on the number of nonempty rows of Y . Consider an
arbitrary Young wall Y consisting of l > 0 rows. Let Y denote the Young wall obtained from Y
by deleting its bottom row; we will call this the truncation of Y . Of course the labels of the half
blocks are exchanged by κ, but we will supress this in the notations. The following result will be
key to our induction.

Lemma 4.16. There exists a morphism of schemes

T : ZY → ZY

I 7→ L−1
1 (I ∩ L1C[x, y]) .

Proof. Let UY � (OZY
⊗ C[x, y]) be the universal family of homogeneous ideals over ZY . Consider

I = L−1
1 (UY ∩ L1(OZY

⊗ C[x, y])). It is straightforward to check locally that this is still a sheaf
of ideals in OZY

⊗ C[x, y]. On closed points of ZY , it is also clear that the restriction has Young
wall Y . As mentioned above, the multigraded Hilbert polynomial of UY is constant. As ZY is
reduced, it then follows from [22, Ch III. Thm. 9.9] that I is a flat family of homogeneous ideals
with Young wall Y over ZY . By Remark 4.2 there is a classifying morphism ZY → ZY for this
family, which is exactly the morphism T . �

Next, we continue with an investigation of the combinatorics of the bottom two rows of our
Young wall Y . The boundary of Y in the transformed pattern is divided by the blocks into
horizontal, vertical and diagonal straight line segments. The first two lines in the bottom can be
connected in the following six possible ways:

A1 A2 A3

B1 B2 B3

Here a diagonal straight line borders a half block of the Young wall, which can be either a lower
or an upper triangle. In the A cases the salient block in the bottom row is a full block, while in
the B cases it is a half block.

Let the salient block of Y in its bottom row be at position (0,m). It can be either a divided
or undivided full block, or a half block. In the first case, we have a type A corner at the bottom
of Y , while in the second case there is a type B corner. As in 4.2, we need to consider four cases.
In each case, we are going to define morphisms ZY → XY and ZY → YY to incidence varieties
defined in 4.2.

Case 4.3.1 Assume m ≡ 0 mod n − 2 and we have vertex types A1 or A2 (A3 is not possible
in this case). We are in the context of Case 4.2.1: the divided block at position (0,m) has labels
(c1, c2), and index sets S1, S2; the block at position (1,m) has label c, and index set Sc. By the
Young wall rules for Y , S1, S2 is allowed by Sc. Lemma 4.15 implies that there is a morphism

ZY → VS1 × VS2 × VSc

I 7→ (I ∩ V0,m,c1 , I ∩ V0,m,c2 , I ∩ V1,m,c).
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By construction, the image of this morphism is contained in the incidence variety XSc

S1,S2
⊂ VS1 ×

VS2 × VSc
from Case 4.2.1. Denote XY = XSc

S1,S2
⊆ VS1 × VS2 × VSc

; we thus obtain an induced
morphism ZY → XY .

There is also a morphism

ZY → VS1
× VS2

× VSc

I 7→ (L1I ∩ Vk1,l1,c1 , L1I ∩ Vk2,l2,c2 , L1I ∩ V1,m,c),

where (ki, li) is the lowest block in Si for i = 1, 2. We obtain an induced morphism ZY → YY ,

where YY = Y Sc

S1,S2
.

Case 4.3.2 Assume m ≡ 0 mod n− 2 with vertex types B1 to B3. This is Case 4.2.2: the block
at position (0,m) has label κ(c), and index set S = Sκ(c); the block at position (1,m+ 1) has label
c, and index set Sc. We consider the morphisms

ZY → VS × VSc

I 7→ (I ∩ V0,m,κ(c), I ∩ V1,m+1,c) ,

and

ZY → VS × VSc

I 7→ (L1I ∩ Vk,l,κ(c), L1I ∩ V1,m+1,c),

where again (k, l) is the lowest block in S. In this case we let XY = XSc

S and YY = Y Sc

S
. The

images of the morphisms above are contained in these.

Case 4.3.3 Assume m ≡ 1 mod n−2 with vertex types A1, A2, A3. This is Case 4.2.3: c1 and c2
are the labels of the divided block immediately above the block at position (0,m), S1 ⊆ Bm+1,c1,
S2 ⊆ Bm+1,c2 are their index sets, both (in cases A1 and A2) or one (in case A3) of which is
maximal; S is the index set of the block at position (0,m) with label j. We get a morphism

ZY → VS × VS1,c1 × VS2,c2

I 7→ (I ∩ V0,m,j , I ∩ V1,m,c1 , I ∩ V1,m,c2)

whose image is contained in XY = XS1,S2

S . In this way we obtain an induced morphism ZY → XY,Y .
Similarly, consider the morphism

ZY → VS × VS1,c1 × VS2,c2

I 7→ (L1I ∩ Vk,l,j , L1I ∩ V1,m,c1 , L1I ∩ V1,m,c2),

where (k, l) is the lowest block in S. We obtain an induced morphism ZY → YY , where YY =

Y S1,S2

S
.

Case 4.3.4 Assume finally that m 6≡ 1 mod n− 2 with vertex types A1 or A2. This is Case 4.2.4:
the full block at position (0,m) has label j and index set S which is maximal; the full block at
position (1,m) has label c and index set Sc; S is allowed by Sc. We get a morphism

ZY → VS × VSc

I 7→ (I ∩ V0,m,j , I ∩ V1,m,c)

whose image is contained in XSc

S ⊆ VS × VSc
, an incidence variety we denote by XY to obtain an

induced morphism ZY → XY,Y .
Second, let

ZY → VS × VSc

I 7→ (L1I ∩ Vk,l,j , L1I ∩ V1,m,c),

where (k, l) is the lowest block in S. By letting YY = Y Sc

S
we obtain an induced morphism

ZY → YY,Y .

The last key step in our inductive proof is the following result, valid in all four cases above.

Proposition 4.17. The following is a scheme-theoretic fiber product diagram, with the right hand
vertical map in each case given by the map induced by statement (1) of Propositions 4.10, 4.11
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4.12 or 4.13 as appropriate.

(10)

ZY −−→ XYyT

yω×Id

ZY −−→ YY .

Proof. It is immediate from the definitions in the different cases that the diagram is commutative.
We thus need to show that it is a fibre product. Let B be an arbitrary base scheme and let
f : B → ZY and g : B → XY be morphisms; we need to show that these induce a unique morphism
B → ZY . We consider Case 4.3.1; the proof in the other cases is analogous. The map f corresponds
to a flat family of ideals If �OB⊗C[x, y] with Young wall Y . The map g corresponds to a 3-tuple
of families U1,g,U2,g,Uc,g of subspaces of C[x, y] over B. Given this data, consider the family of
ideals

If,g = (L1If ,U1,g,U2,g) �OB ⊗ C[x, y]

over B. Here the parentheses mean the generated ideal as explained in 4.4. By the compatibility
of (f, g) it is immediate that the Young wall of the corresponding ideals is Y . The classifying map
of this family is the unique possible extension of (f, g) to a morphism B → ZY . �

Conclusion of the Proof of Theorem 4.3. Assume that we have shown for any Young wall Y having
less then l rows that the corresponding stratum ZY is affine, the l = 1 case being obvious. Consider
an arbitrary Young wall Y consisting of l rows. Let Y denote its truncation, as defined above. By
the induction assumption, the space ZY is affine. Also, by Propositions 4.10, 4.11, 4.12 or 4.13
respectively, the map XY → YY of Proposition 4.17 is a trivial affine fibration in all cases. By
Proposition 4.17, the map ZY → ZY is a pullback of a trivial affine fibration and thus itself a
trivial affine fibration. Using the induction hypothesis, ZY is thus an affine space. The proof of
Theorem 4.3 is complete. �

Remark 4.18. One can deduce from the above proof that one can in fact canonically choose
generators of a homogeneous ideal I ∈ ZY , which are in the cells of the some of the salient blocks
of Y ; as discussed before, not all salient cells necessarily contain a generator. For describing the
coarse Hilbert scheme we have to keep track of these generators, but we will do this only implicitly.

Example 4.19. Returning to Examples 4.6-4.7, we see that for Y3 the triangle of side 5, Y3 = Y2,
the triangle of size 4. The map T : ZY3

∼= A2 → ZȲ3
∼= A1 is the map identified at the end of the

discussion of Example 4.7.

4.4. Preparation for the proof of the incidence propositions. To prepare the ground for
the proof of the propositions announced in 4.2, consider the operators defined in 3.4. We use these
operators to describe projective coordinates on some of the Grassmannians Pm,j . We first record
the following equalities, computing the isotypical summands of the homogeneous pieces of the ring
S = C[x, y].

Lemma 4.20. We have

S2k(n−2)[ρκ(0,k)] = (Ln−1 + Ln)2k[ρκ(0,k)] = (L2
n−1 + L2

n)k;

S2k(n−2)[ρκ(1,k)] = (Ln−1 + Ln)2k[ρκ(1,k)] = Ln−1Ln(L2
n−1 + L2

n)k−1;

S(2k+1)(n−2)[ρκ(n−1,k)] = (Ln−1 + Ln)2k+1[ρκ(n−1,k)] = Ln−1(L2
n−1 + L2

n)k;

S(2k+1)(n−2)[ρκ(n,k)] = (Ln−1 + Ln)2k+1[ρκ(n,k)] = Ln(L2
n−1 + L2

n)k.

Proof. For each equality on the right, use (9) and an easy induction argument. For the equalities
on the left, ⊇ is always clear; then use dimension counting. �

Thus, given an element v ∈ P2k(n−2),κ(0,k), we can write it uniquely in the form

v =

k∑

i=0

αiL
2i
n−1L

2(k−i)
n ,

for certain projective coordinates [α0 : · · · : αk]. Analogous coordinates exist on P2k(n−2),κ(1,k) and
P(2k+1)(n−2),j for j = n− 1, n.

For the two-dimensional representations we similarly have
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Lemma 4.21. For 1 < j < n− 1,

S2k(n−2)+j−1[ρj ] = Lj

(
(Ln−1 + Ln)2k

)

= Lj

(
(Ln−1 + Ln)2k[ρ0]

)
⊕ Lj

(
(Ln−1 + Ln)2k[ρ1]

)
;

S(2k+2)(n−2)−j+1[ρj ] = Ln−j

(
(Ln−1 + Ln)2k+1

)

= Ln−j

(
(Ln−1 + Ln)2k+1[ρn−1]

)
⊕ Ln−j

(
(Ln−1 + Ln)2k+1[ρn]

)
.

Proof. Analogous. �

For such 1 < j < n− 1, the space P2k(n−2)+j−1,j of two-dimensional G∆-equivariant subspaces
of S2k(n−2)+j−1[ρj ] is a projective space as noted above. Using Lemma 4.21, we get a collection

of distinguished two-dimensional G∆-equivariant subspaces LjL
i
n−1L

2k−i
n in S2k(n−2)+j−1[ρj ]; an

arbitrary element v ∈ P2k(n−2)+j−1,j can be uniquely written as

v =

2k∑

i=0

αiLjL
i
n−1L

2k−i
n

for certain projective coordinates [α0 : . . . : α2k]. Analogous coordinates also exist on the space
P(2k+2)(n−2)−j+1,j .

For subspaces U1, . . . , Ui ∈ Gr(S) denote by (U1, . . . , Ui) the G-invariant ideal of S generated by
the corresponding subspaces. In particular, the ideal generated by (the subspaces represented by)
points v1, . . . , vi ∈ PS is denoted by (v1, . . . , vi). Then (U1, . . . , Ui)m,j is represented by a projective
linear subspace of Pm,j (cf. Lemma 3.6). Thus, we can talk about its intersection with the cells
of Pm,j . For simplicity we will use the notation (U1, . . . , Ui) ∩ Vk,l,j = (U1, . . . , Ui)k+l,j ∩ Vk,l,j for
the intersection with Vk,l,j .

We need to study indidence relations between ideals generated by subspaces from the various
strata defined above. First of all, let vj ∈ V0,m,j for some m and j, corresponding to a full or half
block. Denote by C the set of labels of full or half blocks immediately above or on the right of this
block, i.e. in the positions (1,m) or (0,m + 1). Then the definition of the McKay quiver clearly
implies that we have (vj)∩Sm+1,c = ∅ whenever c 6∈ C. The following long statement discusses all
the remaining cases when c ∈ C, split into the different possibilities.

Proposition 4.22. (1) For j = 0, 1, fix vj ∈ V0,2k(n−2),j.

(a) We have (vj)∩
(⋃

l≥1 Vl,2k(n−2)−l+1,2

)
= ∅. Hence the unique point (vj)∩P2k(n−2)+1

necessarily lies in V0,2k(n−2)+1,2. This provides an injection

V0,2k(n−2),j → V0,2k(n−2)+1,2.

(b) (v0, v1) ∩
(⋃

l>1 Vl,2k(n−2)−l+1,2

)
= ∅. In particular, the projective line (v0, v1) ∩

P2k(n−2)+1,2 necessarily intersects V1,2k(n−2),2. Let the intersection point be L1v2 for
a certain v2 ∈ V0,2k(n−2)−1,2. Then v2 is the unique point of V0,2k(n−2)−1,2 such
that v0, v1 ∈ (v2). As a consequence, for any projective subspace U2 ⊆ P2k(n−2)−1,2,

the intersection (v0, v1) ∩
(⋃

l>0 Vl,2k(n−2)−l+1,2

)
is contained in L1U2 if and only if

v0, v1 ∈ (U2).
(2) Let v2 ∈ V0,2k(n−2)+1,2. For j = 0, 1, if (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,j

)
is not empty, then it

is necessarily one-dimensional, and it equals L1vj for a certain vj ∈ V0,2k(n−2),j. Exactly
one of the following three cases happens.
• (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,1

)
= L1v0 and (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,0

)
= ∅. This

happens if and only if v2 ∈ (v0). In this case, v0 ∈ V0,2k(n−2),0, and (v2) ∩ S2k(n−2)+2

has two (resp. three if n = 4) irreducible components: L1v0 and (v2) ∩ V0,2k(n−2)+2,3

(resp. (v2) ∩ V0,2k(n−2)+2,3 and (v2) ∩ V0,2k(n−2)+2,4).

• (v2) ∩
(⋃

l>0 Vl,2k(n−2)−l+2,1

)
= ∅ and (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,0

)
= L1v1 with

symmetrical statements as in the previous case.
• (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,1

)
= L1v0 and (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,0

)
= L1v1. This

happens if and only if v2 ∈ (v0, v1) but v2 /∈ (v0) ∪ (v1). In this case at least one
of the inclusions v0 ∈ V0,2k(n−2),0, v1 ∈ V0,2k(n−2),1 is satisfied but not necessar-
ily both. Furthermore, (v2) ∩ S2k(n−2)+2 has three (resp. four if n = 4) irreducible
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components: L1v0, L1v1 and (v2) ∩ V0,2k(n−2)+2,3 (resp. (v2) ∩ V0,2k(n−2)+2,3 and
(v2) ∩ V0,2k(n−2)+2,4).

Thus for n > 4, we obtain an isomorphism

V0,2k(n−2)+1,2 → V0,2k(n−2)+2,3

v2 7→ (v2) ∩ V0,2k(n−2)+2,3,

whereas for n = 4, we get an isomorphism

V0,2k(n−2)+1,2 → V0,2k(n−2)+2,3 × V0,2k(n−2)+2,4

v2 7→
(
(v2) ∩ V0,2k(n−2)+2,3, (v2) ∩ V0,2k(n−2)+2,4

)
.

Finally, for projective subspaces U0 ⊆ P2k(n−2),0, U1 ⊆ P2k(n−2),1,

• the conditions (v2) ∩
(⋃

l>0 Vl,2k(n−2)−l+2,1

)
⊆ L1U0 and (v2) ∩(⋃

l>0 Vl,2k(n−2)−l+2,0

)
= ∅ are satisfied if and only if v2 ∈ (U0);

• the conditions (v2) ∩
(⋃

l>0 Vl,2k(n−2)−l+2,1

)
= ∅ and (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,0

)
⊆

L1U1 are satisfied if and only if v2 ∈ (U1);
• the conditions (v2) ∩

(⋃
l>0 Vl,2k(n−2)−l+2,1

)
⊆ L1U0 and (v2) ∩(⋃

l>0 Vl,2k(n−2)−l+2,0

)
⊆ L1U1 are satisfied if and only if v2 ∈ (U0, U1) but

v2 /∈ (U0) ∪ (U1).
(3) Assume that 3 ≤ j ≤ n − 3 (resp. j = n − 2) and set vj ∈ V0,2k(n−2)+j−1,j . Then

(vj) ∩
(⋃

l>1 Vl,2k(n−2)−l+j,j−1

)
= ∅. Furthermore, (vj) ∩ S2k(n−2)+j has two (resp. three)

irreducible components: a point (vj) ∩ V1,2k(n−2)+j−1,j−1 of the form L1vj−1 for some
vj−1 ∈ V0,2k(n−2)+j−2,j−1, which is the unique element with vj ∈ (vj−1), and another point
(vj)∩V0,2k(n−2)+j,j+1 (resp. two other points (vj)∩V0,2k(n−2)+j,n−1, (vj)∩V0,2k(n−2)+j,n).
We obtain an isomorphism

V0,2k(n−2)+j−1,j → V0,2k(n−2)+j,j+1

for j ≤ n− 3 and an isomorphism

V0,2k(n−2)+j−1,j → V0,2k(n−2)+j,n−1 × V0,2k(n−2)+j,n

for j = n − 2. Also, for a projective subspace Uj−1 ⊆ P2k(n−2)+j−2,j−1, the intersection

(vj) ∩
(⋃

l>0 Vl,2k(n−2)−l+j,j−1

)
is contained in L1Uj−1 if and only if vj ∈ (Uj−1).

(4) For j = n− 1, n, fix vj ∈ V0,(2k+1)(n−2),j .

(a) We have (vj) ∩
(⋃

l≥1 Vl,(2k+1)(n−2)−l+1,n−2

)
= ∅. Hence, the point (vj) ∩

P(2k+1)(n−2)+1 is necessarily in V0,(2k+1)(n−2)+1,n−2. This provides an injection

V0,(2k+1)(n−2),j → V0,(2k+1)(n−2)+1,n−2.

(b) (vn−1, vn) ∩
(⋃

l>1 Vl,(2k+1)(n−2)−l+1,2

)
= ∅. In particular, the projective line

(vn−1, vn) ∩ P(2k+1)(n−2)+1,n−2 necessarily intersects V1,(2k+1)(n−2),n−2. Let the in-
tersection point be L1vn−2 for a certain vn−2 ∈ V0,(2k+1)(n−2)−1,n−2. Then vn−2

is the unique point of V0,(2k+1)(n−2)−1,n−2 such that vn−1, vn ∈ (vn−2). As a
consequence, for any projective subspace Un−2 ⊆ P(2k+1)(n−2)−1,n−2, the intersec-

tion (vn−1, vn) ∩
(⋃

l>0 Vl,(2k+1)(n−2)−l+1,n−2

)
is contained in L1Un−2 if and only if

vn−1, vn ∈ (Un−2).
(5) Let vn−2 ∈ V0,(2k+1)(n−2)+1,n−2. For j = n−1, n if (vn−1)∩

(⋃
l>0 Vl,(2k+1)(n−2)−l+2,j

)
6= ∅

then this invariant subspace is one-dimensional, and it is of the form L1vj for certain
vj ∈ V0,(2k+1)(n−2),j . Exactly one of the following three possibilities happens.

• (vn−2) ∩
(⋃

l>0 Vl,(2k+1)(n−2)−l+2,n

)
= L1vn−1 and (vn−2) ∩(⋃

l>0 Vl,(2k+1)(n−2)−l+2,n−1

)
= ∅. This happens if and only if vn−2 ∈ (vn−1).

In this case vn−1 ∈ V0,(2k+1)(n−2),n−1, and (v2) ∩ S(2k+1)(n−2)+2 has two (resp. three
if n = 4) irreducible components: L1vn−1 and (vn−2) ∩ V0,(2k+1)(n−2)+2,n−3

(resp. (v2) ∩ V0,(2k+1)(n−2)+2,0 and (v2) ∩ V0,(2k+1)(n−2)+2,1).

• (vn−2)∩
(⋃

l>0 Vl,(2k+1)(n−2)−l+2,n

)
= ∅ and (vn−2)∩

(⋃
l>0 Vl,2k(n−2)−l+2,n−1

)
= L1vn

with symmetrical statements as in the previous case.
• (vn−2) ∩

(⋃
l>0 Vl,(2k+1)(n−2)−l+2,n

)
= L1vn−1 and (vn−2) ∩(⋃

l>0 Vl,(2k+1)(n−2)−l+2,n−1

)
= L1vn. This happens if and only if vn−2 ∈ (vn−1, vn)

but vn−2 /∈ (vn−1) ∪ (vn). In this case at least one of the inclusions
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vn−1 ∈ V0,(2k+1)(n−2),n−1, vn ∈ V0,(2k+1)(n−2),n is satisfied but not nec-
essarily both. Furthermore, (vn−2) ∩ S(2k+1)(n−2)+2 has three (resp. four if
n = 4) irreducible components: L1vn−1, L1vn and (vn−2) ∩ V0,(2k+1)(n−2)+2,n−3

(resp. (vn−2) ∩ V0,(2k+1)(n−2)+2,0 and (vn−2) ∩ V0,(2k+1)(n−2)+2,1).
For n > 4, we obtain isomorphisms

V0,(2k+1)(n−2)+1,n−2 → V0,(2k+1)(n−2)+2,n−3

vn−2 7→ (vn−2) ∩ V0,(2k+1)(n−2)+2,n−3
,

whereas for n = 4 we obtain an isomorphism

V0,(2k+1)(n−2)+1,n−2 → V0,2k(n−2)+2,0 × V0,(2k+1)(n−2)+2,1

vn−2 7→
(
(vn−2) ∩ V0,(2k+1)(n−2)+2,0, (vn−2) ∩ V0,(2k+1)(n−2)+2,1

) .

Moreover, for projective subspaces Un−1 ⊆ P(2k+1)(n−2),n−1, Un ⊆ P(2k+1)(n−2),n the con-
ditions
• (vn−2) ∩

(⋃
l>0 Vl,(2k+1)(n−2)−l+2,n

)
⊆ L1Un−1 and (vn−2) ∩(⋃

l>0 Vl,(2k+1)(n−2)−l+2,n−1

)
= ∅ are satisfied if and only if vn−2 ∈ (Un−1);

• (vn−2)∩
(⋃

l>0 Vl,(2k+1)(n−2)−l+2,n

)
= ∅ and (vn−2)∩

(⋃
l>0 Vl,(2k+1)(n−2)−l+2,n−1

)
⊆

L1Un are satisfied if and only if vn−2 ∈ (Un);
• (vn−2) ∩

(⋃
l>0 Vl,(2k+1)(n−2)−l+2,n

)
⊆ L1Un−1 and (vn−2) ∩(⋃

l>0 Vl,(2k+1)(n−2)−l+2,n−1

)
⊆ L1Un are satisfied if and only if vn−2 ∈ (Un−1, Un)

but v2 /∈ (Un−1) ∪ (Un).
(6) Assume that 3 ≤ j ≤ n − 3 (resp. j = 2) and set vj ∈ V0,(2k+2)(n−2)−j+1,j .

Then (vj) ∩
(⋃

l>1 Vl,(2k+2)(n−2)−l−j+2,j+1

)
= ∅. Furthermore, (vj) ∩ S(2k+2)(n−2)−j+2

has two (resp. three) irreducible components: a point (vj) ∩ V1,(2k+2)(n−2)−j+1,j+1 of
the form L1vj+1 for some vj+1 ∈ V0,(2k+2)(n−2)−j,j+1, which is the unique element
with vj ∈ (vj+1), and another point (vj) ∩ V0,(2k+2)(n−2)−j+2,j−1 (resp. two other
points (vj) ∩ V0,(2k+2)(n−2)−j+2,0, (vj) ∩ V0,(2k+2)(n−2)−j+2,1) providing an isomorphism
V0,(2k+2)(n−2)−j+1,j → V0,2k(n−2)−j+2,j−1 (resp. V0,(2k+2)(n−2)−j+1,j → V0,2k(n−2)−j+2,0 ×
V0,2k(n−2)−j+2,1). As a consequence, for a projective subspace Uj+1 ⊆ P(2k+2)(n−2)−j,j+1,

the intersection (vj) ∩
(⋃

l>0 Vl,(2k+2)(n−2)−l−j+2,j+1

)
is contained in L1Uj+1 if and only

if vj ∈ (Uj+1).

Proof. For ease of notation in the proof, we will assume that n is even. If n is odd, then the
argument works in the same way, except that κ should be applied to the indices when appropriate.

(1) Statement (a) follows immediately from the definition of the cells. For the first part of (b),

write v0 =
∑k

i=0 αiL
2i
n−1L

2(k−i)
n and v1 =

∑k−1
i=0 βiL

2i+1
n−1 L

2(k−i)−1
n . The assumptions guarantee

that
∑
αi 6= 0 and

∑
βi 6= 0. The image (v0, v1)∩P2k(n−2)+1,2, as subset of Gr(2, S2k(n−2)+1[ρ2]),

is a projective line and is spanned by

L2v0 =
k∑

i=0

αiL2L
2i
n−1L

2(k−i)
n ∈ L2(L2

n−1 + L2
n)k

and

L2v1 =

k−1∑

i=0

βiL2L
2i+1
n−1 L

2(k−i)−1
n ∈ L2Ln−1Ln(L2

n−1 + L2
n)k−1.

In particular, if (v0, v1)∩V1,2k(n−2) = {L1v2}, then there exist vectors vx, vy in the two-dimensional
vector space v2 satisfying vy = τ(vx), as well as ax, bx, ay, by ∈ C, so that

(11)
L1vx = axL2,xv0 + bxL2,xv1,

L1vy = ayL2,yv0 + byL2,yv1.

In v0 the highest powers of x and y are x2k(n−2) and y2k(n−2), both with coefficient
∑

i αi. In v1
the highest powers of x and y are x2k(n−2) and y2k(n−2), the first has coefficient

∑
i βi, the second

has coefficient −
∑

i βi. We apply L2,x to these. In order for the sum to avoid the cell V0,2k(n−2)+1

the coefficients must satisfy [ax : bx] = [
∑

i βi : −
∑

i αi], since in this case the coefficient of

x2k(n−2)+1 is 0. Then the linear combination is necessarily in V1,2k(n−2). Similarly, when applying
L2,y, the required coefficients are [ay : by] = [

∑
i βi :

∑
i αi], so we have axby = −aybx. Therefore,

byL2,yL1vx − bxL2,xL1vy = byaxL2,yL2,xv0 − bxayL2,xL2,yv0 = L1v0, where we have used that
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L2,xL2,y = L1. As a consequence, byL2,yvx + bxL2,xvy = v0 and similarly −ayL2,yvx + axL2,xvy =
v1, i.e. v0, v1 ∈ (v2). This proves the first part of (b). The second part of (b), concerning projective
subspaces, follows immediately from the first part.

(2) For the first part of the statement let v2 =
∑2k

i=0 εiL2L
i
n−1L

2k−i
n =

L2

(∑2k
i=0,i even εiL

i
n−1L

2k−i
n +

∑2k
i=0,i odd εiL

i
n−1L

2k−i
n

)
= L2(veven + vodd). If n 6= 4, then

by applying L2 again we get L2
2(veven + vodd) = (L1 + L3)(veven + vodd), where the first sum is

operator sum, and the second is vector sum. So L2v2[ρ0] = {L1veven} and L2v2[ρ1] = {L1vodd}. If
(v2) ∩

(⋃
l>1 Vl,2k(n−2)−l+2,1

)
= L1v0 and (v2) ∩

(⋃
l>1 Vl,2k(n−2)−l+2,0

)
= ∅, then veven = v0 and

vodd = 0. The second case is just the opposite, and when (v2) ∩
(⋃

l>1 Vl,2k(n−2)−l+2,1

)
= L1v0

and (v2) ∩
(⋃

l>1 Vl,2k(n−2)−l+2,0

)
= L1v1, then veven = av0 and vodd = bv1 for some coefficients

a, b ∈ C. If n = 4, then L2
2(veven + vodd) = (L1 + L3 + L4)(veven + vodd), and the rest is very

similar to the first case.
For the second part of the statement observe that the results so far imply that V0,2k(n−2)+1,2

stratifies into disjoint, locally closed subspaces

V0,2k(n−2)+1,2 =
⊔

(vc1 ,vc2)∈P2k(n−2),c1
×P2k(n−2),c2

(
(vc1 , vc2) \ ((vc1) ∪ (vc2)) ∩ V0,2k(n−2)+1,2

)

⊔ ⊔

vc2∈V0,2k(n−2),c2

(
(vc2) ∩ V0,2k(n−2)+1,2

)

⊔ ⊔

vc1∈V0,2k(n−2),c1

(
(vc1) ∩ V0,2k(n−2)+1,2

)
.

The subset ∪(vc1 ,vc2)∈V0,2k(n−2),c1
×V0,2k(n−2),c2

(
(vc1 , vc2) \ ((vc1) ∪ (vc2)) ∩ V0,2k(n−2)+1,2

)
is dense

in the third stratum, since V0,2k(n−2),c1 × V0,2k(n−2),c2 is dense in P2k(n−2),c1 × P2k(n−2),c2 .
The first statement of (2) implies that the second statement is valid if v2 is in this sub-
set of V0,2k(n−2)+1,2. Similarly, the first statement implies the second statement on the loci

⊔vc1∈V0,2k(n−2),c1

(
(vc1) ∩ V0,2k(n−2)+1,2

)
and ⊔vc2∈V0,2k(n−2),c2

(
(vc2) ∩ V0,2k(n−2)+1,2

)
. For v2 in the

closed complement of the union of these loci, the second statement follows from the linearity (and
thus continuity) of the solution of (11), since the Ui are projective.

(3) The statements in this case follow similarly to (2) by observing that L2Lj = L1Lj−1 +Lj+1

(resp. L2Ln−2 = L1Ln−3 + Ln−1 + Ln).
The cases (4), (5) and (6) are analogous. �

Consider a full block in position (0,m) with m = k(n− 2) + 1, with label j which is 2 or n− 2.
In positions (0, k(n − 2)) and (1,m), above and to the left of this full block, are divided blocks
with labels (c1, c2), either (0, 1) or (n − 1, n). The next lemma gives Pm,j the structure of a join
(see B in the Appendix) of two projective subspaces.

Lemma 4.23. (1) The morphisms V0,k(n−2),ci → V0,m,j constructed in Proposition 4.22 ex-
tend to morphisms

φi : Pk(n−2),ci → Pm,j

v 7→ (v) ∩ Pm,j .

The morphism φi is injective with image N0
ci := im(φi) ⊂ Pm,j such that N0

c1, N
0
c2 are

disjoint projective linear subspaces of Pm,j.
(2) The join of the disjoint linear subspaces N0

c1 , N
0
c1 ⊂ Pm,j is Pm,j itself. Thus given

(v1, v2) ∈ Pk(n−2),c1 × Pk(n−2),c2 , there is a projective line P1 ∼= v1v2 ⊂ Pm,j contain-
ing both φi(vi), namely, the line defined by v1, v2 with endpoints φi(vi). The lines v1v2
cover Pm,j. For all (v1, v2), (v′1, v

′
2) ∈ Pk(n−2),c1 × Pk(n−2),c2 , the intersection v1v2 ∩ v′1v

′
2

can only be at a common endpoint.
(3) For all (v1, v2) ∈ Pk(n−2),c1 × Pk(n−2),c2 , the intersection v1v2 ∩ V0,m,j is

• either empty, exactly when v1 /∈ V0,k(n−2),c1 and v2 /∈ V0,k(n−2),c2 ;
• or an affine line otherwise.

Proof. (1) is immediate. (2) then follows from dimPk(n−2),c1 + dimPk(n−2),ci + 1 = dimPm,j and
Lemma B.1. (3) is again immediate. �
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As we did already in the statement above, we will sometimes omit the inclusion maps φi; thus,
for subspaces U1 ⊆ Pk(n−2),c1 and U2 ⊆ Pk(n−2),c2 , we will denote by J(U1, U2) ⊆ Pm,j the join of
φ1(U1) and φ1(U1) in Pm,j .

Let

M0
ci := φi(V0,k(n−2),ci) ⊂ V0,m,j;

these are disjoint affine linear subspaces of the affine space V0,m,j . Also consider

Nci = J(Pk(n−2),ci , P k(n−2),c3−i
) ⊂ Pm,j .

This is the locus of points in Pm,j covered by lines v1v2 one of whose endpoints is at a point “at

infinity”, in P k(n−2),c3−i
= Pk(n−2),c3−i

\ V0,k(n−2),c3−i
. Let

Mci = Nci ∩ V0,m,j ⊂ V0,m,j

be the intersection with the large affine cell of Pm,j .

Lemma 4.24. There exists morphisms ψi : Mci →M0
ci, given by associating to a point

v ∈Mci ⊂ V0,m,j

the “non-infinity” endpoint of the (mostly unique) line v1v2 passing through it. The maps ψi are
trivial vector bundles over affine spaces.

Proof. See Lemma B.2. �

Corollary 4.25. (1) For i = 1, 2 the decomposition Pk(n−2),c3−i
=⊔

(k′,l′)∈Bk(n−2),c3−i

Vk′,l′,c3−i
induces a decomposition into locally closed subspaces

(12) Mci \M
0
ci =

⊔

(k′,l′)∈Bk(n−2),c3−i
\(1,m)

(
(J(V0,k(n−2),ci , Vk′,l′,c3−i

) ∩ V0,m,j) \M
0
ci

)
.

(2) Taking into account the bijections Bk(n−2),ci
∼= Bk(n−2)+2,c3−i

and the decomposition (12),
the space V0,m,j decomposes into locally closed subspaces as

V0,m,j =V0,m,j(1,m, 1,m)

⊔



⊔

(k1,l1)∈B′
k(n−2)+2,c1

V0,m,j(k1, l1, 1,m)




⊔



⊔

(k2,l2)∈B′
k(n−2)+2,c2

V0,m,j(1,m, k2, l2)


 ,

where we introduced the notations
• B′

k(n−2)+2,ci
= (Bk(n−2)+2,ci ∪ {∅}) \ {(1,m)};

• V0,m,j(∅, 1,m) = M0
c1 ;

• V0,m,j(k1, l1, 1,m) = (J(V0,k(n−2),c1 , Vk1,l1,c2) ∩ V0,m,j) \M0
c1 ;

• V0,m,j(1,m, ∅) = M0
c2 ;

• V0,m,j(1,m, k2, l2) = (J(V0,k(n−2),c2 , Vk2,l2,c1) ∩ V0,m,j) \M0
c2 ;

• V0,m,j(1,m, 1,m) = V0,m,j \ (Mc1 ∪Mc2).

The meaning of the notations is that V0,m,j(k1, l1, k2, l2) consists of exactly those points v ∈
V0,m,j such that (v) ∩ Pk(n−2)+2,ci ∈ Vki,li,ci for i = 1, 2. The symbol ∅ at an argument replacing
a pair (ki, li) means that there is no such intersection.

4.5. Proofs of propositions about incidence vareties. Here we prove the propositions an-
nounced in 4.2. The arguments for Propositions 4.10, 4.11 and 4.13 are very similar, so we will
spell out the proof for one of these. The discussion will also prepare the ground for the proof of
Proposition 4.12, which is substantially more complicated.

Consider first the situation of 4.13. Namely, m 6≡ 0, 1 mod n− 2 is a positive integer, V0,m,j the
cell of a full block, c is the label of the full block immediately above the position (0,m), Sc ⊆ Bm+1,c

is a nonempty maximal subset, and S ⊆ Bm,j is a maximal subset which is allowed by Sc.
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Proof of Proposition 4.13. By Proposition 4.22 (3) and (6), for an arbitrary U ∈ VS , (U,Uc) ∈ X
Sc

S

if and only if U ⊆ (L−1
1 Uc) ∩ V0,m,j. Moreover, the composition of L−1

1 and the isomorphism

V0,m−1,c → V0,m,j gives an isomorphism V1,m,c → V0,m,j . Hence, for a pair (U,Uc) ∈ Y
Sc

S
, we have

{U ∈ VS |U : (U,Uc) ∈ X
Sc

S } =
(
(L−1

1 Uc) ∩ V0,m,j

)
/U,

and there is a canonical quotient map V0,m,j/U → V1,m,c/Uc.
Let us define two families parameterized by VS × VSc,c. The family Fc is defined to have the

fiber (L−1
1 Uc)∩V0,m,j over a pair (U,Uc) ∈ VS×VSc,c. This is a family of affine subspaces of V0,m,j .

The family F is defined to have the fiber U ⊂ Pm,j over a pair (U,Uc) ∈ VS × VSc,c. This is a

family of projective subspaces contained in Pm,j. Since the tautological bundle over any Schubert
cell in any Grassmannian is trivial, the two families are trivial with affine, respectively projective
space fibres. Consider these families over the subset Y Sc

S
⊂ VS × VSc,c. By construction, over each

point of Y Sc

S
, the fibre of F is a subspace of the projective closure of the fiber of Fc over the same

point. In particular, we can take quotients fiberwise. By the considerations above,

XSc

S = Fc/F .

Moreover, the morphism ω× Id: XSc

S → Y Sc

S
over a pair (U,Uc) is given by the quotient morphism

V0,m,j/U → V1,m,c/Uc times the identity. This shows (1) and (2).
The injectivity statement (3) follows again from the isomorphism V1,m,c

∼= V0,m,j given by L1,

since for every pair (U,Uc) ∈ X
S1,S2

S one has Uc = (U,Uc) ∩ V1,m,c. �

Consider now the situation of Proposition 4.12; thus m ≡ 1 mod n−2 is a positive integer, c1 and
c2 are the labels of the divided block immediately above the block at position (m, j), S1 ⊆ Bm+1,c1,
S2 ⊆ Bm+1,c2 are nonempty subsets at least one of which is maximal, and S ⊆ Bm,j is a maximal
subset which is allowed by S1 and S2.

Lemma 4.26. For i = 1, 2 fix Ui ∈ VSi,ci .

(a) For an arbitrary U ∈ VS, (U,U1, U2) ∈ XS1,S2

S if and only if U ⊆
J(φ1(L−1

1 U1), φ2(L−1
1 U2)) ∩ V0,m,j.

(b) If (U,U1, U2) ∈ Y S1,S2

S
, then U ⊆ J(φ1(L−1

1 U1), φ2(L−1
1 U2)) ∩ V0,m,j.

(c) If (U,U1, U2) ∈ Y S1,S2

S
, then

{U ∈ VS |U : (U,U1, U2) ∈ XS1,S2

S } =
(
J(φ1(L−1

1 U1), φ2(L−1
1 U2)) ∩ V0,m,j

)
/U.

Proof. (a) By Proposition 4.22 for any pair of vectors (v1, v2) ∈ U1 × U2 those points
of Pm,j for which (v1, v2) ∩ Pm+1,ci is either vi or empty are exactly those which are on

J(φ1(L−1
1 v1), φ2(L−1

1 v2)). Hence, to satisfy the conditions U has to be a subset of
⋃

(v1,v2)∈U1×U2

J(φ1(L−1
1 v1), φ2(L−1

1 v2)) ∩ V0,m,j = J(φ1(L−1
1 U1), φ2(L−1

1 U2)) ∩ V0,m,j .

(b) If (U,U1, U2) ∈ Y , then (U) ∩ Pm+1,ci ⊆ Ui. Hence, φi(L
−1
1 ((U) ∩ Pm+1,ci)) ⊆ φi(L

−1
1 Ui),

and

J(φ1(L−1
1 ((U) ∩ Pm+1,c1)), φ2(L−1

1 ((U) ∩ Pm+1,c2))) ⊆ J(φ1(L−1
1 U1), φ2(L−1

1 U2)).

By Proposition 4.22 there is an isomorphism V1,m−1,j
∼= V0,m−1,c1 × V0,m−1,c1 in such a way that

U ∩ V1,m−1,j ⊆ J(φ1(L−1
1 ((U) ∩ Pm+1,c1)), φ2(L−1

1 ((U) ∩ Pm+1,c2))) ∩ V1,m−1,j .

Similarly, on each cell Vk,l,j such that k + l = m and k ≥ 1, the affine subspace U ∩ Vk,l,j is

a subvariety of J(φ1(L−1
1 ((U ) ∩ Pm+1,c1)), φ2(L−1

1 ((U) ∩ Vm+1,c2))) ∩ Vk,l,j . All these mean that

U ⊆ J(φ1(L−1
1 U1), φ2(L−1

1 U2)).
(c) Recall, that U also represents a subspace at infinity for V0,m,j , and VS |U = V0,m,j/U . In

fact, we can take the quotient of an arbitrary subspace of V0,m,j , whose closure in Pm,j contains

U with respect to (an arbitrary affine subspace representing) U . Then the statement follows from
(a) and (b). �



EULER CHARACTERISTICS OF HILBERT SCHEMES OF POINTS ON SURFACE SINGULARITIES 31

Proof of Proposition 4.12. It follows from the definitions that (ω × Id× Id) (XS1,S2

S ) ⊆ Y S1,S2

S
.

The surjectivity will follow from the calculation of the fibers.
We will define three families of subspaces in Pm,j over VS×VS1,c1×VS2,c2 . For i = 1, 2 the family

Fi is defined to have the fiber φi(L
−1
1 Ui) ⊆ Pm,j over a three-tuple (U,U1, U2) ∈ VS×VS1,c1×VS2,c2 .

Let the third family F has the fiber U ⊆ Pm,j over the same element. This is of course empty, if
|S| = 1. It is important to note, that in all cases the fibers are always projective subspaces of Pm,j .

By Lemma 4.23, there is an embedding φi ◦ L
−1
1 : Pm+1,c3−i

→ N0
ci ⊂ Pm,j . Apply this

embedding on the fibers of the projectivization of the tautological bundle over the Schubert cell
VS3−i

. Then multiply the base with VS×VSi
, and extend the family into this direction as a constant.

This gives the bundle Fi. Again, by the fact that the tautological bundle over any Schubert cell
is trivial it follows that the Fi’s are also trivial, that is, Fi

∼= P|Si|−1 × VS × VS1 × VS2 . Similarly,

F ∼= P|S|−2 × VS × VS1 × VS2 .
By Lemma B.4, the join of trivial families over a common base is a trivial family of the joins of

the fibers:

J(F1,F2) = J(P|S1|−1 × VS × VS1 × VS2 ,P
|S2|−1 × VS × VS1 × VS2)

∼= J(P|S1|−1,P|S2|−1)× VS × VS1 × VS2

∼= P|S1|+|S2|−1 × VS × VS1 × VS2 ⊆ Pm,j × VS × VS1 × VS2 .

Therefore, J(F1,F2)∩ (V0,m,j ×VS×VS1 ×VS2) is a trivial family of affine subspaces of V0,m,j over
VS × VS1 × VS2 .

By Lemma 4.26 (b) F is a (trivial) subfamily of J(F1,F2) over Y S1,S2

S
. By Lemma 4.26 (c)

XS1,S2

S can be constructed as

XS1,S2

S = (J(F1,F2) ∩ (V0,m,j × VS × VS1 × VS2))/F|
Y

S1,S2
S

.

Hence, XS1,S2

S is a trivial family of affine spaces of dimension |S1|+|S2|−|S|, since it is the quotient
of a trivial affine family of fibre dimension |S1| + |S2| − 1 by another trivial affine family of fibre
dimension |S| − 1. �

5. Type Dn: special loci

5.1. Support blocks. In this section, we analyze the cases when a cell corresponding to a salient
block (see Def. 4.14) of a Young wall Y fails to contain a generator of a corresponding ideal I ∈ ZY .
As an example, recall once again Example 4.5, where the divided missing blocks at position (1, 3)
are salient blocks of Y3, but the corresponding cells do not necessarily contain generators of an
ideal I ∈ ZY3 . That this phenomenon can happen at all is one of the main sources of difficulty in
our analysis of the strata of the singular Hilbert scheme. We introduce the notion of a support
block for a salient block. Intuitively, the intersection of an ideal I with the cell in the support
block can generate the intersection in the salient block (such as the support block at position (0, 3)
for Y3), and thus the salient block contains no new generator of I. We will make this statement
more precise in the rest of this section.

We start with some combinatorial preliminaries. Recall the setup of Proposition 4.12: m ≡
1 mod n− 2; c1 and c2 are the labels of the divided block immediately above the block of label j
at position (m, 0); S1 ⊆ Bm+1,c1 and S2 ⊆ Bm+1,c2 are nonempty subsets at least one of which is
maximal; S ⊆ Bm,j is a maximal subset which is allowed by S1 and S2.

For a half-block b of Si, consider the following two conditions.

(1) The blocks below or to the left of b are not contained in S.
(2) The block below b is contained in S, the complementary half-block b′ is contained in S3−i,

and the block to the left of their position in not contained in S.

For i, j = 1, 2, let us denote by Ss,j
i ⊂ Si the subset of half-blocks of label ci satisfying condition (j).

Let moreover Ss
i = Ss,1

i ∪ Ss,2
i .

The next lemma, whose proof is immediate, connects the global Definition 4.14 with the local
conditions (1)-(2) where we consider only the m-th and m+ 1-st diagonals for a particular m, and
index sets S, S1 and S2 as above.
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Lemma 5.1. Given a Young wall Y ∈ Z∆, let S, respectively S1 and S2 denote the set of missing
blocks, respectively half-blocks of Y on the m-th and (m+ 1)-st diagonals. The blocks Ss

i ⊂ Si are
exactly the salient blocks of Y of label ci on the (m+ 1)-st diagonal.

Thus we can legitimately call the blocks in Ss
i salient blocks in this local situation.

Let us introduce the following subsets of S.

• Sl consists of blocks b ∈ S that are directly to the left of a divided block with labels (c1, c2).
• Sb,0 consists of blocks b ∈ S, so that b is immediately below a divided block with labels

(c1, c2), the block immediately up-left of b is not in S, and both of the divided blocks above
b are in S1 ∪ S2.
• Sb,ci consists of blocks b ∈ S that are immediately below a divided block, so that the block

immediately up-left of b is not in S, and the block of label c3−i above b is in S3−i.
• Sb,c1∪c2 consists of blocks b ∈ S such that b lies immediately below a divided block, and

the block immediately up-left of b is contained in S.
• Sb = Sb,0 ∪ Sb,c1 ∪ Sb,c2 ∪ Sb,c1∪c2 .

Note that by the Young wall rules, we necessarily have Sb = S \ Sl. We will call the blocks in the
set Sci = Sb,0 ∪ Sb,ci ∪ Sb,c1∪c2 support blocks for label ci. We will define a support relation from
Sci to Ss

i in 5.2 below.

5.2. Special loci in orbifold strata and the supporting rules. Let Y ∈ Z∆ be a Young
wall with a salient block in its bottom row in position (0,m) with m ≡ 1 mod n− 2, a full block
immediately below a divided block with labels (c1, c2). As before, let S, respectively S1 and S2

denote the set of missing blocks, respectively half-blocks of Y on the m-th and (m+1)-st diagonals
with the corresponding labels.

We introduce index sets depending on S, S1 and S2. We consider two cases.
If S is not maximal, then let

I(S, S1, S2) =

{
(k1, l1, k2, l2) :

(ki, li) ∈ Ss
i ∪ {∅} ∪ ({(1,m)} ∩ Si) for i = 1, 2,

and at least one (ki, li) = (1,m)

}
.

We partition this index set into the following (possibly empty) disjoint subsets:

• I(S, S1, S2)0 = {(k1, l1, k2, l2) ∈ I(S, S1, S2) : (ki, li) /∈ {∅, (1,m)} for some i = 1, 2};
• I(S, S1, S2)1 = {(1,m, ∅), (∅, 1,m)} ∩ I(S, S1, S2);
• I(S, S1, S2)−1 = {(1,m, 1,m)} ∩ I(S, S1, S2).

If S is maximal, then let

I(S, S1, S2) = {(k1, l1, k2, l2) : (ki, li) ∈ S
s
i ∪ {∅} for i = 1, 2}.

We remark that in this case (1,m) /∈ Ss
i for both i = 1, 2. The index set I(S, S1, S2) in this case

can be partitioned into the following subsets:

• I(S, S1, S2)0 = {(k1, l1, k2, l2) ∈ I(S, S1, S2) : (ki, li) 6= ∅ for some i = 1, 2};
• I(S, S1, S2)1 = {(∅, ∅)}.

As before, ∅ is used as a symbol replacing a pair in these defintions.
For projective subspaces P1 ⊆ P2 ⊆ Pm+1,c we introduce the following notation. (P2\P1) ⊣ Vk,l,c

if and only if (P2 \ P1) ∩ Vk,l,c 6= ∅ and k is maximal with this property. This is the smallest cell
whose intersection with P2 is larger than that with P1.

Recall the truncated Young wall Y and the morphism T : ZY → ZY from 4.3. The following
statement will be proved below in 5.4.

Theorem 5.2. There is a decomposition into locally closed subspaces

ZY =
⊔

(k1,l1,k2,l2)∈I(S,S1,S2)

ZY (k1, l1, k2, l2),

where

ZY (k1, l1, k2, l2) = {I ∈ ZY : ((I ∩ Pm,j) \ (I ∩ Pm,j)) ∩ Pm+1,ci ⊣ Vki,li,ci for i = 1, 2}.

The symbol ∅ = (ki, li) means that there is no intersection with Pm+1,ci . Moreover, if
(k1, l1, k2, l2) ∈ I(S, S1, S2)e, then the nonempty fibers of T : ZY (k1, l1, k2, l2) → ZY have Euler
characterestic e.
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The space ZY (k1, l1, k2, l2) should be thought as the space of those ideals, where the generator
in the cell of support block at position (0,m) has an image on the (m+ 1)-st diagonal at the cells
Vki,li,ci for i = 1, 2 which does not come from the rows above. We remark that the mentioned
support block in the bottom row is also salient since it is the first missing block in its row. But if
one attaches further rows to the bottom of Y , then it may become non-salient.

Recall from 5.1 the set Sci = Sb,0 ∪ Sb,ci ∪ Sb,c1∪c2 of support blocks for label ci. In the light
of the definition of the sets I(S, S1, S2) and Theorem 5.2 we will say that the blocks in Sci can
support the salient blocks of label ci in Ss

i in the following sense.
Each support block b ∈ S for label ci can support at most one salient block of label ci above

and to the left of b on the (m+ 1)-st antidiagonal. More precisely, this supporting relationship has
to respect the following supporting rules.

• Each block in Sb,0 supports precisely one or two salient blocks, at most one from each
label, and at least one of these has to be immediately above it;
• each block in Sb,ci can support at most one salient block of label ci which is not immediately

above it;
• each block in Sb,c1∪c2 can support none, one or two salient blocks, at most one from each

label, and neither of these is immediately above it.

In this way we define a correspondence from a subset of Sc1 to Ss
1 and one from a subset of Sc2 to

Ss
2 but these two have to satisfy the restrictions mentioned above on the intersection Sc1 ∩ Sc2 =
Sb,0 ∪ Sb,c1∪c2 . Neither correspondence has to be surjective or be defined on the whole domain,
but, where they are defined, they should be injective.

We shall call a salient block b′ ∈ Si of label ci supported, if the number of support blocks for
label ci in S which are below b is at least as much as the total number of salient blocks of label ci in
Si counted from the top left, including b′ itself. A supported salient block b′ satisfying condition (2)
above, so that there is a support block in S immediately below b′, will be called directly supported.
The others will be called non-directly supported. The supporting relationship will be globalized for
the whole diagram in the notion of closing datum, to be defined in 6.1 below.

Recall that during the inductive process in the proof of Theorem 4.1, at each step a new generator
appears in the cell corresponding to the salient block in the bottom row. Assume that for I ∈ ZY ,
(I ∩ Pm,j) ∩ Pm+1,ci = I ∩ Pm+1,ci for i = 1, 2. In this case we will say that there is no generator
of label ci on the (m + 1)-st antidiagonal. Let S, S1 and S2 be the index sets for V0,m,j , V1,m,c1

and V1,m,c2 respectively. Then using inductively Theorem 5.2 for each block b ∈ Sci we get that
there is at most one block bi ∈ Ss

i such that when the row of b is added to the Young wall, the new
generator in the cell of b has nontrivial image in the cell of bi. Conversely, for each block bi ∈ Ss

i

there corresponds a support block b ∈ Sci determined by I. In particular, this implies

Corollary 5.3. Assume that for I ∈ ZY , (I ∩ Pm,j) ∩ Pm+1,ci = I ∩ Pm+1,ci for some i = 1, 2.
Let S, S1 and S2 be the index sets for V0,m,j, V1,m,c1 and V1,m,c2 respectively.

(1) |Su,1
i | ≤ |S

b,ci |+ |Sb,c1∪c2 |;
(2) every salient block of label ci is supported;
(3) to each salient block of label ci there corresponds a unique support block for label ci in the

way described above.

5.3. Special loci in Grassmannians. We prepare the ground for the proof of Theorem 5.2 by
analyzing the incidence varieties of 4.2 in the case m ≡ 1 mod n − 2. Once again, we use the
notations of Proposition 4.12. The composition with the projection from VS × VS1,c1 × VS2,c2

to its first factor, followed by the affine linear fibration ω : VS → VS , defines a projection map
pV

S
: VS × VS1,c1 × VS2,c2 → VS .

For i = 1, 2 let Si(U) = {(ki, li) ∈ Bm+1,ci : (U) ∩ Vki,li,ci = ∅} be the blocks in the partial

profile of (U) ∩ Pm+1,ci on the (m + 1)-st diagonal. Then the index sets I(S, S1(U), S2(U)) and

I(S, S1(U), S2(U))e introduced above make sense. The following lemma stratifies the fibers of the
affine linear fibration ω : VS → VS .

Lemma 5.4. For any U ∈ VS, there is a stratification

V0,m,j/U =
⊔

(k1,l1,k2,l2)∈I(S,S1(U),S2(U))

V0,m,j(k1, l1, k2, l2)/U,
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where

V0,m,j(k1, l1, k2, l2)/U = {U ∈ V0,m,j/U : ((U) \ (U)) ∩ Pm+1,ci ⊣ Vki,li,ci for i = 1, 2}.

Moreover, if (k1, l1, k2, l2) ∈ I(S, S1(U), S2(U))e, then the space V0,m,j(k1, l1, k2, l2)/U is of Euler
characterestic e.

Proof. We have to distinguish the cases when S is maximal or not. The latter case is significantly
simpler, so we start with that.

If U ∈ VS with S not maximal, then (Mc1 +U)∩ (Mc2 +U) = ∅ since Mc1 and Mc2 are distinct

parallel hyperplanes in V0,m,j , and there are affine subspaces Ui representing U such that Ui ⊆Mci .
Recall from Corollary 4.25 the stratification of V0,m,j which basically comes from the join structure

on its closure Pm,j . This induces a decomposition of V0,m,j/U into non-empty, locally closed, but
not necessarily disjoint spaces

V0,m,j/U =((V0,m,j \ (Mc1 ∩Mc2))/U) ∪ (Mc1/U) ∪ (Mc1/U)

⋃

 ⋃

(k1,l1)∈Bm+1,c1

((J(V0,m−1,c1 , Vk1,l1,c2) ∩ V0,m,j) \M
0
c1 + U)/U




⋃

 ⋃

(k2,l2)∈Bm+1,c1

((J(V0,m−1,c2 , Vk2,l2,c1) ∩ V0,m,j) \M
0
c2 + U)/U


 .

Consider a block (ki, li) ∈ Bm+1,ci \ Si(U). Then the intersection (U) ∩ Vki,li,ci 6= ∅. Assume

that there is an U ∈ V0,m,j/U such that ((U) \ (U)) ∩ Vki,li,ci 6= ∅. Then dim((U) ∩ Vki,li,ci) >

dim((U)∩Vki ,li,ci) so by Lemma 3.6 there is at least one other block in a row above ki which has a

trivial intersection with (U) but a nontrivial one with (U). Hence, for any (ki, li) ∈ Bm+1,ci \Si(U)
we have

{U ∈ V0,m,j/U : ((U) \ (U)) ∩ Pm+1,ci ⊣ Vki,li,ci} = ∅.

On the other hand, if (ki, li) ∈ Si(U) ∪ {∅} then

((J(V0,m−1,ci , Vki,li,c3−i
) ∩ V0,m,j) \M

0
ci + U)/U =

{U ∈ V0,m,j/U : ((U) \ (U)) ∩ Pm+1,ci ⊣ Vki,li,ci and ((U) \ (U)) ∩ Pm+1,c3−i
⊣ V1,m,c3−i

}.

By dimension constrains these spaces are disjoint and it is easy to see that together with (V0,m,j \
(Mc1 ∪Mc2))/U ,M0

c1/U , and M0
c2/U they cover V0,m,j/U . Thus we get a stratification

V0,m,j/U =V0,m,j(1,m, 1,m)/U

⊔

 ⊔

(k1,l1)∈(S1(U)∪{∅})\{(1,m)}

V0,m,j(k1, l1, 1,m)/U




⊔

 ⊔

(k2,l2)∈(S2(U)∪{∅})\{(1,m)}

V0,m,j(1,m, k2, l2)/U


 .

In particular, there is a stratification

(13) Mc3−i
/U =

⊔

(ki,li)∈(Si(U)∪{∅})\{(1,m)}

V0,m,j(ki, li, 1,m)/U.

Being an affine space, M0
ci/U has Euler characteristic 1 for i = 1, 2. By Lemma B.3 the spaces

(J(V0,k(n−2),ci , Vki,li,c3−i
) ∩ V0,m,j) \ M0

ci have Euler characteristic 0, and the same is true for

((J(V0,k(n−2),ci , Vki,li,c3−i
) ∩ V0,m,j) \M0

ci + U)/U . This last step follows from the fact that the

subspace U ⊂ Pm,j avoids both the image of Vki,li,c3−i
and M0

ci.

If U ∈ VS such that S is maximal, then (Mc1 + U) = (Mc2 + U) = V0,m,j since U is transver-

sal to Mc1 and Mc2 . Therefore, there are two stratifications for V0,m,j/U with i = 1, 2 as in
(13). The claimed stratification is the largest common refinement of these two. In particular,
there are three types of strata. First, if U ∈ ((J(V0,k(n−2),c1 , Vk1,l1,c2) ∩ V0,m,j) \ M0

c1 + U) ∩

((J(V0,k(n−2),c2 , Vk2,l2,c1)∩V0,m,j)\M0
c2 +U)/U for arbitrary (k1, l1) ∈ S1(U) and (k2, l2) ∈ S2(U),
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then ((U) \ (U)) ∩ Pm+1,ci ⊣ Vki,li,ci for i = 1, 2. Second, if U ∈ (((J(V0,k(n−2),c1 , Vki,li,c3−i
) ∩

V0,m,j) +U) \
⋃

(k3−i,l3−i)∈S3−i(U)(J(V0,k(n−2),c2 , Vk3−i,l3−i,ci) ∩ V0,m,j) +U)/U , then ((U) \ (U)) ∩

Pm+1,ci ⊣ Vki,li,ci but ((U) \ (U))∩Pm+1,c3−i
= ∅. Third, if U ∈ ((M0

c1 +U)∩ (M0
c2 +U))/U , then

((U)\ (U))∩Pm+1,ci = ∅ for i = 1, 2. To sum it up, we get a stratification into locally closed spaces

V0,m,j/U =
⊔

(k1,l1)∈S1(U)∪{∅}

(k2,l2)∈S2(U)∪{∅}

V0,m,j(k1, l1, k2, l2)/U.

The Euler characteristic of the stratum V0,m,j(∅, ∅)/U = ((Mc1 +U)∩ (Mc2 +U))/U is 1. It is left
to the reader that the others have Euler characteristic 0. �

Let IS = {(S1(U), S2(U)) : U ∈ VS}. Actually IS only depends on S. For each (S′
1, S

′
2) ∈ IS ,

let

VS(S′
1, S

′
2) = {U ∈ VS : (S1(U), S2(U)) = (S′

1, S
′
2)}.

Corollary 5.5. For a fixed (S′
1, S

′
2) ∈ I(S) and (k1, l1, k2, l2) ∈ I(S, S′

1, S
′
2) the spaces

V0,m,j(k1, l1, k2, l2)/U are isomorphic for every U ∈ VS(S′
1, S

′
2). Moreover, they fit together into

a locally closed subvariety VS(k1, l1, k2, l2) ⊆ VS which is a trivial family over VS(S′
1, S

′
2). Using

induction and the fact that the fiber product of locally closed spaces is locally closed, we get that
there is a stratification

VS =
⊔

(S′
1,S

′
2)∈IS


 ⊔

(k1,l1,k2,l2)∈I(S,S′
1,S

′
2)

VS(k1, l1, k2, l2)




into locally closed subvarieties. Furthermore, if (k1, l1, k2, l2) ∈ I(S, S′
1, S

′
2)e, then the fiber of

ω : VS(k1, l1, k2, l2)→ VS has Euler characteristic e.

Proof. The triviality of the family VS(k1, l1, k2, l2)→ VS(S′
1, S

′
2) follows from Lemma B.4 and the

fact that V0,m,j(k1, l1, k2, l2)/U is constructed using (union, intersection and difference of) joins in
Pm,j . The rest of the statement is obvious. �

5.4. Proof of Theorem 5.2. As before, we fix S, S1 and S2. Recall that the fiber of the morphism

ω × Id× Id : XS1,S2

S → Y S1,S2

S
over an element (U,U1, U2) ∈ Y S1,S2

S
is J(L−1

1 U1, L
−1
1 U2)/U .

For i = 1, 2 let Si(U) = {(ki, li) ∈ Si : (U) ∩ Vki,li,ci = ∅} be the blocks in the partial

profile of (U) ∩ Pm+1,ci on the (m + 1)-st diagonal. Then the index sets I(S, S1(U), S2(U)) and

I(S, S1(U), S2(U))e are defined. The following lemma, whose proof is the same as that of Lemma

5.4, stratifies the fibers of the affine linear fibration ω × Id× Id: XS1,S2

S → Y S1,S2

S
.

Lemma 5.6. For any U1 ∈ VS1,c1 , U2 ∈ VS2,c2 the stratification of Lemma 5.4 restricts to a
stratification

J(L−1
1 U1, L

−1
1 U2)/U =

⊔

(k1,l1,k2,l2)∈I(S,S1(U),S2(U))

J(L−1
1 U1, L

−1
1 U2)(k1, l1, k2, l2)/U,

where

J(L−1
1 U1, L

−1
1 U2)(k1, l1, k2, l2)/U =

{U ∈ J(L−1
1 U1, L

−1
1 U2)/U : ((U) \ (U)) ∩ Pm+1,ci ⊣ Vki,li,ci for i = 1, 2}.

Moreover, if (k1, l1, k2, l2) ∈ I(S, S1(U), S2(U))e, then the space J(L−1
1 U1, L

−1
1 U2)(k1, l1, k2, l2)/U

is of Euler characterestic e.

Let IS1,S2

S = {(S1(U), S2(U)) : (U,U1, U2) ∈ Y
S1,S2

S
}. Actually IS1,S2

S only depends on S, S1

and S2. For each (S′
1, S

′
2) ∈ IS1,S2

S , let

Y S1,S2

S
(S′

1, S
′
2) = {(U,U1, U2) ∈ Y S1,S2

S
: (S1(U), S2(U)) = (S′

1, S
′
2)}.

Corollary 5.7. For fixed (k1, l1, k2, l2) ∈ I(S, S′
1, S

′
2) the spaces J(L−1

1 U1, L
−1
1 U2)(k1, l1, k2, l2)/U

are isomorphic for every U ∈ Y S1,S2

S
(S′

1, S
′
2). Moreover, they fit together into a locally closed
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subvariety XS1,S2

S (k1, l1, k2, l2) ⊆ XS1,S2

S . Using induction and the fact that the fiber product of
locally closed spaces is locally closed, we get that there is a stratification

XS1,S2

S =
⊔

(S′
1,S

′
2)∈I

S1,S2
S


 ⊔

(k1,l1,k2,l2)∈I(S,S′
1,S

′
2)

XS1,S2

S (k1, l1, k2, l2)




into a locally closed subvarieties. Furthermore, if (k1, l1, k2, l2) ∈ I(S, S′
1, S

′
2)e, then the fiber of

ω × Id× Id : XS1,S2

S (k1, l1, k2, l2)→ Y S1,S2

S
(S′

1, S
′
2) has Euler characteristic e.

Proof of Theorem 5.2. With all these preparations the proof itself is very easy. We just observe

that ZY (k1, l1, k2, l2) consist of those points in ZY , which map in (10) to XS1,S2

S (k1, l1, k2, l2)

for some (S′
1, S

′
2) ∈ IS1,S2

S such that (k1, l1, k2, l2) ∈ I(S, S′
1, S

′
2) . The result then follows from

Corollary 5.7. �

6. Type Dn: decomposition of the coarse Hilbert scheme

6.1. Distinguished 0-generated Young walls. In this section, we describe some distinguished
subsets of the set of Young walls Z∆ of type Dn. They will consist of Young walls which are the
analogues of the 0-generated partitions from 2.2; as always, in the type D case there are substantial
extra complications. For a Young wall Y ∈ Z∆, denote by wt0(Y ) the 0-weight of Y , the number
of half-blocks labelled 0 in Y .

Recall from 4.3, respectively 5.1 the notions of a salient block and a support block for a given
label c ∈ {0, 1, n− 1, n}; we will use also all other notation introduced in the latter section. We
call a pair of salient half-blocks (b, b′) sharing the same position a salient block-pair.

Consider the following conditions for a Young wall Y ∈ Z∆.

(A1) All salient blocks of Y are labelled 0, 1, n− 1 or n.
(A2) Every salient block of Y labelled c ∈ {1, n− 1, n} is supported.

Let Z ′
∆ ⊂ Z∆ be the set of Young walls Y which satisfy conditions (A1)-(A2). We will prove in

Theorem 6.4 that Z ′
∆ is the set of Young walls Y ∈ Z∆ for which ZY ∩ im(i∗) 6= ∅, where i∗ is the

pullback map defined in 1.1.
Given a Young wall Y ∈ Z∆, a closing datum for Y is a function d from the set of the salient

blocks of Y of label c ∈ {1, n− 1, n}, and some subset of the salient blocks of Y with label 0, to
the set of support blocks of Y , such that

• for each salient block b of label c for which d is defined, the associated support block d(b)
is a support block for label c, and lies on the previous antidiagonal and in a lower row than
that of b;
• for each fixed c ∈ {0, 1, n − 1, n} the different salient blocks of label c are mapped to

different support blocks;
• each support block for label c can support at most one salient block of label c according

to the supporting rules spelled out at the end of 5.1.

By condition (A2), for every Y ∈ Z ′
∆ with a nonempty set of salient blocks the set cd(Y) of closing

data for Y is nonempty. If all salient blocks of Y of label 1, n− 1 or n are directly supported, then
a closing datum d ∈ cd(Y) is called contributing, if to every salient block of label on which d is
defined, it associates the support block immediately below it.

We define two subsets of Z ′
∆. Consider the following conditions for a Young wall Y ∈ Z∆.

(R1) The salient blocks of Y of label n − 1 or n are all part of a directly supported salient
block-pair.

(R2) Y has no salient block with label in the set {1, . . . , n− 2}.
(R3) Any consecutive series of rows of Y having equal length and ending in half n− 1/n-blocks

is longer than n− 2, or n− 1 if the length of the rows is n− 1, and the last one starts with
a block labelled 1 (see Example 6.15 below for the latter condition being broken).

Young walls satisfying (R1)–(R2) will be called 0-generated. Let Z1
∆ ⊂ Z∆ denote the set of 0-

generated Young walls. They automatically satisfy (A1)–(A2), so indeed Z1
∆ ⊂ Z

′
∆. Let further

Z0
∆ ⊂ Z

1
∆ be the set of those Young walls which in addition satisfy (R3) also. These will be called

distinguished.

Lemma 6.1. Let Y ∈ Z∆ be an arbitrary Young wall.
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(1) The positions of the 0 blocks of Y determine uniquely a Young wall Y0 ∈ Z0
∆ such that

wt0(Y ) = wt0(Y0), and the 0 blocks in Y0 are exactly the 0 blocks in Y . Y0 does not
necessarily contain Y .

(2) There is a unique Y1 ∈ Z
1
∆ that contains Y and is minimal with this property with respect

to containment.

We will prove Lemma 6.1 at the end of the section.

Lemma 6.2. There is a combinatorial reduction map red: Z ′
∆ → Z

0
∆, restricting to the identity on

Z0
∆ ⊂ Z

′
∆, which associates to each Y ∈ Z ′

∆ a distinguished 0-generated Young wall red(Y ) ∈ Z0
∆

of the same 0-weight.

Proof. Starting with a Young wall Y ∈ Z ′
∆, we construct red(Y ) by enforcing (R1)–(R2) and (R3)

in turn, making sure in the second step that (R1)–(R2) remain fulfilled.
First, if a Young wall Y ∈ Z ′

∆ violates (R1) or (R2) at a salient block of label 1, n − 1 or n,
find the lowest row where this happens, and extend Y by adding as many extra blocks as possible
to this row without modifying the 0-weight. Thus, the extension stops either just before any full
block below which there is a missing full block, or just before the next 0 block in the row, whichever
comes earlier. Then in the row above this, one or two blocks may become salient. If at least one
of these new salient blocks is not of label 0, then we repeat the same procedure. Following this
procedure all the way to the top of Y gives a new Young wall which satisfies (R1) and (R2). These
moves may increase the number of places where the Young wall violates (R3).

Second, assume a Young wall Y satisfies (R1) and (R2) but violates (R3): there is a consecutive
series of rows having equal length and ending in half n− 1/n-blocks, but the length of this series
is m ≤ n− 2. Remove the half block from the end of the lowest row of such a series. Then a new
supported salient block-pair appears. If the block b immediately above this block-pair is contained
in Y , then we remove b, as well as the blocks to the right of it in order to obtain a valid Young
wall. Any full block above b also cannot be present in a valid Young wall, so we remove that as
well, together with all of the blocks to the right of it. Continue the removal process until there is a
full block above the last removed block. This process terminates after m steps, when it arrives at
a row which is already short enough. In this way we decreased the number places where the Young
wall violates (R3), but haven’t increased the number of places where it violates (R1) or (R2). The
0-weight of the Young wall remains unchanged, since the length of the series was at most n− 2.

Combining these steps, we obtain a Young wall red(Y ) that satisfies (R3) as well as (R1) and
(R2), and so lies in Z0

∆, and has the same 0-weight. �

Example 6.3. Let n = 4 and let us consider the following six Young walls.
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It can be checked that all these satisfy conditions (A1) and (A2), and hence lie in Z ′
∆. On the

other hand, the Young walls Y1 and Y3 violate (R1), and are extended to Y2, resp. Y4 in the first
step of the reduction process. Both of these still violate (R3); in the second step, they become
red(Y1) = red(Y3) = Y6 ∈ Z

0
∆. Y5 satisfies (R1), but violates (R2) and is extended to Y6 in the first

step with red(Y5) = Y6 ∈ Z0
∆ also. In each case the bullets indicate where exactly these violations

occur. The blocks without numbers are not contained in the Young walls.

For a Young wall Y ∈ Z0
∆, let Rel(Y ) = red−1(Y ) denote the set of relatives of Y , the Young

walls we can get from Y by the inverses of the reduction steps above. This is a finite directed set,
directed by the steps of the proof of Lemma 6.2. In Example 6.3, all Yi are relatives of Y6.

Proof of Lemma 6.1. Fix Y ∈ Z∆. For part (1), consider the minimal Young wall Ym that contains
the same 0-blocks as Y . Similarly to the proof of Lemma 6.2 extend each row of Ym with as many
blocks as possible taking into account the Young wall rules and the conditions (R1)–(R3), and
without modifying the 0-weight.

For part (2), consider the set RelY (Y0) ⊂ Z ′
∆ of those relatives of Y0 which contain Y . Here

Y0 is the Young wall obtained in part (1). This set of relatives is nonempty, since we can always
extend Y0 with the inverse of the move (R3) in Lemma 6.2 until there are only label 0 salient
blocks. There can be several of these since there is an ambiguity in the inverse of the move (R3),
but there is no Young wall having the same 0 weight as Y0 which is not contained in at least one
of these extended Young walls.

Suppose that RelY (Y0) has two distinct minimal elements Y2, Y3 with respect to containment.
Then there is at least one row ending in a half block, where one of Y2, Y3 has a left triangle, and
the other has a right triangle, but otherwise the row has the same length. Then the length of the
series of successive rows with the same length is the same in the two Young walls. If this length is
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more than n − 2, then they cannot both contain Y . If it is n − 2 or less, then Y2, Y3 are the two
results of the inverse of the move (R3) applied on a smaller Young wall. Since Y was a Young wall,
also this smaller Young wall contains Y . Hence, neither of Y2, Y3 could be minimal. The same
reasoning applies to all places where there is the left triangle/right triangle ambiguity. Thus, there
is a unique minimal element Y1 in the set of relatives of Y0 containing Y .

Since Y1 can be obtained from Y0 by inverses of the move (R3), it is an element in Z1
∆ �

6.2. The decomposition of the coarse Hilbert scheme. Let us turn to the Hilbert scheme
of points on the quotient C2/G∆, the coarse Hilbert scheme Hilb(C2/G∆) = ⊔nHilbn(C2/G∆).
Recall that the inclusion C[x, y]G∆ ⊂ C[x, y] defines a morphism

p∗ : Hilb([C2/G∆])→ Hilb(C2/G∆), J 7→ JG∆ = J ∩ C[x, y]G∆

and a map of sets

i∗ : Hilb(C2/G∆)(C)→ Hilb([C2/G∆])(C), I 7→ C[x, y].I

between the coarse and the orbifold Hilbert schemes.
The purpose of this section is to prove the following result.

Theorem 6.4. The decomposition of the equivariant Hilbert scheme Hilb([C2/G∆]) from Theo-
rem 4.1 induces a locally closed decomposition

Hilb(C2/G∆) =
⊔

Y ∈Z′
∆

Hilb(C2/G∆)Y

of the coarse Hilbert scheme Hilb(C2/G∆) into strata indexed bijectively by the set Z ′
∆ of Young

walls of type Dn satisfying (A1)-(A2) above. The stratum Hilb(C2/G∆)Y is contained in the m-th
Hilbert scheme Hilbm(C2/G∆) for m = wt0(Y ).

Proof. We start with the universal ideal J � OHilb(C2/G∆) ⊗ C[x, y]G∆ , which exists since

Hilb(C2/G∆) is a fine moduli space. Using the relative pullback, we obtain an invariant ideal
C[x, y].J � OHilb(C2/G∆) ⊗ C[x, y], which however is not a flat family of invariant ideals over

Hilb(C2/G∆). Take the flattening stratification of the base with index set F , to obtain a decom-
position

(14) Hilb(C2/G∆) = ⊔f∈FHilb(C2/G∆)f

over which the restrictions (C[x, y].J )f are flat. These flat families of invariant ideals of C[x, y]
define classifying maps

if : Hilb(C2/G∆)f → Hilbρ([C2/G∆])

from these strata to components of the equivariant Hilbert scheme. The latter smooth varieties
are decomposed into locally closed strata by Theorem 4.1 as

(15) Hilb([C2/G∆]) = ⊔Y ∈∈Z∆Hilb([C2/G∆])Y .

The stratification (15) gives a stratification on im(if ) for each f ∈ F since over each
Hilb([C2/G∆])Y the classifying map is flat. Hence, we can pull it back to obtain a decomposi-
tion

Hilb(C2/G∆) =
⊔

Y ∈Z∆

Hilb(C2/G∆)Y ,

where we have, set-theoretically,

Hilb(C2/G∆)Y (C) = {I ∈ Hilb(C2/G∆)(C) : i∗(I) ∈ Hilb([C2/G∆])Y (C)}.

The whole construction is compatible with the T = C∗-action, so we can also decompose the
T -fixed locus representing homogeneous ideals as

Hilb(C2/G∆)T =
⊔

Y ∈Z∆

WY ,

where

WY (C) = {I ∈ Hilb(C2/G∆)(C) : i∗(I) ∈ ZY (C)}.

Notice also that by construction, the maps iρ above are given by the pullback map i∗. In other
words, when restricted to the strata Hilb(C2/G∆)Y ⊃ WY , the map i∗ becomes a morphism of
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schemes. On the other hand, it is also clear that, letting W̃Y denote the image of i∗ inside ZY , p∗
and i∗ are two-sided inverses and so WY

∼= W̃Y ⊂ ZY .
To conclude, we need to show that for a fixed I ∈ Hilb(C2/G∆), the Young wall Y associated

with the pullback ideal J = i∗(I) necessarily lies in Z ′
∆. It is clearly enough to assume that I,

and so J , are homogeneous. The ideal J , being a pullback, is of course generated by invariant
polynomials. On the other hand, as we have seen during the proof of Theorem 4.1, a homogeneous
ideal is generated by polynomials lying in salient blocks. While not all salient blocks necessarily
contain new a generator, it is clear that salient blocks labelled j with 2 ≤ j ≤ n− 2 must contain
a generator. Since such a generator is not allowed in an invariant ideal, Y must satisfy condition
(A1).

To discuss the other condition (A2), let us return to the inductive proof of Theorem 4.1. Corol-
lary 5.3 (2) implies that if there is no generator on a given antidiagonal of Y , then the salient
blocks of label c ∈ {1, n, n − 1} on this antidiagonal are supported. For an invariant ideal, this
condition is required to be satisfied for all salient blocks of label c ∈ {1, n, n− 1}. This concludes
the proof. �

6.3. Possibly and almost invariant ideals. We wish to study the Euler characteristics of the
strata of the coarse Hilbert scheme obtained in Theorem 6.4, using the inductive approach used
in 4.3 in our study of the orbifold Hilbert scheme. However, as things stand, the setup does not
lend itself well to induction based on the removal of the bottom row from a Young wall, since
the set of Young walls Z ′

∆ is clearly not closed under the removal of the bottom row. To remedy
this, we introduce two auxiliary constructions. From now on, except when noted, every ideal is
supposed to be T -invariant.

First, call an ideal I � C[x, y] possibly invariant, if it is generated by

• polynomials which transform under G∆ according to ρ0, ρ1, ρn−1 or ρn,
• and at most one τ -invariant pair of polynomials of the same degree, forming a two-

dimensional representation of G∆, and not lying in the image of the operator L1.

Equivalently, the second condition says that the corresponding two-dimensional subspace lies in
the large stratum of the appropriate projective space parameterizing such subspaces.

Second, a possibly invariant ideal I will be called almost invariant, if it is generated by

• G∆-invariant elements,
• and at most a single polynomial, or pair of polynomials of the same degree, forming a one-

or two-dimensional representation of G∆, and not lying in the image of the operator L1.

Let us denote by ZP
∆ ⊂ Z∆ the subset of all Young walls which are characterized by the following

condition:

(A1’) all salient blocks of Y are labelled 0, 1, n− 1 or n, except possibly for a single salient block
in the bottom row of a different label.

Moreover, let ZA
∆ ⊂ Z

P
∆ be the set of Young walls which satisfy condition (A1’) as well as the

following second condition:

(A2’) every salient block of Y labelled c ∈ {1, n− 1, n} is supported, except possibly the ones in
the bottom row.

The following statement follows immediately from our setup.

Proposition 6.5.

(1) Possibly invariant ideals correspond to points in the strata ZY ⊂ Hilb([C2/G∆]) where
Y ∈ ZP

∆.

(2) Points parameterizing almost invariant ideals lie in constructible subsets W̃Y ⊂ ZY of
strata ZY ⊂ Hilb([C2/G∆]) for Y ∈ ZA

∆.

By definition, we have Z ′
∆ ⊂ Z

A
∆. For Y ∈ Z ′

∆, the constructible subset provided by Proposition

6.5(2) is exactly W̃Y = i∗(WY ). Therefore, in the sequel we will denote these strata as W̃Y for
arbitrary Y ∈ ZA

∆ as well. Further, if for Y ∈ ZA
∆, also Y ∈ ZA

∆, where Y is the Young wall
obtained by removing from Y the bottom row as in 4.3, then the map T : ZY → ZY of Lemma 4.16

takes W̃Y to W̃Y .

Furthermore, let Z0,A
∆ ⊂ ZA

∆ be the subset defined by the following conditions:
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(R1’) the salient blocks of label n− 1 or n not in the bottom row are all directly supported;
(R2’) there is no salient block with label in {1, . . . , n− 2} except possibly for the bottom row;
(R3’) any consecutive series of rows, except the one starting in the bottom row, having equal

length and ending in half n− 1/n-blocks is longer than n− 2, or n− 1 if the length of the
rows is n− 1 and the last one starts with a block labelled 1.

Lemma 6.6. There is a combinatorial reduction map red: ZP
∆ → Z

0,A
∆ associating to each Y ′ ∈ ZP

∆

a unique Y ∈ Z0,A
∆ .

Proof. The proof of Lemma 6.2 above goes through unchanged in this setting and the reduction
process gives a well-defined element in ZP

∆ . After the reduction there is no indirectly supported
salient block. Hence, each salient block is directly supported, and in particular supported as
required by condition (A2’). Therefore, the output of the reduction is an element in ZA

∆ with the
properties (R1’)-(R3’). �

Once again, for Y ∈ Z0,A
∆ the Young walls Rel(Y ) = red−1(Y ) will be called the relatives of Y .

The following statement is clear from the definitions.

Lemma 6.7. The sets ZP
∆ and Z0,A

∆ are closed under the operation of bottom row removal.

The sets of Young walls introduced so far can be placed in the following commutative diagram:

Z0
∆ →֒ Z ′

∆

→֒ →֒

Z0,A
∆ →֒ ZA

∆ →֒ ZP
∆ .

The relatives of a Young wall Y ∈ Z0
∆ are the same in Z ′

∆ and in ZA
∆, but there may be some new

relatives in ZP
∆ . This will cause no problem; see the discussion above Corollary 6.13. Even though

we are interested in strata of the Young walls in the upper row, it is easier to work in the lower
row because of Lemma 6.7.

The notion of a closing datum generalizes word by word for ideals in the stratum of Y ∈ ZA
∆.

For ideals in the stratum of Young walls in ZP
∆ we have to relax it, since not all salient blocks of

label 1, n − 1 or n are supported. A partial closing datum for a Young wall in ZP
∆ is given by

associating to some of its salient blocks of label c ∈ {0, 1, n− 1, n} a support block for label c in
the previous antidiagonal and below the salient block, in such a way that to each support block for
label c at most one salient block of label c is associated. We say that those salient blocks to which
there is an associated support block are closed. The set of all partial closing data for Y ∈ ZP

∆

will be denoted as pcd(Y ). Closing data are special partial closing data for Young walls in ZA
∆, in

which all salient blocks of label 1, n− 1 or n are closed, except possibly one on the bottom row.
Fix a Young wall Y ∈ ZP

∆ such that in the bottom row the salient block is a support block

for label c ∈ {0, 1, n − 1, n}. Let Y be the truncation of Y . By Lemma 6.7, Y ∈ ZP
∆ . If d is a

partial closing datum associated to some I ∈ ZY , then using the decomposition of Theorem 5.2

we can extend it to a partial closing datum for each ideal in the fiber over I; in particular, if
I ∈ ZY (k1, l1, k2, l2) for some pairs (k1, l1) and (k2, l2), and either of these is a salient block of
label c, then we associate to them the support block in the bottom row. By induction, we obtain

Corollary 6.8. Given Y ∈ ZP
∆, every I ∈ ZY defines a unique partial closing datum d(I) ∈

pcd(Y ).

For d ∈ pcd(Y ), let ZY (d) ⊆ ZY be the subset of those ideals which have partial closing datum d.
Then

ZY = ⊔d∈pcd(Y )ZY (d)

is a locally closed decomposition of the stratum ZY . Similarly, for an element Y ∈ ZA
∆ let W̃Y (d) ⊆

W̃Y be the subset of those ideals which have closing datum d. Then

W̃Y = ⊔d∈cd(Y )W̃Y (d)

is a locally closed decomposition.
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6.4. Euler characteristics of strata and the coarse generating series. In this section, we
derive information about the topological Euler characteristics of the strata of the coarse Hilbert
scheme constructed above.

Fix a Young wall Y ∈ ZP
∆ , and a partial closing datum d ∈ pcd(Y ). We say that a support

block for label c is of type e ∈ {−1, 0, 1} if, when its row is considered as the bottom row, the
associated half blocks according to d are in the set I(S1, S2, S)e in the notation of Theorem 5.2.

Lemma 6.9. Assume that (Y, d) are such such that in the bottom row of Y , the salient block b of

label j ∈ {2, n− 2} is a support block for label c ∈ {0, 1, n− 1, n}. Let (Y , d) be the truncation of
(Y, d). If the salient block b is of type e ∈ {−1, 0, 1}, then

χ(ZY (d)) = e · χ(ZY (d)).

Proof. Using the notations of 5.2, let (k1, l1, k2, l2) be the quadruple of the half blocks associated
to the support block, and consider the diagram

ZY (d) ⊆ ZY −−→ XYyT

yω×Id

ZY (d) ⊆ ZY −−→ YY .

Returning once again to the process proving Theorem 4.1, when we obtained ZY from the trun-
cation ZY , we saw that those ideals in ZY that does not have a generator in the strata of the
missing half blocks at (k1, l1) and at (k2, l2) are necessarily in ZY (k1, l1, k2, l2) and all ideals in
ZY (k1, l1, k2, l2) have this property. Formally, a point of ZY over ZY (d) is in ZY (d) if and only if

((I ∩ Pm,j) \ (I ∩ Pm,j)) ∩ Pm+1,ci ⊣ Vki,li,ci for i = 1, 2.

Under the operation T the space ZY (d) necessarily maps onto ZY (d). Hence, we get that

ZY (d) = ZY (d)×Z
Y
ZY (k1, l1, k2, l2).

By Theorem 5.2 the fibers of T on ZY (k1, l1, k2, l2) have Euler characteristic e. Thus

χ(ZY (d)) = e · χ(ZY (d)).

�

For e ∈ {−1, 0, 1} and c ∈ {0/1, n− 1/n} let se(d, c) be the number of support blocks for label
c of type e, and let se(d) = se(d, 0/1) + se(d, n − 1/n). Applying Lemma 6.9 inductively, we get
the following.

Proposition 6.10. For Y ∈ ZP
∆ and d ∈ pcd(Y ),

χ(ZY (d)) = (−1)s−1(d) · 0s0(d) · 1s1(d),

where we adopt the convention 00 = 1.

Corollary 6.11. (1) Let Y ∈ ZP
∆ and d ∈ pcd(Y ). If Y contains a salient block of any label

to which a support block not immediately below it is associated under d, then χ(ZY (d)) = 0.
(2) Let Y ∈ ZA

∆ and d ∈ cd(Y ).
(a) If Y contains a nondirectly supported salient block of label 1, n − 1 or n, then

χ(W̃Y (d)) = 0.
(b) If Y does not contain any nondirectly supported salient block of label 1, n− 1 or n, but

d is not contributing, then χ(W̃Y (d)) = 0.

Proof. (1) follows from Proposition 6.10, and both parts of (2) follows from (1). �

The main ingredient for calculating the coarse generating series is the following statement.

Proposition 6.12. For all Y ∈ Z0,A
∆ ,

∑

Y ′∈Rel(Y )

χ(W̃Y ′) = 1.

Recall from 6.3 that the relatives of a Young wall Y ∈ Z0
∆ are the same in Z ′

∆ and in ZA
∆, but

there may be some new relatives in ZP
∆ which are not in ZA

∆. On the other hand, since W̃Y = ∅
for Y ∈ ZP

∆ \ Z
A
∆, Proposition 6.12 implies
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Corollary 6.13. For all Y ∈ Z0
∆, ∑

Y ′∈Rel(Y )

χ(W̃Y ′) = 1.

Proof. By Corollary 6.11 (2.a), the strata associated to those Young walls Y ′ ∈ Rel(Y ) that have
at least one undirectly supported salient block of label n − 1 or n above the bottom row do not
contribute to the sum. Therefore we can restrict our attention to the subset of Young walls in
which the salient blocks not in the bottom row are

• directly supported salient block-pairs of label 0/1 or n− 1/n, or
• arbitrary salient blocks of label 0.

In particular, we can assume that all Young walls we are working with satisfy (R1’). Moreover, by
Corollary 6.11 (2.b) we can assume that each closing datum is contributing. That is, for each salient
block of label 1, n − 1 or n not in the bottom row, the associated support block is immediately
below it, and this holds also for those label-0 salient blocks which have an associated support block.

As in the proof of Theorem 4.3, we will prove the proposition by induction on the number of

rows. Fix a Young wall Y ∈ Z0,A
∆ . We re-write the statement into the form

∑

Y ′∈Rel(Y )

∑

d′∈cd(Y ′)

χ(W̃Y ′(d′)) = 1.

Let Y be the truncation of Y ; by Lemma 6.7, Y ∈ Z0,A
∆ also.

Assume first that the block above the salient block in the bottom row of Y is not divided. Then
the relatives of Y are exactly the extensions of those of Y with the bottom row of Y . A closing
datum on any such Young wall extends uniquely to the extended Young wall, and the corresponding
strata are isomorphic. In this case, the induction step is obvious.

Assume next that the block above the salient block in the bottom row of Y is divided. Let S
be the index set of the block at (0,m), S1 and S2 the index sets for the blocks at (1,m). The
following cases can occur:

(1) S is maximal;
(2) S is not maximal, and exactly one of S1 or S2 is maximal;
(3) S is not maximal, and both S1 and S2 are maximal.

If S is maximal, then to each relative Y
′
∈ Rel(Y ) there corresponds a unique relative Y ′ ∈

Rel(Y ) which satisfies (R1’) and (R2’): we extend each relative of Y with the bottom row of Y .

A closing datum d
′

on one of these relatives Y
′

can be extended to a closing datum d′ on the
corresponding relative of Y by assigning (∅, ∅) to the new salient block appearing in the bottom
row. By Theorem 5.2, (∅, ∅) ∈ I(S, S1, S2)1, and

∑

Y ′∈Rel(Y )

∑

d′∈cd(Y ′)

χ(W̃Y ′(d′)) =
∑

Y
′
∈Rel(Y )

∑

d
′
∈cd(Y

′
)

χ(W̃Y
′(d

′
)) = 1.

If S is not maximal, and Si is maximal while S3−i is not, then the missing block at (1,m) is
not salient, and the subspace in its stratum is necessarily in the image of the subspace at (0,m).
Again, to each relative of Y there corresponds a unique relative of Y , and

∑

Y ′∈Rel(Y )

∑

d′∈cd(Y ′)

χ(W̃Y ′(d′)) =
∑

Y
′
∈Rel(Y )

∑

d
′
∈cd(Y

′
)

χ(W̃Y
′(d

′
)) = 1.

Finally, suppose that S is not maximal, but S1 and S2 are maximal. In this case new relatives
appear when we add the bottom row of Y to Y . We investigate two possible cases individually.

If the divided block above the new salient block is a full n − 1/n block, then for each relative
of Y there are two other relatives, which contain either the label (n− 1) half block or the label n
half block. If the relatives of Y are {Y 0 = Y , Y 1, Y 2, . . . }, then the relatives of Y are

{Y0 = Y, Y1, Y2, . . . } ∪
⋃

c∈{n−1,n}

{Y0,c = Yc, Y1,c, Y2,c, . . . }.

We obtain these by performing the inverse of the move (R3) in the algorithm of Lemma 6.2. The
addition of the bottom row of Y to an Yi schematically looks like this:
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Y i

YiYi,n−1 Yi,n

Here the block of label c is in the complement of the Young wall Yi,c, while its pair is in Yi,c. There
is only one contributing closing datum on each of Yi, Yi,n−1 and Yi,n extending a contributing

closing datum di on Y i. Namely, to the new support block of Yi we associate both the divided
block above it, and every other part of di is kept constant. We denote these by di, di,n−1 and di,n,
respectively.

We claim that for c ∈ {n− 1, n},

χ(W̃Yi,c
(di,c)) = χ(W̃Y i

(di)).

To show this, we define a morphism W̃Y i
(di)→ W̃Y i,c

(di,c), where Y i,c is the truncation of Yi,c.

This morphism is given by the restriction of an ideal I ∈ W̃Y i
(di) to the union of those cells whose

block is missing from Y i,c. The Young wall Y i,c has the same salient blocks as Y i except a half
block in the bottom row. Hence, the result is necessarily an ideal, which has the same generators
as I except for the cell V0,m,c where it does not have any generator. Therefore, the image of this

morphism is in WY i,c
(di,c); here (0,m) is the position of the salient block-pair in the bottom row

of Y i, which is also the position of the salient half block of label κ(c) in the bottom row of Y i,c.

Assume that there are two ideals I, I ′ ∈ W̃Y i
(di) which map to the same element of W̃Y i,c

(di,c)

under this morphism. Then they only differ in the function at V0,m,c, or more precisely in the

point of V0,m,c/U which represents the subspace in V0,m,c. Here U = I ∩ Pm,c = I ′ ∩ Pm,c. Then
any ideal I ′′ which is their affine linear combination, i.e. whose corresponding subspace in V0,m,c

is a linear combination of those of I and I ′, is also an element of W̃Y i
(di), mapped to the same

ideal as I and I ′ under the morphism. In particular, the fibers of the morphism are affine spaces.

Taking into account that χ(W̃Yi,c
(di,c)) = χ(W̃Y i,c

(di,c)), this proves the claim.

Thus,

χ(W̃Yi
(di)) + χ(W̃Yi,n−1(di,n−1)) + χ(W̃Yi,n

(di,n))

= −χ(W̃Y i
(di)) + χ(W̃Y i

(di)) + χ(W̃Y i
(di)) = χ(W̃Y i

(di)),

where in the first equality we used Lemma 6.9.
Second, if the divided block above the new salient block is a full 0/1 block, then for each relative

of Y there is a new relative which contains the label 1 half block (and possibly some other blocks
above it). Let us denote the relatives of Y as {Y 0 = Y , Y 1, Y 2, . . . }. Then the relatives of Y are

{Y0 = Y, Y1, Y2, . . . } ∪ {Y0,1, Y1,1, Y2,1, . . . }.

We obtain these by performing the inverse of the move (R2) in the algorithm of Lemma 6.2.
Schematically:
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Y i

Yi Yi,1

In this case Yi,0 cannot appear as a relative, since that would change the 0-weight. Given a

contributing closing datum di on Y i, shifting it appropriately gives a unique contributing closing
datum di,1 on Yi,1. On Yi, di induces two contributing closing data:

• di is obtained by associating the support block in the bottom row to the salient half-block
pair above it;
• d′i is obtained by associating the support block in the bottom row to the salient half block

of label 1 above it only.

Again, using Lemma 6.9 we get

χ(W̃Yi
(di)) + χ(W̃Yi

(d′i)) + χ(W̃Yi,1 (di,1)) = −χ(W̃Y i
(di)) + χ(W̃Y i

(di)) + χ(W̃Y i
(di))

= χ(W̃Y i
(di)).

Summing over these, we obtain in all cases
∑

Y ′∈Rel(Y )

∑

d′∈cd(Y ′)

χ(W̃Y ′(d)) =
∑

Y
′
∈Rel(Y )

∑

d
′
∈cd(Y

′
)

χ(W̃Y
′(d)),

which proves the induction step. �

Putting everything together, we obtain the following result, the analogue of Corollary 2.3 in
type D.

Theorem 6.14. Let ∆ be of type Dn. Then the generating function of Euler characteristics of
the coarse Hilbert schemes of points of the corresponding singular surface C2/G∆ is given by the
combinatorial generating series

∞∑

m=0

χ
(
Hilbm(C2/G∆)

)
qm =

∑

Y ∈Z0
∆

qwt0(Y ).

Proof. We use the decomposition of Theorem 6.4. For Y ∈ Z ′
∆, we have Hilb(C2/G∆)TY = WY

and thus χ(WY ) = χ(Hilb(C2/G∆)Y ). Now use Corollary 6.13 to sum the Euler characteristics of
the strata WY along the fibres of the combinatorial reduction map red of Lemma 6.2. �

Example 6.15. Let n = 4 and let Y ∈ Z0
∆ be the distinguished 0-generated Young wall

2

2

2

2

2

2

0

1

0

1

0

4
3

4
3

3
4

1

The parameter space ZY of this Young wall Y is isomorphic to that of Example 4.6, which in turn
is isomorphic to that of Example 4.5. In particular, ZY

∼= A1. The difference is that in this case
the salient blocks are the 0-labelled blocks at (0, 4) and (1, 5).

Denote by Y3 and Y4 the 0-generated non-distinguished Young walls
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2

2

2

2

2

2

2

2

0

1

0

1

0

1

4
3

4
3

3
4

1

3

4

3

2

2

2

2

2

2

2

2

0

1

0

1

0

1

4
3

4
3

3
4

1

4

3

4

We have Y3, Y4 ∈ Z ′
∆ and are in fact 0-generated, but both violate condition (R3) at their fourth

row, so they are not distinguished. In the first step of the reduction algorithm of Lemma 6.2, we
remove the half block of label 3 (resp., 4) from Y3 (resp, Y4). Then we remove the blocks of label
2 and 4 (resp., 2 and 3) from the fifth row. Finally we remove the blocks of 1,2 and 3 (reps., 1,2
and 4) from the sixth row. This shows that both Young walls Y3, Y4 reduce to Y . It is can be seen
that these are in fact all the relatives of Y . As explained in Example 4.6, when the two generators
(v0, v

′
0) ∈ V0,4,0×V1,5,0 are in a special position such that L1v0, v

′
0 ∈ (L1L3), then the ideal (v0, v

′
0)

has Young wall Y3. Similarly, if L1v0, v
′
0 ∈ (L1L4), then (v0, v

′
0) has Young wall Y4. In fact we

can think of the corresponding strata as gluing to one stratum inside the invariant Hilbert scheme
Hilb3(C2/D4), the strata of Y3 and Y4 ”patching in” the gaps of the stratum of Y . At least on the
level of Euler characteristics, this is what Proposition 6.12 shows in full generality.

7. Type Dn: abacus combinatorics

7.1. Young walls and abacus of type Dn. We continue to work with the root system ∆ of
type Dn, and introduce some associated combinatorics. From now on, we return to the untrans-
formed representation of the type Dn Young wall pattern introduced in 3.2.

Recalling the Young wall rules (YW1)-(YW4), it is clear that every Y ∈ Z∆ can be decomposed
as Y = Y1 ⊔ Y2, where Y1 ∈ Z∆ has full columns only, and Y2 ∈ Z∆ has all its columns ending in

a half-block. These conditions define two subsets Zf
∆,Z

h
∆ ⊂ Z∆. Because of the Young wall rules,

the pair (Y1, Y2) uniquely reconstructs Y , so we get a bijection

(16) Z∆ ←→ Z
f
∆ ×Z

h
∆.

Given a Young wall Y ∈ Z∆ of type Dn, let λk denote the number of blocks (full or half blocks
both contributing 1) in the k-th vertical column. By the rules of Young walls, the resulting positive
integers {λ1, . . . , λr} form a partition λ = λ(Y ) of weight equal to the total weight |Y |, with the
additional property that its parts λk are distinct except when λk ≡ 0 mod (n− 1). Corresponding
to the decomposition (16), we get a decomposition λ(Y ) = µ(Y ) ⊔ ν(Y ). In µ(Y ), no part is
congruent to 0 modulo (n − 1), and there are no repetitions; all parts in ν(Y ) are congruent to
0 modulo (n − 1) and repetitions are allowed. Note that the pair (µ(Y ), ν(Y )) does almost, but
not quite, encode Y , because of the ambiguity in the labels of half-blocks on top of non-complete
columns.

We now introduce the type5 Dn abacus, following [25, 27]. This abacus is the arrangement of
positive integers, called positions, in the following pattern.

1 . . . n− 2 n− 1 n . . . 2n− 3 2n− 2
2n− 1 . . . 3n− 4 3n− 3 3n− 2 . . . 4n− 5 4n− 4

...
...

...
...

...
...

For any integer 1 ≤ k ≤ 2n − 2, the set of positions in the k-th column of the abacus is the
k-th runner, denoted Rk. As in type A, positions on the runners are occupied by beads. For
k 6≡ 0 mod (n− 1), the runners Rk can only contain normal (uncolored) beads, with each position
occupied by at most one bead. On the runners Rn−1 and R2n−2, the beads are colored white and
black. An arbitrary number of white or black beads can be put on each such position, but each
position can only contain beads of the same color.

5Once again, we should call it type D̃
(1)
n , but we simplify for ease of notation.
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Given a type Dn Young wall Y ∈ Z∆, let λ = µ ⊔ ν be the corresponding partition with its
decomposition. For each nonzero part νk of ν, set

nk = #{1 ≤ j ≤ l(µ) | µj < νk}

to be the number of full columns shorter than a given non-full column. The abacus configuration
of the Young wall Y is defined to be the set of beads placed at positions λ1, . . . , λr. The beads
at positions λk = µj are uncolored; the color of the bead at position λk = νl corresponding to a
column C of Y is





white, if the block at the top of C is and nl is even;

white, if the block at the top of C is and nl is odd;

black, if the block at the top of C is and nl is even;

black, if the block at the top of C is and nl is odd.

One can check that the abacus rules are satisfied, that all abacus configurations satisfying the
above rules, with finitely many uncolored, black and white beads, can arise, and that the Young
wall Y is uniquely determined by its abacus configuration.

Example 7.1. The abacus configuration associated to the Young wall Y6 of Example 6.3 is

R1 R2 R3 R4 R5 R6

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18
...

...

7.2. Core Young walls and their abacus representation. In parallel with the type A story,
we now introduce the combinatorics of core Young walls of type Dn, and the corresponding abacus
moves. On the Young wall side, define a bar to be a connected set of blocks and half-blocks, with
each half-block occuring once and each block occuring twice. A Young wall Y ∈ Z∆ will be called
a core Young wall, if no bar can be removed from it without violating the Young wall rules. For an
example of bar removal, see [25, Example 5.1(2)]. Let C∆ ⊂ Z∆ denote the set of all core Young
walls. The following statement is the type D analogue of the discussion of 2.3.

Proposition 7.2. ([25, 27]) Given a Young wall Y ∈ Z∆, any complete sequence of bar removals
through Young walls results in the same core core(Y ) ∈ C∆, defining a map of sets

core: Z∆ → C∆.

The process can be described on the abacus, respects the decomposition (16), and results in a bijection

(17) Z∆ ←→ P
n+1 × C∆

where P is the set of ordinary partitions. Finally, there is also a bijection

(18) C∆ ←→ Zn.

Proof. Decompose Y into a pair of Young walls (Y1, Y2) as above. Let us first consider Y1. On the
corresponding runners Rk, k 6≡ 0 mod (n− 1), the following steps correspond to bar removals [25,
Lemma 5.2].

(B1) If b is a bead at position s > 2n−2, and there is no bead at position (s−2n+2), then move
b one position up and switch the color of the beads at positions k with k ≡ 0 mod (n− 1),
s− 2n+ 2 < k < s.

(B2) If b and b′ are beads at position s and 2n−2−s (1 ≤ s ≤ n−2) respectively, then remove b
and b′ and switch the color of the beads at positions k ≡ 0 mod (n−1), s < k < 2n−2−s.

Performing these steps as long as possible results in a configuration of beads on the runners Rk

with k 6≡ 0 mod (n − 1) with no gaps from above, and for 1 ≤ s ≤ n − 2, beads on only one
of Rs, R2n−2−s. This final configuration can be uniquely described by an ordered set of integers
{z1, . . . , zn−2}, zs being the number of beads on Rs minus the number of beads on R2n−2−s [27,
Remark 3.10(2)]. In the correspondence (18) this gives Zn−2. It turns out that the reduction steps
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in this part of the algorithm can be encoded by an (n − 2)-tuple of ordinary partitions, with the
summed weight of these partitions equal to the number of bars removed [25, Theorem 5.11(2)].

Let us turn to Y2, represented on the runners Rk, k ≡ 0 mod (n − 1). On these runners, the
following steps correspond to bar removals [27, Sections 3.2 and 3.3].

(B3) Let b be a bead at position s ≥ 2n − 2. If there is no bead at position (s − n + 1), and
the beads at position (s − 2n + 2) are of the same color as b, then shift b up to position
(s− 2n+ 2).

(B4) If b and b′ are beads at position s ≥ n− 1, then move them up to position (s− n+ 1). If
s− n+ 1 > 0 and this position already contains beads, then b and b′ take that same color.

During these steps, there is a boundary condition: there is an imaginary position 0 in the rightmost
column, which is considered to contain unvisible white beads; placing a bead there means that this
bead disappears from the abacus. It turns out that the reduction steps in this part of the algorithm
can be described by a triple of ordinary partitions, again with the summed weight of these partitions
equal to the number of bars removed [27, Proposition 3.6]. On the other hand, the final result can
be encoded by a pair of 2-core partitions (see 2.3).

The different bar removal steps (B1)-(B4) construct the map c algorithmically and uniquely.
The stated facts about parameterizing the steps prove the existence of the bijection (17). To
complete the proof of (18), we only need to remark further that the set of 2-core partitions, in our
language A1-core partitions, is in bijection with the set of integers by bijection (7) in 2.3 (see also
[27, Remark 3.10(2)]). This gives the remaining Z2 factor in the bijection (18). �

Example 7.3. The abacus configuration associated to the core of the Young wall Y6 of Examples
6.3 and 7.1 is

R1 R2 R3 R4 R5 R6

1 2 3 4 5 6

7 8 9 10 11 12
...

...

We next determine the multi-weight of a Young wall Y in terms of the bijections (17)-(18). The
quotient part is easy: the multi-weight of each bar is (1, 1, 2, . . . , 2, 1, 1), so in complete analogy
with the type A situation, the contribution of the (n+ 1)-tuple of partitions to the multi-weight is
easy to compute. Turning to cores, under the bijection C∆ ↔ Zn, the total weight of a core Young
wall Y ∈ C∆ corresponding to (z1, . . . , zn) ∈ Zn is calculated in [27, Remark 3.10]:

(19) |Y | =
1

2

n−2∑

i=1

(
(2n− 2)z2i − (2n− 2i− 2)zi

)
+ (n− 1)

n∑

i=n−1

(
2z2i + zi

)
.

A refinement of this formula calculates the multi-weight of Y .

Theorem 7.4. Let q = q0q1q
2
2 . . . q

2
n−2qn−1qn, corresponding to a single bar.

(1) Composing the bijection (18) with an appropriate Z-change of coordinates in the lat-
tice Zn, the multi-weight of a core Young wall Y ∈ C∆ corresponding to an element
m = (m1, . . . ,mn) ∈ Zn can be expressed as

qm1
1 · · · · · qmn

n (q1/2)m
⊤·C·m,

where C is the Cartan matrix of type Dn.
(2) The multi-weight generating series

Z∆(q0, . . . , qn) =
∑

Y ∈Z∆

qwt(Y )

of Young walls for ∆ of type Dn can be written as

Z∆(q0, . . . , qn) =

∞∑

m=(m1,...,mn)∈Zn

qm1
1 · · · · · qmn

n (q1/2)m
⊤·C·m

∞∏

m=1

(1− qm)n+1

.
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(3) The following identity is satisfied between the coordinates (m1, . . . ,mn) and (z1, . . . , zn)
on Zn:

n∑

i=1

mi = −
n−2∑

i=1

(n− 1− i)zi − (n− 1)c(zn−1 + zn)− (n− 1)b.

Here z1 + · · ·+ zn−2 = 2a− b for integers a ∈ Z, b ∈ {0, 1}, and c = 2b− 1 ∈ {−1, 1}.

Proof. The coordinate change (z1, . . . , zn) 7→ (m1, . . . ,mn) and the multiweight formula of (1), as
well as (3), follow from somewhat involved but routine calculations which we omit; details can be
found in the thesis [20] of the first named author. (2) clearly follows from (1) and the preceeding
discussion. �

7.3. 0-generated Young walls and their abacus representations. In this section, we char-
acterize the abacus configurations corresponding to Young walls in the sets Z0

∆ and Z1
∆ defined

in 6.1.
Recall conditions (R1)–(R3) on Young walls Y ∈ Z∆ from 6.1. Recall also that a Young

wall corresponds uniquely to an abacus configuration where the beads are placed at the positions
λ1, . . . , λr. Finally recall that the quantity nk denotes the number of full columns shorter than a
given non-full column of height λk.

Lemma 7.5. Conditions (R1)-(R2) on Young walls are equivalent to the following conditions for
an abacus configuration.

(D1) In each row, the rightmost bead is always on the (2n− 2)-nd ruler, and either all the beads
of the row are at this position, or the number of beads in this position is odd.

(D2) If a row ends with a white (resp., black) bead corresponding to a column of height λk, then
k + nk must be odd (resp. even). If several beads are placed on this position, which is
allowed since it is on the ruler R2n−2, then this condition refers to the smallest possible k.

(D3) The total number of beads in the whole abacus is even, or the total number of beads on the
rulers R1, . . . , Rn−1 in the first row is n− 2.

(D4) The beads on the rulers Rn . . . , R2n−3 are pushed to the right as much as possible in each
row. In any given row, the positions on the rulers R1, . . . , Rn−1 are empty unless all the
positions on the rulers Rn, . . . , R2n−2 are filled.

(D5) The beads on the rulers R1 . . . Rn−1 in any given row are either all on the ruler Rn−1, or
on the rules R1 . . . Rn−2, and pushed to the right as much as possible.

Condition (R3) is equivalent to the following condition.

(D6) Let s be the total number of beads on the rulers R1, . . . , Rn−1 in any given row.
(a) If s > n− 2, then all these beads are on Rn−1.
(b) If s ≤ n− 2, then all these beads are on the rulers R1, . . . , Rn−2, pushed to the right.

Thus 0-generated Young walls Y ∈ Z1
∆ correspond to abacus configurations satisfying (D1)-(D5),

whereas distinguished 0-generated Young walls Y ∈ Z0
∆ correspond to those satisfying (D6) also.

Proof. Two kinds of salient blocks can appear in a Young wall that satisfies (R1)-(R2):

• label 0 half-blocks,
• and salient block-pairs of label n− 1/n.

As in the type A case a salient block corresponds to the first bead in a consecutive series of beads
in the abacus. More precisely, if there are several columns of height λk, or equivalently, if there
are several beads placed on the position λk, then the salient block corresponds to that column of
height λk which has the smallest possible index k among these.

The label 0 blocks always correspond to positions which are on the ruler R2n−2. In the odd
columns of the type D pattern they are of the shape while in the even columns they are of the
shape . Condition (D2) encodes the fact, that the salient blocks of label 0 are upper triangles in
odd columns and lower triangles in even columns, and that the color of the beads corresponding
to them is also affected by the parity of the appropriate nk.

If there is a salient block of label 0, then some columns of the same height, let’s say, λk, can
follow it. If the first column after them has height λk − 1 then on its top there is again a salient
block of label 0. This block can only have the opposite orientation than the aforementioned salient
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block, hence the number of columns of height λk in this case can only be odd. This gives condition
(D1).

Condition (D3) follows again from the absence of label 1 salient blocks. To see this recall that in
the bottom row of the type D pattern there are half blocks which have label 0 in the odd columns
and have label 1 in the even columns. Since there are no salient blocks of label 1 in Y , this total
number of columns can only be odd if the last column has height 1, the column to the left of it
has height 2, and so on. This is can only happen when in the bottom row s = n− 2.

The fact that there is no salient block of label 2, . . . , n − 2 implies that for each bead on the
rulers R1, . . . , R2n−1 there has to be a block placed on its right. The only exception is the ruler
Rn−2. There cannot be any bead on this ruler, except when there is a salient block pair of label
n − 1/n which corresponds to a hole on Rn−1. These considerations imply conditions (D4) and
(D5).

Condition (D6) corresponds directly to property (R3). �

Given Y ∈ Z0
∆, let ti denote the total number of beads in the i-th row of its abacus representation,

and li the number of beads in the rightmost position of the i-th row. We obtain a sequence of
pairs (ti, li)i∈Z+ , only finitely many of which do not equal (0, 0).

Corollary 7.6. Given Y ∈ Z0
∆, the associated sequence of pairs (ti, li)i∈Z+ satisfies the following

conditions.

(1) For all i, 0 ≤ li ≤ ti.
(2) For all i, if ti > 0, then either li = ti is even, or li is odd.
(3) Either

∑
i ti is even, or t1 − l1 = 2n− 4.

Conversely, any sequence (ti, li)i∈Z+ satisfying these conditions arises as a sequence associated to
at least one Young wall Y ∈ Z0

∆. More precisely, the number of different Young walls Y ∈ Z0
∆

corresponding to any given sequence is 2m, where m is the number of indices i such that ti − li >
2n − 2. All Young walls Y corresponding to a single sequence have the same multi-weight, when
the weights for labels n− 1 and n are counted together.

Proof. Condition (1) is clear from the definition of (ti, li). Condition (2) follows from (D1) above.
Condition (3) is equivalent to condition (D3).

Conversely, given a sequence (ti, li)i∈Z+ satisfying conditions (1)-(3), we can reconstruct a corre-

sponding Y ∈ Z0
∆ in its abacus representation as follows. On the i-th row, li beads have to be put on

the last position; (D1) is satisfied because of (1). They are white if
∑

j<i tj+
∑

j>i,tj 6≡0 mod n−1 tj ≡

1 mod 2, and black otherwise; this is just a reformulation of (D2). (D3) is satisfied because of (3).
At most one bead can be put on each ruler between Rn and R2n−3, pushed to the right as much
as possible; this is (D4). If ti− li ≤ 2n− 2, then the rest of the beads fill up the rulers between R1

and Rn−2, pushed to the right. If ti− li > 2n− 2, then there are no beads in this row on the rulers
between R1 and Rn−2; instead, the remaining beads are all placed on the (n−1)-st ruler, and they
can be either white or black. These rules reconstruct a configuration satisfying (D5)-(D6), and
give the stated ambiguity in the reconstruction. �

7.4. The generating series of distinguished 0-generated walls. In light of Theorem 6.14, in
order to complete the proof of our main Theorem 1.7 for type D, we need the following combina-
torial result, the precise analogue of Proposition 2.7 in type A.

Theorem 7.7. Let ∆ be of type Dn, and let ξ be a primitive (2n− 1)-st root of unity. Then the
generating series of the set Z0

∆ of distinguished 0-generated Young walls is given in terms of the
generating function of all Young walls by the following substitution:

∑

Y ∈Z0
∆

qwt0(Y ) = Z∆(q0, . . . , qn)
∣∣∣
q0=ξ2q,q1=···=qn=ξ

.

Recall that by Lemma 6.1 (1) for each Y ∈ Z∆ there is a unique Young wall Y0 ∈ Z0
∆ which has

exactly the same set of label 0 blocks as Y . This induces a combinatorial map

p : Z∆ → Z
0
∆,

which, in analogy once again with the type A proof, will be the key construction in our proof of
Theorem 7.7.
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Proposition 7.8. On the abacus representation of Young walls, the map p : Z∆ → Z0
∆ corresponds

to the following steps:

(1) If a row ends with a white (resp., black) bead on R2n−2 corresponding to a column of height
λk, and k + nk is even (resp. odd), then one bead should be moved to the next position,
which is the leftmost in the next row. This is applied also on the zeroth position of the
abacus, where we assume that there are infinitely many beads. This corresponds to the
appearance of a new column in the Young wall represented by the abacus.

(2) Every bead on the rulers R1, . . . , R2n−4 is moved to right as much as possible according to
the abacus rules.

(3) If there is at least one bead on the rulers R1, . . . , R2n−3 after performing Step 1 on the
previous row, and the number of beads on R2n−2 is even, then one more bead is moved
onto R2n−2. If there were beads on R2n−2 already, then this step does not change the
parity of k + nk for the rightmost bead. If there were no beads on R2n−2 before, then this
beads should take the appropriate color and it is possible to see that it can not be moved
further with Step 1.

(4) Let s be the total number of beads on the rulers R1, . . . , Rn−1 after performing the Steps
1-3. If s > n−2, then move all these beads on Rn−1. In this case some of these beads were
here previously, so the color of the whole group of beads is already determined. If s ≤ n−2,
then move them onto the rulers R1, . . . , Rn−2, each as right as possible.

Proof. Step 1 enforces condition (D2). It also enforces condition (D3) when applied to the minus
first row. Step 2 enforces conditions (D4) and (D5), Step 3 enforces condition (D1), and finally
Step 4 enforces condition (D6). �

The fibers of the map p can be described as follows. Given a Young wall Y ∈ Z0
∆, we are allowed

to move beads to the left and, occasionally, to the right, using the following rules.

(1) From the last position of the i − th row only one (resp. zero) bead can be moved to the
left if li is odd (resp., even).

(2) Every other bead is allowed to moved to the left in its row if the result is a valid abacus
configuration.

(3) The leftmost bead in a row can be moved to the last position of the previous row. There it
will take the color white if

∑
j<i tj +

∑
j>i,tj 6≡0 mod n−1 tj ≡ 1 mod 2, and grey otherwise.

(4) If ti − li ≤ 2n− 2, then the beads to the left from the n− 1-st position are allowed to be
moved to the right at most onto the ruler Rn−1.

(5) If ti − li ≤ 2n − 2, then any configuration, in which there is at least one bead at the
(n− 1)-st position, has to be counted with multiplicity two.

Let us call the beads that can be moved according to these rules movable. For a row with data
(t, l), let us also introduce the number c(t, l), which is signed sum of the distance of the beads from
the Rn−1-st ruler, where the sum runs over the movable beads, and the beads to the left of the
Rn−1-st ruler are counted with negative sign, and the beads to the right of it are counted with
positive sign. These numbers are listed in the table below:

l ≡ 0 mod 2 l ≡ 1 mod 2

0 ≤ t− l ≤ n− 2
(
n−1
2

)
−
(
n−1−t+l

2

) (
n
2

)
−
(
n−1−t+l

2

)

n− 1 ≤ t− l ≤ 2n− 3
(
n−1
2

)
−
(
t−l−n+1

2

) (
n
2

)
−
(
t−l−n+1

2

)

2n− 2 ≤ t− l
(
n−1
2

) (
n
2

)

Lemma 7.9. The contribution of a row with data (t, l) to the total weight of the fiber is ξ−c(t,l).

Proof. If l is even but nonzero, then according to Corollary 7.6 l = t and there isn’t any movable
bead.

If l is odd, then there is one movable bead on the R2n−2-nd ruler. Assume first that t ≤ n− 1.
Then the expression

2n−t+l−2∑

n1=0

n1∑

n2=0

· · ·

nt−l∑

nt−l+1=0

(ξ−1)n1+···+nt−l+1 =

(
2n− 1

t− l + 1

)

ξ−1
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counts once every preimage, in which there is at most one bead at the n− 1-st position. Similarly

(ξ−1)n−t+l−1
2n−t∑

n2=0

n2∑

n3=0

· · ·

nt−l∑

nt−l+1=0

(ξ−1)n2+···+nt−l+1 = (ξ−1)n−t+l−1

(
2n− 1

t− l

)

ξ−1

counts once every preimage, in which there is at least one and at most two beads at the n − 1-st
position, since we moved one bead from the leftmost occupied position to the n − 1-st position,
and we fixed it there. The next term is given by

(ξ−1)(n−t+l−1)+(n−t+l)
2n−t∑

n3=0

n3∑

n4=0

· · ·

nt−l∑

nt−l+1=0

(ξ−1)n3+···+nt−l+1

= (ξ−1)(n−t+l−1)+(n−t+l)

(
2n− 1

t− l − 1

)

ξ−1

,

which counts once every preimage, in which there is at least two and at most three beads at the
n− 1-st ruler. Continuing in this fashion and summing up in the end we get

(
2n+ 1

t− l + 1

)

ξ−1

+

t−l+1∑

i=1

ξ−
∑n−t+l−2+i

j=n−t+l−1 j

(
2n− 1

t− l + 1− i

)

ξ−1

.

It can be checked that
(
2n−1

k

)
ξ−1 = 0 unless k = 0, in which case it is equal to 1. Therefore, the

only surviving part is the one with i = t− l + 1:

ξ−
∑n−1

j=n−t+l−1 j = ξ(
n
2)−(n−1−t+l

2 ) = ξ−c(t,l).

The proofs of the remaining two cases, when l is odd, are very similar. The only difference in
the case 2n− 2 ≤ t − l is that first the preimages with zero or one extra movable beads at Rn−1

have to be counted, then the preimages with two or three extra movable beads, etc. As in the case
t ≤ n − 1, the only nonzero term is the one where in the beginning all the movable beads have
been shifted to the Rn−1-st ruler, and in this case the powers of ξ−1 sum up to

(
n
2

)
= c(t, l). �

Corollary 7.10. Let Y ∈ Z0
∆ be a distinguished 0-generated Young wall described by the data

{(ti, li)i}. Then
∑

Y ′∈p−1
∗ (Y )

qwt(Y ′)
∣∣∣
q1=···=qn=ξ,q0=ξ2q

= qwt(Y )
∣∣∣
q1=···=qn=ξ,q0=ξ−(2n−3)q

· ξ−
∑

i c(ti,li)

= qwt0(Y )ξ
∑

j 6=0(wtj(Y )−dim ρj ·wt0(Y ))−
∑

i c(ti,li)

Lemma 7.11. The core of a 0-generated Young wall is a 0-generated Young wall.

Proof. With each reduction step (B1)-(B4) we always remove a bar. In the original Young wall,
the salient blocks were only label 0 half blocks and salient block-pairs of label n− 1/n.

A similar reasoning as in the type A case shows that no salient block of label 2, . . . , n − 2 can
appear after we perform the step (B1) until possible. The same is true with (B2), since if we can
perform it on a pair of beads in a row, then we can always perform it on the beads between them.
More precisely, it can be seen that even label 1 salient blocks cannot appear during these two steps
because the parity conditions in (D1) and (D2) is always maintained by the reduction steps.

The parity conditions in (D1) and (D2) are maintained by the step (B3) as well. If we perform
(B4) on a pair of beads, then we can perform it on this pair as long as they disappear from the
abacus. Hence, when performing (B4) until possible we also get back the good parities. After the
reduction is completed there cannot be any bead on the rulers R1, . . . , Rn−2, and all the beads
on the rulers Rn, . . . , R2n−3 are right-adjusted. Therefore the conditions (D4) and (D5) are also
satisfied.

If the total number of beads was initially even, then since no label 1 salient block can appear,
the total number of beads in the end must be even as well. So the final Young wall will satisfy
(D3). If in the total number of beads in the initial abacus configuration is odd, then in the first
row t1 − l1 = 2n− 4. Hence, the beads on ruler R2n−2 in the first row are necessarily white and
one of them can be taken away from the abacus with the step (B3), together with the beads on
the other rulers using (B2). This is an odd number of beads removed from the abacus. After this
the total number of beads is even, so we continue as in the even case. �
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Proof of Theorem 7.7. In light of Corollary 7.10, it remains to show that

ξ
∑

j 6=0(wtj(Y )−dim ρj ·wt0(Y ))−
∑

i
c(ti,li) = 1.

We follow in the line of the proof the An case.
Step 1: Reduction to 0-generated cores. According to Lemma 7.11 the core of a 0-generated

Young wall is a 0-generated core. It is immediate from the definition of c(t, l) that the steps (B1),
(B2) and (B4) leave the sum

∑
i c(ti, li) unchanged, while (B3) is a bit more complicated. Indeed,

• (B1) removes one movable bead from a row, and adds one to another on the same ruler;
• (B2) removes two movable beads, but these two contribute with opposite signs into c(t, l);
• (B4) either moves non-movable beads from R2n−2 onto Rn−1, or beads from Rn−1 into

non-movable beads on R2n−2.

Moving beads on Rn−1 according to (B3) does not affect the numbers c(t, l). If (B3) moves a bead
on the ruler R2n−2 between rows having l of different parity, then the sum of the movable beads
at the (2n− 2)-nd positions of the two rows is constant, so

∑
i c(ti, li) does not change after such

a step. If (B3) were able to move a bead on R2n−2 between rows both having odd l’s, then this
can happen only if they have the same color and if there is no bead on Rn−1 between them. This
means that either there must be an even number of beads between them and they should have
same kind of top block, or odd number of beads and different kind of top blocks. Both cases are
forbidden in 0-generated Young walls due to Lemma 7.5. For the same reasons (B3) cannot move
beads on R2n−2 between rows both having even l’s.

It follows from these considerations that for all Y ∈ Z0
∆

ξ
∑

j 6=0(wtj(Y )−dim ρj ·wt0(Y ))−
∑

i
c(ti,li) = ξ

∑
j 6=0(wtj(core(Y ))−dim ρj ·wt0(core(Y ))−

∑
i
c(ti,li).

Step 2: Reduction to distinguished 0-generated cores.
As described above, for any 0-generated core Y there is a decomposition as λ(Y ) = µ(Y )∪ν(Y ),

where µ(Y ) ∈ C1, ν(Y ) ∈ C2, and we have ν(Y ) = ν(0)(Y ) + ν(1)(Y ), where ν(0)(Y ) and ν(1)(Y )
are two-cores, and parts in ν(1)(Y ) have colors given by their parity. Since Y is 0-generated, the
largest part of ν(Y ) has to be even, otherwise there is no bead at the rightmost position in the
last row of the abacus. Therefore, the abacus represenation of Y can be described as follows.

(1) There is no bead on the rulers Rk for 1 ≤ k ≤ n− 2;
(2) On the ruler Rn−1 all the beads are of the same color, the beads are at the first, let’s say,

m positions, exactly one bead at each.
(3) The positions in the first m rows of the rulers Rk for n ≤ k ≤ 2n− 3 are all filled up with

beads, the other beads are pushed to the right as much as possible.
(4) There is at least m beads on the ruler R2n−2, one at each of the first positions and there

is no space between them. The first m of these are all white. The total number of the rest
is even, and half of them is white, half of them is black.

The abacus of a typical 0-generated core looks like this:

R1
. . . Rn−2 Rn−1 Rn

. . . R2n−3R2n−2

. . .

...
...

...
...

. . .

It is not true that the core of a distinguished 0-generated Young wall is always distinguished.
But we can reduce each non-distinguished core further using the reduction map red and then
taking the core of the result using the steps (B1)-(B4) again. The result of this is a distinguished
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0-generated core. The first step corresponds to shifting the beads on Rn−1 one step left. This
decreases

∑
i c(ti, li) by m, and decreases

∑
j 6=0(wtj(Y )− dim ρj ·wt0(Y )) also by m. The second

step does not change these numbers by the considerations of Step 1. So we are done once we know
the statement for distinguished 0-generated cores.

We remark here that during the first step the color of every second bead on the ruler R2n−2

changes. In the end the color of the beads on this ruler will alternate.
Step 3: The case of distinguished 0-generated cores.
Let (z1, . . . , zn) be the integer tuple assigned to Y as in 7.2. Then zn−1 = zn since there is no

bead on Rn−1 and the color of the beads on R2n−2 alternates. In particular, zn−1 + zn is an even
number.

We claim that
n∑

1=1

mn =
∑

i

c(ti, li).

Indeed, by Theorem 7.4 (3),
∑n

1=1mn = −
∑n−2

i=1 (n − 1 − i)zi − (n − 1)c(zn−1 + zn) − (n − 1)b.
The number of movable beads on R2n−2−i is −zi if 1 ≤ i ≤ n − 1, and it is −c(zn−1 + zn) − b if
i = 0. This proves the claim.

By Theorem 7.4 (1), for a core

qwt(Y ) = qm1
1 · · · · · qmn

n (q1/2)m
⊤·C·m.

As in the type A case, on the right hand side of this expression q0 only appears in the q1/2-term.
Hence

1

2
m⊤ · C ·m = wt0(Y ),

and

(q1/2)m
⊤·C·m

∣∣∣
q1=···=qn=ξ,q0=ξ2q

= qwt0(Y ).

On the other hand,

qwt(Y )
∣∣∣
q1=···=qn=ξ,q0=ξ2q

= qwt0(Y )ξ
∑

j 6=0(wtj(Y )−dim ρj ·wt0(Y )).

Therefore
ξ
∑

j 6=0(wtj(Y )−dim ρj ·wt0(Y )) = ξ
∑

n
i=1 mn = ξ

∑
i c(ti,li),

and so indeed
ξ
∑

j 6=0(wtj(Y )−dim ρj ·wt0(Y ))−
∑

i
c(ti,li) = 1.

�

Appendix A. Background on representation theory

This section plays no logical role in our paper, but it provides important background. For
further discussion about the role of representation theory, see the announcement [21].

A.1. Affine Lie algebras and extended basic representations. Let ∆ be an irreducible finite-
dimensional root system, corresponding to a complex finite dimensional simple Lie algebra g of
rank n. Attached to ∆ is also an (untwisted) affine Lie algebra g̃, but a slight variant will be more

interesting for us, see e.g. [11, Sect 6]. Denote by g̃⊕ C the Lie algebra that is the direct sum of
the affine Lie algebra g̃ and an infinite Heisenberg algebra heis, with their centers identified.

Let V0 be the basic representation of g̃, the level-1 representation with highest weight ω0. Let
F be the standard Fock space representation of heis, having central charge 1. Then V = V0⊗F is

a representation of g̃⊕ C that we may call the extended basic representation. By the Frenkel–Kac
theorem [12], in fact

V ∼= Fn+1 ⊗ C[Q∆],

where Q∆ is the root lattice corresponding to the root system ∆. Here, for β ∈ C[Q∆], Fn+1⊗ eβ

is the sum of weight subspaces of weight ω0 −
(
m+ 〈β,β〉

2

)
δ + β, m ≥ 0. Thus, we can write the

character of this representation as

(20) charV (q0, . . . , qn) = eω0

(
∏

m>0

(1− qm)−1

)n+1

·
∑

β∈Q∆

qβ1

1 · · · · · q
βn
n (q1/2)〈β,β〉 ,
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where q = e−δ, and β = (β1, . . . , βn) is the expression of an element of the finite type root lattice
in terms of the simple roots.

Example A.1. For ∆ of type An, we have g = sln+1, g̃ = s̃ln+1, g̃⊕ C = g̃ln+1. In this case there
is in fact a natural vector space isomorphism V ∼= F with Fock space itself, see e.g. [41, Section
3E].

A.2. Affine crystals. The basic representations V0, V of g̃, g̃⊕ C respectively can be constructed
on vector spaces spanned by explicit “crystal” bases. Crystal bases have many combinatorial
models; in types A or D, the sets denoted with Z∆ in the main part of our paper provide one
possible combinatorial model [25] for the crystal basis for the basic representation. More precisely,
given ∆ of type A or D, there is a combinatorial condition which singles out a subset Y∆ ⊂ Z∆. The
basic representation V0 of g̃ has a basis [34, 24] in bijection with elements of Y∆. The extended basic

representation V of g̃⊕ C has a basis in bijection with elements of Z∆. The canonical embedding
V0 ⊂ V , defined by the vacuum vector inside Fock space F , is induced by the inclusion Y∆ ⊂ Z∆.

A.3. Affine Lie algebras and Hilbert schemes. As before, let Γ < SL(2,C) be a finite subgroup

and let ∆ ⊂ ∆̃ be the corresponding finite and affine Dynkin diagrams. It is a well-known fact
that the equivariant Hilbert schemes Hilbρ([C2/Γ]) for all finite dimensional representations ρ of

G are Nakajima quiver varieties [37] associated to ∆̃, with dimension vector determined by ρ, and
a specific stability condition (see [13, 35] for more details for type A).

Nakajima’s general results on the relation between the cohomology of quiver varities and Kac-
Moody algebras, specialized to this case, imply [37] that the direct sum of all cohomology groups
H∗(Hilbρ([C2/G])) is graded isomorphic to the extended basic representation V of the correspond-

ing extended affine Lie algebra g̃⊕ C defined in A.1 above. By [36, Section 7], these quiver varieties
have no odd cohomology. Thus the character formula (20) implies Theorem 1.3 in all types A, D,
and E.

Appendix B. Joins

Recall [1] that the join J(X,Y ) ⊂ Pn of two projective varieties X,Y ⊂ Pn is the locus of points
on all lines joining a point of X to a point of Y in the ambient projective space. One well-known
example of this construction is the following. Let L1

∼= Pk and L2
∼= Pn−k−1 be two disjoint

projective linear subspaces of Pn.

Lemma B.1. The join J(L1, L2) ⊂ Pn equals Pn. Moreover, the locus Pn \ (L1 ∩ L2) is covered
by lines uniquely: for every p ∈ Pn \ (L1 ∩ L2), there exists a unique line P1 ∼= p1p2 ⊂ Pn with
pi ∈ Li, containing p.

Let now H ⊂ Pn be a hyperplane not containing the Li, which we think of as the hyperplane
“at infinity”. Let V = Pn \ H ∼= An. Let Li = Li ∩ H , and let Lo

i = Li \ Li = Li ∩ V be
the affine linear subspaces in V corresponding to Li. Finally let X = J(L1, L2) ∼= Pn−1 and
Xo = X \ (X ∩H) ∼= An−1.

Lemma B.2. Projection away from L1 defines a morphism φ : X → L2, which is an affine fibration
with fibres isomorphic to Ak. φ restricts to a morphism φo : Xo → Lo

2, which is a trivial affine
fibration over Lo

2
∼= An−k−1.

In geometric terms, the map φ is defined on X \L2 as follows: take p ∈ X \L2, find the unique
line p1p2 passing through it, with p1 ∈ L1 and p2 ∈ L2; then φ(p) = p2.

Let now U be a projective subspace of H which avoids L2. Let U1 ⊂ U be a codimension one
linear subspace, and W = U \ U1 its affine complement. In the main text, we need the following
statement.

Lemma B.3. χ((J(Lo
2,W ) \ Lo

2) ∩ V ) = 0.

Proof. With the same argument as in Lemma B.2, J(Lo
2,W ) ∩ V is a fibration over Lo

2 with fiber
Cone(W ), and (J(Lo

2,W ) \ Lo
2) ∩ V is a fibration over Lo

2 with fiber Cone(W ) \ {vertex}. Since
Cone(W )\ {vertex} = C∗×W , the projection from (J(Lo

2,W )\Lo
2)∩V

∼= Lo
2×W ×C∗ to Lo

2×W
has fibers C∗. The lemma follows. �
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We finally recall the base-change property of joins.

Lemma B.4. [1, B1.2] Let S be an arbitrary scheme. Then for schemes X,Y ⊂ Pn
S and an

S-scheme T , we have the following equality in Pn
T :

J(X ×S T, Y ×S T ) = J(X,Y )×S T.
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16. L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface,

Math. Ann. 286 (1990), no. 1, 193–207.
17. I. Grojnowski, Instantons and affine algebras I: The Hilbert scheme and vertex operators, Math.

Res. Lett. 3 (1996), no. 2, 275–292.
18. S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, On generating series of classes of

equivariant Hilbert schemes of fat points, Mosc. Math. J. 10 (2010), no. 3, 593–602.
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