%75 TECHNISCHE
&)=\ UNIVERSITAT
9/> DARMSTADT

RELTABLE NETWORK SERVICES IN
FUTURE INTERNET SERVICE PROVIDER NETWORKS:

Reliable and Efficient Control Plane Applications for Virtualized Data Planes in
Software-Defined Networking

Vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universitit Darmstadt
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von

JEREMIAS GEORG JOHANNES LUCIAN BLENDIN

Erstgutachter: Prof. Dr.-Ing. Ralf Steinmetz
Zweitgutachter: Prof. Dr. Holger Karl

Darmstadt 2018

Blendin, Jeremias Georg Johannes Lucian: Reliable Network Services in Future Internet Ser-
vice Provider Networks: Reliable and Efficient Control Plane Applications for Virtualized
Data Planes in Software-Defined Networking,

Darmstadt, Technische Universitat Darmstadt,

Jahr der Veroffentlichung auf TUPrints: 2019

Tag der miindlichen Priifung: 26. November 2018

Veroffentlicht unter CC BY-NC-SA 4.0
https://creativecommons.org/licenses/

ABSTRACT

Driven by highly efficient over-the-top content providers, traffic on the Internet is
increasing and puts pressure on Internet service providers (ISPs) to increase their
efficiency as well. A promising approach to increase the efficiency of ISP networks is
software-defined networking (SDN). SDN achieves this by separating the control from
the data plane through a network protocol and thereby enabling increased automation
and resource efficiency. However, today’s SDN-based control planes, consisting of
control plane applications and an SDN controller to coordinate the data plane access, do
not meet the reliability requirements for services in ISPs networks.

With SDN, network services consist of multiple control plane applications combined
in a single control plane. The control path in data plane elements is responsible for
processing SDN protocol messages to configure the packet processing pipeline, termed
data path. Today’s SDN controller designs do not virtualize the control path adequately,
i.e., the effects of messages from different applications are not sufficiently isolated.
Thereby, misbehaving low priority applications can block the control paths for essential
high priority applications in ISP networks such as the network fabric. This lack of
isolation can lead to control plane applications to fail unexpectedly and prevent the
whole control plane from operating reliably.

To this end, we introduce a novel, systematic resource-oriented approach to characterize
the control paths in SDN data planes as well as a virtualization design for throughput
aspects of control paths to increase the reliability among control plane applications.
Based on these findings, we analyze the requirements of applications to operate on
virtualized data planes. Local bottlenecks that only affect a single data plane element
can be mitigated by shifting load to a different element. We apply this approach to our
network function chaining design and investigate its effectiveness and provide insights
on how the application should decide on the specifics of the mitigation process. Global
control path bottlenecks affect a complete area of an ISP network. We analyze the
interaction pattern that our novel Adaptive Software-Defined Multicast (ASDM) and
Adaptive Bit-Index Software-Defined Multicast (ABSDM) designs require to identify such
a bottleneck. Furthermore, we show how a global packet matching memory bottleneck
can be mitigated by shifting the applications’ resource usage from matching memory
to data rate. We demonstrate the effectiveness of the ASDM application for mitigating
control path resource bottlenecks and thereby making it reliable.

In this thesis, we close gaps in the virtualization of control paths that affect both SDN
controllers and control plane applications. Thereby, we enable reliable SDN controllers
and propose designs for reliable control plane applications to deliver SDN-based network
services in ISP networks.

iii

KURZFASSUNG

Getrieben von grofien Inhaltsanbietern wie Google steigt das Datenvolumen im Internet
immer weiter an. Dadurch werden Internet Service Provider (ISPs) unter Druck gesetzt,
die Effizienz ihres Netzmanagements zu erh6hen. Der Einsatz von Software-Defined
Networking (SDN) zur Implementierung der von ISPs angebotenen Dienste ist ein
Weg dieses Ziel zu erreichen. ISP Netze stellen jedoch hohe Anforderungen an die
Zuverldssigkeit der erbrachten Dienste und damit der SDN Control Plane. SDN Control
Planes bestehen aus Steuerungsanwendungen und einem deren Zugriff auf die Data Plane
koordinierenden SDN Controller. Diesen hohen Anforderungen werden heutige Control
Planes nicht gerecht. Der Hauptgrund dafiir besteht darin, dass der Control Pfad, also der
Teil von Data Plane Elementen, der fiir die Ausfithrung von SDN Protokollnachrichten
zustandig ist, nicht ausreichend virtualisiert ist. Dies kann dazu fithren, dass der Zugriff
auf die Data Plane von fiir den Netzbetrieb essentiellen Anwendungen durch unwichtige
Anwendungen blockiert wird. Dieser Mangel an Zuverlassigkeit ist Grund, warum SDN
heute nicht fiir den Einsatz in ISP Netzen geeignet ist.

Um dieses Problem zu 16sen, stellen wir in dieser Arbeit einen ressourcenorientierten
Ansatz zur Analyse der Leistungseigenschaften der Control Pfade von SDN Data Planes
vor. Der Ansatz wird beispielhaft auf ein State-of-the-Art Data Plane Element angewendet
und damit erstmals gezeigt, wie Performanceeigenschaften analysiert werden konnen.
Als ein Ergebnis stellen wir erstmalig ein Verfahren zur Virtualisierung des Einfiigens
neuer Regeln in SDN Data Planes vor. Auf Basis dieser Erkenntnisse untersuchen wir
anhand von zwei reprasentativen Ansidtzen, Network Function Chaining und Multicast,
wie SDN Control Plane Anwendungen auf lokale und globale Engpésse in Control Pfaden
reagieren konnen. Lokale Engpésse treten dabei auf einzelnen Data Plane Elementen auf.
Die présentierte Network Function Chaining Anwendung reagiert auf solche Engpésse
mit einer Verlagerung der Control Pfad Last auf ein anderes Data Plane Element. Eine
globale Speicherknappheit in der Data Plane kann durch das vorgestellte Adaptive
Software-Defined Multicast System {iiber einen gezielten und steuerbaren Trade-Off
zwischen der Nutzung von Speicher in der Data Plane und fiir die Ubertragung benétigte
Datenrate umgangen werden. Weiter stellen wir mit Adaptive Bit-Indexed Software-
Defined Multicast einen adaptiven Multicast-Ansatz auf Basis des effizienten Bit-indexed
Replication Verfahrens vor. Fiir beide Anwendungen wird untersucht, auf Basis welcher
Informationen sie iiber die Reaktion auf Engpésse entscheiden sollten.

Zusammenfassend zeigen wir in dieser Arbeit, wie die Leistungseigenschaften der SDN
Data Plane systematisch untersucht werden und wie die dabei gewonnenen Informatio-
nen genutzt werden konnen, um die Zuverldssigkeit und Effizienz der Diensterbringung
zu verbessern, um damit den Anforderungen von ISPs gerecht zu werden.

DANKSAGUNG

Der erfolgreiche Abschluss meines Promotionsvorhabens wire ohne Hilfe, Unterstiitzung
und Rat von meiner Familie, von Freunden und Kollegen nicht moglich gewesen. Zuerst
vielen, vielen Dank an meine Familie und Freunde fiir ihre Unterstiitzung nicht nur in
den letzten fiinf Jahren.

Bei Prof. Dr.-Ing. Ralf Steinmetz mochte ich mich fiir die Moglichkeit zum Abschluss
meiner Arbeit bedanken und fiir die tolle Arbeitsumgebung in der ich nicht nur gearbeitet
und promoviert, sondern auch studiert habe. Bei Prof. Dr. David Hausheer bedanke ich
mich fiir die Betreuung in den ersten drei Jahren meiner Promotion und die Einfithrung
in die Netzwerkcommunity. Dr. Boris Koldehofe, mein direkter Vorgesetzter in den
letzten zwei Jahren meiner Promotion, hat mich immer sehr unterstiitzt und mir das
Feedback sowie den Freiraum gegeben hat, um sie erfolgreich ab zu schliefien, danke
dafiir. Vielen Dank auch an Prof. Dr. Holger Karl, dafiir dass er sich bereit erklart und
die Zeit genommen hat, Zweitgutachter meiner Dissertation zu sein.

Dr.-Ing. Julius Riickert hat mich durch seine phantastische Betreuung wéahrend meiner
Abschlussarbeit dazu gebracht zu promovieren und mich auch als Kollege immer
tatkraftig unterstiitzt hat, vielen Dank! Vielen Dank auch an Dr.-Ing. Bjorn Richerzhagen
und Dr.-Ing. Binh Nguyen, die mir als Kollegen und Freunde durch Hohen und Tiefen
meiner Promotion geholfen haben. Dr.-Ing. Matthias Wichtlhuber und Dr.-Ing. Fabian
Kaup haben mir in den ersten Jahren der Promotion auf gleiche Weise das Leben
erleichtert, danke dafiir. Den grofiten Teil meiner Zeit habe ich in den letzten fiinf Jahren
mit der Arbeit an Projekte fiir und mit der Deutsche Telekom FMED verbracht. An
diesen Projekten habe ich mit Dr.-Ing. Leonard Nobach gearbeitet, mit und von dem ich
vieles lernen konnte, vielen Dank dafiir. Vielen Dank an die Kollegen von der Deutschen
Telekom fiir die spannenden Themen und die gute Zusammenarbeit: Dr. Hans-Jorg
Kolbe, tiber den ich zur Programmiersprache P4 gefunden habe, Robert Soukup, Georg
Schyguda, Yuriy Babenko, Dennis Kusidlo, Dr. Felix Wissel, Dr.-Ing. Matthias Gunkel,
Nicolai Leymann, Jochen Appel und an alle anderen.

Das letzte Jahr der Promotion hat dank Ralf Kundel besonders viel Spafs gemacht. Er
hat sich nicht nur meine altklugen Spriiche linger angehort als jeder Kollege vor ihm,
die Zusammenarbeit mit ihm war zudem noch sehr angenehm und produktiv, danke
und grofien Respekt dafiir. Weiter mochte ich mich bei allen anderen Kollegen bedanken,
ohne Anspruch auf Vollstandigkeit, bei Dr. Amr Rizk, Rhaban Hark, Tobias Meuser, Nils
Richerzhagen, Lena Despres, Manisha Luthra, und allen an dieser Stelle ungenannten.
Nattirlich vielen Dank an jeden, die den Lehrstuhl am Laufen halten, den ATMs: Frau
Scholz-Schmidt, Karola Schork-Jacoby, Frank Jost, Frau Ehlhardt, Monika Jayme, Thomas
Lenz, Britta Frischmuth-Zenker, Jan Hansen und Sabine Krih. Schliefslich noch vielen

vii

Dank meinen Studenten, die mit mir an meinen Themen gearbeitet haben und von und
mit denen ich viel gelernt habe, in alphabetischer Reihenfolge: Javier Acosta Corredor,
Dennis Albrecht, Sascha Bleidner, Fabrice Bendfeldt, Felix Breidenstein, Tingting Chen,
Marvin Héardtlein, Daniel Herrmann, Felipe Villa Arenas, Tobias Volk, Xin Zhang und
Patrick Welzel.

Ohne euch alle wiren die letzten fiinf Jahre nicht so interessant, lehrreich, angenehm
und erfolgreich gewesen, es hat Spafs gemacht, danke!

viii

CONTENTS

1 Introduction
1.1 Problem Statement and ResearchGaps
1.2 Research Goals and Contributions
1.3 Thesis Organization,

2 Background
2.1 Internet Service Providers and Network Services
2.2 Network Device Architectures
221 ASIC-Based Appliances
2.2.2 Network Functions Virtualization
2.3 Software-Defined Networking

3 Related Work
3.1 Software-Defined Networking Data Plane Characteristics
3.1.1 Virtualization and Isolation
3.1.2 Data Plane Performance Bottlenecks
3.1.3 Control Path Bottleneck Mitigation Strategies
3.1.4 OpenFlow Data Plane Devices in Literature
3.2 Control Plane Application Efficiency and Bottleneck Mitigation
3.21 Network Function Chaining
3.2.2 Software-Defined Multicast
3.3 Discussion and ResearchGaps

4 Virtualizing the Control Path of Software-Defined Networking Data Planes

41 Assumptions and Requirements
4.1.1 Internet Service Provider Networks and Network Services
412 Software-Defined Networking

42 A Resource-Oriented Data Plane Virtualization Approach
421 Overview oo
422 DataPlane Resources
423 Resource Discovery and Analysis
424 Resource Virtualization

4.3 A Control Path Resource Model of an OpenFlow Data Plane Element . . .
43.1 Overview of Available OpenFlow Data Plane Elements
4.3.2 Investigating the Soft- and Hardware of the Edge-Core AS5712-54X
Management System

43.3 Investigating the Trident I ASIC

R W R

]

11
11
13
14

19
19
19
23
26
27
30
30
31
33

35
35
36
39
41
42
43
46
48
51
52

53
58

ix

CONTENTS

434 Mapping the Resource Topology of the Edge-Core AS5712-54X with

PicOStoOpenFlow 64

4.4 Virtualizing the Addition of Flow Table Entries 66
441 OpenFlow Flow Entry Addition Analysis 67
442 Virtualizer Design 000000 69
443 Evaluation Design and Testbed 74
444 EvaluationResults 78

45 Discussionand Conclusion 81

5 Designing Reliable Control Plane Applications for Virtualized SDN Data Planes 83

5.1 DesignSpace Analysis 0oL 83
52 Scenariosand UseCases 86
5.2.1 Network Function Chaining 86
522 Software-Defined Multicast 89

5.3 Enabling Dynamic Function Chaining to Mitigate Flow Entry Addition
Bottleneckso 91
5.3.1 Packet Flow Identification and Forwarding Scheme 91
5.3.2 Virtual Network Function Instance Packet Interface 94
5.3.3 NFV Infrastructure Failover Bottleneck Mitigation 96

5.4 Mitigating Flow Table Space Shortages with Adaptive Software-defined
Multicast oo oo 99
54.1 Resource Adaptation Approach 100
5.4.2 Adaptive Multicast Routing 102
5.4.3 Adaptive Bit-Indexed Software-Defined Multicast 106
5.4.4 Mitigating Global Matching Memory Shortages 110
55 Discussion L0 e 113
6 Evaluating Mitigation Approaches for Control Path Bottlenecks 115
6.1 Evaluation of the Mitigation of Local Flow-Update Resource Bottlenecks . 115
6.1.1 Scenarioand Testbed 115
6.1.2 Workload and Prototype 118
613 Results 121
6.1.4 Discussion of the Evaluation Results 123
6.2 Evaluation of the Mitigation of Global Resource Shortages 125
6.2.1 Goalsand Metrics 125
6.2.2 Scenario and Workloado 0L L 125
623 Results 128
6.2.4 Discussion of the EvaluationResults 134
6.3 Discussion oL e 135
7 Summary, Conclusions, and Outlook 137

7.1 SummaryoftheThesis 137

7.2 Contributions
73 Conclusion
74 Outlook,
75 Funding

Bibliography
Acronyms
Glossary

List of Figures
List of Tables

A Appendix

CONTENTS

141

155

157

161

165

167

A.1 The Complete Edge-Core AS5712-54X Architecture and Resource Topology 167

B Author’s Publications

C Erklarung laut Promotionsordnung

171

175

Xi

INTRODUCTION

Internet service providers (ISPs) are one of the major building blocks of the Internet.
They provide global network connectivity and other essential services to their private
and business customers through mobile as well a residential access networks. Driven
by technological advances and popular over-the-top (OTT) content, the data rates of
their customers are continuously increasing [CVNI17]. This puts ISPs into a unique and
challenging position: they offer services at large scales and under intense competition.
OTT content providers like Google and Amazon also provide services at large scales
but have a better profit and revenue position in the market. This position was enabled
by the increasing compute management efficiency since the early 2000s, driven by the
widespread adoption of compute virtualization and automation. In contrast to that,
management and control cost-efficiency of networking and, consequently, ISPs, has not
substantially increased. OTT content providers benefit from the increase in compute
efficiency, enabling their massive growth in compute capacity'?, while ISPs cannot profit
from this development to the same extent.

To alleviate this situation and increase the efficiency in networking, McKeown et al.
proposed software-defined networking (SDN) [McK09]. SDN achieves efficiency by
logically centralizing and opening up the control plane to innovation through enabling
control plane applications to customize the control plane behavior. Recently, ISPs
started implementing network services through SDN [Csa+13; ONF17; Nob+17], and
in combination with network functions virtualization (NFV) [Pet+16]. NFV is a com-
plementary technology that increases the efficiency in networking by implementing
network functions on cost-efficient x86 compute platforms and aims at use cases that
are too complex for SDN [NHH16]. Hence, SDN and NFV are expected to significantly
increase the management and control efficiency in networking for ISPs.

However, the requirements of ISP networks for SDN control planes are demanding;:
they require reliability while controlling a complex network as depicted in Figure 1.1.
Reliable SDN control planes and their components: controllers and applications, are
expected to operate in the face of unexpected events in the data plane and degrade their
service gracefully if required. This requirement means that applications must be able to
adapt themselves to resource shortages and to continue to operate. In case the built-in
reliability mechanisms fail, the control plane must be simple enough to be understood
by human network operators so that they can intervene [DPM12].

J. Greene. Tech’s High-Stakes Arms Race: Costly Data Centers. Accessed: 2018-9-21. Wall Street Journal, 2017.
url: https://www.wsj.com/articles/techs-high-stakes-arms-race-costly-data-centers-1491557408.
H. Liu. Amazon EC2 grows 62% in 2 years. Accessed: 2018-9-21. 2014.

url: https://huanliu.wordpress.com/2014/02/26/amazon-ec2-grows-62-in-2-years/.

2

INTRODUCTION
Services | Residential
— Network IPTV
Access]
¥
gDN | Subscriber Sggf\i,;/1 Zrde_
Over-the-top ontro Access Multicast
content providers Plane l_ : Wilteiztsy
. [v ¥~ —--
G L o VolP Unicast || Traffic
a Forwarding |{ |Forwarding| _|Engineering
e e
Rest of the I_ Core Fabric |
Internet - ——
SDN [Virtualization |
@ Mobile Controller [SDN Protocol Interface |
é access
network i
g Management | T Control
?3 S AT e Gl Path
' SDN Agent
Subscribers
$ @ Asic || Data
|Ctorr}’[rol Path
nterface
N T ¥ Port || - Port W
g ~_ N 4y’ Actior)
$ Residential ~ b ;// & Port[Flow Table Unit Tl Port &
access b a\t\a‘“P//Iane I = >
twork \
networ Elements — —

Packets

Figure 1.1: An overview of SDN in ISP networks.

However, today’s SDN control planes do not provide the required reliability. As
depicted in Figure 1.1, in data plane elements, the control path processes SDN control
protocol messages to configure the data path that conducts the packet processing. While
bottlenecks in the data path are well-understood in both traditional networking and
SDN [Zin+14], the understanding of control paths is lacking. Operating multiple control
plane applications in a control plane requires the controlled sharing of the control paths
of data plane elements as well as isolation between applications, i.e., virtualization to
be provided by the SDN controller. However, the control path virtualization in SDN
has gained limited attention in academia and industry. Specifically, throughput aspects
of the control path performance and their virtualization have been neglected. Some
applications are fundamental to ISP networks and their services, such as the Core Fabric
application that provides connectivity in the core network. Other applications such as
multicast are less critical. Hence, the ISP Core Fabric application should take precedence
over the multicast application in case of performance bottlenecks. If the SDN controller
does not provide prioritization, the multicast application can completely block the control
path of a data plane element. This, in turn, can lead to the failure of the Core Fabric
application; resulting in unreliable data plane behavior.

We argue that the effects of overloaded control paths can be mitigated if the SDN
controller understands the performance characteristics of data plane elements, can
control the data plane load, and provides performance information to affected control

1.1 PROBLEM STATEMENT AND RESEARCH GAPS

plane applications. Therefore, our goal is to ensure that SDN controllers and control
plane applications have enough information to react to unexpected situations and thereby
operate reliably.

1.1 PROBLEM STATEMENT AND RESEARCH GAPS

Applying SDN to their networks is crucial for ISPs to stay competitive. Reliable SDN
controller designs have been proposed, e.g., by Shin et al. and Sasaki et al. [Shi+14;
SPA16]. However, the existing designs can neither provide complete control path
performance isolation between control plane applications nor do applications receive
sufficient information to react to performance bottlenecks reliably. Consequently, today’s
SDN control planes are lacking the required reliability to operate network services in
ISP networks.

We identified two key research gaps that need to be addressed to solve this problem:

Research Gap 1: A missing understanding of the control path and its virtualization in SDN
data planes

Regarding the first gap, we identified two reasons for the insufficient performance
isolation between control plane applications: (1) the lack of information on the con-
trol path performance and (2) the lack of performance-related abstractions in SDN
protocols [Laz+14].

The first gap is caused by the lack of a systematic approach to analyzing the performance
of the control path of SDN data plane elements. The existing literature relies on ad-hoc
methods to identify and characterize the performance of SDN data planes and neglects
the control path, especially its throughput aspects. This lack of methodology results in an
incomplete understanding of the data plane and unrecognized performance bottlenecks
in the control path. When SDN controllers fail to identify or virtualize performance
bottlenecks in the control path of data plane elements, uncontrolled interference between
control plane applications can occur. No approach exists that ensures that SDN controllers
can identify and virtualize all relevant parts of the control path.

The lack of performance abstractions in existing SDN protocols is caused by their focus
on the functional aspects of the data plane. Therefore, even if control plane designers
are aware of performance limitations or bottlenecks in the data plane, existing protocols
provide insufficient means to enable the control plane to detect them or react reliably.

INTRODUCTION

Research Gap 2: A missing understanding of how to design reliable SDN control plane
applications operating on virtualized data planes

The understanding of the impact of data plane virtualization on control plane applications
in literature is limited. The performance characteristics of single SDN control plane
applications have been studied, e.g. by Riickert et al. and Agarwal et al. [RBH15; Aga+14].
Research on operating multiple control plane applications today focuses on the logical
combination of packet processing rules and the isolation of the packet processing in the
data path [Sou+14; Jin+15]. While these results are promising, the understanding of the
effects of control path bottlenecks on the operation of multiple applications is lacking.

Multiple control plane applications accessing the same virtualized data plane can lead
to resource contention. The effect of such contention on control plane applications has
not been investigated yet. Applications faced with resource shortages or performance
bottlenecks, both permanent or transient, must be able to adapt themselves accordingly
to operate reliably. An understanding of the information required by applications
and strategies for them on how to react appropriately is needed, but not addressed in
literature today:.

1.2 RESEARCH GOALS AND CONTRIBUTIONS

The overarching goal of this thesis is to enable reliable network services implemented
on SDN control planes. This goal requires that multiple control plane applications
operate concurrently and reliably on the same SDN controller. Ensuring control plane
reliability requires the SDN controller to isolate the control path between control plane
applications completely. Furthermore, applications need the ability to react to unexpected
performance bottlenecks or shortages, termed performance events, in the control paths
of the data plane. Performance events that affect a single data plane element only, termed
local resource events, require different coping mechanisms than shortages that affect the
whole data plane of the network domain, termed global resource events.

Based on the above problem statement and the research gaps, we formulate two main
goals for this thesis:

Research Goal 1: Design of a systematic approach to virtualizing the control path of SDN data
planes that takes all performance-relevant aspects into account.

The following two questions need to be answered to reach the first research goal:

RQ 1.1: How to characterize the control path performance in SDN data planes?

Analyzing the performance characteristics of data plane elements is challenging because
they have been mostly investigated ad-hoc as black boxes in the existing literature. The

1.2 RESEARCH GOALS AND CONTRIBUTIONS

heterogeneity of the architecture and capabilities of data plane elements requires not
only a single data plane element model, but a process to create models for arbitrary data
plane elements. To this end, we introduce a new resource-oriented view on the SDN data
plane [BH14; Ble+16a]. A systematic approach is presented to identify all control path
resources in the data plane and to create a model of their performance interdependences.
Furthermore, we provide a method to map the messages of an exemplary SDN protocol
to this model. Finally, both approaches are combined and applied to a state-of-the-art
SDN data plane element, an Edge-Core AS5712-54X 10GbE switch. Thereby enabling,
for the first time, the complete modeling of the control path of such data plane elements.

RQ 1.2: How to virtualize the throughput aspects of control paths in SDN data planes?

The design of resource virtualizers needs to reflect the characteristics of the shared
resource as well as the requirements of the applications consuming the resource. The
challenge is to ensure that new virtualization approaches integrate well into existing
SDN protocols. Furthermore, the virtualized component is located in the data plane
while the virtualization is implemented on the controller. We find that virtualization
approaches for throughput aspects of the control path are lacking. One example for these
is the slow performance of the memory interface used for updating packet matching
tables on data plane elements, which is likely to cause interference between applications.
However, it was not identified as a relevant resource for sharing between control plane
applications in the literature yet. To that end, an approach to virtualizing dynamic
control path resources is presented. The method is applied to a representative resource:
for the first time, the memory interface of a packet matching table of a state-of-the-art
SDN-enabled hardware switch is virtualized.

To answer the first research goal, we introduce a systematic approach to characterizing
the control path performance of data plane elements. Furthermore, we provide the
missing virtualization approach for throughput aspects of the control path of data
planes. Thereby, we provide SDN controllers with the means to identify and control all
performance-relevant aspects of the control paths of data planes.

With SDN controllers being able to provide reliable access to the data plane, control
plane applications need to be adapted to operate on reliable controllers.

Research Goal 2: Enabling network services to operate reliably on virtualized SDN data planes.

The following two questions need to be answered to reach the first research goal:

INTRODUCTION

RQ 2.1: How can control plane applications operate reliably in the face of control path performance
events that affect a single data plane element?

Performance events in the control path require control plane applications to adapt their
behavior. To that end, we provide a design space analysis for mitigation approaches for
applications. Using resources in a different location in the data plane is one especially
useful mitigation approach. However, if this approach is applicable at all, it is challenging
because the location is one of the most significant aspects of resources in the data plane.
The application of this approach is investigated on the example of an overloaded packet
matching memory interface in the context of network function chaining, a service that is
crucial to interconnect virtual network functions (VNFs). We show that when relevant
information on neighboring data plane elements is available, moving the consumption
of control path resources to a different location can increase the reliability of the SDN
Function Chaining control plane applications [Ble+14; Ble+15a].

RQ 2.2: How can control plane applications operate reliably in the face of control path performance
events that affect the whole data plane of a network domain?

Permanent global resource shortages require control plane applications to be designed
as resource efficient as possible. Transient global resource shortages leave already
efficient control plane applications only limited choices: reducing the resource usage,
substituting the use of one resource by another one, postponing the resource usage,
or a combination of these approaches. All approaches are challenging to implement
because many applications are not designed for this use case yet. First the first time, we
investigate the impact of disclosing a global packet matching memory resource shortage
in the data plane to control plane applications operating in an ISPs control plane. We
show that our implementation of the Software-Defined Multicast (SDM) [RBH15] control
plane application, Adaptive Software-Defined Multicast (ASDM) [Ble+15b] is an efficient
approach regarding packet matching memory consumption. We demonstrate that ASDM
can be adapted for a controllable tradeoff between the consumption of matching memory
and network traffic and vice versa through a single parameter. Thereby, the ASDM
control plane application can react to global resource shortages of matching memory
without reducing its service while keeping operational simplicity. Furthermore, we
provide a design that applies the adaptive multicast concept to the recently proposed
and highly efficient bit-index multicast method [RFC8279] in our Adaptive Bit-Index
Software-Defined Multicast (ABSDM) approach.

The exemplary investigation of control path bottleneck mitigation approaches provides,
for the first time, an insight into how control plane applications must be designed to
operate reliably on virtualized data planes. We provide solutions to ensuring reliability
throughout all planes of SDN: from systematically discovering relevant components
in the data plane through the virtualization on the controller up to the control plane

1.3 THESIS ORGANIZATION

applications reacting to resource events reliably. Thereby, we close the reliability gaps
that prevented the use of the efficient SDN approach in ISP networks.

1.3 THESIS ORGANIZATION

This thesis is organized as follows: the background and related work are discussed in
Chapter 2 and Chapter 3 respectively. Requirements and goals, as well as a systematic
approach on how to discover performance relevant resources in an SDN data plane and
how to virtualize these resources are described in Chapter 4. Two methods on how
performance-related information on the data plane can be used to optimize control plane
applications are presented in Chapter 5 and evaluated in Chapter 6. Finally, a conclusion
is drawn in Chapter 7.

BACKGROUND

We provide the context of this thesis in this chapter. An overview of contemporary ISP
networks is given in Section 2.1. The architecture of the building blocks of networks,
network devices, is introduced in Section 2.2 both for today’s appliances as well as for
recently introduced software-oriented architectures. Finally, we provide an overview of
the SDN approach to network management in Section 2.3.

2.1 INTERNET SERVICE PROVIDERS AND NETWORK SERVICES

In this section, we present the fundamental aspects of ISP networks. A more com-
prehensive view on this building block of the Internet with regards to technology is
provided by Doverspike et al. [DRC10] and with regards to topology and traffic by Betker
et al. [Bet+14].

Over-the-top
content providers

G &

(o

Rest of the
Internet

Packet

@ Mobile
é access gyge Control Plane
PEerk Nodes> Core Network
(@)
Subscribers »
ﬁ I
>®Ser\/ice =
edge oo el <,]
$ Residential deg” Optical Transport
access

network

Control Plane

Figure 2.1: Schematic view on an ISP network

ISPs provide Internet access to their residential and mobile customers as depicted
in Figure 2.1. Therefore, their networks are designed to bring network access to
geographically distributed locations. The main parts of ISP networks are the core
network, the network edge, and the access networks. The core network spans vast

10

BACKGROUND

geographic distances to interconnect geographically distributed edge networks as well as
other parts of the global Internet. Edge networks consist of one or more edge data centers
from where access networks distribute connectivity to individual subscriber locations.
The networking technology used in core and edge networks today are often Ethernet
and Internet Protocol (IP). The access network mostly relies on different technologies
that enable cost-effective connectivity for individual subscriber locations. Therefore,
access networks can be understood as mostly passible packet pipelines. The services are
implemented in edge or core locations of ISP networks. The part of the edge network
that faces the customers is termed the service edge and represents the boundary of the
IP part of the network.

An optical transport network provides the long-range network links for the core
network. These networks could be called software-defined today for their use of
remotely configurable equipment such as reconfigurable optical add-drop multiplexers
(ROADMs). ROADMs enable configurable wavelength switching, thereby enabling
optical path switching in optical transport networks. This approach allows ISPs to
provide arbitrary network links for the IP-based core network.

Other parts of the Internet, including OTT content providers, are interconnected at
edge nodes. The depiction shows one example link to the rest of the Internet. Actual ISP
networks have multiple, geographically distributed peering points to exchange traffic.

The primary services offered by ISP networks are Internet access for private and
corporate customers and virtual private networks for corporate customers. Services are
directly offered to customers and are at least partly commercial entities while network
services refer to the technical part of the service delivery. Today, services are implemented
by network services using the fully distributed control plane of traditional network
equipment. To that end, the core network often operates a separately managed control
plane based on, e.g., Multi-Protocol Label Switching (MPLS). The edge locations are
managed separately to implement services, e.g., network access through a broadband
network gateway (BNG). The core network control plane provides connectivity for all
connected locations and thereby is the central distribution platform and a core element
of ISP networks. Add-on network services are implemented using network services
spanning multiple of those management domains. IP multicast, e.g., used to provide
Internet Protocol Television (IPTV), spans the management domains of the core and the
edge network.

An inherent hierarchy exists between the network services in ISP networks [Roj+18].
Some applications are fundamental to every service provided, such as the core network
while other applications such as multicast are less critical. This means that the core
network should take precedence in case of interference or configuration mismatches.

Finally, the importance of the core network and the optical transport network for the
ISP business means that their operators are very conservative. New technology is only
slowly adopted, and some ISPs require that human operators have the understanding

2.2 NETWORK DEVICE ARCHITECTURES

and the ability to override the network management system at all times to ensure its
reliability.

2.2 NETWORK DEVICE ARCHITECTURES

Network devices are the key element of networks. We give an overview on how hardware-
appliances are built today in Section 2.2.1 as well as the on the recent software-based
approach to network data planes called NFV in Section 2.2.2.

2.2.1 ASIC-Based Appliances

A network function defines a specific, well defined functional block in a network. Example
for network functions are routers, firewalls, deep packet inspection, or network address
translation. Traditionally, each of these functions has been implemented in a dedicated
network device, an appliance that combines general purpose hardware, accelerator
hardware such as application-specific integrated circuits (ASICs), and proprietary
software as depicted in Figure 2.2.

3
I

Different Vendors:
Bundle of Software & Hardware

Figure 2.2: Appliance-based networking.

The most widespread devices in networks, routers, and switches, are a representative
class of devices that we will use to discuss the architecture of network appliance
devices. Figure 2.3 depicts a typical device architecture. The packet processing is mostly
conducted in specialized, proprietary hardware devices, often an ASIC but sometimes
also network processing units (NPUs) or field-programmable gate array (FPGA). The
management system is connected to the packet processing hardware and provides a
control interface to the hardware through a standard embedded computer. The idea
behind this approach is that the high-throughput part of the device is implemented
by specialized, proprietary hardware while the control part, which is less performance

11

12

BACKGROUND

Management system

Routing
protocol

Management

interface (eg. CLI)
I

| General-purpose CPU |

Routing table

g Packet processing hardware

e Header processing e
‘i Lookup IP Update IP Packet ‘i
address header fields queue é
IP address v TNext hop v T
Matching Buffer
memory memory

Figure 2.3: A schematic representation of a typical router appliance architecture
(adapted from [McKO03]).

critical is implemented through a cost-efficient computer and accompanying software.
Routing and command line interfaces are typical software that is operated on the
management system. Furthermore, a driver to access the hardware device is provided
there as well.

Table 2.1: Overview of memory types and their lookup characteristics (adapted from [PV11]).

Technology Match type Access time [ns] | Max. size | Cost [$/MB] | Power [W/MB]
TCAM content, ternary 4 ~20Mb 200 15
SRAM address, binary 0.45 ~210Mb 27 0.12
RLDRAM address, binary 15 ~2Gb 0.27 0.027
DRAM address, binary 55 ~10GB 0.016 0.023
SSD storage only 1,0000 ~10TB 0.003 0.00001

As depicted in Figure 2.3 there are two parts of the packet header processing pipeline
that rely on memory: the IP address lookup to determine the next hop for a packet
and the buffer memory. Both types of memory have different usage patterns but have
similar requirements: to achieve a high packet throughput of, e.g., 1 Bpps! low access
times are required. Table 2.1 lists the main memory technologies available today. All
memory types can be used for storing data, which means that a bit pattern is stored at
a specific address. This access type is required for buffer memory, which is why often
SRAM is used for this task. However, for looking up addresses, the inverse process is
required, i.e., looking up a bit pattern and getting an address in return. This type of

1 Edge-coreE. AS5712-54X 10GbE Data Center Switch Datasheet. Datasheet EC-DS-0118-07.

2.2 NETWORK DEVICE ARCHITECTURES

memory is called content-addressable memory (CAM) and exists in two variants: binary
content-addressable memory (BCAM) and TCAM. The latter is often used to implement
IP forwarding lookups for its high speed and ability to conduct ternary matches, which
are partial matches on bit patterns. However, its drawback is its small size as well as
high costs and power consumption. This is one of the reasons why lookup memory is
often scarce in data plane elements.

2.2.2 Network Functions Virtualization

The concept of NFV was proposed by the European Telecommunications Standards
Institute (ETSI). This introduction relies on the ETSI terminology [ETSI18].

While the traditional device-oriented approach to networking works for well-defined
network functions, this approach is inefficient and expensive for less standardized
functions. The inefficiency is caused by the fact that each of the devices comes with
its own hardware, which inevitably leads to low utilization. Except for the functional
interface and the physical interface, there is usually no standardization involved. The
high costs are caused by the fact that often each device comes from a different vendor,
has a different administrative interface, and requires a separate support contract.

The idea of NFV is to implement network functions on the same hardware platform:
standard x86 servers. To that end, an approach and terminology for virtualizing network
functions are introduced. VNFs are software implementations of a network functions.
Today, the implementations are often provided as virtual machines that operate on a
server that provides the required virtualization facilities. The server is termed NFV
infrastructure and can host serveral different VNFs instances as depicted in Figure 2.4.
Note that the hardware platform for VNF is now standardized. Network connectivity is

Different Vendors:
Software only

Standardized Hardware Platform

Figure 2.4: Network functions virtualization.

provided through the network interface cards (NICs) of the NFV infrastructure. They
are connected to a virtual switch that interconnects all virtual machines through virtual
network interfaces. As proposed by the ETSI [ETSI13], the concept includes and focusses
on the management of VNFs to increase efficiency and reduce costs.

13

14

BACKGROUND

NFVs infrastructures are commercial off-the-shelf (COTS) servers hosted in a data
center. Data centers are organized in racks, for which one or more top-of-rack (ToR)
switches provide connectivity to the data center fabric. Both the virtual switches and the
data center switches are often SDN-enabled. The NFV management platform relies on
SDN to control both types of switches. The need for SDN is caused by the requirement
to host different virtual network for different services or customers.

2.3 SOFTWARE-DEFINED NETWORKING

Traditional networking relies on a completely distributed control plane. Each data plane
element hosts its own part of the control plane as depicted in Figure 2.5. Standardization
only extends to the protocols used to communicate between the data plane elements.

Feature Specific,
Standards Based
Network Protocols

ontrol
Plane
Data Plane

I
Different Vendors and Devices

Figure 2.5: Device-oriented networking.

SDN completely separates the control plane from the data plane through an SDN
protocol that enables a logically centralized SDN controller to govern the data plane
elements. Figure 2.6 depicts the schematics of the SDN architecture. The standardization
does not include all parts of the system: the SDN protocol standardizes the communica-
tion between the control plane and the devices; still, existing standard protocols are used
between different control planes. One example for such a protocol is OpenFlow [ONF15].
OpenFlow is the main SDN protocol used in industry and academia, which is why we
base our introduction into SDN and parts of our terminology on it. The control plane is
now logically centralized and does not have to be hosted on the individual data plane
elements anymore. The term logically centralized refers to the fact that while the control
plane is still a distributed system, this fact is hidden from the data plane elements and

2.3 SOFTWARE-DEFINED NETWORKING

.........

OpenFlow !
Protocol—~
- !

e L

Different Vendors and Devices

Figure 2.6: Software-defined networking.

the SDN applications operating in the control plane to enable functional abstraction in
networking. The part of a network that is governed by an SDN control plane is referred
to as SDN network domain.

Management system

SDN Agent

I
| General-purpose CPU |

ﬁ Packet processing hardware

Header processing

<< <<
‘t Lookup match | Apply action Packet ‘i
q fields list queue q

Match field values v Action list v T
Value match Buffer
table memory

Figure 2.7: A schematic representation of a typical SDN data plane element architecture
(adapted from [McKO03]).

15

16

BACKGROUND

The management system of the individual SDN data plane elements only host an
SDN agent software as depicted in Figure 2.7. Everything else is operated on the
centralized control plane. However, the packet processing ASICs have not fundamentally
changed, as can be seen in the depiction. The usage of certain hardware features has been
generalized, but the fundamental concepts, and thus the hardware, are still the same.
Specifically, OpenFlow was designed using the match type of TCAM as the match field
lookup specification. Therefore, the central abstraction in OpenFlow to specify the data
plane behavior is the match field lookup table, referred to as flow table by OpenFlow.
The packet processing is programmed by installing flow entries in the flow table that
match for flows of packets and instruct the hardware to apply a given list of processing
instructions to them, referred to as action list.

We refer to the packet processing part of the data plane elements as the data path. The
path SDN protocol messages take through the management system to affect the data
path configuration is referred to as control path.

Network
Services Service wee Service
1 API Access t
Control Plane | Control plane Control plane
application | *** | application
4 APlAccess }
SDN Y Y
Controller | Virtualization |
| OpenFlow interface |

OpenFlow Protocol =

Data plane

OpenFlow switches

\
Data path

Figure 2.8: A schematic view on the SDN control and management architecture terminology
used in this thesis.

A control and management architecture for SDN-based networks has been proposed
by the Open Networking Foundation (ONF) the body governing OpenFlow. We already
used the terms data plane and control plane without introducing them: the data plane is
the network of devices that are responsible for the packet processing. The control plane

2.3 SOFTWARE-DEFINED NETWORKING

is the, in the case of SDN logically centralized, part of the system that runs the logic and
instructs the data plane elements how to behave.

The logically centralized nature of SDN control planes makes it easier to implement
custom control plane behavior. While in traditional networking new behavior requires a
new protocol and the corresponding standardization process, with SDN the new behavior
only depends on the SDN controller it is implemented on. The ONF distinguishes between
a controller plane and an application plane. We follow this concept but refer to the
combination of controller and application plane as the control plane. Control plane
applications are implemented on top of a controller that provides the Application
Programming Interface (API) to access the data plane, topology discovery, virtualization
for parallel access of multiple applications and other services. Our view on the SDN
control and management architecture is depicted in Figure 2.8.

In SDN, network services are created by combining control plane applications operating
on the same control plane. An example of network services is IPTV, which can be
produced by combining a unicast routing application to handle control traffic with a
multicast routing application [CR17; Ble+14] to handle the media streaming traffic.

Control plane applications do not have to be designed for a specific SDN protocol but
are often programmed against a specific controller API. Nevertheless, the programming
model of the available SDN protocols influences the available functions and design styles
for applications.

17

RELATED WORK

Control planes and controllers have been the subject of research since the introduction
of SDN. We give an overview of the literature on control path bottlenecks and the
state-of-the-art in their mitigation in Section 3.1. We investigate the state-of-the-art in
network function chaining and resource efficient multicasting in Section 3.2. Finally, we
present the identified research gaps in Section 3.3.

3.1 SOFTWARE-DEFINED NETWORKING DATA PLANE CHARACTERISTICS

The understanding of data planes, performance of the control path, and bottlenecks in
literature are discussed in this section. The performance bottlenecks are categorized
in anticipation of our own analysis provided in Chapter 4. This approach is taken to
clarify the gaps in the existing literature. To understand this categorization, the notion of
resources needs to be introduced. We use the notion of resources to describe components
of the data plane element hardware that potentially can cause a bottleneck that affects
either the control or the data path. Section 3.1.1 provides an overview of the topic of
virtualization and isolation of control plane applications. An overview of literature on
performance bottlenecks on the data path is given in Section 3.1.2. Existing strategies
on how to mitigate performance issue such as limited flow table space are discussed in
Section 3.1.3. Finally, we analyze the SDN devices that have been investigated in literature
to provide an understanding of how to assess the published results and understand the
main influencing factors in Section 3.1.4.

3.1.1 Virtualization and Isolation

Serveral surveys on SDN discuss the issue of virtualization. The survey on SDN
virtualization by Blenk et al. [Ble+16c] provides a good overview of the issue. The
topic of data plane control path resources is discussed, but as this survey will show, no
attempt has been made in the literature to ensure all resources on data plane devices
are discovered and isolated. Therefore, we will focus on papers that were published
after 2015 when the first version of the paper was published [Ble+15c]. However, we still
discuss the most important papers published before 2015, even if they are included in
the survey of Blenk et al.

The need for virtualization is clearly stated in the SDN architecture [ONF14c]. However,
no details on the specific requirements for virtualization are provided. Furthermore, no
distinction is made between the virtualization of the control path and the data path of

19

20

RELATED WORK

data plane elements. The ONF architecture proposes to conduct virtualization either on
the data plane elements or in the SDN controller as denoted by 3) and (D in Figure 3.1.
In addition to that, literature introduced the notion of SDN hypervisors [She+10].
Hypervisors are located between the data plane and the control plane, denoted by @
in the depiction, to provide data plane virtualization. However, hypervisors propose
to operate multiple independent control planes on the same network, which is not
applicable to ISP networks that require reliability and simplicity.

Customer-facing

Services) .
Service e Service

1 APl Access 1

Control Plane Control plane| _ _, [Control plane
application application
4 APl Access A

SDN l'_ = _. = _ ___________ |
Controller | @ Virtualizer :
OpenFlow Interface
[t - _|
: @ Virtualizer |

Data plane

Figure 3.1: Potential locations of virtualizers.

Sherwood et al. [She+09] where one of the first to recognize the importance of
control path bottlenecks for virtualization when proposing FlowVisor. They find
the management system central processing unit (CPU) to be an important bottleneck
and derive the processes that run on it and are affected by performance bottlenecks.
Furthermore, they acknowledge the need to expose these bottlenecks through the SDN
mechanisms. However, they do not attempt to provide a complete list of potential
performance bottlenecks in the data plane and refer to solving the issues in future work.
In conclusion, this paper, albeit being already published in 2009, discusses most of the
relevant topics in virtualization.

3.1 SOFTWARE-DEFINED NETWORKING DATA PLANE CHARACTERISTICS

Skoldstrom and Yedavalli [SY12] investigate the design space for placing virtualizers
in the SDN architecture. They conclude that the management system of data plane
elements is the best place to do so. The approach has many advantages including the
possibility of full isolation of the CPU between tenants. The disadvantage is, however,
that while this approach is expected to work well with few tenants, it might be too
complex for hundreds of control plane applications. Furthermore, it requires the SDN
control plane to control the hypervisors on the data plane elements in addition to their
other tasks.

Dixit et al. [DKE14] propose a hypervisor called FlowBricks to enable multiple SDN
controllers to access the same data plane. The assumption is that a single controller
architecture is not able to provide all required network services. However, the virtualiza-
tion approach focusses purely on logical isolation by translating the OpenFlow message
contents. The order of the messages and their rate are not considered.

Mogul et al. propose their Corybantic framework [Mog+13] to handle conflicting
policies of independent control plane applications. The goal is to find a configuration for
a data center network that yields the highest revenue for the data center operator. By
introducing a virtual currency that reflects the revenue contribution of each control plane
application, a central coordinator selects the network configuration with the highest
revenue. The paper relies on an ad-hoc data plane resource list and does not investigate
control path resource dynamics. Furthermore, the resource demands are assumed to be
well known in advance, which, e.g., does not reflect routing updates in unicast routing
or demand spikes for multicast services.

Soulé et al. propose a data path resource-aware language for the northbound API called
Merlin [Sou+14] that control plane applications use to communicate with the controller.
In contrast to earlier works, Merlin enables control plane applications to specify not only
the packet processing, but also the path a packet takes and, most importantly, data rate
guarantees. Merlin achieves this by introducing a language with which traffic flows are
selected, a path through the network is assigned including waypoints, and a data rate
specification is given. However, again, ad-hoc data path resources are discussed, the
issue of control path virtualization is not investigated.

Shin et al. [Shi+14] propose their approach, called Rosemary, to completely isolate
control plane applications. The focus of the work is on the controller. Nevertheless, the
authors acknowledge that all resources used by an application need to be monitored.
However, the authors do not discuss control path resources. Blenk et al. [BBK15]
propose to implement the SDN control plane itself using NFV and function chaining
to enforce resource isolation between applications. They identify the data plane CPUs
as bottlenecks and employ rate limiting to prevent overloading them. However, the
impact of this rate limitation on control plane applications with different priorities is
not investigated. Furthermore, additional control path resources are not identified or
isolated.

21

22 RELATED WORK

Table 3.1: Control path virtualization features of SDN controllers compared to the bottleneck
analysis conducted in this thesis.

]
£ =
g 2
=1 =
g b
y | 5 E
o =1 9 =)
9 i] =) =1
£ 5 BlE|£ ¢
£ = Ele |8 |3
= > | 2 191 =
U £ e 2leg | &% g 2
5 5| ¢ E| S e |8 5|25 |2
= | 8 | @ | &8 & | g s | 8 -
g El*|Elz|2|o|e|38|% |2
=~ - 2 2 o o) — — v aQ -
: 12|82 |8 |2 |5 |3 |5 8|y 8B
= I P R - =V I -VE = s 5 -
S |p|E|x|A|lz|z |8 |8 |2 |2 |23 |¥
e |5 |8 |0|0|l8 |8 |8 |8 |2 |2 |8 |& %
Paper Goal |= |9 |2 |&|A|E|E|O|O0O |2 |2 > |& |&
FlowVisor [She+09; Virtual- | O | A \Y%
She+10] ization
Corybantic [Mog+13] Virtual- | @D VP
ization
Data plane Virtual- | @ | V
virtualization [SY12; ization
SJ13]
FlowBricks [DKE14] Virtual- @
ization
Rosemary [Shi+14] Virtual- D
ization
Merlin [Sou+14] Virtual- [©) VP
ization
CoVisor [Jin+15] Virtual- [©) vV | A
ization
Hyperflex [BBK15] Virtual- | @ | V
ization
LegoSDN [CTB16] Virtual- ()
ization
SDNShield Virtual- | @
[Wen+16b] ization
IVC/IVS [SPA16] Virtual- | O3 V
ization
Onix [Kop+10] Perfor-
mance
ONOS [Ber+14] Perfor-
mance
OpenDaylight Perfor-
[Med+14] mance

The predominant SDN controllers used in the industry today are ONOS and Open-
Daylight. ONOS was conceived by Berde et al. [Ber+14]. The term resource appears
in the context of resources, but no details are provided. The isolation of resources is

3.1 SOFTWARE-DEFINED NETWORKING DATA PLANE CHARACTERISTICS

mentioned in the future work section. Bottlenecks are discussed in the context of the
controller only. In the presentation of OpenDaylight by Medved et al. [Med+14] the
word resource appears two times in the text, but not in a relevant context. Therefore, we
conclude that both designs strive primarily for performance. This approach makes sense
for the goal of gaining acceptance in the industry but makes these designs susceptible to
resource contention.

The papers analyzed in this investigation, the location where they suggest performing
virtualization, and resources they identified and virtualized are listed in Table 3.1. The
meaning of the symbols in the table that signify the handling of a hardware bottleneck is
as follows:

¢ Identified only: A
¢ Jdentified and virtualized: V
¢ Identified and virtualized with prioritization: VP

An overview of the locations where virtualization is suggested to be performed is
depicted in Figure 3.1. The table is listing the related work references to this depiction
by denoting the number of the virtualization location in the ,location” column.

3.1.2 Data Plane Performance Bottlenecks

In this section, the performance bottlenecks discovered in literature are discussed. We
focus on approaches that identify bottlenecks and provide approaches on how to mitigate
them. The most important papers on the topic of performance bottlenecks are discussed
first, followed by an overview of all literature investigated.

The issue of consistent network updates, on which, e.g., Forster et al. provide a
survey [FSV16], is related but not the focus of this investigation. If the consistency
of network updates is prevented by resource contention on the control path, our
investigation will support this use case as well. For ensuring that network-wide
policies are activated consistently, the Time4SDN approach, proposed by Mizrahi and
Moses [MM16] was recently integrated into OpenFlow and provides a solution for this
issue in time synchronized networks.

Most SDN protocols and accompanying configuration protocols are designed to specify
and reason primarily about functional aspects of data planes. This approach is reflected
by the OpenFlow data plane model that covers functional aspects of matcher and actions,
but not their non-functional aspects. Other aspects, such as the resource consumption
and the resource-sharing behavior are often not covered, or, in the example of OpenFlow,
introduced as an afterthought. One example is the flow table vacancy event feature
that was introduced as late as OpenFlow version 1.4.0 [ONF13], which was released in
2013, four years after the release of OpenFlow 1.0 [ONF09]. Other control path aspects
recent version of the OpenFlow protocol, as well as the OF-CONFIG protocol [ONF14a],

23

24

RELATED WORK

report on are the size of flow tables, group tables, and meter tables. Another control
path bottleneck that is acknowledged is sending packets from the ASIC to the control
plane. The proposed solution to this issue is discussed in Section 3.1.3.

Costa et al. [Cos+17] propose a systematic approach to investigate the performance
of SDN data panes. Unfortunately, the approach does not explain how the list of
performance tests was derived and why. This leads to the assumption that, again, an
ad-hoc approach is used to determine potential performance bottlenecks. Still, the
authors investigate the behavior of the tested devices when their flow tables are full and
discover that many of them exhibit unexpected behavior in this case. They, therefore,
suggest filling flow tables at maximum to 90% of their capacity—which is lower than
advertised by the corresponding OpenFlow primitives in many cases.

Rotsos et al. [Rot+12] provide in-depth measurements of three hardware and one
software OpenFlow switch. They use a glass box approach and provide insights into the
data path performance as well as on the control path. They investigate the performance
of different OpenFlow message as well as their interaction. To do not, however, try to
systematically create a performance model of the data plane.

Lazaris et al. [Laz+14] argue that the diversity in performance characteristics of SDN
devices is not captured adequately by existing SDN protocols, e.g., OpenFlow. Therefore,
control planes need detailed information on the expected control path performance of
the devices. To that end, the authors present an inference system that sends OpenFlow
message patterns and measure the response in the data as well as the control path. They
describe the unpredictable behavior of TCAM table sizes because, on some switches,
some combinations of packet match fields yield dramatically different maximum number
of flow entries in a table. Furthermore, they investigate the flow_mod message in detail
and find that the priority, as well as the order and number of existing entries in a
table, impact the performance of adding entries. The performance of modifying entries,
however, is mostly constant. They assume that the approach of some vendors to use
the management system as a slow path for packets. However, this approach cannot be
considered viable for high-performance networks and multi-gigabit traffic [KMH14].
The hardware performance interference patterns seem to be derived from an ad-hoc
model of OpenFlow switches. The devices are investigated as black boxes, and there is no
discussion of how the specific characteristics where chosen. Furthermore, the question
whether all relevant configurations and combinations of parameters are investigated is
not discussed.

The authors then present an approach to analyze application requests to schedule them
for best performance. The analysis process is designed to ensure that the dependencies
between requests are kept even after the optimization process. The results are very
promising and show that the approach works well for the investigated use cases.

He et al. [He+15] argue that the control path latency is crucial for many services. They
dissect the components that make up the latency but do not recognize virtualization as
a factor. They describe the hard- and software of OpenFlow switches and investigate

3.1 SOFTWARE-DEFINED NETWORKING DATA PLANE CHARACTERISTICS

two use cases: packet forwarding along the control path and flow table updates-a
reactive flow installation scenario. While the process described is detailed and includes
all relevant components, it is specific to a configuration and cannot be generalized as
described. The issue of virtualization and its effects is not discussed.

The literature on security issues in SDN focus on specific issues, but again, work with
ad-hoc models of the data plane [SNS16; Yoo+] and do not provide additional insights
into the issue.

Table 3.2: Performance bottlenecks in literature compared to the analysis conducted in this thesis.

Location | Resource Identified Optimized Virtual-
ized
Manage- CPU [CB17a; Laz+14; BR13; Nar+12; KHK13; [BR13; Nar+12;
ment Cur+11; Amb+17; Wan+14; Rot+12; SY12; | KHK13; Cur+11;
system Cos+17] Wan+14; SY12]
Manage- | Management NIC
ment
system
Manage- PCl-e link
ment
system
ASIC PClI-e controller
ASIC Flow table space OpenFlow [ONF15], [Qia+16; Nar+12; [Qia+16; Yu+10;
Yu+10; Cur+11; Guo+17; Yoo+; KHK13] Cur+11; Guo+17;
KHK13]

ASIC Flow table [CB17a; Laz+14; Qia+16; HYS; Kat+16; [CB17a; Laz+14;

memory interface Jin+14; Rot+12; Wen+16a; Ngu+18] Qia+16; Kat+16;

Wen+16a]

ASIC Group table space | OpenFlow [ONF15]
ASIC Group table

memory interface
ASIC Meter table space OpenFlow [ONF15]
ASIC Meter table

memory interface
ASIC Statistics counter [Cur+11; Rot+12]

table memory

interface
ASIC Data Path [Jar+11; Rot+12]
ASIC Packet output to OpenFlow [ONF15], [He+15; Nar+12; OpenFlow Open-

switch controller Bas+17; Amb+17; Wan+14] [ONF15],[Nar+12] Flow

Chen et al. [CB17b] argue that for certain applications (traffic engineering, mobile

networks, cyber-physical systems), control path performance guarantees are required.

Based on the observations made in [Kuz+18; He+15; Laz+14] they conclude that the
primary source of unpredictability is the number of flow entries in a table. To mitigate
this effect, they use two TCAMs or TCAM partitions, one as the main table and one as
insertion cache. The number of entries in the cache is kept small to achieve guarantees

25

26

RELATED WORK

for inserting entries there. Then, the entries are migrated to the main table to keep the
cache table size small. The approach is evaluated using a simulator and shows promising
results. The approach aims to improve the design of OpenFlow switches.

However, the effect of virtualization is not discussed. Guarantees can only be given if
the system has enough time to copy the entries into the main table. How this approach
affects the SDN protocol is not discussed, neither is how the SDN controller knows of
these guarantees.

The complete overview of the literature investigated, and the resource discovered
there is listed in Table 3.2. The table clearly shows that fixed properties like table sizes
are well investigated as well as the dynamics of the management system and table
updates. However, we found no papers discussing topic prioritization on the control
path, virtualization, or its effects on control plane applications.

3.1.3 Control Path Bottleneck Mitigation Strategies

Performance mitigation strategies are included in the tables of the preceding two
sections. There are four control path resources for which mitigation strategies exist: the
management system CPU, flow table space, the flow table memory interface, and the
packet output from the data plane to the controller.

The approaches optimizing the flow table space follow mostly two approaches that are
implemented on the controller without the knowledge of applications: merging multiple
entries and distributing entries on multiple switches. The fist approach shows promising
results, however, merging entries leads to a reduced visibility for applications, because
the counters that belong to an entry will be lost. Therefore, the question remains how
the applications signal that they accept the potential loss of counters. Furthermore, if
the interface between the controller and the applications is at least as powerful as the
OpenFlow protocol, the sheer amount of options per entry such as priority, timeouts
and counter push events make it questionable if this approach is realistic for large scale
deployments. The second approach, as the first one, requires the applications to allow
the controller to significantly modify their decisions. This requires applications to be able
to cope with this, e.g. if they expect flow counters to operate on a specific location. Again,
the question remains how applications should signal that such kind of modifications are
acceptable for their use case.

The proposals for increasing the throughput of the flow table memory rely on specific
properties of the TCAM. One example is the usage of caching, e.g. by installing flow
entries in an empty TCAM table first, before moving them to the main table [CB17b]. This
approach reduces the flow entry addition time in the experiments, since the addition
time was shown to depend on the number of existing entries in a table. While these
approaches are very promising and should be used where possible, they still can lead to
overloaded flow table memory interfaces. In the case of the described example the cache

3.1 SOFTWARE-DEFINED NETWORKING DATA PLANE CHARACTERISTICS

table can overflow when a large number of flow entries is added. For this situation none
of the papers provides a mitigation.

Sending packets from the ASIC to the control plane is a well-known issue that is
described in the OpenFlow specification [ONF15]. The authors propose to apply rate
limiters to traffic before sending it to the control plane. This approach can prevent
performance bottlenecks and if multiple rate limiters are combined with prioritization
even provide full virtualization of the resource. Unfortunately, many of the available
OpenFlow devices are not able to apply multiple meters before sending a packet to the
control plane. Nevertheless, we expect this approach to be used in future, more capable
devices e.g. P4 programmable ASICs as proposed by Bosshart et al. [Bos+13].

Mitigations to prevent the management system CPU from becoming overloaded
propose to reduce the number of messages sent by the controller. One approach
proposed in to apply a rate limiter e.g. by Blenk at al [BBK15]. The approach is well
suited to prevent overload, however, it requires an exact knowledge of the number of
SDN protocol messages that the CPU can process. This number is difficult to come by,
because it cannot be expected that all messages need the same amount of processing
resources. Furthermore, there are other processes running on the CPU that cannot be
controlled by the control plane, e.g., packets sent from the data plane to the control plane
as described before. One approach that completely mitigates this issue is proposed by
Skoldstrom and Yedavalli [SY12]. It uses operating system (OS)-level virtualization on
the data plane’s management system to isolate multiple OpenFlow agent instances. This
approach provides complete virtualization of the management system. However, it also
requires a complete OpenFlow agent instance per tenant. Therefore, this approach is
suitable for isolating tenants, but might be difficult for a large number of control plane
applications.

3.1.4 OpenFlow Data Plane Devices in Literature

To better understand the results provided in the literature on the performance characteri-
zation of data plane elements, we surveyed the used OpenFlow switches in academia.
The result of the survey is listed in Table 3.3.

27

28

RELATED WORK

Table 3.3: Overview of investigated OpenFlow switches in academia.

Model ASIC/NPU CPU oS Switch Literature
softw.
Arista 7050 2 Broadcom AMD Turion II Arista EOS propr. [Jin+14]
Trident+ Neo N41H (Linux)
Dell 8132FP Broadcom unknown propr. propr. [Kuz+18]
Trident +
EdgeCore Broadcom Intel Atom PicOS PicOS [CB17a]
AS5712-54X¢ Trident 2 (C2538 (Linux)
HP 29204 HP Tri Core propr. propr. [Cos+17]
ProVision ARM1176
HP 5400 zI¢ HP NXP/Freescale propr. propr. [Kuz+18; Cur+11; She+09]
ProVision MPC8540
HP ProCurve HP NXP/Freescale propr. propr. [HYS; Wan+14]
6600 (J9451A)f ProVision MPC8540
IBM G8264 Broadcom unknown propr. un- [He+15]
Trident 2 known
Intel Fulcrum Intel FM6000 | unknown propr. un- [HYS; He+15]
Switch series known
NEC IP8800 unknown unknown propr. un- [She+09]
known
NEC PF52408 Broadcom PowerPC propr. propr. [Ngu+18; DK15; KMH14]
unknown (NetBSD)
NEC PF5820h Broadcom unknown propr. propr. [Ber+14]
Trident+
NoviFlow EzChip NP4 Intel Core NoviWare Novi- [Kuz+18]
NoviSwitch 11321 i7-620LE (Linux) Ware
Pica8 P-3290) Broadcom NXP/Freescale PicOS PicOS [BR13; Kuz+18; Ngu+18;
Firebolt 3 MPC8541E (Linux) Jar+11; Kat+16; DK15]
Pica8 P-3297% Broadcom NXP/FreeScale PicOS PicOS [Cos+17]
Triumph 2 P2020 (Linux)
Pica8 P-3780! Broadcom NXP/Freescale PicOS PicOS [Wan+14]
Firebolt 3 MPC8548E (Linux)
Quanta LB4G Broadcom unknown propr. un- [HYS]
56514 known

2 Arista. 7050 Series 10/40G Data Center Switches Datasheet. Apr. 2017.

b Dell. Dell PowerConnect 8100 Series Datasheet. S$806_Dell_PowerConnect_8100_Se- ries_2012-12-31. Dec. 2012.
¢ Edge-coreE. AS5712-54X 10GbE Data Center Switch Datasheet. Data sheet EC-DS-0118-07.

4 HP. HP 2920 Switch Series Datasheet. 4AA4-5213ENN. Feb. 2015.

¢ HP. HP ProCurve Switch 5400zl Series Datasheet. 4AA2-6511ENW. Apr. 2010.

f HP. HP ProCurve 6600 Switch Series Datasheet. 4AA2-3898ENW. May 2009.

8 NEC. NEC ProgrammableFlow UNIVERGE PF5820 Datasheet.

"' NEC. NEC ProgrammableFlow UNIVERGE PF5240 Datasheet.

! NoviFlow. NoviSwitch 1132 High Performance OpenFlow Switch Datasheet. DS2017- NS1132-400-03. 2013.
J Pica8. Pica8 P-3290 Datasheet.

X Pica8. Pica8 P-3297 Datasheet.

! Pica8. Pica8 P-3780 Datasheet.

Before describing the devices and their differences, we give a brief overview of the rele-
vant architectural components. The data plane elements consist of, an often proprietary,

3.1 SOFTWARE-DEFINED NETWORKING DATA PLANE CHARACTERISTICS

packet-processing ASIC that is connected to a standard management system, often based
on the widely used x86 architecture. The interconnection between CPU and ASIC often
relies on PCI Express (PCle). On the management system an OS, e.g., the Linux OS,
provides an abstraction layer for the OpenFlow agent to operate on. The interface to the
ASIC is provided by a driver that runs on the Linux OS but is often proprietary, closed
source, with no publicly available documentation. The management system itself has a
dedicated network interface that is connected to a management network. This network is
used to connect to the OpenFlow controller. Communication from and to the OpenFlow
controller is processed by the Linux OS first, then handed to the OpenFlow agent. The
agent translates the OpenFlow commands to API calls of the ASIC driver. In turn, the
driver translates the API calls to messages that are sent over the PCle bus to the ASIC.
There, a processing unit handles the packets and initiates the requested changes in the
ASIC. However, it becomes clear that the performance of the management system and
the specific implementation of the OpenFlow agent are crucial factors when assessing
the performance of control paths on data plane elements.

Interestingly, none of the devices investigated in literature can be classified as designed
for ISP core networks. To the best knowledge of the authors, the availability of OpenFlow
in high-end, high-throughput devices is limited. Furthermore, information on these
devices is not always available to the public. We assume this is because of their limited
market being large ISPs, to which information are provided directly, instead of being
released to the public.

The first observation is that the devices from Pica8 and HP, followed by NEC are
most often used in academia, as indicated by the number of papers that investigated
this switch in the , Literature” column. The only device that uses an NPU for packet
processing instead of an ASIC like the rest is the NoviFlow NoviSwitch 1132. The results
on the flow entry modification performance of such a device by Kuzniar et al. [Kuz+18]
is an order of magnitude better than the other, ASIC based devices.

Many of the devices that have been used in academia have been discontinued by their
vendors such as the Fulcrum Monaco, the NEC IP8800, the Arista 7050, and Quanta LB4G
devices. In addition to that, we do not know the management system’s specifications,
which makes it difficult to assess the significance of the results.

Of the remaining devices, the ASICs used by the devices are mostly built by Broadcom,
except for the devices from HP. The HP devices listed in the table all rely on the HP
ProVision ASIC. Unfortunately, the depth of OpenFlow support by this ASIC is lacking. In
contrast to the Broadcom-based devices not even all the basic match fields are supported®.
Hence, it cannot be considered state-of-the-art OpenFlow implementation. Furthermore,
the performance of the management system CPU is severely restricted. This means that
the while the research conducted on the OpenFlow implementation of this line of HP
devices gives in impression of the spectrum of available devices, the results cannot be
considered as representative, especially when it comes to its control path performance.

1 HP. HP Switch Software OpenFlow v1.3 Administrator Guide K/KA/KB/WB 15.18. 5998-8148b. Apr. 2016.

29

30

RELATED WORK

In general, we find a high proportion of the devices rely on Broadcom ASICs and run
the Linux operating systems. The fact that there are still differences in the reported
performance characteristics of the SDN primitives that involve the same ASICs support
the finding that the SDN agent software has a significant influence on the control path
performance.

We conclude our discussion of data plane elements by stating our main findings:

* Control path performance results depend on the management system and the
packet processing ASIC.

* Many results available in academia cannot be considered up to date anymore.

* The packet processing hardware architecture has a significant influence on the
control path performance.

¢ The performance results in the literature show a significant heterogeneity.

3.2 CONTROL PLANE APPLICATION EFFICIENCY AND BOTTLENECK MITIGATION

Two example control plane application are discussed in this thesis and are adapted to
handle control path performance bottlenecks. The literature on reacting to control path
bottlenecks has been discussed in the preceding section. In this section, we present the
literature on the two applications themselves. The existing research on network function
chaining is presented in Section 3.2.1 followed by the research on SDM in Section 3.2.2.

3.2.1 Network Function Chaining

In network function chaining, also termed network function chaining in literature,
network traffic is arbitrarily moved through a chain of VNFs operating on x86 servers in
a data center. The network interconnect between the servers are hardware switches, the
VNFs are interconnected to the hardware switch through a software switch running on
the same server.

StEERING, proposed by Zhang et al. [Zha+13] was one of the first approaches to
optimize network function chaining specifically for OpenFlow. SIMPLE, introduced by
[Qaz+13], uses a different approach by creating tunnels between the server nodes where
the VNFs are located. Both approaches are designed to work with VNFs that do not have
to be specifically adapted to be included in a function chain. Both approaches introduce
valuable optimizations for their specific use case. Furthermore, both reveal a similar
flow entry update bottlenecks, which is investigated in our contribution. However, the
approaches are designed for a specific use case and, more importantly, they do not
investigate the issue of control path bottlenecks in case of spikes in entry addition events.
Network Service Header, specified by Quinn et al. at the Internet Engineering Task Force

3.2 CONTROL PLANE APPLICATION EFFICIENCY AND BOTTLENECK MITIGATION

(IETF) [RFC8300] takes a different approach that requires the VNFs to be adapted for
this specific protocol and therefore has slightly different flow update characteristics.
While not a function chaining approach, CacheFlow, proposed by Katta et al. [Kat+16]
introduces the concept of load-sharing of flow entry updates. In CacheFlow, the flow
update load is shifted from a hardware switch to a co-located software switch to mitigate
a flow update bottleneck and the limited flow table space. The hardware switch is used
for a few flows that require high throughput, while the software switch is used for
many low throughput flows. In contrast to that, we propose to mitigate a flow update
bottleneck on a software switch by sharing its load with an upstream hardware switch.

3.2.2 Software-Defined Multicast

Multicast is a network service that could be useful for many applications on the Internet—if
it was globally available. IP multicast [DC90] was not able to achieve this [Dio+00],
which is why SDM was conceived by Riickert and Blendin et al. [RBH15] specifically to
be used in ISP networks. SDM uses multicast forwarding where possible to increase the
transmission efficiency and unicast forwarding where required to reach all parts of the
network. The concept itself, as well as its integration into other network services and
the global Internet architecture, is exhaustively discussed in the dissertation of Riickert
[Riic16] and related papers [RBH13; Riic+14; Riic+15; Riic+16].

We focus on the state efficiency of multicasting, which has not been investigated by
Riickert in his work. Therefore, the following overview of the related work also focusses
on the network state efficiency.

In traditional IP multicast, each router along the path of a multicast packet must have
a corresponding multicast entry in its forwarding table. Traditional routers often have
a specific part of their hardware forwarding table reserved for multicast forwarding.
This approach, its requirement for an entry on each router in the path as well as the
strict limitation for forwarding table entries, limits the number of multicast groups in a
network domain. This bottleneck is exacerbated by the fact that Internet content typically
follows a Zipf distribution [AHO02], which has been confirmed for streaming services
[SMZ04]. A set of Zipf distributed multicast groups has very few very large groups with
many members and a very large number of small groups. Specifically, this large number
of small groups limits the usefulness of IP multicast.

Boudani et al. [BC02], as well as Apostolopoulos and Ciurea [ACO05], propose a
mitigation approach for this by merging overlapping parts of multiple multicast trees.
Thereby, when many multicast trees share the same set of recipients the amount of
multicast forwarding entries can be reduced significantly. However, given the Zipf-
distributed characteristics of multicast groups, the number of overlapping trees is not
expected to be large since most trees have few members only.

Leaky aggregation relies on the same observation of overlapping multicast trees but
forgoes the correctness requirement. If two multicast trees overlap mostly, but not exactly,

31

32

RELATED WORK

they are still merged. This approach has the advantage that the potential for merging
trees increases but has the drawback that some recipients will receive unwanted multicast
traffic. Thereby, the transmission efficiency is reduced. This concept is investigated in
detail by Radoslavov et al. [REG99] and provides the motivation for our ASDM approach.

Stoica et al. [SNZ00] propose REUNITE, in which multicast is implemented by using
unicast addresses to create multicast behavior through recursive unicast trees. Unicast
trees are located on a router and identified by the IP address of the router and the
destination port number. A unicast tree is the combination of this identified and a
list of outgoing packet duplicates and their next unicast tree identifier. Using this
recursive scheme, the packets are sent to a unicast tree, where they are duplicated, and
the destination IPs and port of the respective next unicast tree is written into each packet.
REUNITE saves forwarding table entries because unicast tree state is only kept at routers
that perform packet duplication. Routers that are not involved are skipped using unicast
addressing between the duplication nodes that host unicast trees. However, REUNITE
does not use the group size to select the tree structure, which still leads to a higher
forwarding state consumption that necessary with many small multicast groups. Still,
the approach is promising and is used in our ASDM design.

Xcast, proposed by Boivie et al. [RFC5058] uses a different approach to multicast
addressing. Instead of keeping the multicast state in the network, it is kept in each
packet header in the form of a list of destination IP addresses. Each node parses the
Xcast header, compares it to its unicast forwarding table and creates duplicates for the
packet if it finds different next hops for the IP addresses in the destination list. The Xcast
approach removes the need for keeping the multicast state in the network, one of the
primary reasons why multicast is not widely deployed today. However, this approach
has the drawback that the Xcast packet header introduces considerable transmission
overhead. This means that the approach is only suitable for small groups, since for
large groups with, e.g., 500 members the header space required to store the destination
addresses is with 2000 bytes already larger than the standard maximum packet size.

An improvement to Xcast was first proposed by Blendin [Ble13] is explicit multicast
with bit indexes. Instead of using global IP addresses in the packet header, each potential
destination in a network domain is assigned a numerical ID. Each packet includes
a one hot encoded bit string whose bits each signify a different destination address.
Thereby the large overhead of Xcast is reduced. The explicit multicast approach was
later independently introduced and further developed by Wijnends et al. in the IETF to
the Bit Indexed Explicit Replication (BIER) protocol [RFC8279]. Giorgetti et al. provided
the first BIER implementation using SDN, specifically OpenFlow [Gio+17]. However, to
the best knowledge of the author, the source code of the implementation is not publicly
available. Furthermore, there is no study on the network state memory efficiency of BIER.
None of the described approaches is prepared to handle forwarding state bottlenecks in
the data plane.

3.3 DISCUSSION AND RESEARCH GAPS

3.3 DISCUSSION AND RESEARCH GAPS

We compared the understanding of bottlenecks in the control path of the SDN date plane
to the results of our discovery process that will be presented in Chapter 4. Thereby the
gaps in the literature that are caused by using the ad-hoc methods to investigate potential
bottlenecks in data plane devices are shown. The work in academia on virtualizing data
path as well as logical aspects of flow entries are impressive. Furthermore, the work
on isolating applications on the controller platform appears to have solved virtually
all issues in this area. Unfortunately, the control path of the data plane has been left
out of most of these investigations. Specifically, bottlenecks in the throughput aspects
of the control path of data plane elements have been neglected. Failing to account
for this kind of performance issues can lead to uncontrolled behavior of control plane
applications. The importance of complete performance control is demonstrated by Basta
et al. [Bas+17] on the instance of overloaded SDN hypervisors. The authors demonstrate
that hypervisors can introduce additional latency and therefore impair the ability of
control plane application to interact with the data plane without the knowledge of the
SDN control plane.

The discussed bottleneck mitigation approaches advance the state-of-the-art signifi-
cantly. Still, the fundamental issues are not solved, which is how to discover, control,
signal and handle inevitable performance bottlenecks on the SDN controller. One part
of this field is the issue of control path prioritization between applications. Although it
is critical for ISP networks, is not addressed in the existing literature.

Furthermore, the handling of control path bottlenecks in applications has not been
investigated in depth yet. This is true for network function chaining applications as well
as for multicasting applications. We, therefore, conclude that an approach to tackling
control path bottlenecks from the perspective of the SDN controller is required, as well
as bottleneck mitigation approaches for control plane application.

33

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED
NETWORKING DATA PLANES

In this chapter, we focus on Research Questions 1.1 and 1.2 that are stated in Chapter 1.
Investigating the existing literature on performance characteristics of control plane
applications we identified a research gap in the control path performance management
in SDN environments. Specifically, the literature is lacking a systematic approach on
how to identify potential performance bottlenecks on the SDN control path and control
them through virtualization. To that end, we introduce a systematic approach to analyze
SDN data planes, identify potential control path performance bottlenecks, and introduce
adequate virtualizers on the SDN controller to prevent bottlenecks from becoming
uncontrolled interference between control plane applications.

We argue that overloaded hardware components, termed resources cause performance
bottlenecks. Potential bottleneck components are identified by investigating the SDN
data plane for hardware components that are affected by control plane application and in
turn, can affect the performance of other control plane application. For this analysis, we
introduce the notion of a resource topology to analyze dependencies between resources
and their interaction with SDN protocol primitives.

The context and goals for this approach are provided in Section 4.1. In Section 4.2 our
approach to discovering and virtualizing resources is presented. We discuss selected
contemporary data plane devices before creating a representative resource topology
for a state-of-the-art SDN data plane device in Section 4.3. We identify throughput
bottlenecks in the control path as a new class of bottlenecks for which the literature
has not presented a virtualization approach yet. Therefore, we present a virtualization
approach for the representative throughput bottleneck of packet match table updates
in Section 4.4. Finally, we discuss our approach, its advantages, and disadvantages in
Section 4.5.

The investigation in this chapter partially relies on input from two papers [BH14;
Ble+16a] and four supervised student theses by M. Hardtlein, S. Bleidner, F. Villa-Arenas,
and X. Zhang [Har17; Blel5; Vill8; Zhal8].

41 ASSUMPTIONS AND REQUIREMENTS

Networking in general, and SDN specifically, is a wide field with diverse architectures.
Our understanding and assumptions for ISPs and the services they offer are presented in
Section 4.1.1. The SDN architecture we work with and the requirements for our approach
are described in Section 4.1.2.

35

36

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

4.1.1 Internet Service Provider Networks and Network Services

Services | Residential
— Network -I IPTV

Access .
SDN | Subscriber Sggfmaeﬁ-
Over-the-top gg:ero Access Multicast
content providers T T
b O B e
G s o VolP Unicast | | Traffic
a Forwarding [l |Forwarding| _|Engineering

vy v

I_Core Fabric ||

SDN [Virtualization |

Controller | SDN Protocol Interface

Rest of the
Internet

access
network Nodes~

i?; Mobile

Residential
access
network

Optical
Control Plane

Figure 4.1: A technological view on ISP networks as used in this thesis.

A technical overview of ISP networks is given in Figure 4.1. The core network is made
up to two parts: an optical transport network that provides optical network links and an
IP network using these links for interconnection. This is important, because in contrast
to the core network, in edge and data center networks the network devices operate their
links directly, without the help of an additional optical control plane. This means that
the capabilities of a link are determined by its endpoints, which are SDN devices.

Optical transport networks, although they often could be called software-defined
for their use of remotely configurable equipment such as ROADMs, are unlikely to
adopt a standard SDN protocol. This is because their equipment is much closer to the
latest research. Therefore, the technology is often proprietary and not standardized,
which prevents the application of a standardized SDN protocol. Hence, this part of ISP
networks is therefore not included in our investigation.

The network edge is assumed to be organized as small data centers, e.g., as envisioned
by Peterson et al. in their Central Office Re-architected as a Data Center (CORD)
approach [Pet+16]. These CORD data centers are also expected to host the service edge,
which is the customer-facing part of the network.

4.1 ASSUMPTIONS AND REQUIREMENTS

The conceptual overview of the relevant areas of ISP networks is given in Figure 4.2.

We investigate the core and edge parts of the network, as well as data center networks. In
these areas, network services are implemented and provided to the customers. Therefore,
these are the areas where SDN is expected to provide the highest efficiency improvements.
Access networks often use specialized network technology. This is because they have a
different technological focus that the other parts of the network: providing connectivity
at the lowest possible cost. However, the costs in this area of the network are dominated
by traditional construction costs and government regulation. Network management and
traffic steering are restricted to forward network traffic from subscribers to the closest
edge data center. Therefore, it is not relevant for our focus on areas of ISP networks
where SDN is expected to improve the management and control efficiency.

The Internet
Direct &
IXPs/SDXs

R0

Data y), Y Business
Centers o%’ e Customers

~E-d_g_é Control plane load
high
Mobile Access Residential medium
Customers Customers very low

Figure 4.2: ISP network areas color coded by control plane load.

The network areas in Figure 4.2 are colored by their expected control plane load.
Access networks are expected to be static, with connecting and disconnecting links of
customers being the only events that cause control plane load. The elements of the core
network, both packet switching and the optical transport elements, are expected to be
modified in existing networks only in case of an element failure or for traffic engineering.
Both events are not expected very often, and intervals between events are assumed
to be in the magnitude of hours. Finally, the network edge is the area of the network
where control plane applications are active to implement network services. Fundamental
services like unicast connectivity are provided at the edge by translating IP destination to
paths through the core network fabric. Customers are authenticated, and their contracts
are enforced at the edge. We, therefore, expect considerable control plane load in this
network area. Reasons for that might be inter-autonomous system (AS) routing updates,
customer access events, or interactions of customers with network services. An example
for the latter is when a customer switches a channel in multicast-based IPTV, which

37

38

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

requires the network edge to update its multicast packet delivery configuration. In the
remainder of this work, we will generalize mobile, residential, and business customers
simply as customers. From a technical perspective, they represent networks that are
connected to the ISP through the access area.

We observed two main characteristics for network services that are implemented
by control plane applications and operated in ISP networks: control plane activity is
expected to be low on average with sudden spikes of activity and an inherent need for
prioritization of network services. The first observation is a natural outcome of the
design approach for network infrastructure, which is to design for peak load instead
of the average load. Peak load events for network services, e.g., can be the failure and
subsequent re-activation of a device at the network edge. An example is the failure of a
mobile network access node, which must re-activate thousands of customer connections
on other devices as quickly as possible. In contrast to that, the average load of a mobile
network access service is expected to consist of handovers for moving customers and
few customers that switch their mobile devices on and off [Jin+13]. The same is true for
the unicast routing service. This service is designed to handle the failure or connection
event of a Border Gateway Protocol (BGP) router that provides routes from and to
neighboring ASs. In such an event, a BGP router usually receives the whole Internet
routing table with about 732,000 unique IPv4 prefixes'. Depending on the significance
of the neighboring BGP router, such an event might result in up to the same amount of
routing entry modifications in the data plane.

The need for prioritization of network services is caused by two effects: first, dependen-
cies between services and second, commercial interests. Services such as the core network
forwarding, or unicast routing are essential for all other services provided by an ISP as
depicted in Figure 4.1. Therefore, these services should always take precedence over
other, less critical services. The latter argument is already an example for commercial
interests of the ISP. In cases where the control plane load is higher than the available
processing capacities, the network operator has to decide which network services should
continue to operate, and which should be impaired. In such cases, the ISP will let those
network services be impaired that generate the smallest economic loss. For example,
the core network is the foundation for many other services and should therefore never
be impaired. Add-on services that generate only a small part of the ISP’s revenue are
better candidates to be starved of resources. Therefore, prioritizing network services
and, subsequently, control plane applications are essential for efficient and reliable ISP
network operations. Furthermore, these situations are examples where low priority
applications need to be able to adapt to unexpected resource starvation on certain or all
data plane elements. Finally, control plane applications can fail or contain errors. The
controller must ensure that a failed or erroneous application cannot cause a failure of
the controller or degrade the performance of other control plane applications.

Geoff Huston. CIDR REPORT. Accessed: 2018-8-27. Aug. 2018. url: https://www.cidr-report.org/as2.
0/.

4.1 ASSUMPTIONS AND REQUIREMENTS

Another essential aspect of ISP and the closely related carrier networks is their opera-
tional complexity. Due to the importance of the network to the ISP companies, the general
approach to the deployment of new technology is conservative [Lev+14]. Furthermore,
to ensure the operating staff can maintain the system, the network management must
be understandable for humans. One negative example is Generalized Multi-Protocol
Label Switching (GMPLS) [RFC3945] which aimed at combining the widely used MPLS
for packet networks with optical transport network features. Unfortunately, GMPLS
ended up being an overly complex platform [Liu+12; Far10; DPM12] with no gradual
update path from existing technology. Therefore, although GMPLS was developed for a
long time and by many partners, it was not widely adopted by the carrier community
[DPM12]. Hence, we to prevent our design to be deemed too complex, we require them
to be as understandable and maintainable for their human operators as possible.

We summarize the information requirements for control plane application as follows:
To achieve resource efficiency for applications, the controller must collect information on
their resource consumption. To enable the controller to ensure reliable operations, in
addition knowing all performance-relevant information, it must ensure that operating
a control plane application does not have unexpected side effects. Furthermore, appli-
cations need to receive information on the performance of the control path to handle
bottlenecks in a controlled manner. Finally, the entire system should be designed to be
comprehensible by human operators to allow them to intervene in the case when the
automatic reliability measures are not sufficient.

4.1.2 Software-Defined Networking

OpenFlow is one SDN protocol for controlling data planes and the de facto standard
in industry and academia. OpenFlow is well-defined, used in the industry [Jai+13],
and has been thoroughly investigated in academia [Kre+15]. There are few alternative
protocols such as Forwarding and Control Element Separation (ForCES) [RFC5810],
OVSDB [RFC7047], and Netlink [REC3549]. However, to the best knowledge of the author,
no generally available hardware devices exist for ForCES. OVSDB is available in addition
to OpenFlow on hardware devices that use the Open vSwitch software as OpenFlow
agent. It seems to be used less than OpenFlow, and existing academic literature focusses
on OpenFlow instead. Netlink focusses on use cases where the controller and the ASIC
are located on the same devices, which is not the scope of this work. Therefore, we
study OpenFlow in this work as a representative for SDN protocols in general. We are
confident that the findings presented in this thesis apply future SDN protocols as well.

OpenFlow version 1.3 is used in many applications and is a significant release since
from there on, new features added in new releases are also available as extensions to
OpenFlow 1.3. Some devices and controllers support OpenFlow 1.4, and even fewer the
latest version 1.5. We assume OpenFlow 1.3 to be the baseline version and investigate
features added in later versions as needed. While it is possible to operate the OpenFlow

39

40

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

controller directly on data plane devices, we assume that the OpenFlow controller is
operated on a dedicated server.

OpenFlow was initially proposed to be operated in two different modes: reactive
and proactive. Reactive mode requires much interaction between the data plane and
the controller for every new flow in the data plane. Flow table entries are installed
on demand when a packet requiring them arrives. For this reason, it was found to be
problematic and impeding the data plane performance. In proactive mode, flow entries
are installed by the controller independently from the actual traffic on the data plane.
We are convinced that this approach should be chosen over the reactive mode whenever
possible. Therefore, we assume that the investigated SDN networks are operated in
proactive mode.

We focus on SDN data plane elements that use ASICs for packet processing in this
chapter. These are the most widely used data plane elements today, as discussed in
Section 3.1.4 and provide high performance. Some of these data plane devices use
a software switch on the device, termed the slow path, for caching flow entries or
conducting packet processing that is not available in the ASIC2. However, this approach
can severely impact the data path throughput of these devices [KMH14]. Therefore, in
the context of high-throughput ISP networks, this approach should not be used. We
assume in our investigation that packet forwarding happens on the data path in the
ASIC of the switch only.

OpenFlow controllers are understood to be logically centralized. Logically centralized
means that while they constitute a distributed system, their distributed nature is hidden
from the data plane elements as well as from the control plane applications [Ber+14].
We accept this approach and will discuss OpenFlow controllers and control planes as if
they were single instances, abstracting from their distributed nature. The mechanisms
investigated do not depend on distributed features of the data plane.

We assume the usage of OpenFlow for the controller-to-application interaction as well
as for the interaction between the controller and the data plane. We do this even though
recent research by Schwabe et al. [SAK16] suggests that it may not be suitable at least for
some of the corresponding tasks. The reason for this choice is that no widely deployed
standard exists for control plane application APIs, termed the northbound interface, so
OpenFlow is the only available choice.

We assume the virtualizer to be placed in the SDN controller. The effects of control
path bottlenecks can be mitigated if the SDN controller can control the performance
bottlenecks and their load and if this information is provided to the affected control plane
applications. Therefore, we require the SDN controller and the control plane applications
have enough knowledge to react to unexpected situations to prevent unpredictable
network behavior as a result. Once the SDN controller notices performance issues, it
should forward relevant information to the affected control plane application. From
this approach follows that a controller must exclusively control all data plane devices

2 Pica8. PicOS Open vSwitch Configuration Guide. Version 1. Jan. 2017.

4.2 A RESOURCE-ORIENTED DATA PLANE VIRTUALIZATION APPROACH

in a domain. Furthermore, because the controller requires full control over all data
plane devices, virtualization features should not be placed on data plane devices. Our
proposed view on the SDN architecture that is used as a basis for this work is depicted
in Figure 4.3.

Network

Services Service

t API Access t

Service

Control Plane

Control plane
application

Control plane
application

Fd AP| Access A

L4

Al

SDN
Controller

Virtualization

Application request
classification

lane element

- <

irtualized data i i Virtualized data i

_____,.,____

==7|= Individual resource

OpenFlow interface) ,
virtualizers

& OpenFlow Protocol- {

OpenFlow switches

Data path

Figure 4.3: Overview of the SDN architecture as proposed in this thesis.

4.2 A RESOURCE-ORIENTED DATA PLANE VIRTUALIZATION APPROACH

The development of a new approach to analyzing SDN data path elements is required,
because, to the best knowledge of the author, no systematic approach to virtualizing
hardware data plane elements has been proposed yet.

An overview of the design of the approach is given in Section 4.2.1. The term resource
and its use in the context of this work are defined and discussed in Section 4.2.2. Our
approach to analyzing data plane devices to discover all relevant resources is introduced
in Section 4.2.3. Finally, the design on how to integrate the discovered information into
the SDN control plane and how to use it to create virtualizers for resources is described
in Section 4.2 4.

41

42

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

4.2.1 Querview

The goal of this section is to give a high-level understanding of how our approach
provides an answer to Research Question 1.1 and 1.2. While doing so, we will briefly
introduce the relevant terms to improve readability. The detailed definitions of the terms
will be introduced in the subsequent sections.

Our approach is motivated by the work of Gregg [Gre13] who introduced the utilization,
saturation, errors (USE) method to investigate performance issues. Gregg suggests
systematically investigating performance issues on servers through a bottom-up approach.
Starting from an enumeration of all components in a system, the usage, saturation, an
error statistic of each component are investigated for notable events. These events are
correlated with the performance issues of the complete system. The USE approach is in
stark contrast to other widely used approaches in performance analysis, which are often
top-down, black-box, and ad-hoc methods. This approach resonates with the findings
of the literature research on server as well as network virtualization: similar pragmatic
approaches seem to be the state-of-the-art in academia and industry. In contrast to that,
we argue that the SDN data plane should not be treated as a black box. We investigate
the data plane as a glass box and investigate which features the SDN protocol must
support to enable efficient and controllable virtualization of the individual components
of data plane elements.

While the performance analysis as conducted by the USE method is related to the
virtualization approach d proposed in this chapter, their goals differ. The USE method
is used reactively after a performance related event occurred. Our approach is used
proactively to control contention-originated performance events before they occur.
Therefore, the USE approach is adapted to the needs of data plane device virtualization.

To answer Research Question 1.1 How to characterize the control path performance in SDN
data planes?, we use an analytical bottom-up approach. The investigation starts with the
actual hardware components on the control path of data plane elements that perform
the operations requested through the SDN protocol by the controller. We refer to these
hardware components as resources. For example, the memory interface of a flow table
in a packet processing ASIC is a resource that is consumed by applications through
OpenFlow messages that install flow entries.

We map these resources to the software components operating on them or interacting
with them to establish causality for the usage of the resources. The software components
are mapped to the OpenFlow protocol messages to establish a connection between the
consumption of a resource and the messages sent by the controller. All resources affected
by an OpenFlow protocol message are determined by using the controller as the starting
point and the destination resource as the target and iterating over the resources that
the message passes on its way. This path is termed the resource path. For example,
an OpenFlow message that installs a flow table entry is processed by the management

4.2 A RESOURCE-ORIENTED DATA PLANE VIRTUALIZATION APPROACH

SDN Control Plane

SDN
% protocol
message
R Management
<% System

. _ 2]

1
[1iod i

[0
— Processing
/

SDN agent ul ,
= Z
@Asc] /
Control
interface
B Port || oton Port &
& Port[7 Flow table unit - Port &
B Port Port &
L T

Figure 4.4: The processing of an SDN protocol message along the control path of a
data plane element.

system first, then forwarded to its actual destination resource, the hardware flow table
memory interface as depicted in Figure 4.4.

The controller uses the resource topology to determine the resources affected by
each OpenFlow message. The resource topology comprises all software components
and their connections to the resources. The resource topology is provided by the data
plane elements to the OpenFlow controller, for example through a mechanism like OF-
CONFIG [ONF14a]. The data plane elements provide frequent updates on the utilization
level of their resources. Thereby, the controller knows all potential resource bottlenecks
and their status. Furthermore, by using the resource graph, it can determine whether
a message will be affected by a specific resource being overloaded or not. Using this
information, the controller implements matching virtualizers for each of the resources
that are directly addressed by OpenFlow messages. Resources that are not directly
addressed are monitored, and their overload is prevented by controlling the load of all
SDN messages that consume them.

One positive side-effect of this approach is that it makes the resource consumption of
control plane applications measurable, which makes them in turn comparable for their
efficiency.

4.2.2 Data Plane Resources

In the specific context of performance analysis, we need an abstraction that picks only the
parts of the hardware that causes performance variability, and that is influenced by the
workload. Hardware units, when executing a program, are limited in their output. This
means that every program instruction performed on a hardware unit ,consumes” a part
of the potential output of the hardware unit. For example, control plane applications

43

44

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

can only influence the packet processing behavior when packet matching memory is
available on the corresponding data plane device. If one control plane application uses
all available memory slots, they are not available to other control plane applications
anymore. These applications will not be able to influence the traffic passing through this
specific device.

Control plane applications use these hardware units of the data plane’s control
path by communicating through an SDN protocol. The interaction of control plane
applications with the data plane is relayed through an SDN controller, which can either
grant exclusively or time-shared access to the hardware units on the data plane devices.
Therefore, when executing a control plane application, these hardware units are the
limiting factor for the performance of control plane applications. We investigate the
hardware units and their output from a consumption-oriented perspective and therefore
term them resources.

We are not the first to use the term ,resource”. The IETF uses this term in the context of
resource locators on the Internet, but does not give a precise definition for it: , A resource
can be many things.” [RFC1736]. The ONF uses the term in the OpenFlow Switch
Specification document [ONF15] as well as in architectural documents, e.g. [ONF14c].
However, as with the IETF, the term is not well defined: , Anything that can be used to
deliver a service.” [ONF14c]. The scientific literature proposed, to the best knowledge of
the author, no clear definition of a resource in the context of computing as well.

In the context of this resource-oriented view on networking hardware, we approach
resources as performance-oriented abstractions of the data plane hardware. This
abstraction, with the term abstraction used in the sense of emphasizing relevant features
of an object, aims to support the reasoning about the performance of the hardware.
Therefore, the only parts of the hardware that are relevant are those that perform
functions that are related to the control path of data plane devices. Performance is
understood as the result of the execution of fixed or programmable logic with the help
of resources, which are consumed in the process.

Definition 1: Resource

A resource is a functional part of a hardware device that is of limited abundance,
consumed through or by the execution of a program on the hardware device, and
influences the output of the device.

For example, a packet matching memory table that classifies packets can perform a
given number of lookups per time interval. When the maximum number of lookups in an
interval are conducted, additional lookups cannot be performed. Therefore, the packet
matching memory table is classified as a resource, because it is limited, it is consumed
by the workload, i.e., by processing packets, and it influences the processing of other
packets. In contrast, the thermal throttling of a processor due to insufficient cooling is
not classified as a resource. While thermal throttling influences that performance, the

4.2 A RESOURCE-ORIENTED DATA PLANE VIRTUALIZATION APPROACH

throttling is not caused by its consumption through a program, and therefore is not a
resource.

Table 4.1: Resource characteristics.

Characteristic

Example values

Description

Resource name

CPU

Function Executing of Description of the purpose of the resource.

instructions

Metric CPU time, The perspective how the resource is abstracted.

instructions executed

Type non-renewable, Non-renewable resources are explicitly allo-

renewable cated and released; renewable resources re-
plenish over time, e.g. I/O operations.

Unit ms, entries, kb Unit of measure.

Abundance type static, dynamic The abundance of resource can be static, i.e. it
has a fixed value, or variable i.e. the abundance
of the resource varies over time.

Abundance 500ms, 100 entries The abundance of the resource in units.

Allocation granularity

no, lms, 1 entry

The minimum abundance measured in units
that can be allocated if this is possible.

Location - Location in the resource topology: specifies the

dependencies of the resource.

Saturation no, measured in The resource provides a work queueing mech-
units, measured in anism of which the queue length can be mea-
percent of sured.
abundance

Errors no, yes, error types The resource provides a method to collect infor-

mation related to errors that occur during the
operations.

Resources can have different characteristics, which are listed in Table 4.1. Packet match
memory is assigned to a single control plane application and cannot be used otherwise
until it is released—which is why this type of resource is called non-renewable. 1/O
operations, on the other hand, are renewable resources. A packet matching memory
controller has a limited amount of operations it can conduct per unit of time. This means
that after one application has completed its operation, the next can take over, without
the first one having to release the resource. Furthermore, the granularity of resources
might be different. Packet match memory might only be assigned in chunks of a certain
size, e.g., 100kb, while the statistical utilization of matching memory updates might be a
fraction, depending on the measurement detail.

45

46

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

42.3 Resource Discovery and Analysis

So far, no systematic approach exists to identify and enumerate all performance-relevant
resources in heterogeneous SDN data planes. To that end, we present an approach to
discover all resources and then determine if they are performance-relevant. The first
step is to create a resource list from a functional block diagram of the hardware of a data
plane device. Data plane devices usually consist of a management system CPUs and a
packet processing ASICs. The control management system provides access to manage
and control the device. For this purpose, it provides at least one NICs to connect to the
control network that provides connectivity to the SDN controller. The purpose of the
ASICs is to process packets passing on the data path. They are controlled and configured
by the management system. In SDN the control CPUs are controlled remotely through
an SDN protocol.

Therefore, after identifying all resources on the hardware level, their usage must
be mapped to the corresponding SDN primitives. However, the SDN, or in this case
OpenFlow software itself operates on the management system and accesses the ASIC
through the management system. Therefore, we identified three layers that need to be
mapped:

* OpenFlow messages

* Management system software: OpenFlow agent, operating system, and a driver
for the ASIC

* Hardware: ASIC and management system

The fact that each of the layers uses different models to access the hardware resources
makes the process challenging. A depiction of these three layers in the context of all
modeling layers in SDN is shown in Figure 4.5.

The result of this process is a directed acyclic graph that reflects which OpenFlow
operations consume which resources. We call this tree the resource topology.

Definition 2: Resource topology
The graph of resources that specifies how programs/messages/instructions reach
the resource they are designed to affect, starting from its source.

The resource topology is the basis for the resource path, which is used to determine the
resources affected by a given OpenFlow message. An OpenFlow protocol message that
instructs the data plane element to modify a packet match memory entry must pass the
network link between the control and the data plane before arriving at the management
system of the data plane device. There, it is processed and forwarded to the hardware
flow table, where it takes its effect.

4.2 A RESOURCE-ORIENTED DATA PLANE VIRTUALIZATION APPROACH

Control Applications ==
SDN Controller -
Data Plane Pipeline Model P

&

Data Plane Controller/Chip Driver 0
=

&

ASIC Hardware Interface ﬁ

N

ASIC Hardware ﬁ

Figure 4.5: The modeling hierarchy of OpenFlow-based SDN.

Definition 3: Resource path
A resource path is the path through a resource topology a program/message/in-
struction moves along from the SDN controller to affect its destination resource.

The resource path is an essential concept for determining the approach to virtualize a
resource and is discussed in Section 4.2.4.

Some characteristics of some resources are available to the OpenFlow controller
through the OpenFlow protocol. In this case, we will still include the resource in our
graph, but will not investigate them in detail.

Not all resources are relevant. From the identified resources, the ones that are not
directly or indirectly affected by the OpenFlow protocol can be removed from the
resource topology. For every OpenFlow message, a list of the affected resources must be
investigated for bottleneck redundancy. Only resources that are potential bottlenecks
need to be investigated further. Potential interactions between the different resources on
the respective path must be described.

Along its path from the controller to the destination component in the data plane

element hardware, the processing of the OpenFlow message will consume resources.

Each of these resources could be a bottleneck. The goal of the resource topology is to

enable the controller to determine which of the resource is the most likely bottleneck.

The bottleneck could the destination resource, but also any other resource on the path.

47

48

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

4.2.4 Resource Virtualization

The goal of this process is to control interference on the control path by virtualizing
all relevant control path resources. As proposed by the ONF [ONF14c], and having
identified all relevant data path resources, we apply resource virtualization to all of them.
Before discussing the details on how we achieve that, the term virtualization is defined
in this context. The ONF defines the term virtualization: ,The abstraction of particular
underlying resources, whose selection criterion is the allocation of those resources to a
particular client, application, or service.” [ONF14c] This definition is too generic to be
used in our discussion. Therefore, we define resource virtualization as follows:

Definition 4: Resource virtualization

Virtualization provides controlled, shared access to a single resource from multiple
consumers of the resource that have no knowledge of each other and do not
necessarily behave cooperatively.

To virtualize control path resources in the data plane, the controller needs to know
the current status of the resource and has to be able to control its future workload. We
term the knowledge of a resource’s status resource visibility and the ability to control its
workload resource controllability.

Definition 5: Resource controllability
A resource is called controllable by the SDN controller if its operational status can
be influenced either by directly controlling the resource or its workload.

We understand resource visibility by the controller in terms of being aware of all resources
described in the form presented in Table 4.1 and receiving timely status information.

Definition 6: Resource visibility
A resource is called visible by the SDN controller if its operational status information
such as its utilization, saturation, and errors are available.

Following Gregg’s work on performance bottlenecks [Grel3], we use its terminology to
describe the information needed to capture the status of a resource:

Definition 7: Resource utilization
The utilization of a resource is the ratio of its used abundance to its available
abundance [Grel3].

4.2 A RESOURCE-ORIENTED DATA PLANE VIRTUALIZATION APPROACH

Definition 8: Resource saturation

A resource is called saturated if its workload is higher than its processing capacity
[Grel3]. Saturation can either be a binary state when new work is immediately
dropped by the resource or a level when new work is queued for later processing.

Definition 9: Resource errors
Resource errors are the number of error events that happened during the resource’s
operation [Grel3].

The relation of these terms is depicted in Figure 4.6. Resource visibility and resource
controllability on all relevant resources in the data plane must be provided to the
OpenFlow controller in order to be able to provide virtualization to control plane
applications. To that end, the resource topology including the resource characteristics
on all data path resources is provided to the controller by the data plane elements. We
propose adding this functionality to the OF-CONFIG protocol [ONF14a]. However, we
consider its implementation future work, since the specific transmission method is not
essential for our approach. In addition to the one-time transmission of the resource
topology, a facility is required that regularly provides information on each resource’s
utilization, saturation, and errors to the controller. When the saturation of a resource
crosses a configurable threshold, the data plane element should increase the reporting
rate for this resource to support the virtualization process on the controller. We suggest
implementing this as an extension to the OpenFlow protocol, but again do not consider
the specific implementation of this feature crucial to this discussion.

To enable the controller to provide fine-grained virtualization, we propose to implement
the software on data plane elements as isolated modules that are responsible for different
primitives of the SDN protocol. Each of these modules is responsible for an area of
SDN primitives, such as statistics collection, flow table management, or group table
management. Furthermore, like the approach proposed by Skoldstrom [SY12], each
module is isolated, e.g., through standard OS isolation facilities to use a restricted set of

v
Workload

Output

Resource

Figure 4.6: Visibility and controllability of resources.

49

50

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

resources, e.g., CPU cores or memory. Skoldstrom proposes to create isolated modules
per network tenant or application, which has scalability issues. However, by creating
isolated modules per SDN primitive, the number of isolated modules is fixed, and the
SDN controller can provide the virtualization as required. This process enables the
grouping of software and resources in the resource topology.

The approach to providing fine-grained resource isolation for the software running on
the management system is inspired by Ousterhout et al., who propose the concept of
,Performance clarity as a first-class design principle” [Ous+17]. Not only increases this
separation the level of control of the controller over the individual data plane devices. It
also enables the collection of resource usage statistics per OpenFlow primitive. Statistical
data helps in cases when the abundance type is dynamic, or the abundance is unknown.
The same is true when the units of different resources cannot be translated into each
other, e.g. when an OpenFlow message is forwarded through the management system
CPU over the PCle bus to the ASIC. The number of processed OpenFlow messages
could be the unit of measure for the CPU. For the PCle bus, the unit of measure could
be bytes/s. Since we might not know the size of the corresponding message is on the
PCle bus, we must infer this value. One of the methods proposed in the literature, e.g.,
Tango [Laz+14] or OFLOPS [Rot+12] should be used to infer the missing information,
detailed resource consumption information helps in this process.

With all resources being visible and controllable, the question arises how to share access
to the resources between potentially uncooperative or faulty control plane applications
while ensuring the controllability requirements are met.

In addition to providing controllability, we need the resource virtualization approach
for each resource to match the requirements of the controller and the control plane
applications. How and if these requirements can be met depends on the resource’s
characteristics. For example, it is impossible to design a virtualizer for resources with
unpredictable abundance if the control plane application requires predictable behavior
of the virtual resource. Furthermore, the characteristics of the virtualized resource can be
adapted as needed. Some control plane applications might require OpenFlow flow table
entries to be statically allocated, while others might be able to work with the fact that
their flow table entries might be evicted. In the context of ISP networks, prioritization
between applications is an important feature to ensure the reliable operation of the
network.

Non-renewable resources can be virtualized on the controller, as shown in the literature
on, e.g., the case of the number of flow table entries [Jin+15]. On the contrary, renewable
resources require a queueing and scheduling mechanism to enable high throughput
and virtualization at the same time. Ideally, the controller should operate the scheduler,
while the queueing takes place on the data plane element. We will show how this can be
achieved using existing OpenFlow primitives in Section 4.4.

The last issue to be discussed is that each OpenFlow message will consume multiple
resources on the data path. A flow table update will consume resources of the man-

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT

agement system as well as on the ASIC. In this case, the controller uses the available
resource characteristics as well as the resource status information received from the data
plane element to determine which resource is going to be the bottleneck. It will then
focus on this resource and ignore the other affected resources. If multiple resources are a
potential bottleneck, a different strategy is required. In this case, the data plane element
should support prioritization tags for OpenFlow messages. Only one of the bottleneck
resources can be directly addressed by the queueing mechanism that is operated on
the controller. It is not possible to do so for the other bottlenecks efficiently. This is
because other controller-scheduled bottlenecks would require the controller to wait for
multiple feedback loops on the resource state in the data plane. This would slow down
the processing on the data plane element because, for every processing step, it must
wait for a command from the controller. Therefore, a priority tag should be used for
the other bottleneck resources by the data plane element. A priority queueing system
should implement the prioritization for every renewable resource on data plane elements.
Thereby, the controller schedules the most likely bottleneck and leaves the others to
the scheduling on the data plane element. The scheduling on the data plane element
introduces the risk of accidental overloading a resource because of, e.g., unexpected
processing times on the management system, but the likelihood of this happening is
expected to be much smaller than the main bottleneck resource, this risk is considered
small.

Finally, the resource virtualization approach should support the collection of statistics
on the resource usage of control plane applications. To achieve resource efficiency, the
resource consumption of control plane applications has to be measurable.

43 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT

In this section, the resource identification approach described in Section 4.2 is applied to
a representative OpenFlow switch architecture. The Edge-Core AS5712-54X is selected
and investigated. It is a state-of-the-art bare-metal 10GbE switch based on the Broadcom
Trident II switching ASIC. It is operated by the PicOS operating system version 2.8 that
uses Open vSwitch version 2.3 [Pfa+15] as its OpenFlow agent.

An overview of OpenFlow switches used in literature as well as why the Edge-Core
AS5712-54X was chosen for this investigation is discussed in Section 4.3.1. The soft-
and hardware of the management system of the Edge-Core AS5712-54X are analyzed in
Section 4.3.2. A resource model for the Trident Il is derived in Section 4.3.3. The resulting,
complete resource list for the Edge-Core AS5712-54X including the corresponding
resource topology is presented in Section 4.3.4.

51

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

Table 4.2: Overview of investigated OpenFlow switches in academia.

Model ASIC/NPU CPU 0S Cita- Comment
tions

Arista 7050 Broadcom AMD Turion IT Neo | Arista EOS 1 End of life
Trident+ N41H (Linux)

EdgeCore Broadcom Intel Atom C2538 PicOS 1 -

AS5712-54X Trident 2 (Linux)

NEC PF5240 Broadcom PowerPC propr. 3 Closed OS
unknown (NetBSD)

NoviFlow EzChip NP4 Intel Core i7-620LE | NoviWare 1 Not sold

NoviSwitch 1132 (Linux) anymore

Pica8 P-3290 Broadcom NXP/Freescale PicOS 6 Not sold
Firebolt 3 MPC8541E (Linux) anymore

4.3.1 Overview of Available OpenFlow Data Plane Elements

We surveyed available OpenFlow switches in the industry and their usage in academia
in Section 3.1.4. We discuss selected devices as listed in Table 4.2 from this survey for
their representativeness for state-of-the-art SDN data plane elements and reason which
we selected Edge-Core AS5712-54X switch for this investigation. None of the identified
SDN devices is designed to be used in ISP core networks. However, we expect that
adequate devices for ISP core networks will be available and that our methodology can
be applied to these devices as well.

The NoviFlow NoviSwitch 1132 is an interesting device. However, it is not sold
anymore and based on an NPU, and thereby not representative for the whole class of
switches, which are mostly driven by ASICs. Interestingly, the remaining devices in our
selection, as well as most of the devices investigated in academia rely on Broadcom ASICs.
Devices from HP are popular in literature but are not considered here, because both their
hardware and software are not state-of-the-art. The most often used devices in academia
are sold by Pica8, represented by the P-3290 in the table, followed by NEC represented
by the PF5240. The devices from NEC use a closed source, proprietary OS that makes
it difficult to investigate the software architecture in detail. The PicOS OS used by the
P-3290 is interesting, because it is Linux-based, and open to the operator, except for the
proprietary ASIC driver. However, the hardware of the P-3290 is outdated, and the
device is not sold anymore. Arista uses Linux as a basis for its EOS operating system,
but unfortunately, the 7050 series that was used in academia before, was announced by
Arista to be end-of-life, which makes the device obsolete.

The remaining device that was investigated in academia before is the Edge-Core
AS5712-54X, which is based on a recent Broadcom Trident II ASIC design and runs
the Linux-based PicOS. The device is still sold, its management system relies on an
up-to-date Intel CPU, and PicOS is available for it and is actively supported. While the

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT

driver for Broadcom devices that comes with PicOS is proprietary and not available
as open source, the operating system is. The only alternative OpenFlow agent is the
OpenFlow - Data Plane Abstraction (OF-DPA), which also provides a proprietary, closed
source driver for a range of popular Broadcom ASIC series and documentation for this
model. It is available as a binary for open-source operating systems. However, while the
OF-DPA software relies on the OpenFlow protocol, it does not adhere to the OpenFlow
pipeline model. Therefore, OF-DPA cannot be easily used by existing OpenFlow software,
and it cannot be considered state-of-the-art. The Edge-Core AS5712-54X with PicOS
includes a state-of-the-art packet processing ASIC, management system, and OpenFlow
agent software. Furthermore, its OS is Linux-based and completely open to the operator.
Therefore, we use this device for our in-depth investigation and the representative
creation of a resource topology.

4.3.2 Investigating the Soft- and Hardware of the Edge-Core AS5712-54X Management System

The Edge-Core AS5712-54X is a state-of-the-art bare-metal 10GbE switch based on the
Trident II switching ASIC, specifically the Broadcom BCM56854. Bare-metal switches
are defined by the fact that they are sold without a pre-installed operating system. In
this case, the switch operated by the PicOS operating system version 2.8 that uses Open
vSwitch version 2.3 [Pfa+15] as its OpenFlow agent frontend and a proprietary backend
to interface with the ASIC. PicOS supports different OpenFlow modes, of which the
default mode is investigated. It supports the standard OpenFlow model with a single
flow table.

In addition to the Edge-Core AS5712-54X, we will complement the investigation
with four other switches to compare, contrast, and assess the Edge-Core AS5712-54X’s
architecture. The devices used for the investigation are listed in Table 4.3 in descending
order of relevance to this investigation. The Arista 7050 is, like the Edge-Core AS5712-54X,
a 10GbE switch. However, it is an older model and is more restricted when it comes to
installing third party software on the management system. Still, it is useful to compare it
to the Edge-Core AS5712-54X. The Delta Networks device is based on the Barefoot Tofino
ASIC, anew generation of programmable data devices that can be programmed using the
P4 programming language. Unfortunately, it is currently only available as a developer
switch that comes with a software development environment and a corresponding
non-disclosure agreement (NDA) that prohibits the disclosure of detailed results. Still, it
represents the latest development in data plane devices, which is helpful to understand
the direction of development in the industry. Its management system design with
an eight-core server processor, e.g., shows that the performance of the management
system-CPU can be increased in future device designs, if necessary. The NEC PF5240
represents the first generation of switches with traditional switching ASICs but with
software that is purpose-built for SDN. Finally, the HP 3500 represents one of the first
generations of switches that were retrospectively upgraded with SDN functionality.

53

54 VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

Table 4.3: Overview over OpenFlow switches available for this thesis.

ASIC- Switch
Model ASIC CPU CPU Cores | RAM | OS e
softw.
Interface
EdgeCore Broadcom PCle 2.0, Intel Atom 4 8GB PicOS PicOS
AS5712-54X Trident2 | 2lanes C2538 (Linux)
Bare-
Delta Barefoot NDA Intel XeonD | § 32GB Ubuntu foot
Networks Tofino 1548 (Linux) SDE
ET-X064FFRB
Arista 7050 Broadcom PCle 2.0, AMD Turion | 2 4GB Arista Arista
Trident+ | 213M€S | 1] Neo N41H EOS EOS
(Linux)
NEC PF5240 Broadcom | yunknown | PowerPC un- 1GB propr. propr.
unknown known (NetBSD)
HP 3500 y1 HP PCI/ PCI- | Nxp/ 1 256MB | propr. propr.
ProVision X Freescale
MPC8540

However, it uses an outdated management system with a very slow CPU and uses the by
today’s standard slow Peripheral Component Interconnect (PCI) bus for connecting the
ASIC. Results gathered on similar HP devices in literature must be carefully analyzed
to separate the impact of the outdated management system from findings that can be
generalized to other SDN devices.

This analysis of the Edge-Core AS5712-54X starts with investigating the software that
interacts with the OpenFlow controller and is running on the management system of the
switch followed by an investigation of the hardware resources of the management system
itself. A detailed view of the architecture of the Edge-Core AS5712-54X’s management
system running PicOS is given in Figure 4.7. In the depiction the separation between
the Linux OS, the OpenFlow agent component of Open vSwitch, ovs-vswitchd, and
the interface to the ASIC are visible. In addition to these software components, the
hardware components the software operates on are depicted. PicOS relies on Linux and
Open vSwitch to accept incoming OpenFlow messages on the management NIC that is
part of the management system. The messages arrive in the Linux network stack and
are forwarded to ovs-vswitchd. There, the message is translated from OpenFlow to an
internal format, and the result of the message is stored in a data store. Then, the change
in the data store is identified by another process that translates it to a PCle message that
is forwarded to the ASIC.

Most of this process, except for the last step, is performed by the management system
of the switch. The software components involved in the process are the Linux kernel, the
ovs-vswitchd component of Open vSwitch, and the ASIC interface. The Linux kernel

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT 55

Management
System Broadcom .
y Trident Il ASIC OVSDB ovs-vswitchd
driver
Software Linux kernel
Hardware Intel Atom
C2538 SOC Core | Core | | Core | Core
1 2 8 4
L2 Cache L2 Cache
RAM FAM el T35 to control plane
Silvermont System Agent e W —p
RAM NI
RAM
PCle 2.0|x2 Link
B Broadcom Trident Il ASIC

Figure 4.7: The soft- and hardware architecture of the Edge-Core AS5712-54X running PicOS 2.8
(based on Intel Atom and PicOS documentation® and [Pfa+15]).

is responsible for supporting the other software components and is involved when
the other components interact with the management NIC and the ASIC as part of the
processing of incoming and outgoing OpenFlow messages. Ovs-vswitchd accepts and
parses OpenFlow messages and translates them into messages that are sent to the data
path ASIC. The Open vSwitch software package is has been adapted by Pica8 to interact
with the Trident II ASIC as well as with a software switch running on the same CPU.
However, these modifications are not available as open source software, which is why
in-depth documentation on their functionality and architecture is not available.

What is possible though, is to infer the possible approaches from the functionality of
the software and its publicly available documentation®. To understand the interaction
between the Open vSwitch software and the Trident II ASIC the corresponding commands
available in the software are investigated. It shows that by default, the Pica8 version of
Open vSwitch will accept any OpenFlow message the Open vSwitch accepts, independent
of the fact whether the Trident II ASIC supports the packet handling features contained
in the message. It the packet handling is not supported by the ASIC the flow entry will be
installed in the Open vSwitch software data path operating on the management system.
Corresponding packets then seem to be forwarded from ASIC to the management
system where they are passed through the software data path, and the result is sent

3 Pica8. PicOS Open vSwitch Configuration Guide. Version 1. Jan. 2017.
David Mulnix. Intel Atom Processor C2000 Product Family Technical Overview.
Accessed: 2018-9-12. Intel, Sept. 2013. wurl: https://software.intel.com/en-us/articles/
intel-atom-c2000-processor-family-technical-overview.

4 Pica8. PicOS Open vSwitch Command Reference, PicOS 2.8. Version 1. Jan. 2017.

56

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

back to the ASIC for forwarding the packet to the output port if needed. The software
data path is either the user space data path provided by Open vSwitch or proprietary
software. This functionality is disabled in our configuration because it is not useful in a
high-performance ISP network, as discussed in Section 4.1.2. The fact that this software
forwarding process works seamlessly indicates that OpenFlow messages are always
applied to the software data path first and to the hardware data path, i.e., the ASIC only
where applicable. Still, the flow tables of the software and hardware data path can be
displayed separately by the Pica8 Open vSwitch command line interface (CLI).

| |

| |

| |

I ___»| Sivermont | Silvermont |+ __________________ »| Silvermont | Silvermont !

: Core Core Core Core :

| |

INorth Shared L2 Shared L2 :
|

jComplex I

| |

|

T-unit :

|

|

B-unit C-unit :

Silvermont I

System Agent I

|

FNB Unit |

High Speed IOSF Fabric

¢

|
|
|
|
|
|
I | PCle | |PCle| |PCle| |PCle . .
' | o Ctrl Ctrl Ctrl Medium Speed IOSF Fabric
|
|
' i 3
|
QAT | | GbE | |usB2 SATA3
|
| accel Ctrl Ctrl Cirl xa| | SMBus PCU
i LCP, SP|,
i 10 APIC
| PCle Gen2 x16 T
| (1x16, 2x8, 1x8+2x4, 4x4) 1G/2.5GbE USB2 6Gbps 3Gpbs SMBUSX3 HPor fimer
|

X2, x4 x4 x2 x4

Figure 4.8: Block diagram of the Intel Atom C200 family microarchitecture (adapted from the
Intel Atom Processor C2000 documentation?).

5 David Mulnix. Intel Atom Processor C2000 Product Family Technical Overview.
Accessed: 2018-9-12. Intel, Sept. 2013. wurl: https://software.intel.com/en-us/articles/
intel-atom-c2000-processor-family-technical-overview.

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT

In literature, e.g., Kuzniar et al. [Kuz+18] it has been reported that barrier_reply
messages sent from an OpenFlow switch running the PicOS software do not indicate
that all previous OpenFlow messages are completely processed in the data path as is
specified in the OpenFlow specification. In contrast, these messages are sent by the
switch even though some of the previous flow table modifications of the devices’ flow
table are not active in the ASIC yet. This observation, together with the usage of the
software data path could mean that the OpenFlow processing is oblivious of the ASIC
data path and instead provides feedback for the software data path only.

Sending packets to and receiving packets from the ASIC requires processing by the
ASIC driver that then forwards the packet to the ovs-vswitchd component. There, the
packet is either processed locally or forwarded to the OpenFlow controller through the
management NIC.

We conclude the discussion of the software operating on the management system by
summarizing the significant tasks of the software running there:

¢ creating and maintaining a network communication connection with the OpenFlow
controller

* OpenFlow message processing for messages received from and sent to the Open-
Flow controller

¢ translating OpenFlow messages to ASIC messages and vice versa

* PCle communication with the data plane ASIC

The Edge-Core AS5712-54X uses an Intel Atom C2538 system on chip (S50C). A
SoC integrates multiple chips into one, in this case, the chip includes CPUs, memory
controllers, north- and southbridge, as well as a NIC. To the best knowledge of the author,
no resource analysis has been published for this CPU architecture. Based on a resource
analysis that has been conducted by the author for an Intel Xeon E5-2600 v3-based
system [Ble+16a], we analyze the resources of the Intel Atom C2538 CPU. The block
diagram of the Intel Atom C200 family CPU microarchitecture is depicted in Figure 4.8.
Each CPU core is a resource. The L1 cache is dedicated to each CPU core but can be
shared between programs running on the same CPU. Each pair of CPU cores shares the
1MB L2 cache. They are consumed by processes running on them and the amount of
available cache, no matter at which level can significantly affect the performance of a
program. Research shows that for example, uncontrolled shared caches in CPUs cores
can reduce the performance of neighboring processes [Koh+07]. The same goes for
the interconnection facilities, namely the Silvermont System Agent and the connected
fabric and PCle busses. Finally, the memory controllers can process a limited amount
of transactions per time—again they must be regarded as resources. The result of this
analysis is the detailed resource model that is depicted in Figure 4.7.

However, there is no indication that resource limiting, or controlled sharing is used by
PicOS to separate the processes running on the management system. Therefore, a direct

57

58

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

mapping between the software processes and the hardware resources is not possible.
The Linux kernel and the Debian Linux OS distribution PicOS is based on include the
necessary kernel and user space tools to do so, using the Linux Control Groups feature®
that was already proposed by Skoldstrom [SY12]. To create a fine-granular resource
model, and therefore, improve the system’s performance clarity, we argue that a resource
separation would be advantageous.

In conclusion, the resource topology for the management system must be adjusted
to match the granularity of resource accounting and sharing. Since the OS and the
OpenFlow agent are not separated, the whole management system must be seen as a
single resource pool as depicted in the corresponding resource topology in Figure 4.9.
Links that can be used for the resource path are depicted as solid lines, resource
dependencies are depicted as dashed lined. Resource dependency nodes are depicted as
ovals with dashed lines; the actual resources are depicted as ovals with solid lines.

- =< - =< - - =

s N s > 7’ >
. ovs- .
—t ASIC Driver —— . —— Linux kernel “—— to control plane
N , Vvswitchd N ,
-~ -~ ~_ - - o~
7
| N | P |
| N - |
N

Intel Atom
C2538 SoC
& Memory

]
To ASIC

Figure 4.9: The resource topology of the management system.

4.3.3 Investigating the Trident II ASIC

Investigating the ASIC requires a different approach than investigating the management
system. In contrast to the Intel Atom SoC, there is no documentation or architectural
information available for the Trident II or any of the other ASICs of the line of ASICs that
is supported by PicOS. Therefore, we approach the analysis through the documentation
of the OpenFlow pipeline provided by PicOS. The pipeline model, together with the
SDN protocol OpenFlow, define what kind of behavior is supported and what kind of
primitives are available for control plane applications to control the packet processing.

The OpenFlow data plane model is depicted in Figure 4.10. The main functional parts
inside a flow table are the matching table, the action units, and the input and output
units. The actual packet processing in the data plane ASIC is modeled by OpenFlow
as match-action units, referred to as flow tables. Flow tables are the central unit of
abstraction in OpenFlow. The hardware of the Trident II supports multiple OpenFlow
software agents that have different characteristics. The default OpenFlow mode of PicOS

Tejun Heo. Control Group v2. Accessed: 2018-9-12. Linux Kernel Organization, Oct. 2015. url: https:
//www.kernel.org/doc/Documentation/cgroup-v2.txt.

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT

Ingress processing
Packet +
Packet | Set Sioe e el Packet
n ngl?sri Fi Fi fIngress port, Fi Execut out
ow ow ow xecute
metadata...)
Ingress B Tablo | Tablo —— rer —— Table B Action | CrOUP Ly, [OUfRUE
Port : Table Port
Action 0 1 Action n Set
Set={} Set
Find highest [flow entry Flow Table
priority flow entry
matching | flow entry ; -
flow entry flow entry Apply instructions
flow entry v v
. AA table miss :
Action ' flow entry Clear-actions Goto-table Flow
Set ' * empty action set {table-id}
- T - —— - — - P> Write-actions > — 1T | Table
: {set of actions} \ v N
' : ® merge in action set N e
Pipeline : Apply-actions sy
. 1 {list of actions} L
Fields._ {____] T | * modify packet becececcmaeaaaaoa- > % Y
® update match fields /.
Packet Extract ® update pipeline fields “~a| Execute
header =1 o if output or group > Action
fields — clone packet Set

Figure 4.10: OpenFlow model of a data plane device (adapted from [ONF15]).

that relies on a single flow table, is investigated in this resource analysis. Nevertheless,
analyzing different modes of OpenFlow operation is useful for discovering resources in
the Trident II ASIC.

Their use in the pipeline can be restricted in more detail than specified in the OpenFlow
switch specification using Table Type Pattern (TTP) [ONF14b] or OF-CONFIG [ONF14a].
These restrictions enable OpenFlow to model hardware data planes, where, e.g., some
tables offer only a subset of the OpenFlow functionality, e.g., a limited set of match fields
or actions. The TTP model of the Edge-Core AS5712-54X with PicOS is depicted in
Figure 4.11. Table 60, the Policy ACL table is the only table that offers the full match and
action feature set that is supported by the Trident II and is based on TCAM memory. All
the other tables offer a specific and limited OpenFlow feature set.

Furthermore, the pipeline makes heavy use of group tables. Specifically, every packet
is applied to at least one of the tree indirect type group tables L3 Unicast, L2 rewrite, or L2
interface. Consequently, every output action written to the main flow table results in an
additional write to one of these group tables.

59

60 VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

Group Table

Match Set Instruction Set

L3 ECMP
(select)

L3 FF (fast l

Table 0

Match Set Instruction Set

Built-in GOTO_TABLE: Policy ACL failover) L3 unicast
o redirect

Built-in GOTO_TABLE: VLAN .

Unicast or Color L2 interface
based S
, (indirect)
actions
Table 10 §

VLAN translate Table 30: unicast v

Match Set Instruction Set Match Set Instruction Set

VLAN filter

Match Set | Instruction Set Built-in GOTO_TABLE: Policy ACL

Table 40: multicast

Match Set Instruction Set

L2 rewrite

(indlirect)

Table 60

Match Set Instruction Set

Built-in CLEAR_ACTIONS

Match Set Instruction Set

Built-in GOTO_TABLE: Policy ACL

Figure 4.11: OpenFlow model of a Trident II-based plane device running PicOS in
TTP mode (adapted from the PicOS documentation?).

TCAM-based Flow Tables

TCAM is used to implement the single OpenFlow flow table available in the PicOS
operating mode investigated here. This approach is to be expected because the original
OpenFlow design modeled matching memory to have the capabilities of TCAM memory.
TCAM is used because its high lookup speed and its ability to tag each entry with a
priority as well as to include don't care bits in the match patterns, which effectively enables
masked matches. One important use case for masked matches and entry prioritization
is the longest prefix match used for IP routing. One disadvantage of TCAM, besides
the high price and power consumption, is that inserting new entries into TCAM-based
match tables can be very slow and yields hard-to-predict completion times.

7 Pica8. PicOS Open vSwitch Configuration Guide. Version 1. Jan. 2017.

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT

For illustration, a simplified, yet complete overview of the circuit-level design of a
TCAM is depicted in Figure 4.12. Match values are stored as zeros, ones, and wildcards

match lines
. T T T |'> match m /_ 00 | Pointer to OpenFlow
1 0 1 instruction
X .
o}
[—L [—L f —L [—L N o1 8 Pointer to OpenFlow
Q| address |% — 01) -
[1 i [1 [1 | o 00 3 instruction
-1 - 1 -1 4 x 0 > S
match = ® Pointer to OpenFlow
> 10 5 S {10 |PonterioOr
[[[T [T | = instruction
-1 404+ XA X -
Pointer to OpenFlow
N Mmatch 11 — 11 nstraot
RECARTIanTIanye e L T~ instruction
H X 4+ XA F X 4 F X -

search line drivers

search word
1011

Figure 4.12: TCAM match example (adapted from [PS06]).

in the matching entries of the TCAM. The search word is compared to all table entries in
parallel in one cycle, which results in every matched entry to activate an input line for
the priority encoder that derives the resulting match entry. Match entries that do not
match are not activated. The priority encoder selects from all activated entries the one
with the highest priority. The resulting entry index is passed to an accompanying SRAM
memory, where a reference to the resulting OpenFlow instruction is stored.

The reason for the slow and unpredictable insertion rate for new entries in TCAM is
that the priority of table entries is encoded in the circuit by the order and location every
entry is physically stored in. Therefore, when adding an entry with a higher priority
than existing entries, it might be necessary to move all existing table entries to new
locations. Hence, not only the priority of new entries and their order but also the priority
and the number of existing entries in a TCAM-based match table influence the amount
of time it takes to complete an addition operation. When the instruction of a flow entry
in a TCAM-based flow table is modified, the TCAM itself does not have to be modified.
Instead, the mapping of the TCAM match index to the OpenFlow instruction, which is
stored in SRAM, is updated. This process does not require reordering and is therefore
expected to exhibit consistent modification delay.

Measurements with TCAM-based flow tables by Chen et al. confirm our analy-
sis [CB17b]. Flow modifications take constant time. Interestingly, so do delete operations.
These observations lead to the conjecture that existing TCAM table entries can be disabled
without reorganizing the whole table.

Due to the closed nature of the PicOS software, we can only speculate on how the
driver software accesses TCAM memory in the ASIC. The slowness of updates and

61

62

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

reordering suggest that the TCAM entries are accessible as an array of entries which
represent a fixed matching order. Furthermore, we assume that table entries can be
written individually. When a new flow entry is inserted, the driver software checks if
existing entries must be moved to new locations. If this is the case, the existing entries
are copied to their new positions and the new entry is written to its new location. This
process would explain the unpredictable duration of table entry insertions. This also
means that from the perspective of the driver, the TCAM table memory interface is
a resource with a well-known and fixed amount of operations per unit of time. The
unpredictable behavior that is observed from the OpenFlow controller is caused by the
driver moving TCAM entries, not the write speed of the TCAM controller.

Packet Forwarding along the Control Path

Sending packets from the data plane to the control plane and vice versa are OpenFlow
primitives that can provide insights into the ASIC’s architecture. These primitives
instruct the packet processing pipeline to forward packets to the ASIC’s PCle controller.
Furthermore, it is highly likely that this virtual network port for sending packets to
the switch controller is assigned a part of the shared packet buffer of the switch. The
same should be the case when sending packets from the switch controller into the data
plane. We measured the maximum throughput for packet_in OpenFlow messages to be
12000pps and for packet_out messages to be 7000pps. This discrepancy indicates that
for packet_out neither the ASIC nor the PCle interface is the bottleneck resources, but
the management system CPU. The measured rate for packet_in could be either a CPU
limitation or an actual limitation in the ASIC. Since we are not able to determine the
bottleneck for these limits, we use the measured values as bounds.

Group and Meter Tables

Group tables are treated not as uniform in the Trident IT ASIC as they are designed in
OpenFlow. There are four types of group tables in OpenFlow: indirect, all, fast failover
and select. Each group table type gets its own representation in the PicOS TTP pipeline
model of the Trident II. This suggests that each group table type is implemented by
different hardware units, creating a different resource each. Furthermore, two indirect
group tables exist, one for rewriting Ethernet addresses and one for IP unicast redirect.
The assumption of different hardware units per group table type is supported by the
fact that only packets with a specific Ethernet or IP address can be forwarded to the
group table type all, which is used for multicasting. While this restriction does not exist
in the PicOS single table mode we analyze, we assume that this separation between the
group table types was introduced to the model because of the underlying hardware.
The OpenFlow agent provides the available number of group table entries through
corresponding OpenFlow messages. These limitations are therefore already covered by
the OpenFlow protocol. However, each of the group table units has its own memory

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT 63

Management System Intel Atom C2538 SOC

Broadcom FClo
Trident Il ASIC |
Controller ﬁ Output to
% Controller
Memory
L Interface
Group
Table
ey ECMP
Interface
Meter % Memory Memory
Table Interface Interface
Group Group
—ﬂ »| Table Fast Table L3
Failover Unicast
Memory
Memory Interface
Interface —)
B NPT OUT P1
S| Packet Match Table < Memory Memory
@ INP2—~y o= . = L || Interface Interface OuT P2 W
o o S R e Statistics
IN P3—> - e e OUT P3
= B I : Counters Group Group
z —™| Table L2 Table L2
Rewrite > Interface
W IN Pﬂ/ > OUT Pn W

Figure 4.13: The hardware architecture of the Broadcom Trident II (based on the PicOS
documentation?).

interface that used to read, write, and delete table entries. These interfaces are potential
bottlenecks, like the TCAM memory interface described before.

ASIC Resource Quverview

We conclude this OpenFlow-based analysis of the Trident II ASIC by providing a complete
overview of the hardware architecture in Figure 4.13 as well as the detailed resource
topology for in Figure 4.14. The lack of information on the architecture of the Trident I
ASIC is reflected in the topology. The pipeline model used for the investigation is not
only valid for the Trident Il but a whole family of devices. This means that there are
differences between the hardware implementations that are lost due to the generalization
of the pipeline model. Nevertheless, the architectural model presented here is to our best
knowledge the most detailed available and is depicted for completeness in Appendix
Figure A.1. The corresponding resource topology is depicted in the Appendix Figure A.2.

8 Pica8. PicOS Open vSwitch Configuration Guide. Version 1. Jan. 2017.

64 VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

From Management System

PCle Controller

TCAM Match
Table
Memory Interface

Group Table L2
Rewrite
Memory Interface

Group Table
L3 Redirect
Memory Interface

TCAM Match
Table
Space

Group Table L2
Rewrite
Space

Group Table
L3 Redirect
Space

Group Table
L3 ECMP
Memory Interface

Network Interface
to Controller
. Meter Table
Statistics Counter Memory Interface
Table Memory
Interface
Meter Table
Space

Figure 4.14: The resource topology of the Broadcom ASIC.

Group Table
L3 ECMP
Space

Group Table L2 Group Table
Interface L3 Fast Failover
Memory Interface Memory Interface

Group Table L2 Group Table
Interface L3 Fast Failover
Space Space

4.3.4 Mapping the Resource Topology of the Edge-Core AS5712-54X with PicOS to OpenFlow

The next important step is to map the identified resources to the OpenFlow messages
that the OpenFlow controller uses to control the data plane device. Before doing
that, we adjust the resource topology to the information granularity the controller can
actually see. PicOS provides no means for resource isolation between different software
components and no monitoring approach by default. The OpenFlow controller has no
way of discriminating which component uses which resources. Therefore, except for
the NIC and the PCle link, which are still considered separate resources, the resources
are merged into a single, opaque management system SoC resource. For cases when
the management system is overloaded, OpenFlow provides a mechanism to provide
feedback to the OpenFlow controller: the congestion control of the control channel
protocol is used to stop the controller from sending more messages [ONF15].

The resource table from the perspective the OpenFlow controller is shown in Table 4.4.
For comparison, the full resource table from the perspective of the Edge-Core AS5712-54X
itself is listed in Appendix Table A.1. In addition to the merging of the management
system resources, the flow table memory interface resource has a dynamic abundance from
the perspective of the controller, while it has a static abundance from the perspective of
the ASIC driver.

We find that the characteristics of static, non-renewable data path resources have been
well investigated in the literature. While the resource-oriented perspective provides a
clear understanding of these processes, we found no resources that have been completely
neglected in the past. Static aspects such as table sizes, port number and capacities are

4.3 A CONTROL PATH RESOURCE MODEL OF AN OPENFLOW DATA PLANE ELEMENT

Table 4.4: The resource table for the Edge-Core AS5712-54X with PicOS 2.8 from the perspective

of the SDN controller.
2
~ b
g k
s]
& - >]
2 = = e
g R | g = S
g = | £ 2 2= |
o - o= — o=
E |5 S g |E |8 |¢
2 2 |z 2 e |l%® |5 |8
< o 5 <] = = o =
Resource < F~ » H > v <
Management system SoC dy- yes | no yes no | no | yes | n/a
namic
Management NIC static yes | indi- no no | no | yes | packet
rect
PClI-e link static no | no no no | no | no | none
PClI-e controller static yes | no no no | no | no | none
Flow table space static yes | yes units | yes | yes | yes | 1entry
Flow table memory interface dy- yes | no no no | no | yes | none
namic
Group table space: indirect/select/all static yes | yes units | yes | yes | yes | 1entry
Group table memory interface: static yes | no no no | no | yes | none
indirect/select/all
Meter table space static yes | yes units | yes | yes | yes | 1entry
Meter table memory interface static yes | no no no | no | yes | none
Statistics counter table memory interface static yes | no no no | no | yes | none
Packet output to switch controller port static yes | no no no | no | yes | meter
feature

already part of the OpenFlow or OF-CONFIG protocol and can be used by controllers
today. The behavior of renewable resources in the control path, however, is not well
understood when the resources are shared between control plane application.

We find multiple potential bottlenecks on the control path that have not been investi-
gated for resource contention between control plane application yet:

¢ Packet communication along the control path: packet_in, packet_out
¢ Adding flow table entries to TCAM-based flow tables: flow_mod

* Modifying group tables and their group buckets: group_mod

* Modifying meter tables: meter_mod

The mapping of the selected OpenFlow messages to data plane resources are listed in
Table 4.5. In the table, an x denotes a resource consumption that is likely to create a
performance bottleneck, a + denotes a resource consumption that is unlikely to cause a
bottleneck, and a - denotes no consumption of this resource at all.

65

66

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

Table 4.5: The mapping of selected OpenFlow messages to data plane resources

(adapted from [Héar17]).

Resource packet_out flow_mod flow_mod flow_mod
(insert) (modify) (delete)

Management system SoC X X X X
Management NIC X X X X
PCl-e link + + + +
PCl-e controller x + + +
Flow table space - X - +
Flow table memory interface - X + X
Group table space: indirect/select/all - - - -
Group table memory interface: - + + +
indirect/select/all
Meter table space - - - -
Meter table memory interface - - - -
Statistics counter table memory - - - -
interface

The interference caused by packet_in has not received much attention in the literature
but can be mitigated by applying meters before sending the packet to the control path as
proposed by the OpenFlow specification [ONF15]. However, this requires the controller
to know the exact capacity of packet forwarding along the control path. Instead, we
propose to use priority queuing on the path to the management system as it is done
on other network links. However, implementing this on a hardware switch is not
possible, because of the proprietary and closed software ecosystem. We consider an
implementation on programmable data planes with [P4_14] possible, but out of the
scope of this work. Still, we consider the data path resource contention of packet_in a
solved issue and will not investigate it in detail.

The addition of flow entries to TCAM-based flow tables has not been virtualized yet.
Furthermore, the importance of this OpenFlow feature and its dynamic abundance
makes it challenging to design a virtualizer. Finally, we consider the OpenFlow messages
that rely on resources for which no virtualizer has been provided yet, meter_mod
and group_mod, simplified cases of the flow entry addition virtualizer. Therefore, by
providing a virtualizer for flow entry addition, we consider the virtualization of this
class of resources solved.

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

Our investigation of the existing literature as well as the Broadcom Edge-Core AS5712-54X
concluded that albeit needed for ISP use cases, there is no virtualization approach
available for renewable resources on the control path of SDN data elements. Many

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

resources in the resource topology of the Edge-Core AS5712-54X requires this type of
virtualizer: the memory interfaces of flow tables, group tables, meter tables, statistic
counters, as well as the management system. Therefore, we provide the first virtualizer
for renewable control path resources. We achieve this by providing the required resource
visibility and resource controllability to the controller by using existing OpenFlow
mechanisms on the example of adding flow table entries. This OpenFlow primitive
operates on a TCAM-based hardware match table resource, which is the most demanding
for virtualization. The proposed virtualizer is therefore also applicable to the other, less
demanding resources.

Literature shows that inserting entries into flow tables specifically often yields a slow
and unpredictable rate on hardware switches [Kuz+18]. The resource causing this
behavior has been identified, as discussed in Section 4.3, to be the TCAM matching
memory. When multiple control plane applications access the same flow table at the
same time, the slow speed of the insertion of flow entries quickly makes this operation
a bottleneck. Furthermore, the unpredictability of the rate means that the virtualized
resource will exhibit unpredictable behavior as well. The proposed virtualizer fulfills
the requirements of reliable control plane applications in ISP networks: prioritization
and fairness as discussed in Section 4.1.1. Prioritization is required to ensure that critical
control plane applications such as unicast routing are never interfered with by other, less
important services. Fairness is needed to ensure that control plane applications with the
same priority get the same services.

The goal of the approach presented in this section is to demonstrate that a virtualizer
operating on the control plane can gain visibility and control over the resource in the
data plane as well as provide prioritization and fairness.

An analysis of the resource path to the TCAM-based flow table through the resource

topology of a Broadcom Trident II-based OpenFlow device is provided in Section 4.4.1.

The design for a virtualization approach for adding flow entries into TCAM-based flow
tables with prioritization as well as our prototypical implementation is described and is
presented in Section 4.4.2. The evaluation design and the testbed setup are discussed in

Section 4.4.3. Finally, the evaluation results are presented and analyzed in Section 4.4.4.

4.4.1 OpenFlow Flow Entry Addition Analysis

The resource path used when adding entries to OpenFlow flow table is highlighted on
the background of the Edge-Core AS5712-54X’s resource topology in Figure 4.15. The
bottleneck in this resource path has been established in literature to be the addition
of flow entries into TCAM memory. This analysis starts with an in-depth analysis of
TCAM memory and then follows the resource path as well as the overlaying OpenFlow
mechanisms to the OpenFlow controller.

The characteristics of TCAM-based memory have been discussed in Section 4.3.3.

From the perspective of the OpenFlow controller, the processing time for adding entries

67

68 VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

P N
—(ASIC Driver
—=

N,

= —=

A

—_—

Intel Atom
C2538 SoC
& Memory

o)

= —=

N\

N
— VS\?V\i/tS(;hd /"———‘(\ Linux kernel }== to control plane

T_¢

Network Interface
to Controller

Statistics Counter
Table Memory

TCAM Match
Table
lemory Interface,

TCAM Match
Table
Space

PCle Contro\\y

Group Table L2
Rewrite
Memory Interface

Group Table L2
Rewrite
Space

Group Table L2
Interface
Memory Interface

Group Table
L3 Redirect
Memory Interface

Group Table
L3 Redirect
Space

Group Table
L3 Fast Failover
Memory Interface

Group Table
L3 ECMP
Memory Interface

Group Table
L3 ECMP
Space

Meter Table
Memory Interface
Meter Table
Space

Figure 4.15: The resource topology of the Edge-Core AS5712-54X with the resource path for
OpenFlow flow_mod messages that add flow entries highlighted.

Interface

Group Table L2 Group Table
Interface L3 Fast Failover
Space Space

is not deterministic and varies according to the priority of existing and new flow entries.
Therefore, the TCAM-based flow table memory interface is expected to be the bottleneck
resource.

The next resource on the path to the controller is the ASIC’s PCle controller, followed
by the PCle controller of the data plane CPU. Then, the ASIC driver takes over, followed
by the OpenFlow agent and the network process that receives packets from the OpenFlow
controller. Based on the existing literature, none of these resources or components is
expected to be slower in processing than the TCAM memory interface. Therefore, we do
not expect any of these resources to be a bottleneck. The next step in this analysis is the
mapping of the resources to the corresponding OpenFlow messages.

Flow tables are the central abstraction in OpenFlow. Therefore, flow table updates
are a crucial feature for control plane applications to control the data plane. Flow table
modifications, in general, are implemented by the OpenFlow primitive flow_mod. The
flow_mod message provides fields for specifying all aspects of a flow entry. The intention
of a flow_mod message, whether entries should be added, modified, or deleted is
encoded in the command field. The data plane evaluates flow_mod messages by applying
its command to the specified flow table. This is done by first selecting the flow entries

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

that are affected by the flow_mod message and the applying then specified command to
them. Flow entries are selected if their match fields match the same packets or a subset
of the packets that are matched by the match fields that are specified in the flow_mod
message. This means, for example, that a flow_mod message with a wildcard matcher
for all packet header fields will match all existing flow entries. While this approach
makes this flow_mod message very flexible and generic, it makes the analysis, which
resources are affected by a given flow_mod message, challenging. Different commands
affect different resources as we will explain later in the section. Furthermore, for every
flow_mod message, the number of flow entries affected by it must be determined for
each message.

For the add command, which we will analyze in detail, the investigation of the number
of affected flow entries is simpler than for the modify and delete command. While the
latter can potentially affect all flow entries in a table, the add command may only affect a
single entry with identical match fields. If such an entry exists, it is replaced; if it does
not, the specified entry is added to the table.

This behavior of slow and unpredictable flow entry addition times has been investigated
in the literature [Kuz+18]. However, no approach exists on investigating the characteristics
of interference between multiple control plane applications OpenFlow flow table updates.

442 Virtualizer Design

The goal of the virtualizer is to provide prioritization and fairness for adding entries to
flow tables with unpredictable addition performance, such as TCAM-based flow tables.
Furthermore, the virtualizer operates on a distributed system, with the resource being
located on a data plane element and being controlled by an SDN controller on a different
device.

The unpredictable flow entry addition rate limits the design space for these goals.
Well-proven approaches that involve modeling a static flow addition rate suggested, e.g.,
by Bozakov and Rizk [BR13] and Blenk et al. [BBK15] for similar problems cannot be
used to provide prioritization in this scenario. With performance modeling not being
applicable, we conclude that a feedback mechanism is required for the OpenFlow switch
to provide information to the controller, which flow entries have been already installed.
This leaves queueing approaches as a well understood and matching design approach to
tackling the issue.

An overview of an SDN message queueing system and its main components are given
in Figure 4.16. The two main components are the queue manager and the scheduling
algorithm. The queue manager decides in which queue a new work item should be
placed. The scheduler decides which queue should be serviced next and how much
service it should get.

Before discussing the design of the solution for the distributed queueing system, we
characterize the queueing and scheduling problem at hand:

69

70

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

¢ One bottleneck resource: the TCAM

¢ No preemption: once the flow entry addition process has been started, it cannot be
interrupted

e Variable execution times: the time it takes to add flow entries is not static

* The bottleneck resource control operates on the OpenFlow switch and the scheduler
operates on the OpenFlow controller

e Strict priority scheduling and fairness for equal priority is required
* Flow entry message must not be lost or dropped

As depicted in Figure 4.17, one or more flow tables are available in the ASIC. For
this investigation, all resources that are not relevant are left out to ensure readability.
The controller must keep track of the flow entries that have been sent to the OpenFlow
switch and wait for each of them to be reported as installed by the switch. Using a queue
management approach, the controller can schedule the application requests either for
fairness or prioritization. Each hardware flow table is represented by a set of queues
and a scheduler. The controller analyzes each flow entry addition requests from the
applications to determine which hardware flow table they will be added to. Then,
according to the priority of the application, the request is added to one of the queues of
the corresponding flow table. For each table, a scheduler then decides which queue to
service next, depending on the feedback information from the switch. The approach
is depicted in Figure 4.17. The priorities are depicted in red for high priority, orange
for mid priority, and green for low priority. The applications themselves can assign
different priorities to their messages. These are combined with the application’s priority
to determine the actual per-flow table priority.

The most straightforward approach is to order the OpenFlow messages by their
prioritization and send them to the data plane device that processes them in a first in, first

Queue SDN protocol Scheduling
management message queue algorithm
algorithm g >

e
Messages from

control plane -
applications .
—tl

Enqueue- Dequeue-
end end

C messages/s

Per data plane
resource

Figure 4.16: Overview over an SDN message queueing system and its terminology
(adapted from [AHA16]).

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

Application 1
Ent

High Priority Low Priority
Queue Manager

EE

L

7 Virtual Queuesig;
Em& Entry i Entry.

Addw Add
Ente” B

7 Virtual Queues i
Ent ieEntnyo| | Entry.;

Scheduler Controller < Scheduler Controller
|

[
Controller

Scheduler Control- - - - —< | NS “Completion Feedback

Switch 1

| Scheduler <

Memory Interface — = Memory Interface
Flow Table 1 Flow Table n

[Prio: 1]NW_DST: 0.0.0.0/0 ® ® ® | [Prio: 1]NW_DST: 0.0.0.0/0
[Prio: 5 |NW_DST: 10.0.0.0/8 INW_DST: 10.0.0.0/8 Out: P1

[Prio; 5 [NW DST: 172.16.0.0/12
[Prio: 5 |NW_DST: 192.168.0.0/16 [Out: P3 [Prio: 5 [NW_DST: 192.168.0.0/16

IPrio: 5 NW_DST: 172.16.0.0/12 |Out: P2

Figure 4.17: Design model for flow_mod virtualization with prioritization (adapted from [Vil18]).

out (FIFO) order. Unfortunately, the OpenFlow standard specifies that the processing of
OpenFlow messages does not have to occur in FIFO order; , hence, controllers should not
depend on a specific processing order”. Using a priority queue on the data plane device
and tagging OpenFlow messages accordingly provides prioritization but provides the
controller little control and feedback over the process. If the waiting times caused by the
queueing become too long, the controller has no option to remove requests from low
priority queues and provide information to the application. The same is true if requests
are dropped from the queue, providing information on that to the applications becomes
difficult for the controller. Another approach would be to implement a Transmission
Control Protocol (TCP)-like end-to-end flow control mechanism with prioritization
between the controller and each resource. While this approach is promising as well,
it requires a significant redesign of the OpenFlow agent on the data plane devices.
However, this is not possible with existing OpenFlow agents of available hardware
devices, because of their proprietary nature. Furthermore, the TCP connection used

71

72

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

to transport the OpenFlow protocol would have to be replaced by one that supports
multiple independent streams, such as Stream Control Transmission Protocol (SCTP).

One problem is that OpenFlow does not provide a primitive to monitor or control the
hardware flow tables in the ASIC directly from the controller. Instead, the OpenFlow
model presents the available matching memory as a pipeline of flow tables, independent
of how the hardware looks like. Furthermore, OpenFlow does not provide any primitive
to get information on the processing of OpenFlow messages inside of the switch. Two
OpenFlow primitives exist to get information on the state of the processing of OpenFlow
message:

* barriers, available from OpenFlow version 0.9
* bundles, available from OpenFlow version 1.4

The barrier command should ensure that all OpenFlow messages that the switch
received before the barrier_request message have been completely processed before
the barrier_reply is sent. Unfortunately, since this command includes all OpenFlow
messages, it cannot be used to track flow entry addition operations for a specific hardware
flow table only. Therefore, it cannot be used. The flow bundle feature, however, is more
interesting. It was designed to improve the synchronization of flow table modifications
by providing a primitive to defined groups of OpenFlow messages that are executed at
the same time. Bundles are opened by sending the corresponding message including
an id to the switch. Then, the controller can add arbitrary OpenFlow messages to the
bundle until it decides to close it. Another advantage is that the messages are already
validated when they are added to the bundle, which reduces the processing time later.
After that point in time, the bundle can be committed or discarded. If it is committed,
the switch will reply with a bundle_commit_reply message that indicates if all messages
in the bundle have been committed successfully.

The ability to open multiple flow bundles in parallel, commit them independently from
each other, and get an acknowledgment for each of them means that this feature could
be used to implement queuing control on an OpenFlow switch per hardware flow table.
The disadvantage, however, is that when flow bundles are used to implement queuing
for flow entry additions, control plane applications and OpenFlow controllers that use
the flow bundles feature already for other purposes cannot be supported. Furthermore,
the order of the processing of the OpenFlow message processing could be changed by
the separation of flow entry additions from the other messages. However, the goal of
this design is to show the usefulness and possibility of control path virtualization in
SDN protocols, not to fix all shortcomings of OpenFlow. Since using flow bundles is
the only available way to implement this feature on an actual hardware switch, we will
proceed with this design.

A priority round robin scheduler is used on the OpenFlow controller inspired by the
work of Tsao and Lin [TLO1]. The quantum of the scheduler, which is the part of work
assigned to each queue per time interval, e.g., the number of transmitted bytes for packet

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

schedulers is defined differently for this use case. As discussed before, the processing
times per flow entry addition are dynamic. Therefore, we need to share the time used
per application instead of the number of executed flow entry additions. Therefore, we
assign time slots directly to the queues, by specifying the quantum in milliseconds.
Since preemption is not possible the quantum size has a significant influence on the
granularity of control. Once the assigned service quantum is consumed by a queue
the next queue with the same priority is selected. The scheduler keeps at least one
flow bundle open per hardware flow table on the OpenFlow switch. New flow_mod
messages are, after determining their destination hardware flow table, placed in a queue
on the controller and added to one of the corresponding flow bundles on the switch
by the queue management algorithm. The scheduler selects the next queue to service,
commits the next bundle, and determines, based on the time slice used by the queue,
which queue should be serviced next. Furthermore, the scheduler must wait for the
bundle_commit_reply message before updating the time slice calculation.

Queues are selected by their priority to implement strict prioritization. This means
that the set of queues that contain messages with the highest priority are always served
until they are empty. Only then queues with lower priority are served as well. By
ensuring that higher application always take precedence as required in ISP networks,
this approach can lead to starvation of lower priority control plane application. The
effects of starvation must be handled by each application individually, by implementing
control path bottleneck mitigation approaches as discussed in Chapter 5.

The flow entry addition scheduler was prototypically implemented using the Floodlight
OpenFlow controller®. The focus of the prototype is the investigation of the system’s
behavior in an overload event of the TCAM match table memory interface resource. The
goal of the evaluation is to show if an SDN protocol feature like the flow bundle can
provide the required functionality to implement a virtualizer. Only the parts need to
support this use case are implemented.

The design of the prototypical implementation of the system reflects a queueing system
design, except that it is event-driven due to the nature of OpenFlow controllers. The two
main entities in the prototype implementation, like in most queueing systems, are the
queue manager and the scheduler. The queue manager opens and closes flow bundle
as well as assigns messages to queues and bundles. The scheduler is responsible for
selecting the queue that should be serviced next and initiate the servicing by committing
flow bundles. When a control plane application requests a flow entry addition, the queue
manager checks if an open flow bundle is available for the addressed switch and flow
table. In this experiment, flow bundles are created proactively when the switch connects
to the controller to ensure that the flow bundle creation does not affect the scheduler
performance. If an open flow bundle is available, the flow is added to that bundle. If the
selected bundle has reached its maximum size, it is closed, and the scheduler is called.

Project Floodlight. Floodlight OpenFlow Controller. Accessed: 2018-09-12. url: http://www.
projectfloodlight.org/.

73

74

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

The scheduler calculates the queue that should be serviced next and commits its flow
bundle. Once the switch reports back that the bundle has been committed successfully,
the corresponding service time information is collected, and the scheduler is called again.

Though this approach, the queued messages for each resource are kept on the data
plane device while the queue with references to these messages is kept on the controller.
Thereby, the controller has full knowledge of the queue lengths. The scheduler is kept on
the controller and can modify, rearrange, or discard bundles at will. Furthermore, errors
thathappen while committing bundles are reported by corresponding OpenFlow protocol
messages. Thereby, the requirements for virtualizing resources are met. Resource
controllability is provided through controlling and committing bundles by the control
plane. The information required to gain resource visibility: resource utilization, resource
saturation, and resource errors are provided except for resource utilization. Resource
saturation information is provided by the number of the outstanding flow addition entries.
Resource errors are provided through the OpenFlow protocol. However, gathering
detailed information on the resource utilization of the TCAM match table memory
interface resource requires a modification of the ASIC driver and the corresponding
OpenFlow facilities to transport this information to the controller. Since we do not have
access to the proprietary ASIC drivers, we rely on an estimation. The utilization of the
resource can be estimated to be either 0% or 100% determined by the available saturation
information.

4.4.3 Evaluation Design and Testbed

Floodlight Openflow
Controller

1

Supermicro
SuperServer
E} l 5018D-FN4T
O
m 10GbE i@ ¥ 10GbE
Traffic Generatol
Edge-Core [10GbE B# g 1OGbE
AS5712-54X
10GbE B w 1OGbEj Traffic Analyzer
10GbE B B 10GbE
J Llntel XL710

Figure 4.18: Testbed overview of the flow_mod virtualization evaluation (adapted from [Vil18]).

The testbed setup is depicted in Figure 4.18. An Edge-Core AS5712-54X operating Pica8
PicOS 2.8 is the investigated OpenFlow switch under test. One server is used to operate
the OpenFlow controller, as well as generate and receive traffic. This configuration

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

ensures the consistency of the time stamps, as they are all created using the same time
source. The server is a Supermicro SuperServer 5018D-FN4T that has an Intel Xeon
D-1541 CPU with eight cores and 64GB RAM to ensure the OpenFlow controller and the
traffic generators and receivers do not create a performance bottleneck on the server. It is
connected to the management interface of the switch under test using a single 1GbE link.
Its connection to the data path of the switch is four 10GbE links provided by a single
Intel XL710 NIC with a single 40GbE ports through a breakout cable.

The prototype implementation supports the evaluation by implementing an event-
driven flow entry addition generator. A packet generator on the measurement server
sends packets to the OpenFlow switch. For each IP address in these packets, for which
no flow entry exists yet, a packet_in message is created on the switch and sent to the
controller. There, the controller extracts the destination IP address from the incoming
packet and uses it to create a flow entry addition request. This approach ensures that the
rate at which the flow_mod messages are sent do not create a performance bottleneck on
the management system CPU resource but in the TCAM match table memory interface
resource. Thereby, application load is generated directly in Floodlight by simulating two
different control plane applications.

Literature has shown that descending flow entry priority represents the worst-case
performance [He+15; Laz+14]. Hence, the flow entry addition messages are given a
continuously descending OpenFlow flow entry priority. Once an entry exists for a given
destination IP address, no further packet_in messages are created and the packet is
forwarded in the data path of the switch. This point in time signifies the successful
installation of the flow entry and is recorded on the measurement server by capturing
the forwarded packet. As stated in the data plane analysis, the confirmation messages
sent by the Edge-Core AS5712-54X that the bundle was committed successfully are used
for scheduling but are in general not deemed accurate to reflect the actual state of the
ASIC.

To show the usefulness of the approach, we investigate the prototypical implementation
of the system in a minimal configuration with two control plane application and one
OpenFlow switch. The goal is to show that strict prioritization works as expected and
that the fairness is given for applications with the same priority. Furthermore, we
investigate the effect of two different quantum sizes for the scheduler. The analyzed
metric is the time it takes from sending the flow entry addition message to the OpenFlow
switch to the time when the new flow entry affects the network traffic passing it. For
strict prioritization, we expect this time to be as small as possible for the high priority
application. The proposed system is compared to installing the flow entries without
flow bundles because it is the prevalent method of adding flow entries.

Initial experiments were conducted to determine the parameter space suitable for
the experiments. Specifically, we investigated the flow entry addition behavior when
filling the complete flow table at the same time. It has been described by, e.g., Kuzniar
et al. [Kuz+18] that some Broadcom-based OpenFlow switches such as the Dell 8132F

75

76

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

15-

Time [s]

0 200 400 600
Flow entry number
Test Type
No scheduler Scheduler

Figure 4.19: The mean flow entry addition completion time for the Edge-Core AS5712-54X when
filling the complete flow table (adapted from [Vil18]).

exhibit a performance anomaly when installing more than about 200 flow entries. While
the Edge-Core AS5712-54X based on the Trident I ASIC and not the Trident+ as the
Dell switch mentioned earlier, we observe a similar behavior. The results of filling the
complete flow table is depicted in Figure 4.19. The means of the installation time per
flow entries of 10 repetitions of the experiment are depicted. The depiction clearly
shows a sharp increase of the completion time when more than ~250 flow entries are
installed consecutively. To investigate this phenomenon in more detail, we visualize the
sudden drop in performance by plotting the mean installation time per flow entry is in
Figure 4.20. The flow installation performance drop happens between 245 and 260 flow
entry installations. The performance drop occurs at different but similar point as in the
paper of Kuzniar et al. [Kuz+18] where it appears around 210 flow entries. Since the
PicOS software is closed source, a more detailed investigation is difficult, if possible at
all. We suspect that the behavior is caused by the fact that both the PicOS software and
the software of the Dell 8132F might rely on the same driver software to communicate
with the ASIC that is provided by Broadcom. In any case, we consider this behavior
an anomaly. Furthermore, we cannot identify the root cause if it, which could mean
that, e.g., the flow bundle mechanism is affect by this anomaly as well. Therefore, the
anomaly should not influence the investigation of the scheduler. Hence, we design the
experiments to stay below the number of flows that cause this anomaly.

The load parameters used are listed in Table 4.6. As stated before, to remove the
interference of the creation of flow bundles they are created proactively on the switch.

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

0.06 -

0.04 -

Time [s]

0.02~-

0.00 - 0292w af emo susm S3s mecelme’s s Ca

0 200 400 600
Flow entry number

Test Type
No scheduler Scheduler

Figure 4.20: The mean flow entry installation time for the Edge-Core AS5712-54X when filling
the complete flow table (adapted from [Vil18]).

Table 4.6: Evaluation parameters and values (adapted from [Vil18]).

Parameter Values Description
Repetitions 10 | Number of repetitions per experiment
Scheduler with/without | Using the proposed scheduler or not
Quantum {1ms, 10ms } | Quantum sizes used by the scheduler
Number of flow entries 50 | Total number of flow entries that are

added during the experiment per
control plane application

App number 2 | Number of simulated control plane
applications
App priorities { Same, High/Low } | Priorities of the simulated control

plane applications

Since the Edge-Core AS5712-54X is limited a maximum of ten open flow bundles at a
time? and we use at maximum 10 flow entry additions per flow bundle, a total of 100
flow entries can be installed on the switch—-which is well below the number of flows that
cause the performance anomaly. This means that for two applications, 50 flow entry
additions are executed. The investigated quantum sizes are one and ten milliseconds to

10 Pica8. PicOS Open vSwitch Command Reference, PicOS 2.8. Version 1. Jan. 2017.

77

78

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

ensure the necessary freedom of control for the scheduler according to the time spans
that are observed in initial experimentation.

4.4.4 Evaluation Results

The results of the evaluation are discussed in this section. To investigate the characteristics
of the scheduler, we use the default flow installation approach with the scheduler and
flow bundle as the baseline. Note that in all the following figures the baseline experiment
results are depicted in red. The baseline is compared to two experiments with the
scheduler: one with a quantum size of 1ms for both applications and one with a quantum
size of 1ms for the low priority control plane application and 10ms for the high priority
application. Experiments, where both applications use the same quantum size, are
depicted in green, experiments, where the applications use different quantum sizes, are
depicted yellow.

1.00 -

g - s
ja} //
= s

E, 0.75 - e
£ /

= 050-

o /
o /
o0 /

£ 005- I
[Y 7 A
)

9]

Y
)

- 0.00 -

0.2 0.4 0.6
Time [s]
Application Test type
— Low priority — No scheduler
— High priority — Scheduler, prioritization, quantum 1:1

Scheduler, prioritization, quantum 1:10

Figure 4.21: Flow entry addition time with and without the scheduler for the prioritization
use case (adapted from [Vil18]).

In Figures 4.21 and 4.22, the effect of the scheduler for the prioritization use case
is depicted. Note that the low priority application starts to send flow entry addition
messages first; the high priority application starts shortly after. This approach reflects a
worst case situation, where a low priority application could potentially stall flow entry
additions of a high priority application that are required to prevent packet loss.

In the depiction of the cumulative distribution function of all ten repetitions of the
experiment in Figure 4.21 clearly show that independent of the quantum parameters, the

4.4 VIRTUALIZING THE ADDITION OF FLOW TABLE ENTRIES

o,

o 0.6-

£

-5

o

.8

E 0.4+)
= -

g é
@)

|
I

Low priority High priority
Application
Test type

BE No scheduler
EE Scheduler, prioritization, quantum 1:1
E] Scheduler, prioritization, quantum 1:10

Figure 4.22: Flow entry addition completion time with and without the scheduler for the
prioritization use case (adapted from [Vil18]).

scheduler completes the flow entry addition for both applications in about half of the
time than the experiment without the scheduler. The reduction of the total flow entry
addition time is an unexpected but positive effect. Due to the overhead introduced by the
flow bundle mechanism and the scheduler code on the OpenFlow controller we expected
a small completion time increase when introducing the scheduler. Since the differences
between the two quantum size configurations are small, we assume that this effect is
caused by the flow bundle feature. While not required by the OpenFlow specification, it
seems that the PicOS software uses the knowledge that the flows are added in a batch to
optimize the addition process. We deduce that instead of writing the TCAM-based flow
table entry by entry, a bulk mechanism is used to write all flow entry in one go. Not
only can this be done more efficiently, but the reordering of flow entries that might be
necessary do not have to be applied one-by-one. Instead, we suspect that for all new
flow entries in a bundle the new TCAM table is calculated and then written once. This is
consistent with the flow entry addition completion times for the experiment depicted in
Figure 4.22.

The variability in the results of the experiments without the scheduler is more
significant than the ones with the scheduler. Especially the completion times of the
low priority application differs significantly between the repetitions. We interpret this
result in that the flow entry controller of PicOS does not use a strict FIFO queue for
scheduling flow updates. Instead, sometimes flow entry addition requests that were
sent later are installed before the older ones have been completed. We suspect that this

79

80

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

behavior is caused by the software design of the OpenFlow agent. This inconsistent
behavior of the OpenFlow agent shows that prioritization and queueing features need to
be controlled by the SDN controller to ensure consistent behavior. Note that the flow
entry addition completion time for the low priority application without the scheduler is
much lower until about 90% of the entries than the one with the scheduler. At that point,
the flow entry addition requests of the other application take over and stall the first
application for more than 0.4s. The fact that PicOS does not seem to use a FIFO queue
to process flow entry additions is surprising. In the use case investigated, it results in
unpredictable completion times with high variability. Furthermore, we cannot provide
an interpretation of what might have been the motivation for this design decision.

When using the scheduler with flow bundles the variability is much smaller, the 25%
and 75% quartiles, represented by the hinges are consistently small. The consistency
for the experiments with the 1ms quantum is even higher than the one with the mixed
quantum durations. However, this improvement comes at the price of slightly higher
completion times that when mixed quantum durations are used. The main result,
however, is that in both quantum configurations, the high priority application completes
the flow entry addition process before the low priority application. This is the case even
though the low priority application starts first and can install some flow entries before
the flow entry addition requests of the high-priority application arrive. These results
show that the scheduler works as expected and that strict prioritization can be archived
when the characteristics of the hardware are understood, and the SDN protocol provides
the corresponding primitives.

1.00 - = >
5 il e
e
=] d
= J/
o 0.75- /
= /
—
< /
-‘(7; /
£ /
2 0.50- /
© 1
& /
8 !
= 0.25-]
S 7 (Y S —— i —————
O
—~
v
~
0.00
0.2 0.4 0.6
Time [s]

Application Test type

— Start first — No scheduler

— Start second — Scheduler, same priority, quantum 1:1

Figure 4.23: Flow entry addition time with and without the scheduler for the fairness use case
(adapted from [Vil18]).

4.5 DISCUSSION AND CONCLUSION

==

o
(o)}
1

Completion time [s]
kS

02~ hd
Start first Start second
Application

Test type

Bl No scheduler
BS Scheduler, same priority, quantum 1:1

Figure 4.24: Flow entry addition completion time with and without the scheduler for the fairness
use case (adapted from [Vil18]).

Besides the prioritization use case, fairness is an important aspect. We expect control
plane application that are part add-on services to have the same priority. The results of
the experiments without the scheduler are the same as above. There is no difference
between these two experiments except the application priority, which cannot be specified
without the scheduler. Therefore, the behavior that can be seen in the results without
the scheduler is the same as before as can be seen in Figures 4.23 and 4.24. The behavior

of the system with the scheduler shows lower variability and smaller completion times.

However, the flow entry addition times for the application that starts first show an

increased variability, which is similar to the behavior of the system without the scheduler.

Nevertheless, the completion times for the two applications are remarkably similar, albeit
not the same. Therefore, we conclude that while strict fairness could be only partly
achieved in the investigated use case, the fairness could be increased.

For more details on the system implementation and extended results, please refer to
the master’s thesis of F. Villa-Arenas [Vil18].

45 DISCUSSION AND CONCLUSION

We presented an approach to discover and analyze potential performance bottlenecks
in SDN data planes in this chapter. Starting at the cause of performance issues, the
hardware, a new abstraction was introduced, the resource. Based on this concept, we
were able to create a simple, yet powerful tool, the resource topology that SDN controllers
use to reason about the performance of their data plane.

81

82

VIRTUALIZING THE CONTROL PATH OF SOFTWARE-DEFINED NETWORKING DATA PLANES

Its feasibility was shown by applying it to a representative data plane device, the
Edge-Core AS5712-54X. A resource class was identified that had not been virtualized yet:
reading and writing values to tables in the forwarding ASIC. Ignoring these resources
means that the isolation between control plane application is not complete, which in
turn can lead to uncontrolled performance bottlenecks. By presenting a virtualization
approach of the flow entry addition for TCAM-based flow tables by using existing
OpenFlow primitives, we closed this gap. The virtualizer clearly shows that resource-
related information provided by the data plane as well as the cooperation of the control
and data plane are required to implement controlled virtualization and avoid unexpected
behavior of control plane applications.

Furthermore, we showed that the prioritization of applications is possible when the
data plane and control plane exchange information on resources. In the presented
design, an existing OpenFlow primitive, the flow bundle was used to implement
this information exchange. Our evaluation shows that the approach indeed fulfills
the virtualization requirements of SDN control planes. The design outperforms the
prevalent approach to installing flow entries by a wide margin, in addition to providing
prioritization and fairness. While the application of this approach is limited by the
re-used of an existing OpenFlow primitive, the performance and usefulness of the
mechanism were demonstrated on a state-of-the-art SDN switch. Furthermore, the
analysis clearly showed the need for this kind of mechanism in future SDN protocols,
such as P4ARuntime [P4Runtime].

While we presented the first systematic approach to discovering data plane resources
and proved its usefulness, we also discovered areas for further improvement. The
analysis works best when the hardware resources of a device are known, which is not the
case for many packet processing ASICs today. Furthermore, the goal of SDN protocols
is abstraction, i.e., the reduction of information. The bottleneck analysis introduces
a lot of new information requirements to SDN protocols. This information, however,
is difficult to add to SDN protocols like OpenFlow that were designed with a focus
of functional abstraction. We, therefore, suggest that next generation protocols, such
as P4Runtime [P4Runtime] should include resource information in their design. Our
findings support the idea of Ousterhout et al. [Ous+17] that performance clarity should
be a first-class design principle for both hardware and software designs to achieve
efficient, predictable, and controllable SDN control planes in future ISP networks.

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR
VIRTUALIZED SDN DATA PLANES

In this chapter, we discuss our answers to Research Questions 2.1 and 2.2 that are
stated in Chapter 1. From the perspective of control plane applications, virtualized
SDN data planes differ from non-virtualized data planes in one significant aspect:
virtualized control planes show a higher variability in resource availability and control
path bottlenecks caused by contention.

We investigate the nature of control path bottlenecks by classifying them and analyzing
how they are perceived by the SDN control plane. Furthermore, we investigate the
design space for control plane applications to react to these events to ensure reliable
operations. The goals of this investigation twofold: the first goal is to demonstrate that
applications can mitigate the effects of performance events to improve their reliability.
The second goal is to analyze what kind of information the control plane applications
require from the controller to execute the mitigation approaches.

The investigation is conducted in the context of two representative control plane
applications: network function chaining and multicasting. Network function chaining is
a crucial service that enables NFV and focusses on the data center parts of ISP networks.
Multicasting applies to all parts of ISPs networks. It provides the distribution of packet
streams, e.g., videos, between the core network, the ISP’s customers, and the rest of the
Internet.

We start the investigation by analyzing control path bottleneck events as well as the
design space for mitigating them in Section 5.1. The scenarios and use cases that motivate
the two representative control plane applications, network function chaining, and SDM,
are presented in Section 5.2. A design for a network function chaining system that can
mitigate local control path bottlenecks is introduced in Section 5.3. Our proposal of
SDM-based design that can mitigate global resource shortages in the control paths of the
data plane is discussed in Section 5.4.

The investigation in this chapter partially relies on input from three papers [Ble+14;
Ble+15a; Ble+15b] and three supervised student theses by S. Bleidner, T. Volk, and P.
Welzel [Blel5; Vol14; Well6].

5.1 DESIGN SPACE ANALYSIS

To discuss the changing availability of data plane resources, we introduce the term
resource event.

83

84

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

Definition 10: Resource event
An event that is caused by a resource shortage in the data plane that affects the
operations of control plane applications.

We focus on control path resources in this investigation, but the definitions apply to data
path resources as well. At the core of resource events are information gathered from
single elements of the resource topology in the data plane. These events are termed local
resource event.

Definition 11: Local resource event
A resource event that affects a single data plane element of a network domain.

If these events directly affect control plane applications, they must react accordingly.
If a local event does not directly affect applications, it is possible that it contributes to the
formation of a global resource event:

Definition 12: Global resource event
A resource event that affects a whole area of the data plane of a network domain.

In both cases, the controller or the application must identify such an event and initiate
a mitigation process if required. To connect the data path and control path resources,
the resource topologys of all data planed elements are interconnected using a topology
discovery process, which is available as a standard feature in today’s SDN controllers.
The resulting data plane resource topology contains all resources in the controlled
network. The view of the control plane application on the network topology can be
restricted or modified by the controller. Therefore, the same process that is used to
restrict the view of control plane applications on the network topology is applied to the
data plane resource topology to determine all control path resources in the view of a
given application.

This virtualized view on the network influences the emergence of events since the
available resources are limited to this view. Therefore, both local and global events do not
necessarily affect the same control plane applications even though they might use some
of the same data plane elements. One of the goals of this investigation is to determine
which entity, the controller or the application should trigger an event. Furthermore,
it will be analyzed what kind of information is required from the controller and the
application to trigger the event and to decide how to react to it.

To operate reliably, control plane applications need to be able to mitigate the effects of
resource events. In general, applications should consume as little resources as possible to
avoid being affected by a resource event. Therefore, all applications should be optimized
for their data plane resource consumption.

If a resource efficient control plane application is nevertheless affected by a resource
event, it must decide how to react to the issue. If a specific resource is unexpectedly not
available to an application, the application’s resource consumption must be modified, or

5.1 DESIGN SPACE ANALYSIS 85

. @®
V=

Control Plane
Control Plane 2 =

o1 R
Application :D —
Vi

Controller

Other
applications

Data Plane
Element

Management &
. System
S
Interface Statistics Local bottlenecké
terface \
TCAM =
Y= \
e K L/ \
[/ e SULIYAN N
Eecl OUT P2 i@, Data Plane g Data Plane ﬁ

Management Management
System System
- >
s > TCAM N\
Interface

|
Z—, Processor
&

Element

N\
louT p3y \ |Element
\ P
TCAM

/

Packet
Processor

\

Data Plane A\

Element

g
——— Processor
S

,
!,
~

—_~ 1724
Global bottleneckéé

Figure 5.1: Overview of resource events and corresponding mitigation strategies.

the whole operation has to be canceled. Depending on the resource and the event, the
modification of the resource consumption can take place in one or more dimensions:
temporal, quantitative, spatial, and type as depicted in Figure 5.1. A temporal resource
modification means that the time of the resource consumption is postponed as denoted
in the figure by (. A quantitative modification means that the amount of resources to be
consumed is reduced, e.g., by compressing the resource request). A spatial resource
modification means that the resource is not used in its originally indented location,
e.g., a specific data plane element, but in a different one Q). Finally, the bottlenecked
resource can be replaced by a different resource type @. These four dimensions specify
the complete design space for reacting to resource events. The approaches on how to
implement these resource request modification operations can vary between use cases
and applications.

86

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

We focus on the primary resource events in this thesis. Multiple applications can
react to a local resource event in the same manner, e.g., by a spatial modification of the
resource request and selecting the same new location to conduct the planned operation.
Thereby a new resource event in the new location can be created. Coordination between
the application’s mitigation strategies is required to prevent cascading resource events
through the network. We denote the initial resource event that was not created by another
resource event, as a primary resource event. Resource events that are created as the effect
of another resource event are termed secondary resource events. We consider secondary
resource events future work because the design space and effects of the handling of
primary resource events must be understood first.

5.2 SCENARIOS AND USE CASES

The control plane application use cases analyzed in this chapter to investigate approaches
for mitigating control path performance events are selected to be representative for
ISP networks. Therefore, they include a low and a high priority application, and
cover, between them, all relevant areas of ISP networks. To that end, two control-plane
applications are investigated: network function chaining and multicasting.

Multicasting is a control plane application that shows great promise for the delivery
of live-streaming media [Riic16]. Multicasting applications interact with most parts of
an ISP network, with a focus on the core and edge network. While multicasting is useful,
it is an add-on service that is expected to operate at a low priority. Network function
chaining is used in data centers in the context of NFV to create packet processing graphs
from VNFs. The application areas for our investigation are edge data centers that are
proposed for ISPs, e.g., by Peterson et al. and their CORD approach [Pet+16]. Network
functions chaining is crucial for NFV, and the corresponding application is, therefore,
expected to operate at high priority. In combination, both applications are involved all
relevant area of ISP networks and include a low and a high priority application. Network
function chaining is introduced in Section 5.2.1 and SDM in Section 5.2.2.

5.2.1 Network Function Chaining

To achieve consistent terminology in this thesis and avoid confusion we refer to the
concept discussed in this section as network function chaining. The term network
service chaining is often used in literature to denote the same concept. However, it
predates the widespread adoption of NFV in academia, and was, e.g., used in our
original publications [Ble+14; Ble+15a]. We use the newer NFV terminology to discuss
the relevant components. The terminology is oriented on the terminology of the ETSI
[ETSI18]. It is adapted for readability in this context and restricted to the relevant terms.

Network services can be created through the combination of VNFs. To achieve that,
network traffic has to be identified at the edges of the data center to become subject of

5.2 SCENARIOS AND USE CASES

a network service. Then, the traffic is forwarded through a chain of VNF instances to
implement the service. In this context, the traffic routing between the VNF instances
does not rely on traditional routing or switching. Instead, depending on the network
service’s requirements for network traffic, it is forwarded in arbitrary patterns at the
discretion of the network service designer. This traffic forwarding scheme is called
network function chaining.

Packet classification

(by subscriber IP address)
Vi N

Data center edge switch Nla/f H NF\W . Data center edge switch

o

Subscriber

A ISP Core

MAC address-based forwarding

Figure 5.2: Network function chaining scenario (adapted from [Ble+14]).

An example of an edge data center that uses NFV is depicted in Figure 5.2. The ISP in
the depicted example provides a mobile Internet access service to its subscribers. The
service includes, besides a subscriber gateway function ¥, a firewall % and a deep packet
inspection function & The security network service is implemented by forwarding
the customer’s traffic first through a subscriber gateway VNF instance to establish the
subscriber’s plan that includes, e.g., enforcing a traffic volume limit. Then, the traffic
is forwarded through a firewall VNF instance to block unwanted connections from the
Internet and through a deep packet inspection VNF instance to prevent that, e.g., voice
over IP (VoIP) is used over the data connection as many mobile operators do today. The
first VNF instance is configured to the specific needs of the customer and is, therefore, a
dedicated VNF instance that is operated only for a specific customer. Both, the firewall
and the deep packet inspection VNF instances, are not specific to one subscriber. The
mobile network access service used in the example is created by a network function
chain, which defines an order of VNFs the traffic traverses. The specific chain that is
implemented in the data center for a specific customer is termed network function chain
instance.

The traffic of the customer is identified by one of the ISP’s edge switches. It is
tagged there and then forwarded through the VNF instances as required by the network
service. All services in the edge data center that use NFV rely on the network function
chaining application. Therefore, in the edge data center network’s control plane, the
network function chaining operates at the highest priority. The only other control

87

88

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

plane application with the same priority is the fabric application that provides basic
connectivity.

Different approaches to implementing network function chaining exist, with different
performance and usage characteristics. One central aspect of network function chaining is
the identification of network packets after a VNF has processed them. The issue is caused
by the fact that in many of today’s architectures, a single VNF is designed to service
many network function chain instances at the same time. Therefore, an identification
mechanism is required to identify packets of a specific network function chain instance
after they have been processed and the packets’ contents have been potentially modified.

Many existing approaches exist on how to approach this issue. Network service
headers introduce a new network protocol that is used by intermediate switches, virtual
switches, and VNF instances to keep track on the traffic flows, their affiliation, and their
path through the available VNF instances [RFC8300]. However, the design requires the
implementation of a new, complex network protocol on every component in the system.
The protocol is not available today in all devices, e.g., it is not supported by OpenFlow.
StEERING [Zha+13] is a function chaining approach that was specifically introduced and
optimized for OpenFlow. However, it does not address the packet identification problem
stated above. SIMPLE [Qaz+13] addresses the issue, and while the proposed solution
seems promising, it is complex to implement. Therefore, we propose to use network
interfaces for traffic identification [Ble+14]. Network functions signal the function chain
instance, as well as the direction a packet is forwarded in that chain instance, by sending
packets out a specific network interface.

While the approach solves the described problem elegantly, it requires the modification
of many flow entries in case of an NFV infrastructure device failure. This is caused by
the fact that for every VNF instance, a set of flow entries must be installed on the NFV
infrastructure device to which the subscribers of the failed device are moved to. The
number of flow entry additions can lead to a performance bottleneck of the flow table
memory interface of the virtual switches the subscribers are moved to. The income of
ISPs often directly depends to the availability of their network access service. Therefore,
moving the network function chain instances for the subscribers affected by the failure
to a new NFV infrastructure server is time critical.

We will investigate the performance bottleneck characteristics, and the information
required by the network function chaining control plane application. Furthermore, a
strategy for mitigating the performance bottleneck is investigated. Specifically, we identify
the data center ToR switch that connects the virtual switch of the VNF infrastructure
device to the data center fabric as having a low flow entry addition load. Therefore,
we investigate the efficiency of applying mitigation strategy 3 to the network function
chaining application. We do so by shifting a part of the flow entry addition load from the
virtual switch to the ToR switch to decrease the total failover time and thereby increase
the application’s reliability.

5.2 SCENARIOS AND USE CASES

5.2.2 Software-Defined Multicast

Network layer multicast, e.g., IP multicast proposed by Deering et al. [DC90] has been
investigated in academia and industry for two and half decades. Multicast is successfully
used in ISP networks today to provide IPTV services. This service accepts a single TV
signal per channel as a packet stream at a data center of the ISP. The network devices
duplicate the packets of this stream on their way to the subscribers as needed. By

avoiding unnecessary transmissions of the same content, the network traffic is reduced.

Unfortunately, IP multicast is used today within single network domains only.

The increasing popularity of OTT content creates a high traffic load on content delivery
networks (CDNs) that distribute the content as well as on ISP networks that interconnect
CDN:s to their customers. Furthermore, the CDN traffic can lead to unexpected traffic
patterns at the edge links of ISPs. These can interfere with the traffic engineering process
of ISPs and thereby lead to performance bottlenecks in the data path [Ble+18]. Many of
these OTT services could benefit from network-level multicast, which is not available
on the Internet today. Where IP multicast failed for global content delivery, SDN-based
packet replication services have been proposed recently to tackle this issue, such as SDM
by Riickert and Blendin et al. [RBH15].

One example of a high traffic load event caused by OTT is the rollout of software
upgrades. An investigation of the rollout of updates of Apple iOS devices by Blendin
et al. [Ble+18] showed significant traffic increases in the network of a large European
ISP within a single day. Furthermore, the observed update event saturated the delivery
infrastructure of Apple, which required it to buy additional capacity from third-party
SDN providers. From the perspective of ISPs, the event created unpredictable traffic
patterns on seemingly unrelated network links. To mitigate these traffic engineering
issues for ISPs, SDM could be used to distribute the software update to small caches
on the subscriber’s premises. Thereby, the load on the delivery infrastructure of Apple
could be reduced through network level packet duplication, and the ISPs can increase
the control over the traffic in their network. Another area of application that would
strongly profit from Internet-wide network layer packet replication and SDN-based
network-layer replication support is publish-subscribe systems, as demonstrated by
Bhowmik et al. [Bho+17].

The interest in content on the Internet, which is reflected by the distribution of group
sizes in multicast systems, is Zipf distributed. This characteristic was discovered by
Adamic et al. [AHO02] and was confirmed for streaming services by Sripanidkulchai
et al. [SMZ04].

Multicasting on the network layer and the layers below is limited by the number
of groups a system can control. Figure 5.3 depicts a conceptual view of the Zipf-like
distribution of multicast group sizes and which technologies apply to which part of the
distribution. A few huge groups such as TV channels can be and are distributed using
physical layer multicast, i.e., radio broadcast. While the technical effort to implement

89

90

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

Group Size
|
A | |
N================ Physical layer multicast
B N Closed networks: IP multicast
_____ R
- - l\ ————— Global Internet: Software-Defined Multicast
- \
v \
R et » < — Adaptive Software-Defined Multicast
i ~
~
v S~
e

Number of Groups

Figure 5.3: Zipf-like multicast group size distribution and multicast delivery technologies

such a system is high and often only tens of channels are supported, its costs are small for
a single consumer or multicast group member. The costs are low because an additional
consumer or group member in the system does not increase its costs. Smaller multicast
groups are often not available for physical layer multicast but could be distributed in
closed networks using IP multicast. The latter is done today in IPTV systems of ISPs. In
IP multicast per group state is kept in all data plane elements involved in forwarding
multicast traffic. This limits the maximum number of groups such a system can host, in
addition to the lack of a global multicasting system.

SDM is one approach to for global multicasting on the Internet. It enables global
network layer multicast by using unicast addressing and transparently applying multicast
forwarding inside of SDM-enabled networks. This, in addition to a well-defined
service interface and an end-to-end detection mechanism on the Internet, enables
global multicasting without requiring every network on the way to support this mode
of forwarding. However, the original SDM approach still relies on the traditional
distribution methods that are used by IP multicast as well. This means that the amount
of memory required on data plane elements per multicast group and member is high,
which limits its application to a small number of large multicast groups. The vast number
of small multicast groups observed in Zipf-distributed group sizes cannot be efficiently
supported.

ASDM aims to enable just that: supporting a large number of multicast groups,
even if they are small. There are two perspectives on this: the general efficiency of
the approaches per subscriber in the given Zipf-like group distribution as well as the
management of multicast group state in the data plane elements of ISP networks. The
general state efficiency of multicasting approach can be optimized in a generic way for
all ISPs. However, the sheer number of multicast groups in large-scale multicast systems
will always be able to fill the available state memory in the data completely. Therefore,

5.3 ENABLING DYNAMIC FUNCTION CHAINING TO MITIGATE FLOW ENTRY ADDITION BOTTLENECKS

an approach is required that enables ISPs to adapt the behavior of the multicast system
to their needs regarding the tradeoff between data plane memory and data rate to be able
to utilize them to their full capacity. This includes the requirement for such a system to
work with different amounts of available memory in the data plane.

This requirement is strengthened by the fact that SDM is not expected to be a high-
priority services in the ISP network control plane. It increases the efficiency of the
network and reduces the need for traffic management intervention but is considered an
add-on service. From the perspective of resource consumption in the data plane, an
approach is needed that is very efficient per group member, supports a large number of
groups, reduces the traffic volume in the network, and can operate on the residual data
plane memory that is not used by high-priority applications.

To that end, we propose the ASDM and ABSDM approaches that combine the global
availability of SDM with a controllable tradeoff between state and data rate utilization in
the data plane.

5.3 ENABLING DYNAMIC FUNCTION CHAINING TO MITIGATE FLOW ENTRY ADDITION
BOTTLENECKS

The goal of the network function chaining design is to provide an efficient, reliable,
and simple approach that can be practically deployed in edge data centers today. To
that end, the design introduces an efficient and simple approach for identifying traffic
flows coming out of VNF instances, an efficient forwarding scheme, and a scalable
VNF instance deployment design. The ability of the design to mitigate control path
bottlenecks increases the reliability of the service provided by the application. Before
discussing the design of the bottleneck mitigation approach, we introduce the design for
the network function chaining approach to discuss the design decisions that affect the
design of the mitigation approach.

An example data center that uses the proposed SDN-based the network function
chaining design is depicted in Figure 5.4. The NFV infrastructure servers are located
in racks and connected to ToR SDN switches. These are in turn interconnected using
additional aggregation switches in a leaf/spine topology as proposed for edge data
centers by Peterson et al. [Pet+16].

We introduce the design of the proposed system by introducing the flow identification
and forwarding scheme in Section 5.3.1. The central packet interface definition of VNF
instances is described in Section 5.3.2. Finally, our design for mitigating control path
bottlenecks is discussed in Section 5.3.3.

5.3.1 Packet Flow Identification and Forwarding Scheme

The core design decision of the approach is the packet flow identification at the packet
interface of VNF instances. Network function chain instances use a mix of dedicated

91

92

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

Network Functions | cnEey Neineik Eunsiens Network Functions
Virtualization Infrastructure 1 gacy Virtualization Infrastructure 2

M Deep M

Packet Firewall
VNFI1 | | VNFI2 | | VNFI3 Inspection VNFI4 | | VNFI4 | | VNFI6
) A
i Lja' Data Center irt{l
fifpn 1 Top of Rack Sypitdp 1

Switch 2

(N

\ b | \ b
T n T D
Dhta Center | ‘ Jata |Penter
T|p of Rack Data Center Data CentecL Top g Rack
Pwitch 1 Spine Spine T Switch 3
T switcn Switch 2 ‘

|

ata Center [l Data Center
p (‘)tf Eafk ﬁﬂ'rop of Rack
vitc
—|

Edge Data Center /NSWItCh !

Ibp Access Flow identification

Network ISP Core

Network

Nod Nod
01 © % © Node Node

Figure 5.4: An example edge data center with the proposed network function chaining design
(adapted from [Ble+15a]).

and shared VNF instances as depicted in Figure 5.4. The system relies on network
interfaces to identify traffic sent to and received from VNF instances. In most cases,
a dedicated VNF instance has two interfaces: the ingress interfaces for traffic from
and to the subscriber and the egress interface for traffic from and to the Internet. This
simple approach solves the problem of traffic identification that often arises when a large
number of subscribers share one VNF instance [Qaz+13]. The problem is caused by
the packet interface characteristics of a type of network functions. Specifically, network
functions that modify the packet flow headers in a way that makes them not easily
identifiable after processing, e.g., by modifying the IP addresses, or create an entirely
new packet flow. An overview of selected packet interface types of VNF is given in
Table 5.1, which is discussed in Section 5.3.2. By using network interfaces to identify
traffic, the network function chaining problem is reduced to the problem of creating
interconnections for network interfaces in the data center. A network function graph
instead of a chain can be implemented through VNF instances with more than two
interfaces. The additional interfaces enable the instance to select alternative paths in the
graph. Shared VNF instances can be implemented by using multiple, separate sets of
interfaces per network function chain instance.

5.3 ENABLING DYNAMIC FUNCTION CHAINING TO MITIGATE FLOW ENTRY ADDITION BOTTLENECKS 93

Creating many network interfaces is not an issue since the network interfaces are
created on software switches and, therefore, are software instances only. The NFV
architecture is assumed to be based on many small, disaggregated VNFs. A dedicated
VNF instance per subscriber or traffic stream can be used. The idea and feasibility of
operating a dedicated VNF instance per traffic flow in the form of a virtual machine (VM)
were presented by Bifulco et al. [Bif+13] and confirmed by Madhavapeddy et al. [Mad+15]
as well as Manco et al. [Man+17]. The concept is also proposed for the CORD-based
design for residential access networks by the ONF!. Furthermore, the deployment process
for a large number of VNF instances is supported by our design through the concept of
VNF instance isolation.

The network function chaining approach is aimed at edge data centers where, in
addition to other services, the service gateways are operated for subscribers. These
service gateways could be implemented as virtual machines as proposed by the ONF in
their R-CORD proposal for implementing residential network access services? or based
on hardware switches as proposed by Nobach and Blendin et al. [Nob+17]. Independent
of the implementation, subscriber identification facilities are available, either as IP
addresses or prefixes or in the form of virtual LAN (VLAN) or other protocol tags.
These identification facilities are used for subscriber identification and can be used
for matching using the OpenFlow protocol [Nob+17]. In this discussion, we use the
subscribers IP addresses. However, the mechanism can be replaced without changing
the characteristics of the design. Traffic coming from the Internet of other parts of the
ISP network is always identified by its IP address.

The forwarding scheme is inspired by the MAC-address based data center forwarding
approach PortLand proposed by Mysore et al. [Nir+09]. We use MAC addresses instead
of VLAN tags [IMS13] or Segment Routing because it is well supported by existing
OpenFlow hardware. This includes masked matching of MAC addresses as well as
writing MAC addresses. Support for, e.g., VLAN tags in existing SDN hardware is not
complete. As shown, e.g., by Nobach et al. [Nob+17], even state-of-the-art switching
ASICs such as the Trident II do not fully support the processing of more than one
VLAN tag. While the PortLand approach fits the edge data center use case well, it is not
designed for SDN and is a generic design for data centers. Since edge data centers are
restricted in size and we can simplify the forwarding mechanism.

Our proposed MAC address encoding scheme is depicted in Figure 5.5. A modified

00:09:2d:01:03:02
Rack VNFI VNFI Port Flow ID
D D ID

Figure 5.5: The MAC address encoding of forwarding information (adapted from [Ble+15a]).

1 https://wiki.opencord.org/pages/viewpage.action?pageld=1278090
2 https:/ /www.opennetworking.org/r-cord/

94

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

version of the hierarchical addressing scheme of PortLand is used. The first byte of the
48-bit MAC address field encodes the rack in the data center where the NFV infrastructure
server is located. The second byte signifies the server in the rack that is addressed. The
12 bits after that specify the port number of the virtual switch of this server. The last 20
bits encode a unique flow ID that can be used for verification by VNFs and debugging
purposes; it is not required for the forwarding process.

The maximum edge data center size supported by this design is 256 racks with 256
servers each for a total of 65,536 servers. Each NFV infrastructure server can host at
maximum 32,768 VNF instances with two interfaces each. We argue that these restrictions
are sufficient for edge data centers.

This design combines the advantages of hierarchical addressing with the freedom
for forwarding customizations for the leaf-spine layer. We assume a fully redundant
leaf-spine architecture, where every VNF instance is connected to two ToR switches that
are in turn connected to all available spine switches. Specifically, the ToR switches that
act as leaf switches and the spine switches need at most 512 forwarding table entries
for redundant paths to any NFV infrastructure server. For directly connected servers,
ToR switches additionally require 256 forwarding table entries. Because at each hop,
only a part of the MAC address is matched against, wildcard matching is required.
State-of-the-art OpenFlow switches support TCAM-based tables of these sizes.

In the investigated NFV environment, most interfaces are virtual interfaces. The
virtualization manager assigns the MAC addresses of virtual interfaces. Hence, in this
specific use case, we can control all MAC addresses of the involved devices and assign
them as required. Therefore, optimizations or more general approaches such as the
,MAC address as routing label” approach proposed by Schwabe et al. [SK14] are not
required.

5.3.2 Virtual Network Function Instance Packet Interface

A packet interface defines the data plane interface between the network function chaining
system and attached VNF instances. This interface is crucial to the presented system
because it implements the network function chaining as well as the VNF instance isolation
feature.

The chaining of network functions relies on matching on the ID of the port a packet is
received on from a VNF instance. This port ID is sufficient to determine the next VNF
instance the traffic has must be forwarded to. Therefore, the virtual switch has to match
for the incoming port ID and write the encoded identification of the port of the next VNF
instance in the chain into the MAC address field of the packet. Packets that are sent to
VNF instances only need to be matched for the part of the destination MAC address that
encodes the destination port ID.

The VNF instance isolation feature is depicted in Figure 5.6 simplifies the deployment
of large numbers of VNF instances. Normally, depending on the type of VNF, each

5.3 ENABLING DYNAMIC FUNCTION CHAINING TO MITIGATE FLOW ENTRY ADDITION BOTTLENECKS

Packet flow Virtual network
~}._ function instance Egress link
Ingress link | >y % 1-
‘iﬁ_“ a
] VNF Instance
PP S — __ isolation enforcement
-
- —
_____ T o N
» ISP Core
Node 1 Virtual switch Network
Subscriber T -

other parts of the network
are not shown

Figure 5.6: The network function chaining system’s packet interface to VNF instances
(adapted from [Ble+14]).

instance needs a unique MAC address, IP address, as well as knowledge about the next
hops for forwarding traffic. To that end, we propose to completely isolate the VNF
instances from network control traffic, by filtering and manipulating Address Resolution
Protocol (ARP) messages. Thereby, all VNF instances can use the same network address
information if needed. Alternatively, the MAC addresses for each VNF instance can be
configured to be the address used by the proposed forwarding system.

Implementing the isolation feature requires additional packet processing on the virtual
switch. First, all control traffic is filtered, or rate limited and forwarded to a centralized
MAC address manager. This manager provides MAC addresses for next hops the VNF
instances might want to forward traffic to. When packets are sent to or received from
isolated VNF instances, the exact processing depends on the type of VNF. Therefore, we
derived a classification for VNF packet interfaces and their specific packet processing
requirements to providing instance isolation that is listed in Table 5.1. The column

,Forwarding” describes the type of packet processing conducted by the VNF instances.

The column , In: requirements” specifies the required MAC address configuration for
incoming packets to be forwarded. The modifications applied by the VNFs are listed
in the column , Modified fields”. The modifications applied by the network function
chaining system to packets received from the VNF instances and to be forwarded towards
the internet are shown in ,Internet—Subscriber: packet modifications”. If a VNF type
can be shared between chain instances without losing its identifying information, the
column ,Sharing possible” contains the entry ,yes”.

95

96 DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

Table 5.1: Typical network function types and their packet interface types [Ble+14].

Name Forward- In: Modified Internet— Sub- Sharing Example VNF
ing require- fields scriber: packet possible

ments modifications

Transpar- portbased | none none none yes intrusion detection

ent system

L2 bridging MACy # none none yes switch
MAC;¢

L3 routing MACy = L2 src,dst L244 = yes firewall
MACif MACnext instance

L4 routing MACyq = L2 src,dst; L3 modifications yes destination NAT
MAC;¢ L3,L4 dst

L4, routing MACyq = L2 src,dst; L3¢ = IPyger + no source NAT
MAC;; L3,L4 src L3 modifications

L7 proxying MACyq = L2,L3,L4 L4, no HTTP proxy
MAC;; src,dst modifications

5.3.3 NFV Infrastructure Failover Bottleneck Mitigation

Investigating potential control path bottlenecks for the proposed network function
chaining system leads to the virtual switches as the primary location of memory
consumption and control plane activity. The only other component in the system
where considerable flow table space is used is the ToR switches that hand over traffic to
subscribers or the core network. The distribution of required OpenFlow flow table space
and the number of flow entry modification required for modifying a network function
chain instance is listed in Table 5.2. The core switches only require modifications in the
case when core switches or ToR switches are removed or added.

Table 5.2: OpenFlow flow entry metrics (adapted from [Ble+15b])

Metric Switch type Number of flow entries

Edge switch 2 (Num. subscribers in the system) (IP

Max. number of Addresses per subscriber)

entries per switch

ToR/core switch 2 (Num. ToR switches in use)

Virtual switch 4% (Local VNFI}VNFIi (Num. subscribers)
Max.. entry ToR switch connected to the ISP core or | 2 (Num. IP addresses of subscriber)
mOdlﬁCle’“ access network
per s.u ?bscrlber ToR/core switch None
modification

Virtual switch 4 (Num. of local network function

instances of subscriber)

Considering the resilience of the leaf-spine configuration the only event that requires
a large number of flow entries to be modified is an NFV infrastructure server failure.
In this case, all VNF instances that are hosted on this server must be relocated to a

5.3 ENABLING DYNAMIC FUNCTION CHAINING TO MITIGATE FLOW ENTRY ADDITION BOTTLENECKS

different server. The total service outage time depends on the time required to move the
VNF instances as well as the time to redirect the traffic flows by modifying the network
function chain instances.

When the server has already crashed, migrating the VNF instances is not an option.
Instead, they must be re-created. The creation time for per-chain instance VNF instances
can be as low as tens of milliseconds as reported by Manco et al. [Man+17]. Unfortunately,
it is not clear from the paper of Manco et al. how well this process can be parallelized.
Their investigation show constant per VM creation times below 10ms. However, it is not
clear if using the 60 CPU cores like in their experiment to create 3000 VMs result in a
total sequential time of 10ms * 3000 = 30s or parallelized 603;25;@5 = 0.5s. The parallelized
completion time of 0.5s is considered an acceptable service outage duration, 30s is not. If
this latter case is true, the failover time for the VNF instances can be reduced by keeping
enough VMs of every type available that a single server can fail. In the failure event,
the existing VNF instances only need to be configured for their network function chain
instance. We expect this time to be much lower than the time needed to create a new VM.

In either case, new OpenFlow entries on the virtual switches must be created in order
to repair the broken function chain instances. As listed in Table 5.2 for every moved VNF
instance four flow entries must be added. This creates a spike in control path activity on
the virtual switch, in case of 3000 VNF instances 12,000 flow entries must be added.

Depending on the performance of the flow addition process on the virtual switch,
this can take a considerable amount of time. Since we assume that the network function
chaining application operates at the highest priority in the control plane, interference
from other applications has not to be accounted for. The control paths of the two ToR
switches every virtual switch is connected to are entirely idle. Therefore, the system is
designed so that it can share the flow entry addition load between the virtual switch on
the NFV infrastructure server and its adjacent ToR switches.

The idea is that some of the flow entries can be installed on the hardware switch as
well, and then are later moved to the virtual switch once the control path load is back to
normal. The process ensures that the data path of the packet is not modified to conduct
control path load sharing. This restriction requires that only flow entries are moved
to the ToR switch that would pass through it anyway. For example, flow entries that
forward packets between VINF instances inside of the virtual switch are not eligible to
be installed on the ToR switches. Therefore, only chain links between VNF instances
on different servers to chain links to the handover ToR switches to the access and core
network are eligible for moving. A flow entry must be added to the virtual switch that
forwards all packets, which are received from local VNF instance ports and are not
handled by local flow entries, to one of the connected ToR switches. To that end, a flow
entry is added that writes the correct source MAC address in every outgoing packet to
ensure that the information on the switch port the packet was received on is available for
matching on the ToR switch as well. This behavior can be implemented by copying the
source port ID to the corresponding MAC address field using the Copy-Field primitive

97

98

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

of OpenFlow. Since the virtual switch can forward the packets to any of the two ToR
switches or might even use equal-cost multi-path (ECMP) routing, the flow entries must
be added to both switches.

The preparation for the mitigation for control path resource bottlenecks that affect
the flow entry addition performance starts when the NFV orchestrator initializes the
network function chaining application. The application gets all relevant information
from the controller, e.g., the network topology, and the link speeds. The virtual switches,
as well as the ToR switches that are connected to the ISP access and core networks,
are identified, and configured. Then, the application queries the controller for the
control path characteristics of the virtual switches as well as the ToR switches adjacent
them. The controller provides the answer including a measure for the uncertainty in
the flow entry addition performance. The control plane application estimates if, in the
best case, sharing the flow entry addition load can decrease the completion time of the
process sufficiently to trade off the overhead of the process. Since the performance of
TCAM-based flow tables depends on many factors, e.g., the number of existing flow
entries in the table, this estimation is only used to decide of load sharing makes sense at
all. If load sharing can improve the completion time, a process is activated that decides
when the actual event occurs if it still makes sense given the specific information. If load
sharing cannot improve completion times at all, the decision process in case of a server
failure is disabled.

When the NFV orchestrator signals that a server has failed and that a set of flow entries
must be installed on an NFV infrastructure server, it also provides a deadline for the
completion of the process. The application immediately requests the current flow entry
addition performance estimated from the controller. It then analyses, which and how
many of the flows are eligible for being moved to the ToR switch. Now, the decision
is made if load sharing reduces the completion time sufficiently. If this is the case, the
application first installs the default route for forwarding unmatched packets from the
virtual to the ToR switch. Then the bulk of the flow entries are sent to the controller with
a request to receive constant updates on the installation processes performance.

If the flow entry addition performance on either of the switches does not match the
values provided by the controller, the application might must re-run the decision process
and, e.g., modify the load sharing ratio. Once the application received the confirmation
that all operations are completed, it forwards this information to the NFV orchestrator
and the process is finished.

Literature suggests that flow entry additions on software switches are much faster
than on hardware switches using TCAM-based flow tables [HYS]. The application needs
a mechanism to decide whether moving a part of the flow entries to the ToR switches is
worth the overhead.

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED MULTICAST

We express the completion time improvement for adding all flow entries in Equa-
tion (5.1).

M N-M
max (tpToR(M) +0, tp,g(N—M))

_N__
tpVS)

R =

(5.1)

where:

R €[0,1] = relative reduction in completion time

N = Total number of flow entry addition operations

@) = Processing time overhead

Es = Data plane element: virtual switch

Etor = Data plane element: ToR switch

tpp () = Average throughput for n flow entry addition operations
M = The number of flows that are moved to the ToR switch
Mhax = The maximum number of eligible flows for moving

M hax < N = Number of flow addition operations moved to Eqr

Literature shows that the throughput of adding flow entries to TCAM-based flow
tables decreases with a growing number of entries in the table. Therefore, the flow entry
addition throughput is not given as a fixed number but as a function.

The number of flow entries M to be moved to the ToR switch is derived as provided in
Equation (5.2).

N-M M
min D(M) = abs (— — O) (5.2)
tp o (N=M) tp, (M)
subject to:
0<M<N
M < Mmax

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED
MULTICAST

The design of ASDM and ABSDM aim to provide a multicast system that fulfills the
requirements for control plane applications in ISP networks: efficiency, reliability, and
simplicity. Simplicity is achieved by carefully designing the system to use one single
configurable parameter. Reliability is provided by its ability to optimize the system either
for minimizing state on the data plane or minimizing the data rate of the forwarded

99

100

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

traffic. ASDM and ABSDM are efficient because their adaptive design enables the
optimization of the OpenFlow flow entry consumption. Thereby, the approaches can
operate as add-on control plane applications with lower priority in the ISP network’s
control plane. Furthermore, while ASDM is designed to operate on a unicast forwarding
underlay, we show by applying the adaptive multicast concept to the highly efficient
bit-indexed replication forwarding underlay in our ABSDM design, that the concept can
be applied to other forwarding concepts as well.

The general approach to control the tradeoff between state memory and data rate
usage is presented in Section 5.4.1. The routing design and the corresponding approach
to constructing the multicast tree of ASDM on unicast underlay networks is described
in Section 5.4.2 and the approach of ABSDM for bit-index replication underlays in
Section 5.4.3. Finally, the interactions and requirements of both control plane applications
with the controller to mitigate global memory shortages in SDN networks are discussed
in Section 5.4.4.

5.4.1 Resource Adaptation Approach

The goal of the ASDM and the ABSDM systems is to provide an SDM-compatible
forwarding mechanism that can host a large number of multicast groups where the
group sizes are Zipf-distributed. We will discuss the general approach to adaptive
multicasting in this section on the example of ASDM. We build on the SDM approach
in that the external interface of the system is the same. This means that outside of
the network domain the SDM control plane application controls, all traffic is unicast
traffic. However, within the system, multicast forwarding is applied to the traffic, which
includes network layer packet replication. Multicast groups are managed through a
service interface that operates in the service and controls the control plane application.
This management interface is part of the SDM approach. ASDM replaces the multicast
forwarding inside of the controller network domain, all the other parts of the SDM system
stay the same. We discuss ASDM on the background of SDM. Traditional IP multicast is
not considered a viable alternative. Riickert et al. provide a detailed comparison between
IP multicast and SDM in [RBH15]. For even more detailed discussion on the subject and
an exhaustive presentation of the related work on the issue of multicasting, refer to the
Ph.D. thesis of Riickert [Riic16].

Building on the SDM concept, ASDM relies on unicast addressing outside of the
controlled network. However, in contrast to SDM, unicast is not only used on the edges
of the network, but also inside of the ISP network as depicted in Figure 5.7c. For a single
multicast group, as with SDM, packets are addressed by the traffic source, denoted by B,
to a specific data plane element near the edge of the ISP network, termed ingress switch.
This data plane element is responsible for identifying packets as SDM traffic and its group
affiliation and tagging the packets accordingly. From then on, the forwarding differs
between SDM and ASDM. While SDM employs a special multicast forwarding scheme,

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED MULTICAST 101

ASDM relies on unicast forwarding between multicast-enabled data plane elements.
The first node matches the incoming packet, determines the next multicast switches,
duplicates the packet if required and addresses each copy of to the next multicast switch
on its respective path. On these switches the process is repeated until the edge of the
multicast forwarding system is reached. Then, a similar process is applied, but this
time using the destination addresses of the multicast group members, denoted by 0, as
specified by SDM. Using unicast between the multicast switches within the ISP network
has the advantage that only selected switches must keep state for this specific multicast
group. In contrast to these switches that host multicast state, denoted by @, other data
plane elements on the packets’ forwarding path are not involved with multicasting,
denoted by ©, and only host unicast forwarding state. Traditional multicast forwarding
methods, such as IP multicast and SDM require per-group multicast state on every switch
along the forwarding path between the source, and the group members, as depicted by
the area in Figure 5.7b highlighted in green. Stoica et al. first proposed this approach in
their recursive unicast approach to multicast (REUNITE) paper [SNZ00].

AR e 13T 3 ot

Ingress_ £
switch
Egress
L | _- “switches]
[0] [0 [0 v [0
Q ! (2 w241
? O ™ \
Q O Q O
IS 38 3 : \ K_&;ﬂ
2 3 0.2 " -
Multicast forwarding
] g
(a) Unicast (b) Default SDM multicast

1/ ”i [e 1575 o

Ingress_ £ Ingress £
switch switch >
Egress . “Egress
L~ swﬂches - L~ switches -
m " tl - 0
|:L§ .8 ﬂ s S.m
O O Q
L2 3 ="EI L2 O
5 4 \ "D’AZI miZ | .
D\ Multicast forwardlng Multicast forwarding
] O] ~a
(c) ASDM late replication (d) ASDM early replication

Figure 5.7: Packet replication mechanisms in comparison to unicast (adapted from [Ble+15b]).

102

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

ASDM builds on this concept to make the tradeoff between data plane memory and
data rate in multicasting, which was first investigated by Radoslavov et al. [REG99],
controllable for the control plane application. It does so by exploiting the logically
centralized control plane to adapt the multicast forwarding to the resource availability in
the data plane it operates on. As described before, Figure 5.7c depicts the traditional
multicast approach. The replication happens at the last possible location in the multicast
tree, thus termed late replication. Late replication is the traditional multicast strategy
that solely aimed at reducing the total transmission volume of the system. The data rate
is the same on all links, denoted by the smallest of the filled lines ===Z. However, there are
four nodes in the system that host multicast state and only three nodes that forward the
multicast traffic without hosting the corresponding group state. The minimal subgraph
that contains all multicast switches of a group, highlighted green in the depiction, is
termed to do multicasting, the other parts of the system do unicasting. The area where
multicasting is used is said to convert outgoing packets to unicast at their edges, the
switch that performs the unicast conversion is termed egress switch.

In contrast to late replication, early replication immediately converts packets to unicast
traffic on the first node on the ISP network as depicted in Figure 5.7d. The consequence
of this forwarding strategy is that the data rate is higher on many of the links. However,
there is only one node that hosts state for this multicast group and six nodes that perform
unicast forwarding only. Consequently, the multicasting area for this group is made
up of a single data plane element only. The system can implement every configuration
between these two strategies, early and late duplication. This range of configuration
options gives the system its freedom to select the tradeoff between a high data rate and
low multicast state with early replication and a low data rate with a high multicast
state with late replication. Despite the freedom the system provides regarding resource
consumption, it requires only a single parameter to regulate its behavior: the unicast
conversion threshold.

Nevertheless, in both cases, the crucial handover point between the ISP and its neighbor
is relieved from high data rates. Hence, independent of the selected replication scheme,
ASDM implements a packet replication service, while its forwarding characteristics
inside of the controller network can be close to unicast traffic. In contrast to that, unicast
requires the full traffic volume on this link as well, as depicted in Figure 5.7a.

5.4.2 Adaptive Multicast Routing

The unicast conversion threshold T is the only parameter to configure the ASDM control
plane application. It controls the tradeoff between the consumption of matching memory
and data rate not only of a single group but for the complete system. The goal behind
this design decision is to provide an effective way to control the system which is simple
enough to be understood by its operators when used in the context of an ISP network with
tens or hundreds of other control plane applications. The unicast conversion threshold

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED MULTICAST

denotes that if the number of members in a subtree is equal or less, the traffic for this
subtree will be converted to unicast instead of continuing to forward it as multicast
traffic.

We explain the unicast conversion threshold and its usage by example in the following
paragraphs. ASDM receives the group definition consisting of the traffic source of
the group and the group members from the SDM management service. Based on this
information, the ASDM application constructs a delivery tree for its members and derives
the actual multicast tree that is installed in the data plane from that. The delivery tree
consists of all data plane elements involved in the forwarding of the traffic starting
from the ingress node as depicted in Figure 5.8. ASDM creates this directed tree by
determining the shortest-path tree that originates from the ingress switch to all group
members. Since the group members are expected to be either a subscriber of the ISP
or located in other parts of the Internet, the tree is created with the last switches in the
ASDM network on the paths to the group members as its leaves. The group members
are identified by their IP addresses in the SDM system. On each data plane element
starting from the ingress switch, each outgoing link is tagged with the outgoing port
number of the switch and the group members that are connected through this link as
depicted in Figure 5.8.

Last switch
in network

-

Port 1 ® (IR}

Port 1 ® {IP,,,, -
M1
Ingress Pz, .
switch IPya,
' P} Port
/
/
Port 1 = {IP,,, /)
Py, K
Ilng}’ ort 1w {|Pe
"

Port 2 ® {IP,,,}

Figure 5.8: The annotated delivery tree used for constructing the ASDM
multicast tree with T = 1 (adapted from [Ble+15b]).

Then, the system applies the unicast conversion threshold and other constraints if
required. The unicast conversion threshold is provided by the system operator or a
management system. Its application starts with the ingress switch and checks for every
successive link tag if the unicast conversion limit has been reached or a last switch in the
controlled network has been found. The unicast conversion threshold for the example
system configuration depicted in Figure 5.8 is T = 1. Switch S1 is the ingress switch and
hosts the multicast state for the investigated group. The number of group members in

103

104

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

the subtree of its only outgoing port 1 is four, which is higher that T = 1. Therefore,
only a single action is installed that forwards traffic to the next multicast switch. Which
switch that is, is not known at this point in time. When investigating switch S2 the
system finds that no multicast state is required and moves on. The next investigated
switch in the tree is S3. Here, two outgoing ports are found, with both subtrees having a
higher group member number than T. However, since there are two outgoing links, this
node must host multicast state and install an SDN rule that matches incoming traffic
for this group, duplicates the group’s packets and forwards them to the next multicast
switch. At the same time switch S3 is the next multicast switch for switch S1 and the
information for the flow entries there are updated to address all forwarded packets to
53. On switch 54 for each outgoing link, both the number of group members in the
remaining subtree is 1, and the switch is the last data plane element in the controlled
network. Therefore, SDN rules are installed on switch S4 to convert the traffic to unicast.
The same happens on switch 54. If a higher value for the unicast conversion threshold is
used, the process terminates earlier, and fewer switches are included in the multicasting
process. A unicast conversion threshold of co converts all multicast traffic immediately
to unicast traffic independent of the group size.

When a group member is added, the topology changes or the value of the unicast
conversion threshold is changed, the same process is run again. The result is compared
with the existing multicast tree as it exists in the data plane. Then a step-by-step process
is derived to move from the existing tree to the new tree. Finally, the new tree is written
into the data plane before it is activated.

The advantages of using the unicast conversion threshold over alternatives, e.g.,
limiting the depths of multicast trees, are manifold. First, a branching limit, where the
depths of the multicast trees is limited, is topology dependent. Therefore, it would
have to be modified for every single network topology with different shortest-path tree
depths it is used in. In contrast to that, the unicast conversion threshold is independent
of the network topology. Second, the tree depth limit is also group-size dependent,
small groups have a smaller depth and therefore need a smaller limit. Again, the unicast
conversion threshold works independently of the group size. Instead, it converts small
groups immediately into unicast traffic and is thereby the most efficient when applied to
small groups, while its impact on huge groups is much smaller. The unicast conversion
threshold, therefore, has precisely the properties it should have to reach our goal of being
able to host a large number of small multicast groups. The described tree construction
process can easily be extended by additional constraints. For example, intermediate
switches in the tree that should not or cannot host multicast state can be easily skipped
by the system.

ASDM relies on IPv6 to address multicast switches as well as encode multicast group
IDs. REUNITE [SNZ00] proposes to use IPv4 addresses for identifying the switch and
User Datagram Protocol (UDP) ports to identify multicast groups. While this approach
was sensible at the time when it was conceived, it cannot be considered anymore. Besides

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED MULTICAST 105

limiting the number of multicast groups hosted in a single device to 65,535 sending
Internet Control Message Protocol (ICMP) message, used to signal errors, cannot address
UDP ports. IPv6 addresses are 128 bits long and can provide, e.g., 26 multicast groups
per switch, if a /64 suffix is used to identify groups. While the ratio of IPv6 traffic is still
small, many services and clients can communicate via IPv6. Furthermore, the adoption
of IPv6 continues to grow, e.g., as reported by Pujol et al. [PRF17], and is expected to be
prevalent by the time ISPs adopt SDN.

Each potential multicast switch in the network uses at least one /64 IPv6 prefix for
ASDM addressing, other prefixes can be used but are not discussed. Either this prefix is
part of an IPv6 subnet assigned to an existing interface, or it is assigned to the loopback
interface. The latter is a common approach used by routing protocols, e.g., Open Shortest
Path First (OSPF) and Segment Routing [Fil+18]. For efficiency, the system should rely
on addresses for which routes that are already available in the network. The second part
of the address is the multicast group ID, which is assumed to be the matching /64 suffix
of the /64 IPv6 prefix used for addressing as listed in Table 5.3. Thereby, the addresses
used by ASDM uniquely identify each multicast group on any given data plane element.
The advantage of this addressing scheme is that its usage for routing protocols well
understood. Furthermore, is it compatible with the locator:function used by Segment
Routing that is expected to be used in future ISP core networks [Ble+16b]. The given
prefix lengths are examples and can be adapted to the operator’s need without affecting
the system.

Table 5.3: Example IPv6 address allocation for ASDM subnets (adapted from [Ble+15b]).

Network prefix: 2001:db8::/32

Prefix for switch Oxabcd: 2001:db8:abcd:: /48
ASDM subnet: 2001:db8:abcd:8000:: /64
ASDM address for group 0x1234: | 2001:db8:abcd:8000::1234

As discussed, ASDM is designed to operate on any forwarding system that relies on
unicast forwarding, such as OSPF and Segment Routing. In general, the ASDM concept
can be transferred to many forwarding substrates. However, the system is restricted in
its freedom for selecting forwarding devices by the underlying forwarding scheme.

Bit-indexed replication as proposed by the BIER approach [RFC8279] provides a
method for forwarding multicast traffic of many groups without the need to keep per
group state on any intermediate switch. Instead, per-group state is required only at the
ingress and egress switches. ASDM can be easily adapted to operate on the bit-indexed
replication forwarding method instead of unicast forwarding while keeping many of its
favorable characteristics. We provide a design for adding adaptiveness to the bit-indexed
replication forwarding concept applied to SDM called ABSDM in Section 5.4.3.

More details on ASDM are described in [Ble+15b]. An in depths description of the
system, as well as a proposal for a service API, can be found in the thesis of Volk [Vol14].

106

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

5.4.3 Adaptive Bit-Indexed Software-Defined Multicast

BIER [RFC8279] is a multicast forwarding scheme that uses bit IDs to address multicast
destinations. BIER builds on the Xcast idea by Boivie et al. [RFC5058] and the Xplicit
SDM idea by Blendin [Ble13] and extends them to a complete multicast forwarding
protocol. We, in turn, build on the BIER concept, apply it to SDM and add the adaptive
multicast feature to it.

As with the other SDM designs, packets are identified at the edge of the network. If the
packet is addressed to a specific group, it is assigned a bit index forwarding header with
a bit field that includes a bit for every potential destination in the system. A destination
receives the packet if its corresponding bit is set to 1 in the bit field. The bit-indexed
addressing scheme works only within the specific network domain, similar to other
local-addressing approaches such as MPLS or Segment Routing.

To avoid the issue of Xcast, which only allows small multicast groups because of the
per-packet overhead of the multicast destination encoding, we adopt the approach to
split a bit string into smaller segments proposed by BIER [RFC8279]. The approach
is depicted by example in Figure 5.9. For example, a bit string with a length of 9 bits
represents all addressable devices in a network domain. This bit string is considered
too big to be included in the bit field header of each packet. Therefore, it is split into
smaller bit fields with a maximum length of 5 bits, termed bit sets, to limit the per packet
addressing overhead. To that end, the 9-bit long bit string is split into three-bit sets with
a length of three bits each. In addition to the three bits to address the multicast switches,
a two-bit set ID is used to encode an offset to their respective part of the bit string. In
the example, the bit string addresses switch 5, 6, and 9. Switches 5 and 6 are part of the
same bit set, which is identified by its offset, 1. Switch 0 is part of bit set 2. To determine
the bit indexes the address of Packet 1 encodes, the bit set ID is multiplied by the bit
set length and added to the indexes of the individual bits in the bit field. ABSDM is

0000 nnn(n v
N N N N R N EN
313|333 |3 |3 |3 |3
jun I s) e s) bus) e) e) e) e)y
= INW|_|O|O (N[0 [©
Bit string to be encoded |0|0|0|0]1[1]0|0]|1

Per packet bit fields ~ [0]4]0[1[1] [El@Jo[o[1]
Packet 1 dst Packet 2 dst

Figure 5.9: Encoding of the global bitfield in per header fields

configured with a global bit string length and the per-packet bit field length. The size
of the bit sets SL and the corresponding set ID or offset length OL can then be derived
by the system through the fact that the length of the multicast address field AL in each

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED MULTICAST

packet is the sum for the set length and the offset length: AL = SL + OL. Specifically, for
each bit string length BL the optimal set length is calculated as follows:

min (SL)
subject to:
BL
OL > -~
2=z SL
AL =OL +SL

An example of an ABSDM forwarding system is provided in Figure 5.10. Only switches
that should receive multicast traffic are assigned bit IDs to minimize the total length of
the bit string. The multicast forwarding includes all data plane devices in the system and
requires multicast state on every one of them. However, this resource consumption is
offset by the fact the per-group state is smaller than in other systems because all groups
share the forwarding tree. The forwarding tree is created in the same way than described
for ASDM with using late replication.

% " % T % T m

O |
BTe 210 001 o 1]
.3 i@
o 38 507 O
D’g 2:010 \ 1:010 g\D
0.2 Multlcast forwardmg S
LT 2o BSDM Edge swﬂches 100 [

Figure 5.10: BSDM forwarding underlay

An example of a multicast group is given in Figure 5.11. The light green shaded areas
depicted the shared forwarding state. The default forwarding method proposed by
BIER is late replication that is depicted in Figure 5.11a. As with ASDM, the packets
addressed to the group are identified at the group ingress switch. The group is the same
used in the bit address encoding example. The destination addresses of the multicast
group are part of two different bit sets, 1 and 2. Therefore, the packet is replicated on the
ingress switch, a multicast address header is added to each of them, and each copy gets
a different multicast address. One packet is addressed to switches 5 and 6, which are
part of bit set 1 and one is addressed to switch 9, which is part of bit set 2. The multicast
forwarding routers contain forwarding rules for all bit sets, which forward the packets

in parallel for the first to two hops. Once the packets arrive at their destination switch,

a rule on each of the switches identifies the multicast group, replicates the packets if

107

108

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

required, removes the multicast address header, and rewrites the destination addresses
to their respective group’s members, as with ASDM. As is visible in Figure 5.11a, the
number of switches that host per-group state is significantly reduced.

A0 % T % e E&?LZI % 2 % 7 % e .E;?LEI

Group Group

ingress ™" ingress ™"

switch switch _
L {1 - L] {1
BTe gl i gl
NS K,,|:| O~ s

$) S
D/g 2010,/ D*D 7 V4 f jﬂ
02 | O Multlcast fc)rwardmg -
LF 2900 ggpm Edge switches 1001 | LI 2:700 BSDM Edge switches voor |

(a) BSDM late replication (b) ABSDM replication with T = 2

Figure 5.11: ABSDM forwarding.

The per-group state can be further reduced by applying adaptiveness to the multicast
forwarding as depicted in Figure 5.11b. The unicast conversion threshold in the example
is T = 2, which means the multicast subtrees of the corresponding bit set are converted
to unicast when the number of members they contain is less or equal than 2. Therefore,
the traffic for both bit sets is immediately converted to unicast, which leads to a single
rule on a single switch only.

The forwarding pipeline of ASDM is more complex than the one for ASDM, which is
why we describe in detail in Figure 5.12. It requires an OpenFlow flow table for every port
and is assumed to start in the flow table pipeline at flow table m. The depiction shows the
process for n ports where ABSDM downstream devices are connected. ABSDM traffic is
identified at the beginning of the pipeline and directed to flow table m. This first table is
responsible for terminating the multicast process early to implement adaptiveness. We
will discuss this table later.

The default bit-indexed forwarding works as follows for every port. For each switch
that is reached through a specific port, its bit index is checked in the respective bit set if
it is set to 1. In this is the case, the packet is forwarded out this port. To that end, the
packet is sent to both, an indirect group table and the flow table of the next port, i.e.,
flow table m+1. In the group table all bit fields in the set at set to 0 that are not reached
through this port. This prevents that the packet is replicated to these addresses again
on the next multicast switch, which would cause duplicate packets. Then the packet is
output to the corresponding port. The actions applied to the packet in the group table
does not affect the copy of the packet that has been forwarded to table m+1. In flow table
m+1 the same process is applied, which ensures that the packet is checked if it has to
be sent out of every port on the switch. Afterward, the packet is dropped. Note that

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED MULTICAST 109

Rest of flow
table pipeline

TP

Incoming
ABSDM packet

Flow Table m P Group Table Al i iSypi . Port
Adaptive Termination l-mm-- : Remove bit header, e ! :
Match Group ID i : write unicast dst, :’ """ i
Instructions: output to port x :@ P i Port x
_______ - Apply actions: T
group table all i,
- Goto Table m+1
Flow Table m-+1 el Group Table Indirect 1 | {EJP
1 Port 1
Match fwd bit mask for o Zero fwd bit mask,
port 1 Instructions: output to port 1
_______ - Apply action:
group table indirect 1,
- Goto Table m+2
Flow Table m+2 E@Pzi Group Table Indirect 2 E@P2i
e T Port 2
Match fwd bit mask for . Zero fwd bit mask,
port 2 Instruct|on$. output to port 2
_______ - Apply action:
group table indirect 2,
" - Goto Table m+3
Flow Table m-+n E@P”i Group Table Indirect n | iFIp":
, ' T Port n
Match fwd :t mask for Instructiots: Zel['o letd bit rTask,
port n - Apply action: output to port n

o

group table indirect n,

- drop packet

Figure 5.12: The ABSDM OpenFlow pipeline

we assumed OpenFlow to support the specific bit header format used by ABSDM. This
could be implemented, e.g., using the OpenFlow experimenter feature. If the header
format is not supported, the 128-bit IPv6 destination address could be used to identify
bit indexed multicast traffic and to encode the bit field. The 20-bit flow label header field
of IPv6 Group identification could be used for group identification.

110

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

Table 5.4: Requirements for the ABSDM forwarding pipeline

Resource/Feature Consumption

Flow tables Num. of next hops + 1

Num. group tables type indirect | Num. of next hops

Num. group tables type all Num. of groups with local unicast conversion

Num. of flow entries Bit string length

Table 5.5: Required OpenFlow features over using version 1.0 as baseline (adapted from [Wel16]).

Feature Mm,' OpenFlow Comment
version
Group Tables 1.1 Per next-hop packet processing
Match fields with arbitrary 1.2 Matching single bits of BIER destination
bit masks addresses
Set field values with arbi- 1.5 Zero current forwarding bit mask
trary bit mask

Table m terminates packets addressed directly to the switch and enables early dupli-
cation strategies for adaptiveness, both of which require the conversion of traffic from
multicast to unicast. In this table, entries can be added that match for a specific multicast
group. Then, per group, the packets can be converted to unicast and replicated again if
required using an OpenFlow all table.

The functional requirements for OpenFlow devices to able to operate ABSDM are
listed in Table 5.4. While the approach is expected to be very efficient regarding flow
entry consumption, it requires the data plane element to support a high number of flow
tables.

In addition to a flow table per port, the system requires some features that are only
available in recent versions of OpenFlow. The features and the OpenFlow version they
are available from are listed in Table 5.5.

An extended description of the BSDM approach including its application interface can
be found in the master’s thesis of P. Welzel [Wel16].

5.4.4 Mitigating Global Matching Memory Shortages

The two presented adaptive multicast approaches, ASDM and ABSDM, are both designed
to being able to control the tradeoff between memory and data rate. ASDM has fewer
requirements for data plane elements, is very flexible when it comes to deployments with
partial SDN support as well as selective usage of data plane elements in general. ABSDM
promises to be more efficient than ASDM but also has much higher requirements for data
plane elements and requires the complete data plane to be SDN enabled. To run ABSDM,

5.4 MITIGATING FLOW TABLE SPACE SHORTAGES WITH ADAPTIVE SOFTWARE-DEFINED MULTICAST 111

data plane elements need to support OpenFlow 1.5, and one flow table is required in the
pipeline for every network port. At this time, only the devices from a single vendor are
known to support this many flow tables. The goal is, therefore, to use ABSDM where
possible and ASDM where required. Both approaches require the SDN switches to be
able to replicate a large number of packets, modify their header before sending, and
sending multiple replicas out the same port.

ASDM and ABSDM use at maximum one OpenFlow flow entry on each multicast
switch per group. The maximum number of flow entries that different events in an
adaptive multicast control plane application affect are listed in Table 5.6. Based on the
resource discovery process conducted in Chapter 4 we identified relevant resources on
the control path and found them to be the match table memory interfaces and the match
table space. While the number of flow entries that are modified, added, or deleted by
a single group or member event is small, the total number of groups is expected to be
huge in comparison to the number of data plane elements in the network. The metrics
listed in Table 5.6 are the same for both approaches. However, the number of switches
with group state in ABSDM is less or equal than in ASDM.

Table 5.6: ASDM control path resource consumption.

. Max. num. of affected flow entries
Metric Event type
ASDM ABSDM
Add 2 2
Member events | Delete 2 2
Modify 1 1
Group events Add ! !
Delete (Num. of switches with group (Num. of switches with group
state) state)

Both forwarding methods consume their resources in both the core and the edge
area of ISP networks. Resource bottlenecks and shortages in both areas can affect the
reliability of ASDM and ABSDM control plane application. Detecting bottlenecks before
actual errors occur, e.g., because there is no match table space left on a device is crucial
for predictable behavior.

To that end, the applications continuously keep statistics on their consumption of
the match table space and flow table memory interface resources, both by network
area and by device. Both statistics need input from the controller since applications
with higher priority might consume these resources as well. The applications establish
two resource limits with the controller: the minimum resource requirements and the
maximum resource requirements. The maximum requirements are expected to be
indirectly provided by the network operator by providing the maximum design load for
the multicast system regarding multicast groups and members. If this maximum load is
exceeded, the multicast application may deny additional service requests. Given this

112

DESIGNING RELIABLE CONTROL PLANE APPLICATIONS FOR VIRTUALIZED SDN DATA PLANES

load, the control plane application derives its expected resource requirements, regarding
flow table space, flow table memory interface, and data rate reduction. The data rate
reduction estimate provides, as a ratio of the estimated unicast data rate, how much
network capacity the system is going to save. The minimum resource requirements are
derived by taking the current service load of the system and adding a trend of the recent
past and deriving the resource requirements for this load. Therefore, the minimum
resource requirements specify the resources the system needs to stay operational in the
short term, while the maximum resource requirements specify the design load.

If the controller detects that one the requirements might be missed, the control plane
application is informed of this. The first action in both cases is to decide which resource
might fail and which of the requirements are failed, the minimum, the maximum or both.
We will focus on the flow table space resource in detail in the remainder of this section.

In case the minimum requirement for the flow table space resource is missed, the
control plane application investigates its course of action. The primary option in the
case is to increase the unicast conversion threshold. Based on the current workload, the
application simulates the impact of the modification of the threshold. It then selects the
smallest value that would bring the resource consumption back in line with the available
resources. Then, the application queries the controller if the corresponding increase
in data rate is acceptable. Therefore, the controller needs to be able to get up to date
information on the data rate of existing multicast flows, as well as the other traffic in the
network. We assume a system is available to provide estimates of the data rates in the
network, e.g., based on the resource-efficient designs by Moshref et al. [Mos+14] and
Hark et al. [Har+16]. If the increase in data rates is acceptable, the multicast application
proceeds to switch the unicast conversion threshold to its new value. At first, it is applied
to new groups. Then, gradually all existing groups are switched to the new value as
well. At this point, the resource requirements should be met again.

If modifying the unicast conversion threshold proves not to be sufficient to mitigate
the resource shortage, the application sends a notification to the operator and switches
to a degraded state. In this state, new groups are not accepted, and group members are
only accepted if the resources are available to support them. Thereby, the application
remains operational and responsive even in a case when the data plane does not provide
sufficient resources.

In case the maximum resource requirements are not met a new maximum load is
derived based on the available resources and the operator is informed about this new
limit. When the actual load closes in to the maximum load, the system reacts in the same
manner as in the case when the minimum resource requirements cannot be met.

Detecting and mitigating resource requirements not only requires control plane
applications to foresee and prepare for shortages and bottleneck, but also the controller
to have complete knowledge of the network. Estimating the remaining link and flow
table space capacities in a large network are, therefore, a requirement for reliable SDN
controllers in ISP networks.

5.5 piscussioN

55 bDiscussioN

In this investigation of the design of mitigation strategies of two representative control
plane applications, we gained an insight into their information requirements.

Our designs provide well-defined approaches to mitigating control path bottlenecks.

The network function chaining application introduces a simple yet efficient approach to
managing users and their function chains in ISP networks. The drawback is a potentially
large number of flow entries that must be moved in case of a device failure. We mitigate
this effect by introducing a design to share the flow entry installation load between
two SDN devices, a hardware, and a software switch. Furthermore, we provide a
clear decision criterion on how to share the load. The adaptive multicast approach
introduces the ability to mitigate global flow entry capacity shortages by adjusting the
data-rate-state tradeoff if multicasting. We apply it to operate on a unicast substrate
forwarding underlay as well as to a highly efficient bit-indexed replication forwarding
underlay. In both approaches, the tradeoff is controlled by a single parameter.

For both applications, we found that renewable resources, both in the control- and
in the data path, require timely and accurate information. This puts high monitoring
demands on the controller that must provide this information to a potentially large
number of applications for a large number of data plane elements. Furthermore, in
both cases, the application must specify its resource requirements. The controller must
provide information if these can be met, if not a resource event is triggered. However, the
timeframes in which this information is required are quite different. The network function
chaining application requests resources in case of a failover event and requires an answer
as fast as possible during the whole process. The adaptive multicast application registers
its long-term resource requirements and expects events in case these requirements might
not be met.

We found that in both cases, the controller must provide suitable alternatives for the
mitigation approaches. The network function chaining application needs an SDN device
with specific characteristics; namely it must be adjacent to the overloaded data plane
element. The adaptive multicast approach increases the data rate of its traffic in the
network, which requires the controller to be able to determine if the additional load can
be handled.

In conclusion, the presented approaches promise to mitigate the investigated resource
events. At the same time, we found new requirements posed to SDN controllers to
support the mitigation process.

113

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH
BOTTLENECKS

Our designs to mitigate control path bottlenecks presented in Chapter 5 are evaluated in
this chapter. Both control plane applications, network function chaining, and ASDM
are investigated in an experimental setting, either in a testbed or an emulated network.
However, since the two applications apply to different areas of ISP networks, for both,
first the workload and experimental setting are introduced separately before presenting
the prototypical implementations of the systems and the results. The evaluation results
of the mitigation approach for the network function chaining application is presented in
Section 6.1, the results of the evaluation of our ASDM design in Section 6.2. The results
and their consequences for the design of the interface between SDN controllers and
applications are discussed in Section 6.3.

The investigation in this chapter partially relies on input from two papers [Ble+15a;
Ble+15b] and two supervised student theses by S. Bleidner and T. Volk [Ble15; Vol14].

6.1 EVALUATION OF THE MITIGATION OF LOCAL FLOW-UPDATE RESOURCE BOTTLENECKS

The goal of this evaluation is to determine which information the network function
chaining control plane application should be used to decide if and how much of the flow
entry addition load should be shared between virtual switch on the NFV infrastructure
server and the adjacent ToR switch. To that end, we investigate two different approaches:
using information from the SDN controller that infers performance information for two
data plane elements separately and emulating the actual failover event by the control
plane application.

The investigated scenario and the used testbed are described in Section 6.1.1. The
workload is derived and discussed in Section 6.1.2 as well as the prototype control plane
application. The results are presented in Section 6.1.3 followed by a discussion on what
information control plane applications should to base their decisions on in Section 6.1.4.

6.1.1 Scenario and Testbed

As introduced in Section 5.2.1 the scenario of the control path resource bottleneck is the
failure of an NFV infrastructure server and the subsequent need to move affected network
function chain instances to a new server. The specific scenario that is investigated is
depicted in Figure 6.1. Before the failure event, two servers host two different network
function chains with a large number of function chain instances. Users in Group A use

115

116

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

network function chain A (Chain A) the users in Group B use Chain B. Chain A consists
of four VNFs, types 1-4, and Chain B uses VNF types 5-8. These last four VNF types are
hosted only on NFV infrastructure server 2 (Server 2), while the first four types 1-4 can
be hosted on both NFV infrastructure servers, Server 1 and Server 2. Three of the VNF
types per chain are assumed to use shared instances, while one VNF of each chain uses
dedicated instances. For the dedicated VNF instances, one instance is created for every
subscriber in the two groups. Figure 6.1 depicts the VNF types only and abstracts from
the individual instances.

In the scenario, Server 1 crashes at some point, which means that the instances of the
four VNFs of Chain A that is used by Group A must be moved to Server 2, including the
network function chain instances. In this investigation, we focus on the installation of
new OpenFlow flow entries and assume the VNF instances are created through one of
the approaches presented in the design of the system in Section 5.3. The new path of the
instances of Chain A after the failover to Server 2 is depicted by the dashed part of the
Chain A. This leads to a peak load of OpenFlow flow entry additions on Virtual Switch
2, which is mitigated with our approach by sharing the load with ToR Switch 1.

New chain links after failover
7

NFV Infrastructure 1 NFV Infrastructure 2 ;

VNF VNF VNF VNF ,VNF VNF VNF VNF
T1 T2 T3 T4 |4 T T6 T7 T8
4% * A A

Iy

—

| | \ Y |

< <
~

-,
Chain A ata C rToBoﬁRECk .
ain A Spieht 7

~ 1 4 \
N K4 \ ' Control path bottleneck mitigation @

Rest of the edge data
center

Figure 6.1: The evaluated network function chaining scenario (adapted from [Ble+15a]).

This evaluation focusses on the control path of the SDN data plane. Therefore, only the
relevant parts of the scenario are implemented in the testbed. As depicted in Figure 6.2
the testbed includes the ToR switch as well as Server 2 from the scenario. Server 1 fails,
hence, there is no need to emulate it in the testbed. Chain B and Group B are assumed
to be a base load for Server 2 but are not expected to contribute to the load during the
failure case. The VNF instances as well as their links are pure data path elements of the
network and are not required for investigating the control path. Virtualization servers

6.1 EVALUATION OF THE MITIGATION OF LOCAL FLOW-UPDATE RESOURCE BOTTLENECKS

Load Generator

ToR Switch 1
NEC PF5240

NFV Infrastructure 2

Traffic
Source

[tGbE @ |— @ 1GbE]|

[icoE W|—w

1GbE| Virtual Switch 2
L Open vSwitch

o=l
—{m 3001

[aqm ™ 390

Ryu OpenFlow
controller

Experiment Controller

Figure 6.2: The implementation of the evaluated scenario in the testbed (adapted from [Ble+15a]).

today employ a range of isolation approaches to separate the load of VMs from the load
of the virtual switch and the management functions [Ble+16a]. Hence, their load is
replaced by using only the part of the server resources that are used for the SDN control
path of the virtual switch.

In their experiments on a single virtualization server, Manco et al. [Man+17] use
four CPU cores for virtual switching and management and 60 CPU cores for VMs.
We conclude that the control path part of the resources used for virtual switching is
equivalent to one CPU core. Therefore, the control path of Virtual Switch 2 is represented
in our experiments by a single core CPU as listed in Table 6.1.

AnNEC PF5240 switch represents the ToR switch. Ithasa maximum flow entry capacity
of 160,000! entries, which is appropriate for the scale required in this investigation. In
contrast to that, the Edge-Core AS5712-54X is a newer design and includes a state-of-
the-art management system but can host only about 2,000 OpenFlow flow entries. The
fact that the management system of the NEC PF5240 device is not state-of-the-art is not
a drawback, because the control path bottleneck is expected to be the TCAM memory
interface. Instead of the 10GDbE interfaces expected by an actual deployment, the switch
uses 1GbE interfaces. However, since the focus is on the control path, this has no impact
on the results.

The measurements of the completion time of the failover are conducted using the
OpenFlow barrier primitive. If requested by the controller, a data plane element sends a
barrier_reply message to the controller once all previously received OpenFlow messages

1 NEC: NEC ProgrammableFlow UNIVERGE PF5240, Data sheet.

117

118

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

have been completely processed. Literature reports that on some devices, this primitive
does not lead to accurate results. To that end, we measured the accuracy of the barrier
primitive on both data plane elements and found that both are sufficiently accurate.
The measurement results are available in the paper of Blendin et al. and the thesis of
Bleidner [Ble+15a; Ble15]. The load generation and measurements are conducted on a
dedicated server with an additional virtual switch that enables the efficient control of
the experiment.

Finally, a dedicated server hosts the OpenFlow controller software. We found the
accuracy of the receiving process of barriers messages of the OpenFlow controller lacking.
Therefore, we collect and analyze packet traces of the control path traffic on the controller
and thereby determine the barrier time. For more details on the testbed calibration
process, refer to the thesis of Bleidner [Ble15].

Table 6.1: Testbed hardware specifications [Ble+15a].

Node Hardware Software
Control path of | Intel Pentium G640 CPU, 8GB RAM, Intel | Ubuntu 12.04, Open
Virtual Switch 2 | 82579L.M NIC vSwitch 2.3.1
ToR Switch NEC PF5240, 48 1GbE & 4 10GbE ports Firmware version

5.1.1.0
Edge Switch & | Intel Pentium G640 CPU, 8GB RAM, Intel | Ubuntu 12.04, Open
Users 82579L.M NIC vSwitch 2.3.1
Experiment Intel Core i5-3470 CPU, 32GB RAM, Intel | Ubuntu 12.04, Ryu 3.19
Controller 82579L.M NIC

6.1.2 Workload and Prototype

Publicly available information on the data rates and load details in real-world access
networksisscarce. The reason for that is that many ISPs consider this information business
secrets. Available numbers are often aggregated for many subscribers without the
required context information to determine the load on individual network components,
e.g., as published by Pariag and Brecht [PB17]. An exception is the publication by Bulut
and Szymanski [BS15] on mobile access networks. However, while the authors provide
per-session statistics such as the maximum busy hour data rate, the authors do not
disclose the origin or size of their data set. We will consider this publication when
designing the workload but will still need to derive parts of it from a set of assumptions.
To that end, we first establish upper bounds for the essential components in the system
and then derive the workload parameters for the evaluation.

Following Manco et al. [Man+17] we assume that the NFV infrastructure server uses
four CPU cores for virtual switching and management and 60 CPU cores for VMs. The
virtual switch is expected to operate Open vSwitch [Pfa+15].

6.1 EVALUATION OF THE MITIGATION OF LOCAL FLOW-UPDATE RESOURCE BOTTLENECKS

The maximum number of flow entries per VNF instance is provided in Table 5.2. For
the specific workload investigated here, the total number of flow entries for the whole
system can be derived from the flow entries per subscriber of both groups on Server 2 as
provided in Equation (6.1).

NEVS =2 Z‘5: in subscribers (1 + (Num' VNFIfocal)) (61)
where:

N = Total number of flow entry addition operations

E,s = Data plane element: virtual switch

Bulut and Szymanski [BS15] state that the maximum busy hour data rate per subscriber
for an undisclosed mobile operator in 2015 was 10kbit/s. Given the dramatic increase in
4G deployments, we expect this number to have increased in the past years. Therefore,
a peak average data rate per subscriber of 100kbit/s is assumed in this evaluation. As
stated in the scenario introduction, one VNF per chain uses dedicated instances per
subscriber, while the others are shared between the subscribers.

Emmerich et al. [Emm+15] investigated the maximum viable flow entry set size for
the state-of-the-art virtual switch software Open vSwitch. They concluded that the level
three cache of the processor cores that run the virtual switch is a major limiting factor
for the size of a flow entry set and showed that 14,500 flow entries are the upper limit
of flows per core. Assuming the virtual switch operates on four cores, this yields a
maximum of 58,000 flow entries. Open vSwitch uses a sophisticated flow entry caching
mechanism that enables it to keep only those flow entries in memory that are used.
Given that not all users are active at the same time, 60,000 flow entries are a natural
upper bound for the network function chaining flow entries on the virtual switch.

Because of the disaggregated NFV architecture assumed for this investigation, dedi-
cated VNF instance and shared VNF instances are used to create the network service
required by the subscribers. Both network function chains, Chain A and Chain B, rely
on four VNFs each, with one using dedicated instances per chain instances and three
using VNF instances that are shared between chain instances. Server 2 is operated at less
than half of its capacity, to be able to accept the same number of VNF instances in case a
neighboring server fails.

Given that 60,000 is the highest viable flow entry capacity of the virtual switch, we
can use Equation (6.2) to derive the corresponding number of subscribers per server,
which is 6,000. For the given configuration of VNFs and 6,000 subscribers, applying the
equation results in 6,000 dedicated instances + 3 shared instances = 6,003 instances.

Minimal VM designs as proposed by Manco et al. [Man+17] were demonstrated to
being able to host up to 8,000 VMs on 60 CPU cores. Traditional container technology
was shown to run up to 3,000 VNF instances on the same server. Therefore, hosting three
traditional VMs or containers in addition to 6,000 minimal VMSs seems viable.

119

120

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

The number of times the virtual switch handles each packet can be derived by adding
up the number of chain links into, within, and out of the server. This number equals
the number of the OpenFlow flow entries per direction per subscriber. We multiply this
number with the average download data rate per subscriber to obtain the total data rate
for the virtual switch.

DEV.S =d X i subscribers (1 + (Num‘ VNFIfocal)) (62)
6.3)

where:

D = Total data rate
d = Average data rate per subscriber

E,s = Data plane element: virtual switch

With the assumed average peak data rate per subscriber of 0.1Mbit/s, this results in
a total throughput for the virtual switch of 3000Mbit/s. The data rate in and out of
the NFV infrastructure server is determined by the number of chain links entering and
leaving the switch. In this scenario, the data rate is 2 directions * 6, 000 subscribers *
0.1Mbit/s average peak data rate = 1,200Mbit/s. Both values are viable using existing
technology.

We conclude the derivation of the workload parameters for the evaluation by listing
them in Table 6.2.

Table 6.2: Parameter values used in the network function chaining evaluation [Ble+15a].

Parameter Investigated Values
Subscribers in the network function chaining system 1,000 2,000 5,000 6,000
Subscribers in Group A that are affected by the node failure 500 1,000 2,500 3,000
Total number of flow entries installed during failover 5,000 | 10,000 | 25,000 30,000
Total number of flow entries installed during failover and | 1,000 2,000 5,000 6,000
eligible for being moved to the ToR switch

% of total number of flow entries installed during failover | 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55
and eligible for being moved and moved to the ToR switch

The prototype for investigating the flow entry addition load sharing was implemented
using the Ryu? OpenFlow controller. Its main task is to generate the flow entry addition
load, to share it between the two OpenFlow switches, and to measure the completion
time. The NEC PF5240 has specific requirements in which OpenFlow flow table the
entries are installed, while the Open vSwitch does not pose any such requirements.
The decision logic we are investigating in this evaluation is not implemented as part

2 https://osrg.github.io/ryu/, [Accessed September 18th, 2018]

6.1 EVALUATION OF THE MITIGATION OF LOCAL FLOW-UPDATE RESOURCE BOTTLENECKS

of the control plane application but as a part of the experimentation controller. All
installed flow entries are exact matches and have the same priority. More details on the
implementation can be found in the thesis of Bleidner [Ble15].

6.1.3 Results

The goal of this investigation is to understand how the network function chaining
application should determine if load sharing should be used and to what extent. We
investigate two different approaches: using inferred control path performance data from
the controller and emulating the actual failover event.

For the inferred control path information both devices, the Open vSwitch virtual switch
and the NEC PF5240 ToR switch, are measured separately. The detailed resource topology
is not required for this specific measurement. This is because the network function
chaining application is considered the only one that operates at the highest priority
in the control plane. Therefore, when using the virtualization approach presented in
Chapter 4, there is no control path interference from other applications.

We measure the addition performance for flow entries by a set of experiments with
gradually increasing the number of flow entries, with 20 repetitions for each experiment.
The approach is chosen to capture the effect of TCAM-based match table, where the flow
entry addition performance decreases with increasing table space utilization. All flow
entries in this experiment have the same priority. Nevertheless, we measure both the
addition of flows with the same priority and with different priorities. Even though the
exact memory type used by the hardware is not known and could be TCAM, BCAM,
or event SRAM-based, we aim to capture the effect of priorities in case TCAM is used.
The flow entry addition performance of the complete range of flow entry numbers from
1,000 to 30,000 is investigated. The resulting performance for both switches is depicted
in Figure 6.3. In addition to that, for each experiment, with different or same priorities,
a performance model fitted. The model is created using local polynomial regression
fitting and the LOESS method [RLANG].

The performance for adding flow entries with the same priority on the NEC PF5240
peaks at around 800 additions per second at 1,000 total entries added. It slowly decreases
to about 740 additions per second at 29,000 total added entries. As expected from
literature, adding flow entries with different priorities is slower, about 680 at 1,000 total
flow entries. Furthermore, it decreases faster to about 290 additions at 29,000 total added
entries.

In contrast to that, Open vSwitch shows similar behavior in both experiments. Both
experiments start around 7,500 additions per second at 1,000 total added entries. In-
terestingly, the performance increases with the total number of added entries in each
experiment. In both experiments the performance peaks at about 10,000 additions per
second when adding 30,000 flow entries in one run. Using these numbers, selecting the
number of flow entries to move to the hardware switch can easily be done.

121

122 EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

ToR switch (NEC PF5240)
900 -

800 -
700 =
600 -
500 -
400 - S o
300 J v L} L) v t o £ 3 |
200 -
100 -

0-

LB e et o e

Virtual switch (Open vSwitch)
I O T O I
¥ i

- .
| L
L | O |

—

1,000 -
0,000 -
9,000 -
8,000 -
7,000 =
6,000 -
5,000 -
4,000 -
3,000 -
2,000 -
1,000 =

O -

LLvt
L
FH:
l
11

Flow entry additions per second

0 5,000 10,000 15,000 20,000 25,000 30,000
Number of flow entries additions
SDN Switch Experiment

— ToR switch (NEC PF5240) — different priorities
— Virtual switch (Open vSwitch) — same priorities

Figure 6.3: Flow entry addition performance for Open vSwitch and the NEC PF5240
(adapted from [Ble+15a]).

The results of the investigation of the emulated failover scenario are depicted in
Figure 6.4. Due to the more complex scenario, the plots are structured differently. The
results for the failover scenario is depicted with a different number of subscribers that
are affected by the failure, ranging from 500 to 3000. The actual number of flow entries
added per switch are not depicted in the figures but are listed in Table 6.2. Instead,
the crucial failover completion time depicted, which is the metric the system aims to
minimize. For small numbers of affected subscribers up to 40% of the eligible flow
entries can be moved to the ToR switch before increasing the total failover completion
time. This number shrinks to 20% for the scenario with 3,000 affected subscribers.

A model for the completion time behavior of both switches is derived for the data
from the failover experiment using the LOESS approach. For comparison, the models
that are inferred from the individual performance modeling experiments are depicted as
well as dashed lines. Where the models can predict results, they are significantly lower
than the results from the failover experiment. Interestingly, the difference in the results
for the NEC PF5240 is about two times as big as the ones for Open vSwitch.

Completion time [s]

6.1 EVALUATION OF THE MITIGATION OF LOCAL FLOW-UPDATE RESOURCE BOTTLENECKS

Affected subscribers: 500 Affected subscribers: 1000

Affected subscribers: 2000

Affected subscribers: 2500 Affected subscribers: 3000

]]]]]))))))
0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Percent of eligible flow entries moved to the ToR switch
SDN Switch Model type
— ToR switch (NEC PF5240) — Failover
— Virtual switch (Open vSwitch) -— Individual: different priorities

Individual: same priority

Figure 6.4: Failover completion time for the control path bottleneck mitigation approach

(adapted from [Ble15])

6.1.4 Discussion of the Evaluation Results

The results clearly show that the performance difference in adding flow entries between
the two data plane elements is too large to have a significant effect on the failover
completion time. However, the fact that the software switch is an order of magnitude

123

124

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

faster when adding flow entries is surprising. Huang et al. [HYS] report only about 400
flow additions per second on an Open vSwitch. We explain this performance difference
by optimizations of the Open vSwitch software between version 1.7 that was used by
Huang et al. in their experiments and version 2.3 used in our experiments.

The difference between the performance models created using separate measurements
of the individual switches and the ones created using the failover experiment is significant.
This shows that while the performance of the data plane elements’ control path is
important, it is not sufficient for performance predictions. Instead, the complete control
path between the control plane application and the data plane elements, including the
controller, must be taken into account. We, therefore, conclude that performance-related
scenarios should be tested directly by the applications under realistic conditions instead
of relying on performance numbers inferred by the controller.

50%-1 | | | | -
NoviFlow 1132: [Ku

40%-

30%-

NoviFlow 1132: data sheet

2000-

Time reduction [%]

10%-

EC PF5240 P
Edge-Core ASp712-X P,

iy 1]] 1 -
0% 20% 40% 60% 80% 100%

P . inrelation to P [%]
Figure 6.5: Completion time reduction overview (adapted from [Ble+15a])

Finally, we investigate which kind of device might offer a flow entry addition per-
formance sufficient to reduce the failover completion time significantly. The estimated
connection between the performance ratio of the virtual switch and the ToR switch with
the ratio of eligible flow entries taken into consideration is depicted in Figure 6.5. For
Open vSwitch, we use 7,500 flow entry additions per second as measured in the failover
experiment as the reference value; for the NEC PF5240 the measured value is used as
well. To get an estimate, we compare these values with values from the literature. One
switch with a high flow entry addition performance rated at 2,500 per second in its data
sheet® and the update rate measured to be about 7,000 by Kuzniar et a. [Kuz+18] is the
NoviFlow NoviSwitch 1132. It is based on an EZchip /Mellanox NP-4 NPU, which offers
only 100Gbit/s of data path throughput, but an excellent control path performance.

3 NoviFlow: NoviSwitch 1132 High Performance OpenFlow Switch, DS2017-NS1132-400-03, Data sheet, 2013

6.2 EVALUATION OF THE MITIGATION OF GLOBAL RESOURCE SHORTAGES

We conclude that this type of switch could be deployed at locations where they could
contribute most to mitigate flow entry addition bottlenecks. The two devices investigated
in this paper, the NEC PF5240 and the Edge-Core AS5712-54X, offer both deficient
performance for adding flow entries and cannot contribute to mitigating control path
bottlenecks in this scenario.

6.2 EVALUATION OF THE MITIGATION OF GLOBAL RESOURCE SHORTAGES

We investigate the ability of ASDM to mitigate global resource shortages in this section.
The goals and metrics we use to do so are introduced in Section 6.2.1 followed by the
presentation of the scenario and workload in Section 6.2.2. The evaluation results are
described in Section 6.2.3 and discussed in Section 6.2.4.

6.2.1 Goals and Metrics

The goal of this evaluation is to determine the control range of the adaptivity mechanism
used in ASDM and ABSDM as well as to determine what information is required to
decide on how to conduct the adaptation process. In both cases, the unicast conversion
threshold, designed to be the only parameter of the system is critical. The controller,
as well as the applications, need to be able to predict the effect of changing the unicast
conversion threshold to ensure that the planned reduction in flow entries is achieved and,
at the same time, the corresponding increase in data rates is acceptable for the network.

The adaptive multicasting system is designed to be deployed in a wide range of
network topologies and use cases. Therefore, the influence of two different topologies
on the system and its adaptivity characteristics are investigated. Furthermore, in the
decision process, the effects on the different areas of an ISP network must be investigated
to determine if they should to be treated differently.

The investigation is conducted in an emulated network environment instead of using a
simulator. This is done to ensure that the proposed approach can be implemented with
SDN today and because, to the best knowledge of the author, no simulator for large-scale
SDN-based ISP networks is available today.

6.2.2 Scenario and Workload

ISPs are expected to have millions of customers, a vast geographically distributed core
network and hundreds or even thousands of edge data centers. Investigating the SDN
control plane applications at these scales is difficult. A sufficiently large testbed with
hardware devices is not available, which is why the Mininet network emulator published
by Lantz et al. [LHM10] is used. MaxiNet by Wette et al. [Wet+14] is an improved version
of Mininet that supports running emulations distributed on multiple servers to improve

125

126

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

the scale of emulated network experiments. However, even MaxiNet is not enabling the
emulated the network sizes required to mimic actual ISP networks. Therefore, we use
Mininet and conduct representative small-scale experiments, the results of which we
expect to provide insights into corresponding large-scale experiments.

ASDM is investigated on the example of two different network topologies, a tree
topology and an idealized ISP topology as depicted in Figure 6.6. The tree topology
represents the best-case scenario for multicast, with an optimal efficiency gain over
unicast. The results for the tree topology provide an insight into the effectiveness of the
adaptation approach in an optimal use case for multicast. The results of the ISP topology
should provide an exemplary result for ISP networks in general. Public data of real ISP
network topologies are available on the Internet Topology Zoo by Knight et al. [Kni+11].
However, the data set is focused on the core network sections and does not provide
insight into the aggregation sections, which are relevant for this work. Therefore, we
choose an ISP topology that is modeled after a large European ISP [DGO6]. It has been
extensively used in literature to investigate SDM [Ble13; RBH15; Riic+16].

Core

Edge

Access

(a) Tree topology. (b) ISP topology.

Figure 6.6: Investigated topologies (adapted from [Ble+15b]).

Both topology models include the relevant areas of ISP networks, core, edge, and access.
The access area represents the traffic recipients in our topologies and is not controlled by
the ISP control plane. The edge area is controlled by the control plane in all scenarios,
while in the core area SDN control is optional. We, therefore, investigate the ISP topology
twice, once with SDN control of the core area, and once without, termed unicast core. The
unicast core is included in this investigation because the core area is expected to be the last
areas of ISP networks that become SDN enabled, due to its importance.

6.2 EVALUATION OF THE MITIGATION OF GLOBAL RESOURCE SHORTAGES

Table 6.3: Investigated network topologies (adapted from [Ble+15b]).

Tree topology Triangle topology
Zone # Nodes | Fanout | # Nodes | Fanout
Level 1 / Inner Core 1 4 3 2
Level 2 / Outer Core 4 4 6 4
Level 3 / Inner Edge 16 4 24 4
Level 4 / Outer Edge 64 16 96 11
Total number of data plane elements | 85 - 129 -
Hosts 1024 - 1056 -

We investigate the topologies at the largest scale that the testbed allows us to. The
corresponding parameters are listed in Table 6.3. The scenario is assumed to be the daily
traffic peak in the evening as reported by Maier et al. [Mai+09]. We expect half of the
available ~1024 hosts to actively access a multicast-able content, with each host being
a member of at maximum one multicast group. The group sizes are distributed in a
Zipf-like manner through a random process where the ingress node for groups is always
placed in the edge area of the network. An overview of the group characteristics used
in the evaluation and the investigated unicast conversion threshold values are listed in
Table 6.4.

Table 6.4: Multicast group characteristics and parameter values used in the evaluation [Ble+15b].

Characteristics Value
Num. of multicast groups 252
Total number of group members 3072
Number of different group sizes 6
Group size distribution (num. * members) 4%128,8%64,16+32,32+16,64 % 8,128 + 4
Unicast conversion threshold T 1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 32, 64, 128

Since there are no dependencies between different multicast groups, we conduct
experiments for each group size separately, which results in a total of 3072 active group
members per experiment. Each group configuration is repeated 30 times on the emulated
network, with a newly created, random set of multicast groups in each repetition.

Multicast traffic is emulated by transmitting a 128 kbit/s audio file per group. Using
high data rate streams, such as IPTV is unfeasible in the emulated environment because
of its performance constraints. 128 kbit/s is a popular data rate from streams, which
represents web radio or audio streaming in general, which is expected to be a substantial
part of live multicast traffic if multicast was available as an Internet-wide service today.

127

128

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

__ 100% -
90% =
80% =
70% =
60% =
50% =
40% =
30% =
20% =

10% =

Flow entry consumption ratio [%

0% =

1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128

Unicast conversion threshold

TOpOlOgy — Tree — ISP -= ISP, unicast core

Figure 6.7: Impact of the unicast conversion threshold on the relative flow entry consumption
(adapted from [Ble+15b]).

The investigated ASDM prototype is implemented using the Ryu* controller using
OpenFlow version 1.3. The Mininet network emulator version 2.0 executes the experi-
ments using on Open vSwitch to emulate SDN switches running on the Ubuntu 14.04
Linux operating system. The whole emulation is conducted in a VM with four CPU
cores and 6GB memory on a server with an Intel Xeon E5-1410 processor.

6.2.3 Results

We first investigate the control range the unicast conversion threshold gives us over
the flow entry consumption in the data plane. Figure 6.7 depicts the relative flow
entry consumption for the measured scenario with the unicast conversion threshold
as the independent variable. The results show that the flow entry consumption can
be controlled in the range of the state consumption of the traditional late replication
strategy denoted as 100% and less than 15% of this consumption for earlier duplication
strategies. The traditional late replication strategy is selected by setting the unicast
conversion threshold to T = 1. The reduced multicast state is chosen by setting the
unicast conversion threshold at least T = 32. Unicast conversion threshold values
between 1 and 8 show the most significant impact, which gradually shrinks for larger
values. The differences between the investigated topologies are small. Therefore, we
considered their impact on the state consumption behavior, i.e., the number flow entry

4 https://osrg.github.io/ryu/, [Accessed September 18th, 2018]

6.2 EVALUATION OF THE MITIGATION OF GLOBAL RESOURCE SHORTAGES

used in the network, not significant. This topology-independence is a significant result
because it shows that the adaptation of the flow entry consumption is expected to not
depend significantly on the topology, which makes its use easier for different network
topologies.

The tradeoff between the state consumption and the data rate is essential to understand
the impact of changing the unicast conversion threshold on data path resources. The
connection between the data rate and the state consumption for different unicast
conversion threshold values, termed data-rate-state profile, is depicted in Figure 6.8.
Please note that the horizontal axis starts at 35% of the unicast data rate. While we found
before that the flow entry consumption is independent of the investigated topologies,
the data rate differs significantly between them. Not surprisingly, the tree topology gains
the most from late replication strategies, e.g., when using T = 1. The impact of using
multicast in the core network is visible but smaller. For unicast conversion thresholds
larger than seven, the differences between the topologies diminish. The behavior is not
surprising because, with larger thresholds, the depths of the topologies, and the group
sizes both become small relative to the unicast conversion threshold. Therefore, the
unicast conversion moves closer to the ingress switch, which reduces the impact of the
topologies on the replication process.

100% =
90% =
80% =
70% =
60% =
50% =
40% =
30% =
20% =

]Ooo “

Flow entry consumption ratio [%]

O()o_
1 1 1 1 1 1 1 1 1 1 1
40.0% 45.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0%
Data rate ratio [%]

Topology == Tree == ISP == ISP, unicast core
Figure 6.8: The data-rate-state profiles of the investigated topologies (adapted from [Ble+15b]).

Figure 6.9 gives a view on the adaptation choice as well as the data rate and state
tradeoff in the ISP topology. Changing the threshold allows the control plane application
and its operators to select a point close to the approximated profile lines. For example,
when moving from T = 3 to T = 4, the consumption of flow entries is reduced from

129

130

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

100%= -
90%- \
80% = \
70% = \

60% = \

e =

Flow entry consumption ratio [%]
g
IS
<>
ez
7

0% - <>
40.0% 45.0% 50.0% 55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0¢
Data rate ratio [%]

Figure 6.9: A detailed view on the tradeoff between data rate and state in the ISP topology
(adapted from [Ble+15b])

about 49% to 36% compared to the late duplication strategy. At the same time, the
relative data rate increases from 48% to 53%.

A switch from T = 1to T = 16 increases the multicast traffic significantly, from 41%
unicast data rate to 70% unicast data rate, or a 70% increase in data rate. Depending on
the total data rate managed by the ASDM system, this might have a significant impact
on the traffic engineering in the network. Multicast traffic is expected to be UDP-based,
constant rate and well controllable. Hence, the typical burstiness and self-similarity
patterns caused by per-connection feedback loops like those used by TCP [Wil+97] are
not expected. Its constant bit-rate nature is expected to affect bursty traffic if queueing
occurs. We, therefore, conclude that measuring the data rate of the multicast traffic in
the ASDM is crucial. Furthermore, modifying the unicast conversion threshold should
be done incrementally.

The results discussed before provide a clear understanding of the effect of the unicast
conversion threshold on both, the data rate, and the state consumption from a global
perspective. While the global perspective is important, and the system can mitigate
local resource bottlenecks by skipping a specific data plane element, it is nevertheless
important to understand the effects of the system on the resource consumption of
individual data plane elements. To that end, Figure 6.10 provides an insight into the
effect of the unicast conversion threshold on the peak state consumption on a single
data plane element per area. The bars in the figure provide the absolute flow entry
consumption per group member as denoted by the left vertical axis. The lines provide the

6.2 EVALUATION OF THE MITIGATION OF GLOBAL RESOURCE SHORTAGES

Topology: Tree

0.050 - - 100%
i, -90% @
0.045 90% 2
& 0.040 - -80% o
g 0035 70% o
. A 'n 0
QE) 0.030 - - 60% g
o, 0.025- -50% o
=] -
3 0.020 - -40% &
— o <
500,015 - -30% 2
@ ' (o]
T LLLLL |
(e ' ‘s %
= 0.000 - L L L = =
= S|
=
g Topology: ISP g
@« - L 0,
g 0.050 100%'3
O 0.045- -90%
= %9
£ 0.040- -80% @&
5 0.035- -70% 5
2 0.030- -60% B
O [¢)
== 0.025- -50% B
£ 0.020- -40% I
'.'5 0, -
S 0.015- -30% 5
o L _— 2
o LLLL e
00004 LLLLE S B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128
Unicast conversion threshold

Area . Core . Edge

Figure 6.10: The peak state consumption on single data plane elements per network area
(adapted from [Ble+15b])

relative flow entry consumption relative to its maximum. Their vertical axis is denoted
on the right side of the Figure. In both, the tree, and the ISP topology the flow entry
consumption per group member is higher in the core area of the network than in the
edge area. This is expected because, in the tree topology, all flow entries are placed on
the same devices due to the lack of alternatives.

The peak flow entries consumption in the core area is higher at most values of the
unicast conversion threshold. The values where the peak consumption in the core area
consumes is smaller than in the edge area are 32, 64, and 128. These values are larger than
most group sizes in the investigated group size distribution. With these values, virtually
all groups are immediately converted to unicast traffic. Hence, they are considered
an edge case when the unicast conversion threshold is as high as or higher than the
group sizes. The impact of the unicast conversion threshold on the peak flow entry
consumption per group member in each area is significant for both areas up to a value

131

132

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

of 8. After that, it stays flat for the edge area and continues to shrink for the core area. We
explain this effect with the same mechanism that reduces the flow entry consumption to
zero in the core area for large unicast conversion thresholds: the larger the threshold
becomes in comparison to the group sizes, the more likely it becomes that each group
only uses a single flow entry. This single flow entry is located on the ingress switch
of the group, which is always an edge device in our design. Therefore, the flow entry
consumption stays flat at the edge while shrinking to zero in the core area. We conclude
that if the unicast conversion threshold is significantly smaller than the average group
size, the flow entry reducing effect impacts the core and the edge area devices similarly.
A flow entry shortage in the core network can be mitigated by increasing the unicast
conversion threshold to a value that is close to the largest group sizes.

As we discussed, the effect of the unicast conversion threshold is different depending
on the size of a multicast group. We investigate flow entry consumption per group
member in more detail on the example of a single, randomly created group that grows
from 1 to 128 members in Figure 6.11. When the group sizes approach values of
which the unicast conversion threshold is a multiple of, spikes are visible in the state
consumption. This effect is very pronounced for small group sizes and diminishes when
the group becomes larger. Furthermore, the tree topology shows a higher variability
than the ISP topologies. In all topologies, larger groups show less variability in their
state consumption per group member. Small groups show more variability as well as a
lower flow entry consumption efficiency.

For all topologies, the state efficiency increases with growing group sizes. The
only exceptions in the depiction are the ISP topologies, here the unicast conversion
threshold T = 4 shows an increasing trend from group size 80 to 128. We consider this a
measurement artifact since all other configurations show increasing efficiency. Finally,
the upper bound for the state efficiency is depicted by a unicast conversion threshold of
T = co. In this case, all groups, independent of their size are converted to unicast at the
group ingress switch. However, for large groups, this threshold requires a considerable
replication load on a single data plane element, which we do not consider feasible.

The investigation of the data-rate-state profile showed diminishing returns for investing
state to reduce the data rate and vice versa. This observation could lead to the assumption
that there is an optimal unicast conversion threshold for the given network and load
configuration. We investigated this finding in Figure 6.12 by assuming that both, one unit
of state, and one unit of data rate, have the same value for the network operator. While
this assumption is not expected to hold for many use cases, it shows that the ASDM can
not only be used to adapt a multicast system to a control path resource shortage, but
also to optimize the outcome of the resources invested in the system. Depending on the
scarceness of state and of network capacity in the system, the optimal unicast conversion
threshold is expected to change, yet the fact that is can be derived is helpful for network
operators.

6.2 EVALUATION OF THE MITIGATION OF GLOBAL RESOURCE SHORTAGES

Topology: ISP

1.0-

0.8 -

0.6 -

04-

0.2-

0.0-

Topology: ISP, unicast core

I
o
1

o
o~
'

Topology: Tree
1.0-

Flow entry consumption per group member

0.8~-

0.6-

0.4-

1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Group size

Figure 6.11: The influence of group sizes on the flow entry consumption for selected unicast
conversion thresholds (adapted from [Ble+15b])

In Figure 6.12 on the horizontal axis, we see the flow entries consumed per group
member, on the vertical axis the data rate reduction per flow entry. The depiction shows
the data rate reduction return per invested flow entry. It is visible that the maximum
return on invested flow entries is with unicast conversion threshold T = 15 for all three
topologies. The differences between the topologies are small. We, therefore, assume that

133

134

EVALUATING MITIGATION APPROACHES FOR CONTROL PATH BOTTLENECKS

0.0900% =
0.0800% =
0.0700% =
0.0600% =
0.0500% =

0.0400% =

0.0300% =
0.0200% =

0.0100% =

Data rate reduction per flow entry [%]

0.0000% =
010 015 020 025 030 035 040 045 050 055 060 065 0.70
Flow entries consumed per group member

Topology A Tree -+ ISP -X ISP, unicast core

Figure 6.12: Selecting the unicast conversion threshold optimize the data rate reduction return
on invested flow entries for a given cost function for data rate and state
(adapted from [Ble+15b])

the optimal value depends on the valuation of data rate and state as well as the group
size distribution in the ASDM control plane application.

6.2.4 Discussion of the Evaluation Results

We conclude this investigation of the adaptation characteristics of ASDM in three network
configurations by summarizing its characteristics. We found the system to be able to
reduce the state consumption by nearly 90% compared to the prevalent late duplication
strategy. At the same time, the interdependent data rate efficiency can be controlled to
be between ~40% and 90% of the unicast data rate.

The group size distribution is the main factor that influences the state efficiency in the
system, while the transmission efficiency is also influenced by the topologies. Therefore,
the decision process for selecting the unicast conversion threshold requires the system the
simulated its existing group workload on the network topology to predict the outcome of
a change of the threshold. To the same end, the data rate per group should be monitored
with a high resolution to enable accurate predictions.

The effect of state reduction on the core and the edge areas of the ISP network showed
clear differences. The edge network is always involved, while the core network can be
relieved from flow entries by increasing the unicast conversion threshold to values close
to the sizes of the largest groups. The tree topology showed a more pronounced behavior

6.3 DISCUSSION

than the ISP topology. Specifically, due to the minimalistic nature of the topology, the
state is restricted to a few data plane elements. Therefore, the peak flow entry load is
higher, but so is the transmission efficiency.

An effect that was found in the evaluation but has yet to be investigated is the replication
load per data plane element. For high unicast conversion thresholds, a considerable
number of packet replicas might be required on a single device. The investigation if and
how state-of-the-art devices can handle this load is future work.

Finally, we find that small groups are the most inefficient regarding data rates and
state. We, therefore, conclude that groups that are smaller than the unicast conversion
threshold should be placed on software switches. Software switches provide smaller
throughput but a higher state capacity than hardware switches. Once the groups have
grown large enough, they can be placed on hardware switches.

6.3 DISCUSSION

The resource-bottleneck mitigation approaches and their mitigation decision process for
two representative control plane applications were evaluate in this chapter. One, network
function chaining, focused on a local control path bottleneck of a renewable resource.
The other, our adaptive multicasting design ASDM, investigated a global shortage of a
non-renewable control path resource.

Both approaches proved to be well designed and well suited for their respective
goals. The network function chaining system requires a hardware switch with a high-
performance control path to be effective. The adaptive multicasting approach provides a
wide control range for the data-rate-state tradeoff. Furthermore, we could show that
given a valuation of data rates and state, the system can be used to select an optimal
tradeoff for a given network and workload.

We found that for renewable resources separate measurements of the involved resources
is not a feasible approach. Instead, the event must be tested on the actual data plane
and control plane elements. The main reason for this proved to be the influence of the
controller on the control path performance. Furthermore, timely performance feedback
is required for this resource.

The non-renewable resource, flow entry space, promises to be an excellent candidate for
using simulation for deciding which action to choose to mitigate a bottleneck. However,
the adaptive multicasting approach trades flow entries for transmission capacity in
the network. This is a renewable data plane resource, instead of a control plane
resource. While fixed data rate traffic flows are expected for multicast traffic, a detailed
measurement of the traffic flows in the multicast system is required to enable the reliable
operation of the ASDM and ABSDM control plane applications.

135

SUMMARY, CONCLUSIONS, AND OUTLOOK

We conclude this thesis by summarizing it as well as giving an overview of the contribu-
tions. Finally, a conclusion is drawn, and an outlook on future work is given.

7.1 SUMMARY OF THE THESIS

The need for reliability in ISP network data planes was motivated in Chapter 1, followed
by an introduction into ISP networks and SDN architectures in Chapter 2. We found that
reliable control plane applications are enabled by SDN controllers that provide complete
control path isolation as well as by the applications’ ability to react to performance events
in a controlled manner. Complete control path isolation requires SDN controllers to
consider all potential performance bottlenecks on the control path and to virtualize them.
Our discussion of scientific literature on potential performance bottlenecks in the SDN
data plane in Chapter 3 showed that both requirements are not met by existing research.
Specifically, no existing approach can identify all potential performance bottlenecks
in the data plane. These findings lead us to formulate our first research goal: Design
of a systematic approach to virtualizing the control path of SDN data planes that takes all
performance-relevant aspects into account.

Furthermore, existing investigations of control plane applications do not consider
the effect of control path bottlenecks on them. Therefore, the understanding of how
interference from other applications in virtualized SDN data planes affect control plane
applications is not sufficient. Hence, or second research goal is: Enabling network services
to operate reliably on virtualized SDN data planes.

Based on these goals, we present our contributions to reach them in the following
section.

7.2 CONTRIBUTIONS

Our answer to the first research goal and its subsequent two research questions was
discussed in Chapter 6. Our first contribution is the formulation of the concept of
resource-orientation and a systematic approach to control path performance analysis
that provides an answer to Research Question 1.1: How to characterize the control path
performance in SDN data planes? The performance analysis approach of the control
path starts at the hardware elements, which are the cause of performance bottlenecks.
We introduce an abstraction to capture the characteristics of the hardware elements,
termed resources, and their interconnections through hard- and software features termed

137

138

SUMMARY, CONCLUSIONS, AND OUTLOOK

resource topology. This data structure is provided to the controller by the data plane
elements and enables the controller to analytically determine performance bottlenecks
in the control path before they occur.

The second Research Question 1.2 How to virtualize the throughput aspects of control paths
in SDN data planes? was answered in the subsequent sections of Chapter 4. Using the
discovered resource characteristics as well as the resource topology, the requirements for
enabling an SDN controller to virtualize these resources remotely were formulated. The
missing virtualization approach for throughput aspects of the control path was designed
using existing mechanisms in the representatively investigated OpenFlow SDN protocol.

The systematic control path performance analysis was applied to a state-of-the-art
SDN data plane element, the Edge-Core AS5712-54X switch that is based on a Broadcom
Trident II packet processing ASIC. Accordingly, the throughput virtualization mechanism
was evaluated. We demonstrated that the main requirements for virtualizing data planes
in ISP networks, prioritization could be achieved by our design while the fairness was
increased. Moreover, the presented approach is faster and more efficient than the
prevalent method used today.

The solution for the second research goal is presented in Chapters 5 and 6. First, the
types of resource events in control paths of SDN data planes are discussed. Then, a
design space analysis of bottleneck mitigation approaches is conducted.

We investigated the effects of control path resource bottlenecks and the corresponding
mitigation approaches on two representative applications, network function chaining
and SDM that cover all relevant parts of an ISP network. Research Question 2.1 How can
control plane applications operate reliably in the face of control path performance events that affect
a single data plane element? is investigated by enabling a network function chaining control
plane application to cope with performance bottlenecks in the control path. To that end,
we analyze the requirements for shifting the load of flow table entry additions from an
SDN software switch to an adjacent hardware switch in our network function chaining
application. Research Question 2.2 How can control plane applications operate reliably in the
face of control path performance events that affect the whole data plane of a network domain? is
investigated by designing an adaptive SDM control plane application, termed ASDM,
from the beginning for the ability to adapt to changing control path resource availability.
Furthermore, the adaptivity concept is applied to the efficient bit-index replication
forwarding method, to further increase the adaptivity and efficiency of multicasting in
our ABSDM application design. The designs are evaluated in Chapter 6, and both the
effectiveness of the mitigation approaches is demonstrated, as well as the application’s
requirements for determining their mitigation decision. We find that both applications
can reliably react to the investigated cases of control path resource bottlenecks and
thereby ensure the reliability of the ISP network control plane operating on a virtualized
data planed.

7.3 CONCLUSION

7.3 CONCLUSION

We systematically analyzed the control path of state-of-the-art SDN hardware switches
to enable its virtualization. Furthermore, we studied the impact of virtualization on
representative control plane applications.

SDN protocols need to take the control path of the data plane into account and to be
able to reason on its expected performance as well as its current state. Control plane
applications need to be able to specify and receive information on their used control
path resources. This information enables applications to operate reliably in the face of
performance events.

The investigation of a state-of-the-art OpenFlow agent for hardware switches, PicOS
2.8 revealed that the design of operating systems for the management system of hardware
switches has not caught up with the research yet. Specifically, the design of existing
OpenFlow agents hinders the reasoning on the performance of individual SDN primitives.

We, therefore, conclude that performance clarity should be a first-class design principle
for both hardware and software designs as proposed by Ousterhout et at [Ous+17].
Thereby, making SDN control planes in future ISP networks more efficient and reliable.

74 OUTLOOK

Our approach to deriving a resource topology was successfully applied to a state-of-the-
art SDN switch. The design focused on devices relying on ASICs for packet processing.
However, there are other classes of data plane elements, such as software switches as
well as NPU-based and FPGA-based devices. Software and NPU-based data plane
elements rely to a more considerable extent on software to implement packet processing.
Therefore, the mapping of SDN protocol primitives to hardware resources becomes more
difficult and requires resource isolation between software features. The impact of the
increased importance of software components on our resource-oriented performance
analysis approach as well as the requirements for software to provide performance
clarity should be investigated.

The requirements for providing more performance clarity to software in data planes
also applies to the SDN agent software running on the device’s management system.
Today, all SDN primitives are processed by the same software components consuming
the same resources. Ensuring that important SDN protocol messages are still processed
when the management system is overloaded is difficult. Therefore, an approach to
improve the reliability of message delivery should be investigated as well as ways to
provide isolation between different priorities of SDN protocol messages. Doing so
requires vendors to open their hardware drivers and make them available without
the requirement for an NDA. Nevertheless, the proposed system is well suited as the
foundation of an experimental SDN agent for data plane elements to demonstrate all
features at once.

139

140

SUMMARY, CONCLUSIONS, AND OUTLOOK

Finally, the resource-orientation provides new possibilities for network management.
Using our contributions, control plane applications can be compared based on their data
plane resource consumption. Moreover, the efficiency of data plane elements in hosting
control plane applications becomes comparable by matching the resource requirements
of control plane applications with the available resources in the data plane. With this
thesis at hand, we provide the foundation to enable network management software to
automatically select the best-suited control plane applications for an existing network.

75 FUNDING

This work has been supported in parts by the German Research Foundation (DFG)
within the Collaborative Research Center (CRC) 1053 - MAKI, by the project ,,Dynamic
Networks (D-Nets) 2-6” in collaboration with Deutsche Telekom FMED, and by the
European Union (FP7/#317846, SmartenIT and FP7/#318398, eCousin).

BIBLIOGRAPHY

[AHA16]

[AHO02]

[Aga+14]

[Amb+17]

[ACO5]

[Bas+17]

[Ber+14]

[Bet+14]

[Bho+17]

G. Abbas, Z. Halim, and Z. H. Abbas. ,Fairness-Driven Queue Manage-
ment: A Survey and Taxonomy.” In: IEEE Communications Surveys Tutorials
18.1 (2016), pp. 324-367.

L. A. Adamic and B. A. Huberman. , Zipf’s law and the Internet.” In:
Glottometrics 3.1 (2002), pp. 143-150.

K. Agarwal, C. Dixon, E. Rozner, and J. Carter. ,Shadow MACs: Scalable
Label-switching for Commodity Ethernet.” In: Proceedings of the Workshop
on Hot Topics in Software Defined Networking (HotSDN). 2014.

M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran. ,LineSwitch:
Tackling Control Plane Saturation Attacks in Software-Defined Network-
ing.” In: IEEE/ACM Transactions on Networking 25.2 (Apr. 2017), pp. 1206-
1219.

G. Apostolopoulos and I. Ciurea. ,Reducing the forwarding state require-
ments of point-to-multipoint trees using MPLS multicast.” In: Proceedings
of the International Symposium on Computers and Communications (ISCC).
2005.

A. Basta, A. Blenk, W. Kellerer, and S. Schmid. , Logically Isolated, Actu-
ally Unpredictable? Measuring Hypervisor Performance in Multi-Tenant
SDNs.” In: Computing Research Repository (CoRR) abs/1704.08958 (2017).
arXiv: 1704.08958.

P. Berde et al. ,ONOS: Towards an Open, Distributed SDN OS.” In:
Proceedings of the Workshop on Hot Topics in Software Defined Networking
(HotSDN). 2014.

A. Betker, I. Gamrath, D. Kosiankowski, C. Lange, H. Lehmann, F. Pfeuffer,
F. Simon, and A. Werner. ,,Comprehensive Topology and Traffic Model
of a Nationwide Telecommunication Network.” In: Journal of Optical
Communications and Networking 6.11 (Nov. 2014), pp. 1038-1047.

S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Durr, T. Kohler, and K. Rothermel.
,High Performance Publish/Subscribe Middleware in Software-Defined
Networks.” In: IEEE/ACM Transactions on Networking 25.3 (June 2017),
pp- 1501-1516.

141

142

BIBLIOGRAPHY

[Bif+13]

[Blel5]

[Ble+16a]

[BH14]

[Ble+16b]

[Ble+15a]

[Ble+14]

[Ble+15b]

[Ble13]

[Ble+18]

[BBK15]

R. Bifulco, T. Dietz, F. Huici, M. Ahmed, J. Martins, S. Niccolini, and
H. Kolbe. , Rethinking Access Networks with High Performance Virtual
Software BRASes.” In: Proceedings of the European Workshop on Software
Defined Networks (EWSDN). 2013.

S. Bleidner. , Identification and Design of a Data Plane Resource Optimiza-
tion Mechanism for Application-Controlled SDN.” PS-D-0017. Master’s
thesis. Technische Universitat Darmstadt, 2015.

J. Blendin, Y. Babenko, D. Kusidlo, G. Schyguda, and D. Hausheer. ,Posi-
tion Paper: Towards a Structured Approach to Developing Benchmarks
for Virtual Network Functions.” In: Proceedings of the European Workshop
on Software Defined Networks (EWSDN). 2016.

J. Blendin and D. Hausheer. , Towards Resource-Efficient Application-
Controlled Software Defined Networks.” In: Proceedings of the IEEE Inter-
national Conference on Network Protocols (ICNP). Phd paper. 2014.

J. Blendin, D. Herrmann, M. Wichtlhuber, M. Gunkel, F. Wissel, and D.
Hausheer. , Enabling efficient multi-layer repair in elastic optical networks
by gradually superimposing SDN.” In: Proceedings of the International
Conference on Network and Service Management (CNSM). 2016.

J. Blendin, J. Riickert, S. Bleidner, and D. Hausheer. , Taking the Sting
out of Flow Update Peaks in Software-Defined Service Chaining.” In:
Proceedings of the International Workshop on Management of SDN and NFV
Systems (ManSDN/NFV). 2015.

J. Blendin, J. Riickert, N. Leymann, G. Schyguda, and D. Hausheer. ,Posi-
tion Paper: Software-Defined Network Service Chaining.” In: Proceedings
of the European Workshop on Software Defined Networks (EWSDN). 2014.

J. Blendin, J. Riickert, T. Volk, and D. Hausheer. , Adaptive Software
Defined Multicast.” In: Proceedings of the IEEE Conference on Network
Softwarization (NetSoft). 2015.

J. Blendin. ,,Cross-layer Optimization of Peer-to-Peer Video Streaming in
OpenFlow-based ISP Networks.” Diploma Thesis. Technische Universitét
Darmstadt, 2013.

J. Blendin, F. Bendfeldt, I. Poese, B. Koldehofe, and O. Hohlfeld. , Dissecting
Apple’s Meta-CDN during an iOS Update.” In: Proceedings of the ACM
Internet Measurement Conference (IMC). Accepted. 2018.

A.Blenk, A. Basta, and W. Kellerer. ,HyperFlex: An SDN Virtualization Ar-
chitecture with Flexible Hypervisor Function Allocation.” In: Proceedings
of the IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). 2015.

[Ble+15c]

[Ble+16c¢]

[RFC5058]

[Bos+13]

[BCO2]

[BR13]

[BS15]

[CR17]

[CTB16]

[CB17a]

[CB17b]

[CVNI17]

BIBLIOGRAPHY

A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. ,,Survey on Network Vir-
tualization Hypervisors for Software Defined Networking.” In: Computing
Research Repository (CoRR) abs/1506.07275 (2015). arXiv: 1506.07275.

A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. ,Survey on Network
Virtualization Hypervisors for Software Defined Networking.” In: IEEE
Communications Surveys Tutorials 18.1 (Firstquarter 2016), pp. 655-685.

R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms. Explicit Multi-
cast (Xcast) Concepts and Options. Request for Comments 5058. Internet
Engineering Task Force, Nov. 2007.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz. ,Forwarding Metamorphosis: Fast Pro-
grammable Match-action Processing in Hardware for SDN.” In: Proceed-
ings of the ACM SIGCOMM Conference (SIGCOMM). 2013.

A. Boudani and B. Cousin. ,,A new approach to construct multicast
trees in MPLS networks.” In: Proceedings of the International Symposium on
Computers and Communications (ISCC). 2002.

Z. Bozakov and A. Rizk. , Taming SDN Controllers in Heterogeneous
Hardware Environments.” In: Proceedings of the European Workshop on
Software Defined Networks (EWSDN). 2013.

E. Bulut and B. K. Szymanski. ,,Understanding user behavior via mobile
data analysis.” In: Proceedings of the IEEE International Conference on
Communication Workshop (ICCW). 2015.

R. Canonico and S. P. Romano. , Leveraging SDN to Improve the Per-
formance of Multicast-Enabled IPTV Distribution Systems.” In: IEEE
Communications Standards Magazine 1.4 (Dec. 2017), pp. 42-47.

B. Chandrasekaran, B. Tschaen, and T. Benson. , Isolating and Tolerating
SDN Application Failures with LegoSDN.” In: Proceedings of the Symposium
on SDN Research (SOSR). 2016.

H. Chen and T. Benson. , Hermes: Providing Tight Control over High-
Performance SDN Switches.” In: Proceedings of the ACM Conference on
Emerging Networking Experiments and Technologies (CoNEXT). 2017.

H. Chen and T. Benson. ,, The Case for Making Tight Control Plane Latency
Guarantees in SDN Switches.” In: Proceedings of the Symposium on SDN
Research (SOSR). 2017.

Cisco Visual Networking Index: Forecast and Methodology, 2016-2021. Whitepa-
per. Cisco. June 2017.

143

144

BIBLIOGRAPHY

[Cos+17]

[Csé+13]

[Cur+11]

[DPM12]

[DCI0]

[Dio+00]

[DKE14]

[RFC5810]

[DRC10]

[DK15]

[DGO06]

L. C. Costa, A. B. Vieira, E. d. B. e. Silva, D. F. Macedo, G. Gomes, L. H. A.
Correia, and L. F. M. Vieira. , Performance evaluation of OpenFlow data
planes.” In: Proceedings of the IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). 2017.

A. Cséaszér, W. John, M. Kind, C. Meirosu, G. Pongracz, D. Staessens, A.
Takacs, and F.-]. Westphal. ,,Unifying Cloud and Carrier Network: EU FP7
Project UNIFY.” In: Proceedings of the IEEE/ACM International Conference
on Utility and Cloud Computing (UCC). 2013.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. ,,DevoFlow: Scaling Flow Management for High-performance
Networks.” In: ACM SIGCOMM Computer Communication Review (CCR)
41.4 (2011), pp. 254-265.

S. Das, G. Parulkar, and N. McKeown. ,Why OpenFlow /SDN can Succeed
where GMPLS Failed.” In: Proceedings of the European Conference and
Exhibition on Optical Communication (ECOC). 2012.

S. E. Deering and D. R. Cheriton. ,Multicast Routing in Datagram Inter-
networks and Extended LANs.” In: ACM Transactions on Computer Systems
(TOCS) 8.2 (May 1990), pp. 85-110.

C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. ,,Deployment
Issues for the IP Multicast Service and Architecture.” In: IEEE Network
14.1 (2000), pp. 78-88.

A. Dixit, K. Kogan, and P. Eugster. ,,Composing Heterogeneous SDN
Controllers with Flowbricks.” In: Proceedings of the IEEE International
Conference on Network Protocols (ICNP). 2014.

A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal,
and J. Halpern. Forwarding and Control Element Separation (ForCES) Protocol
Specification. Request for Comments 5810. Internet Engineering Task Force,
Mar. 2010.

R.D. Doverspike, K. K. Ramakrishnan, and C. Chase. , Structural Overview
of ISP Networks.” In: Guide to Reliable Internet Services and Applications.
Ed. by C. R. Kalmanek, S. Misra, and Y. Yang. Springer London, 2010,
pp- 19-93. 1sBN: 978-1-84882-828-5.

R. Durner and W. Kellerer. , The cost of security in the SDN control plane.”
In: Proceedings of the ACM Conference on Emerging Networking Experiments
and Technologies (CONEXT) Student Workshop. 2015.

M. Diiser and A. Gladisch. , Evaluation of Next Generation Network
Architectures and Further Steps for a Clean Slate Networking Approach.”
In: Proceedings of the Joint ITG and Euro-NF Workshop "Visions of Future
Generation Networks” (EuroView). 2006.

[Emm+15]

[Far10]

[Fil+18]

[FSV16]

[Gio+17]

[Grel3]

[Guo+17]

[Harl7]

[Har+16]

[He+15]

[HYS]

[IMS13]

[Jai+13]

BIBLIOGRAPHY

P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. , Assessing Soft-
and Hardware Bottlenecks in PC-based Packet Forwarding Systems.” In:
Proceedings of the International Conference on Networks (ICN). 2015.

A. Farrel. ,,A Unified Control Plane: Dream or Pipedream.” In: Proceedings
of the International Conference on IP+ Optical Network (IPOP). 2010.

C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li. SRv6
Network Programming. Internet-Draft draft-filsfils-spring-srv6-network-
programming-05. Internet Engineering Task Force, July 2018.

K. Foerster, S. Schmid, and S. Vissicchio. ,,Survey of Consistent Network
Updates.” In: Computing Research Repository (CoRR) abs/1609.02305 (2016).
arXiv: 1609.02305.

A. Giorgetti, A. Sgambelluri, F. Paolucci, P. Castoldi, and F. Cugini.
,First demonstration of SDN-based Bit Index Explicit Replication (BIER)
multicasting.” In: Proceedings of the European Conference on Networks and
Communications (EuCNC). 2017.

B. Gregg. , Thinking Methodically About Performance.” In: Communica-
tions of the ACM 56.2 (Feb. 2013), pp. 45-51.

Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao. ,STAR: Pre-
venting flow-table overflow in software-defined networks.” In: Computer
Networks 125 (2017), pp. 15-25.

M. Hérdtlein. , Identification and Modeling Performance Interference in
Virtual SDN Data Planes.” KOM-B-0602. Bachelor’s thesis. Technische
Universitat Darmstadt, 2017.

R. Hark, D. Stingl, N. Richerzhagen, K. Nahrstedt, and R. Steinmetz.
,,DistTM: Collaborative traffic matrix estimation in distributed SDN control
planes.” In: Proceedings of the IFIP Networking Conference. 2016.

K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L. E.
Li, and M. Thottan. ,,Measuring Control Plane Latency in SDN-enabled
Switches.” In: Proceedings of the Symposium on SDN Research (SOSR). 2015.

D. Y. Huang, K. Yocum, and A. C. Snoeren. ,High-fidelity Switch Models
for Software-defined Network Emulation.” In: Proceedings of the Workshop
on Hot Topics in Software Defined Networking (HotSDN).

A.S.Iyer, V. Mann, and N. R. Samineni. ,,SwitchReduce: Reducing switch
state and controller involvement in OpenFlow networks.” In: Proceedings
of the IFIP Networking Conference. 2013.

S. Jain et al. , B4: Experience with a Globally-deployed Software Defined
Wan.” In: Proceedings of the ACM SIGCOMM Conference (SIGCOMM). 2013.

145

146 BIBLIOGRAPHY

[Jar+11] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia.
»~Modeling and Performance Evaluation of an OpenFlow Architecture.”
In: Proceedings of the International Teletraffic Congress (ITC). 2011.

[Jin+15] X. Jin, J. Gossels, J. Rexford, and D. Walker. ,,CoVisor: A Compositional
Hypervisor for Software-defined Networks.” In: Proceedings of the USENIX
Conference on Networked Systems Design and Implementation (NSDI). 2015.

[Jin+13] X.Jin, L. E. Li, L. Vanbever, and J. Rexford. ,SoftCell: Scalable and Flexible
Cellular Core Network Architecture.” In: Proceedings of the ACM Conference
on Emerging Networking Experiments and Technologies (CONEXT). 2013.

[Jin+14] X.Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford,
and R. Wattenhofer. ,,Dynamic Scheduling of Network Updates.” In:
Proceedings of the ACM SIGCOMM Conference (SIGCOMM). 2014.

[KHK13] Y. Kanizo, D. Hay, and I. Keslassy. , Palette: Distributing tables in software-
defined networks.” In: Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM). 2013.

[Kat+16] N.Katta, O. Alipourfard, J. Rexford, and D. Walker. ,CacheFlow: Dependency-
Aware Rule-Caching for Software-Defined Networks.” In: Proceedings of
the Symposium on SDN Research (SOSR). 2016.

[KMH14] F. Kaup, S. Melnikowitsch, and D. Hausheer. ,Measuring and modeling
the power consumption of OpenFlow switches.” In: Proceedings of the
International Conference on Network and Service Management (CNSM). 2014.

[Kni+11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. , The In-
ternet Topology Zoo.” In: IEEE Journal on Selected Areas in Communications
29.9 (Oct. 2011), pp. 1765-1775.

[Koh+07] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. ,An
Analysis of Performance Interference Effects in Virtual Environments.”

In: Proceedings of the IEEE International Symposium on Performance Analysis
of Systems & Software (ISPASS). 2007.

[Kop+10] T. Koponen et al. , Onix: A Distributed Control Platform for Large-
scale Production Networks.” In: Proceedings of the USENIX Conference on
Operating Systems Design and Implementation (OSDI). 2010.

[Kre+15] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. ,Software-Defined Networking: A Comprehensive
Survey.” In: Proceedings of the IEEE 103.1 (Jan. 2015), pp. 14-76.

[REC1736] J. Kunze. Functional Recommendations for Internet Resource Locators. Request
for Comments 1736. Internet Engineering Task Force, Feb. 1995.

[Kuz+18]

[LHM10]

[Laz+14]

[Lev+14]

[Liu+12]

[Mad+15]

[Mai+09]

[Man+17]

[RFC3945]

[McKO03]

[McK09]

[Med+14]

BIBLIOGRAPHY

M. Kuzniar, P. Peresini, D. Kostic, and M. Canini. ,Methodology, mea-
surement and analysis of flow table update characteristics in hardware
openflow switches.” In: Computer Networks 136 (May 2018), pp. 22-36.

B. Lantz, B. Heller, and N. McKeown. , A Network in a Laptop: Rapid
Prototyping for Software-defined Networks.” In: Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets). 2010.

A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R. Yang, and M.
Yu. , Tango: Simplifying SDN Control with Automatic Switch Property
Inference, Abstraction, and Optimization.” In: Proceedings of the ACM
Conference on Emerging Networking Experiments and Technologies (CONEXT).
2014.

D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann. ,Panopticon:
Reaping the Benefits of Incremental SDN Deployment in Enterprise
Networks.” In: Proceeding of the USENIX Annual Technical Conference
(USENIX ATC). 2014.

L. Liuetal. , First Field Trial of an OpenFlow-based Unified Control Plane
for Multi-layer Multi-granularity Optical Networks.” In: Proceedings of the
Optical Fiber Communication Conference (OFC). 2012.

A. Madhavapeddy et al. , Jitsu: Just-In-Time Summoning of Unikernels.”
In: Proceedings of the USENIX Conference on Networked Systems Design and
Implementation (NSDI). 2015.

G. Maier, A. Feldmann, V. Paxson, and M. Allman. ,,On Dominant Char-
acteristics of Residential Broadband Internet Traffic.” In: Proceedings of the
ACM Internet Measurement Conference (IMC). 2009.

F. Manco, C. Lupu, F. Schmidt, J]. Mendes, S. Kuenzer, S. Sati, K. Yasukata,
C. Raiciu, and F. Huici. ,My VM is Lighter (and Safer) Than Your

Container.” In: Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP). 2017.

E. Mannie. Generalized Multi-Protocol Label Switching (GMPLS) Architecture.
Request for Comments 3945. Internet Engineering Task Force, Oct. 2004.

N. McKeown. Processing packets in packet switches. Stanford University,
Lecture CS343. May 2003.

N. McKeown. Software-defined networking. IEEE International Conference
on Computer Communications (INFOCOM) keynote talk. Apr. 2009.

J. Medved, R. Varga, A. Tkacik, and K. Gray. ,OpenDaylight: Towards
a Model-Driven SDN Controller architecture.” In: Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). 2014.

147

148

BIBLIOGRAPHY

[MM16]

[Mog+13]

[Mos+14]

[Nar+12]

[ETSI13]

[ETSI18]

[Ngu+18]

[Nir+09]

[Nob+17]

[NHH16]

[ONF14a]

T. Mizrahi and Y. Moses. , Time4: Time for SDN.” In: IEEE Transactions on
Network and Service Management (TNSM) 13.3 (2016), pp. 433—446.

J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J]. Mudigonda, P.
Sharma, and Y. Turner. ,Corybantic: Towards the Modular Composition of
SDN Control Programs.” In: Proceedings of the ACM SIGCOMM Workshop
on Hot Topics in Networks (HotNets). 2013.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat. ,DREAM: Dynamic
Resource Allocation for Software-defined Measurement.” In: Proceedings
of the ACM SIGCOMM Conference (SIGCOMM). 2014.

R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H. Khan, and
S. A. Khayam. ,Macroflows and Microflows: Enabling Rapid Network
Innovation through a Split SDN Data Plane.” In: Proceedings of the European
Workshop on Software Defined Networks (EWSDN). 2012.

Network Functions Virtualisation (NFV); Architectural Framework. Tech. rep.
ETSI GS NFV 002 V1.1.1. ETSI Industry Specification Group (ISG), Net-
work Functions Virtualisation (NFV), Oct. 2013.

Network Functions Virtualisation (NFV); Terminology for Main Concepts in
NFV. Tech. rep. ETSI GS NFV 003 V1.3.1. ETSI Industry Specification
Group (ISG), Network Functions Virtualisation (NFV), Jan. 2018.

A. Nguyen-Ngoc, S. Lange, S. Geissler, T. Zinner, and P. Tran-Gia. , Esti-
mating the Flow Rule Installation Time of SDN Switches When Facing
Control Plane Delay.” In: Proceedings of the International GI/ITG Conference
on Measurement, Modelling and Evaluation of Computing Systems (MMB).
2018.

R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat. ,,PortLand: A Scalable
Fault-tolerant Layer 2 Data Center Network Fabric.” In: Proceedings of the
ACM SIGCOMM Conference (SIGCOMM). 2009.

L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, and D. Hausheer. , Bare-
Metal Switches and Their Customization and Usability in a Carrier-Grade
Environment.” In: Proceeding of the IEEE Conference on Local Computer
Networks (LCN). 2017.

L. Nobach, O. Hohlfeld, and D. Hausheer. ,New Kid on the Block: Network
Functions Visualization: From Big Boxes to Carrier Clouds.” In: ACM
SIGCOMM Computer Communication Review (CCR) 46.3 (July 2016), 7:1-7:8.

OF-CONFIG 1.2, OpenFlow Management and Configuration Protocol. Techni-
cal Specification 016. Open Networking Foundation, 2014.

[ONF09]

[ONF13]

[ONF15]

[ONF14b]

[ONF17]

[Ous+17]

[P4Runtime]

[PS06]

[PB17]

[PV11]

[Pet+16]

[RFC7047]

[Pfa+15]

[PRF17]

BIBLIOGRAPHY

OpenFlow Switch Specification: Version 1.0.0 (Wire Protocol 0x01). Technical
Specification 001. Open Networking Foundation, Dec. 2009.

OpenFlow Switch Specification: Version 1.4.0 (Wire Protocol 0x05). Technical
Specification 012. Open Networking Foundation, Oct. 2013.

OpenFlow Switch Specification: Version 1.5.1 (Protocol version 0x06). Technical
Specification 025. Open Networking Foundation, Mar. 2015.

OpenFlow Table Type Patterns. Technical Specification 017. Open Network-
ing Foundation, Aug. 2014.

Orchestration: A More Holistic View. Technical Reference 540. Open Net-
working Foundation, Mar. 2017.

K. Ousterhout, C. Canel, M. Wolffe, S. Ratnasamy, and S. Shenker. , Per-
formance Clarity As a First-class Design Principle.” In: Proceedings of the
Workshop on Hot Topics in Operating Systems (HotOS). 2017.

P4Runtime Specification. Tech. rep. version 1.0.0-rc2. The P4.org API Work-
ing Group, Mar. 2018.

K. Pagiamtzis and A. Sheikholeslami. , Content-Addressable Memory
(CAM) Circuits and Architectures: A Tutorial and Survey.” In: IEEE Journal
of Solid-State Circuits 41.3 (2006), pp. 712-727.

D. Pariag and T. Brecht. ,, Application Bandwidth and Flow Rates from
3 Trillion Flows Across 45 Carrier Networks.” In: Proceedings of the In-
ternational Conference on Passive and Active Network Measurement (PAM).
2017.

D. Perino and M. Varvello. , A Reality Check for Content Centric Network-
ing.” In: Proceedings of the ACM SIGCOMM Workshop on Information-centric
Networking. 2011.

L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart,
G. Palukar, and W. Snow. ,,Central office re-architected as a data center.”
In: IEEE Communications Magazine 54.10 (Oct. 2016), pp. 96-101.

B. Pfaff and B. Davie. The Open vSwitch Database Management Protocol.
Request for Comments 7047. Internet Engineering Task Force, Dec. 2013.

B. Pfaff et al. , The Design and Implementation of Open vSwitch.” In:
Proceedings of the USENIX Conference on Networked Systems Design and
Implementation (NSDI). 2015.

E. Pujol, P. Richter, and A. Feldmann. ,Understanding the Share of IPv6
Traffic in a Dual-Stack ISP.” In: Proceedings of the International Conference
on Passive and Active Network Measurement (PAM). 2017.

149

150

BIBLIOGRAPHY

[Qaz+13]

[Qia+16]

[RFC8300]

[RLANG]

[REG99]

[Roj+18]

[Rot+12]

[Riic+15]

[Riic+16]

[RBH13]

[RBH15]

Z. A. Qazi, C.-C. Ty, L. Chiang, R. Miao, V. Sekar, and M. Yu. ,,SIMPLE-
tying Middlebox Policy Enforcement Using SDN.” In: Proceedings of the
ACM SIGCOMM Conference (SIGCOMM). 2013.

S. Qiao, C. Hu, X. Guan, and J. Zou. , Taming the Flow Table Overflow
in OpenFlow Switch.” In: Proceedings of the ACM SIGCOMM Conference
(SIGCOMM). 2016.

P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH). Request
for Comments 8300. Internet Engineering Task Force, Jan. 2018.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria, 2018. urL: https:
//www.R-project.org/.

P. I. Radoslavov, D. Estrin, and R. Govindan. Exploiting the bandwidth-
memory tradeoff in multicast state agqregation. Technical Report 99-697
(Second Revision). University of Southern California, Department of
Computer Science, 1999.

E. Rojas, R. Doriguzzi-Corin, S. Tamurejo, A. Beato, A. Schwabe, K.
Phemius, and C. Guerrero. ,, Are We Ready to Drive Software-Defined
Networks? A Comprehensive Survey on Management Tools and Tech-
niques.” In: ACM Computing Surveys (CSUR) 51.2 (Feb. 2018), 27:1-27:35.

C. Rotsos, N. Sarrar, S. Uhlig, and A. W. Sherwood Rob and Moore.
, OFLOPS: An Open Framework for OpenFlow Switch Evaluation.” In:
Proceedings of the International Conference on Passive and Active Network
Measurement (PAM). 2012.

J. Riickert, J. Blendin, R. Hark, and D. Hausheer. ,DynSDM: Dynamic and
Flexible Software-Defined Multicast for ISP Environments.” In: Proceedings
of the International Conference on Network and Service Management (CNSM).
2015.

J. Riickert, J. Blendin, R. Hark, and D. Hausheer. , Flexible, Efficient, and
Scalable Software-Defined Over-the-Top Multicast for ISP Environments
With DynSDM.” In: IEEE Transactions on Network and Service Management
(TNSM) 13.4 (2016), pp. 754-767.

J. Riickert, J. Blendin, and D. Hausheer. ,RASP: Using OpenFlow to Push
Overlay Streams into the Underlay (Demo Paper).” In: Proceedings of the
IEEE International Conference on Peer-to-Peer Computing (P2P). 2013.

J. Riickert, J. Blendin, and D. Hausheer. ,Software-Defined Multicast for
Over-the-Top and Overlay-based Live Streaming in ISP Networks.” In:
Springer Journal of Network and Systems Management (INSM), Special Issue
on Management of Software-Defined Networks 23.2 (2015), pp. 280-308.

[Riic+14]

[Riic16]

[RFC3549]

[SPA16]

[SAK16]

[SK14]

[SNS16]

[ONF14c]

[She+09]

[She+10]

[Shi+14]

[SJ13]

[SY12]

BIBLIOGRAPHY

J. Riickert, J. Blendin, N. Leymann, G. Schyguda, and D. Hausheer.
,Demo: Software-Defined Network Service Chaining.” In: Proceedings of
the European Workshop on Software Defined Networks (EWSDN). 2014.

J. Riickert. Large-Scale Live Video Streaming Over the Internet. Verlag Dr. Hut,
2016. 1sBN: 978-3-8439-2836-6.

J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux Netlink as an IP
Services Protocol. Request for Comments 3549. Internet Engineering Task
Force, July 2003.

T. Sasaki, A. Perrig, and D. E. Asoni. ,,Control-plane isolation and recovery
for a secure SDN architecture.” In: Proceedings of the IEEE Conference on
Network Softwarization (NetSoft). 2016.

A. Schwabe, P. A. Aranda Gutiérrez, and H. Karl. ,,Composition of
SDN Applications: Options/Challenges for Real Implementations.” In:
Proceedings of the Applied Networking Research Workshop (ANRW). 2016.

A. Schwabe and H. Karl. ,Using MAC Addresses As Efficient Routing
Labels in Data Centers.” In: Proceedings of the Workshop on Hot Topics in
Software Defined Networking (HotSDN). 2014.

S. Scott-Hayward, S. Natarajan, and S. Sezer. ,,A Survey of Security in
Software Defined Networks.” In: IEEE Communications Surveys Tutorials
18.1 (2016), pp. 623-654.

SDN architecture. Technical Reference 502. Open Networking Foundation,
June 2014.

R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKe-
own, and G. Parulkar. ,, Flowvisor: A Network Virtualization Layer.” In:
OpenFlow Switch Consortium, Technical Report (2009).

R. Sherwood et al. ,Carving Research Slices out of Your Production
Networks with OpenFlow.” In: ACM SIGCOMM Computer Communication
Review (CCR) 40.1 (Jan. 2010), pp. 129-130.

S. Shin, Y. Song, T. Lee, S. Lee,]. Chung, P. Porras, V. Yegneswaran, J. Noh,
and B. B. Kang. ,Rosemary: A Robust, Secure, and High-performance
Network Operating System.” In: Proceedings of the ACM Conference on
Computer and Communications Security (CSS). 2014.

P. Skoldstrom and W. John. , Implementation and Evaluation of a Carrier-
Grade OpenFlow Virtualization Scheme.” In: Proceedings of the European
Workshop on Software Defined Networks (EWSDN). 2013.

P. Skoldstrom and K. Yedavalli. ,,Network virtualization and resource
allocation in OpenFlow-based wide area networks.” In: Proceedings of the
IEEE International Conference on Communications (ICC). 2012.

151

152

BIBLIOGRAPHY

[Sou+14]

[SMZ04]

[SNZ00]

[P4_14]

[TLO1]

[Vil18]

[Vol14]

[Wan+14]

[Well6]

[Wen+16a]

[Wen+16b]

[Wet+14]

R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and
N. Foster. ,Merlin: A Language for Provisioning Network Resources.” In:
Proceedings of the ACM Conference on Emerging Networking Experiments and
Technologies (CONEXT). 2014.

K. Sripanidkulchai, B. Maggs, and H. Zhang. ,An Analysis of Live
Streaming Workloads on the Internet.” In: Proceedings of the ACM Internet
Measurement Conference (IMC). 2004.

L. Stoica, T. Ng, and H. Zhang. ,REUNITE: a Recursive Unicast Approach
to Multicast.” In: Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM). 2000.

The P4 Language Specification. Tech. rep. Version 1.0.4. The P4 Language
Consortium, May 2017.

S.-C. Tsao and Y.-D. Lin. ,,Pre-order deficit round robin: a new scheduling
algorithm for packet-switched networks.” In: Computer Networks 35.2
(2001), pp. 287-305.

L. F. Villa-Arenas. ,Ensuring Fairness and Resilience for Flow Rule
Updates in Virtualized SDNs.” KOM-M-0608. Master’s thesis. Technische
Universitat Darmstadt, 2018.

T. Volk. ,,Supporting Multicast in Application-controlled Software Defined
Networks.” PS-D-0012. Master’s thesis. Technische Universitat Darmstadt,
2014.

A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen. ,Scotch: Elastically
Scaling Up SDN Control-Plane Using vSwitch Based Overlay.” In: Pro-
ceedings of the ACM Conference on Emerging Networking Experiments and
Technologies (CONEXT). 2014.

P. Welzel. , Bit-Indexed Software Defined Multicast.” PS-D-0033. Master’s
thesis. Technische Universitat Darmstadt, 2016.

X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and C.
Hu. , RuleTris: Minimizing Rule Update Latency for TCAM-Based SDN
Switches.” In: Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS). 2016.

X.Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen. ,,SDNShield:
Reconciliating Configurable Application Permissions for SDN App Mar-
kets.” In: Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 2016.

P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl. ,MaxiNet: Distributed emulation of software-defined networks.”
In: Proceedings of the IFIP Networking Conference. 2014.

[RFC8279]

[Wil+97]

[Yoo+]

[Yu+10]

[Zha18]

[Zha+13]

[Zin+14]

BIBLIOGRAPHY

I. Wijnands, E. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin. Multicast
Using Bit Index Explicit Replication (BIER). Request for Comments 8279.
Internet Engineering Task Force, Nov. 2017.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. , Self-similarity
Through High-variability: Statistical Analysis of Ethernet LAN Traffic
at the Source Level.” In: IEEE/ACM Transactions on Networking 5.1 (Feb.
1997), pp. 71-86.

C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu. ,Flow Wars: Systemizing the Attack Surface and Defenses in
Software-Defined Networks.” In: IEEE/ACM Transactions on Networking
25.6 (), pp. 3514-3530.

M. Yu, J. Rexford, M. J. Freedman, and]. Wang. , Scalable Flow-based Net-
working with DIFANE.” In: Proceedings of the ACM SIGCOMM Conference
(SIGCOMM). 2010.

X.Zhang. ,Characterizing the Packet Duplication Behavior of State-of-the-
Art SDN Switches.” KOM-M-0610. Master’s thesis. Technische Universitat
Darmstadt, 2018.

Y. Zhang et al. ,,StEERING: A software-defined networking for inline
service chaining.” In: Proceedings of the IEEE International Conference on
Network Protocols (ICNP). 2013.

T. Zinner, M. Jarschel, A. Blenk, F. Wamser, and W. Kellerer. ,,Dynamic
application-aware resource management using Software-Defined Net-
working: Implementation prospects and challenges.” In: Proceeding of the
IEEE/IFIP Network Operations and Management Symposium (NOMS). 2014.

All web pages cited in this work have been checked in September 2018. However, because of the
dynamic nature of the World Wide Web, their long-term availability cannot be guaranteed.

153

ACRONYMS

ABSDM
API
ARP
AS
ASDM
ASIC
BCAM
BGP
BIER
CAM
CDN
CLI
CORD
COTS
CPU
ECMP
ETSI
FIFO
ForCES
FPGA
GMPLS
ICMP
IETF

P
IPTV
ISP
MPLS
NDA
NFV

Adaptive Bit-Index Software-Defined Multicast
Application Programming Interface

Address Resolution Protocol

Autonomous System

Adaptive Software-Defined Multicast
Application-specific Integrated Circuit

Binary Content-addressable Memory

Border Gateway Protocol

Bit Indexed Explicit Replication
Content-addressable Memory

Content Delivery Network

Command Line Interface

Central Office Re-architected As A Data Center
Commercial Off-the-shelf

Central Processing Unit

Equal-cost Multi-path

European Telecommunications Standards Institute
First In, First Out

Forwarding And Control Element Separation
Field-programmable Gate Array

Generalized Multi-Protocol Label Switching
Internet Control Message Protocol

Internet Engineering Task Force

Internet Protocol

Internet Protocol Television

Internet Service Provider

Multi-Protocol Label Switching
Non-disclosure Agreement

Network Functions Virtualization

155

156

BIBLIOGRAPHY

NIC
NPU
OF-DPA
TTP
ONF
OS
OSPF
OTT
PCI
PCle
ROADM
SCTP
SDM
SDN
SoC
TCP
ToR
UuDP
USE
VLAN
VM
VNF
VoIP

Network Interface Card

Network Processing Unit
OpenFlow - Data Plane Abstraction
Table Type Pattern

Open Networking Foundation
Operating System

Open Shortest Path First
Over-the-top

Peripheral Component Interconnect
PCI Express

Reconfigurable Optical Add-drop Multiplexer
Stream Control Transmission Protocol
Software-Defined Multicast
Software-defined Networking
System On Chip

Transmission Control Protocol
Top-of-rack

User Datagram Protocol
Utilization, Saturation, Errors
Virtual LAN

Virtual Machine

Virtual Network Function

Voice Over IP

GLOSSARY

Arista A network equipment vendor. 53

Barefoot Tofino A fully programmable data plane chip. 53

barrier An OpenFlow primitive. 72,117, 118

barrier_reply An OpenFlow message type. 57,72, 117

barrier_request An OpenFlow message type. 72

Broadcom A switch ASIC vendor. 29, 30, 51-53, 63, 64, 66, 67,76, 138, 161
bundle_commit_reply An OpenFlow primitive. 72,73

control plane application A SDN control plane application. iii, 1-7, 17, 19, 21, 26, 27, 30,
33, 35, 37-40, 43-45, 49-51, 58, 65, 67-69, 72,73, 75,77, 78, 81-84, 86—88, 98-100,
102, 111-113, 115, 121, 124, 125, 129, 134, 135, 137-140

Dell 8132F A Broadcom Trident+-based OpenFlow-enabled switch. 75, 76
Delta Networks A network equipment vendor. 53

Edge-Core AS5712-54X A Broadcom Trident II-based bare-metal switch. ix—xi, 5, 51-55,
57,59, 64-68, 74-77, 82,117,125, 138, 161-163, 165, 167-169
Ethernet The dominant ISO/OSI layer two protocol used today. 62

Floodlight A state-of-the-art OpenFlow controller. 73, 75
flow bundle An OpenFlow primitive. 72-80, 82
flow_mod An OpenFlow message type. 24, 65, 68, 69, 71, 7375, 162

GDbE Gigabit Ethernet 5, 75, 117

global resource event A resource event that affects a whole area of the data plane of a
network domain. 4, 84

group_mod An OpenFlow message type. 65, 66

HP A network equipment vendor. 29, 52-54

Linux An open-source operating system. 30, 52, 58
local resource event A resource event that affects a single data plane element of a network
domain. 4, 84, 86

management system An embedded computer that manages the switch ASIC and
provides an interface to the control plane. 11, 12, 16, 20, 21, 24-27, 29, 30, 42, 46,
50-55, 57, 58, 62, 64-67, 75,117,139, 161, 169

meter_mod An OpenFlow message type. 65, 66

157

158

BIBLIOGRAPHY

NEC A network equipment vendor. 29, 52, 53
NoviFlow A network equipment vendor. 29, 52

OF-CONFIG The OpenFlow Management and Configuration Protocol. 23, 43, 49, 59, 65

Open vSwitch An OpenFlow software switch. 39, 51, 53-56, 120-122, 124, 128

OpenFlow An SDN protocol defined by the ONF. x, 14, 16, 21, 23-30, 32, 39, 40, 42-44,
46, 47,49-75,79, 80, 82, 88, 93, 94, 96-98, 100, 108-111, 116-118, 120, 128, 138,
139, 161, 162, 165

ovs-vswitchd The OpenFlow agent and data path controller component of the Open
vSwitch software. 54, 55, 57

P4 A language to program data paths 27, 53

packet_in An OpenFlow message type. 62, 65, 66,75

packet_out An OpenFlow message type. 62, 65

Pica8 A network management software vendor. 29, 52, 55, 56, 74

PicOS OpenFlow agent software sold by Pica8. x, 51-55, 57-65, 74, 76, 79, 80, 139, 161,
163, 165, 167, 169

resource A resource is a functional part of a hardware device that is of limited abundance,
consumed through or by the execution of a program on the hardware device,
and influences the output of the device. 19, 41, 42, 44, 47,137, 138

resource controllability A resource is called controllable by the SDN controller if its
operational status can be influenced either by directly controlling the resource
or its workload. 48, 49, 67, 74

resource errors Resource errors are the number of error events that happened during
the resource’s operation [Grel3]. 49, 74

resource event An event that is caused by a resource shortage in the data plane that
affects the operations of control plane applications. 83, 84, 86

resource path A resource path is the path through a resource topology a program /mes-
sage/instruction moves along from the SDN controller to affect its destination
resource. 42,46,47,58, 67, 68, 162

resource saturation A resource is called saturated if its workload is higher than its
processing capacity [Grel3]. Saturation can either be a binary state when new
work is immediately dropped by the resource or a level when new work is
queued for later processing. 49, 74

resource topology The graph of resources that specifies how programs/messages/in-
structions reach the resource they are designed to affect, starting from its source.
35, 43, 45-47, 49-51, 53, 67, 68, 81, 84, 138, 139, 162, 163, 168

resource utilization The utilization of a resource is the ratio of its used abundance to its
available abundance [Grel3]. 48, 74

resource virtualization Virtualization provides controlled, shared access to a single
resource from multiple consumers of the resource that have no knowledge of
each other and do not necessarily behave cooperatively. 48, 50, 51

BIBLIOGRAPHY 159

resource visibility A resource is called visible by the SDN controller if its operational
status information such as its utilization, saturation, and errors are available. 48,
49, 67,74

Trident IT A switch ASIC design of Broadcom. ix, 51-53, 55, 58-60, 62, 63, 67, 76, 93, 138,
161
Trident+ A switch ASIC design of Broadcom. 76

LIST OF FIGURES

1.1
2.1
2.2
2.3

24
2.5
2.6
2.7

2.8
3.1
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
4.11

4.12
4.13

4.14

An overview of SDN in ISP networks. 2

Schematic view on an ISP network 9

Appliance-based networking. 11

A schematic representation of a typical router appliance architec-
ture (adapted from [McKO03]). 12

Network functions virtualization. 13

Device-oriented networking. 14

Software-defined networking. 15

A schematic representation of a typical SDN data plane element
architecture (adapted from [McKO03]). 15

A schematic view on the SDN control and management architec-

ture terminology used in this thesis. 16
Potential locations of virtualizers. 20
A technological view on ISP networks as used in this thesis. 36

ISP network areas color coded by control plane load. 37
Overview of the SDN architecture as proposed in this the-
sis. 41

The processing of an SDN protocol message along the control
path of a data plane element. 43

The modeling hierarchy of OpenFlow-based SDN. 47
Visibility and controllability of resources. 49

The soft- and hardware architecture of the Edge-Core AS5712-54X
running PicOS 2.8 (based on Intel Atom and PicOS documentation
and [Pfa+15]). 55

Block diagram of the Intel Atom C200 family microarchitec-
ture. 56

The resource topology of the management system. 58
OpenFlow model of a data plane device (adapted from [ONF15]).
OpenFlow model of a Trident II-based plane device running PicOS
in TTP mode (adapted from the PicOS documentation 60
TCAM match example (adapted from [PS06]). 61

The hardware architecture of the Broadcom Trident II (adapted
from the PicOS documentation) 63

The resource topology of the Broadcom ASIC. 64

59

161

162

BIBLIOGRAPHY

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

51

52
5.3

54

55
5.6

5.7
5.8

59
5.10
5.11
5.12
6.1
6.2

The resource topology of the Edge-Core AS5712-54X with the
resource path for OpenFlow flow_mod messages that add flow
entries highlighted. 68

Overview over an SDN message queueing system and its termi-
nology (adapted from [AHA16]). 70

Design model for flow_mod virtualization with prioritization
(adapted from [Vil18]). 71

Testbed overview of the flow_mod virtualization evaluation
(adapted from [Vil18]). 74

The mean flow entry addition completion time for the Edge-Core
AS5712-54X when filling the complete flow table (adapted from [Vil18]). 76
The mean flow entry installation time for the Edge-Core AS5712-54X
when filling the complete flow table (adapted from [Vil18]). 77
Flow entry addition time with and without the scheduler for the
prioritization use case (adapted from [Vil18]). 78

Flow entry addition completion time with and without the sched-
uler for the prioritization use case (adapted from [Vil18]). 79
Flow entry addition time with and without the scheduler for the
fairness use case (adapted from [Vil18]). 80

Flow entry addition completion time with and without the sched-

uler for the fairness use case (adapted from [Vil18]). 81
Overview of resource events and corresponding mitigation strate-
gies. 85

Network function chaining scenario (adapted from [Ble+14]). 87

Zipf-like multicast group size distribution and multicast delivery

technologies 90

An example edge data center with the proposed network function

chaining design (adapted from [Ble+15a]). 92

The MAC address encoding of forwarding information (adapted from [Ble+15a]). 93
The network function chaining system’s packet interface to VNF

instances (adapted from [Ble+14]). 95

Packet replication mechanisms in comparison to unicast (adapted from [Ble+15b]). 10
The annotated delivery tree used for constructing the ASDM

multicast tree with T = 1 (adapted from [Ble+15b]). 103

Encoding of the global bitfield in per header fields 106

BSDM forwarding underlay 107

ABSDM forwarding. 108

The ABSDM OpenFlow pipeline 109

The evaluated network function chaining scenario (adapted from [Ble+15a]). 116

The implementation of the evaluated scenario in the testbed

(adapted from [Ble+15a]). 117

6.3
6.4
6.5
6.6
6.7

6.8
6.9

6.10

6.11

6.12

Al

A2

BIBLIOGRAPHY 163

Flow entry addition performance for Open vSwitch and the NEC
PF5240 (adapted from [Ble+15a]). 122

Failover completion time for the control path bottleneck mitigation
approach (adapted from [Ble15]) 123

Completion time reduction overview (adapted from [Ble+15a]) 124
Investigated topologies (adapted from [Ble+15b]). 126

Impact of the unicast conversion threshold on the relative flow
entry consumption (adapted from [Ble+15b]). 128

The data-rate-state profiles of the investigated topologies (adapted from [Ble+15b]). ~ 129
A detailed view on the tradeoff between data rate and state in the
ISP topology (adapted from [Ble+15b]) 130

The peak state consumption on single data plane elements per
network area (adapted from [Ble+15b]) 131

The influence of group sizes on the flow entry consumption for se-
lected unicast conversion thresholds (adapted from [Ble+15b]) 133
Selecting the unicast conversion threshold optimize the data rate
reduction return on invested flow entries for a given cost function
for data rate and state (adapted from [Ble+15b]) 134

The complete hard- and software architecture of the Edge-Core
AS5712-54X running PicOS 2.8 167

The complete Edge-Core AS5712-54X resource topology as seen
by the controller. 168

LIST OF TABLES

2.1 Overview of memory types and their lookup characteristics
(adapted from [PV11]). 12

3.1 Control path virtualization features of SDN controllers compared
to the bottleneck analysis conducted in this thesis. 22

3.2 Performance bottlenecks in literature compared to the analysis
conducted in this thesis. 25

3.3 Overview of investigated OpenFlow switches in academia. 28

4.1 Resource characteristics. 45

4.2 Overview of investigated OpenFlow switches in academia. 52

4.3 Overview over OpenFlow switches available for this thesis. 54

4.4 The resource table for the Edge-Core AS5712-54X with PicOS 2.8
from the perspective of the SDN controller. 65

4.5 The mapping of selected OpenFlow messages to data plane
resources (adapted from [Har17]). 66

4.6 Evaluation parameters and values (adapted from [Vil18]). 77

5.1 Typical network function types and their packet interface types
[Ble+14]. 96

52 OpenFlow flow entry metrics (adapted from [Ble+15b]) 96

53 Example IPv6 address allocation for ASDM subnets (adapted from [Ble+15b]). 105

5.4 Requirements for the ABSDM forwarding pipeline 110

5.5 Required OpenFlow features over using version 1.0 as baseline
(adapted from [Well6]). 110

5.6 ASDM control path resource consumption. 111

6.1 Testbed hardware specifications [Ble+15a]. 118

6.2 Parameter values used in the network function chaining evaluation
[Ble+15a]. 120

6.3 Investigated network topologies (adapted from [Ble+15b]). 127

6.4 Multicast group characteristics and parameter values used in the
evaluation [Ble+15b]. 127

Al The complete control path resource table for the Edge-Core

AS5712-54X with PicOS 2.8. 169

165

APPENDIX

Al THE coOMPLETE EDGE-CORE AS5712-54X ARCHITECTURE AND RESOURCE TOPOL-
OGY
Management
s ste?n Broadcom
Y Trident Il ASIC OVSDB ovs-vswitchd
driver
Software Linux kernel
Hardware Intel Atom
2538 SOC Core | Core | | Core | Core
1 2 3 4
L2 Cache L2 Cache
RAM RAM T35 to control plane
Silvermont System Agent H —
RAM
RAM
PCle 2.0|x2 Link
Broadcom
i PCle |l
Trident 1l ASIC Controller j oo
ﬁ Controller
Memory
L Interface
Group
> Table
ey ECMP
Interface A
—]
Meter % Memory Memory
Table Interface Interface
Group 1 Group
ﬁﬁ P Table Fast =+ Table L3
Failover Ll Unicast
Memory
Memory Interface r
Interface) oUT P @
@ NP1 A Packet Match Table < Memory Memory
B ONPo=~a| - - L || Interface Interface / ouT P2 &
Statistics
IN P3— — OUT P3 @
- Counters Group Group
Table L2 = Table L2
Rewrite Interface
B N Pn/ [=»OUT Pn

Figure A.1: The complete hard- and software architecture of the Edge-Core AS5712-54X running
PicOS 2.8

167

168

APPENDIX

- T~
~

e 7 ~ e
. ovs- :
— ASIC Driver /‘—\ « vswitchd /‘—\ \Llnux kernel

~

-~

- ~

Intel Atom
C2538 SoC
& Memory

Network Interface
to Controller

Statistics Counter
Table Memory
Interface

TCAM Match
Table
Memory Interface

TCAM Match
Table
Space

Meter Table
Memory Interface

Meter Table
Space

Group Table L2
Rewrite
Memory Interface

Group Table L2
Rewrite
Space

Group Table L2
Interface
Memory Interface

Group Table L2
Interface
Space

\

-
~

-

| —— to control plane
7/

Group Table
L3 Redirect
Memory Interface

Group Table
L3 Redirect
Space

Group Table
L3 Fast Failover
Memory Interface

Group Table
L3 Fast Failover
Space

Group Table
L3 ECMP

Memory Interface

Group Table
L3 ECMP
Space

Figure A.2: The complete Edge-Core AS5712-54X resource topology as seen by the controller.

A.1 THE cOMPLETE EDGE-CORE AS5712-54X ARCHITECTURE AND RESOURCE TOPOLOGY

Table A.1: The complete control path resource table for the Edge-Core AS5712-54X with

PicOS 2.8.
=2
=
=
v =]
& g
e -t
o Y oo
e | E |8 g
S =
£ TR O|E £l
=) @ = 5 = =) =] ©
< N 2 2 2 = s | E
Location Resource = P < < < » H
Manage- CPU cores time renew- % static | 400 no no | no
ment able
system
Manage- L2 cache space non- MB static | 2 no no | no
ment renewable
system
Manage- Memory space non- GB static | 8 no no | no
ment renewable
system
Manage- Memory controller time renew- % static | 200 no no | no
ment able
system
Manage- Silvermont System throughi renew- GB/s | static | 25.4 no no | no
ment Agent put able
system
Manage- Management NIC through{ renew- Mp- static | ~1.4 no no | no
ment put able p/s
system
Manage- PCl-e link throughi renew- GB/s | static | 1 no no | no
ment put able
system
ASIC PClI-e controller throughi renew- GB/s | static | un- no no | no
put able known
ASIC Flow table space space non- en- static | 512 lentry | no | yes
renewable| tries
ASIC Flow table memory throughi renew- en- static | un- no no | no
interface put able tries/s known
ASIC Group table space space non- en- static | 512 1 entry no | yes
renewable| tries
ASIC Group table memory through{ renew- en- static | un- no no | no
interface put able tries/s known
ASIC Meter table space space non- en- static | 512 1 entry no | yes
renewable| tries
ASIC Meter table memory through{ renew- en- static | un- no no | no
interface put able tries/s known
ASIC Statistics counter table throughi renew- en- static | un- no no | no
memory interface put able tries/s known
ASIC Packet output to throughi renew- pack- | static | >12000| meter no | no
controller put able ets/s feature

169

AUTHOR’S PUBLICATIONS

MAIN PUBLICATIONS

[Ble+16a]

[BH14]

[Ble+16b]

[Ble+15a]

[Ble+14]

[Ble+15b]

[Ble+18]

J. Blendin, Y. Babenko, D. Kusidlo, G. Schyguda, and D. Hausheer. , Posi-
tion Paper: Towards a Structured Approach to Developing Benchmarks
for Virtual Network Functions.” In: Proceedings of the European Workshop
on Software Defined Networks (EWSDN). 2016.

J. Blendin and D. Hausheer. , Towards Resource-Efficient Application-
Controlled Software Defined Networks.” In: Proceedings of the IEEE Inter-
national Conference on Network Protocols (ICNP). Phd paper. 2014.

J. Blendin, D. Herrmann, M. Wichtlhuber, M. Gunkel, F. Wissel, and D.
Hausheer. , Enabling efficient multi-layer repair in elastic optical networks
by gradually superimposing SDN.” In: Proceedings of the International
Conference on Network and Service Management (CNSM). 2016.

J. Blendin, J. Riickert, S. Bleidner, and D. Hausheer. , Taking the Sting
out of Flow Update Peaks in Software-Defined Service Chaining.” In:
Proceedings of the International Workshop on Management of SDN and NFV
Systems (ManSDN/NFV). 2015.

J. Blendin, J. Riickert, N. Leymann, G. Schyguda, and D. Hausheer. , Posi-
tion Paper: Software-Defined Network Service Chaining.” In: Proceedings
of the European Workshop on Software Defined Networks (EWSDN). 2014.

J. Blendin, J. Riickert, T. Volk, and D. Hausheer. , Adaptive Software
Defined Multicast.” In: Proceedings of the IEEE Conference on Network
Softwarization (NetSoft). 2015.

J. Blendin, F. Bendfeldt, I. Poese, B. Koldehofe, and O. Hohlfeld. , Dissecting
Apple’s Meta-CDN during an iOS Update.” In: Proceedings of the ACM
Internet Measurement Conference (IMC). Accepted. 2018.

CO-AUTHORED PUBLICATIONS

[Ngu+17]

T. A. B. Nguyen, P. Agnihotri, C. Meurisch, M. Luthra, R. Dwarakanath,
J. Blendin, D. Bohnstedt, M. Zink, and R. Steinmetz. , Efficient Crowd
Sensing Task Distribution Through Context-Aware NDN-Based Geocast.”

171

172

AUTHOR’S PUBLICATIONS

[Nob+17]

[Riic+15a]

[Riic+16]

[RBH15]

[Uni+17]

[Wic+17]

DEMO PAPERS

[Nob+18]

[RBH13]

[Riic+14]

In: Proceeding of the IEEE Conference on Local Computer Networks (LCN).
2017.

L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, and D. Hausheer. , Bare-
Metal Switches and Their Customization and Usability in a Carrier-Grade
Environment.” In: Proceeding of the IEEE Conference on Local Computer
Networks (LCN). 2017.

J. Riickert, J. Blendin, R. Hark, and D. Hausheer. ,DynSDM: Dynamic and
Flexible Software-Defined Multicast for ISP Environments.” In: Proceedings
of the International Conference on Network and Service Management (CNSM).
2015.

J. Riickert, J. Blendin, R. Hark, and D. Hausheer. , Flexible, Efficient, and
Scalable Software-Defined Over-the-Top Multicast for ISP Environments
With DynSDM.” In: IEEE Transactions on Network and Service Management
(TNSM) 13.4 (2016), pp. 754-767.

J. Rickert, J. Blendin, and D. Hausheer. , Software-Defined Multicast for
Over-the-Top and Overlay-based Live Streaming in ISP Networks.” In:
Springer Journal of Network and Systems Management (INSM), Special Issue
on Management of Software-Defined Networks 23.2 (2015), pp. 280-308.

N. Uniyal, D. Kutscher, J. Seedorf, J. Blendin, and D. Hausheer. , Adap-
tive ICN multipath forwarding for hybrid access.” In: Proceedings of the
International Conference on Networked Systems (NetSys). 2017.

M. Wichtlhuber, J. Kessler, S. Biicker, 1. Poese, J. Blendin, C. Koch, and
D. Hausheer. ,,SoDA: Enabling CDN-ISP Collaboration with Software
Defined Anycast.” In: Proceedings of the IFIP Networking Conference. 2017.

L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, and D. Hausheer. ,RTP
packet loss healing on a bare-metal switch.” In: Proceeding of the IEEE/IFIP
Network Operations and Management Symposium (NOMS). 2018.

J. Riickert, J. Blendin, and D. Hausheer. ,RASP: Using OpenFlow to Push
Overlay Streams into the Underlay (Demo Paper).” In: Proceedings of the
IEEE International Conference on Peer-to-Peer Computing (P2P). 2013.

J. Riickert, J. Blendin, N. Leymann, G. Schyguda, and D. Hausheer.
,Demo: Software-Defined Network Service Chaining.” In: Proceedings of
the European Workshop on Software Defined Networks (EWSDN). 2014.

AUTHOR’S PUBLICATIONS

[Wic+15] M. Wichtlhuber, F. Kaup, R. Reinecke, J. Blendin, and D. Hausheer. ,Demo:

A holistic energy-monitoring framework for the IT service delivery chain.”
In: Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). 2015.

TECHNICAL REPORTS

[Riic+15b] J. Riickert, J. Blendin, R. Hark, T. Wachter, and D. Hausheer. An Extended

Study of DynSDM: Software-Defined Multicast using Multi-Trees. Tech. rep.

PS-TR-2015-01. Peer-to-Peer Systems Engineering Lab (PS), Technische
Universitat Darmstadt, 2015.

PATENT APPLICATIONS

[BNK18] J. Blendin, L. Nobach, and H.-J. Kolbe. Undisclosed. Patent application.

Deutsche Telekom, 2018.

173

ERKLARUNG LAUT PROMOTIONSORDNUNG

§ 8 Abs. 11it. ¢ PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der
schriftlichen Version tibereinstimmdt.

§ 8 Abs. 11it. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion
versucht wurde. In diesem Fall sind ndhere Angaben iiber Zeitpunkt, Hochschule,
Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbststindig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§ 9 Abs. 2 PromO
Die Arbeit hat bisher noch nicht zu Priifungszwecken gedient.

Darmstadt, 1. Oktober 2018

Jeremias Georg Johannes
Lucian Blendin

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis devel-
oped by André Miede. The style was inspired by Robert Bringhurst’s seminal book on
typography “The Elements of Typographic Style”. classicthesis is available for both ETEX
and LyX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection of
postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of January 21, 2019 (1.0).

