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ABSTRACT 

 

Multiple myeloma (MM) is a cancer of post-germinal center B cells characterized by a 

clonal proliferation of long-lived plasma cells inside the bone marrow. MM cells typically 

exhibit numerous structural and numerical chromosomal aberrations besides the presence 

of mutations in oncogenes and tumor-suppressor genes. Recently, a lot of attention has 

been drawn towards the tumor microenvironment. The interaction between malignant 

plasma cells and other cells inside the bone marrow is thought to be essential for the 

survival and expansion of MM. Indeed, stromal cells are able to produce growth factors 

that are important in sustaining the proliferation of MM cells, for example, interleukin-6 

(IL-6). 

IL-6 triggers the signal downstream of its receptor IL-6R, leading to the activation of 

the JAK/STAT pathway. An important target of this pathway is STAT3 transcription 

factor. STAT3 binds to the promotor region of a set of genes that regulate cell growth, 

proliferation, survival, mitosis, adhesion/migration, and are extremely important in 

controlling the inflammatory response. 

RhoU is an atypical member of the Rho GTPase family that lies downstream of 

STAT3 activation. This GTPase is constitutively active whenever expressed and could 

mediate the effects of STAT3 in regulating the cytoskeleton dynamics. In MM nothing is 

known about this G protein. Here we demonstrate for the first time a role for RhoU in 

regulating the F-actin cytoskeleton of MM cells.  

RhoU was found heterogeneously expressed in MM patients’ cells, significantly 

modulated with disease progression, and expressed at higher levels in patients with bad 

prognosis mutations including t(4;14), del(13) and 1q gain. Different levels of RhoU 

mRNA correlate with a diverse gene expression profile in 557 genes. We have also found 

that it significantly clusters with cell cycle and DNA damage genes. Importantly, its 

expression positively correlates with cyclin D2 expression, and negatively correlates with 

the expression of cell cycle control and DNA damage response genes. 

 In MM cell lines, RhoU is over-expressed in IL-6 dependent cell lines, while its 

expression is down-modulated in those that can proliferate independently of IL-6 

stimulus. MM cell lines were able to up-regulate RhoU mRNA expression in response to 

IL-6 stimulus through the activation of STAT3. RhoU silencing led to an accumulation of 

actin stress fibers, an increase in adhesion and a blockade in migration. 
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Lastly, immunomodulatory drugs (IMIDs) were recently found to control the 

activation of classical GTPases like Cdc42 and RhoA. In accordance with this, 

Lenalidomide positively regulated STAT3 activation leading to an increase in RhoU 

expression that resulted in a higher migration capability of MM cell lines, indicating that 

IMIDs can also alter the expression of atypical GTPases. 
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INTRUDUCTION 

 

1. RHO GTPASES 

The Rho family of small guanosine triphosphatases (GTPases) forms part of the Ras 

superfamily. Over 150 members comprise the Ras superfamily, which is divided into five 

major branches on the basis of sequence and functional similarities: Ras, Rho, Rab, Ran 

and Arf families (Wennerberg, Rossman and Der, 2005; Cox and Der, 2010). These 

GTPases share a common biochemical mechanism, acting as molecular switches to 

transduce the signal downstream to their effectors (Vetter and Wittinghofer, 2001).  

It is important to note that the Ras family has been proven to profoundly influence cell 

growth and that activating mutations of Ras are associated with cancer (Aspenström, 

Ruusala and Pacholsky, 2007). In contrast with what happens with Ras oncogenes, Rho 

GTPases are hardly ever found mutated in cancer cells but often display altered activity in 

malignant cells when compared to healthy counterparts (Vega and Ridley, 2008). Rho 

GTPases are potent regulators of cytoskeleton dynamics and of the actin filament system, 

thereby affecting the morphologic and migratory properties of cells (Raftopoulou and 

Hall, 2004). Due to their important roles in controlling cell morphology, deregulated Rho 

GTPases could be at the basis of many tumorigenic processes and for this reason 

particular attention has been given to these proteins in the last few years.  

To this moment, there are 21 identified GTPases in the Rho family, which can be 

further divided based on their sequence and functional resemblances and classified into 

eight subgroups (Figure 1). There are four groups of classical Rho GTPases: Rho that 

comprises RhoA, RhoB and RhoC; Rac that includes family members Rac1, Rac2, Rac3 

and RhoG; Cdc42 comprising Cdc42, RhoQ (also known as TC10) and RhoJ (also known 

as TC10-like protein, TCL); and RhoD/F with only two proteins, RhoF (also known as 

RAP1-interacting factor-1, RIF) and RhoD. And four groups of atypical GTPases: Rnd 

containing the members Rnd1, Rnd2 and Rnd3 (also known as RhoE); RhoBTB that 

comprises RhoBTB1, RhoBTB2 and RhoBTB3; RhoH that hosts RhoH alone; and lastly 

RhoU/V composed by RhoU (also known as WNT1-responsive Cdc42 homologue-1, 

Wrch1) and RhoV (also known as Cdc42 homologous protein, Chp).  
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Nowadays Rho GTPases are best known for their roles in regulating cytoskeletal 

rearrangements, cell motility, cell polarity, axon guidance, vesicle trafficking and recently 

the cell cycle (Hodge and Ridley, 2016). In fact, alterations in Rho GTPases signaling 

have been recently found to contribute to malignant transformation, neurological 

abnormalities and immunological diseases (Fritz and Henninger, 2015; Pajic et al., 2015; 

Smithers and Overduin, 2016).  

The knowledge on signaling networks involving Rho GTPases has increased in 

complexity and the studies on the atypical Rho GTPases have significantly broadened the 

concept of Rho-regulated biological pathways. Since disturbances in Rho GTPases 

functions are somehow related to oncogenic transformation, it is likely that dysfunctional 

atypical Rho GTPases could also play a role in this and several other disease conditions, 

which makes it important to increase our attention to these proteins and the biological 

processes in which they are involved. 

 

 

2. RHOU/V SUBFAMILY 

The two GTPases RhoU, also known as Wrch-1, and RhoV, also called Chp, form a 

distinct subfamily of Rho proteins related to Cdc42 and Rac1. In fact, human RhoU and 

RhoV proteins share 57% and 52% identity, respectively, with the well-known Cdc42 

GTPase but they are functionally rather different (Aspenström, Ruusala and Pacholsky, 

2007).  

RhoU and RhoV are actually an example of Rho GTPases with atypical features but 

they do not exhibit amino acid substitutions which render them GTPase deficient like 

other atypical GTPases (Figure 3) (Shutes et al., 2004; Vega and Ridley, 2008). These 

two GTPases display high intrinsic guanine nucleotide exchange activity and are thus 

thought to be constitutively active whenever expressed. Due to their spontaneous 

activation, they are expressed at very low levels in various tissues and organs (Boureux et 

al., 2007).  

Also, both proteins have an N-terminal proline-rich domain that is not present in any 

other Rho GTPase, enabling them to bind to Src homology 3 (SH3) domain-containing 

proteins (Figure 3). SH3 domains usually remain constitutively associated with their 

ligands and protein interactions connected to SH3 domains have been implicated in 

cytoskeletal alterations (Risse et al., 2013). Interestingly, the presence of SH3 domain-
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• Rac protein signal transduction  

• actin cytoskeleton organization (confirmed by experimental evidence) 

• regulation of cell shape (confirmed by experimental evidence) 

• regulation of small GTPase mediated signal transduction (confirmed by 

experimental evidence) 

and that it can localize to: 

• Golgi membrane 

• cell projections (confirmed by experimental evidence) 

• cytosol 

• focal adhesions (confirmed by experimental evidence) 

• plasma membrane (confirmed by experimental evidence) 

• podosomes (confirmed by experimental evidence) 

The broad spectrum of localizations and processes where RhoU can intervene, call the 

attention to the impact this protein could have in cancer and autoimmunity, situations 

where these subcellular components are under stress and these processes are deregulated. 

It is important to notice that different levels of this GTPase might lead to diverse 

outcomes in cell morphology. Indeed, during epithelial-mesenchymal transition of neural 

crest cells, high levels of RhoU have been described to influence cell polarity and 

migration while low levels were required for cell adhesion (Fort et al., 2011). 

 

3.3. REGULATION 

RhoU protein, as stated before, is not regulated by GTP-GDP cycling and for this 

reason does not request the action of GEFs and GAPs. Instead, the expression of this 

protein is mostly regulated at the mRNA level. 

Its gene is a common transcriptional target of both the gp130/STAT3 and Wnt-1/planar 

cell polarity (PCP) pathways (Schiavone et al., 2009). Two functional STAT3-binding 

sites were identified on the RHOU promoter however, RhoU induction by Wnt-1 was 

proven to be independent of β-catenin (not involving STAT3) and seems to be mediated 

by the Wnt/PCP pathway through the activation of JNK (Schiavone et al., 2009). Both the 

non-canonical Wnt and STAT3 pathways are therefore able to induce RhoU expression, 

which in turn might be involved in mediating their effects on cell migration and adhesion. 
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Even though the regulation of RhoU expression occurs mostly at the mRNA level, its 

membrane association, subcellular localization, and biological activity might be mediated 

by a novel membrane-targeting mechanism that differs from other GTPases. In fact, 

RhoU terminates in a CAAX tetrapeptide motif that is modified by the fatty acid 

palmitate (Berzat et al., 2005). Palmitoylation of its non-conventional CAAX box 

regulates RhoU localization to the cell membrane and pharmacologic inhibition of CAAX 

palmitoylation leads to RhoU mislocalization, and could have an inhibitory effect on its 

function (Ory, Brazier and Blangy, 2007). 

 

3.4. RHOU IN TUMORIGENESIS 

Rho GTPases are involved directly or indirectly in most steps of cancer initiation and 

progression, from unlimited proliferation and apoptosis evasion, to migration, invasion 

and metastasis (Vega and Ridley, 2008). Unlike its close relative Ras, Rho proteins are 

rarely mutated in cancer cells but their expression and activity are frequently affected. 

Several GTPases are up-regulated in some human tumors and are thought to be pro-

oncogenic, importantly Cdc42 and Rac1 that have been extensively studied in the last few 

years. In fact, they have been shown to be involved in tumor growth, progression, 

metastasis, and angiogenesis. In solid tumors it has recently become clear that cancer 

cells dynamically regulate Rac1 and Cdc42 activity to promote transformation, cancer 

development, invasion and metastasis (Pajic et al., 2015). When it comes to the bone 

marrow (BM) microenvironment, adhesion and migration abnormalities in hematopoietic 

stem cells (HSCs) were also proven to be associated with increased Cdc42 and Rac1 

activation that leads to an increased mobilization of HSCs out of the BM cavity (Yang et 

al., 2001). Indeed, Cdc42−/− mice have increased numbers of HSCs circulating away 

from BM niches, as well as profound defects in homing activities (Yang et al., 2007). 

Moreover, in accordance with its involvement in homing and mobilization, Rac1 

expression was recently associated with leukemia cell chemotherapy resistance, 

quiescence and niche interaction (Wang et al., 2013).  

Even though RhoU is strictly related to Rac1 and Cdc42, little research has been 

conducted on this protein and its role in cancer biology and pathology remains still 

incognito. However, few papers seem to prove a role for this GTPase in altering cell 

morphology and migration capabilities that could be of great importance in understanding 

its role in blood tumorigenesis. For example, Brazier et al. (2006) showed that silencing 
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RhoU expression severely inhibited differentiation of BM macrophages and HSCs, and 

affected osteoclast morphology. Then again, van Helden et al. (2012) obtained 

contrasting results thus leaving some questions unanswered. Also, RhoU depletion in T-

cell acute lymphoblastic leukemia (T-ALL) cell lines inhibited cell migration and 

chemotaxis; and T-ALL cell migration through RhoU up-regulation contributed to 

leukemia cell dissemination (Bhavsar et al., 2013). 

 

 

 

4. B CELL DIFFERENTIATION 

 

B cells develop from hematopoietic precursor cells in the BM through a methodical 

maturation and selection process (Figure 6). B cell differentiation process involves two 

phases: an antigen-independent process that occurs in the BM, and an antigen-dependent 

process that occurs in the lymphoid tissue.  

In the first, stem cells in the BM give rise to a common lymphoid progenitor that 

through multiple steps of differentiation will become an immature B cell (Pieper, 

Grimbacher and Eibel, 2013). This immature B cell will enter peripheral circulation and 

suffer alternative splicing that results in the production of new immunoglobulin (Ig) 

chains. In the primary lymphoid follicle, it will further differentiate into the so called 

mature naive B cell. By entering circulation this cell can now bind to a specific antigen in 

the lymphoid tissue and initiate the second phase of the maturation process (Fairfax et al., 

2008; Pieper, Grimbacher and Eibel, 2013). The activated B cell will enter a loop of 

proliferation, alternative splicing, isotype switching, and somatic hypermutations that 

give rise to short- and long-lived plasma cells (PCs) that secrete unspecific and specific 

antibodies, respectively, and to memory B cells (Fairfax et al., 2008). Antibody 

producing PCs will fight the current infection while memory B cells recirculate and 

prepare for a future infection by the same antigen. Long-lived PCs can then migrate to the 

BM, where they will find a survival niche. There they remain alive and able to continue to 

produce antibodies, however they do not proliferate (Fairfax et al., 2008). 
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B cell malignancies have been associated with distinct stages of B cell development 

(Rickert, 2013): 

- B cell acute lymphocytic leukemia (B-ALL) arises from pre-B cells; 

- B cell chronic lymphocytic leukemia (B-CLL) derives from mature B cells; 

- Mantle cell lymphoma (MCL) also arises from circulating mature B cells; 

- Splenic marginal zone lymphoma (SMZL) and mucosa-associated lymphoid tissue 

(MALT) lymphoma both derive from marginal zone B cells; 

- Follicular lymphoma, diffuse large B cell lymphoma (DLBCL) and Burkitt's 

lymphoma are all derived from germinal center (GC) B cells; 

- Multiple Myeloma (MM) is a GC-derived PC malignancy that persists in the BM 

and most of the times is dependent on BM stromal cell (BMSC) contact and 

cytokines such as interleukin-6 (IL-6). 

Malignant cells often express CD markers that are not present or that are expressed at 

different stages in normal cells. Some malignant B cells can actually express T cell 

markers (Boyd et al., 2013). Besides the expression of different cell surface markers, 

malignant cells can also express the same surface markers but at different densities, for 

example the majority of MM cells express higher CD138 and CD38 than normal PCs 

(Kumar, Kimlinger and Morice, 2010). 

 

 

 

 

 

5. MULTIPLE MYELOMA 

 

MM is a post-GC cancer characterized by a multifocal proliferation of clonal, long-

lived PCs within the BM that can be clearly observed by the high amounts of CD138
+
 

cells in a BM biopsy (Figure 7). Overproliferation of malignant PCs leads to osteolytic 

bone lesions and hypercalcemia, and can cause BM suppression (pancytopenia) 

(Anderson and Carrasco, 2011). Malignant PCs produce defective antibodies, known as 

monoclonal M proteins. The production of M proteins by MM cells besides causing blood 

hyperviscosity and renal complications, leads also to a decrease of normal 

immunoglobulins levels, increasing the risk of infection (Landgren et al., 2009).  
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MM malignancy is characterized by markedly heterogeneous chromosomal 

aberrations, in particular, translocations involving the immunoglobulin heavy chain locus 

at 14q32 and different chromosomal partners occur in approximately 60% of MM cases 

(Fonseca et al., 2004). The most recurrent of these translocations include 

t(11;14)(q13;q32), t(4;14)(p16.3;q32), t(6;14)(p21;q32), t(14;16)(q32; q23), and 

t(14;20)(q32;q11) that lead to a deregulation of CCND1, FGFR3 and MMSET, CCND3, 

MAF, and MAFB genes respectively (Agnelli et al., 2005). 

After the evolution towards a malignant phenotype, MM cells can develop through two 

already described types of subclonal evolution: “linear” with the accumulation of genetic 

events or “branching” with early divergence of subclones with different mutations, which 

are differentially selected during disease progression (Morgan, Walker and Davies, 2012; 

Corre, Munshi and Avet-Loiseau, 2015). In fact, distinct phenotypic subclones can be 

observed in as much as 30% of newly diagnosed MM patients, supporting the existence 

of a branching evolution (Paíno et al., 2015). This characteristic makes the disease even 

more heterogeneous and thus more difficult to study since different clones from the same 

patient can have different translocations and gene expression profiles. 

 

5.2. PROGNOSIS 

In the last few years a new way of dividing patients in subgroups that could allow 

doctors to better define strategies for risk-adapted therapy has been developed. It is the so 

called stratification into TC (translocations/cyclins) groups (Table 1).  

 

 
Table 1: MM stratification into TC subgroups 

TC Group 
Primary 

translocation 
D-Cyclin Ploidy 

Frequency in 

newly 

diagnosed MM 

TC1 
t(11;14) 

t(6;14) 

D1 

D3 
NH 25% 

TC2 None 
D1 (low to 

moderate) 
H 25% 

TC3 None D2 H/NH 30% 

TC4 t(4;14) D2 NH > H 15% 

TC5 
t(14;16) 

t(14;20) 
D2 NH 5% 
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Patients can be stratified into 5 groups: TC1, characterized by the t(11;14) or t(6;14) 

translocation, with the consequent over-expression of CCND1 or CCND3, and a non-

hyperdiploid status; TC2, showing low to moderate levels of the CCND1 gene in the 

absence of any primary Ig heavy chain (IGH) translocations but associated with a 

hyperdiploid status; TC3, including tumors that do not fall into any of the other groups, 

most of which express CCND2; TC4, showing high CCND2 levels and the presence of 

the t(4;14) translocation; and TC5, expressing the highest levels of CCND2 in association 

with either the t(14;16) or t(14;20) translocation (Hideshima et al., 2004; Agnelli et al., 

2005). 

This stratification can aid in the correct identification of patients at higher risk of early 

death, and is important in establishing proper treatment and a closer surveillance. Patients 

that fall into the TC4 and TC5 groups with t(4;14), t(4;16) or t(4;20) are designated 

“high-risk patients” (Fonseca, 2007). However, high levels of CCND2 have also been 

associated with a bad prognosis (Bergsagel et al., 2005), and this renders all the patients 

with high CCND2 in the TC3 group high risk patients as well. Other high-risk factors are 

1q gain, del(13) and hypodiploidy that can be used to further stratify patients into 

standard-risk or high-risk (Fonseca, 2007). 

 

 

5.3. TREATMENT OPTIONS 

In the last decade, several agents like proteasome inhibitors (PIs) and 

immunomodulatory drugs (IMiDs), with singular mechanisms of action have been 

discovered, developed and approved (Kumar et al., 2008; Palumbo and Anderson, 2011). 

Currently, the Food and Drug Administration (FDA) has approved 8 drugs for the 

treatment of MM and 9 others are currently in phase III clinical trials (Figure 9) (Ocio et 

al., 2014). However, the most commonly used drugs for the treatment of MM remain 

Bortezomib, one of the two PIs approved, and Lenalidomide, one of the three IMIDs 

approved. 

The advances made in the last decade in developing new treatments options for MM 

patients have resulted in a clear improvement in overall survival, but despite this MM 

remains incurable and patients who become refractory or ineligible to receive Bortezomib 

or IMIDs have a very poor prognosis (Kumar et al., 2012). 
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expression of genes that control cell growth, proliferation, survival, mitosis, 

adhesion/migration, etc. (Figure 11) (Abroun et al., 2015). RhoU is one of STAT3 target 

genes and could mediate its effects on changing cytoskeleton dynamics that enable cell 

migration or adhesion (Schiavone et al., 2009). 

Upon transient activation, STAT3 will work as a transcription factor of IL-6 and of 

STAT3 itself inducing the inflammatory response (Abroun et al., 2015). On the other 

hand, a prolonged STAT3 activation will result in the transcription of ‘suppressor of 

cytokine signaling 3’ (SOCS3), which might either act directly by binding to JAK and 

inhibiting its activation or by facilitating the ubiquitination and subsequent proteasome 

degradation of essential proteins of this pathway, blocking in this way the propagation of 

the IL-6 signal (Carow and Rottenberg, 2014). 

Moreover, other genes in this pathway might be of great importance in MM 

malignancy. For example, STAT3 can directly bind the transcription initiation site of the 

oncologic micro RNA 21 (miR21) or its upstream enhancer that contains two strictly 

conserved STAT3 binding sites, thereby promoting the expression of miR21 in MM cells 

(Löffler et al., 2007; Iliopoulos et al., 2010). A higher expression of miR21 promotes the 

survival of MM cells and blocks apoptosis by inhibiting the function of protein inhibitor 

of activated STAT3 (PIAS3), enhancing in this way the STAT3-dependent signaling 

pathway (Xiong et al., 2012). These results clearly prove a positive feedback loop 

between miR21 and STAT3 that is probably essential for MM disease initiation and 

progression. 

 

 

 

6.1. STATTIC: A STAT3 INHIBITOR 

Since STAT3 is highly activated in a large number of cancers due to aberrant upstream 

signaling, it soon became an interesting target for cancer therapy. The Src Homology 2 

(SH2) domain of STAT proteins is required for both tyrosine-phosphorylation and 

dimerization (Coleman et al., 2005). A simple approach for the inhibition of STATs, in 

this case STAT3, would be to impair the functionality of its SH2 domain. Screening of 

chemical libraries resulted in the identification of a non-peptidic small molecule which 

was given the name Stattic (Figure 12), able to selectively inhibit STAT3 functions by 

binding to its SH2 domain regardless of the STAT3 activation state in vitro (Schust et al., 
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AIM OF THE STUDY 

 

In MM, malignant PCs that resist chemotherapy and repopulate the BM are 

responsible for patients’ relapse. Over the last few years, a lot of attention has been drawn 

to the BM microenvironment and to the interaction between MM cells and BMSCs. 

BMSC-produced soluble factors, like the IL-6 cytokine, are believed to impinge on MM 

intracellular signaling and cytoskeletal properties, protecting it from cytotoxic agents. The 

atypical Rho GTPase RhoU displays spontaneous activation and is expressed at low 

levels in most tissues and organs. This protein might mediate the effects of IL6R/STAT3 

signaling in inducing filopodium formation and stress fiber dissolution, both critical steps 

in promoting cell motility. While typical Rho proteins (that share significant sequence 

homology with RhoU) as Cdc42 and Rac1 have an established role in cancer, very little is 

known about RhoU in tumorigenesis, in particular in hematologic malignancies. 

Knowing that RhoU can alter cell adhesion, actin dynamics and cell motility, we 

hypothesize that this protein might mediate the adhesion of myeloma cells to the BM 

microenvironment, and that changes in its expression, and thus activity, might lead to a 

remodeling of MM associated BM niches. 

This project aimed to investigate:  

1) Rho GTPases expression in normal versus malignant PCs. 

2) Rho GTPases expression in the different MM subgroups (TC groups). 

3) The pathway(s) responsible for RhoU modulation in MM malignancy. 

4) RhoU expression changes in MM and the impact it might have in adhesion, 

migration/motility and structural features (actin cytoskeleton dynamics) of 

malignant PCs. 

5) The role of RhoU in malignant PC-BMSCs adhesion and in the creation of 

protective BM niches. 

6) If immunomodulatory drugs like Lenalidomide, known to alter microenvironment 

signaling, have an effect on RhoU expression. 

  



 36 

  



 37 

MATERIAL AND METHODS 

PATIENT SAMPLES AND HEALTHY DONORS 

Patient samples were collected in collaboration with Professor Antonino Neri’s group 

(University of Milan, Italy). The study was performed in a cohort of 165 patients, 

representative of all the major forms of PC dyscrasia. This dataset, publicly available at 

the NCBI Gene Expression Omnibus repository (accession #GSE66293), includes 4 

normal controls (Voden, Medical Instruments IT), 129 MM, 24 pPCL, and 12 sPCL 

patients. With the exception of sPCL, the cohort consists of newly-diagnosed patients. 

The proprietary 129 MM tumors employed for the study were representative of the major 

molecular characteristics of the disease. Samples were characterized for the presence of 

the most frequent chromosomal translocations and the ploidy status based on fluorescence 

in situ hybridization (FISH) evaluation criteria. Specifically, forty-eight showed an 

hypodiploid (HD) status; thirty-four were characterized by the t(11;14) or t(6;14) 

translocations; nineteen had the t(4;14) translocation; six had either the t(14;16) or 

t(14;20) translocations; and twenty-two did not fall into any of the other groups. 

To better analyze RNA profile changes during disease progression, we have used the 

publicly available NCBI Gene Expression Omnibus repository accession # GSE47552, a 

dataset composed of 5 healthy controls, 20 MGUS, 33 SMM and 41 MM (López-Corral 

et al., 2014). 

 

PLASMA CELL SEPARATION  

PCs were purified from BM samples using CD138 immunomagnetic microbeads 

(MidiMACS system, Miltenyi Biotec, Auburn, CA) according to manufacturer's protocol 

and the purity of the positively selected PCs, assessed by FACSCanto, was > 90% in all 

cases. 

 

CELL LINES 

INA-6 cell line was a kind gift from Professor Nicola Giuliani (University of Parma, 

Italy); U266, H929 and RPMI 8226 were purchased from ATCC (Milan, Italy). saMMi 

cell line was generated in our laboratory and is described in depth ahead. 



 38 

INA-6 cell line was established from the pleural effusion of an 80-year-old PCL 

patient and is dependent either on exogenous human IL-6 or human BMSCs for its 

growth and survival, similarly to primary MM cells (Burger et al., 2001). 

U266 cell line was established from the peripheral blood of a 53-year-old patient with 

IgE-secreting PCL, these cells have been reported to produce human IL-6 (Nilsson et al., 

1970). 

H929 cell line was established from the pleural effusion of an 62-year-old PCL patient, 

rearrangement of c-MYC proto-oncogene has been described in this cell line and it is able 

to grow independently of IL-6 growth factor (Gazdar et al., 1986). 

RPMI 8226 cell line was established from the peripheral blood of a 61-year-old patient 

with Igλ light chain-secreting PCL; these cells can survive without IL-6 stimulus 

(Matsuoka et al., 1967). 

HS5 BM stroma cell line was purchased from ATCC (Milan, Italy) and used in co-

culture experiments to mimic the BM microenvironmental niche. 

 

saMMi CELL LINE GENERATION 

saMMi cell line was generated from a BM biopsy of a 82-year-old Caucasian woman 

with MM. The malignant PCs were purified using anti-CD138 magnetic beads and lised 

for RNA and protein studies. The remaining cells were put in culture for the purification 

of BMSCs. After 1 month of culturing, in the flask with BMSCs we found a population of 

malignant PCs that developed either from the CD138
-
 fraction or most likely from the 

proliferation of few CD138
+
 cells left from purification. 

Cells were then separated from the BMSCs and various media with different IL-6 

concentrations were tested. saMMi cell line was not able to survive without IL-6 or the 

support of BMSCs. The best growth culture condition for this cell line was found to be 

DMEM medium supplemented with 20% FCS and 2,5ng/mL of IL-6. 

IMMUNOPHENOTYPE 

To better understand the characteristics of this new cell line we have proceeded to 

determine its immunophenotype. We have marked the cells with the most common 

markers used in the characterization of MM cells: CD38, CD138, CD117, CD19, CD56, 

CD45, κ and λ light chains. Cells were positive for CD138, CD56, CD45 and λ light 

chains, and negative for all the other markers. Interestingly, CD138
+
 cells from the patient 
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1’; a mix of DNase and buffer RDD (10µl and 70 µl respectively) were added directly on 

the membrane and kept in incubation for 15’-30’, in order to degrade DNA. Afterwards a 

series of washes were performed to remove the contaminating DNA fragments, first of all 

with buffer RW1 (700µl) and then with ethanol containing buffer RPE (500µl). Samples 

were finally centrifuged at 12800rpm for 2’, to ensure that the membrane was dry. At the 

end RNA was eluted by adding 30µl of RNase free water to the silica membrane and 

centrifuging it to a new collection tube at 11000rpm for 3’. 

RNA was quantified by means of Nanodrop 1000 (Thermo Scientific). 

 

REVERSE TRANSCRIPTION 

Reverse transcription is the name given to the reaction exploited by a RNA-dependent 

DNA polymerase, also called reverse transcriptase, capable of synthesizing a 

complementary strand of DNA, called cDNA, using an RNA strand as template. 

RNA was reversely transcribed to cDNA by means of Reverse Transcription System 

(Promega, USA). This system uses the AMV (namely avian myeloblastoma virus) reverse 

transcriptase enzyme, which synthesizes single-stranded cDNA from isolated mRNA; this 

enzyme shows polymerase activity from 5’ to 3’ versus, and RNase activity from 3’ to 5’, 

degrading the RNA strand when the hybrid cDNA/RNA is formed.  

The reaction mix was done as follows: 

• MgCl2 (25mM)    4µl 

• Reverse transcription 10X buffer   2µl 

• dNTPs mix (10mM)               2µl 

• Oligo dT primer (0.5mg/ml)              1µl 

• RNasin RNase inhibitor              0.5µl 

• AMV Reverse Transcriptase              0.6µl 

• 1 µg of RNA 

• RNase free H20 to a final volume of 20µl 

 

Then samples underwent the following thermal protocol: 

• 42°C for 15’ 

• 95°C for 5’ 

• 4°C maintenance 
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REAL-TIME PCR 

The quantitative Real-Time PCR (qRT-PCR) is a method for the quantification of gene 

expression, characterized by high sensibility and specificity. It is called “Real-Time” 

because it allows the actual observation in real-time of the increase in the amount of DNA 

as it is amplified. This is possible because the qRT-PCR system combines a thermal 

cycler and an optical reaction module that detects and quantifies fluorophores. Molecules 

added to the PCR mix, as SYBR Green, bind the double-stranded DNA and emit a signal 

that increases in proportion to the rise of the amplified DNA products. An amplification 

curve is obtained where cycle numbers are found in the x axis and the normalized 

fluorescence in the y axis. At the beginning of the reaction there are only little changes in 

fluorescence and this is called the baseline region; an increase in fluorescence above this 

threshold underlines amplified product formation. From this point on, the reaction 

maintains an exponential course that degenerates in plateau when any of the reactants 

(dNTPs or primers) comes to an end. 

The exponential amplification phase is the most important phase since the amount of 

amplified DNA is correlated with the amount of cDNA present at the beginning in the 

sample, being that this amount doubles at every cycle. In this linear region a threshold of 

fluorescence is chosen and from this value it is possible to obtain the Ct (threshold cycle), 

namely the number of cycles of amplification necessary for the sample to reach that 

threshold of emission. If the amount of cDNA present at the beginning in the sample is 

high, the curve will rise earlier and Ct values will be smaller.  

As detector dye we used SYBR Green that emits low fluorescence if present in 

solution but has a strong signal when the dye binds to double-stranded DNA. However 

SYBR Green is not a selective dye and binds all double-stranded DNA, even primer 

dimers. For this reason it is recommended to introduce of a further step after 

amplification, called dissociation protocol. During this step, temperature rises gradually 

until all the double strands are denatured. This method allows the identification of 

contaminants or unspecific amplification products since they show different melting 

points. ROX is also present in the mix and works as an internal reference used by the 

instrument to normalize SYBR Green fluorescence. 

For the evaluation of gene expression we chose a relative quantification method, using 

the ΔΔCt formula: 

1) ΔCt = Ct (target gene) - Ct (reference gene) 
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2) ΔΔCt = ΔCt (of sample) - ΔCt (of control sample) 

3) 2^
-ΔΔCt

 

The thermal cycler used was the Sequence Detection System 7000 (Applied 

Biosystem) and the software was ABI PRISM 7000. 

The reagents of the reaction mix were: 

• Roche FastStart Universal SYBR Green Master (ROX)     7.5µl 

• Forward primer (4pmol/µl)                             1µl 

• Reverse primer (4pmol/µl)                            1µl 

• H2O                    4.5µl 

• cDNA                   1µl 

 

FastStart Universal SYBR Green Master (ROX) contains all reagents, including 

dNTPs and Taq polymerase, needed for running the qRT-PCR except for primers and 

template. FastStart Taq DNA Polymerase present in the mix is a hot start polymerase with 

the following amplification protocol: 

• UDG activation    50°C  2’ 

• Polymerase activation               95°C  10’ 

• Denaturation                95°C  15’’        for 40 cycles 

• Annealing and amplification              60°C  1’ 

Dissociation protocol: increasing temperature from 60°C to 95°C. 

In the table below are reported the sequences of the primers used for the qRT-PCR. 

 

Table 2: Primers used for qRT-PCR. GAPDH was used to normalize the reaction. 

GENE FORWARD REVERSE 

RHOU 
5’-AAA TGG GTG CCG GAG 

ATT CG -3’ 

5’-CCA ACT CAA TGA GGA CTT 

TGA CAT C -3’ 

IL-6 
5’- GGC ACT GGC AGA AAA 

CAA CCT G -3’ 

5’- TCA CCA GGC AAG TCT CCT 

CAT TGA AT -3’ 

GAPDH 
5’-AAT GGA AAT CCC ATC ACC 

ATC T-3’ 
5’-CGC CCC ACT TGA TTT TGG-3’ 

 

The sequences were found using Primer Express program (Applied Biosystem). 
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PROTEIN EXTRACTION AND QUANTIFICATION 

WHOLE PROTEIN EXTRACTION 

All steps were performed at 4°C. Cells (1-2x106) were collected, washed in PBS and 

centrifuged at 5000 rpm for 5’. Pellets were resuspended in 40-50µl of lysis buffer 

composed of: 150mM NaCl, 2 mM EDTA, 2mM EGTA supplemented with 0.5% Triton 

X-100 (Sigma, Germany), protease inhibitor cocktail (Sigma, Germany), phosphatase 

inhibitor cocktail (Thermo Scientific, USA), 1mM phenyl-methyl-sulfonyl fluoride 

(PMSF; Sigma, Germany), 1μM okadaic acid (Sigma, Germany), dithiothreitol (DTT; 

Sigma, Germany) in a buffer made up of Tris (pH7.5) 20mM, NaCl 150mM, EDTA 

2mM, EGTA 2mM to final volume. Samples were incubated on ice for 30’, vortexing 

every 10’ and then centrifuged for 10’ at 13000 rpm. Supernatants were collected and 

stored at -20°C or quantified immediately. 

PROTEIN QUANTIFICATION 

To measure the concentration of proteins after cell lysis we performed Bradford 

(Sigma,Germany) protein assay. It is based on an absorbance shift of the Comassie 

Brilliant Blue G-250 dye. Under acidic conditions, the red form of the dye is converted 

into its bluer form by binding to the protein being assayed. The bounded form of the dye 

has the maximum absorption spectrum at 595nm. The binding of the dye to the protein 

stabilizes the blue anionic form, increasing the absorbance at 595nm in proportion to the 

amount of bounded dye, and thus to the concentration of protein present in the sample can 

be extrapolated. 

Bradford was diluted 1:2 in distilled water and 1mL of diluted reagent was added to 

each tube. Then, 1µl of cell lysate was added to the solution, mixed well and incubated 3’ 

in the dark. Using 1.5 mL cuvettes, absorbance at 595nm was red using a 

spectrophotometer (Ultrospec 1100pro; Amersham). 

Concentration values were obtained applying the Lambert-Beer formula: 

   A=ε x c  ε=molar extinction coefficient 

Molar extinction coefficient was derived from a calibration curve, obtained using 

known concentrations of bovine serum albumin (BSA). 
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SDS-PAGE 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is a method 

that allows the separation of proteins according to their molecular weight and no other 

physical feature. 

SDS is a detergent that can dissolve hydrophobic molecules and has a negative charge 

(sulfate) attached to it, so it can disrupt hydrophobic areas and coat proteins with many 

negative charges, which overpower any positive charges the protein might present. The 

resulting protein is denatured (reduced to its primary structure) and linearized. Moreover, 

proteins having now a large negative charge will migrate towards the positive pole when 

placed in an electric field. 

When polyacrylamide, a polymer of acrylamide monomers, undergoes the process of 

polymerization, it turns into a gel that can be placed in an electric field to pull the proteins 

through it. The acrylamide concentration of the gel can vary, generally from 5% to 25%. 

Lower percentage gels form bigger pores and are thus better for separating high 

molecular weight proteins, while higher percentages are needed for separating smaller 

proteins. Small molecules can move through the polyacrylamide mesh faster than big 

molecules and so they will be at the frontline of migration. 

The polyacrylamide gel is composed of two phases: the upper phase is the stacking gel 

(pH 6.8) and the lower phase is the separating gel (pH 8.8). The first one allows the 

protein to compact and enter the separating phase simultaneously. The second one allows 

the separation of proteins according to their molecular weight. We used fixed 

concentrations of acrylamide (8% or 10% for separating gel; 5% for stacking gel). Protein 

samples and a molecular weight reference (Seeblue Plus2 Prestained Standard 1X, 

Invitrogen) were loaded into different wells in the stacking gel and separated using 

Amersham electrophoretic chambers, a specific saline running buffer (pH 8.3) (25mM 

Tris, 192mM glycine, 0.1% SDS) and an applied electric field of 25mA. 

15-30µg of protein lysates were mixed with sample buffer (1:4) composed by SDS 

20%, Tris (pH 6.8) 1.5M, bromophenol blue 0.05%, DTT 6%, and β-mercaptoethanol 

1:20. Samples were heated at 100°C for 4’ to favor denaturation. 
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WESTERN BLOTTING 

After electrophoresis, proteins must be transferred from the electrophoresis gel to a 

membrane. The most commonly used transfer method is an electrophoretic transfer: this 

method involves placing a protein-containing polyacrylamide gel in contact with a 

membrane of polyvinylidene difluoride (PVDF) or other suitable material, and putting 

these together between two electrodes in a conducting solution. Since the PVDF is very 

hydrophobic, we previously incubated it in methanol for 1’ to expose its full protein 

binding capacity. The blotting sandwich is composed inside a grid by the following 

components in this order: sponge, whatman paper, electrophoresis gel, PVDF membrane, 

whatman paper, sponge. When an electric field is applied, the proteins move out of the 

polyacrylamide gel onto the surface of the membrane, where they become tightly 

attached. The result is a membrane with a copy of the protein pattern that was originally 

in the gel. The transfer is performed in a specific saline buffer containing Tris 250mM, 

glycine 1.92M and methanol 20%. After the transfer the membrane is saturated to prevent 

unspecific binding of the detection antibodies during subsequent steps. Saturation is 

performed for 1 hour in a solution composed of non-fatty milk 5% (Ristora) and TBS 

(Tris buffered saline) supplemented with Tween-20 0.05% (Sigma). Saturation is 

followed by washing in TBS plus Tween-20 0.05% in order to remove unbound reagents 

and reduce the background signal. The membrane is then incubated overnight at 4°C with 

a primary antibody that recognizes a specific protein or epitope on a group of proteins. 

The primary antibody is not directly detectable. Therefore, tagged secondary antibodies 

that recognize the heavy chains of the primary antibodies are used to detect the target 

antigen (indirect detection). Secondary antibodies are enzymatically labelled with 

Horseradish peroxidase. After a final series of washes to remove unattached antibodies, 

the antibodies on the membranes are ready to be detected. An appropriate 

chemiluminescent substrate, which produces light when in contact with the enzymatically 

labeled secondary antibodies, is then added to the membrane. The light output was 

captured using ImageQuant LAS500 machine (GE Healthcare Life Sciences).  

We used different chemiluminescent substrates: 

• Pierce ECL western blotting substrate (Thermo Scientific); 

• LiteAblot PLUS Enhanced Chemiluminescent Substrate (EuroClone); 

• LiteAblot EXTEND Long Lasting Chemiluminescent Substrate (EuroClone); 

• LiteAblot Turbo Extra Sensitive Chemiluminescent Substrate (EuroClone). 
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In order to detect more antibodies with the same specificity and similar molecular 

weight it is necessary to strip the membrane. Stripping buffer reagent (Thermo scientific) 

allows the efficient removal of primary and secondary antibodies from immunoblots 

without removing or damaging the immobilized proteins. This allows blots to be re-

probed with new antibodies. For stripping, membranes were covered with this buffer and 

incubated for 20’-25’ at 37°C and then washed with TBS, afterwards the membranes were 

washed and saturated again with milk. 

ANTIBODIES 

 Primary antibodies: anti-GAPDH (Millipore, Germany); anti-cleaved PARP (Cell 

Signaling, USA); anti-RhoU (Abcam, UK); anti-phospho-JNK(Thr183/Tyr185) (Cell 

Signaling, USA); anti-phospho-STAT3(Tyr705) (Cell Signaling USA) 

Secondary antibodies: anti-rabbit IgG HRP-linked antibody (Cell Signaling, USA); 

HRP labeled goat anti-mouse IgG (KPL, USA). 

 

FLOW CYTOMETRY 

Fluorescence Activated Cell Sorting (FACS) analysis was performed using 

FACSCanto Cytometer and FACSDiva 6.0 software (Becton-Dickinson, Italy). 

ANNV/PI STAINING 

After drug treatment with Stattic or Lenalidomide, and after RhoU silencing with 

siRNA, apoptosis was evaluated using the Apoptosis Detection Kit (Immunostep, Italy). 

Annexin V (AnnV) is a member of a highly conserved protein family that binds acidic 

phospholipids in a calcium-dependent manner. The protein presents a high affinity for 

phosphatidylserine, which is translocated from the inner side of the plasma membrane to 

the outer layer when cells undergo death by apoptosis or necrosis. Exposed 

phosphatidylserine is one of several signals through which the cell, that is undergoing 

apoptosis, can be recognized by phagocytes. AnnV binding to the cell surface indicates 

that cell death is imminent. In order to differentiate apoptosis from necrosis, a dye 

exclusion test with propidium iodide (PI) is performed to establish if membrane integrity 

has been conserved or not. A combination test measuring AnnV binding and dye 

exclusion allows discrimination between live cells, apoptotic cells and necrotic cells.  
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2x10
5
 cells were washed in PBS to remove medium and resuspended in 100µl of 

binding buffer. 1.7µl of AnnV-FITC were added and cells were incubated for 10’ at room 

temperature in the dark. 100µl of binding buffer were further added to the cell suspension 

and DNA was stained with 5µl of PI immediately before proceeding with flow cytometric 

analysis.  

CD38/CD138 STAINING 

Identification of plasma is typically based on high expression of CD38 and CD138 

surface markers, in conjunction with the scatter properties of the cell population. Unlike 

CD138 that is a specific marker of PCs; CD38 expression is also accessible in other cell 

populations but has a particularly high expression in PCs. However, in many abnormal 

PC populations the surface density of CD38 is decreased and these may have a staining 

intensity similar to that of normal B-cell precursors or activated T-cells. CD38/CD138 

staining is still the best staining for identifying PCs. This staining was used to evaluate 

the initial plasmacytosis of fresh BM aspirates from MGUS, sMM, MM and PCL 

patients. This technique was also used to ensure a higher that 90% purity after PC 

separation protocol.  

2x10
5
 cells were washed in PBS to remove medium and resuspended in 100µl of PBS. 

5µl of anti-CD138-FITC and anti-CD38-PE were added to the cells and incubated in the 

dark for 5’. Cells were again washed in PBS and resuspended in 200µl PBS before 

proceeding with the flow cytometric analysis. 

 

GENE EXPRESSION PROFILING 

For gene expression analysis, samples were profiled on the GeneChip Human Gene 1.0 

ST array (Affymetrix, Santa Clara, CA, USA) as previously described (Todoerti et al., 

2013). The raw intensity expression values were processed by Robust Multi-array 

Average (RMA) procedure (Irizarry et al., 2003), with the re-annotated Chip Definition 

Files from BrainArray libraries version 19.0.0, available at: 

http://brainarray.mbni.med.umich.edu.  

Supervised analyses were carried out using the Significant Analysis of Microarrays 

software version 5.00 (Tusher, Tibshirani and Chu, 2001) using the web application 

provided in the shiny package for R software (https://github.com/MikeJSeo/SAM). The 
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cutoff point for statistical significance (at a q-value = 0) was determined by tuning the Δ 

parameter on the false discovery rate (FDR) and controlling the q-value of the selected 

gene lists. A higher stringency level (90
th

 percentile FDR = 0) was also applied to the 

differentially expressed gene lists at q-value 0. The list of differentially expressed genes 

was functionally analyzed by means of NetAffx (Affymetrix at 

https://www.affymetrix.com/analysis/netaffx/), the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) Tool 6.7 (http://david.abcc.ncifcrf.gov/) 

(Huang, Lempicki and Sherman, 2009). The Gene Ontology Biological Process and 

Molecular Function terms were selected as annotation categories in DAVID, and highly 

stringent classification was used for analysis in the Functional Annotation Clustering 

option. The annotation clusters with an enrichment score (ES) of >1.3 (Pvalue <0.05) 

were considered significant.  

 

SIRNA TRANSFECTION BY ELECTROPORATION 

Electroporation is a transfection technology based on the momentary creation of small 

pores in cell membranes by applying an electrical pulse. For siRNA transfection we have 

used Lonza’s Amaxa Nucleofector™ Technology (USA). 

A mix of transfection solution was done by adding 100pmol of RhoU siRNA 

(SMARTpool: ON-TARGETplus RHOU siRNA, Dharmacon, Italy) or 100pmol of 

Scrambled (ON-TARGETplus Non-targeting siRNA, Dharmacon, Italy) together with 

100pmol of siGLO Green (Dharmacon, Italy) for transfection control to 90µL of Amaxa 

Nucleofector® Kit C (Lonza, USA). 

2x10
6
 cells per condition were washed with PBS and centrifuged at 90g for 10 minutes 

at room temperature. Supernatant was discharged and 3 conditions of transfection 

medium were added to different tubes: RhoU siRNA + siGLO Green; Scrambled + 

siGLO Green; Amaxa only. 

Each mix was transferred into supplied certified cuvettes, and transfected using the 

program X-005 in Amaxa Nucleofector® I device. Cells were then collected from the 

cuvettes, resuspended into their favorite medium and incubated for 48hours before further 

analysis were done. 
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Transfection control was done by siGLO Green reads in FACSCanto Cytometer after 

24hours to ensure that transfection was efficient. Transfections with efficiency lower than 

80% were discarded. 

 

IMMUNOFLUORESCENCE (IF) 

Cells (5 x 10
4
) were seeded on polylysine-coated glass slides and incubated at 37°C for 

1 hour to let them adhere to the polylysine. Afterwards, cells were washed with PBS, 

fixed with shilled formaldehyde 3.7% for 20’ and permeabilized with Triton 0.1% in PBS 

for 5’ at room temperature. After three washes with PBS, cells were blocked with BSA 

3% for 30’. Samples were then stained with Phalloidin Alexa Fluor 594 (Invitrogen, 

USA) for 30’. After washing with PBS, specimens were mounted in Vectashield 

mounting medium with DAPI (4′,6-diamidino-2-phenylindole) (Vector Laboratories, 

USA), in order to distinguish the nuclei and analyzed using ZEISS LSM700 confocal 

microscope with 63x magnification objective. Images were analyzed with ImageJ 

software.  

IMMUNOHISTOCHEMISTRY (IHC) 

IHC was performed on 4 μm-thick formalin-fixed, paraffin-embedded sections of BM 

biopsies of 1 healthy, 8 MGUS and 15 MM biopsies, using anti-RhoU (HPA049592, 

Sigma-Aldrich, USA) and anti-IRF4 (HPA002038, Sigma-Aldrich, USA) monoclonal 

primary antibodies. Heat/EDTA-based Ag retrieval methods were applied, as previously 

described. All sections were processed using the sensitive Bond Polymer Refine 

Detection kit, a biotin-free, polymeric horseradish peroxidase–linker antibody conjugate 

system, in an automated immunostainer (Bond maX, Menarini, Italy). Appropriate 

positive and negative controls were run concurrently. RhoU immunostain was 

semiquantitatively scored in a four-tiered scale, as follows: score 0 = negative staining; 

score 1 = weak positivity staining; score 2 = moderate positivity staining; score 3 = strong 

positive staining. Immunohistochemical reactions were independently scored by two 

investigators (agreement k>0.8). In case of discrepancies, a consensus opinion was 

rendered 
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TRANSWELL MIGRATION ASSAY  

For migration assays 5µmTranswell
®

 Permeable Supports on 24 well plates (Corning, 

USA) were used. 600µL of non-supplemented standard medium (RPMI or DMEM 

depending of cell line used) + 0.1%BSA were added to the bottom of the multi well plate, 

and 50µL of the same mix were added on top of the transwell insert. Plates were 

incubated over night to ensure that the filter was properly wet before performing the 

experiment. 

Cells were washed four times with HBSS buffer to free the receptors on the cell 

membrane from previous binding partners. 4x10
5 

cells were then resuspended in 50µL of 

recommended medium + 0.1%BSA and added to the top well insert. Plates were returned 

to the incubator for 20 minutes to allow cell to precipitate. 

Afterwards, IL-6 stimulus (10ng) was carefully added to the bottom well, without 

moving the insert. IL-6 was not added to control wells. The plates were left in the 

incubator for 6 hours. 

Lastly, cells in the bottom well were mixed well by pipetting and two 200µL samples 

were transferred to two cytofluorimetry tubes. The amount of cells in the tube was 

assessed by 1 minute reads in FACSCanto at high speed. 

The number of cells that have responded to the stimulus was given by the total number 

of cells that migrated to the well with the stimulus minus the number of cells that 

migrated to the control well (without stimulus). 

 

OTHER CHEMICALS 

Cells were stained with Trypan Blue (Sigma, Germany) and counted in a Neubauer 

chamber. An appropriate number of cells was then centrifuged and plated with fresh 

medium at a concentration of 1x10
6
 cells/ml.  

The following treatments were employed: 

• Stattic (Selleckchem, USA), STAT3 inhibitor; 

• IL-6 (ImmunoTools, Germany), Recombinant Human Interleukin 6; 

• Lenalidomide (Cellgene, USA), IMiD used in MM treatment. 
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STATISTICAL ANALYSIS 

Data were evaluated for their statistical significance with appropriate tests: Student’s t 

test was used to assess if a mean value of a certain distribution was significantly different 

from a reference value; differences between groups were tested by applying the Analysis 

of Variance (ANOVA) or Fisher’s exact test; Student’s t test for trend was applied when a 

trend needed to be verified. P values below 0.05 were considered statistically significant.  

To evaluate the correlation between the expressions of two genes “Pearson product-

moment correlation coefficient” was used. Pearson's r values are comprised between -1 

and 1. If r < 0 there is a negative correlation; if r = 0 there is no correlation; if r > 0 there 

is a positive correlation. The strength of the correlation also depends on the r value the 

closer the value is to 1, the stronger the linear correlation. 

All analyses were performed using GraphPad Prism 6, Microsoft Excel or R software. 
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Figure 22: Correlation between RHOU levels and specific MM mutations. Patients were divided in 3 

groups with low (< Mean - 2SD of healthy controls), intermediate, and high (> Mean + 2SD of healthy 

controls) RHOU expression. The distribution of patients with each studied genetic change was then 

represented in a bar chart. Student’s t test for trend * p < 0.05; ** p < 0.01; **** p < 0.0001. 

 

 

PATIENTS WITH HIGH AND LOW RHOU EXPRESSION HAVE A 

DIFFERENT EXPRESSION PROFILE FOR 557 GENES  

By interrogating the tumor genome we have discovered that patients with high and low 

RHOU mRNA levels display different gene expression profiles. For this study since we 

needed an equal number of patients in each group, we have divided the cohort of MM 

patients in quartiles and we have compared the genetic profiles of the first (lowest RHOU 

expression) and fourth (highest RHOU expression) quartiles. More precisely, 557 genes 

are distinctively expressed between MM patients with high and low RHOU and this could 

give us some hints on the prognosis value of this GTPase. To better understand the 

differences in the gene expression profiles between the two groups, we have created a 

heat map of RHOU expression together with these 557 genes (Figure 23). Of these, 101 

had the same trend of expression as RHOU while 456 had an opposite expression profile 

and were up-regulated when RHOU mRNA levels were low. 
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RHOU CLUSTERS WITH GENES ASSOCIATED WITH CELL CYCLE 

AND MITOSIS 

To better understand the significance of the different gene expression profiles we have 

taken to REACTOME data analysis tool (http://www.reactome.org/) and looked for gene 

clusters that associated with RHOU. 

We have found out that RHOU expression clusters with the expression of genes that 

regulate the cell cycle and mitotic process (Table 4).  

 

Table 4: REACTOME “cell cycle, mitotic” genes that significantly cluster with RhoU. 

Category Term Count % P value Genes 

REACTOME_PATHWAY 
REACT_152: 

Cell Cycle, 

Mitotic 
14 2.7559 0.05 

ITGB3BP, NUP160, 

BTRC, POLE, 

ANAPC4, KIF18A, 

POLA2, MCM8, 

APITD1, CCND2, 

PSMA3, CEP290, 

ANAPC7, NUP43 
 

 

We have created a heat map of the genes that arose from this analysis to evaluate 

which of these positively or negatively correlated with RHOU expression (Figure 24). 

CCND2 was the only gene in the list that positively correlated with RHOU (Pearson’s r = 

0.402), and this could mean that cells with high RHOU expression have increased levels 

of cyclin D2 and a higher replication rate. All the other genes responsible for cell cycle 

control and DNA damage response had a negative correlation with RHOU expression. 

Extensively, ITGB3BP which overexpression induced apoptosis in cancer cells (Li et al., 

2004); NUP160, NUP43, KIF18A, BTRC, APITD1 and CEP290 that are required for 

correct mitosis, centrosome dynamics and chromosome alignment (Orjalo et al., 2006; 

Platani et al., 2009; Thomas, Coux and Baldin, 2010; Osman and Whitby, 2013; Kim, 

Fonseca and Stumpff, 2014; Song, Park and Jang, 2015); POLE, POLA2 and MCM8 

which have extremely important roles in DNA replication and genome stability 

(Gozuacik et al., 2003; Pollok et al., 2003; Henninger and Pursell, 2014); ANAPC4 and 

ANAPC7 that have emerging roles in differentiation control, genomic stability and tumor 

suppression (Wäsch, Robbins and Cross, 2010); and PSMA3 which is part of the 
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expressed RHOU at very low levels (RPMI-8826 and H929) while three others over-

expressed it (saMMi, INA-6 and U266). 

 

 

Figure 26: RHOU expression in MM cell lines as compared to healthy PCs. Bar chart with mean 

expression of RHOU from three independent samples of each cell line as compared to RHOU expression in 

4 healthy controls. Mean and SD of all cell lines normalized over the mean expression in healthy PCs. 

 

We have then looked at some important characteristics of each MM cell line: year of 

creation, tissue of provenience and IL-6 dependence status (Table 6). In some cases the 

time these cells have been in culture can determine the accumulation of mutations that 

lead to changes in gene expression; in this case there were no evident correlations. There 

was also no correlation between the expression of RHOU and the tissue from where these 

cells were extracted. However, looking at the IL-6 dependence status, cells that are 

dependent on IL-6 stimulus for survival have up-regulated RHOU while those that are 

independent from this stimulus down-modulated it. 

 

Table 6: Main characteristics of MM cell lines and RHOU expression. 

Name Year Tissue IL-6 RHOU mRNA 

RPMI-8226 1967 Peripheral Blood Independent 0.40 

H929 1986 Pleural Effusion Independent 0.57 

saMMi 2015 Bone Marrow Dependent 4.89 

INA-6 2001 Pleural Effusion Dependent 5.43 

U266 1970 Peripheral Blood 
Dependent 

Autocrine 
7.98 
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IL-6 STIMULUS UP-REGULATES RHOU EXPRESSION 

To determine whether IL-6 stimulus could lead to an up-regulation of RHOU 

expression we have stimulated cells with IL-6 (10ng) and collected samples at 1, 4, 8, 12 

and 24 hours (Figure 27). Cell lines that are usually cultured in medium supplemented 

with IL-6 (saMMi and INA-6) were starved from this cytokine for 12 hours previous to 

stimulus. All three cell lines up-regulated RHOU expression as early as 1 hour after 

stimulus. In detail, 1 hours after the addition of IL-6, there was an increase in RHOU 

expression equal to 1.7 times-fold in saMMi, 2.4 times-fold in INA-6 and 1.2 times-fold 

in U266. U266 might have displayed the lowest changes due to the fact that this cell line 

cannot be starved from IL-6 since it autocrinally produces it. 

 

 

 

Figure 27: RHOU expression is significantly up-regulated after IL-6 stimulus. Time-course of RHOU 

expression after IL-6 stimulus showing a significant increase in RHOU expression as early as one hour after 

stimulus. Mean and SD of all cell lines normalized over time zero. 
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To verify if this effect was due to the specific activation of the IL6R/STAT3 pathway 

rather than an unspecific effect of growth factors, we have stimulated INA-6 cell line with 

TNF-α, another MM growth factor that activates the ERK and NF-κB pathways, rather 

than the STAT3 cascade (Figure 28, orange). Another condition that we compared to IL-6 

stimulus was the addition of conditioned medium from BMSCs’ culture (Figure 28, 

green) since this should contain all growth factors produced by BMSCs including IL-6 

and TNF-α. BMSCs’ from patients were cultured in unsupplemented RPMI medium for 

24 hours, culture supernatant was collected, centrifuged and filtered to remove any 

remaining cells or debris. INA-6 cells were then resuspended in this medium containing 

all the cytokines released by BMSCs. Unsupplemented fresh medium was used as a 

negative control of stimulation (Figure 28, black). RHOU expression dynamics after the 

addition of BMSCs’ conditioned medium were similar to the ones observed after IL-6 

stimulus, while adding TNF-α did not cause any significant changes.  

 

 

 

 

Figure 28: RHOU expression is significantly up-regulated to the same levels after IL-6 stimulus or 

addition of BMSCs’ conditioned medium. Time-course showing the changes in RHOU expression after 

the addition of different stimulus to INA-6 cell line. Mean and SD of all conditions were normalized over 

time zero of cells in unsupplemented fresh medium. 
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CO-CULTURE OF MM CELL LINES WITH STROMA CELL LINE HS5 

HAS A SIGNIFICANT IMPACT IN RHOU EXPRESSION 

To deep our knowledge on RHOU modulation in the context of MM 

microenvironment, we have then co-cultured MM cell lines with HS5 stromal cell line 

(Figure 29). Two co-culture conditions were created: one where cells were cultured 

directly from their “normal” growth conditions and another one where cells were starved 

from IL-6 for 12 hours previous to co-culture. Again, starvation could not be performed 

for U266 cell line since these cells autocrinally produce IL-6. As a control of the ability 

of HS5 soluble factor ability to stimulate RHOU expression, starved cells were 

resuspended in medium containing all the cytokines released by HS5 (24 hours culture) as 

done previously with BMSCs. It is important to say that the medium was removed from 

HS5 cells before co-culture and fresh unsupplemented medium where MM cell lines were 

resuspended was added at time zero. 

As expected, HS5 conditioned medium led to an upregulation of RHOU expression as 

early as 1 hour after addition, that resulted normalized after 24 hours. 

 Interestingly, in the co-culture condition we observed opposite results for the same 

cell lines with or without starvation. In starved cells, RHOU expression was up-regulated 

overtime on the following 72 hours after co-culture that could result from a 

slower/gradual stimulus production by HS5. On the other hand, in non-starved cells that 

had high RHOU levels at time zero, we unexpectedly observed a down-modulation of its 

expression over the next 72 hours that might be contact dependent. 

 

 

Figure 29: RHOU expression is significantly modulated after co-culture with stromal cell line HS5. 

Time-course showing the changes in RHOU expression after the addition of HS5 supplemented medium or 

after co-culture with HS5. Mean and SD of all conditions were normalized over time zero of each cell line. 
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MIGRATION CAPABILITY DECREASES AFTER STAT3 INHIBITION 

Since RhoU an important controller of proteins involved in the regulation of the 

cytoskeleton, we aimed at validating if STAT3 inhibition had an effect in the migration 

capability of MM cell lines. We have created a transwell migration assay and evaluated 

by FACSCanto 1 minute reads the number of cells that were able to migrate through a 

5µm filter. Stattic treatment led to a dose dependent decrease in cell migration that could 

be dependent on RHOU expression (Figure 32). Untreated (UN) cells were able to 

migrate as expected through the 5µm filter. Cells treated with increasing doses of Stattic 

were significantly less able to migrate. 

 

 

 

 Figure 32: STAT3 inhibition led to a dose dependent decrease in MM cell migration. Bar charts 

exhibit mean cell count from three independent samples, after treatment with increasing concentrations of 

Stattic. Students t test * p<0.05; ** p<0.01; **** p<0.0001 
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LENALIDOMIDE AFFECTS IL-6 SIGNALING AND RHOU 

EXPRESSION 

Lastly, since IMIDs were shown to be able to regulate the activation of classical Rho 

proteins, we aimed at studying the effects Lenalidomide could have in RhoU expression. 

We have found an almost linear increase of RHOU expression over 24 hours after 

Lenalidomide treatment, independently of the dose used (2, 5 or 10 µM) (Figure 35). 

Since this cell line is able to autocrinally produce IL-6, we have looked at IL-6 

expression and found it also over-expressed after Lenalidomide treatment, independently 

of the dose used (Figure 36) 

 
Figure 35: RHOU expression changed overtime after treatment with Lenalidomide. Time-course of 

RHOU expression in U266 cell line after treatment with increasing doses of Lenalidomide. Mean and SD 

normalized over time zero. 

 
Figure 36: IL-6 expression changed overtime after treatment with Lenalidomide. Time-course of IL-6 

expression in U266 cell line after treatment with increasing doses of Lenalidomide Mean and SD 

normalized overtime zero. 

 

 

 

Immunoblot showed indeed an increase in STAT3 activation after treatment with 

Lenalidomide, coherent with an increase in IL-6 cytokine (Figure 37). We also observed 
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RHOU CORRELATES WITH GENES IMPORTANT FOR ADHESION, 

MIGRATION AND CYTOSKELETON DYNAMICS 

We went back to our patients’ gene expression profiling to look for possible 

correlations that could explain the changes in adhesion, migration and cytoskeleton 

dynamics in these cells. 

Cdc42 small effector 1 (CDC42SE1) that regulates F-actin in T cells (Ching, Kisailus 

and Burbelo, 2005) was found to be correlated to RHOU expression in MM patients 

(Figure 40). RhoU and Cdc42 proteins are homologous Rho GTPases, so it is plausible 

that they can in some cases activate the same effectors.  

Also, MARK1 and neural cell adhesion molecule 1 (NCAM1), both important in the 

regulation of neuron cells’ migration and adhesion (Kaiser, Auerbach and Oldenburg, 

1996; McDonald, 2014), and unexpectedly expressed in MM, were found to also correlate 

with RHOU expression (Figure 41 and 42). 

 

  
Figure 40: Correlation of RHOU expression with CDC42SE1 expression in MM patients’ cells. In MM 

patients, RHOU expression exhibits a quite strong correlation with the expression of CDC42SE1 (Pearson’s 

r = 0.458). 

 
Figure 41: Correlation of RHOU expression with MARK1 expression in MM patients’ cells. In MM 

patients, RHOU expression exhibits a quite strong correlation with the expression of MARK1 (Pearson’s r = 

0.494). 
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Figure 42: Correlation of RHOU expression with NCAM1 expression in MM patients’ cells. In MM 

patients, RHOU expression exhibits a quite strong correlation with the expression of NCAM1 (Pearson’s r 

= 0.295). 

  

R² = 0.0869

0

2

4

6

8

10

12

14

4 5 6 7 8 9 10 11

N
C
A
M
1

RHOU



 78 

  



 79 

DISCUSSION 

 

Rho GTPases are potent regulators of cytoskeleton dynamics and of the actin filament 

system, thereby affecting the morphologic and migratory properties of cells (Raftopoulou 

and Hall, 2004). Very little is known on the role of these proteins in the establishment and 

progression of MM malignancy. 

We report for the first time a clear unbalance on the expression of multiple members of 

the Rho GTPase family in MM PCs when compared to normal PCs. Interestingly, 

opposite to what was seen in other tumors where there is an over-expression of some of 

the members of this family, in MM PCs we have found that more than 60% of Rho 

GTPases are actually down-modulated when compared to healthy PCs. 

Looking at the different TC groups in which MM patients might fall depending on the 

translocations they present and on the expression of cyclin proteins, we have also 

unraveled a modulation of the majority of the atypical Rho proteins.  

The RhoU/V family is particularly interesting to study due to its unique domain 

organization (Vega and Ridley, 2008). Besides being always in a GTP-bound 

conformation and therefore always active, both members of this family, RhoU and RhoV, 

have an N-terminal proline-rich domain that is not present in any other Rho GTPase and 

that enables them to permanently bind to their effectors (Risse et al., 2013).  

Focusing our attention on this family, we have found that RHOU expression is 

significantly modulated during the different steps of MM progression. Here we proved 

that MGUS patients have higher RHOU expression levels when compared to normal 

controls, raising the hypothesis that this protein might be important in the early stages of 

MM malignancy. With disease progression and accumulation of malignant PCs in the 

BM, we observed a decrease in RHOU (when compared to MGUS patients). With the 

progression to PCL we unexpectedly attested a further decrease in the levels of RHOU 

mRNA. It is important to remember that all the cells in this study are from BM biopsies, 

even the ones from PCL patients. This could explain the low levels of RHOU mRNA 

found in these samples since cells with high levels of this protein and thus more motile 

could be the ones to have left the patients’ BM. We still need to verify this hypothesis by 

studying PCL cells extracted from the peripheral blood or pleural effusion of patients but 

unfortunately at this moment we do not have enough samples to perform this kind of 

analyses. 
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Basing on the fact that high RhoU levels have been described to lead to higher cell 

motility, while low RhoU levels are essential for adhesion (Faure and Fort, 2011), it 

makes sense that in the initial steps of the disease RHOU is expressed at high levels. In 

fact, in the early stages, PCs are competing for BM niches and are thought to be more 

motile (Podar, Chauhan and Anderson, 2009). With disease progression inside the BM, 

cells adhere, become more and more niche-dependent, and rely on this microenvironment 

for their survival, which seems to translate in lower RHOU levels.  

Once we have divided patients in 3 groups with low (< Mean - 2SD of healthy 

controls), intermediate, and high (> Mean + 2SD of healthy controls) expression levels of 

RHOU, we have found a clear decrease in the number of patients with normal RHOU 

expression levels in all the steps of this malignancy. Around 30% of MGUS patients 

over-express RHOU while many MM and PLC patients actually down-modulate it, 42% 

and 64% respectively. It remains to be determined if these numbers correlate with how 

the patients’ disease will progress. 

Centering our attention on MM patients we have found that its expression is positively 

correlated with the presence of bad prognosis mutations t(4,14) (p value < 0.0001), 

del(13) (p value = 0.025), and 1q gain (p value = 0.027). We also established that RHOU 

expression is negatively correlated with the presence of the good prognosis mutation 

t(11,14) (p value = 0.002). Also, once we have divided MM samples into standard and 

high risk patients, we confirmed that patients in the high risk group have significantly 

higher levels of RHOU mRNA. Put together, these results prove that even though most 

MM patients actually down-modulate RHOU, a high expression of this GTPase actually 

correlates with a worse prognosis. 

Furthermore, in MM patients RHOU clusters with genes of “cell cycle and mitosis” 

and “DNA damage”. Its expression is indeed positively correlated with CCND2 

expression (Pearson’s r = 0.402), while all the other genes responsible for cell cycle 

control and DNA damage response showed a negative correlation. This could be a 

possible explanation for the high frequency of bad prognosis mutations in MM patients 

with high RHOU levels. 

To understand the dynamics of RHOU expression in MM PCs we have switched our 

study to MM cell lines. By analyzing the basal levels of RHOU in these cells, we have 

noticed that its mRNA expression was higher in IL-6 dependent cell lines (saMMi, INA-6 

and U266) than in cell lines that were not dependent on IL-6 stimulus for their survival 

(RPMI-8226 and H929).  
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Stimulating MM cell lines with IL-6 resulted in a STAT3 dependent increase in RHOU 

expression. Indeed the inhibition of STAT3 resulted in a dose dependent decrease in 

RHOU expression and in a failure to up-regulate it in response to IL-6 stimulus. MM cell 

lines also up-regulated RHOU expression to a similar extent after the addition of 

BMSCs/HS5 conditioned medium, confirming that a high expression of RHOU might be 

important during the time when cells are in search of a growth niche. However the co-

culture of MM cell lines (with high RhoU levels) with HS5 stroma cell line resulted in an 

actual decrease in RHOU expression, supporting the hypothesis of a contact dependent 

down-modulation of RHOU needed for cell adhesion, as previously observed in neural 

crest cells (Faure and Fort, 2011). 

To note, in MM patients RHOU expression correlated with the expression of STAT3 

itself, of miR21 (an enhancer of the STAT3 pathway) and of SOCS3 (a STAT3 target 

gene), confirming that the expression of this GTPase in MM patients might be highly 

dependent on the activation of the STAT3 pathway, as observed in MM cell lines. 

Moreover, the inhibition of STAT3 with Stattic led to a dose dependent decrease of the 

cells’ migration capability, measured by transwell migration assay that might be RhoU 

dependent. 

To verify if the effects on migration could be dependent on RhoU, we have directly 

blocked RhoU expression with siRNA particles. RhoU silencing did not impair STAT3 

phosphorylation but it led to a clear depletion of JNK activating phosphorylation. 

Schiavone et al. (2009) had showed that RhoU is transcriptionally induced by both 

MAPK/JNK and JAK/STAT3 pathways. Even though this work only made clear that the 

phosphorylation of JNK or STAT3 and their translocation into the nucleus are essential 

for RHOU mRNA production, other studies suggested that the constitutively active RhoU 

mutant was able to increase JNK activation (Tao et al., 2001) and that RhoU depletion 

inhibited JNK activating phosphorylation after induction by wound healing (Chuang et 

al., 2007).  

Accordingly, RhoU silencing led to the complete loss of migration capability that 

could be dependent on the decrease in JNK activation observed. The inhibition of JNK 

activation has as a consequence the impairment of filopodium formation, a type of cell 

protrusion essential for cell migration (Chuang et al., 2007). 

On the last part of this project we aimed at studying the effects of IMIDs on the        

IL-6/STAT3/RhoU/JNK branch. IMIDs are new generation drugs for MM treatment that 

have been shown to reorganize the cells cytoskeleton by modulating Rho GTPases (Xu et 
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al., 2009). However, only a few classical proteins (Cdc42, Rac1, RhoA) have been deeply 

studied. For these reasons we decided to investigate the effects of Lenalidomide on the 

modulation RhoU GTPase and on MM cytoskeleton dynamics. 

Lenalidomide treatment led to a dose independent escalation in IL-6 production by 

MM cell line U266 that resulted in increased activation of STAT3, augmented RhoU 

expression and amplified activation of JNK. Consistently and opposite to what was 

observed with Stattic or RhoU silencing, Lenalidomide treatment led to a high increase in 

cell motility assessed by transwell migration assay. These results give new insights to a 

mechanism never described before for Lenalidomide and prove that this drug can 

somehow stimulate the activation of STAT3 transcription factor enhancing the expression 

of its target genes including RHOU, leading to cytoskeletal changes in MM PCs. 

To better understand the cytoskeleton dynamics involved in MM adhesion, we have 

used polylysine coated cover-slips to which we added MM cells untreated, after RhoU 

silencing or treated with Lenalidomide. Although all cells were able to stick to polylysine 

coated glass, the cells where RhoU was inhibited were clearly more adherent, with a 

complex F-actin net that extended from the cell membrane, and a clear accumulation of 

stress fibers. On the other hand, cells where Lenalidomide treatment was employed had a 

less complex cytoskeleton but presented multiple filopodia-like protrusions, typical of 

migrating cells. 

Given the clear changes in adhesion, migration and cytoskeleton dynamics after RhoU 

silencing or up-modulation, we went back to the gene expression studies done in the 

cohort of 129 MM patients to look for possible correlations that might help explain these 

observations. Interestingly, RHOU expression correlated with the expression of 

CDC42SE1, a protein that was found to mediate F-actin regulation in T cells after T cell 

receptor activation (Ching, Kisailus and Burbelo, 2005). CDC42SE1 is a known effector 

of the classical GTPase Cdc42. However, the fact that Cdc42 and RhoU share 57% of 

their amino acid sequence and have a 70% structure similarity opens the possibility of the 

existence of common effectors for these two GTPases (Tao et al., 2001). 

RHOU expression was also correlated, in MM patients, with the expression of proteins 

involved in neuron migration and adhesion processes: NCAM1 and MARK1. Some 

neuronal genes have already been described to be expressed on MM cells but their 

functions and regulation remain to be fully understood (Kaiser, Auerbach and Oldenburg, 

1996; Iqbal et al., 2010). MARK1 is involved in the regulation of neuronal migration 

through the regulation of cellular polarity and microtubule dynamics, and is required for 
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the migration of multiple cell types (McDonald, 2014) however, it was never described to 

have a function in MM malignancy. NCAM1 also called CD56, on the other hand, is an 

adhesion molecule of neuron cells that in MM is expressed in 70-80% of patients and its 

serum levels seem to correlate with loss of adhesive function (Kaiser, Auerbach and 

Oldenburg, 1996; Chang S.; Yi, Q. L., 2006). It would be interesting to study if NCAM 

serum levels also correlate with RHOU expression since an increase in any of these two 

seems to lead to the same outcome of loss of adhesion. 
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CONCLUSIONS 

 

This study demonstrates for the first time a deregulation on the expression of a large 

number of GTPases from the Rho family in MM malignancy. RhoU is a singular protein 

that besides being always in an active GTP-bound state like all the other atypical GTPases 

has a unique domain organization that renders it different from all the proteins in this 

family. We have found that it is significantly modulated during disease progression. 

Indeed, when compared to healthy controls MGUS patients have higher RHOU mRNA 

levels that decrease with disease progression and accumulation of malignant PCs in the 

BM, raising the premise that this protein could be important in the early stages of MM 

malignancy. 

However, even if the median levels of RHOU expression decrease with disease 

progression, high levels of RHOU mRNA in MM patients actually positively correlate 

with the expression of CCND2, which might determine a higher proliferation rate in this 

cells. Besides this, it negatively correlates with the expression of cell cycle control and 

DNA damage response genes. We have also found a higher rate of t(4;14), del(13) and q1 

gain mutations in patients that have high RHOU expression levels, coherent with high 

proliferation rate and low DNA damage response in these cells. 

We have confirmed that RHOU expression lays downstream of STAT3 activation and 

that silencing of this GTPase causes impairment in MM cells’ migration. Interestingly, 

RHOU expression correlated with the expression of CDC42SE1, an effector protein that 

was found to mediate F-actin regulation, and with the expression of NCAM1 and MARK1 

that are involved in neuron migration and adhesion processes. These correlations might 

explain how different levels of this protein can actually affect many branches of the actin 

polymerization and organization system, impacting cells’ cytoskeleton dynamic, 

migration and adhesion. 

Put together, these results seem to confirm that also in the context of MM malignancy 

high RhoU levels are needed for migration and search of a growth niche, while its down-

modulation increases cell adhesion probably empowering a niche mediated protection. 

Lastly, the treatment with Lenalidomide, an IMiD used in MM therapy, led to an 

increase in IL-6 production by MM cell line U266, amplified activation of the STAT3 

pathway and augmented RhoU levels. This increase in STAT3 activation and RhoU 

expression translated in increased cell migration rates that could actually be very 
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important since this renders cells less adherent and more easily struck through parallel 

mechanisms. 

The fact that a decrease in RhoU expression actually boosts cell adhesion opens-up 

new debate on whether or not we should actually inhibit the IL-6 pathway in MM 

treatment, since this could lead to higher adhesion and consequently augmented 

protection from the microenvironmental niche.  
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