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Abstract

Since 1997 a considerable effort has been spent on the study of the swap (switch) Markov

chains on graphic degree sequences. All of these results assume some kind of regularity

in the corresponding degree sequences. Recently, Greenhill and Sfragara published a

breakthrough paper about irregular normal and directed degree sequences for which

rapid mixing of the swap Markov chain is proved. In this paper we present two groups of

results. An example from the first group is the following theorem: let~d be a directed degree

sequence on n vertices. Denote by Δ the maximum value among all in- and out-degrees

and denote by j~E j the number of edges in the realization. Assume furthermore that

D < 1ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j~E j � 4

q

. Then the swap Markov chain on the realizations of~d is rapidly mixing. This

result is a slight improvement on one of the results of Greenhill and Sfragara. An example

from the second group is the following: let d be a bipartite degree sequence on the vertex

set U ] V, and let 0 < c1� c2 < |U| and 0 < d1� d2 < |V| be integers, where c1� d(v)� c2:

8v 2 V and d1� d(u)� d2: 8u 2 U. Furthermore assume that (c2 − c1 − 1)(d2 − d1 − 1) <max

{c1(|V| − d2), d1(|U| − c2)}. Then the swap Markov chain on the realizations of d is rapidly mix-

ing. A straightforward application of this latter result shows that when a random bipartite or

directed graph is generated under the Erdős—Rényi G(n, p) model with mild assumptions

on n and p then the degree sequence of the generated graph has, with high probability, a

rapidly mixing swap Markov chain on its realizations.

Introduction

An important problem in network science is to algorithmically construct typical instances of

networks with predefined properties, often expressed as graph measures. In particular, special

attention has been devoted to sampling simple graphs (in our paper only graphs without paral-

lel edges and loops are considered) with a given degree sequence. In 1997 Kannan, Tetali, and

Vempala ([1]) proposed the use of the so-called switch Markov chain approach, which had

already been used in statistics. We call this the swap Markov chain approach.
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Copyright: © 2018 Erdős et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors of this paper were supported

in part by the National Research, Development and

Innovation Office | NK- FIH grant K 116769 and KH

126853. IM was supported in part by the National

Research, Development and Innovation Office |

NKFIH grant SNN 116095. DS was supported in

part by the National Research, Development and

Innovation Office | NKFIH grants K 108947 and K

120706. The WEB page of the founder is: https://

www.nkh.gov.hu/en/web/english/. The funders had

https://doi.org/10.1371/journal.pone.0201995
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201995&domain=pdf&date_stamp=2018-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201995&domain=pdf&date_stamp=2018-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201995&domain=pdf&date_stamp=2018-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201995&domain=pdf&date_stamp=2018-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201995&domain=pdf&date_stamp=2018-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201995&domain=pdf&date_stamp=2018-08-13
https://doi.org/10.1371/journal.pone.0201995
http://creativecommons.org/licenses/by/4.0/
https://www.nkh.gov.hu/en/web/english/
https://www.nkh.gov.hu/en/web/english/


The swap operation exchanges two disjoint edges ac and bd in the realization G with ad
and bc if the resulting configuration G0 is again a simple graph (we denote this operation by ac,
bd) ad, bc). (For details see the next section). It is a well-known fact that the set of all possible

realizations of a graphic degree sequence is connected under this operation. (See, for example,

Petersen [2] or Havel [3] and Hakimi [4]). An analogous result applies for the swap operation

defined on bipartite graphs. (See, for example, Gale [5]). Here we have to be careful, as not

every edge exchange is eligible: on a bipartite graph we must ensure that vertices a and d
belong to different vertex classes.

In the literature, the name switch operation is also used, however, in our approach this lat-

ter is an operation on integer matrices slightly generalizing the swap operation. (See the sec-

tions on the analysis of the swap sequences).

The situation is more complicated in case of directed degree sequences. In this case for

every vertex the number of incoming edges (in-degree) and the number of outgoing edges

(out-degree) is given in the degree bi-sequence. Here the ac, bd) ad, bc type exchange pre-

serves the degree bi-sequence if both before and after the swap operation a and b are tails of

the directed edges. However, imagine that our graph ~G is a directed triangle C3

�!
while ~H is

the oppositely directed C3

 �
. Both graphs have the same degree bi-sequence d = ((1, 1, 1); (1, 1,

1)). It is clear that there is only one way to transform the first one into the second one: if we

exchange three edges and three non-edges in ~G. We will call this operation a triple swap and

the previously defined “classical” one as a double swap. Kleitman and Wang proved in 1973

([6]) that any two realizations of a given graphic degree bi-sequence can be transformed into

each other using these two operations. The same fact was re-discovered in 2010 (see [7]).

The swap Markov chains corresponding to the most common graph models are irreducible,

aperiodic, reversible (obey detailed balance), have symmetric transition matrices, and thus

have uniform global stationary distributions.

In their paper [1], Kannan, Tetali and Vempala conjectured that all these Markov chains

are rapidly mixing. The first rigorous proof in this topic is due to Cooper, Dyer and Greenhill

for regular graphs ([8]). Now, twenty years after the KTV conjecture, we are still far, probably

very far, from proving it in its full generality. However, many partial results have been proved;

those which play some role in this paper are summarized in the following theorem:

Theorem 1. The swap Markov chain mixes rapidly for the following degree sequences:

(A). d is a regular directed degree sequence.

(B). d is a half-regular bipartite degree sequence.

(C). d belongs to an almost-half-regular bipartite graph.

(D). d is an almost-half-regular bipartite degree sequence, where every realization must avoid a
fixed (partial) matching.

(E). d is a directed degree sequence with 2 � d max � 1

4

ffiffiffiffiffi
M
p

, where M is the sum of the in-
degrees (or out-degrees), and where the set of all realizations under study is irreducible
under the double swap operation.

There exist similar results on (normal) degree sequences as well, but their proofs are not

fully “compatible” with the proof of the above results (except case D). To our knowledge there

does not exist a fully developed proof machinery which is applicable for all three cases, that is,

for normal, bipartite, and directed degree sequences.

The result (A) was proved by Greenhill ([9]). In the proof it is assumed that the set of all

realizations of the regular directed degree bi-sequence is irreducible under the double swap
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operations. (B) is due to Miklós, Erdős, and Soukup ([10]). Half-regularity means that in one

class the degrees are the same (i.e., regular), while in the other class the only restrictions are

those imposed by graphicality. (C) is due to Erdős, Miklós, and Toroczkai ([11]). Here almost-

half-regular means that for any pair of vertices on one side we have |d(v1) − d(v2)|� 1. (D) was

proved by Erdős, Kiss, Miklós, and Soukup ([12]). This model will be introduced in detail and

its intrinsic connection with directed graphs will be fully explained in the section starting with

Lemma 12. Papers [9] and [12] are using slightly different Markov chains on regular directed

degree sequences, therefore (D) does not supersede (A). Finally, (E) was proved recently by

Greenhill and Sfragara ([13]). Their result has vastly extended the set of (normal and directed)

degree sequences for which the rapid mixing of the Markov chain is known (e.g., power-law

density-bounded normal degree sequences with parameter γ> 2.5). The papers [14] and [15]

fully characterize those degree bi-sequences where the set of all realizations is irreducible

under the double swap operation.

In this paper we improve on the result of Greenhill and Sfragara on directed degree

sequences, and we prove the bipartite analogue of their degree sequence result for simple

graphs. We achieve this by applying our technique described in [12]. In addition, we further

extend the set of bipartite and directed degree sequences with rapidly mixing Markov chain

processes, using a condition on minimum and maximum degrees.

Let d be a bipartite degree sequence on the underlying set U ] V. (So the underlying set is

equal to the disjoint union of the two classes).

Theorem 2. Let d be a bipartite degree sequence on U and V as classes, let |E| be half of the
sum of the degrees, and let Δ = max d. If

2 � D �
1
ffiffiffi
2
p

ffiffiffiffiffiffi
jEj

p
; ð1Þ

then the swap Markov chain on the realizations of d is rapidly mixing.

The following result describes another wide range of bipartite degree sequences with rapidly

mixing swap Markov chain.

Theorem 3. Let 0< c1� c2 < |U| = n and 0< d1� d2 < |V| = m be integer parameters and
assume that d satisfies the following properties:

c1 � dðvÞ � c2; 8v 2 V

d1 � dðuÞ � d2; 8u 2 U:
ð2Þ

Furthermore, assume that

ðc2 � c1 � 1Þ � ðd2 � d1 � 1Þ � maxfc1ðm � d2Þ; d1ðn � c2Þg ð3Þ

holds. Then the swap Markov chain on the realizations of d is rapidly mixing.

We conjecture that a very similar result should apply to the case of normal degree

sequences.

Our next two results are about directed degree sequences~d on the n element vertex set X.

The first one improves the constant 1

4
in the result of Greenhill and Sfragara to 1ffiffi

2
p . Moreover,

because both double and triple swaps are allowed, the irreducibility condition can be omitted

from the theorem.

Efficiently sampling the realizations of bounded, irregular degree sequences of bipartite and directed graphs
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Theorem 4. Let~d be a directed degree sequence on the n element V as its vertex set. Let j~Ej be
half of the sum of the degrees, and let Δ = max{max dout, max din}. If

D <
1
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j~Ej � 4

q

; ð4Þ

then the swap Markov chain on the realizations of~d is rapidly mixing.

Lastly, we show that conditions similar to that of Theorem 3 guarantee rapid mixing of the

swap Markov chains on a wide class of directed degree sequences.

Theorem 5. Let 0< c1� c2 < n and 0< d1� d2 < n be integer parameters and assume that
graphic degree bi-sequence~d satisfies the following properties:

c1 � doutðvÞ � c2; 8x 2 X;

d1 � dinðvÞ � d2; 8x 2 X:
ð5Þ

Furthermore, assume that

ðc2 � c1Þ � ðd2 � d1Þ � 2þ maxfc1ðn � d2 � 1Þ þ d1 þ c2; d1ðn � c2 � 1Þ þ c1 þ d2g � n ð6Þ

holds. Then the swap Markov chain, using double and triple swap operations, is rapidly mixing
on the realizations of~d.

The proofs of our results strongly support Greenhill’s observation about the existing argu-

ments ([16]): “In each known case, regularity (or half-regularity) was only required for one

lemma, which we will call the critical lemma. This is a counting lemma which is used to bound

the maximum load of the flow (see [8, Lemma 4], [9, Lemma 5.6], [10, Lemma 6.15])”—and

some newer examples—([16, Section 3], [12, Lemma 18], [13, Lemma 2.5 and Lemma 3.6]).

The main task is to prove the critical lemmas (Lemma 11 and 12) for our new conditions (2–

6). To that end, we first list the fundamental details from [12].

We would like to mention that after submitting a preprint of an earlier version of this paper

on arXiv, Amanatidis and Kleer have contacted us, claiming to have proved that the degree

sequences studied here are also “strongly stable” (see [17]).

The next 3 sections lay down the foundations of the swap Markov chain on bipartite and

directed degree sequences. These have been originally described in our own paper [12]. For

the sake of readability and convenience, we recall in more detail some results from paper [12],

as they are crucial in understanding the presented approach.

Definitions and useful facts

In this section, we recall some well-known definitions and results, furthermore we define our

swap Markov chains for the bipartite degree sequences and for the directed degree sequences.

Let G be a simple bipartite graph on U ] V, where U = {u1, . . ., un} and V = {v1, . . ., vm}, and

let its bipartite degree sequence be

dðGÞ ¼ ðdðUÞ; dðVÞÞ ¼
�
ðdðu1Þ; . . . ; dðunÞÞ; ðdðv1Þ; . . . ; dðvmÞÞ

�
: ð7Þ

For a ac, bd) ad, bc swap operation to be valid it is not enough that ac, bd 2 E(G) and ad,

bc =2 E(G), we also need that ad can be an edge in some realization. In other words, we need

that a and d are in different vertex classes. We will use the name chord for any vertex pair u, v
where uv can be an edge in a realization, even if we do not know or do not care whether it is an

edge or a non-edge in the current realization. We can reformulate the definition of the swap

operation: it can be done if ac, bd 2 E(G) and ad, bc are chords.

Efficiently sampling the realizations of bounded, irregular degree sequences of bipartite and directed graphs
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Now denote byG the set of all possible realizations of the graphic bipartite degree sequence

(d(U), d(V)). Consider two different realizations, G and H, of this bipartite degree sequence.

As we already mentioned in the introduction, it is a well-known fact that the first realization

can be transformed into the second one (and vice versa) with a sequence of swap operations.

Formally, there exists a sequence of realizations G = G0, . . ., Gi−1, Gi = H, such that for each

j = 0, . . ., i − 1 there exists a swap operation which transforms Gj into Gj+1. We denote the

swap Markov chain asM ¼ ðG;PÞ where the transition matrix P is the following:

In any realization with probability 1

2
we stay in the current state (i.e., the chain is lazy) and

with probability 1

2
we uniformly choose two-two vertices u1, u2;v1, v2 from classes U and V,

respectively. We perform the swap u1v1, u2v2) u1v2, u2v1 if u1v1, u2v2 2 E(G) and the resulting

graph G0 is simple. Otherwise we do not perform a move. The swap moving from G to G0 is
unique, therefore the jumping probability from G to G0 6¼ G is:

ProbðG! G0Þ :¼ PðG0jGÞ ¼
1

2 m
2

� �
n
2

� � : ð8Þ

The transition probabilities are time- and edge-independent and are also symmetric. The

chain is lazy, therefore aperiodic. It is also reversible, and so its globally stable stationary distri-

bution is uniform.

Now we turn our attention to the notions and notation to describe Theorems 4 and 5. Liter-

ally these theorems are about directed graphs, however, we will use the machinery developed

in the paper [12], turning these statements into theorems about bipartite graphs with some

restriction on which edges can be used in the realizations.

Let ~G be a simple directed graph (parallel edges and loops are forbidden, but oppositely

directed edges between two vertices are allowed) with vertex set Xð~GÞ ¼ fx1; x2; . . . ; xng and

edge set Eð~GÞ. For every vertex xi 2 X we associate two numbers: the in-degree and the out-
degree of xi. These numbers form the directed degree bi-sequence D.

We transform the directed graph ~G into the following bipartite representation: let

Bð~GÞ ¼ ðU;V;EÞ be a bipartite graph where each class consists of one copy of every vertex

from Xð~GÞ. The edges adjacent to a vertex ux in class U represent the out-edges from x,

while the edges adjacent to a vertex vx in class V represent the in-edges to x (so a directed

edge xy corresponds the edge uxvy). If a vertex has zero in- (respectively out-) degree in ~G,

then we delete the corresponding vertex from Bð~GÞ. (Actually, this representation is an old

trick used by Gale [5], but one can find it already in [2]). The directed degree bi-sequence D

gives rise to a bipartite degree sequence.

Here we make good use of the notion of chords: since there are no loops in our directed

graph, there cannot be any (ux, vx) edge in its bipartite representation—these vertex pairs are

non-chords. It is easy to see that these forbidden edges form a forbidden (partial) matching F
in the bipartite graph Bð~GÞ, or in more general terms, in B(D). To make it easier to remember

the nature of restriction, we will denote this restricted bipartite degree sequence with~d.

We consider all realizationsGð~dÞ which avoid the non-chords from F . Now it is easy to see

that the bipartite graphs inGð~dÞ are in one-to-one correspondence with the possible realiza-

tions of the directed degree bi-sequence.

Consider now again our example about two oppositely oriented triangles, C3

�!
and C3

 �
. Con-

sider the bipartite representations BðC3

�!
Þ and BðC3

 �
Þ, and take their symmetric differencer.

It contains exactly one alternating cycle (the edges come alternately from BðC3

�!
Þ and BðC3

 �
Þ),

s.t. each vertex pair of distance 3 along the cycle inr forms a non-chord. Therefore, in this

Efficiently sampling the realizations of bounded, irregular degree sequences of bipartite and directed graphs
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alternating cycle a “classical” swap cannot be performed. To address this issue, we introduce

a new swap operation: we exchange all edges coming from BðC3

�!
Þ with all edges coming from

BðC3

 �
Þ in one operation. The corresponding operation for directed graphs is exactly the triple

swap operation.

In general: if the current symmetric differencer contains a length-6 alternating cycle C6

such that all opposite vertex pairs form non-chords, then we allow performing the correspond-

ing C6-swap. In this notation, the original swap should properly be called a C4-swap (for obvi-

ous reasons), but for the sake of simplicity we only write swap instead of C4-swap. By the

constraints posed by the forbidden partial matching, only a subset of all bipartite swaps can

be performed. These swaps together with the possible C6-swaps we just defined are called the

F -compatible swaps or F -swaps for short.

Lemma 6 ([18], [12]). The setGðBðDÞÞ ¼ Gð~dÞ of all realizations is irreducible under
F -swaps.

We are ready to define our swap Markov chain ~M ¼ ðGð~dÞ; PÞ for the restricted bipartite

degree sequence~d.

The transition (probability) matrix P of the Markov chain is defined as follows: let the cur-

rent realization be G. Then

1. with probability 1/2 we stay in the current state, so our Markov chain is lazy;

2. with probability 1/4 we uniformly choose two-two vertices u1, u2;v1, v2 from classes U and

V respectively and perform the swap if it is possible;

3. finally, with probability 1/4 we choose three-three vertices from U and V and check whether

they form three pairs of forbidden chords. If this is the case, then we perform a C6-swap if it

is possible.

The swap moving from G to G0 is unique, therefore the probability of this transformation

(the jumping probability from G to G0 6¼ G) is:

ProbðG!b G0Þ :¼ PðG0jGÞ ¼
1

4
�

1
jUj
2

� �
jVj
2

� � ; ð9Þ

and

ProbðG!c G0Þ :¼ PðG0jGÞ ¼
1

4
�

1
jU j
3

� �
jVj
3

� � : ð10Þ

(These probabilities reflect the fact that G0 should be derived from G by a C4-swap or by a

C6-swap). The probability of transforming G to G0 (or vice versa) is time-independent and

symmetric. Therefore, P is a symmetric matrix, where the entries in the main diagonal are

non-zero, but (possibly) distinct values. Our Markov chain is irreducible (by Lemma 6), and

it is clearly aperiodic, since it is lazy. Therefore, as it is well-known, the Markov process ~M is

reversible with the uniform distribution as the globally stable stationary distribution.

The general properties of the swap Markov chain on bipartite

degree sequences

The proofs of our theorems closely follow the proof of Theorem 10 in [12], which, in turn, is

based on the proof method developed in [10]. Suppose~d is a directed degree sequence and

d is the degree sequence of bipartite representations corresponding to the realizations of~d.

Efficiently sampling the realizations of bounded, irregular degree sequences of bipartite and directed graphs
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As we saw earlier the sets of all realizations GðdÞ andGð~dÞ are slightly different: while

Gð~dÞ � GðdÞ but there are realizations in GðdÞ that contain edges which are forbidden in

the realizations inGð~dÞ: However, the following reasoning from [12] applies to both bipar-

tite and directed degree sequences. Therefore the notationG is used to refer either of the

two realization sets.

Consider two realizations X;Y 2 G, and take the symmetric differencer = E(X)ΔE(Y). Now

for each vertex in the bipartite graph (U, V;r) the number of incident X-edges (= E(X)\E(Y))

and the number of the incident Y-edges are equal. Thereforer can be decomposed into alter-

nating circuits and later into alternating cycles. The way the decomposition is performed is

described in detail in Section 5 of the paper [10]. Here we just summarize the highlights:

First, we decompose the symmetric differencer into alternating circuits in all possible

ways. In each case we get an ordered sequence W1, W2, . . ., Wκ of circuits. Each circuit is

endorsed with a fixed cyclic order.

Now we fix one circuit decomposition. Each circuit Wi in the ordered decomposition has a

unique alternating cycle decomposition: Wi ¼ Ci
1
;Ci

2
; . . . ;Ci

ki
. (This unique decomposition is

a quite delicate point and was discussed in detail in Section 5.2 of the paper [10]).

The ordered circuit decomposition ofr together with the ordered cycle decompositions of

all circuits provide a well-defined ordered cycle decomposition C1, . . ., Cl ofr. This decompo-

sition does not depend on any swap operations, only on the symmetric difference of realiza-

tions X and Y.

This ordered cycle decomposition singles out l − 1 different realizations H1, . . ., Hl−1 from

G with the following property: for each j = 0, . . ., l − 1 we have E(Hj)ΔE(Hj+1) = Cj+1 if we

apply the notation H0 = X and Hl = Y. This means that

EðHiÞ ¼ EðXÞ 4
[

i0�i

EðCi0 Þ

 !

:

It remains to design a unique canonical path from X to Y determined by the circuit decom-

position, which uses the realizations Hj as milestones along the path. In other words, for each

pair Hj, Hj+1 we should design a swap sequence which turns Hj into Hj+1.

Here we slightly abuse the general naming conventions: in the original canonical path

method for any pair X;Y 2 G exactly one X! Y path is defined. In Sinclair’s multicommod-

ity flow method ([19]) a (usually large) set of paths is defined, equipped with a probability dis-

tribution. In our presentation we use the expression canonical path to denote these paths,

differentiating the paths inG and the paths in some realizations.

So, the canonical path under construction is a sequence

X ¼ G0; . . . ;Gi; . . . ;Gm ¼ Y

of realizations, where each Gi can be derived from Gi−1 with exactly one swap operation, and

there exists an increasing subscript subsequence 0 = n0 < n1 < n2 < � � �< nℓ = m, such that we

have Gnk
¼ Hk for every 0� k� ℓ.

The construction of swap sequences between consecutive

milestones

Next we define the canonical path corresponding to the cycle Ci. The procedure described here

is slightly different from the one in [12], since the excluded edge set F in [12] is slightly larger

than the one used here.

Efficiently sampling the realizations of bounded, irregular degree sequences of bipartite and directed graphs
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For convenience, we will use the names G;G0 2 G instead of Hi and Hi+1. These two graphs

have almost the same edge set:

ðEðGÞ n ðCi \ EðXÞÞÞ [ ðCi \ EðYÞÞ ¼ EðG0Þ

ðEðG0Þ n ðCi \ EðYÞÞÞ [ ðCi \ EðXÞÞ ¼ EðGÞ:

We refer to the elements of Ci \ E(X) as X-edges, while the rest of the edges of Ci are Y-edges.

We denote the cycle Ci by C, which has 2ℓ edges and its vertices are u1, v1, u2, v2, . . ., uℓ, vℓ.
Finally, w.l.o.g. we may assume that the chord u1v1 is a Y-edge (and, of course, vℓu1 is an X-

edge).

We will build our canonical path from G towards G0. At any particular step, the last con-

structed realization is denoted by Z. (At the beginning of the process we have Z = G). We are

looking for the next realization, denoted by Z0. We will control the canonical path system with

an auxiliary structure, originally introduced by Kannan, Tetali and Vempala in [1]:

The matrix MG denotes the adjacency matrix of the bipartite realization G where the rows

and columns are indexed by the vertices of U and V, respectively, with the slight alteration that

a position corresponding to a forbidden edge (a non-chord) is indicated with a �. There is a

natural correspondence between the entries of matrices on U × V and the chords of G. Our

auxiliary structure is the matrix

bMðX þ Y � ZÞ ¼ MX þMY � MZ:

Summation does not change the positions with a �. Since the non-� entries of a bipartite

adjacency matrix are 0 or 1, the possible entries of bM are �, −1, 0, 1, 2. An entry is � if it corre-

sponds to a forbidden edge, and it is −1 if the edge is missing from both X and Y but it exists in

Z. It is 2 if the edge is missing from Z but exists in both X and Y. It is 1 if the edge exists in all

three graphs (X, Y, Z) or it is there only in one of X and Y but not in Z. Finally, it is 0 if the

edge is missing from all three graphs, or the edge exists in exactly one of X and Y and in Z.

(Therefore, if an edge exists in exactly one of X and Y then the corresponding chord in bM is

always 0 or 1). It is easy to see that the row and column sums of bMðX þ Y � ZÞ are the same

as the row and column sums in MX (or MY, or MZ).

Now we are ready to determine the F -swap sequence between G and G0 and this is the

point where realizations fromGðdÞ andGð~dÞ start behave slightly differently. From now on

we will work with realizations fromGð~dÞ but we will point out those turning points where

there are real differences. The first such difference is that in the case of a directed realization

G 2 Gð~dÞ there may be a vertex vi along the cycle C s.t. u1vi is a non-chord, while for a simple

bipartite realization G 2 GðdÞ this does not happen.

We determine the F -swap sequence between G and G0 fromGð~dÞ through an iterative algo-

rithm. In the first iteration we check, step by step, the positions (u1, v2), (u1, v3), . . ., (u1, vℓ)
and take the smallest j for which (u1, vi) is an actual edge in G. Since (u1, vℓ) is an edge in G,

such an i always exists. A typical configuration is shown in Fig 1.

We call the chord u1vi the start-chord of the current sub-process and u1v1 is the end-

chord. We will sweep the alternating chords along the cycle. The vertex u1 will be the corner-

stone of this operation. This process works from the start-chord u1vi, viui (non-edge), uivi−1

(an edge) toward the end-chord v1u1 (non-edge)—switching their status in twos and fours. We

check positions u1vi−1, u1vi−2 (all are non-edges) and choose the first chord among them,

which we call the current-chord. (Since u1 belongs to at most one non-chord we never have to

check more than two positions to find a chord).
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Case 1: As we just explained the typical situation is that the current-chord is the “next” one,

so when we start this is typically u1vi−1. Assume that this is a chord. Then we can proceed with

the swap operation vi−1ui, viu1) u1vi−1, uivi. We just produced the first “new” realization in

our sequence, this is G0
1
. For the next swap operation this will be our new current realization.

This operation will be called a single-step.

In a realization Z we call a chord bad if its state in Z (being edge or non-edge) is different

from its state in G, or equivalently, different from its state in G0, since G and G0 differ only on

the chords along the cycle C (recall that in our nomenclature a chord is a pair of vertices which

may form an edge). After the previous swap, we have two bad chords in G0
1
, namely u1vi−1 and

viu1.

Consider now the auxiliary matrix bMðX þ Y � ZÞ (here Z ¼ G0
1
). As we saw earlier, any

chord not contained in C has the same state in X, Y and Z. Accordingly, the corresponding

matrix value is 0 or 1 in bM . We call a position bad in bM if this value is −1 or 2. (A bad position

in bM always corresponds to a bad chord). Since we switch the start-chord into a non-edge, it

may become 2 in bM (in case the start-chord is an edge in both X and Y). Furthermore, the cur-

rent-chord turned into an edge. If it is a non-edge in both X and Y then its corresponding

value in bM becomes −1. After this step, we have at most two bad positions in the matrix, at

most one with 2-value and at most one with −1-value. Finishing our swap operation, the previ-

ous current-chord becomes the new start-chord, so it is the edge u1, vi−1.

Case 2: If the position below the start-chord (this is now u1vi−2) is a non-chord, then we

cannot produce the previous swap. Then the non-edge u1vi−3 is the current-chord. For sake of

simplicity we assume that i − 3 = 2 so we are in Fig 1. (That is, i − 1 = 4). Consider now the

Fig 1. Sweeping a cycle.

https://doi.org/10.1371/journal.pone.0201995.g001
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alternating C6 cycle: u1, v2, u3, v3, u4, v4. It has altogether three vertex pairs which may be used

to perform an F -swap operation. We know already that u1v3 is a non-chord. If neither v2u4

nor u3 v4 are chords, then this alternating cycle provides an F -compatible circular C6-swap.

Again, we found the valid swap v2u3, v3u4, v4u1) u1v2, u3v3, u4v4. After that we again have 2

bad chords, namely u1v2 and v4u1, and together we have at most two bad positions in the new

bMðX þ Y � ZÞ, with at most one 2-value and at most one −1-value.

Finally, if one position, say v2u4, is a chord then we can process this C6 with two swap oper-

ations. If this chord is, say, an actual edge, then we swap v2u4, v4u1) u1v2, u4v4. After this

we can take care of the v2, u3, v3, u4 cycle. Along this sequence we never create more than 3

bad chords: the first swap makes chords v2u4, v4u1, and u1v2 bad ones, and the second cures

v2u4 but does not touch u1v2 and v4u1. So, along this swap sequence we have 3 bad chords, and

in the end we have only 2. On the other hand, if the chord v2u4 is not an edge, then we can

swap v2u3, v3u4) u3v3, u4v2, creating one bad edge, then by swapping the four cycle u1, v2, u4,

v4 we cure v2u4 but we switch u1v2 and v4u1 into bad chords. We finished our double-step

along the cycle.

In a double-step we create at most three bad chords. When the first swap uses three chords

along the cycle then we may have at most one bad chord (with bM-value 0 or −1) and then the

next swap switches back the chord into its original status, and makes two new bad chords

(with at most one 2-value and one −1-value). When the first swap uses only one chord from

the cycle, then it creates three bad chords (changing two chords into non-edges and one into

an edge), therefore it may create at most two 2-values and one −1-value. After the second

swap, there will be only two bad chords, with at most one 2-value, and at most one −1-value.

When only the third position corresponds to a chord in our C6 then after the first swap we

may have two −1-values and one 2-value. However, after the next swap we will have at most

one of both types.

After finishing our single- or double-step, the previous current-chord becomes the new

start-chord and we look for the new current-chord. Then we repeat our procedure. There is

one important point to be mentioned: along the step, the start-chord switches back into its

original status, so it will not be a bad chord anymore. So even if we face a double-step the num-

ber of bad chords will never be larger than three (together with the chord viu1 which is still in

the wrong state, so it is a bad chord), and we always have at most two 2-values and at most one

−1-value in bMðX þ Y � ZÞ.
When our current-chord becomes v1u2 then the last step will switch back the last start-

chord into its correct state, and the last current-chord cannot be in a bad state. So, when we

finish our sweep from u1vi to v1u1, we will only have one bad chord (with a possible 2-value in

bM). This concludes the first iteration of our algorithm.

For the next iteration, we seek a new start-chord between viu1 and vℓu1 and the chord viu1

becomes the new end-chord. We repeat our sweeping procedure until there are no more

unprocessed chords. Upon completion, we find a realization sequence from G to G0. If in the

first sweep we had a double-step, then such a step will never occur later, so altogether with the

(new) bad end-chord we never have more than three bad chords (corresponding to at most

two 2-values and at most one −1-value).

However, if the double-step occurs sometime later, for example in the second sweep, then

we face to the following situation: if we perform a circular C6-swap, then all together we have

at most two 2-values and one −1-value. Thus, we may assume that there is a chord suitable for

a swap in our C6. If this chord is a non-edge, then the swap around it produces one bad chord,

and at most one bad position in bM . The only remaining case is when that chord is an edge.

After the first swap there will be four bad chords, and there may be at most three 2-values and
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at most one −1 value. However, after the next swap (finishing the double step) we annihilate

one of the 2-values, and after that swap there are at most two 2-values and at most one

−1-value along the entire swap sequence. When we finish our second sweep, then chord vi u1

will be switched back into its original state and it will not be bad anymore.

Iteratively applying the algorithm, the entire cycle C is processed after at most ℓ sweep

sequences. This finishes the construction of the required F -swap sequence (and the required

realization sequence).

Meanwhile we also proved the following important observations:

Lemma 7. For the Markov chainM, we always have at most two 2-values and at most one
−1-value in our auxiliary matrix bMðX þ Y � ZÞ along our procedure.

Lemma 8. For the Markov chain ~M, each auxiliary matrix bMðX þ Y � ZÞ occurring along
our procedure is at most swap-distance one from a matrix with at most three bad positions: with
at most two 2-values and with at most one −1-value in the same column.

Now we are ready to describe the following, highly technical theorem from [10] which is

required to show that the defined swap Markov-chains are rapidly mixing.

Theorem 9 (Section 4 in [10]). If the designed canonical path system satisfies the three condi-
tions below, then the MCMC process is rapidly mixing. The conditions are:

(Θ). For each i< l the constructed path Hi ¼ G0
0
;G0

1
; . . . ;G0m0 ¼ Hiþ1 satisfies m0 � c � |Ci+1| for

a suitable constant c.

(O). 8j there exists a realization Kj 2 VðGÞ s.t. d MX þMY � MG0j
;MKj

� �
� O2, where MG is

the bipartite adjacency matrix of G, d denotes the Hamming distance, and O2 is a small
constant.

(X). For each vertex G0j in the path being traversed the following three objects together uniquely
determine the realizations X, Y and the path itself:

• The auxiliary matrix MX þMY � MG0j
,

• the symmetric difference r = E(X)4E(Y),

• and a polynomial size parameter set B.

The meaning of condition (X) is that these structures can be used to control certain features

of the canonical path system; namely, their numbers give a bound on the number of canonical

paths between any realization pair X, Y which traverses G0j.
Condition (O) implies that the space of auxiliary matrices is larger than VðGÞ by a multipli-

cative factor of at most ðnmÞ2O2 .

To use this theorem we have to show that the defined swap sequences between Hi and Hi+1,

using the cornerstone u1 chosen in (F), satisfy conditions (Θ), (O), and (X) of Theorem 9. The

first one is easy to see, since we can process any cycle of length 2ℓ in ℓ − 1 swaps. Therefore,

we may choose c = 1 in (Θ). Condition (X) holds for the same reason as it holds in paper [12].

Thus only condition (O) remains to be checked.

Until this very moment the choice of the cornerstone vertex u1 was arbitrary. Before we

turn to the analysis of the swap sequences, we choose which particular vertex of the cycle C will

serve as its cornerstone.

Let the submatrix A contain those positions from any adjacency or any auxiliary matrix

which correspond to the positions ui vj defined by the vertices from C. Furthermore, denote by

A[Z] the submatrix of bMðX þ Y � ZÞ spanned by the vertices of C. Then:
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(F). Let u1 be a vertex which has the lowest row sum in the submatrix A[Hi] = A[G].

The analysis of the swap sequences between milestones inM

In this section, we will analyze the undirected case. We introduce the new switch operation on

integer matrices: we fix the four corners of a submatrix, and we add 1 to two corners in a diag-

onal, and add −1 to the corners on the other diagonal. This operation clearly does not change

the column and row sums of the matrix. (We will use this operation on adjacency matrices or

on auxiliary matrices of realizations). For example, if we consider the adjacency matrix MG of

a realization of d and make a valid swap operation, then this is equivalent to a switch in this

matrix. The next statement is trivial but very useful:

Claim 10. If two matrices have switch-distance 1, then their Hamming distance is 4. Conse-
quently, if the switch-distance is c then the Hamming distance is bounded by 4c.

The next lemma shows that property (O) holds for the auxiliary matrices along the

swap sequence from G toward G0 for degree sequences corresponding to Theorem 3 and

Theorem 2.

Lemma 11. For any realization Z along the constructed swap sequence from G to G0 inGðdÞ
there exists a realization K = K(Z) such that

dð bMðX þ Y � ZÞ;MKÞ � 16:

Proof. The swap sequence transforming G to G0 only touches chords induced by VðCÞ.
Therefore, the row and column sums in A[Z] are the same as that of A[G], so the cornerstone

has the minimum row sum in A[Z] as well.

Any entries of 2’s and −1’s in bM are in the row of u1, moreover, they are contained in A[Z].

Suppose bMu1;vj
¼ 2. The sum of entries of A[Z] in the column vj is< jU \ VðCÞj ¼ jV \ VðCÞj,

therefore 9 uk 2 U \ VðCÞ such that bMuk;vj
¼ 0. Since the sum of the entries in row u1 is mini-

mum among the rows of A[Z], there must 9vl 2 V \ VðCÞ such that bMuk ;vl
> bMu1 ;vl

. Obviously,

bMuk;vl
< 2, so bMu1 ;vl

2 f0; � 1g. The switch operation u1vj, ukvl) u1vl, ukvj (decrease the

entries of the matrix by one at positions u1 vj and uk vl, and increase the entries at positions u1vl
and ukvj by one) in bM (and in A[Z]) eliminates the entry of 2 at u1vj, and creates an entry of 1 at

both u1vj and ukvj. In the column vl three scenarios are possible: either the entry −1 and a 0

exchange their positions, or a 0 and a 1 exchange their positions; finally, it is also possible that

the −1 and a 1 both become 0.

By repeating the previous argument, we may eliminate one more entry 2, if necessary, from

A[Z]. (Recall that at the beginning we had at most two 2s in bM). Although it is possible that

the entry −1 is not in the u1-row anymore, it does not cause any hardship. Let bM 0 be the matrix

we get after performing these at most two switches that eliminate the 2’s. Each entry of bM 0 is a

0 or a 1, except at most one −1 entry.

The proof now diverges into two cases corresponding to Theorem 2 and Theorem 3,

respectively.

Case of Theorem 2: Sequence d satisfies Eq 1

Suppose that bM 0
u0 ;v0
¼ � 1. Since both u0 and v0 are at least 1, there 9v1 2 V and 9u1 2 U such

that bM 0
u0 ;v1
¼ bM 0

u1 ;v0
¼ 1. If bM 0

u1 ;v1
¼ 0, there is a switch which transforms bM 0 into a realization
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of d. Otherwise, observe that

�
�
�
�

�

ðu; vÞ
�
�
�
�u 2 U n fu0; u1g; v 2 V n fv0; v1g;

bM 0
u;v ¼

bM 0
u1 ;v
¼ bM 0

u;v1
¼ 1

��
�
�
� �

� ðdðv1Þ � 2Þ � ðD � 1Þ þ ðdðu1Þ � 2Þ � ðD � 1Þ �

� 2ðD � 1ÞðD � 2Þ:

The number of entries of 1 in bM 0 that are incident on the same row as u0 or u1, on the same

column as v0 or v1, or in the above counted set is at most

2ðDþ 1Þ þ 2ðD � 1Þ � 1þ 2ðD � 1ÞðD � 2Þ � 2D
2
� 2Dþ 3 < jEj:

The last inequality follows from Equality 1. Therefore there exists u2 2 U, v2 2 V such that

{u0, v0, u1, v1, u2, v2} is a set of 6 vertices where bM 0
u2 ;v2
¼ 1 and bM 0

u2 ;v1
¼ bM 0

u1 ;v2
¼ 0. Switching

along the six positions determined by the cyclically successive pairs, we get an adjacency

matrix corresponding to a realization of d.

Case of Theorem 3: Sequence d satisfies Eqs 2 and 3

From now on we will consider the entire matrix bM 0 and not only A. Suppose that bM 0
u0 ;v0
¼ � 1.

Let U 0 ¼ fu 2 U j bM 0
u;v0
¼ 1g and V 0 ¼ fv 2 V j bM 0

u0;v
¼ 1g. If 9(u, v) 2 U0 × V0 such that

bM 0
u;v ¼ 0, then switch operation u0v, uv0) u0v0, uv transforms bM 0 into an adjacency matrix.

Suppose from now on, that 8(u, v)2U0 × V0 we have bM 0
u;v ¼ 1. Let

U 00 ¼ fu 2 U j 9v 2 V 0 : bM 0
u;v ¼ 0g;

V 00 ¼ fv 2 V j 9u 2 U 0 : bM 0
u;v ¼ 0g:

Clearly, U@ \ U0 = V@ \ V0 = ;. Suppose there 9(u2, v2) 2 U@ × V@ such that bM 0
u2 ;v2
¼ 1. By

definition, there 9(u1, v1) 2 U0 × V0 such that bM 0
u2 ;v1
¼ 0 and bM 0

u1 ;v2
¼ 0. Clearly, applying first

the switch operation u1, u2 and v1, v2, and then the operation u0, u1 and v0, v1 transforms bM 0

into an adjacency matrix.

Lastly, suppose that 8(u, v)2U@ × V@ we have bM 0
u;v ¼ 0. This case is shown in Fig 2.

In addition to the zeroes in U@ × V@, bM 0
u;v0
¼ 0 for any u 2 U@. We have

jU 00j � ðm � d1Þ �

�
�
�
�

�

ðu; vÞ 2 U 00 � V j bM 0
u;v ¼ 0

��
�
�
� ¼

¼ jU 00 � V 00j þ jU 00j þ
�
�
�
�

�

ðu; vÞ 2 U 00 � ðV nV 00 n fv0gÞj
bM 0

u;v ¼ 0

��
�
�
�:

ð11Þ

The right-hand side can be estimated from below as follows. Since the row and column

sums of bM 0 are the same as that of MX, we have

jU 0j � c1 �
bM 0

u0 ;v0
¼ c1 þ 1; and jV 0j � d1 �

bM 0
u0 ;v0
¼ d1 þ 1:
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For any v 2 V0 and u 2 U\U@, we have bM 0
u;v ¼ 1. Also, for any u 2 U0 and v 2 V\V@, we have

bM 0
u;v ¼ 1. Therefore

n � c1 � 2 � jU nU 0 n fu0gj � jU 00j � n � c2;

m � d1 � 2 � jV nV 0 n fu0gj � jV 00j � m � d2:

Clearly, if c2� c1 + 1 or d2� d1 + 1 (i.e., G is almost half-regular), we already have a contra-

diction. We also have
�
�
�
�

�

ðu; vÞ 2 U 00 � ðV nV 00 n fv0gÞj
bM 0

u;v ¼ 0

��
�
�
� �

� ðn � c2Þðm � jV 00j � 1Þ � jU nU 0 nU 00j � jV nV 0 nV 00 n fv0gj �

� ðn � c2Þðm � jV 00j � 1Þ � ðn � c1 � 1 � jU 00jÞ � ðm � d1 � 2 � jV 00jÞ:

ð12Þ

Fig 2. bM 0 is shown; each of the entries in the regions marked with 0/1 may be 0 or 1.

https://doi.org/10.1371/journal.pone.0201995.g002
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Combining Eqs 11 and 12,

jU 00j � ðm � d1Þ � ðn � c2Þ � ðm � jV 00j � 1Þ þ jU 00jðm � d1 � 1Þþ

þ ðjV 00j þ 1Þ � ðn � c1 � 1Þ � ðn � c1 � 1Þ � ðm � d1 � 1Þ:

Further simplifying:

jU 00j � ðjV 00j þ 1Þðc2 � c1 � 1Þ þ ðc1 þ 1 � c2Þmþ ðd1 þ 1Þn � ðc1 þ 1Þðd1 þ 1Þ:

Since we may suppose that c2� c1 + 2, we can substitute |V@|�m − d2 and |U@|� n − c1 − 2

into the inequality, yielding

ðc2 � c1 � 1Þðd2 � d1 � 1Þ � d1ðn � c2Þ þ 1:

Symmetrically, a similar derivation gives

ðc2 � c1 � 1Þðd2 � d1 � 1Þ � c1ðn � d2Þ þ 1:

The last two inequalities clearly contradict the assumptions of this claim.

In summary, in every case there exist at most 4 switches which transform bM into a 0 − 1

matrix, which is a matrix with suitable row- and column sums, therefore it is the adjacency

matrix of a realization K of the degree sequence d.

The analysis of the swap sequences between milestones in ~M

Now we turn to discussing the directed case. As in the previous section, condition (O) is the

only remaining assumption of Theorem 9 which does not immediately follow from the con-

struction of swap sequences between consecutive milestones.

Lemma 12. For any realization Z along the constructed swap sequence from G to G0 there
exists a realization K = K(Z) such that

d bMðX þ Y � ZÞ;MK

� �
� 20:

Proof. As described by Lemma 8, it is possible that realization Z is derived by an F -swap

which is a first C4-swap to resolve an alternating C6 cycle along the sweep. It may introduce an

extra 2-value and/or a −1-value into the auxiliary structure. But Lemma 8 also shows that the

next C4 swap will revert these extra bad positions. Therefore let ZS denote the realization Z itself

if this extra swap is not needed, or the new realization if it is needed. Then bMðX þ Y � ZSÞ has

at most two entries of 2 and at most one entry of −1. Now we have to show that there is a reali-

zation K such that

d bMðX þ Y � ZSÞ;MK

� �
� 16:

As before we will use the shorthand bMðX þ Y � ZSÞ ¼ bM :

The swap sequence transforming the bipartite representation G to G0 (also, the previous extra

swap) only touches chords induced by VðCÞ. Therefore, the row and column sums in A[Z] are

the same as that of A[G], so the cornerstone has the minimum row sum in A[Z] as well.

Any entries of 2’s and −1’s in bM are in the row of u1, moreover, they are contained in A[Z].

Suppose bMu1 ;vj
¼ 2. The column of vj in A[Z] contains at least one zero, therefore there exist

two vertices uk; uk0 2 U \ VðCÞ such that bMuk;vj
¼ 0 and bMuk0 ;vj

¼ 0, even if there is a � in the

column of vj. We have two cases.
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1. There 9vl 2 V \ VðCÞ such that bMuk;vl
> bMu1;vl

: obviously, bMuk;vl
< 2, so bMu1 ;vl

2 f0; � 1g.

The switch operation u1vj, ukvl) u1vl, ukvj (decrease the entries of the matrix by one at

positions u1vj and ukvl, and increase the entries at positions u1vl and ukvj by one) in bM
(and in A[Z]) eliminates the entry of 2 at u1vj, and creates an entry of 1 at both u1vj and

ukvj. In the column vl three scenarios are possible: either the entry −1 and a 0 exchange their

positions, or a 0 and a 1 exchange their positions; finally, it is also possible that the −1 and a

1 both become 0.

2. If for all vl 2 V \ VðCÞ either bMuk;vl
� bMu1 ;vl

or bMuk;vl
¼ � or bMu1 ;vl

¼ � holds: since the

sum of the entries in row u1 is minimum among the rows of A[Z], this is only possible if

there exist vl0, vl@ 2 V \ V(C) such that bMu1 ;vl0
¼ �, bMuk;vl0

¼ 1, bMu1 ;vl00
¼ � 1, bMuk;vl00

¼ �,

and for vl 2 V \ VðCÞ n fvj; vl0 ; vl00g we have bMuk;vl
¼ bMu1 ;vl

. This is shown on Fig 3.

If the second case applies, the first case must hold if we replace k by k0; if not, column vl@
would contain two �, a contradiction.

By repeating the previous argument, we may eliminate one more entry 2, if necessary, from

A[Z] (and bM). (Recall that at the beginning we had at most two 2’s in bM). Although it is possi-

ble that the entry −1 is not in the u1-row anymore, it does not cause any hardship. Let bM 0 be

the matrix we get after performing these at most two switches that eliminate the 2’s. Each entry

of bM 0 is a 0 or a 1, except at most one −1 entry.

The proof now diverges into two cases corresponding to Theorem 4 and Theorem 5,

respectively.

Case of Theorem 4: Sequence d satisfies Eq 4

From now on we will consider the entire matrix bM 0 and not only A. Suppose that bM 0
u0 ;v0
¼ � 1.

The degrees of u0 and v0 are at least one, and so there are at least two entries of 1’s in the row

Fig 3. bM is shown for Case 2 of the proof of Lemma 12.

https://doi.org/10.1371/journal.pone.0201995.g003

Efficiently sampling the realizations of bounded, irregular degree sequences of bipartite and directed graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0201995 August 13, 2018 16 / 20

https://doi.org/10.1371/journal.pone.0201995.g003
https://doi.org/10.1371/journal.pone.0201995


and column of u0 and v0, respectively. Therefore there exists u1 2 U and v1 2 V such that they

are not copies of the same original vertex and bM 0
u0 ;v1
¼ bM 0

u1 ;v0
¼ 1. If bM 0

u1 ;v1
¼ 0, there is a

switch which transforms bM 0 into a bipartite realization of~d. Otherwise bM 0
u1 ;v1
¼ 1, so observe

that
�
�
�
�

�

ðu; vÞju 2 U n fu0; u1g; v 2 V n fv0; v1g;
bM 0

u;v ¼ 1; bM 0
u1 ;v
¼ 0 or bM 0

u;v1
¼ 0

� ����
�
� �

� ðdinðv1Þ � 2Þ � ðD � 1Þ þ ðdoutðu1Þ � 2Þ � ðD � 1Þ �

� 2ðD � 1ÞðD � 2Þ:

The number of entries of 1 in bM 0 that are incident on either the rows of u0 or u1, on the col-

umn of v0 or v1, or on a position corresponding to an element of the above counted set is at

most

2ðDþ 1Þ þ 2ðD � 1Þ þ 2ðD � 1ÞðD � 2Þ � 2D
2
� 2Dþ 4:

This implies that there exist u2 2 U and v2 2 V such that bM 0
u2 ;v2
¼ 1, bM 0

u1 ;v2
6¼ 1, and

bM 0
u2 ;v1
6¼ 1. Because Equality 4 claims j~Ej is strictly larger than the right hand side by at least

2Δ, we may also assume that bM 0
u1 ;v2
6¼ �, and bM 0

u2 ;v1
6¼ �. Therefore there exists u2 2 U, v2 2 V

such that {u0, v0, u1, v1, u2, v2} is a set of 6 vertices where bM 0
u2 ;v2
¼ 1 and bM 0

u2 ;v1
¼ bM 0

u1 ;v2
¼ 0.

Switching along the six positions determined by the cyclically successive pairs, we get an adja-

cency matrix corresponding to a realization of d.

Case of Theorem 5: Sequence d satisfies Eqs 5 and 6

From now on we will consider the entire matrix bM 0 and not only A. Suppose that bM 0
u0 ;v0
¼ � 1.

Let U 0 ¼ fu 2 U j bM 0
u;v0
¼ 1g and V 0 ¼ fv 2 V j bM 0

u0;v
¼ 1g. If 9(u, v)2U0 × V0 such that

bM 0
u;v ¼ 0, then switch operation u0v, uv0) u0v0, uv transforms bM 0 into an adjacency matrix.

Suppose from now on, that 8(u, v)2U0 × V0 we have bM 0
u;v 2 f1; �g. Let

U 00 ¼ fu 2 U j 9v 2 V 0 : bM 0
u;v ¼ 0g;

V 00 ¼ fv 2 V j 9u 2 U 0 : bM 0
u;v ¼ 0g:

Clearly, U@ \ U0 = V@ \ V0 = ;. Suppose bM 0½U 00;V 00� contains more than |U@| entries of

1’s. A simple pigeon-hole principle argument implies that there 9(u2, v2) 2 U@ × V@ and

9(u1, v1) 2 U0 × V0 such that bM 0
u2 ;v2
¼ 1, bM 0

u2 ;v1
¼ 0, bM 0

u1 ;v2
¼ 0, and M0

u1 ;v1
¼ 1. Clearly,

applying first the switch operation u1, u2 and v1, v2, and then the operation u0, u1 and v0, v1

transforms bM 0 into an adjacency matrix.

Lastly, suppose that bM 0½U 00;V 00� contains at most |U@| entries of 1’s. We have

jU 00j � ðn � d1Þ � jU 00j �

�

�
�
�
�

�

ðu; vÞ 2 U 00 � V j bM 0
u;v ¼ 0

��
�
�
� �

� ðjU 00 � V 00j � jU 00jÞ þ
�
�
�
�

�

ðu; vÞ 2 U 00 � ðV nV 00Þj bM 0
u;v 2 f0; �g

��
�
�
� � jU

00j;

since bM 0½U 00;V� contains exactly |U@| of �. The right-hand side can be estimated from below as
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follows. Since the row and column sums of bM 0 are the same as that of MX, we have

jU 0j � c1 �
bM 0

u0 ;v0
¼ c1 þ 1; and jV 0j � d1 �

bM 0
u0 ;v0
¼ d1 þ 1:

Also,

n � c1 � 2 � jU nU 0 n fu0gj � jU 00j � n � c2 � 1;

n � d1 � 2 � jV nV 0 n fu0gj � jV 00j � n � d2 � 1:

Clearly, if c2 = c1 or d2 = d1 (i.e., G is half-regular), we already have a contradiction. Each

column in V \ V@ may contain at most one �, therefore

�
�
�
�

�

ðu; vÞ 2 U 00 � ðV nV 00 n fv0gÞj
bM 0

u;v 2 f0; �g

��
�
�
� �

� ðn � c2Þðn � jV 00j � 1Þ � jU nU 0 nU 00j � jV nV 0 nV 00 n fv0gj:

Moreover, bM 0
u;v0
2 f0; �g for any u 2 U@. Combining these inequalities, we get

jU 00j � ðn � d1Þ � ðjU 00 � V 00j � jV 00jÞ þ jU 00jþ

þðn � c2Þðn � jV 00j � 1Þ � jU nU 0 nU 00j � jV nV 0 nV 00 n fv0gj:

A few lines of computation similar to those in the previous section give

ðc2 � c1Þðd2 � d1Þ � d1ðn � c2 � 1Þ þ 3þ c1 þ d2 � n:

Symmetrically, we also have

ðc2 � c1Þðd2 � d1Þ � c1ðn � d2 � 1Þ þ 3þ d1 þ c2 � n:

The last two inequalities clearly contradict the assumptions of this claim.

In summary, in every case there exist at most 4 switches which transform bM into a 0 − 1

matrix, which is a matrix with suitable row- and column sums, therefore it is the adjacency

matrix of a realization K of the degree sequence~d.

Erdős-Rényi random graphs

The following statement is a straightforward, easy consequence of Theorem 3.

Corollary 13. If G is a bipartite Erdős-Rényi random graph on vertex classes of size n and m,
with edge probability p(n, m), such that

3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logmþ
1

2
log 2

n

v
u
u
t

� pðn;mÞ � 1 � 3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lognþ
1

2
log 2

m

v
u
u
t

;

then the swap Markov chain is rapidly mixing on the bipartite degree sequence of G with proba-
bility at least 1 � 1

n �
1

m. (The roles of m and n can be interchanged).
Proof. Let p = p(n, m), εc ¼

1

3
pn and εd ¼

1

3
ð1 � pÞm. Also, let c1 = pn − εc, c2 = pn+ εc, d1 =

pm − εd, d2 = pm+ εd. Eq 3 holds, we only need to check that

4εcεd � ðpn � εcÞ � ðm � pm � εdÞ:
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Moreover, by Hoeffding’s inequality,

Pr ðEquation 2 does not holdÞ �

� Pr ð9v 2 V jdðvÞ � pnj > εcÞ þ Pr ð9u 2 U jdðuÞ � pmj > εdÞ �

� m � 2e� 2p2n=9 þ n � 2e� 2ð1� pÞ2m=9 �
1

m
þ

1

n
;

which proves the statement.

For completeness sake, we also state the respective theorem for directed random graphs.

Corollary 14. If ~D is a directed Erdős-Rényi random graph on n vertices with out-edge proba-
bility p(n), such that

3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lognþ
1

2
log 2

n

v
u
u
t

þ
2
ffiffiffi
n
p � pðnÞ � 1 � 3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lognþ
1

2
log 2

n

v
u
u
t

�
2
ffiffiffi
n
p ;

then the swap Markov chain is rapidly mixing on the directed degree sequence of ~D with probabil-
ity at least 1 � 2

n.

Comparing the applicability of the Theorems

Next we discuss the applicability of our results. Theorem 2 (and the result of Greenhill and

Sfragara) is not applicable, when the average degree �d > n
2
. In case of Theorem 3 there is no

such region: for example if all degrees are between n
3
þ 1 and 2n

3
� 1, then inequality �d > n

2
for

the average degree is possible. It is also easy to see that Theorem 3 applies to all half-regular

(consequently for all regular) bipartite degree sequences.

However, if the degrees are evenly distributed between 1 and n
4
, then Theorem 2 applies

while Theorem 3 does not. Therefore these results have different validity regions and they are

independent from each other.

Generally speaking Theorem 2 and the Greenhill and Sfragara results are better applicable

to degree sequences developed under some scale-free random dynamics (with γ> 2.5), while

Theorem 3 is better fitted to degree sequences developed under the Erdős—Rényi model.

For directed degree sequences similar analysis applies.
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