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1. RIASSUNTO DELL’ ATTIVITA SVOLTA 

I mitocondri sono organelli cellulari che svolgono un ruolo cruciale nella produzione di ATP, nel 

metabolismo, nella regolazione di segnali cellulari e nell'amplificazione della morte cellulare 

programmata (Wasilewski e Scorrano, 2009). Nel processo di apoptosi i mitocondri rilasciano 

citocromo c e altri cofattori necessari ad amplificare la morte cellulare (Li et al., 1997). Il rilascio 

completo del citocromo c dipende dai cambiamenti nella forma e nell’ultrastruttura 

dell’organello, poiché durante questi processi la complessa rete mitocondriale subisce 

frammentazione, accompagnata dall’alterazione strutturale e dall’ampliamento delle giunzioni 

delle creste mitocondriali (Frank et al, 2001;. Scorrano et al., 2002). Da notare che una mancata 

o alterata regolazione dell'apoptosi rappresenta una delle caratteristiche tipiche del cancro, 

poiché le cellule tumorali sfruttano l'inibizione della via apoptotica mitocondriale per acquisire 

il fenotipo maligno (Thompson, 1995). 

I mitocondri sono organelli dinamici. Tutti i processi che incidono sui cambiamenti nella forma e 

nell’ultrastruttura dell’organello sono controllati dall'azione coordinata di una coorte di 

proteine chiamate mitochondria-shaping proteins, le quali rappresentano grandi GTPasi che 

condividono omologia strutturale con la famiglia delle dinamine (Dimmer e Scorrano, 2006). 

La forma mitocondriale nello stato stazionario è il risultato dell'azione equilibrata di eventi di 

fissione e fusione (Griparic e van der Bliek, 2001). Il processo di fissione mitocondriale è 

controllato dall'azione sincrona di una proteina citosolica Drp1 (Dynamin-related protein 1) 

(Cereghetti et al, 2008), che viene reclutata sulla membrana mitocondriale esterna dove 

interagisce con i suoi adattatori Fis1 (Fission - 1), MFF (Mitochondrial Fission Factor), Mid49 e 
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Mid51 (Mitochondrial Division 49 e Mitochondrial Division51) e partecipa alla divisione dei 

mitocondri (Palmer et al., 2011). La fusione mitocondriale, invece, è un processo controllato 

dalle Mitofusine (Mfn1 e MFN2) - proteine localizzate nella membrana mitocondriale esterna – 

e da Optic Atrophy 1 (Opa1), la sola GTPasi responsabile della forma mitocondriale localizzata 

nella membrana mitocondriale interna (Santel e Fuller, 2001; Chen et al., 2003; Cipolat et al, 

2004). 

Negli esseri umani, lo splicing alternativo di Opa1 dà luogo a 8 varianti di splicing diverse. 

Queste varianti di splicing possono essere ulteriormente modificate a livello post-trascrizionale 

dall’azione di proteasi che danno luogo a 2 forme lunghe e 3 forme brevi di Opa1 (Olichon et al, 

2007;. Duvezin-Caubet et al., 2007). 

Opa1 è una proteina multifunzionale: indipendentemente dalla sua funzione nel promuovere la 

fusione dei mitocondri, svolge anche un ruolo nel controllo dell'apoptosi, mantenendo sotto 

controllo la struttura e la forma delle creste mitocondriali, formando complessi multimerici 

localizzati alle giunzioni delle creste stesse (Cipolat et al., 2004; Frezza et al, 2006; Cipolat et al, 

2006). Un altro ruolo importante di Opa1 è nel controllo del metabolismo mitocondriale, 

perché favorisce l’associazione dei complessi della catena respiratoria mitocondriale in 

supercomplessi, aumentando in questo modo l'efficienza della fosforilazione ossidativa (Cogliati 

et al., 2013). Tutte queste funzioni concorrono a determinare il risultato benefico di una sua 

lieve sovraespressione in vivo, che, infatti, è protettiva in caso di ischemia cerebrale o cardiaca, 

atrofia muscolare indotta da denervazione e in caso di epatite fulminante (Varanita et al., 

2015). Inoltre, la sovraespressione di OPA1 corregge alcuni modelli murini di disfunzione 
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mitocondriale primaria causata da difetti nei componenti della catena respiratoria (Civiletto et 

al., 2015). 

Tuttavia, tutti questi effetti benefici hanno una controparte negativa. Infatti, alcuni studi hanno 

mostrato come Opa1 sia sovraespressa in diversi tumori umani, in cui elevati livelli di Opa1 

sono correlati ad una peggiore prognosi e una risposta alterata alle terapie anti-tumorali (Fang 

et al., 2012). Al contrario, la riduzione dell’espressione di Opa1 è stata associata all’induzione di 

apoptosi nelle cellule tumorali tramite la via mitocondriale e ad un migliore esito clinico (Zhao 

et al, 2013). 

In questa Tesi abbiamo deciso di investigare quale ruolo biologico giochi Opa1 nell'acquisizione 

e nel mantenimento del fenotipo tumorale, sia in modelli cellulari che animali, ipotizzando che 

una possibile spiegazione per la mancata sovraespressione costitutiva di Opa1 sia che tale 

sovraespressione potrebbe essere legata ad un aumento di suscettibilità allo sviluppo e/o 

progressione di forme tumorali. 

Abbiamo utilizzato linee cellulari, derivanti da pazienti con diagnosi di linfoma diffuso a grandi 

cellule B (DLBCL) come sistema modello in vitro. I linfomi diffusi a grandi cellule B (DLBCL) sono 

tra le forme più comuni di neoplasie linfoidi non-Hodgkin negli adulti (Lohr et al., 2012). Sono 

un gruppo geneticamente eterogeneo di tumori che possono essere ulteriormente suddivisi in 

diversi sottogruppi in base a caratteristiche molecolari distinte (Alizadeh et al., 2000). 

Attraverso un approccio basato su Genome wide array e molteplici algoritmi di clustering sono 

stati caratterizzati due gruppi di linfomi: il primo presenta la sovraespressione di geni che 

codificano per i componenti del recettore delle cellule B – BCR (BCR-DLBCL), il secondo è 
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rappresentato da un gruppo arricchito in geni coinvolti nella fosforilazione ossidativa 

mitocondriale (OxPhosS-DLBCL). Il sottoinsieme OxPhos manca di una rete intatta di 

segnalazione a valle del BCR, suggerendo la dipendenza da meccanismi di sopravvivenza 

alternativi, che non sono stati ancora definiti (Monti et al., 2005; Caro et al, 2012.). Attraverso 

un approccio di proteomica, volto a comprendere con cura i componenti del proteoma 

mitocondriale del gruppo BCR nei confronti del gruppo OxPhos, è stato osservato  che i livelli di 

Opa1 nelle cellule OxPhos sono più alti (Danial N, manoscritto in preparazione). Per tale ragione 

abbiamo voluto chiarire quale ruolo giochi Opa1 in questi sottoinsiemi di cellule di cancro. 

Al fine di verificare se la sovraespressione di Opa1 contribuisca allo sviluppo e alla progressione 

del cancro in vivo, abbiamo utilizzato un modello noto e caratterizzato di linfoma in topo, il 

topo transgenico Eμ-myc (Adams et al., 1985). I topi Eμ-myc sono stati ulteriormente incrociati 

con un modello murino di sovraespressione Opa1, recentemente generato nel nostro 

laboratorio (Cogliati et al., 2013). Il risultato di questo incrocio ha generato il modello di topo 

che abbiamo usato nel nostro studio. 

In questa Tesi presentiamo prove che Opa1 è processata in forme più brevi nel sottoinsieme di 

DLBCL caratterizzato dalla sovraespressione di componenti del BCR e che, come risultato, la 

morfologia mitocondriale, il metabolismo e l’ultrastruttura sono diversi tra i sottoinsiemi BCR e 

OxPhos. Inoltre, mostriamo anche la prova di una marcata sinergia tra Opa1 e c-Myc in modelli 

murini transgenici, dove la sovraespressione di Opa1 contribuisce e aggrava lo sviluppo di 

cancro nel modello murino Eμ-Myc. Il lavoro svolto in questa Tesi mette in evidenza un ruolo 

per Opa1 nel definire le caratteristiche dei linfomi diffusi a grandi cellule B (DLBCL) e nella 

progressione dei tumori in vivo. In conclusione, i nostri dati indicano che Opa1 mostra 
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caratteristiche pro-oncogeniche e che può essere presa in considerazione come nuovo 

bersaglio terapeutico per il trattamento del cancro. 
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2. SUMMARY 

Mitochondria are double membrane–enclosed organelles that play a crucial role in ATP 

production, metabolism, regulation of cellular signaling and amplification of programmed cell 

death (Wasilewski and Scorrano, 2009). In the process of apoptosis mitochondria release 

cytochrome c and other cofactors that are required to amplify cell death (Li et al., 1997). The 

complete release of cytochrome c depends on the changes in the shape and in the ultrastructure 

of the organelle, since during these processes mitochondrial network undergoes fragmentation, 

that is accompanied by cristae remodeling and widening of cristae junctions (Frank et al., 2001; 

Scorrano et al., 2002). Of note, deregulation of apoptosis represents a typical hallmark of cancer, 

since cancer cells exploit the inhibition of the mitochondrial arm of apoptosis to acquire the 

malignant phenotype (Thompson, 1995). 

Mitochondria are dynamic organelles, and all processes that impinge on the changes in the shape 

and in the ultrastructure of the organelle are controlled by a regulated action of mitochondria 

shaping proteins, which represent large GTPases that share structural homology with the 

dynamin protein family (Dimmer and Scorrano, 2006).  

Mitochondrial shape in the steady state is a result of the balanced action of fission and fusion 

events (Griparic and van der Bliek, 2001). The process of mitochondrial fission is controlled by a 

synchronized action of a cytosolic protein Drp1 (Dynamin – related protein 1) (Cereghetti et al., 

2008), that is recruited to the outer mitochondrial membrane where it binds its adaptors Fis1 

(Fission – 1), MFF (Mitochondrial fission factor), Mid49 and Mid51 (Mitochondrial division), and 

participates in the division of mitochondria (Palmer et al., 2011). Mitochondrial fusion, on the 
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other hand, is a process controlled by mitofusins (Mfn1 and Mfn2), proteins located in the outer 

mitochondrial membrane, together with the only inner membrane GTPase - Optic Atrophy 1 

(Opa1) (Santel and Fuller, 2001; Chen et al., 2003; Cipolat et al., 2004). 

In humans, alternative splicing of Opa1 gives rise to 8 mRNA splice variants which further get 

processed by proteolytic proteases giving rise to 2 long and 3 short forms of Opa1 (Olichon et al., 

2007; Duvezin-Caubet et al., 2007). 

Opa1 is a multifunctional protein: apart from its function in promoting mitochondrial fusion 

(Cipolat et al., 2004), it also plays a role in the control of apoptosis by keeping in check the cristae 

remodeling pathway, by forming multimeric complexes at the cristae junctions, keeping in shape 

the size of these junctions (Frezza et al., 2006; Cipolat et al., 2006). Another important role of 

Opa1 is in the control of mitochondrial metabolism, because Opa1 favors the superassembly of 

respiratory chain complexes into supercomplexes, increasing the efficiency of oxidative 

phosphorilation (Cogliati et al., 2013). All these functions concur to determine the beneficial 

outcome of its mild overexpression in vivo, which protects from heart and brain ischaemia, 

denervation-induced muscular atrophy and fulminant hepatitis (Varanita et al., 2015). 

Furthermore, it corrects mouse models of primary mitochondrial dysfunction caused by defects 

in components of the respiratory chain (Civiletto et al., 2015).  

However, all these beneficial effects come with a counterpart, since a handful of studies reported 

that Opa1 is overexpressed in several human cancers where high levels of Opa1 correlated with 

a worst prognosis and an impaired response to therapy (Fang et al., 2012), while blocking its 
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expression was associated with an induction of the mitochondria - associated apoptotic pathway 

in the cancer cell and a better clinical outcome  (Zhao et al., 2013).  

In this Thesis we set out to understand what role does Opa1 play in the acquisition and 

maintenance of the cancer phenotype, both in cellular and animal models, while reasoning that 

a possible explanation why we don’t have constitutively high Opa1 levels is the fact that the trade 

off of Opa1 overexpression could be an increased susceptibility to cancer 

development/progression.  

Well established cell lines, initially deriving from patients diagnosed with diffuse large B cell 

lymphoma (DLBCL) served as our in vitro model system. DLBCLs are one of the most common 

adult non-Hodgkin lymphoid malignancies today (Lohr et al., 2012). They are a genetically 

heterogeneous group of tumors that can be further divided in several subsets, identified by their 

distinct molecular signatures (Alizadeh et al., 2000). Genome wide arrays and multiple clustering 

algorithms defined a B cell receptor (BCR)/proliferation cluster (BCR–DLBCL), which displays 

upregulation of genes encoding BCR signaling components, and an OxPhos cluster (OxPhos–

DLBCL) which is enriched in genes involved in mitochondrial oxidative phosphorylation. The 

OxPhos subset lacks an intact BCR signaling network, suggesting dependence on alternative 

survival mechanisms, which are not yet defined (Monti et al., 2005; Caro et al., 2012). Since a 

proteomic approach, aimed at carefully dissecting components of the mitochondrial proteome 

in the BCR versus OxPhos cell group, identified increased levels of Opa1 in the OxPhos  (Danial N, 

manuscript in preparation), we wished to elucidate what role does Opa1 play in these cancer cell 

subsets.  
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In order to test whether Opa1 overexpression contributes to the development and progression 

of cancer in vivo, we reached out to an already established mouse lymphoma model, the Eµ-myc 

transgenic mouse (Adams et al., 1985), that we further crossed with a mouse model of controlled 

Opa1 overexpression that was recently generated in our lab (Cogliati et al., 2013), and the net 

result of this cross gave rise to the mouse model we used in our study. 

In this Thesis we present evidence that Opa1 is increasingly processed in the BCR subset of diffuse 

large B cell lymphoma, and that mitochondrial morphology, metabolism, and ultrastructure are 

different between the BCR and the OxPhos DLBCL subsets that display different levels of Opa1. 

Furthermore, we also show evidence of a marked synergy between Opa1 and c-Myc in doubly 

transgenic mouse models, where Opa1 overexpression is contributing to the development of, 

and aggravating cancer in Eμ-Myc transgenic animals. The work performed in this thesis 

highlights a role for Opa1 in DLBCL features, and tumor progression in vivo. Thus, our data 

indicate that Opa1 displays oncogenic features and it can be taken into consideration as a novel 

therapeutic target for cancer treatment. 
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3. INTRODUCTION 

3.1. Mitochondria 

Mitochondria are double-membrane enclosed organelles found in most eukaryotic cells, where 

they play a key role due to their high involvement in processes necessary for cell life and cell 

death. Mitochondria are often referred to as “powerhouses” of the cells, since they are the main 

source of cellular ATP, generated through the process of oxidative phosphorylation. These 

organelles also host the tricarboxylic acid (TCA) cycle, participate in the metabolism of fatty acids 

and are involved in gluconeogenesis. Moreover, they are involved in regulating calcium and redox 

homeostasis, and during apoptosis, upon membrane permeabilization and cristae remodeling, 

they release various pro-apoptotic proteins, such as cytochrome c, SMAC/DIABLO, AIF, ENDO G, 

Omi-HTRA2 taking part in the process of cell demise (Corrado et al., 2012).  

Mitochondria are dynamic organelles: in order to fulfil all their different functions, they come in 

various shapes and forms that emerge as a results of the dynamic balance between processes of 

fusion and fission (Scorrano, 2013). Mutations in the mitochondrial genome or dysregulation of 

any of the mitochondria-controlled processes can have detrimental consequences to the cell and 

can lead to disease. During recent years, much attention has been given to the mitochondrial 

component in the development and progression of cancer, due to the involvement of 

mitochondria in cell metabolism and apoptosis, two processes that are often dysregulated in 

cancer (Kroemer, 2006). 
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3.1.1. Mitochondrial ultrastructure 

The characterization of the mitochondrial ultrastructure dates all the way back to 1950s, when 

with advances in electron microscopy, it became possible to study the structure of cellular 

organelles in more detail, thanks to higher magnifications and greater resolving powers of the 

instrument. Pioneer works describing mitochondrial ultrastructure, with the use of electron 

microscopy, have been made independently by scientists George Palade and Fritiof Sjostrand. 

The model described by Palade is the so-called “baffle model” (Figure 1A). According to this 

model, mitochondria are double membrane enclosed organelles, with an outer and an inner 

mitochondrial membrane that folds itself forming invaginations. These invaginations, called 

“cristae mitochondriales” are organized in a way that one end remains open towards the inter 

mitochondrial space, and the other end is folded and protrudes though out the mitochondrial 

matrix (Palade, 1952). On the other hand, the model proposed by Sjostrand, has somewhat a 

different interpretation of the inner mitochondrial membrane. This model called the “septa 

model”, implies that the inner mitochondrial membrane forms septa-like structures that span 

the matrix (SJOSTRAND, 1953). Models proposed by Palade and Sjostrand are mostly of historical 

value today, since with the advances in modern technology and availability of high-end electron 

microscopes, the analysis of mitochondrial ultrastructure dramatically improved. The current 

model, proposed by Mannella et al in 1994, is the results of the investigation of the ultrastructure 

of isolated rat liver mitochondria using a high-voltage transmission electron microscope (Figure 

1.B) (Mannella et al., 1994). According to this model, mitochondria are composed of an outer 

mitochondrial membrane (OMM) and an inner mitochondrial membrane (IMM), that can be 
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further subdivided into an inner boundary membrane and cristae, bag-like structures that are 

connected to the inner membrane by narrow tubular junctions (Mannella et al., 1994). 

In terms of composition the outer mitochondrial membrane resembles that of other eukaryotic 

membranes. It is a phospholipid bilayer permeable to different metabolites and small peptides 

up to 3000 Da, thanks to the presence of voltage-dependent anion channels (VDAC)  (Colombini 

and Mannella, 2012). The OMM is also enriched in the import machinery proteins like Tom20, 

Tom22 and Tom70 that enable import of proteins to the mitochondria (Pfanner and Wiedemann, 

2002). On the other hand, based on physical properties and composition, the inner mitochondrial 

membrane (IMM) has similarities to prokaryotic membranes. The IMM contains cardiolipin, a 

lipid found in membranes of bacteria, responsible for proper function of many enzymes acting in 

the IMM, and for generating curvatures in the IMM that impact on cristae formation. IMM 

contains complexes of the electron transport chain, ATP synthase, transport protein complexes 

such as TIM that allow transport from the IMM to the matrix (Pfanner and Meijer, 1997), or Oxa1 

that translocates proteins into the membrane (Herrmann and Neupert, 2003).  

Cristae do not represent simple invagination of the IMM, as initially suggested by Palade, but 

indeed represent independent structures that are separated from the IMM by tubular junctions, 

called cristae junctions (Perkins et al., 1997). Cristae are the major sites of mitochondrial 

respiration, since the respiratory chain complexes are located there, together with ATP synthase 

dimers (Gilkerson et al., 2003). This particular organization of respiratory chain elements makes 

cristae the main containers of cytochrome c (Scorrano et al., 2002). Cristae are dynamic 

structures, balancing between orthodox and condensed states depending on the current status 

of mitochondrial respiration in the cell (Hackenbrock et al., 1980). 
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The mitochondrial matrix is the place where the mitochondrial genome is located – a small 

autonomous circular DNA molecule containing 37 genes, from which 13 encode proteins of the 

respiratory chain, 22 encode mitochondrial tRNA and 2 encode rRNA (Attardi and Schatz, 1988). 

Mitochondrial DNA is maternally inherited (Sato and Sato, 2011).  Its mutations cause several 

severe neuromuscular diseases. 

 

Figure 01. Mitochondrial ultrastructure. (A) Schematic representation of the “baffle”model. (B) 3D reconstruction 

of the isolated rat liver mitochondria acquired by high-voltage electron microscopy. OM: outer mitochondrial 

membrane, IM: inner mitochondrial membrane, C: cristae, Arrows point to cristae junctions. Bar 0.4 μm. Adapted 

from (Frey and Mannella, 2000) 

3.1.2. Mitochondria – A dynamic organelle 

Mitochondria are highly dynamic organelles, whose morphology and ultrastructure are 

continuously regulated by the balanced actions of fusion and fission (Figure 2). Thanks to the 

advances in live cell imaging, 3D reconstructions and electron tomography, the idea of 

B A 
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mitochondria as static organelles, as initially put forward by electron microscopy analyses, has 

been abandoned (Wasilewski and Scorrano, 2009). 

Mitochondrial shape can range from different individual round organelles to very long 

interconnected filaments. Interestingly, mitochondrial morphology also differs from one cell type 

to another.  For example, in epithelial cells mitochondria are tubular and form a tightly 

interconnected network, where on the other hand in cells like hepatocytes individual spheroid 

organelles are retrieved. The mitochondrial morphology can vary even within the same cell. A 

good example for this are skeletal muscle cells: in myocytes, in the perinuclear space the shape 

of mitochondria is mostly globular, whereas in the sarcolemma they are shaped like rods. In the 

acinar cells of the pancreas there are even three different groups of mitochondria, differently 

positioned around the periphery and the nucleus. The versatility in mitochondrial shape, even in 

the same cell further pinpoints the importance for a highly regulated process of mitochondrial 

shaping, necessary for satisfying all the functional needs of a cell (Collins et al., 2002). 

Steady state mitochondrial shape depends on the balance between fusion and fission events. If 

one of these processes is blocked, the final shape of the mitochondria is governed by the 

unopposed process progressing towards the other side of the equilibrium. Mechanisms of 

mitochondrial fusion and fission are complex and require the action of many mitochondria 

shaping proteins, which are large GTPases sharing structural homology with the family of 

dynamins (Wasilewski and Scorrano, 2009). 
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3.1.2. Mechanisms of mitochondrial fission 

Mitochondrial fission in mammalian cells is a process that largely depends on the activity of the 

dynamin-related protein 1 (Drp1). Drp1 is a large GTPase located in the cytosol and involved in 

the fragmentation of mitochondria, peroxisomes and the endoplasmic reticulum (Schrader, 

2006). Mechanisms that enable translocation of Drp1 from the cytoplasm to the mitochondria 

involve dynamic processes of phosphorylation/dephosphorylation. Right after mitochondrial 

dysfunction, intracellular calcium levels rise, leading to the activation of calcineurin, which 

dephosphorylates the conserved Ser637 on Drp1, a signal that induces Drp1 translocation to the 

mitochondria (Cereghetti et al., 2008). However, opposing data exists regarding the kinase which 

is responsible for the phosphorylation of this residue that can be phosphorylated by protein 

kinase A (which then connects mitochondrial morphology to the second messenger cAMP), or by 

the calmodulin – independent protein kinase Iα (but in this case the phosphorylation of Drp1 

links it to its mitochondrial localization) (Cribbs and Strack, 2007; Chang and Blackstone, 2007). 

The phosphorylation status of this site is dominant over that of Ser616, whose phosphorylation 

status is controlled by cyclin-dependent-kinase 1 driving mitochondrial fission during the process 

of cell division. The stabilization of Drp1 on the mitochondrial surface is achieved by 

SUMOylation, a process that protects molecules from degradation by the ubiquitin-proteasome 

system (Taguchi et al., 2007; Harder et al., 2004; Wasiak et al., 2007). 

The binding of Drp1 on the outer mitochondrial membrane occurs thanks to adaptor proteins 

such as Fis1. Fis1 is a membrane protein located in the outer mitochondrial membrane. It is 

bound to the membrane via its C-terminal transmembrane domain, and a small part of the 

protein protrudes to the intermembrane space. The protein region facing the cytoplasm is 
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composed of six alpha helices, where α2, α3, α4, α5 form TPR (tetratricopeptide-repeat like) 

domains, which enable protein-protein interactions (Suzuki et al., 2003). Fis1 mainly serves as an 

anchoring protein for effector molecules on the mitochondria, a conclusion coming from the fact 

that its overexpression leads to mitochondrial fragmentation, but the protein itself doesn’t 

possess any enzymatic activity. Moreover, fragmentation caused by Fis1 overexpression can be 

blocked by a Drp1 dominant-negative mutant. In order for fission to be carried out in a proper 

way, the Drp1-Fis1 complex must dissociate suggesting that the interaction between these two 

proteins is actually transient (Yu et al., 2005). Apart from Fis1, other Drp1 receptors have been 

discovered, like the mitochondrial fission factor (Mff), and mitochondrial division factors (MiD, 

MiD49 and MiD51) also involved in Drp1 recruitment to the mitochondria and processes of 

mitochondrial fission (Otera et al., 2010; Gandre-Babbe and van der Bliek, 2008; Palmer et al., 

2011). 

3.1.3. Mechanisms of mitochondrial fusion 

Fusion of the outer mitochondrial membrane depends on the activity of Mitofusin 1 (Mfn1) and 

Mitofusin 2 (Mfn2). These proteins are dynamin related GTPases that share a high degree of 

homology, and in terms of structure they possess an N-terminal GTPase domain, two 

hydrophobic heptad repeats (HR) and two transmembrane domains through which they insert 

into the outer mitochondrial membrane. Despite sharing a high degree of homology, they are 

functionally different. Mfn1 displays a higher GTPase activity, while the affinity for GTP itself is 

much lower compared to Mfn2, illustrating the fact that they have different roles in fusion (Rojo 

et al., 2002). Mfn1 governs mitochondrial tethering of two mitochondria which interact through 

their antiparalel HR2 repeats (a trans interaction) (Koshiba et al., 2004). The role of Mfn2 is still 
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not completely clear, but it has been shown that this protein is responsible for later steps in 

mitochondrial fusion, and it also plays a role in tethering mitochondria to the endoplasmatic 

reticulum (de Brito and Scorrano, 2008). However, in fibroblasts Mfn2 doesn’t play a role, but 

the process of mitochondrial fusion in these cells is triggered by the inner membrane dynamin-

related protein optic atrophy 1 (Opa1) working together with Mfn1 (Cipolat et al., 2004). 

 

Figure 02. Steps of mitochondrial fission and fusion. Schematic representation of the mechanisms of fission and 

fusion in yeast (blue) and mammalian cells (red). Adapted from (Dimmer and Scorrano, 2006). 

3.2. Opa1: A multifunctional protein 

Mitochondria shaping protein Optic atrophy 1 (Opa1) is a dynamin related GTPase located in the 

internal mitochondrial membrane. Opa1 is a multifunctional protein: it has been discovered and 

confirmed, by our lab and others, that Opa1  (I) participates in promoting mitochondrial fusion; 

(II) has a role in apoptosis by keeping in check the cristae remodeling pathway; (III) regulates 
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mitochondrial metabolism by favoring the assembly and stability of respiratory chain 

supercomplexes; (IV) has a protective role in vivo against tissue damage, and as we will see later 

down the line, can play a role in cancer (Scorrano et al., 2002; Frezza et al., 2006; Cogliati et al., 

2013; Varanita et al., 2015). 

3.2.1. Opa1: From the gene to the protein 

Following the discoveries of OPA1 homologs in yeast (Mgm1p of Saccharomyces cerevisiae (Jones 

and Fangman, 1992) and Msp1p of Schizosaccharomyces pombe (Pelloquin et al., 1999)), human 

OPA1 was identified in the year 2000 by two independent research groups (Delettre et al., 2000; 

Alexander et al., 2000), and its name derives from its implication in autosomal dominant optic 

atrophy, a hereditary optic neuropathy where OPA1 is mutated. The homology between human 

and mouse Opa1 gene is high, resulting in approximatively 90 % of similarity (Delettre et al., 

2000). OPA1 gene is located on chromosome 3q28-q29, taking up more than 90kb of genomic 

DNA. Open reading frame of human OPA1 gene is composed of 30 exons (31 exons in mice), 

where three of these exons (4, 4b and 5b), are subjected to alternative splicing, giving rise to 

eight different mRNA molecules. Interestingly, exons 4b and 5b are only specific for vertebrates, 

while exon 4 is conserved throughout evolution (Olichon et al., 2007a). OPA1 is ubiquitously 

expressed, while particularly high mRNA levels are present in the retina, brain, liver, heart and 

pancreas. In general all 8 splice forms are expressed, but the amount levels of individual 

transcripts are tissue specific (Delettre et al., 2001; Olichon et al., 2007a). On the other hand, in 

mice alternative splicing involves only exons 4a and 4b, giving rise to only 4 splice variants 

(Akepati et al., 2008), while in invertebrates there is no alternative splicing of OPA1 orthologues 

(Olichon et al., 2007a). 
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Opa1 protein belongs to the family of dynamins, since it contains 3 conserved regions typical for 

the dynamin family: a GTPase domain, a middle domain and a coiled coil GTPase effector domain 

(GED) located at the carboxy terminus. The mentioned coiled-coil domain (CC2), and another 

downstream coiled-coil domain (CC1) might participate in oligomerization and activation of the 

dynamins. The amino terminal region contains the mitochondrial import sequence (MIS), 

followed by an evolutionary conserved transmembrane helix (TM1), necessary for anchoring 

Opa1 to the internal mitochondrial membrane. TM1 is followed by a coiled coil region (CC1). The 

described arrangement is found in every Opa1 splice variant, with the exception that in cases of 

4b and 5b exon splicing Opa1 can contain the two additional hydrophobic domains TM2a and 

TM2b (encoded by the 4b and 5b spliced exons) together with another coiled-coil region (CC-0), 

(Figure 3) (Belenguer and Pellegrini, 2013). 

 

Figure 03. Schematic illustration of Opa1 gene structure. Opa1 shares several structural features with the dynamins: 

GTPase domain, middle domain and GTPase effector domain (GED) containing a coiled-coil region (CCII). Before the 

GTPase domain, Opa1 displays a mitochondrial import sequence (MIS), followed by a transmembrane region (TM1), 

and a coiled coil region (CCI). These domains are found in all Opa1 splice variants, while TM2a, TM2b and CC-0 are 

only found in splice exons 4b and 5b. Opa1 exons are numerated and indicated by double arrows. Intra-

mitochondrial proteolytic cleavage sites are indicated, for mitochondrial processing peptidatse (MPP), paraplegin 

(S1), and Yme1L (S2). Adapted from (Belenguer and Pellegrini, 2013) 
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3.2.2. Opa1 proteolytic processing 

Opa1 and its yeast orthologue Mgm1 are both subjected to proteolytic processing. In case of 

Mgm1, the protein precursor is produced with a mitochondrial leader sequence which 

subsequently gets cleaved by the mitochondrial processing peptidase (MPP), giving rise to the 

long isoform L-Mgm1. The mitochondrial rhomboid Pcp1/Rbd1 produces short S-Mgm1 (Herlan 

et al., 2003; McQuibban et al., 2003; Sesaki et al., 2003). Contrary to the relatively simple picture 

of yeast, Opa1 is subjected to a more complex process of proteolytic cleavage in vertebrates. The 

Opa1 protein precursors translated from the eight alternatively spliced mRNA molecules contain 

a mitochondria targeting sequence, which gets cleaved by the mitochondria processing 

peptidase (MPP) upon import into mitochondria, giving rise to long Opa1 forms (L-Opa1) (Olichon 

et al., 2002; Satoh et al., 2003). These long Opa1 forms are now subjected to further processing 

in order to give rise to short forms. Apart from the MPP processing site, each of the alternatively 

spliced mRNA encoded polypeptides, contain two specific cleavage sites, termed S1 and S2. 

Cleavage of the MPP site alone gives rise to long forms of Opa1, but further processing of these 

long forms at S1 or S2 cleavage sites, gives rise to one or more short forms (Figure 4.) (Song et 

al., 2007). However, the events behind this subsequent processing for short forms are still not 

completely understood. A model is proposed which includes the activity of m-AAA protease 

paraplegin or AFG3L2, or the i-AAA protease Yme1L that are acting on these sites and are 

responsible for generation of Opa1 short forms, which are then subjected to the activity of the 

rhomboid protease PARL, to release these forms now from the internal mitochondrial 

membrane, to the intermembrane space (Tatsuta and Langer, 2008; Ishihara et al., 2006; Griparic 

et al., 2007). Interestingly, under mitochondrial stress, like dissipation of the mitochondrial 
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membrane potential, presence of apoptotic signals, or low mitochondrial ATP levels, another 

protease, called OMA1, gets activated. OMA1 is an ATP-independent protease that is responsible 

for L-Opa1 cleavage under stressful conditions (Ehses et al., 2009).  

In humans, Opa1 forms are experimentally retrieved as 5 different bands on a Western blot. The 

two higher molecular weight forms represent the long forms, and the 3 lower molecular weight 

bands represent the short forms. According to the current knowledge, both long and short forms 

are in association with the mitochondrial membrane, with the difference that the long form is 

anchored to the IMM, while the short form is peripherally attached to the IMM having a 

possibility to diffuse to the intermembrane space, and to associate with the OMM (Olichon et al., 

2002; Cipolat et al., 2006; Ishihara et al., 2006). In order for fusion to be carried out in the proper 

way, the presence of both long, and short forms is required (DeVay et al., 2009).  
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Figure 04. Schematic representation of 8 different OPA1 mRNA splice forms. The mRNA splice forms differ in the 

presence or absence of exons 4, 4b and 5b. Cleavage of the mitochondrial targeting sequence (MTS) by MPP, leads 

to the long isoforms. Additional cleavage at sites S1 (exon 5) or S2 (exon 5b), leads to the short isoforms. Adapted 

from (Song et al., 2007) 

3.2.3. Opa1 and mitochondrial fusion 

The role of Opa1 in mitochondrial fusion has initially been suggested through the studies carried 

out in yeast, where it has been demonstrated that yeast orthologues of Opa1 take part in the 

process of mitochondrial tubulation (Guan et al., 1993; Pelloquin et al., 1999). The initial attempt 

in deciphering what was the actual role of Opa1 in regulation of mitochondrial shape, came from 
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the pioneer works carried out in our lab, with an approach that involved a combination of 

genetics and imaging (Cipolat et al., 2004), and was further confirmed by others. 

Overexpression of Opa1 in mouse embryonic fibroblasts (MEFs), where mitochondria were 

punctuated, lead to tubulation and elongation of mitochondria, but in cells with already 

elongated mitochondria like HeLa or where Opa1 overexpression was very high, it lead to 

fragmentation (Cipolat et al., 2004). On the other hand, gene knock out or silencing of Opa1 

variants by RNAi, lead to fragmentation of the otherwise tubular mitochondrial network (Cipolat 

et al., 2004; Griparic et al., 2004). Further evidence about the role of Opa1 in this process was 

acquired by assays of mitochondrial fusion, and confirmed by real-time imaging, that indeed 

Opa1 is responsible for mitochondrial fusion and not mitochondrial docking. Opa1 requires an 

intact GTPase domain and C-terminal coiled-coil domain in order to carry out its function 

properly. Its pro-fusion activity depends on Mfn1 and not Mfn2, since in cells deficient for Mfn1, 

Opa1 wasn’t able to promote fusion, and reintroduction of Mfn1 restored this function, a 

phenomenon which didn’t occur in case of Mfn2. Also, Mfn1 on its own wasn’t able to promote 

fusion in cases where Opa1 was ablated (Cipolat et al., 2004). Moreover, long and short forms of 

Opa1 are necessary for mitochondrial fusion, since these forms individually have little or no 

activity (Song et al., 2007). Opa1 is responsible for the fusion of the inner mitochondrial 

membrane, which is consistent with its localization, because Opa1 depletion doesn’t affect the 

fusion of the outer mitochondrial membrane, in vitro or ex vivo (Song et al., 2009; Meeusen et 

al., 2006). 

Depending on the levels of Opa1, two types of fusion can occur – a transient fusion (“kiss and 

run”), which leads to a fast exchange of soluble components between mitochondria, being 
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responsible for mitochondria quality control, but doesn’t affect the mitochondrial morphology, 

and complete fusion, that leads both to mitochondria component exchange and has an effect on 

morphology (Liu et al., 2009). 

3.2.4. Opa1 and apoptosis 

Mitochondria are the main organelles that take part in the regulation of apoptosis caused by 

intrinsic stimuli. They are responsible for the release of cytochrome c, and other cofactors which 

participate in the cell death pathway and lead to the activation of effector caspases. Together 

with the release of these factors, mitochondria undergo structural changes, which involve 

mitochondrial fragmentation and activation of the cristae remodeling pathway, processes that 

are depending on the activity of mitochondria shaping proteins (Frank et al., 2001) (Scorrano et 

al., 2002). 

The process of cristae remodeling occurs upon administration of apoptotic stimuli to the cell, and 

involves changes in the cristae shape, which are followed by complete release of cytochrome c. 

These changes involve inversion of the cristae curvature and widening of the cristae junctions, 

processes which ultimately lead to a redistribution of cytochrome c from the inside of the cristae, 

where it usually resides, to the intermembrane space, and from there across the outer 

membrane, and into the cytoplasm, to take its part in the cell death pathway. Frezza and 

colleagues (Frezza et al., 2006) demonstrated that Opa1 is involved in the regulation of the cristae 

shape and in the regulation of the size of cristae junctions during apoptosis, independently from 

its role in mitochondrial fusion. Opa1 forms multimeric complexes involving both the integral and 

soluble form of Opa1, where the production of the latter depends on the activity of the protease 
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Parl. Indeed, a genetic analysis demonstrated the importance of Parl in the process of apoptosis, 

where both Opa1 and Parl lie on the same apoptotic pathway, with Opa1 being downstream. 

Thus, a concentrated action of Opa1 and Parl is necessary for keeping the size of cristae junctions 

in check (Frezza et al., 2006; Cipolat et al., 2006).  

Overexpression of Opa1 and inhibition of the cytochrome c release protects the cell from 

apoptosis induced by intrinsic stimuli (Frezza et al., 2006), whereas Opa1 downregulation has an 

opposite effect and increases the susceptibility of the cell to spontaneous and induced apoptosis 

(Olichon et al., 2003; Lee et al., 2004; Olichon et al., 2007b; Frezza et al., 2006). When 

mitochondria are incubated with BH3-only pro-apoptotic proteins, this leads to dissociation of 

Opa1 complexes and release of cytochrome c. On the other hand, overexpression of Opa1 or 

overexpression of disassembly-resistant mutants of the dynamin, has a stabilizing effect on Opa1 

complexes, inhibiting mobilization of cytochrome c and further apoptosis despite the presence 

of apoptotic stimuli (Belenguer and Pellegrini, 2013). Experiments that involved knockdown of 

certain Opa1 slice variants revealed that isoforms containing exon 4 are involved in processes of 

fusion, while isoforms containing either exon 4b or 5b take part in the regulation of cytochrome 

c release (Olichon et al., 2007a). 

Observations of the role of Opa1 in the cristae remodeling pathway, impinge on the fact that 

Opa1 can be considered as an anti-apoptotic protein, a very attractive feature that can be further 

exploited in cancer studies. 
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3.2.5. Opa1 and energy metabolism 

Mitochondria are considered as metabolic power plants of the cell, since they are responsible for 

the generation of the energy molecule ATP, in the process of oxidative phosphorylation. The 

finely regulated process of energy conversion takes place in the internal mitochondrial 

membrane and takes advantage of the morphological features of the organelle. Immunoelectron 

microscopy studies gave proof that respiratory chain complexes accumulate inside the cristae 

membrane (Vogel et al., 2006), while respirometric experiments further expanded the picture, 

by revealing that these complexes organize into functional quaternary structures called 

respiratory chain supercomplexes (RCS) (Acin-Perez et al., 2008), thus increasing the efficiency of 

oxidative phosphorylation. Recent work carried out by our lab explored the relationship between 

mitochondrial ultrastructure and respiratory function, and found that the assembly and stability 

of RCS, and hens the efficiency of mitochondrial respiration, depends on cristae shape, revealing 

an important role for Op1 in this process (Cogliati et al., 2013). 

Acute Opa1 ablation, apart from causing cristae alterations, leads to a reduced assembly of 

respiratory chain supercomplexes, thus leading to a less efficient respiration rate of complex-I. 

These findings have been further supported with the use of mouse models. A mouse model of 

conditional Opa1 ablation confirmed the previous statement, providing evidence that in the 

absence of Opa1, respiratory chain complexes are less prone to organize into RCS, despite their 

starting levels. On the other hand, a transgenic mouse model of mild Opa1 overexpression 

demonstrated that increased Opa1 levels have beneficial effects for mitochondrial respiration, 

leading to tighter cristae, and favoring the assembly of RCC into supercomplexes. Another 

interesting observation that came out from this study was the discovered correlation between 
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cristae shape and mitochondria-dependent cell growth. The ablation of Opa1 (but not of Mfn1 

or Mfn2) lead to a slower cell proliferation rate in media that contained galactose instead of 

glucose, a mean to stimulate mitochondrial respiration. Conversely, the growth rate was faster, 

in cells overexpressing Opa1 compared to their wild type controls in galactose enriched media 

(Cogliati et al., 2013). 

3.2.6. Opa1 protective effects in vivo 

With the increasing accumulation of knowledge concerning the Opa1-dependent cristae 

remodeling pathway, obtained through many in vitro studies, efforts have been made to 

understand whether this pathway plays a role in vivo and if so, what role that might be. 

In order to address this question, our lab took advantage of the already generated mouse 

transgenic model with a controlled overexpression of Opa1 (Cogliati et al., 2013), and discovered 

that mild overexpression of Opa1 has a protective effect in vivo. Mice overexpressing Opa1 were 

viable, fertile and grew normally, displaying no obvious major phenotypes, an indication that the 

mild overexpression of this protein was compatible with life. Further analysis demonstrated that 

OPA1 had a protective effect from muscle atrophy. In experiments where atrophy was induced 

by muscle denervation, Opa1 transgenic mice displayed less loss of glycolytic or oxidative fibers. 

The OPA1 protective effect was evident both for chronic and acute muscle atrophy, and was 

achieved by minimizing the dysfunction of mitochondria without changing the autophagic 

program or stimulating biogenesis of mitochondria. OPA1 also had a protective effect in the heart 

and in the brain, protecting these organs from ischemic damage. The overexpression of Opa1  

inhibits also mitochondria dependent liver apoptosis induced by activation of the Fas receptor in 
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the liver through administration of anti-Fas activating antibodies via tail-vein injection. 

Mechanistically, OPA1 reduced the production of reactive oxygen species and cytochrome c 

release, in primary tissues (Varanita et al., 2015). Furthermore, the mild Opa1 overexpression 

corrects mouse models of primary mitochondrial dysfunction caused by defects in the respiratory 

chain. In this study, two mouse models for mitochondrial dysfunction have been used – the 

Ndufs4-/- mouse (a constitutive knockout for the structural complex I component Ndufs4), and 

Cox15sm/sm (a muscle specific conditional knockout for the complex IV assembly factor Cox15). 

These mice have been crossed with the Opa1 overexpressing mouse. The progeny deriving from 

this cross demonstrated improved motor skills and activity of the respiratory chain with a 

correction of cristae ultrastructure and mitochondrial respiration, compared to the controls 

where Opa1 was not overexpressed (Civiletto et al., 2015).  

In conclusion, mild overexpression of Opa1 has a beneficial effect.  Its mild overexpression has a 

genetically distinguishable function in mitochondrial morphology, apoptosis, and mitochondrial 

physiology displaying an overall positive effect in these processes. All these functions concur to 

determine also a beneficial outcome of Opa1 mild overexpression in vivo, protecting from 

chronic and acute tissue insults, and correcting mouse models of primary mitochondrial 

dysfunction. However, all these beneficial effects come with a counterpart, since OPA1 is 

overexpressed in several human cancers, as it will be discussed in the following chapter. 

3.3. Mitochondria and cancer 

The notion that mitochondria might play a role in cancer was suggested for the first time at the 

beginning of the 20th century by Otto Warburg who suggested that cancer cells are able to acquire 

30



 

metabolic imbalances, which allow them to constitutively upregulate the metabolism of glucose, 

even in the presence of oxygen. The observed phenomenon  was symbolically named the 

“Warburg effect”, also known as aerobic glycolysis (Kroemer, 2006). Since then, as both the field 

of mitochondria and cancer research expanded, new avenues about the possible links between 

the organelle and tumorigenesis opened. Since evasion of cell death represents one of the major 

hallmarks of cancer (Hanahan and Weinberg, 2000), and mitochondria play a key role in this 

process, considerable attention mounted in the cancer research field towards a better 

understanding of the role of mitochondria in tumorigenesis and progression. 

Mitochondrial pathways of apoptosis involves the release of cytochrome c and other 

apoptogenic factors from the intermembrane space to the cytosol, upon their exposure to 

intrinsic apoptotic stimuli. Once in the cytosol, cytochrome c associates with Apaf1, which further 

leads to the activation of caspase-9 and other downstream caspases, finally resulting in cell 

demise (Li et al., 1997). As mentioned in previous chapters, in order to ensure a complete release 

of cytochrome c, mitochondria undergo structural changes at the early stages of apoptosis, 

through the process of cristae remodeling, a process which is under tight control by Opa1.   

Studies have shown that cancer cells manage to evade apoptosis in numerous ways. One of the 

common methods includes failure to respond to apoptotic stimuli, for example though the loss 

of p53 when a cell becomes more resistant to apoptosis induced by DNA damage. Another also 

very common way, found in diverse tumors, includes upregulation of anti-apoptotic proteins of 

the Bcl2 protein family. With that in mind, reports are starting to emerge about the potential 

anti-apoptotic role of Opa1 in cancer: indeed, OPA1 expression was found upregulated in several 

different cancers.  
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3.3.1. Opa1 and cancer 

One of the key features of cancer cells is that they require very high levels of cytochrome c in 

their cytoplasm in order for apoptosis to take place (Zhivotovsky et al., 1998). Cytochrome c is 

the main killer molecule released from the mitochondria, responsible for enabling apoptosis in 

the cancer cell. Since the release of cytochrome c is under tight control of Opa1, this protein is 

emerging as an interesting target in cancer studies. Overexpression of OPA1 has anti-apoptotic 

features, since it leads to tightening of the cristae and it enables maintenance of cytochrome c 

inside these compartments, thus preventing its translocation to the cytoplasm, and preventing 

further steps required for apoptosis. 

A handful of studies demonstrated a role for Opa1 in human cancer. In lung adenocarcinoma it 

has been found that OPA1 is overexpressed and high levels of Opa1 correlate with a worst 

prognosis and an impaired response to therapy. OPA1 overexpression was detected in 76.6% of 

lung adenocarcinoma patients and this overexpression was associated with an increased 

resistance to anticancer drug cisplatin, through inactivation of caspase-dependent apoptosis in 

lung adenocarcinoma cells (Fang et al., 2012). On the other hand, downregulation of OPA1 

enabled sorafenib-induced apoptosis in hepatocellular carcinoma (Zhao et al., 2013). In another 

study aimed at deciphering the role of anticancer drug cisplatin in ovarian and cervical cancer, it 

has been shown that this drug induced processing of L-Opa1 in a process mediated by p53 and 

metallopeptidase Oma1, leading to mitochondrial fragmentation and apoptosis (Kong et al., 

2014). Finally, in a study that was aimed at examining the role of CTMP protein in the context of 

mitochondria mediated apoptosis in human lung carcinoma cells, it has been found that CTMP 

changes mitochondrial morphology, and leads to cytochrome c release by inhibiting the 
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expression of OPA1 in these cells (Hwang et al., 2012). These data indicate that Opa1 displays a 

role in cancer and is emerging as a significant target, since blocking its expression is associated 

with an induction of the mitochondria - associated apoptotic pathway in the cancer cell and a 

better clinical outcome. 

The role of upregulated OPA1 in cancer is also confirmed by the analysis of publically available 

databases. “Oncomine” is a cancer microarray database  available also as a web-based data 

mining platform, with the aim to make all accumulated cancer microarray data from various 

genome-wide expression analyses public and available for data-mining and discovery (Rhodes et 

al., 2004). An Oncomine analysis performed by our lab (Scorrano L. unpublished observations), 

revealed that OPA1 is overexpressed in several different cancers. From the cancers analyzed, 

OPA1 is overexpressed 4-fold in cervical cancer, 2-fold in breast cancer, leukemia, and lung 

cancer, 1-fold in lymphoma, melanoma and pancreatic cancer, while in bladder cancer, brain and 

CNS cancers, colorectal, esophageal, gastric, ovarian, prostate, head and neck cancer, myeloma 

and sarcoma its overexpression wasn’t detected using this approach (Figure 5). Another publicly 

available database, called “The human protein atlas” (HPA), also provided information on OPA1 

overexpression in certain cancers.  The HPA is a platform based on antibody tissue profiling, and 

it contains publicly available information about protein expression and localization profiles in 48 

normal human tissues and 20 different cancers (Uhlen et al., 2005). According to this database 

platform, OPA1 is particularly overexpressed in colorectal cancer, thyroid cancer, liver cancer, 

endometrial cancer, ovarian cancer and melanoma (Figures 6 & 7). In conclusion, analysis of 

these publically available databases indicated that OPA1 overexpression represents a strong 

feature of many different cancers. 
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Figure 05. Oncomine analysis. Illustration of the results of OPA1 expression levels in several different cancers. First 

column: Types of analyzed cancers. Second column: OPA1 expression level as a ratio of Cancer vs. Normal cell. Third 

column: OPA1 expression levels as a ratio of Cancer vs. Cancer. Red: more than 2-fold overexpression (Scorrano L, 

unpublished observations).  

34



 

 

Figure 06. Human protein atlas for Opa1 overexpression in cancer tissue. Antibody used: HPA036926. For each 

cancer, the fraction of samples with antibody staining/protein expression level high, medium, low, or not detected 

are provided by the blue-scale color-coding (as described by the color-coding scale in the box to the right). The length 

of the bar represents the number of patient samples analyzed (max=12 patients). Next to the cancer staining data, 

the protein expression data of normal tissues or specific cell types corresponding to each cancer are shown and 

protein expression levels are indicated by the blue-scale color coding. At the bottom of the page, a summary of the 

overall protein expression pattern across the analyzed cancer tissues. Adapted from (Uhlen et al., 2005) 
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Figure 07. Human protein atlas for Opa1 overexpression in cancer tissue. Antibody used: HPA036927. For each 

cancer, the fraction of samples with antibody staining/protein expression level high, medium, low, or not detected 

are provided by the blue-scale color-coding (as described by the color-coding scale in the box to the right). The length 

of the bar represents the number of patient samples analyzed (max=12 patients). Next to the cancer staining data, 

the protein expression data of normal tissues or specific cell types corresponding to each cancer are shown and 

protein expression levels are indicated by the blue-scale color coding.  

At the bottom of the page, a summary of the overall protein expression pattern across the analyzed cancer tissues. 

Adapted from (Uhlen et al., 2005) 

3.4. B cells and lymphoma  

B lymphocytes represent a population of white blood cells which express clonally diverse cell 

surface Immunoglobulin receptors that enable recognition of specific antigens. B cells and their 

antibodies are key mediators of humoral immunity and, acting as part of the adaptive immune 

system, provide protection against a large variety of pathogens (Pieper et al., 2013). However, B 
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cells are exceptionally prone to malignant transformation, since the process of B cell maturation 

and strategies for antibody diversification are very complex and include many steps, all quite 

subjected to different chromosomal translocations and oncogenic mutations. In B cell 

malignancies normal signaling pathways are often disrupted and redirected towards a 

constitutive activation of prosurvival signaling (Shaffer, III et al., 2012). Since the mechanisms of 

B cell development, differentiation and B cell signaling are important for understanding the 

lymphoma onset, these processes will be discussed here in more detail. 

3.4.1. B cell biology and development 

B cell development is a complex process that occurs through several different stages (Table 1). 

All of these stages are represented by a change of the genome content in the antibody loci, 

therefore the specific assembly of B cell antigen receptor (BCR) components defines each stage. 

The development of the B cell lineage starts in the primary lymphoid tissue (fetal liver and bone 

marrow). During embryogenesis, hematopoietic stem cells develop in the fetal liver, from where 

they migrate to the bone marrow, and there they get committed to develop into B lineage cells 

(Pieper et al., 2013). The first B cell developmental stage in the so-called pro B stage. It is 

characterized by a rearrangement of the immunoglobulin heavy chain (µH). On the cell surface 

of a pro B cell, of Igα (CD79a) and Igβ (CD79b) are expressed together with associated chaperon 

proteins. As soon as the heavy chain gets properly rearranged it gets associated with the 

mentioned proteins, together with a surrogate light chains lambda5 and VpreB. This association 

generates a form of a pre-BCR like IgM, which marks the transition into the next developmental 

stage – the pre B cell stage. The V to DJ rearrangements of the pro B stage are governed by 

interleukin 7 (IL-7), a cytokine produced by bone marrow stromal cells. If the heavy chain 
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rearrangements are not properly executed or the components of the pre-BCR receptor are not 

properly assembled, the transition to the next stage is blocked and the cell undergoes apoptosis. 

The pre B cell stage is characterized by the recombination of the V and J light chain fragments, 

whose proper assembly will allow transition to the next stage – the immature B cell (Kurosaki, 

2010; Melchers et al., 2000; Perez-Vera et al., 2011). 

Apart from the VDJ rearrangement patterns, the aforementioned B cell stages are also 

characterized by specific cell surface markers and proliferation state. Since VDJ rearrangements 

occur through the process of non-homologous recombination and replication of DNA during 

proliferation is governed by homologous recombination, there is a need of a tight control of these 

processes in order to avoid high mutation rates. Indeed, the fine regulation of these processes is 

achieved by the action of RAG1 and RAG2 genes which are active in the G0 and then get degraded 

before entrance to the S phase of the cell cycle. In this way the cell avoids that non-homologous 

recombination events happen during proliferation, therefore minimizing the chances of 

mutations (Perez-Vera et al., 2011). 

When the immature B cell leaves the bone marrow and sets off to the periphery, it is now called  

naïve B lymphocyte. At this stage processes of alternative splicing of the heavy chain mRNA occur, 

leading to the generation of membrane bound IgD and IgM. If after several days of circulating 

through the bone marrow and the periphery, the naïve B lymphocyte doesn’t encounter a 

recognizable antigen, the cell becomes a mature B lymphocyte. However, if the cell gets exposed 

to a proper antigen, it will develop into a memory B lymphocyte or a plasma cell (Table 1). All 

these events are occurring in the so-called germinal centers within secondary lymphoid organs 
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where mature B cells proliferate, differentiate, undergo somatic mutations and antibody class 

switching, as a normal immune response to infection (Levine et al., 2000; Kurosaki, 2010). 

Stages  in  B   Cell  Development 

 Stem cell Early 
pro B 
cell 

Late pro 
B cell 

Large pre 
B cell 

Small pre 
B cell 

Immature 
B cell 

Mature 
B cell 

H chain 
genes 

germline D-J 
joining 

V-DJ 
joining 

VDJ  
rearrange

d 

VDJ  
rearrange

d 

VDJ  
rearrange

d 

VDJ 
rearran

ged 

L chain 
genes 

germline germlin
e 

germlin
e 

germline V-J joining VJ 
rearrange

d 

VJ 
rearran

ged 

Surface Ig none none none m chain 
in pre-B 
receptor 

m chain in 
cytoplasm 

and on 
surface 

membran
e IgM 

membr
ane 
IgM 

and IgD 

Membrane 
markers 

CD34 CD34  
CD45 

(B220)  
Class II 

CD45R  
Class II  
CD19  
CD40 

CD45R  
Class II  
pre-B-R  

CD19  
CD40 

CD45R  
Class II  
pre-B-R  

CD19  
CD40 

CD45R  
Class II  

IgM  
CD19  
CD40 

CD45R  
Class II  

IgM  
IgD 

CD19  
CD21 
CD40 

 

Table 1. Stages of B cell development: Depiction of various stages of B cell development, from the stem cell to the 

mature B cell, with a classification of heavy and light chain gene rearrangements, presence or absence of the surface 

immunoglobulin, and surface markers characteristic for a particular stage. Adapted from “The immune system” P. 

Parham, Garland Science 2009, 3rd edition 

3.4.2. Antibody production  

The key feature of B cells are immunoglobulin (Ig) molecules which are either expressed on the 

B cell surface, or secreted extracellularly. When an immunoglobulin molecule gets secreted into 

the extracellular space it is knows as an antibody. Antibodies are the mediators of immunity. The 
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effector function of antibodies lies in their ability to bind microbial antigens with high specificity 

and affinity, leading to their neutralization by activating other elements of the immune system 

like the complement, or stimulating phagocytosis (Kurosaki, 2010).  In order to fulfil the 

requirements of the immune system, and to provide a strong defense against various different 

pathogens, antibodies are characterized by extreme diversity. The diversification process is 

achieved through and antigen independent, and an antigen dependent way. 

Diversification of antibodies happening in an antigen-independent way is a process taking place 

in the bone marrow, during B cell differentiation. Through processes of V(D)J recombination, 

each antibody is assigned to a heavy and a light chain. Recombination of variable (VH), diversity 

(DH), and joining (JH) gene segments give rise to different variants of heavy chains, while 

recombination of only variable (VH), and joining (JH) gene segments, generates light chains. 

Humans possess only two light chain loci, kappa and lambda, and only one of these loci is 

expressed per cell, so each produced antibody by that cell can have either a kappa or a lambda 

light chain. Just by this process of V(D)J recombination, a diversity greater than 3 million 

antibodies is guaranteed (Schatz and Swanson, 2011). 

Diversity that is depending on exposure to antigens is a process happening at the periphery. Once 

exposed to antigens, the immunoglobulin molecules of B cells undergo somatic hypermutations, 

which leads to accumulation of mutations in the immunoglobulin genes. Only those B cells that 

acquired mutations in their Ig genes which give them a higher affinity to foreign antigens are 

selected to survive, which further leads to affinity maturation during the humoral immune 

response (Teng and Papavasiliou, 2007). 

40



 

3.4.3. B cell receptor signaling 

The development and maturation of normal B cells largely depends on the proper function and 

signaling from the B cell receptor, which is present on all B cells. Regulated activity from this 

receptor enables proliferation of selected B cells, or leads to cell death of the unwanted ones. 

However, studies on many B cell malignancies have demonstrated that the BCR signaling pathway 

is largely implicated in tumorigenesis, where cancer cells find various ways of activating the BCR 

signaling pathway in order to promote their cancerous phenotype (Niemann and Wiestner, 

2013). 

The B cell antigen receptor (BCR) is a multiprotein structure composed of an antigen binding 

subunit and a signaling subunit. The antigen binding subunit is composed of membrane 

immunoglobulin molecules (IgM) each consisting of two immunoglobulin light (IgL) and two 

immunoglobulin heavy chains (IgH) covalently associated. The signaling subunit consist of an 

Igα/Igβ (CD79A/CD79B) heterodimer, not in covalent association. The membrane 

immunoglobulin molecules serve as docking sites for antigens, which leads to receptor 

aggregation, while Igα/Igβ (CD79A/CD79B) transfer signals inside the cell. The aggregation of the 

BCR receptor quickly activates the Scr family of kinases (Lyn, Fyn, Blk) that phosphorylate the so-

called ITAM motifs (immunoreceptor tyrosine-based activation motif) on Igα/Igβ. The 

phosphorylation of Igα/Igβ leads to recruitment of the Syk kinase from the cytoplasm to the 

perimembrane space. Syk then undergoes two rounds of phosphorylation: first it gets 

phosphorylated by Src, and then it gets auto-phosphorylated, which leads to its full activation. 

Activated Syk now catalyzes phosphorylation of other signaling molecules such as PLCγ2 (a 

lipase), BTK (a protein tyrosine kinase that also activates PLCγ2), and BLNK (an adaptor molecule). 
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Once activated, PLCγ2 is able to cleave phosphatidylinositol 4,5–bisphosphate, giving rise to 

diacylglycerol and inositol triphosphate (Figure 8). This leads to mobilization of calcium from the 

intracellular and extracellular stores, and an activation of downstream pathways like the AKT, 

MAP kinase, RAS and NF-kB pathway. These pathways then activate several transcription factors 

which modify cell metabolism, promoting cell survival, proliferation, B cell differentiation into 

memory or plasma cells, and also production of antibodies (Cheng et al., 2011; Dal Porto et al., 

2004; Kurosaki, 2010). 

 

Figure 08. BCR signaling: The signaling cascade starts with the antigen binding to the mIg on the cell surface, 

leading to receptor agregation, formation of the signalosome composed of the BCR, tyrosine kinases, adaptor 

proteins, and signaling enzymes. Signals coming from the signalosome activate downstream signaling cascades, 
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with an end result in changes in the cell metabolism, gene expression, cytoskeletal organization, proliferation and 

diferentiation of the cell. Adapted from (Dal Porto et al., 2004) 

3.4.4. B cell malignant transformation  

B cell differentiation and activation are tightly regulated processes , but due to their complex 

nature they are also highly prone to dysregulation that can lead to B cell malignancies (Shaffer et 

al., 2002).  

Classification of different lymphoma subtypes involves use of various genetic, pathological, and 

clinical methods. Every lymphoma subtype has a phenotype resembling a certain stage of B cell 

differentiation, as determined by gene expression profiling, and presence or absence of 

mutations in the variable immunoglobulin region. The normal B cell and its differentiation status 

from which other malignant B cells derived is termed the “cell of origin”. However, in the field, 

there are still some debates about the differentiation status of the actual cell of origin, since 

some B cells acquire mutations that promote the cancerous phenotype, but still allow the cell to 

differentiate and move onto the next differentiation stage, so the actual cell of origin in a 

lymphoma could be a B cell that is on an earlier stage of differentiation in respect to its normal B 

cell counterpart (Shaffer, III et al., 2012). 

During B cell differentiation the first potential pitfall is the process of B cell receptor generation 

taking place in the bone marrow. This process, called V(D)J recombination, as previously 

mentioned, involves immunoglobulin gene rearrangements by mechanisms of non-homologous 

recombination. If the generated double-stranded DNA breaks don’t get properly resolved, this 

can lead to chromosomal translocations which put in association one of the immunoglobulin loci 
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with a cellular proto-oncogene, a typical feature of many B cell malignancies. These 

rearrangements lead to constitutive expression of the proto-oncogene, a feature found in many 

lymphomas. Some of the examples of these translocations include the follicular lymphoma with 

an overexpression of the BCL 2 due to t(14;18) translocation where BCL 2 is now under the control 

of IgH; Burkitt’s lymphoma with the most common translocation t(8;14) where the c-MYC 

oncogene gets translocated to IgH;  mantle cell lymphoma with the t(11;14), where cyclin D is 

also under the IgH control. Another opportunity for chromosomal translocations occurs through 

mechanisms of immunoglobulin class switching recombination (CSR) and immunoglobulin 

somatic recombination (SHM) happening in germinal centers of secondary lymphoid organs, 

which also generate DNA strand breaks and it too can lead to translocations (Shaffer et al., 2002).  

B cells acquire their malignant phenotype through these various chromosomal rearrangements, 

mutations, and deletions since these processes either block B cell differentiation, block apoptosis 

or promote cell proliferation and cell growth. Translocations and somatic mutations of c-MYC 

promote cell growth and proliferation. Activation of the Nf-kB pathway through CD40 and BCR 

signaling, and subsequent overexpression of anti-apoptotic factors such as Bcl-XL and Bcl-2 are 

mechanisms that block apoptosis (Liu et al., 1991; Craxton et al., 2000). Most common genetic 

modifications that lead to the blockage of B cell differentiation include mutations in the BCL6 

gene, whose transcription gives rise to a transcriptional regulator of germinal center B cell 

proliferation and differentiation (Dalla-Favera et al., 1999). 

Another way through which B lineage cells promote their malignant phenotype is through B cell 

receptor signaling. Apart from the fact that a malignant B cell acquires mutations in the 

immunoglobulin locus, in many cases it still expresses the BCR receptor on its outer surface, 
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which implies that these cells can use signaling coming from the BCR receptor to activate 

downstream pathways which can promote proliferation and cell survival (Kuppers, 2005). 

Studies of the BCR signaling pathway went on to discover two ways of signaling from the BCR 

receptor –  the “tonic signaling” and “chronic active signaling”.  

Experiments involving ablation of IgM (Lam et al., 1997) or Igα (Bedard and Krause, 2007) in mice 

demonstrated that after several weeks, in the spleen and in the lymph nodes, all mature B cells 

are abolished, and a substitution of Igα with a truncated version that doesn’t contain ITAMs, does 

indeed reconstitute the BCR but doesn’t allow survival od mature B cells, highlighting the 

importance of B cell signaling for survival (Kraus et al., 2004). Signaling, coming from the BCR 

receptor but without antigen binding is called tonic BCR signaling. This type of BCR signaling 

depends on AKT activation through PI3K, and one of the best examples of this phenomenon is 

Burkitt’s lymphoma (BL), whose cells die upon knock down of Syk or Igα (Bojarczuk et al., 2015).  

Chronic active B cell signaling is a phenomenon that was widely studied in activated B-cell-like 

diffuse large B-cell lymphoma (ABC-DLBCL). Most cases of ABC-DLBC are known to carry 

mutations in Igβ and CARD11 gene, which results in a constitutive activation of the NF-kB 

pathway. During normal antigen stimulation in lymphocytes, Card11 protein (caspase 

recruitment domain-containing protein 11) get phosphorylated and activated, acting as a 

signaling scaffold which coordinates the activation of IkB kinase β (IKK), which is a positive 

regulator of the NF-kB pathway. However, mutations in the CARD11 gene are a gain-of-function 

mutations, and they lead to a constitutive activation of IKK, leading to an enhanced response of 

the NF-kB pathway to exogenous stimuli. Also, CARD11 mutations may also allow lymphoma cells 
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to activate the NF-kB pathway even in the absence of antigen receptor signals. In the cases of 

ABC-DLBCL where CARD11 was not mutated, RNA interference genetic screens revealed the 

importance of BTK (Burton’s tyrosine kinase) for promoting survival of these cell lines. Overall, 

the functional consequence of increased NF-kB signaling in ABC-DLBC is to allow propagation of 

the malignant cell to the plasma cell stage (Davis et al., 2010; Lenz et al., 2008).  

The differences between tonic and chronic active B cell signaling can clearly be distinguished. 

Tonic signaling doesn’t require Card11 and downstream components following its activation like 

Bcl-10 and MALT1, since mice which were deficient for these components still had a relatively 

normal number of follicular B cells, contrary to mice that had tonic signaling blocked (Thome, 

2004). On the other hand, activation of CARD11 and its downstream components proved 

essential for chronic active B cell signaling. Another distinguishable characteristic between tonic 

and chronic signaling is that tonic signaling acts in direction of maintaining resting B cells, that 

have their BCRs unclustered. Contrary, in ABC-DLBCL, their B cell receptors are clustered, 

gravitating towards an antigen stimulated cell, and not so much to a resting B cell (Staudt, 2010). 

Another way that lymphoma cells managed to use in their advantage, in order to promote their 

survival and proliferation, is though antigen binding. For example, in cases of B-cell chronic 

lymphocytic leukaemia (B-CLL), the BCR receptor is often autoreactive and has a high affinity to 

bind autoantigens (Borche et al., 1990), whereas in other cases, B-CLL cells have an affinity to 

bind foreign antigens, like viral proteins (Sthoeger et al., 1989). 
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3.4.5. Diffuse Large B Cell Lymphoma 

Diffuse large B cell lymphoma represent one of the most common adult non-Hodgkin lymphoid 

malignancies today, with 30 000 newly reported cases each year (Lohr et al., 2012). The cause of 

many DLBCL lymphomas remains largely unknown, but there are some factors that might 

predispose to the disease including different congenital and acquired immunodeficiency states, 

often connected with dysregulation in apoptosis or defects in DNA repair (Hartge and Devesa, 

1992). The name of DLBCL lymphoma comes from the fact that transformed B lymphocytes 

represent large cells that exit the lymph node or the extranodal site in a diffuse way. They are 

deriving from normal B cells already exposed to an antigen, which migrated through germinal 

centers of lymph nodes or secondary lymphoid organs. The cells express typical B cell markers 

such as CD20, CD19, CD22, and CD79a, and in most cases the surface immunoglobulin is present. 

Based on their morphology, these cells have been classified as centroblastic, immunoblastic, 

anaplastic and T cell /histiocyte rich (Harris et al., 1994). Based on their clinical features, these 

malignancies are classified as primary mediastinal, intravascular or primary effusion lymphomas 

(Harris et al., 1994). 

Many genetic abnormalities have been reported in these lymphomas. These abnormalities 

mostly include chromosomal translocations that abolish normal functions of genes such as BCL 

6, BCL 2 and c-MYC, where due to translocations these genes fall under the control of 

immunoglobulin regulatory elements in an improper fashion, leading to their overexpression. 

The transcription repressor BCL 6 is a gene whose expression is limited to the GC B cell pool, and 

in normal conditions downregulation of this gene is required for further differentiation of normal 

GC B cells into memory and plasma cells. Since in cases of DLBC this gene is largely overexpressed, 
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this feature gives a proliferative advantage and stops maturation of GC cells (Ye et al., 1993). In 

the GC centers apoptosis plays a pivotal role in the process of negative selection and in the 

normal GC B cell expression of BCL 2 is downregulated. Similarly, in many cases of DLBCL, BCL 2 

is overexpressed, which leads to apoptosis inhibition, to a proliferative advantage and 

contributing to lymphomagenesis (Gascoyne et al., 1997). Overexpression of c-MYC in these 

lymphomas also confers a proliferative advantages (Kramer et al., 1998). Mutations in the FAS 

ligand have also been reported in cases of DLBCL, that act in a dominant-negative manner and 

destabilize trimeric FAS receptors, disabling apoptosis and negative selection of B cells within 

germinal centers (Davidson et al., 1998).  

The one common denominator for these lymphoid malignancies is that DLBCLs are a very 

heterogeneous group of tumors. This heterogeneity can be appreciated both on the genetic, 

biological and clinical level. Therefore, classification of these tumors in order to capture all their 

features in a coherent way, proved to be very challenging. Classification based on their 

morphology proved not to be very reproducible, since it led to a lot of diagnostic discrepancies 

between patients. However, the biggest breakthrough in attempting to classify these 

malignancies came from gene expression profiling experiments.  The pioneer work by Alizadeh 

and Staudt in the year 2000, using gene expression profiling, managed to give a classification 

scheme for these tumors based on their cell of origin, since distinct forms of DLBCL displayed 

gene expression patterns that could be correlated to different stages of B cell differentiation 

(Alizadeh et al., 2000). 

With the use of a specialized microarray chip, the so-called Lymphochip, that captured genes 

preferentially expressed in lymphoid cells and genes that had a role in immunology and cancer, 
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they managed to analyze gene expression patterns in diffuse large B cell lymphoma snap frozen 

tissue samples. This analysis lead to the Cell Of Origin (COO) DLBCL classification system, which 

distinguishes three groups of DLBCLs according to the gene expression patterns resembling to 

the normal B cell in a certain stage of its development:  

Germinal Center B-cell like (GCB) group – a DLBCL group that has a gene expression signature of 

germinal center B cells, with a high expression of genes like BCL 6 and LMO2.  

Activated B-cell like (ABC) group –  a group with a similar but not absolutely identical signature 

of activated B cells in the peripheral blood, expressing genes that are usually upregulated in the 

cells where the BCR signaling is activated, like NF-kB and IRF4. 

“Other” goup of DLBCLs that remained undefined according to the cell of origin gene expression 

parameters.  

The initial gene expression profile included 375 analyzed genes, then this signature was further 

refined, to include only 100 genes in the analysis, and then even more refined including only 27 

genes. However, all these approaches again distinguished only GC and ABC tumor groups without 

being able to give more clarification to the third unspecified group, and this was very important 

since around 40% of tumors belonged to this group (Alizadeh et al., 2000) (Abramson and Shipp, 

2005).  

Since DLBCLs is not a homogeneous malignancy, differing only in terms of its cell of origin or a 

clinical outcome, it was necessary to deepen the initial gene expression profiling studies. Thanks 

to the work of Monti et al, efforts have been made in order to capture this unrecognized 

biological heterogeneity within DLBCLs, with the use of genome wide arrays and algorithms of 
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consensus clustering (Monti et al., 2005; Caro et al., 2012). Their approach was based on using 

three different clustering algorithms – hierarchical clustering, self-organizing maps and 

probabilistic clustering, together with a consensus clustering method (resampling based 

method), that would select in an automatic fashion the most stable cluster groups with each of 

these algorithms. Their method of classification, termed Consensus Cluster Classification (CCC), 

managed to distinguish three separate and reproducible clusters: OxPhos cluster, BCR cluster and 

Host Response (HR) cluster. Signature analysis of these clusters revealed that the OxPhos cluster 

was highly enriched in genes involved in mitochondrial function, oxidative phosphorylation, 

electron transport, regulation of apoptosis and proteasomal degradation. The BCR (B cell 

receptor)/proliferation cluster, on the other hand, was enriched in genes involved in the B cell 

signaling pathway, (CD19, CD79a, BLK, SYK, PLCγ2, MAP4K), B cell specific transcription factors 

like MYC, BCL-6, STAT6 and DNA repair genes. The third, Host Response (HR) cluster, contrary to  

the OxPhos and BCR, contained an elevated signature of genes characteristic for the host 

response and not the tumor itself – overexpression of genes for T cell receptor components, CD2, 

molecules connected with T/NK cell activation, activators for monocytes and macrophages, 

components of the complement, TNF related proteins, adhesion molecules and cytokine 

receptors (Monti et al., 2005). Cross-comparison of DLBCL tumors classified either by COO or CCC 

revealed that these two classification frameworks capture different features of diffuse large B 

cell lymphoma biology. It was shown that 46% of the tumors classified as OxPhos, and 53% of 

tumors classified as BCR, fell under the GC group, and the rest was either ABC or Other, and the 

major part of HR group fell under the COO unspecified group Other. All of this pinpointed how 
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these classification frameworks provide non-overlapping information about these lymphomas, 

highlighting again their complex nature (Monti et al., 2005). 

In order to find rational targets that can be used for treatment within subsets of diffuse large B 

cell lymphomas, extensive research has been performed, focusing on different aspects of DLBCL 

biology. One of these studies, important for this Thesis, focused on understanding the metabolic 

profiles of DLBCL groups classified by consensus clustering – OxPhos and BCR, in order to reveal 

whether metabolic differences exist between these tumor subsets, and whether some of these 

metabolic features might confer a proliferative advantage for a certain subtype, and hence can 

be used as a therapeutic target.  

Considering that a large variety of DLBCLs use B cell signaling for their survival it was interesting 

to discover that the OxPhos subset didn’t possess a functional BCR signaling network (Chen et al., 

2008), which implied that there might be other mechanisms that these tumors use for promoting 

their survival. Considering that the OxPhos signature involved upregulation of genes implicated 

in mitochondrial metabolism, it was compelling to redirect the research focus to the metabolic 

component of this disease – energy metabolism and fuel utilization. The study went on to show 

that in the OxPhos subset there was an enhanced energy transduction in the mitochondria, that 

these tumors were incorporating carbons coming from nutrients into the TCA cycle with a much 

higher efficiency, and that their levels of glutathione were increased, compared to the BCR. The 

survival limiting feature for this DLBCL subset proved to be the glutathione synthesis and 

oxidation of fatty acids, since the perturbation of either of the two turned out to be selectively 

toxic for this tumor group. The metabolic profiling of these DLBCL tumor subsets was carried out 

in a highly integrative manner that involved metabolomics, mitochondrial respirometry and 
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proteomics (Caro et al., 2012). A proteomic approach, based on DIGE (two dimensional 

differential gel electrophoresis), mass spectrometry and the ITRAQ (Isobaric Tag for Relative and 

Absolute Quantitation) analysis, was used to carefully dissect components of the mitochondrial 

proteome in the BCR versus OxPhos subsets. Interestingly, this analysis identified additional 

components of the mitochondrial signature, that weren’t detected before with previously used 

methods by other groups. Indeed, levels of Opa1 were higher in the OxPhos subset compared to 

BCR (Danial N, 2012 unpublished data), thus implicating Opa1 in the cancer profile. 

3.5. Murine models of B cell lymphoma  

Human B cell lymphomas are one of the most common hematologic malignancies today, 

currently holding the fourth place in its occurrence, with a very strong research focus directed 

towards them. The most striking feature of these lymphomas, as mentioned previously, is that 

they are very heterogeneous. They differ both in the tumor location and in the type of malignant 

cell. Strong heterogeneity of these tumors makes research very difficult. Discriminative 

parameters necessary for a proper classification of collected human samples are often not very 

clear, there is a limited availability of biopsies, together with existing differences among patients 

and differences in subtypes of lymphomas, making cancer studies very challenging. In order to 

overcome these research obstacles there was a high need for developing good animal models for 

lymphoma studies. The positive aspect of developing good animal models is that they provide 

homogenous material to work with, thus allowing a more standardized investigation of tumor 
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characteristics, tumor microenvironment and performance of preclinical studies (Donnou et al., 

2012). 

Murine models for B cell lymphomas can be classified as either spontaneous or induced. 

Spontaneous models refer to the ones when the lymphoma develops spontaneously in a 

genetically engineered mouse, whereas the induced model is the one when a tumorigenic cell 

line gets implanted into a mouse. Depending on the type of the study in which these murine 

models will be used, it is possible to further classify them in three large groups (Donnou et al., 

2012): 

1. Murine models for studying lymphomagenesis 

2. Murine models for studying lymphoma microenvironment 

3. Murine models for analyzing the efficacy of new therapies 

Since in this Thesis the emphasis is on studying the role of Opa1 overexpression in a lymphoma 

background, the murine models for studying lymphomagenesis will be described in more detail, 

with a special focus on the Emu-myc mouse. 

 

3.5.1. Murine models for studying lymphomagenesis 

One of the key questions in all cancer studies refers to understanding the origin and the 

mechanism of tumor development. In order to understand how B cell lymphomas arise and how 

they mature in different tumor environments, many spontaneous murine tumor models have 

been created (Table 2). 
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NAME LYMPHOMA SUBTYPE/ORIGIN STRAIN (HAPLOTYPE) 

B10 H-2a H-4bp/Wts CLL C57Bl/10 (H-2b) 
SL/KH Pre-B lymphoma SL/KH (H-211) 
Eμ-N-myc  Indolent B-NHL C57Bl/6 x DBA/2 (H-2b/d) 
NFS.V+ Marginal zone lymphoma NFS.V+ (H-2sq4) 
NMRI/RFB-MuLV n.d. NMRI (H-2q) 
B6-l-MYC Burkitt-like lymphoma C57Bl/6 (H-2b) 
VavP-Bcl2 Follicular lymphoma C57Bl/6 (H-2b) 
Lig4/p53 KO Pro/Pre-B lymphoma C57Bl/6 × sv129 
Eμ-BRD2 DLBCL FVB (H-2q) 
Bcl6 Knock in Germinal center, DLBCL C57Bl/6 × sv129 
Bcl6/Myc transgenic Post germinal center, DLBCL C57Bl/6 × sv129 
IL-14aTGxc-Myc TG (DTG) Blastoid variant of mantle-cell 

lymphoma 
C57Bl/6 (H-2b) 

Myc/BCRHEL/HEL Burkitt-like lymphoma C57Bl/6 (H-2b) 
Eμ-myc From follicular to DLBCL (time 

dependant) 
C57Bl/6 × sv129 

RzCD19Cre NHL, hepatitis C induced 129/Sv (H-2bc); BALB/c (H-2d); 
C57Bl/6 (H-2b) 

UVB induced Mature B-cell lymphoma C57Bl/6 p53+/− (H-2b) 
 

Table 02. Spontaneous models of B cell lymphoma. B-NHL: non – Hodgkin B cell lymphoma; CLL: chronic lymphocytic 

leukemia; DLBCL: diffuse large B cell lymphoma; DTG: double transgenic mice; n.d.: not determined. Adapted from 

(Donnou et al., 2012) 

 

Thanks to the advances in genetic engineering it became possible to generate transgenic mouse 

models which contain known modifications of the human genome responsible for B lymphoma 

development (Harris et al., 1988). When a gene is inserted in to a fertilized ovum it usually 

integrates into a host chromosome within few cell divisions, and in this way all the tissues of the 

transgenic mouse acquire the gene, but the regulatory elements associated with the gene are 

the ones that are responsible for tissue specific expression. When immunoglobulin genes are 

introduces they are only expressed in the lymphoid cells of the transgenic mouse (Adams et al., 

1985). One of the most frequent modifications of the human genome that is found in almost 
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every case of Burkitt’s B cell lymphoma is the translocation of the c-MYC proto-oncogene into or 

close to the one of the immunoglobulin loci.  This rearrangement of the cellular genome releases 

the c-MYC gene from its normal sensitivity to negative regulation, making the gene constitutively 

active in cells that express immunoglobulin genes (Harris et al., 1988). The involvement of such a 

translocation in lymphomagenesis is studied in the Eµ-myc mouse model, the most common 

mouse model for lymphoma studies (Donnou et al., 2012). 

3.5.1.1. Eµ-myc mouse: A model for high-incidence spontaneous lymphoma and 

leukemia of B cell 

Eμ-Myc mice are transgenic mice carrying a fusion gene of the otherwise normal Myc oncogene 

(c-Myc) which is put in association with the Eµ immunoglobulin heavy chain enhancer and myc 

promoter. Expression of the Myc transgene is restricted to the B cell lineage and tumors that 

arise are all lymphoblastic lymphomas (Adams et al., 1985). The Eµ-myc mouse was originally 

created through a collaborative project between R.L. Brinster, R.D. Palmiter and J. Adams and S. 

Corey back in 1985, as a way to test the hypothesis whether a chromosomal translocation leading 

to juxtaposition of immunoglobulin and Myc genes can further lead to cancer. By generating 

transgenic mice which possess different forms of the c-Myc gene, they have proven that 

association of this proto-oncogene with the immunoglobulin enhancer converts it into a potent 

leukemogenic agent for the B lymphocyte lineage (Adams et al., 1985). They have developed 

seven constructs that have been introduced into mice. These constructs included an intact 

murine c-gene, a truncated form bearing the coding region (exons 2 and 3), and 5 versions with 

c-Myc coupled to other regulatory regions. In order to generate a transgenic Myc mouse, (C57BL 
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x SJL)F2 eggs were injected with a construct, implanted into pseudopregnant females, where 

after the transgenic pups got detected by hybridization to tail DNA. 

The Eµ-myc gene proved to be very potent, where 13 of 15 primary transgenic animals developed 

lymphoma. Both u and k enhancer constructs lead to tumor development, which all involved 

lymphoid tissue whereas the non-immunoglobulin constructs gave few tumors. No tumors 

developed in mice that were carrying the tagged normal Myc gene or the truncated form 

characteristic for most murine plasmacytomas over the observation period of 10 months. This 

was implying that the efficacy and specificity of these constructs was connected with the 

presence of immunoglobulin enhancers. The overall conclusion from the initial work with the  Eµ-

myc mice is that these animals develop pre B cell and mature B cell lymphomas (Adams et al., 

1985). However, further characterization of these mice went on to show that most young Eµ-myc 

mice actually don’t contain malignant clones and that there is a noticeable pre-malignant faze 

before the malignancy onset. The Eµ - driven c-Myc overexpression in these animals favors 

proliferation of B cells, and not their maturation. In the prelymphomatous bone marrow there is 

a strong presence of large pre B cells, and this cell population is polyclonal. The spleens of young 

Eµ-myc animals are enlarged and contain an abnormally expanded populations of pre B cells, 

which is a cell type not usually found in the spleen. In the prelymphomatous state, pre B cells do 

not infiltrate other lymphoid organs like the thymus and lymph nodes, even though these organs 

actually represent the primary sites of tumor formation in these animals. Studies on fetal livers 

and postnatal bone marrows went on to show that a higher production of pre B cells starts even 

before birth, and that the pre B cell amount ratios at that stage are much higher compared to 

their wild type littermates. At 21 days of age the B cell amount ratios in these animals are much 
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lower compared to their wild type littermates, implying that the enforced c-Myc overexpression 

rewires the program of B cell differentiation favoring higher proliferation of pre B cells and a 

delayed and slowed maturation into B cell  (Langdon et al., 1986). 

After a variable period during which there is a benign overerproliferation of pre B cells, all Eµ-

myc transgenic mice eventually develop malignant lymphomas of the B cell lineage, with 

associated leukemia. Transplantation experiments further confirmed that the lymphoblast 

masses that were evident in enlarged lymphoid tissues were indeed malignant. The disease 

phenotype of these mice includes massively enlarged lymph nodes, easily detected by palpation. 

The enlargement usually occurs between 3 and 18 weeks of age, starting with the enlargement 

of the inguinal lymph nodes. A couple of weeks later mice develop the so-called “water-wings” 

represented as prominent lumps on both shoulders and neck, which reflects enlargement of 

brachial and cervical lymph nodes. Eµ-myc mice also display a modest enlargement of the spleen 

and the thymus. Liver and lungs are often quite enlarged, and it has been also reported that some 

animals develop tumor masses inside the skull.  Lymphoblasts are present in all enlarged 

lymphoid organs and in the blood, and there is also a variable invasion of lymphoblasts to other 

tissues too. When mice become terminally ill, they manifest hunched posture, slow movement, 

ruffled fur and tachypnea (Adams et al., 1985; Harris et al., 1988).  

The discovery that c-Myc overexpression favors proliferation over maturation, and that the 

proliferating cells weren’t tumorigenic also highlighted the fact that the mere overexpression of 

the c-Myc oncogene wasn’t sufficient to dictate the lymphoma phenotype, suggesting that 

tumorigenesis requires additional events to occur (Langdon et al., 1986; Harris et al., 1988; 

Alexander et al., 1989). It has been shown that these additional events could include a somatic 
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activation of a cellular oncogene that has the ability to cooperate with Myc, such as Ras. 

Mutations in N-Ras and K-Ras oncogenes were reported in two independent Emu-myc 

lymphomas, together with the fact that the mutated N-Ras has the ability to cooperate with c-

Myc and lead to transformation of B cells in vitro, implying that spontaneous mutations of Ras 

genes are one of the pathways leading to lymphoid malignancy in Emu-myc mice (Alexander et 

al., 1989). 

Works by (Vaux et al., 1988) and (Strasser et al., 1990) went on to demonstrate that one of the 

key hallmarks of cancer was indeed a suppression of apoptosis. Co-expression of c-Myc together 

with the well-known inhibitor of apoptosis Bcl 2 resulted in an increased rate of lymphoma 

development highlighting the important role for the blockage of the mitochondrial death 

pathway in tumor progression.  Constitutive BCL 2 expression, achieved by juxtaposition of the 

BCL 2 gene to the immunoglobulin heavy chain locus, is an event found in human follicular B cell 

lymphoma. This translocation doesn’t change the gene product itself but it just leads to its 

constitutive overexpression. This overexpression of BCL 2 leads to an increase in cell survival, and 

it also has a protective role for human B and T lymphoblasts under stress (Tsujimoto, 1989; Reed 

et al., 1990) providing a growth advantage. Transgenic mice which possess this translocation 

accumulate small non-cycling B cells that have strong survival capabilities in vitro, but don’t 

develop spontaneous tumors. Pioneer in vitro experiments suggested that BCL 2 can indeed 

cooperate with an overexpressing MYC, improving growth of pre B and B cells in vitro (Vaux et 

al., 1988). Further confirmation about the Bcl 2 / Myc synergy, important for tumorigenesis, came 

from studies of doubly transgenic mice, which contained both overexpressed Bcl 2 and c-Myc. 

These doubly transgenic mice demonstrated a hyperproliferation of pre B and B cells, and they 
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were developing tumors much faster than their Eµ-myc mouse counterparts (Strasser et al., 

1990) 

Since tumorigenesis in Eµ-myc mice is a multistep process, efforts have been made to understand 

cellular events underlying tumorigenesis. This has been achieved by quantifying B cell 

populations at various stages of this process, staining the cells from the peripheral blood with 

different monoclonal antibody combinations, all of which was followed by a flow cytometric 

analysis. Eµ-myc mice can be distinguished at weaning from their non-transgenic littermates 

based on the size of lymphocytes in the peripheral blood. This measure can also be used for 

following the lymphocyte proliferation status in individual animals. According to this it is possible 

to distinguish three distinct phases of the tumorigenic process: 

(1) Early stage – an initial period of B cell lineage polyclonal proliferation. The cell surface antigen 

phenotype of this stage corresponds to a mixture of IgM-positive and IgM- negative cells, weak 

B220 positive, weak Mac-1 positive and CD4, CD8 and CD5 negative cells.  

(2) Intermediate stage – a prolonged remission phase that has a variable duration from mouse to 

mouse, where peripheral B lymphocytes are non-proliferative and not large in numbers. Their 

immunophenotype corresponds to a typical B cell – IgM positive, B220 positive, CD5 negative 

and Mac-1 negative B cell populations.  

(3) Late stage (ending with the death of the animal) – at this point there is again an active B cell 

proliferation in the blood, with a similar immunophenotype of the early stage – IgM positive and 

IgM negative, weak B220 positive, weak Mac-1 positive and CD5 negative cell populations.  
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Based on this immunophenotypic analysis, the late stage monoclonal B cells present in tumors 

have a phenotype corresponding to an early polyclonal proliferating B cell. Since in the 

intermediate stage there is a high level of cell death in the bone marrow, the entry into the 

terminal stage depends on a clone of cells which was able to avoid normal processes of cell death, 

that normally regulate the exit of B cells from the bone marrow to the periphery, again 

highlighting the importance of apoptosis suppression for acquiring a cancer phenotype (Sidman 

et al., 1993). However, with the availability of large Eµ-myc cohorts, with the use of gene 

expression profiling, and especially analysis of signatures of cell signaling pathway activation, it 

became possible to distinguish several different forms of B cell lymphomas in Eµ-myc mice 

depending on the time of the tumor onset. Some of these tumor types indeed did not get 

detected with the classical immunophenotyping approaches. Two main tumor categories 

discovered with the gene expression profiling approach include an early stage tumor composed 

mainly of pre - B cells, with a strong resemblance to Burkitt’s lymphoma; whereas the other 

tumor category is detected in the late stage (after 400 days of age), and the tumor is mainly 

composed of differentiated (mature) B cells, thus resembling to human diffuse large B cell 

lymphoma (Mori et al., 2008). 
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SUMMARY 

Mitochondria are key organelles that amplify apoptosis through the release of cytochrome c 

and other cofactors that activate downstream caspases. Cytochrome c release is accompanied 

by mitochondrial cristae remodeling controlled by the inner mitochondrial membrane shaping 

protein Opa1. While levels of Opa1 are increased in certain cancers, the direct relationship 

between Opa1 and tumor generation, maintenance and severity was never explored. Here we 

show that increased Opa1 levels aggravate a mouse model of lymphoma. Proteomic profiling 

identified upregulated Opa1 in the Oxidative phosphorylation (OxPhos) subset of diffuse large 

B cell lymphoma. Morphological and functional analysis revealed that increased Opa1 levels 

impacted on mitochondrial morphology, metabolism and ultrastructure of the OxPhos 

lymphoma cells, ultimately conferring a proliferative advantage when cells were forced to rely 

on mitochondria for energy generation. Accordingly, Opa1 overexpression aggravated the 

clinical features of disseminated lymphoma and decreased survival rates of an in vivo Eµ-Myc 

lymphoma mouse model. Thus, Opa1 displays oncogenic features and can be considered as a 

novel therapeutic target for cancer treatment.  
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INTRODUCTION 

Mitochondria are double membrane–enclosed organelles that play a key role in energy 

conversion, metabolism, regulation of cellular signaling and amplification of programmed cell 

death (Wasilewski and Scorrano, 2009). During apoptosis mitochondria release cytochrome c and 

other cofactors that are required to amplify cell death (Li et al., 1997). The complete release of 

cytochrome c depends on the changes in the shape and in the ultrastructure of the organelle: 

during these processes mitochondrial network undergoes fragmentation accompanied by cristae 

remodeling and widening of cristae junctions (Frank et al., 2001; Scorrano et al., 2002). Of note, 

deregulation of apoptosis represents a typical hallmark of cancer, since cancer cells exploit the 

inhibition of the mitochondrial arm of apoptosis to acquire the malignant phenotype (Thompson, 

1995). 

Mitochondrial shape in the steady state is the result of the balanced action of fission and fusion 

events (Griparic and van der Bliek, 2001). The process of mitochondrial fission is controlled by a 

synchronized action of the cytosolic Dynamin – related protein 1 protein (Drp1) (Cereghetti et 

al., 2008) that is recruited to the outer mitochondrial membrane where it binds its adaptors 

Fission – 1 (Fis1), Mitochondrial fission factor (MFF), Mitochondrial division (Mid) 49 and 51, and 

participates in the division of mitochondria (Palmer et al., 2011). Mitochondrial fusion, on the 

other hand, is controlled by Mitofusins (Mfn) 1 and 2, large GTPases located in the outer 

mitochondrial membrane, together with the inner membrane GTPase Optic Atrophy 1 (Opa1) 

(Santel and Fuller, 2001; Chen et al., 2003; Cipolat et al., 2004). In humans, alternative splicing of 

Opa1 gives rise to 8 mRNA splice variants which further get processed by proteolytic proteases 

giving rise to 2 long and 3 short forms of Opa1 (Olichon et al., 2007; Duvezin-Caubet et al., 2007). 
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Opa1 is a multifunctional protein: apart from its function in promoting mitochondrial fusion 

(Cipolat et al., 2004), it also plays a key role in the control of apoptosis by keeping in check the 

cristae remodeling pathway, by forming multimeric complexes that control the size of the cristae  

junctions during apoptosis (Frezza et al., 2006; Cipolat et al., 2006). Moreover, Opa1 controls 

mitochondrial metabolism, by favoring the assembly of respiratory chain complexes into 

supercomplexes, increasing the efficiency of oxidative phosphorylation (Cogliati et al., 2013). All 

these functions concur to determine the beneficial outcome of its mild overexpression in vivo, 

which protects from heart and brain ischemia, denervation-induced muscular atrophy and 

fulminant hepatitis (Varanita et al., 2015). Furthermore, it corrects mouse models of primary 

mitochondrial dysfunction caused by defects in components of the respiratory chain (Civiletto et 

al., 2015).  

The beneficial effects of Opa1 overexpression apparently come with a counterpart, since a 

handful of studies reported that Opa1 is overexpressed in several human cancers where high 

levels of Opa1 correlated with a worst prognosis and an impaired response to therapy (Fang et 

al., 2012), while its downregulation in cancer cells engages the mitochondrial apoptotic pathway 

and improves the sensitivity to classical chemotherapeutic agents (Zhao et al., 2013). However, 

whether Opa1 has a role in the acquisition and maintenance of the cancer phenotype is unclear, 

especially in the context of cancers where mitochondria have been reported to play a role. In 

addition to their role as regulators of apoptosis, mitochondria seem to play a role in cancer due 

to their role in metabolism: not only OxPhos is switched off during oncogenesis (the well known 

Warburg effect), but also these organelles represent the source of a group of metabolites (the so 

called oncometabolites) that act in the cytoplasm to stabilize hypoxia inducible factor (HIF) and 
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therefore to promote tumor survival and proliferation (Yang et al., 2013). In addition, several 

recent omics studies indicated previously unappreciated changes in mitochondrial profiles as a 

hallmark of different subsets of cancers. This is the case of diffuse large B cell lymphoma (DLBCL), 

one of the most common adult non-Hodgkin lymphoid malignancies (Lohr et al., 2012). DLBCLs 

are a genetically heterogeneous group of tumors that can be further divided in several subsets, 

identified by their distinct molecular signatures (Alizadeh et al., 2000). Genome wide arrays and 

multiple clustering algorithms defined a B cell receptor (BCR)/proliferation cluster (BCR–DLBCL), 

which displays upregulation of genes encoding BCR signaling components, and an OxPhos cluster 

(OxPhos–DLBCL) which is enriched in genes involved in mitochondrial oxidative phosphorylation. 

The OxPhos subset lacks an intact BCR signaling network, suggesting dependence on alternative 

survival mechanisms, which are not yet defined (Monti et al., 2005; Caro et al., 2012). Notably, a 

proteomic approach aimed at carefully dissecting components of the mitochondrial proteome in 

the BCR versus OxPhos cell group, identified increased levels of Opa1 in the OxPhos (Danial N, 

manuscript in preparation).   

Here we show that Opa1 is increasingly processed in the BCR DLBCL subset and that 

mitochondrial morphology and ultrastructure are different between the BCR and the OxPhos 

DLBCL subsets that display different levels of Opa1. Furthermore, Opa1 and c-Myc synergize in 

doubly transgenic mouse models, where Opa1 overexpression contributes to the development 

of, and aggravates cancer in Eμ-Myc transgenic animals. Our data indicate a role for Opa1 in 

DLBCL features, and tumor progression in vivo.  
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RESULTS 

Opa1 is cleaved in the BCR subset of DLBCL  

In order to verify the proteomic result that Opa1 is upregulated in the Oxphos DLBCL subset, we 

capitalized on 8 established DLBCL cell lines, 4 of which (D4, D6, Ly7 and Ly1) belonging to the 

BCR subset, and other 4 (Pfeiffer, Toledo, Ly4 and K422) to the OxPhos subset, in accordance with 

their metabolic signature based on the Consensus Cluster Classification system (Monti et al., 

2005; Caro et al., 2012). In humans, the 8 Opa1 molecules generated by alternative splicing 

further undergo proteolytic processing giving rise to two long Opa1 forms of higher molecular 

weight, and 3 short forms of lower molecular weight, which can be seen as 5 distinguishable 

bands on a Western blot (Olichon et al., 2007; Duvezin-Caubet et al., 2007). Western blot analysis 

followed by densitometry quantification performed on these 8 DLBCL cell lines revealed that 

levels of the mitochondria-shaping protein Fis1 were generally higher in the BCR subset, whereas 

besides variability among the different cell lines, levels of Drp1, Mfn1 and Mfn2 were 

comparable. Conversely, levels of Opa1 were higher in the Oxphos subset, and strikingly, in the 

BCR subset short Opa1 forms accumulated (Figure 1A and quantification in C), especially in the 

D6, Ly7 and Ly1 cell lines, whereas in the cell line D4 long forms were still retrieved. Of note, the 

balance between long and short Opa1 forms was maintained in both B lymphocytes isolated from 

spleens of healthy C57/Bl6J male mice and B lymphocytes from buffy coats of healthy adult male 

subjects, suggesting that the unbalance observed in the BCR cells was specific for this cancer cell 

subset (Figure 1B).  
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In order to clarify the mechanism of increased Opa1 cleavage in the BCR DLBCL subset, we 

focused our attention on B cell receptor signaling that is increased in the BCR subset (Chen et al., 

2008), as well as on known mitochondrial factors responsible for Opa1 cleavage such as changes 

in mitochondrial membrane potential and activation of Opa1 processing proteases (McBride and 

Soubannier, 2010). Increasing signaling from the BCR leads to cellular calcium accumulation 

(Sugawara et al., 1997), but chelation of intracellular calcium did not interfere with Opa1 cleavage 

(Figure S1A). Similarly, fostamatinib (R406) -  a commercially available SYK inhibitor (Chen et al., 

2008), ibrutinib – BTK inhibitor (Goldstein et al., 2015), and Cal 101 – a PI3K inhibitor (Lannutti et 

al., 2011), all known to abolish signaling from the BCR, had no effect on Opa1 cleavage (Figure 

S1B). Finally, levels of OMA1, an ATP-independent protease responsible for Opa1 cleavage (Ehses 

et al., 2009), were unchanged in all the 8 cell lines tested, and also mitochondrial membrane 

potential was not varying between these two cell subsets (results not shown). In sum, the 

increased Opa1 cleavage observed in the BCR DLBCL subset cells cannot be explained in the 

framework of the known signaling pathways downstream of the BCR. 

Different levels of Opa1 are mirrored by changes in mitochondrial ultrastructure 

Irrespective of the fine mechanism responsible for the increased Opa1 cleavage in the BCR DLBCL 

subset, we decided to investigate whether the observed differences in Opa1 levels and cleavage 

were reflected by changes in mitochondrial architecture. Confocal microscopy analysis of DLBCL 

cell lines stained using the Tom20 mitochondrial marker was followed by reconstruction of the 

confocal Z stacks and segmentation-based digital analysis using Squassh (segmentation and 

quantification of subcellular shapes), an ImageJ plugin specifically designed for detecting and 

delineating the observed morphologies (Rizk et al., 2014). This automated analysis did not reveal 
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major changes in mitochondrial morphology among the different 8 cell lines tested here, 

suggesting that the balance between long and short forms of Opa1 does not affect mitochondrial 

length in DLBCL cells (Figure 2A and quantification in B).  

Given the fundamental role of Opa1 in mitochondrial cristae shape, we decided to analyze 

mitochondrial ultrasctucture of DLBCL cell lines by electron microscopy. In glucose rich media, 

cristae of OxPhos mitochondria appear slightly tighter, compared to their BCR counterparts (Fig. 

3A – B, and quantification in C). Cristae shape transitions from orthodox to condensed, where 

cristae are wider,  when mitochondrial respiration is stimulated (Hackenbrock, 1966), in an Opa1 

dependent process (Patten et al., 2014). When cells were cultivated for 48 hours in galactose rich 

media, where ATP production relies on mitochondrial metabolism, cristae were wider in all DLBCL 

cell lines, but more so in BCR cells compared to the Oxphos counterparts (Fig. 3A – B and 

quantification in C). This tighter cristae morphology correlates with the pre-existing balance 

between Opa1 long and short forms, since we could not find any significant difference in this 

ratio upon shifting the two subsets of DLBCL cell lines to galactose enriched media (Figure 3D and 

Figure 3 E). In conclusion, the altered ratio between long and short Opa1 forms correlates with 

wider cristae when cells are forced to rely on mitochondria for ATP production.  

OxPhos DLBCL cell lines display a growth advantage when they rely on mitochondria for energy 

supply 

Since Opa1-dependent cristae shape affects mitochondrial-dependent cell growth  (Cogliati et 

al., 2013), we verified whether observed differences in Opa1 levels and cristae shape affected 

proliferation rates of DLBCL cell lines when they are forced to use mitochondria for energy supply. 
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While proliferation of BCR DLBCL cell lines in galactose rich media was slower than when they 

were cultivated in galactose (Figure 4A), OxPhos DLBCL cells grew comparably irrespective of 

whether they had to rely on mitochondria for energy supply (Figure 4B). Thus, maintenance of 

long/short Opa1 ratio in the OxPhos DLBCL cells confers a proliferative advantage when cells rely 

on mitochondria for energy supply and could explain at least partially why the OxPhos DLBCL are 

more aggressive. 

Generation of an Opa1 overexpressing Eµ-myc lymphoma mouse model 

Our in vitro data correlate increased Opa1 levels and maintained Opa1 long/short form ratio to 

a proliferative advantage for DLBCL cells. However, they fail to address the issue of whether 

increased Opa1 levels act as a lymphoma modifier in vivo. The intrinsic susceptibility of individual 

mouse strains to different types of cancer can be greatly increased by the expression of specific 

oncogenes, such as c-myc (leukemias/lymphomas, liver tumors), or mutated H-Ras (lung cancer, 

liver cancer) (Strasser et al., 1996; Maronpot et al., 1991; Sandgren et al., 1989). Co-expression 

of c-myc together with the well-known inhibitor of apoptosis bcl 2 increases the rate of 

lymphoma development, highlighting the role of the mitochondrial death pathway in tumor 

progression (Strasser et al., 1996). With this in mind, we decided to generate an Opa1 

overexpressing lymphoma mouse model. We first crossed Opa1flx/flx with Opa1tg mice (Cogliati et 

al., 2013) to generate Opa1flx/flx::Opa1tg animals that were then further crossed to Eµ-myc mice, 

a well characterized mouse model of lymphoma studies. Eμ-Myc mice carry a fusion gene of the 

otherwise normal Myc oncogene (c-myc) under Eµ immunoglobulin heavy chain enhancer and 

Myc promoter. Expression of the Myc transgene is restricted to the B cell lineage and tumors that 

arise are all lymphoblastic lymphomas (Adams et al., 1985; Harris et al., 1988). By standard 
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breeding strategies we obtained Eµ-myc::Opa1flx/+::Opa1tg triple mutants (hereby referred to as 

Eµ-myc::Opa1tg mice, Figure 5 A and Figure 5 B). Western blot analysis revealed that as expected 

levels of Opa1 were higher in Eµ-myc::Opa1tg spleen, thymus, lung and kidneys compared to their 

Eµ-myc control littermates (Figure 5 C).  

Lymphomas are more severe and aggressive in Eµ-myc::Opa1tg mice. 

Follow up of a large colony of single Eµ-myc and double Eµ-myc::Opa1tg transgenic animals 

highlighted the emergence of lymphomas, clinically evident as palpable lymph nodes associated 

later in the progression of the disease with a deterioration of the general physical status of the 

mice that were euthanized when their clinical status appeared poor. These palpable masses and 

the decline in the general health status appeared earlier in the double Eµ-myc::Opa1tg mice, 

prompting us to statistically follow survival rates in a cohort of 95 single Eµ-myc and double Eµ-

myc::Opa1tg transgenic animals in total, for 20 months. Censorial Kaplan Meier analysis 

demonstrated that Eµ-myc::Opa1tg doubly transgenic animals  become terminally ill at a faster 

rate and more synchronously then their littermates bearing only the Eµ-myc transgene, especially 

in the case of male  subjects (Figure 6A). 

Gross anatomy inspection of representative 3 month old mice revealed a significant enlargement 

of the lymphoid organs such as spleen, thymus and lymph nodes in the doubly transgenic Eµ-

myc::Opa1tg mouse models, compared to the heathy controls (wt and Opa1flx::tg), and Eµ-myc 

littermates (Figure 6B). Necropsy analysis was performed by skilled independent mouse 

pathologists on selected single transgenic Eµ-myc, and doubly transgenic Eµ-myc::Opa1tg animals 

of different age, ranging from pre-symptomatic two months old mice, up to 5 and 6 month old 

70



 

mice where lymphoma was completely developed. Disseminated malignant lymphoma was more 

severe in the Eµ-myc::Opa1tg animals with enlargement and massive lymphoid infiltrations in 

spleen and thymus, as well as with cancer foci in lungs, liver and kidney already in the pre-

symptomatic animals (Table 1). Even in 5 and 6 months old symptomatic mice the clinical picture 

was more severe in the doubly transgenic animals, characterized by massive enlargement of 

spleen, thymus and lymph nodes (Figure S4 A - B). Overall, any inspected organ at any analyzed 

age appeared more infiltrated by tumor in the Eµ-myc::Opa1tg animals (Table 1), indicating that 

Opa1 overexpression aggravates Eµ-myc driven lymphomas. 

We next inspected lymphoid and infiltrated tissues by histology. The normal architecture of 3 

months old Eµ-myc and Eµ-myc::Opa1tg spleens was disrupted, with loss of the clear distinction 

between the red and white pulp; however, the severity of lymphoblast dissemination was 

stronger in the doubly transgenic mouse, with a severe and diffuse neoplastic lymphoid 

infiltration of cells characterized by a scant amount of amphophilic cytoplasm and round central 

nuclei with finely stippled chromatin and multiple basophilic nucleoli. The mitotic activity was 

also higher in the Eµ-myc::Opa1tg characterized by 8-10 mitosis per high-power field (HPF) 

compared to the 6-7 mitosis per HPF in the Eµ-myc, whereas the healthy control littermates 

displayed a moderate mitotic activity of 2-3 mitoses per HPF (Figure 7A). Albeit both Eµ-myc and 

Eµ-myc::Opa1tg 3 months old thymi displayed multifocal and sometimes coalescing infiltrates of 

lymphoid cells characterized by a scant amount of amphophylic cytoplasm and round, central 

nuclei with finely stippled chromatin and multiple basophilic nucleoli, architecture of the thymus 

(with the clear distinction between the cortex and the medulla) was preserved in Eµ-myc but not 

in Eµ-myc::Opa1tg mice. Also in the thymus mitotic activity was increased in Eµ-myc::Opa1tg mice 
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reaching  7-8 mitosis per HPF compared to the 5-6 mitosis per HPF of single Eµ-myc transgenics 

(Figure 7B). While intrasinusoidal neoplastic lymphoid cell infiltrations in the liver (Figure 7C) and 

multifocal perivascular infiltrations of the interstitium and the adipose tissue in the kidney (Figure 

7D) were comparable between 3 months old  Eµ-myc and Eµ-myc::Opa1tg, the interstitial 

neoplastic infiltration was severe in the Eµ-myc::Opa1tg mouse but only moderate in the Eµ-myc 

(Figure 7E). In conclusion, very mild Opa1 overexpression worsens Eµ-myc driven lymphomas.  

We next wanted to address if the worsened clinical phenotype of the Eµ-myc::Opa1tg mice was a 

consequence of a specific effect of Opa1 on the program of B cell differentiation. Flow cytometric 

analysis using antibodies for the cell surface markers defining characteristic stages of the B cell 

development revealed that bone marrow levels of pro B cells (CD19+cKit+) as well as of pre-B 

cells (CD19+cKit-) were higher in Eµ-myc::Opa1tg mice compared to their Eµ-myc counterparts at 

all analyzed time points (Figure 8A). As a matter of fact, in the Eµ-myc::Opa1tg mice cells positive 

for the pan-B cell marker B220 were more in all primary and secondary lymphoid organs at all 

analyzed time points (Figure 8B,C), suggesting increased B cell proliferation or  reduced B cell 

apoptosis in these mice. We also excluded that the ubiquitous Opa1 expression affected T cell 

development (figure S5 A) or monocyte/macrophage (Mac1+Gr1-) and granulocyte lineages 

(Mac1+Gr1+) (figure S5 B). In conclusion, moderate Opa1 overexpression worsens Eµ-myc driven 

lymphomas by favoring bone marrow accumulation of pre and pro B cells as well as B cell 

infiltration in peripheral lymphoid organs.  
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DISCUSSION 

One of the main strategies exploited during tumor development is to evade apoptosis, and 

alterations that prevent cells from undergoing cell death can be considered as oncogenic (Cory 

et al., 1999). While the role of mitochondrial apoptosis in oncogenesis is clear, the contribution 

of mitochondrial dynamics to cancer development and progression is much less defined. Here 

we demonstrate that higher levels of Opa1 are responsible for certain features of diffuse large B 

cell lymphoma cell subsets and we formally prove that Opa1 overexpression leads to a more 

severe cancer phenotype in a mouse lymphoma model. 

The link between impaired apoptosis and the process of tumorigenesis started to become widely 

appreciated with the discovery that Bcl 2 promotes cell survival (Vaux et al., 1988) and acts 

synergistically with Myc in promoting lymphomagenesis in mice (Strasser et al., 1990). These 

discoveries set the stage to explore the role in cancer formation for other genes and proteins 

reported to participate in the regulation of cell death. The discovery that Opa1 regulates the 

mitochondrial apoptotic pathway, through the process of cristae remodeling and of cytochrome 

c release (Scorrano et al., 2002; Frezza et al., 2006), together with the discovery that it is 

upregulated in certain cancers (Fang et al., 2012), suggested that also this inner membrane 

protein might play a role in cancer. However, whether Opa1 is directly involved in cancer 

generation was never explored. We therefore set out to explore if the observed upregulated 

levels of Opa1 in the Oxphos subset of DLBCL (Danial N, Manuscript in preparation) played any 

role in the cellular and in vivo features of lymphoma.  
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In vitro, we observed that not only Opa1 was upregulated in the OxPhos subset of DLBCL, but 

also the ratio between long and short Opa1 forms was reduced in the BCR subset. While this 

change did not impact on mitochondrial morphology, it affected cristae that appeared wider in 

the BCR subsets especially when these cells were forced to rely on mitochondria for energy 

production. Along the same line, OxPhos cells grew faster in media supplemented with galactose, 

a maneuver that forces mitochondrial ATP generation.  This is in line with what was observed in 

other cell types and might reflect an increased efficiency of mitochondrial respiration due to 

supercomplex assembly of the respiratory chain complexes (Cogliati et al., 2013). Alternatively, 

the increased Opa1 levels might protect Oxphos DLBCL cells from spontaneous apoptosis, but we 

conversely found that the mitochondrial apoptotic machinery is inhibited due to Bcl 2 

upregulation and Bax downregulation in the BCR subset. These changes might reflect the 

adaptation of BCR cells to reduced Opa1 levels and suggest that the observed decreased 

proliferation in galactose rich media is not due to increased cell death.  

In vivo, Opa1 overexpression contributed to cancer development in Eµ-myc transgenic mice, 

shortening their life span and leading to a more severe clinical picture of disseminated 

lymphoma. Necroscopic, pathology and immunophenotypic analysis performed on these mice 

further corroborated that Opa1 overexpression allowed immature as well as mature B cells to 

survive in primary as well secondary lymphoid organs and to invade e.g. lungs. Our results 

indicate that Opa1 levels can directly aggravate oncogenesis by Myc and in this respect can 

phenocopy what already observed with Bcl 2 (Strasser et al., 1990; Strasser et al., 1996). 

Historically, the double Eµ-myc Bcl 2 transgenic mouse model established a firm role for Bcl 2 as 

an oncogene that acts in a separate pathway from cellular proliferation, i.e. by blocking 
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apoptosis. Our results indicate that also the mitochondria shaping protein Opa1 is found to be 

upregulated in DLBCL patients and aggravates the phenotype of a mouse model of lymphoma, 

thereby placing mitochondrial ultrastructure in the arena of cancer formation and progression.  

Our work unravels a role for Opa1 in cancer features and in the development and progression of 

the disease, identifying Opa1 as a novel oncogene candidate. Targeting Opa1 - dependent cristae 

remodeling pathway emerges as an appealing strategy to increase apoptosis of cancer cells. 

Development of new therapies which would specifically target Opa1 function, with the aim of 

increasing the recruitment of the mitochondrial apoptotic pathway, represent a potential 

strategy to combat cancer. 
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EXPERIMENTAL PROCEDURES 

Cell culture 

DLBCL cell lines were cultured in RPMI 1640 medium (GIBCO Life Technologies), supplemented 

with 10 % FCS, 2mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. Cells were 

maintained in culture for maximum 20 passages.   

Proliferation assay 

Cells were cultured in RPMI 1640 complete media (GIBCO Life Technologies) and RPMI 1640 

media without glucose (GIBCO life Technologies) supplemented with 0.9 mg/ml galactose, 

together with 10 % FCS, 2mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. 

50000 cells / ml have been washed with PBS 1x, and resuspended in the indicated media in a 

total volume of 15 ml. Cell growth was monitored for 5 days and was determined by Trypan Blue 

exclusion with the use of Burker cell counting chamber.  

B lymphocyte isolation 

Mouse B lymphocytes were isolated from 3 months old BL6 wild type mouse spleens. Spleen cell 

suspension was obtained by smashing the spleens through a 70 µm cell strainer (BD Falcon) and 

the obtained cell suspension was further treated following the EasySep Stem Cell Technologies 

protocol for isolation of mouse B lymphocytes based on negative selection.  

Human B lymphocytes were isolated from buffy coats of heathy patients, received from the 

University Hospital Padova. Human B lymphocytes were isolated following the RosetteSep Stem 

Cell Technologies protocol based on negative selection. 
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The purity of isolation was checked by FACS where the obtained B lymphocyte cell suspension 

was stained with the CD19 antibody. 

Immunoblotting 

Cell pellets were lysed in RIPA lysis buffer 1x (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 

Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 

mM β-glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin) supplemented with PIC. Equal 

amounts of extracted protein were separated by SDS-PAGE (NuPage, Invitrogen), transferred 

onto polyvinylidene fluoride membranes (Millipore) and immunoblotted with indicated 

antibodies. Antibodies used include: anti – Opa1 (BD Transduction, 1:1000), anti – Mfn2 (Abnova, 

1:1000), anti – Mfn1 (Milipore, 1:2000), anti – Drp1 (BD Transduction, 1:2000), anti – Fis1 (Alexis, 

1:1000), anti – Grp75 (Santa Cruz, 1:4000), anti – Actin (Chemicon, 1:10 000). Isotype-matched, 

horseradish peroxidase-conjugated secondary antibodies (Sigma) were used, followed by 

detection by chemiluminescence (Pierce). Densitometry quantification of Western blot bands 

was performed using the Gel Pro Analyzer software. 

Immunofluorescent staining and confocal microscopy 

60000 cells were seeded on top of a poly – L– lysine pre-coated microscope diagnostic slide 

(Menzel Thermoscientific).  Cells were fixed with cold 4 % FA for 20 minutes on RT, and 

immunofluorescent blotting was achieved using anti – Tom20 antibody (Santa Cruz, 1:100), 

followed by secondary fluorescent blotting with FITC (1:200).   

For confocal imaging, microscope slides were placed on the stage of Zeiss LSM 700 confocal 

microscope using a Plan Apochromat 63x 1.4 Oil DIC objective. Digital images were processed 
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using the National Institute of Health Image J software, and further analysis of mitochondrial 

morphology was performed with the use of the “Squassh” plugin for the ImageJ software. 

Transmission electron microscopy 

Cells were fixed for 20 minutes at room temperature using glutaraldehyde at final concentration 

of 2.5 % (v/v) in PBS 1x. Embedding and staining was performed as described in (Scorrano et al., 

2002). Thin sections were imaged on a Tecnai-20 electron microscope (Philips-FEI). Cristae width 

was measured with the use of the National Institute of Health Image J software. 

Generation of Opa1flx/flx, Opa1tg, Eµ-myc::Opa1flx/+::Opa1tg mice 

The experimental approach used for the generation of Opa1flx/flx and Opa1tg mice was previously 

described in detail in (Cogliati et al., 2013). The Eµ-myc (B6.Cg-Tg(IghMyc)22Bri/J) mouse was 

purchased from Jackson laboratory.  The TgN(IghMyc)22Bri transgenic strain was made in the 

laboratory of Dr Ralph Brinster, University of Pennsylvania in collaboration with Dr. Alan Harris, 

currently of the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. The 

transgene construct consists of the Myc oncogene (c-myc) in association with the Emu 

immunoglobulin heavy chain enhancer and Myc promoter. Expression of the mouse Myc 

transgene is restricted to the B cell lineage. We generated a stable colony of genetically modified 

animals carrying a floxed Opa1 allele (Opa1flx/flx) and the targeted Opa1 overexpression on the X 

chromosome (Opa1tg).  The generated females Opa1flx/flx::Opa1tg (carrying the transgene in 

homozygosity on the X chromosome) were then crossed with Eμ-myc males, giving rise to a triple 

mutant Eµ-myc::Opa1flx/+::Opa1tg mouse model used in our study. All experimental procedures 

performed on mice have been authorized by the CEASA of the University of Padova. 
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Genotyping 

DNA from mouse tails was extracted following the DNeasy blood & tissue kit protocol (Qiagen). 

The mice with the correct genotype were selected on the basis of PCR genotyping on tail DNA 

with the use of the following primers: primer for Opa1flx detection (F: 5’- CAG TGT TGA TGA CAG 

CTC AG - 3’, R: 5’ - CAT CAC ACA CTA GCT TAC ATT TGC - 3’) primers for Opa1tg detection ( F: 5’- 

GCA ATG ACG TGG TCC TGT TTTG - 3’, R: 5’- GAT AGG TCA GGT AAG CAA GCA AC - 3’), primers 

for Opa1wt detection (F: 5’ - GAG GGA GAA AAA TGC GGA GTG - 3’, R: 5’- CTC CGG AAA GCA GTG 

AGG TAA G -3’), primers for Eµ-myc detection (F: 5’ - TTA GAC GTC AGG TGG CAC TT - 3’, R: 5’ - 

TGA GCA AAA ACA GGA AGG CA - 3’). 

Gross pathology and histology 

Selected mice were sent for necropsy analysis to the Istituto Zooprofilattico Sperimentale delle 

Venezie pathology department in Padova, Italy. Hematoxylin and eosin staining was performed 

on paraffin embedded sections by the pathology department of the aforementioned institute. 

The h&e stained tissue section microscopic slides were placed on the stage of the Trinocular 

Brightfield / Fluorescence w/ 4 Position FL Cube Turret Olympus BX60 Microscope and the images 

were acquired using the Olympus UPlanApo 4x Infinity Corrected Objective.  

Immunophenotyping 

Mouse organs have were harvested, washed in PBS 1x enriched with 2% FCS, and smashed 

through a 100 µm cell strainer (BD Falcon). The obtained cell suspension was treated with an RBC 

lysis solution, to lyse the erythrocytes.  Single – cell suspensions from thymus, spleen, inguinal 

lymph nodes, liver, lung, kidney and bone marrow were surface stained with monoclonal 
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antibodies, in 200 µl of PBS enriched with 2% FCS, together with the antibodies diluted in 1:200, 

and incubated for at least 30 minutes on ice in the dark. The following monoclonal antibodies 

were used: Gk1.5 (anti-CD4) Biolegend, 53-6.7 (anti-CD8) eBioscience, RB6-8C5 (anti-Gr1) 

Biolegend, M1/70 (anti-Mac1) eBioscience, 11/6c (anti-IgD) eBioscience, IL/41 (anti-IgM) 

eBioscience, Ra3-6B2 (anti-B220) eBioscience, MB19-1 (anti-CD19) eBioscience, 2B8 (anti-cKit) 

eBioscience, 3C7 (anti-CD25) Biolegend. Flow cytometric analysis was performed using a 

FACSCalibur cell analyzer (BD Biosciences) and 100 000 – 200 000 events were acquired for the 

analysis. 
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FIGURE LEGENDS 

Figure 1. Levels of Opa1 differ between BCR versus OxPhos DLBCL cell subsets 

(A) Equal amounts of protein (10 µg) from the indicated DLBCL cell lines were separated by SDS 

– PAGE and immunoblotted with the indicated antibodies. 

(B) B lymphocytes from adult mouse spleens (Mouse) and B lymphocytes from buffy coats of 

heathy adults (Human) were isolated as described. Equal amount of protein (10 µg) extracted 

from B lymphocyte cell pellets, and from DLBCL cell lines were separate by SDS – PAGE, and 

immunoblotted with the indicated antibodies. 

(C) Densitometry quantification of the ratio between long and short Opa1 forms. Data represent 

average ±SEM, n = 4 for each cell line. 

Figure 2. Mitochondrial morphology in DLBCL cell lines 

(A) Representative 2D Z - project reconstructions of confocal Z – stacks. Cells were fixed and 

immunostained with the mitochondrial marker Tom20, followed by fluorescent labeling with 

FITC. Scale bar 5 µm. 

(B) Morphometric analysis of the mitochondrial morphology using Squassh plugin for the ImageJ 

software. Data represent mean of ±SEM of 3 independent experiments (n=20 cells per cell type, 

per each experiment), histogram bars represent the average mitochondrial length, measured per 

cell type. 

Figure 3. DLBCL cell line cristae ultrastructure in glucose vs. galactose: OxPhos cristae are more 

organized compared to their BCR DLBCL counterparts 
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(A) Representative electron micrographs of BCR DLBCL cell lines in glucose vs galactose media. 

(B) Representative electron micrographs of OxPhos DLBCL cell lines in glucose vs galactose media. 

DLBCL cell lines were previously cultivated for 48h hours in complete RPMI 1640 media 

containing glucose, or complete RPMI 1640 media containing galactose 0.9 mg/ml, fixed and 

processed for electron microscopy. Scale bar 200 nm. 

(C) Morphometric analysis of mitochondrial cristae electron micrographs. Quantification of 

cristae width corresponding to DLBCL cell lines previously cultivated in glucose enriched 

complete RPMI 1640 media for 48h, or galactose enriched complete RPMI 1640 media for 48h, 

using ImageJ software. Data represent mean ±SEM of 3 independent experiments (n=180 

mitochondria per cell type, per each experiment), histogram bars represent the average cristae 

width, measured per cell type. 

(D) DLBCL cell lines were previously cultivated in complete RPMI 1640 media enriched with 

glucose (GLU) or galactose (GAL), for 48h. Following this treatment equal amounts of proteins 

(10 µg) from the indicated cell lines were separated by SDS – PAGE and immunoblotted with 

Opa1 a) Representative Western blot for the BCR DLBCL cell subset b) Representative Western 

blot for the OxPhos DLBCL cell subset.  

(E) Densitometry quantification of the ratio between long and short Opa1 forms. Data represent 

average ±SEM, n = 4 for each cell line a) Densitometric analysis of the BCR DLBCL cell subset b) 

Densitometric analysis of the OxPhos DLBCL subset. 

Figure 4. Mitochondrial dependent cell growth is facilitated in cell lines expressing higher levels 

of Opa1 
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(A) Growth curves of representative BCR DLBCL cell lines, grown in RPMI 1640 complete media 

enriched with glucose (GLU) or galactose (GAL). Data represent mean ±SEM of 6 independent 

experiments. 

(B) Growth curves of representative OxPhos DLBCL cell lines, grown in RPMI 1640 complete 

media enriched with glucose (GLU) or galactose (GAL). Data represent mean ±SEM of 6 

independent experiments. 

Figure 5. Generation of the Eµ-myc::Opa1tg mouse 

(A) Schematic representation of the mouse crossing strategy.  

A stable colony of genetically modified animals was generated by crossing in the parental 

generation Opa1 flx/flx males with Opa1tg (double transgenic) females. In the case of Opa1flx/flx 

animals, the targeting vector contained loxP elements between exons 1-2 and 3-4, and a 

neomycin resistance cassette was introduced downstream of the first LoxP site. The targeting 

vector was then introduced into ES cells by electroporation, where G-418-resistence ES cells were 

tested for homologous recombination. Three positive clones C57BL6ES were microinjected into 

C57BL6 blastocytes and implanted into host mice in order to obtain chimeric mice. The 

crossbreeding of chimera with wildtype mice resulted in heterozygous genetically engineered 

mice, where the further crossing of the heterozygotes gave rise to homozygous Opa1flx/flx mice.  

Opa1tg mice were generated by a gene targeting approach where a transgene carrying mouse 

variant 1 of Opa1 was put in association with the human beta-actin promoter, and the transgene 

has been targeted by homologous recombination into the HPRT region of the murine X 

chromosome, resulting in one copy of the transgene. 
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Male mice of the Opa1flx/flx::Opa1tg stable colony were further crossed with Eµ-myc female mice. 

The original Eµ-myc construct contains 2.3 kb of immunoglobulin DNA (open bar), spanning the 

H-chain enhancer (diamond), inserted 361 base pairs (bp) 5’ to c-myc exon. The schematic 

illustration of this Eµ-myc construct is the representation of the linear fragment that was isolated 

from plasmid constructs before injection. The solid bar represents c-myc sequences with exons 

raised, untranslated regions stripped, ɸx174 marker DNA as a triangle, and vector sequence as a 

thin line. 

The result of this cross gave rise to Eµ-myc::Opa1flx/+::Opa1tg male and female test mice (further 

referred to as the Eµ-myc::Opa1tg mouse). In the second generation as the result of the cross 

between Opa1flx/flx::tg males and Eµ-myc::Opa1flx/+::Opa1tg females, we got Eµ-

myc::Opa1flx/flx::Opa1tg  mice (this cross not shown). 

(B) PCR analysis of genomic DNA extracted from mouse tails. Depiction of representative bands 

corresponding to: Opa1 conditional knockout heterozygous (flx/+) or homozygous (flx/flx), or 

wild type; Opa1 transgenic homozygous (tg/tg), transgenic heterozygous (tg/+), or wild type; Wild 

type non-existing (-/-), wild type heterozygous (-/+), wild type homozygous (+/+); Eµ-myc 

heterozygous or wild type. 

(C) Equal amounts of protein (20 µg) from tissues of the indicated genotypes were separated by 

SDS-PAGE and immunoblotted with the indicated antibodies. 

Figure 6. Eµ-myc::Opa1tg mice die faster and develop a more severe clinical picture of malignant 

disseminated lymphoma compared to their  Eµ-myc littermates and healthy controls 
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(A) Kaplan - Meier survival curve of Eµ-myc and Eµ-myc::Opa1tg mice. Total mice (n = 95 total, n= 

62 Eµ-myc::Opa1tg  n = 33 Eµ-myc). Male mice (n = 45, n = 32 Eµ-myc::Opa1tg , n = 13 Eµ-myc). 

Female mice ( n = 50, n = 30 Eµ-myc::Opa1tg, n = Eµ-myc). 

(B) Gross anatomy of 3 months old male mice: Images of lymphoid organs – spleen, thymus and 

lymph nodes, corresponding to indicated genotypes. Scale bar in millimeters. 

Table 1. Clinical phenotype of representative mice belonging to age groups of 2 months, 3 

months, 4 months, 5 months and 6 months 

 Table legend: Neoplastic lymphoid infiltration: + rare, ++ mild, +++ moderate, ++++ severe. N = 

3 mice per age group. 

Figure 7. Histopathological representation of the clinical picture corresponding to disseminated 

lymphoma 

Bright field microscopy images of hematoxylin and eosin stained histopathological tissue 

sections, of representative organs for the indicated mouse genotypes. (A) spleen (B) thymus (C) 

liver (D) kidney (E) lung 

Figure 8. Immunophenotypic analysis of the B cell differentiation stages in Wild Type, 

Opa1flx/flx::tg, Eµ-myc and Eµ-myc::Opa1tg mice 

(A) Single cell suspensions from bone marrow of 2 month (2M), 3 month (3M) and 6 month (6M) 

old mice were stained with fluorochrome labeled antibodies for cell surface markers identifying 

pro B cells (CD19+cKit+) in the first graphs in line, and pre B cells (CD25+) in the second graphs in 

line; entire B cell population (B220+) in the third graphs in line; and subpopulations within the 
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entire (previously gated) B cell population in the fourth graphs in line: IgM+IgD- immature B cells, 

IgMlowIgD+ recirculating B cells. Data represent averages of n=2 animals per genotype, DN – 

double negative. 

 (B) Single cell suspensions from inguinal lymph nodes of 2 month (2M), 3 month (3M) and 6 

month (6M) old mice were stained with fluorochrome labeled antibodies for cell surface markers 

identifying the entire B cell population (B220+) in the first graph in line, and subpopulations 

within the entire (previously gated) B cell population in the second graphs in line: IgM+IgD- 

immature B cells, IgMlowIgD+ recirculating B cells. Data represent averages of n=2 animals per 

genotype, DN – double negative. 

(C) Single cell suspensions from the spleen of 2 month (2M), 3 month (3M) and 6 month (6M) old 

mice were stained with fluorochrome labeled antibodies for cell surface markers identifying the 

entire B cell population (B220+) in the first graphs in line, and subpopulations within the entire 

(previously gated) B cell population in the second graphs in line: IgM+IgD- transitional type 1 (T1), 

IgMlowIgD+ follicular B cells (FO), and IgM+IgD+ transitional type 2 (T2). Data represent averages 

of n=2 animals per genotype, DN – double negative.  
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EXPERIMENTAL PROCEDURES 

Calcium chelation 

Selected DLBCL cell lines were cultivated in complete RPMI 1640 medium, and treated with the 

calcium chelator BAPTA – AM (Calbiochem) at the final concentration 40 µM, at different 

incubation times ranging from 30, 60 and 90 minutes. Cells were washed with PBS 1x, pelleted 

down, lysed and prepared for SDS-PAGE / Western blot. 

Inhibition of B cell signaling kinases 

Selected DBCL cell lines were cultivated in complete RPMI 1640 medium, and treated with  

different kinase inhibitors, at varying concentrations. Inhibitors used were: Fostamatinib 

Disodium (Selleck Chemicals) at final concentrations of 2 µM, 4 µM and 6 µM, for a 24h and 48h 

treatment; Ibrutinib (Selleck Chemicals) at final concentration of 5 µM for 30 min, 2h and 24h 

incubation; Cal-101 (Selleck Chemicals) at final concentration of 5 µM for 30 min, 2h and 24h 

incubation. Cells were washed with PBS, pelleted down, lysed and prepared for SDS-PAGE / 

Western blot. 

Cell death analysis 

Selected DLBCL cell lines were cultivated in complete RPMI 1640 medium (two million cells / ml, 

in a total media volume of 1 ml), and treated with staurosporine at the final concentration 2 µM. 

At given time points (0h, 8h, 24h and 32h) cells were collected and incubated with Annexin-V-

FITC and propidium iodide (PI) (Bender MedSystem) according to the manufacturer’s protocol. 
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Cell viability was measured by flow cytometry (FACSCanto) as the percentage of Annexin-V-

negative, PI-negative cells. 

Selected DLBCL cell lines were cultivated in either complete RPMI 1640 medium, or in RPMI 1640 

medium (deprived from glucose) enriched with galactose instead, at the concentration of 0.9 

mg/ml. 50 000 cells / ml were cultivated in a total media volume of 4 ml.  At given time points 

(Day 0 and Day 4) cells were collected and incubated with Annexin-V-FITC and propidium iodide 

(PI) (Bender MedSystem) according to the manufacturer’s protocol. Cell viability was measured 

by flow cytometry (FACSCanto) as the percentage of Annexin-V-negative, PI-negative cells. 

Immunoblotting 

Cell pellets were lysed in RIPA lysis buffer 1x (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 

Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 

mM β-glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin) supplemented with PIC. Equal 

amounts of extracted protein were separated by SDS-PAGE (NuPage, Invitrogen), transferred 

onto polyvinylidene fluoride membranes (Millipore) and immunoblotted with indicated 

antibodies. Antibodies used include: anti – Bcl2 (Santa Cruz, 1:1000), anti – Bak (Milipore, 

1:1000), anti – Bax (Upstate, 1:1000), anti – Actin (Chemicon, 1:10 000). Isotype-matched, 

horseradish peroxidase-conjugated secondary antibodies (Sigma) were used, followed by 

detection by chemiluminescence (Pierce). 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure S1. Chelation of intercellular calcium and blockage of BCR signaling 

kinases by chemical inhibitors didn’t affect the levels of Opa1 forms 

(A) Equal amounts of protein (10 µg) from the indicated DLBCL cell lines, that were previously 

incubated with (B) / without (0) 40 µM BAPTA - AM for the indicated time points, were separated 

by SDS – PAGE and immunoblotted with the indicated antibodies. 

(B) Equal amounts of protein (10 µg) from the indicated DLBCL cell lines, that were previously 

incubated with / without a) fostamatinib inhibitor at increasing µM concentrations as indicated, 

for the indicated incubation times b) ibrutinib inhibitor at indicated µM concentrations for the 

indicated incubation times c) Cal 101 inhibitor at indicated µM concentrations for the indicated 

incubation times were separated by SDS – PAGE and immunoblotted with the indicated 

antibodies. 

Supplementary Figure S2. Resistance to apoptosis is reduced in the OxPhos DLBCL cell subset 

due to higher levels of pro-apoptotic proteins in these cell lines 

(A) Apoptosis was triggered in D6 (BCR) and K422 (OxPhos) cell lines by 2µM staurosporine 

treatment, and viability is presented on the graph as a percentage of double negative cells 

population (Annexin-V-negative, PI-negative) obtained from the dot plot presented as a ratio 

between staurosporine treated and untreated cells. Data represents mean ±SEM of n=3 

independent experiments. 
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(B) Equal amounts of protein (65 µg) from the indicated DLBCL cell lines were separated by SDS 

– PAGE and immunoblotted with the indicated antibodies. 

Supplementary figure S3. K422 (OxPhos) cell line is more resistant to growth in galactose 

enriched media, displaying a lower death rate compared to D6 (BCR) 

(A) Apoptosis was measured in the D6 (BCR) cell line cultivated in glucose or galactose enriched 

media, at indicated time points. Viability is presented as a percentage of Annexin-V-negative, PI-

negative cells. Data represent mean ±SEM of n=3 independent experiments. 

(B) Apoptosis was measured in the K422 (OxPhos) cell line cultivated in glucose or galactose 

enriched media, at indicated time points. Viability is presented as a percentage of Annexin-V-

negative, PI-negative cells. Data represent mean ±SEM of n=3 independent experiments. 

Supplementary figure S4.  Enlargement of lymphoid organs and clinical picture of 6 months old 

mice, are more severe in the Eµ-myc::Opa1tg compared to Eµ-myc mouse 

(A) Gross anatomy of representative lymphoid organs in Eµ-myc and Eµ-myc::Opa1tg mice. 

(B) Bright field microscopy images of hematoxylin and eosin stained histopathological tissue 

sections of mouse organs from the indicated genotypes. 

Supplementary figure S5. T cells are not affected in the periphery and there is a shift towards 

neutrophils in the Eµ-myc::Opa1tg mice 

(A) Single cell suspensions from thymus, spleen, lymph node and bone marrow of 2 months old 

(2M), 3 months old (3M) and 6 months old (6M) mice, were stained with fluorochrome labeled 

antibodies for cell surface markers specific for T cells identifying CD4+, CD8+ single positive or 
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CD4+CD8+ double positive cells deriving from the indicated organs of mice from the indicated 

genotypes. Data represent averages of n=2 animals per genotype, DN – double negative. 

(B) Single cell suspension from bone marrow, lymph node, liver, lung and kidney of 2 months old 

(2M), 3 months old (3M) and 6 months old (6M) mice, were stained with fluorochrome labeled 

antibodies for cell surface markers specific for monocytes /granulocytes, identifying Gr1+, 

Mac1+, or double positive Gr1+Mac1+ cells deriving from the indicated organs of mice from the 

indicated genotypes. Data represent averages of n=2 animals per genotype, DN – double 

negative. 
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Table 1.

MOUSE Eµ-myc Eµ-myc Opa1tg Eµ-myc Eµ-myc Opa1tg Eµ-myc Eµ-myc Opa1tg Eµ-myc Eµ-myc Opa1tg Eµ-myc Eµ-myc Opa1tg

SPLEEN + 2/3 +++ 1/3 ++++ 1/3 ++++ 3/3 +++ 1/3 ++++ 2/3 ++ 3/3 ++++ 3/3 ++++ 1/3 ++++ 3/3
Neoplas�c ++ 1/3 ++ 1/3 ++ 1/3 ++ 1/3 ++ 1/3 +++ 2/3
lymphoid infiltra�on + 1/3 0 1/3 0 1/3
THYMUS + 2/3 ++++ 1/3 +/3 ++++ 1/3 ++++ 1/3 ++++ 3/3 ++ 3/3 ++++ 3/3 ++++ 1/3 ++++ 3/3
Neoplas�c ++ 1/2 ++ 2/3 0 2/3 +++ 1/3 0 2/3 +++ 2/3
lymphoid infiltra�on ++ 1/3
LIVER 0/3 +++ 1/3 + 1/3 ++ 3/3 ++++ 1/3 +++ 1/3 + 3/3 +++ 3/3 ++++ 1/3 +++ 3/3
Neoplas�c + 2/3 0 2/3 0 2/3 ++ 2/3 +++ 1/3
lymphoid infiltra�on ++ 1/3
LUNG + 3/3 +++ 1/3 + 1/3 ++++ 2/3 ++ 1/3 +++ 1/3 + 3/3 ++++ 1/3 ++++ 1/3 ++++ 3/3
Neoplas�c + 2/3 0 2/3 ++ 1/3 0 2/3 ++ 2/3 +++ 2/3 ++ 2/3
lymphoid infiltra�on

KIDNEY 0/3 ++ 1/3 0/3 ++++ 1/3 +++ 1/3 ++ 2/3 0/3 ++++ 3/3 ++++ 1/3 ++++ 3/3
Neoplas�c 0/2 ++ 2/3 0 2/3 + 1/3 +++ 1/3
lymphoid infiltra�on ++ 1/3

2 months old 3 months old 4 months old 5 months old 6 months old



LIVER

LUNG

KIDNEY

WT Eμ-myc tgEμ-myc::Opa1
flx/flx::tgOpa1  

A

B

C

D

E

THYMUS

SPLEEN

Figure 7.



D
N

C
D
19

+

cK
IT

+

C
D
19

+c
Kit+

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
p

ro
-

B
ce

ll
b

o
n

e
m

a
rr

o
w

D
N

C
D
19

+

cK
IT

+

C
D
19

+c
KIT

+
0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
p

ro
-B

ce
ll

b
o

n
e

m
a

rr
o

w
D
N

C
D
19

+

cK
IT

+

C
D
19

+c
KIT

+
0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

p
ro

-B
ce

ll
b
o
n
e

m
a
rr

o
w

A

2 M 3 M 6 M

DN CD25+
0

10

20

30

40

50

60

70

80

90

100

 

%
p

re
-B

ce
ll

b
o

n
e

m
a

rr
o

w

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

DN CD25+
0

10

20

30

40

50

60

70

80

90

100

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
p

re
-B

ce
ll

b
o

n
e

m
a

rr
o

w

DN CD25+
0

10

20

30

40

50

60

70

80

90

100

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
p

re
-B

ce
ll

b
o

n
e

m
a

rr
o

w

DN B220+
0

10

20

30

40

50

60

70

80

 

%
B

ce
ll

b
o

n
e

m
a

rr
o

w

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

b
o

n
e

m
a

rr
o

w

DN B220+
0

10

20

30

40

50

60

70

80

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

b
o

n
e

m
a

rr
o

w

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

b
o

n
e

m
a

rr
o

w

DN B220+
0

10

20

30

40

50

60

70

80

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

b
o

n
e

m
a

rr
o

w

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

b
o

n
e

m
a

rr
o

w

DN B220+
0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

 

%
B

ce
ll

ly
m

p
h

n
o
d
e

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

ly
m

p
h

n
o

d
e

DN B220+
0

10

20

30

40

50

60

70

80

90

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

ly
m

p
h

n
o

d
e

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

ly
m

p
h

n
o

d
e

DN B220+
0

10

20

30

40

50

60

70

80

90

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

ly
m

p
h

n
o

d
e

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

ly
m

p
h

n
o

d
e

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg
%

B
ce

ll
sp

le
e

n

DN B220+
0

10

20

30

40

50

60

70

80

90

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

sp
le

e
n

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+
D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

sp
le

e
n

DN B220+
0

10

20

30

40

50

60

70

80

90

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

sp
le

e
n

Ig
M

+I
gD

-

Ig
M

lo
w

Ig
D
+

Ig
M

+I
gD

+ D
N

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

sp
le

e
n

DN B220+
0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
B

ce
ll

sp
le

e
n

B

C

BONE MARROW LYMPH NODE

SPLEEN

2 M 3 M 6 M

Figure 8.



A BCR

0 B 0 B 0 B 0 B

D4 D6 Ly7 Ly1

30 min

60 min

90 min

Opa1

Opa1

Opa1

Grp75

Opa1

Opa1

Opa1

Grp75

0 B 0 B 0 B 0 B

PF TOL Ly4 K422

OxPhos

B a) fostamatinib b) ibrutinib c) cal 101

2 40 6 2 40 6

2 40 6 2 40 6

24h 48h

Ly1(BCR)

K422(OxPhos)

0 IBR 0 IBR 0 IBR

0 IBR 0 IBR 0 IBR

1/2 h 2 h 24 h

0 CAL0 CAL 0CAL

0 CAL0 CAL 0CAL

Opa1

Grp75

Opa1

Grp75

Opa1

Grp75

Opa1

Grp75

Opa1

Grp75

Opa1

Grp75

Figure S1.

24h 48h

Ly1(BCR)

K422(OxPhos)

1/2 h 2 h 24 h

1/2 h 2 h 24 h

Ly1(BCR)

K422(OxPhos)

1/2 h 2 h 24 h



A

0 8 16 24 32

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a

tio

Time (HOURS)

 D6
 K422

B

Bcl 2

Bak

Bax

Actin

BCR OxPhos

 Figure S2.

D4     D6    Ly7   Ly1    PF    TOL   Ly4  K422



Figure S3.

A

B

0 4
0

10

20

30

40

50

60

70

80

90

%
L

iv
e

ce
lls

(D
6

-
B

C
R

)

Time (DAYS)

 GLU

0 4
0

10

20

30

40

50

60

70

80

90

%
L

iv
e

ce
lls

(D
6

-
B

C
R

)

Time (DAYS)

 GAL

0 4
0

10

20

30

40

50

60

70

80

90

%
L

iv
e

ce
lls

(K
4

2
2

-
O

xP
h

o
s)

Time (DAYS)

 GLU

0 4
0

10

20

30

40

50

60

70

80

90

%
L

iv
e

ce
lls

(K
4

2
2

-
O

xP
h

o
s)

Time (DAYS)

 GAL



SPLEEN

THYMUS

LYMPH NODE

6 months old miceA

THYMUS

LIVER

SPLEEN

B 6 months old mice

Figure S4.

Eμ-myc tgEμ-myc::Opa1

Eμ-myc tg
Eμ-myc::Opa1

LUNG

KIDNEY



2 M 3 M 6 M

THYMUS

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90

100

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

th
ym

u
s

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90

100

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

th
ym

u
s

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90

100

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

th
ym

u
s

SPLEEN

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

sp
le

e
n

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

sp
le

e
n

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

sp
le

e
n

LYMPH NODE

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

ly
m

p
h

n
o

d
e

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

ly
m

p
h

n
o

d
e

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

ly
m

p
h

n
o

d
e

BONE MARROW

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

b
o

n
e

m
a

rr
o

w

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90  WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

b
o

n
e

m
a

rr
o

w

D
N

C
D
4+

C
D
8+

C
D
4+

C
D
8+

0

10

20

30

40

50

60

70

80

90

 

 WT

 Opa1tg

 Eµ-myc

 Eµ-myc::Opa1tg

%
T

ce
ll

b
o

n
e

m
a

rr
o

w

BONE MARROW

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80  W T

 O p a 1 tg

 E µ -m yc

 E µ -m yc ::O p a 1 tg

%
M

on
oc

yt
es

bo
ne

m
ar

ro
w

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

bo
ne

m
ar

ro
w

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

 

 W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

bo
ne

m
ar

ro
w

LYMPH NODE

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O p a 1 tg

 E µ -m yc

 E µ -m yc ::O p a 1 tg

%
M

on
oc

yt
es

ly
m

ph
no

de

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

ly
m

ph
no

de

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

ly
m

ph
no

de

LIVER

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90

100  W T

 O p a 1 tg

 E µ -m yc

 E µ -m yc ::O p a 1 tg

%
M

on
oc

yt
es

liv
er

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90

100  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

liv
er

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90

100  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

liv
er

LUNG

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O p a 1 tg

 E µ -m yc

 E µ -m yc ::O p a 1 tg

%
M

on
oc

yt
es

lu
ng

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90

 

 W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

lu
ng

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

lu
ng

KIDNEY

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O p a 1 tg

 E µ -m yc

 E µ -m yc ::O p a 1 tg

%
M

on
oc

yt
es

ki
dn

ey

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

ki
dn

ey

DN
Gr1

+

M
ac1

+

Gr1
+M

ac1
+

0

10

20

30

40

50

60

70

80

90  W T

 O pa1 tg

 E µ -m yc

 E µ -m yc::O pa1 tg

%
M

on
oc

yt
es

ki
dn

ey

A B 2 M 3 M 6 M

Figure S5.



5. CONCLUSIONS AND FUTURE PERSPECTIVES 
 

In this Thesis we focused on understanding what role does Opa1 play in cancer.  

In order to address this aim we reached out to in vitro and in vivo cancer models where we could 

explore the role of Opa1 in the acquisition and maintenance of the cancer phenotype. We 

analyzed what features of diffuse large B cell lymphoma cell subsets depend on Opa1, and what 

role does Opa1 play in the development and progression of cancer in an in vivo lymphoma mouse 

model with a controlled overexpression of Opa1. 

In terms of the Opa1 status, a clear distinction between the two metabolic subsets of DLBCL was 

made according to the fact that Opa1 turned out to be increasingly processed in the BCR cell 

group, compared to the OxPhos, where contrary to the BCR, the balance between long and short 

Opa1 forms was maintained. The higher and overall more balanced levels of Opa1 in the OxPhos 

subset had an effect on cristae ultrastructure, making cristae tighter and more organized, 

compared to their BCR counterparts, while providing them with a proliferative advantage when 

they were forced to generate ATP in the process of oxidative phosphorylation by growth in 

galactose enriched media. 

The difference in Opa1 levels in two DLBCL cell subsets didn’t reflect on mitochondrial 

morphology in the steady state. Analysis of mitochondrial morphology of DLBCL cell lines that 

were previously grown in galactose, could be a way to distinguish whether changes in the 

mitochondrial architecture occur, compared to basal conditions, and whether this could be a 

feature which can be correlated to the observed differences in the Opa1 levels. The molecular 
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mechanism responsible for the increased Opa1 cleavage in the BCR subset, still remained 

unexplained, since chelation of intracellular calcium by BAPTA - AM and pharmacological 

blockage of BCR signaling kinases had no effect on Opa1 processing. It would be necessary to go 

back to the original proteomics data and investigate what other components of the DLBCL 

proteome are different between the two DLBCL subsets, which can be potentially correlated with 

the situation observed in terms of Opa1 processing.  

Our results indicate that overexpression of Opa1 contributed to the progression and 

development of cancer in Eµ-myc mice.  Eµ-myc::Opa1tg mice were becoming terminally ill and 

were dying at a much faster rate compared to their Eµ-myc mice counterparts. Pathology and 

histopathology analysis revealed that a clinical picture observed in these mice corresponded to 

disseminated malignant lymphoma and that it was more severe in the doubly transgenic mouse, 

with severe cancer dissemination to the liver, kidney and lungs, indicating that Opa1 

overexpression favored cancer spreading and severity. Immunophenotypic analysis revealed that 

overexpressing Opa1 wasn’t the driver of proliferation in the B cell lineage, but that was the task 

carried out by Myc, and that the bone marrows of these animals demonstrated higher levels of 

pro B and pre B cells, compared to the single transgenic Eµ-myc controls. In order to confirm that 

overexpression of Opa1 doesn’t drive proliferation it would be useful to stain histological sections 

of mouse organ tissues with the Ki-67 marker of proliferation, and assess the levels of positively 

stained sections between control Eµ-myc and Eµ-myc::Opa1tg samples. This could be done 

together with performing a TUNEL assay in order to assess the rate of apoptosis in organs of 

these two mouse groups. In order to pinpoint the actual onset of the disease, it would be useful 

to analyze the positively stained cell subsets for the pan-B cell marker B220, in the peripheral 
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blood of these animals over time, narrowing down to the actual moment when 

hyperproliferation occurs. 

It is also necessary to continue with the immunophenotypic characterization of Eµ-myc and Eµ-

myc::Opatg lymphomas to understand better whether, and in what way Opa1 overexpression 

changes the program of B cell differentiation. 

Ultimate proof in understanding whether Opa1 is required for cancer maintenance is to ablate 

Opa1 by Cre delivery in Eµ-myc::Opa1flx/flx Opa1tg mice, which we get in the second generation 

after crossing Opa1flx/flxOpa1tg male mice with Eµ-myc::Opa1flx/+::Opa1tg/+ females. 

The results of the already performed studies and expected results of the planed studies should 

ultimately serve the purpose of confirming Opa1 as gene / protein that displays oncogenic 

features, while validating it at the same time, as a promising therapeutic target. Mutations in the 

GTPase domain of Opa1 that abolish its GTPase activity impair its ability to protect from 

apoptosis. Therefore, development of chemical inhibitors that target the GTPase domain of 

Opa1, could mimic inactivating mutations in the GTPase domain, serving as drugs that can be 

used in cancer treatment.  
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