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Abstract

In this paper, we shall present a mathematical de/nition of recurrent fuzzy systems and begin to system-
atically investigate the underlying theory involved. Unlike static fuzzy systems, recurrent fuzzy systems are 
equipped with time-delayed feedback of their output and allow representing knowledge-based dynamic pro-
cesses that may be stated in the form of “if : : :, then : : :” rules. We study their relationship to automata and 
show that they have an automaton-like behavior when appropriately designed. In other cases, recurrent fuzzy 
system may exhibit chaotic behavior. We present su8cient conditions for the occurrence of chaos in recurrent 
fuzzy systems that can easily be checked solely on the basis of the qualitative, linguistically formulated mod-
els. We also discuss the extent to which state graphs may be used for describing the behaviors of recurrent 
fuzzy systems.
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dynamic

1. Introduction

In general, classical fuzzy systems describe static interdependencies of their input and output vari-
ables. In describing dynamic processes, one may call upon the methods of Takagi and Sugeno [43],
where the dynamics involved are described by either diBerence equations or diBerential equations,
weighted by fuzzy rules, as required by the premises on which those rules are based. These rules
have the following form:

if : : : ; then y(k + 1) = f(y(k); u(k)): (1)
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Fig. 1. Block schematic of a general, discrete-time, dynamic system, I denotes the unit matrix.

The fuzzy part of this hybrid expression is used to weight various dynamic systems, whose dynamics
are fully speci/ed by the equation appearing in the conclusion part of the rules involved.

However, there are ways of directly describing the dynamics of systems by means of rules. In
order to provide an overview of the subject matter, we shall start oB by considering a general,
discrete-time, dynamic system (cf. Fig. 1) described by the function f , the output function g, and
the equations

x(k + 1) = f(x(k); u(k)); (2)

y(k) = g(x(k); u(k)): (3)

Since the output function has no eBect on the system dynamics and may not even exist in many
instances, it will not be considered in detail here. This approach yields various types of dynamic
systems whose characteristics will depend upon the ranges X and U for which the state variable,
x(k), and the input variable, u(k), are de/ned and the types of functions chosen for f and g.

Under the /rst case considered, real vector spaces, X =Rn, U =Rm, are chosen as their domain.
Employing linear functions for f and g then yields linear, discrete-time systems. Correspondingly,
employing nonlinear functions yields nonlinear, discrete-time systems. The nonlinear functions in-
volved may be categorized by their origins and characteristics, and may be either analytically de/ned
or available in the form of lookup tables. One example hereof is employment of neural nets for f
and g, which yields recurrent neural nets.

Under the second case considered, X and U are discrete, /nite sets. If we employ discrete functions
for f and g, the resultant dynamic systems will form /nite automata. The mappings of their discrete
states, x, on new states may, in all cases, be regarded as having been assembled from logical
switching functions based on a dual-valued or multi-valued logic incorporating a /nite number of
logical values.

Under the third case considered, the de/ning sets involved may contain entirely general types of
objects. These will usually be taken from a metric space in order to allow considering continuous
mappings. The types of objects involved include sets, intervals, and functions.

Fuzzy principles may be employed in any of these three cases. Employing fuzzy numbers or fuzzy
membership functions for the intervals or functions on X and U involved in the third case yields
either dynamic fuzzy systems [41,28] or iterated fuzzy sets [24,12]. Extending the range of logical
values allowed to the interval [0; 1] in the second case yields fuzzy automata [48,30], also called
fuzzy /nite-state machines [21,45,35], which are similar to stochastic automata, except that their
transition probabilities are replaced by transition correlations that may be interpreted as transition
possibilities.



J. Adamy, R. Kempf / Fuzzy Sets and Systems 140 (2003) 259–284 261

Finally, in the /rst case, the functions employed, which will usually be nonlinear functions, may
be assembled from a complete fuzzy system consisting of fuzzi/cation, inference, and defuzzi/-
cation. Such systems form the subject of this article, and shall be referred to as “recurrent fuzzy
systems”. The concept of recurrent fuzzy systems was contemporaneously and independently intro-
duced in [1,2,20]. In [1,2], they were motivated by their automaton-like characteristics and used for
a monitoring system in industrial applications [1,2,4]. In [20], they were motivated by their rela-
tionship to recurrent neural nets. In both cases cited, the idea of this kind of dynamical system was
presented, however, no formal mathematical de/nition and thorough examination of their dynamic
behavior and characteristics has been done, yet.

The following section presents a formal de/nition of recurrent fuzzy systems. Of course, in addition
to the discrete-time systems mentioned above, time-continuous recurrent fuzzy systems equipped with
integrators on their feedback loops are also possible, but will not be treated here. We shall illustrate
the extent to which discrete-time recurrent fuzzy systems are related to automata and under which
conditions recurrent fuzzy systems behave similarly to automata, which yields both a clear picture of
the dynamics of recurrent fuzzy systems and a methodology for designing them. Conversely, these
considerations also demonstrate that recurrent fuzzy systems are capable of yielding qualitatively new
types of behaviors, e.g. chaos, that can be described by means of nonlinear discrete-time dynamic
systems. After a short introduction to chaos, we will then derive su8cient conditions that allow to
detect or exclude chaotic behavior of recurrent fuzzy systems.

2. De�nition of “recurrent fuzzy systems”

A recurrent fuzzy system is a discrete-time, dynamic system, as depicted in Fig. 1 and described
by Eqs. (2) and (3). Its state vector, x, input vector, u, and output vector, y, are real-valued vectors.
The functions f and g represent complete fuzzy systems consisting of fuzzi/cation, inference, and
defuzzi/cation.

In the following, we shall start oB by considering the function f . For every component, xi, of the
state vector, x, we de/ne a series of linguistic values, Lxi

ji (cf. Fig. 2), where ji ∈{1; 2; : : :}. In the
same manner, we obtain linguistic values, Lup

qp , for every component, up, of the input vector, u.
The rule base governing f should contain rules having the following form only:
If

x1(k) = Lx1
j1 and : : : and xn(k) = Lxn

jn

and

u1(k) = Lu1
q1

and : : : and um(k) = Lum
qm ; (4)

then

x1(k + 1) = Lx1
w1

and : : : and xn(k + 1) = Lxn
wn
:

This rule base should be both free of contradictions and complete, i.e., for every combination of
linguistic values, Lup

qp and Lxi
ji , there should be a single rule determining every component of the next

state value. That means that each rule de/nes a mapping of a certain combination of index vectors,
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Fig. 2. Example of linguistic values, Lx
j , membership functions, �x

j (x), and core positions, sxj , for a single state variable x.
As no further state variables are considered the index i in xi, L

xi
ji , �

xi
ji , and sxiji is omitted.

j= (j1; : : : ; jn) and q= (q1; : : : ; qm), onto components, wl, of an index vector, w= (w1; : : : ; wn). In
order to indicate this relationship we sometimes use Lxl

wl(j;q) to denote the linguistic values in the
conclusion of a certain rule. Note that the conclusion of the rules may only include linguistic values,
Lxl
wl

, that also appear in the premise of rules in the rule base.
Fuzzi/cation involves assigning a membership function, �xi

ji (xi), to every linguistic value, Lxi
ji . A

value, sxiji , termed a “core position”, shall be de/ned for every core for which the membership func-
tion, �xi

ji (xi), assumes its maximum value. These core positions, sxlwl
, are chosen as singletons for the

membership functions of the linguistic variables, Lxl
wl

, in the conclusion of the rules. The membership
functions, �xi

ji (xi) employed for fuzzi/cation should satisfy the following set of conditions:

• (C1) Delimitation: �xi
ji (xi)∈ [0; 1] for all xi ∈Xi ⊆ R.

• (C2) Convexity:
{
�xi
ji (xi) monotonically increases for all xi¡sxiji ;

�xi
ji (xi) monotonically decreases for all xi¿sxiji :

• (C3) Partition:
∑

ji �
xi
ji (xi)¿0 for all xi ∈Xi.

• (C4) Feedback correspondence: �xi
ji (s

xi
ji )¿0 and �xi

ji (s
xi
li ) = 0 for ji �= li.

The name for Condition (C4) originates from the following property: Feeding back a linguistic value,
Lxi
ji , involves defuzzifying its membership function, which is a singleton at the core position, sxiji . Due

to Condition (C4), subsequent fuzzi/cation of the resultant value, sxiji , yields nonzero membership
values for the membership function, �xi

ji (xi), of the same linguistic value, Lxi
ji , only. The linguistic

value thus is preserved under defuzzi/cation and subsequent fuzzi/cation.
The same conditions, (C1)–(C4), should hold for the membership function, �up

qp(up), and its core
position, supqp , for each linguistic value, Lup

qp . The upper index, up, is needed to distinguish between the
membership functions for the input variables, up, and the state variables, xi. In this case, Condition
(C4) does not have the meaning of a feedback correspondence, since up is not fed back.

Conditions (C2) and (C4) particularly single out state values, xi, and input values, up, that coincide
with core positions, sxiji or supqp . State vectors, x, input vectors, u, and combinations thereof, (x; u), that
have core positions, sxiji and supqp , only as entries in their components, also represent special vectors,
termed “core position vectors”, sxj ∈X , suq ∈U and (sxj ; s

u
q)∈X ×U , where all of their indices, ji and

qp, have been formed into vectors, j and q. These core position vectors pervade the state space, X ,
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Fig. 3. The core position vectors form a lattice in the spaces (a) X; (b) U , and (c) X × U .

the input space, U , or the space X × U , like a lattice (cf. Fig. 3). Linguistic values may also be
formed into linguistic vectors, Lx

j , L
u
q, and (Lx

j ;L
u
q), employing procedures similar to those employed

for forming core position vectors.
Algebraic multiplication is employed as both the aggregation operator and the implication operator,

and summation is employed as the accumulation operator [46]. Defuzzi/cation is based on the center
of singletons defuzzi/cation (CoS) [46]. Note that the theorems in this article also hold for the choice
of the minimum operator as both the aggregation operator and the implication operator, and maximum
as the accumulation operator. However, this may not be the case for the choice of arbitrary t-norms
and t-co-norms or when not using CoS as defuzzi/cation method.

If the membership functions, �xi
ji (xi) and �up

qp(up), satisfy in addition
• (C5) Continuity: �xi

ji (xi)∈ [0; 1] is continuous in xi ∈Xi,
the functions f and g will also be continuous with respect to the variables x and u, thereby yielding
continuous recurrent fuzzy systems.

At this point, all parts of f are de/ned. The function g is similarly con/gured, and, together with
the foregoing, uniquely de/nes a recurrent fuzzy system.

In order to illustrate the de/nitions, we will provide an example accompanying us throughout
this article. We consider a simpli/ed model of an insect population [49,39] whose size is largely
determined by the available food supply and its size during the preceding year. Larvae are presumed
to hatch in the spring and develop into reproductive insects that lay eggs in the fall, provided that
they have managed to survive until then, and then die. The resultant generations follow one another
and have no temporal overlap, i.e., there is no intermixing of populations. The time interval involved
is one calendar year.

Since the example involves a single state variable, x, and a single input variable, u, the indices i
and p of xi and up, respectively, can be omitted. The current population size, x(k), is described by
one of three allowed state values, Lx

1 = small, Lx
2 = moderate or Lx

3 = large. The food supply forms
the input parameter, u(k), which may have any one of three allowed linguistic values, Lu

1 = small,
Lu

2 = moderate, or Lu
3 = large. The evolution of the insect population may be described in terms of

a few simple rules: The population will be small if the food supply is small. If the food supply
is moderate or large, a small or moderate population will grow and become either moderate or
large. However, large populations will decline and revert to being either moderate or small due to
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Fig. 4. Rule base for a simpli/ed model of an insect population.

intraspeci/c competition [7], since large populations consume the available food supply at rapid rates,
which rapidly reduces the food supply. These rules may be assembled into the rule base shown in
Fig. 4. The resultant new state values, Lx

w, are the rule base’s output values and describe the resultant
population size, x(k + 1), in the year k + 1.

Obtaining numerical values for its population size, x(k), requires that the states, Lx
j , be assigned

numerical values such as Lx
1 = small→ 105, Lx

2 = moderate→ 106, and Lx
3 = large → 107, or, on a

logarithmic scale, that will be used in the following, the values 5, 6, and 7, respectively. However,
this approach will not allow treating any population sizes intermediate between these three values.
To this end, membership functions, �x

1(x), �
x
2(x), and �x

3(x) have to be de/ned like those shown in
Fig. 2. In a similar manner, membership functions, �u

1(u), �u
2(u), and �u

3(u), have to be de/ned for
the input variable, u. As mentioned above, the product is used both for the aggregation operator and
the implication operator. The summation is employed as the accumulation operator. Defuzzi/cation
is based on the center of singletons defuzzi/cation (CoS). The singletons for the defuzzi/cation were
chosen at positions that coincide with core positions, sx1 = 5, sx2 = 6, and sx3 = 7 (cf. Fig. 2). As the
membership functions, �x

j (x), satisfy conditions (C1) through (C5) all parts of this recurrent fuzzy
system are given.

3. The form of the transition function

The transition function, f , may be stated in compact, analytic, form. Once the computation of the
membership values, �xi

ji (xi) and �up
qp(up), involved in fuzzi/cation has been concluded, aggregation

and implication yields the logical values for each associated rule, which will be given by∏
i

�xi
ji (xi)

∏
p

�up
qp(up): (5)

Accumulation and defuzzi/cation then yields the components, fl, of f , which will be given by

fl(x; u) =

∑
j;q sxlwl(j;q)

∏
i �

xi
ji (xi)

∏
p �up

qp(up)∑
j;q

∏
i �

xi
ji (xi)

∏
p �up

qp(up)
: (6)

In most cases the membership functions satisfy even a stringent formulation of condition (C3),
namely:
• (C3′) Normalized partition:

∑
ji �

xi
ji (xi) = 1 for all xi ∈Xi.
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Then, the denominator of the right-hand side of Eq. (6), which can be rewritten as∑
j;q

∏
i

�xi
ji (xi)

∏
p

�up
qp(up) =

∏
i

∑
ji

�xi
ji (xi) ·

∏
p

∑
qp

�up
qp(up); (7)

will invariably have a value of 1 and thus may be simply left out. Defuzzi/cation will then be
simpli/ed, and Eq. (6) reduces to

fl(x; u) =
∑
j;q

sxlwl(j;q)

∏
i

�xi
ji (xi)

∏
p

�up
qp(up): (8)

Condition (C3′) can always be satis/ed, as we can substitute any membership functions, �xi
ji (xi),

satisfying Conditions (C1)–(C4), by the membership functions

�̃xi
ji (xi) =

�xi
ji (xi)∑

ji �
xi
ji (xi)

; (9)

satisfying not only Conditions (C1)–(C4) but also Condition (C3′). The transition function, f , is
uneBected by this substitution, as can be seen by comparing Eq. (8) for �̃xi

ji (xi) and Eq. (6) for
�xi
ji (xi).
In the example of the insect population, stated above, the membership functions chosen already

satisfy Condition (C3′), as can be checked in Fig. 2. Since the system has a single input variable,
u1, and a single state variable, x1, only and we obtain

f1(x; u) =
∑
j1 ;q1

sx1
w1(j1 ;q1) · �x1

j1 (x1) · �u1
q1

(u1): (10)

After eliminating the, in this case, unnecessary indices, Eq. (10) reduces to

f(x; u) =
3∑

j=1

3∑
q=1

sxw(j;q) · �x
j (x) · �u

q(u): (11)

The values of sxw(j;q) may be read oB the rule base given in Fig. 4 by substituting the linguistic
values by their corresponding core positions.

In the case where the food supply is large and exclusively large, i.e., for the case where �u
1(u) = 0,

�u
2(u) = 0, and �u

3(u) = 1, we then /nd that f is given by

x(k + 1) = f(x(k); u(k)) = 6 · �x
1(x(k)) + 7 · �x

2(x(k)) + 6 · �x
3(x(k)): (12)

A plot of this function is presented in Fig. 5.

4. Linguistic automata and recurrent fuzzy systems

Now that we have de/ned what is meant by “recurrent fuzzy systems”, we shall, in this section,
take up the matter of their interrelationships to automata. This investigation was motivated by the fact
that automata describe dynamic behavior in terms of transitions that may be represented by logical
switching functions. Recurrent fuzzy systems also describe dynamic behavior, based on a transition
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Fig. 5. Transition function for a simpli/ed model of an insect population.

function composed of fuzzy logic functions. Their employment of fuzzy logic as an extension of
Boolean logic suggests that recurrent fuzzy systems represent an extension of automata. However,
the question remaining to be answered is: How are recurrent fuzzy systems related to automata and
under which conditions will recurrent fuzzy systems exhibit some of the characteristics of automata?

In order to clarify this matter, we shall start oB by considering the rule bases involved and
their constituent rules, as de/ned by Eq. (4), which represent the major factors determining system
dynamic behavior. Referring to the de/nition of linguistic vectors, we may express those rules in
the following form:

if x(k) = Lx
j and u(k) = Lu

q then x(k + 1) = Lx
w: (13)

These rules map the linguistic vector, Lx
j , of the state at time k onto a new linguistic vector, Lx

w,
at time k + 1, where the result obtained will depend upon the linguistic input vector, Lu

q, involved.
Thus, this mapping obeys Eq. (2), as well, whereas it operates on a /nite set of linguistic vectors,
Lx
j . The rules of Eq. (13), along with feedback, thus form a /nite automaton, which shall be referred

to here as a “linguistic automaton.” For further details on automata the reader is referred to [11,15].
The behavior of such a linguistic automaton may be illustrated in the form of its state graph,

which is immediately derivable from the rule base involved. The nodes of this graph are formed by
the linguistic vectors, Lx

j , of the state variables, x, involved. The arrows indicating transitions state
the conditions under which the system may undergo a transition from one state to another, expressed
in terms of the linguistic vectors, Lu

q, of the input variable, u. A graphical representation of such
a state graph, corresponding to the model of the insect population and its rule base in Fig. 4 , is
depicted in Fig. 6. The wavy shape of the nodes in this state graph represents the fuzzy nature of
the single state variable, x, which can take on the linguistic values small, moderate or large. The
single input variable, u, can also take on the linguistic values small, moderate or large. In general,
such a state graph may be generated for any linguistic automaton. Conversely, all of the linguistic
values involved and the entire rule base involved may be extracted from this type of representation.
Moreover, system characteristics, such as accessibility and controllability of the linguistic automaton,
may also be read oB the state graph.
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Fig. 6. State graph for a simpli/ed model of an insect population based solely on population size, PS, and food
supply, FS.

If one intends to process both linguistic values and numerical values, xi as state variables and
up as input variables, one must correlate them to the linguistic values involved. To this end, the
numerical values to be involved are assembled into (fuzzy) sets, each of which corresponds to a
linguistic value. Following further steps, one obtains a recurrent fuzzy system. If one chooses to
employ discontinuous membership functions that can take on the logical values 0 or 1 only, then
the systems involved will continue to form automata, since, in all cases, only a single rule at a time
is employed for computing their subsequent state.

Even general recurrent fuzzy systems are still related to their linguistic automata, which are /nite
automata as mentioned above, as stated in the following lemma:

Lemma 1. A recurrent fuzzy system operates on its core position vectors in the same manner as
its associated linguistic automaton operates on the corresponding linguistic vectors.

Proof. If core position vectors, sxj and suq, are chosen for x(k) and u(k), then, according to the
feedback correspondence condition, Condition (C4), the premises for computing the next state vector,
x(k+1), or output vector, y(k), will be satis/ed for a single rule only given by Eq. (13). In this case,
Eq. (6) implies that x(k + 1) = f(sxj ; s

u
q) = sxw(j;q) equals the singleton position vector corresponding

to the linguistic vector, Lx
w(j;q), appearing in the conclusion part of that particular single rule.

As a recurrent fuzzy system that is limited to operating on core position vectors is isomorphic
to the associated linguistic automaton, one may describe the dynamics of a recurrent fuzzy system
subject to that sort of restriction in terms of its associated linguistic automaton, and vice versa. This
close interrelationship between the linguistic vectors Lx

j and Lu
q and the core position vectors sxj and

suq, distinguishes core positions from other input values and state values.
However, recurrent fuzzy systems are not de/ned at their core position vectors only. Their as-

sociated membership functions span the full extents of their input spaces and their state spaces.
In the case of continuous membership functions, there will always be ranges where neighboring
membership functions overlap and both of the membership functions involved are nonzero. More
than a single rule will thus be needed for computing their subsequent state, which will have to be
weighted by the logical value of its associated premises. As a next step, we need to consider the
extent to which state graphs may be reasonably employed, since several transition arrows will now
be simultaneously active.
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5. Automaton-like behavior of recurrent fuzzy systems

The necessary condition for reasonable employment of a state graph for an arbitrary initial
state/input vector, (x; u) is as follows: there must exist a core position vector, (sxj ; s

u
q), that is some-

how correlated to the vector (x; u) and will exhibit approximately the same dynamic behavior as the
original vector, (x; u). In this case, the associated state graph will also approximately describe the
behavior of the iterated vector, (x; u). The recurrent fuzzy system involved will then behave like an
automaton for the latter vector, (x; u). In order to formalize this idea, we shall de/ne the correlation
between its state/input vector, (x; u), and core position vectors, (sxj ; s

u
q), as follows:

De�nition 1 (Correlation of core position vectors and other vectors). A core position vector,
(sxj ; s

u
q), and another vector, (x; u), are said to be correlated iB there is only one, single, core position,

i.e. sxiji or supqp , resp., that falls within every closed interval bounded by the values of the components
of the vectors (sxj ; s

u
q) and (x; u).

A core position vector will be correlated to all vectors falling within the largest, open, paraxial,
hypersquare that contains the core position vector involved alone as its sole core position vector.
Conversely, any vector will, in general, be correlated to several core position vectors. In the special
case where the vector involved is a core position vector, it will be correlated to itself only. Fig. 7
presents examples of the correlations involved. “Automaton-like” may now be de/ned as follows:

De�nition 2 (De/nition of “automaton-like”). A recurrent fuzzy system is said to be automaton-like
in a set, M ⊆X × U , iB for every vector, (x; u)∈M , there exists a core position vector, (sxj ; s

u
q),

correlated to it such that the core position vector, f(sxj ; s
u
q), is also correlated to f(x; u).

This “automaton-like” property may be immediately transferred to the unions of such sets, M , and
will be satis/ed by arbitrary subsets in such sets, M .

Automaton-like recurrent fuzzy systems allow approximating the dynamics in such sets, M , by
the dynamics of their core position vectors. Since their state graphs provide full descriptions of
the dynamics of their core position vectors, they may also be utilized for deriving approximate
descriptions of the dynamics of recurrent fuzzy systems taken from such sets, M , since starting
points in the neighborhood of a certain core position vector will remain close to the image of
that core position vector subsequent to mapping. Although this property will be maintained by any

Fig. 7. Several typical fuzzy states and their correlated core position vectors within X × U .
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continuous mapping, the automaton-like property imposes limitations on the potential growth of the
displacements involved. Especially, the state vector of an automaton-like recurrent fuzzy system
cannot take on a core position vector if the latter does not explicitly appear in the rules needed for
its computation of the state vector. Applying the above de/nition of “automaton-like”, Lemma 1
may be restated in the form:

Lemma 2. Every recurrent fuzzy system is automaton-like in the set of its core position vectors.

Proof. Holds by de/nition.

It would be interesting to formulate a criterion that would allow determining whether a given
recurrent fuzzy system is automaton-like within a subspace, M , of its state=input space, X × U , or
everywhere within the space X × U . De/nitions 3–5, below, will be of assistance in formulating
such a criterion:

De�nition 3 (De/nition of “adjacent”). Two core position vectors are said to be adjacent iB only
one of their components diBer and no further core positions fall within the range bounded by the
two values of the diBering component involved.

Two linguistic vectors, Lx
j (or Lu

q) are said to be adjacent iB their core position vectors are
adjacent.

Two rules are said to be adjacent iB they are de/ned as in Eq. (13) and their linguistic state=input
vectors, (Lx

j ;L
u
q), are adjacent with respect to their premises.

De�nition 4 (De/nition of “rule continuity”). A rule base, de/ned as in Eq. (13), is said to be rule-
continuous on a set of rules iB for any two adjacent rules contained in the latter set the linguistic
vectors contained in its conclusion part are either equal or adjacent.

An entire rule base is said to be rule-continuous iB the rule base involved is rule-continuous on
the set of all rules.

If a rule base is rule-continuous, then its conclusion part will not skip any linguistic values,
i.e., will be, so to say, “linguistically” continuous. The conditions involved may be readily veri/ed,
based on the matrix representation of the rule base involved. Vertically or horizontally adjacent
matrix elements must contain equal or adjacent linguistic values. It is easy to check that the rule
base of the population dynamic of the insect population shown in Fig. 4 is rule-continuous.

De�nition 5 (De/nition of “elementary hypersquare”). The set of core position vectors correlated to
a vector, (x; u), form the corners of a hypersquare. This hypersquare is said to be the elementary
hypersquare of the vector (x; u).

Elementary hypersquares may have fewer dimensions than the space X × U . For example, every
core position vector is an elementary hypersquare of dimension 0. A vector may be simultaneously
contained within several elementary hypersquares of diBerent vectors, e.g., if it is located on their
surfaces or their common edges or corners.
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Rules given in the compact form appearing in Eq. (13) will be designated “the rules of the
associated hypersquare” if their premises, Lx

j and Lu
q, correspond to core position vectors that are

corners of an elementary hypersquare. The rules of the elementary hypersquare of (x(k); u(k)) alone
will be su8cient for computing the subsequent state, x(k + 1) = f(x(k); u(k)).

That concludes the preliminaries for the following theorem:

Theorem 1 (The similarity theorem). (a) A recurrent fuzzy system that has a single state variable
will be automaton-like in an elementary hypersquare, M ⊆X × U , if the rules applicable to that
hypersquare are rule-continuous.

(b) A continuous recurrent fuzzy system that has a single state variable will be automaton-like
in an elementary hypersquare, M ⊆X ×U , if, and only if, the rules applicable to that hypersquare
are rule-continuous.

As stated in the paragraph following the de/nition of “automaton-like”, a recurrent fuzzy system
that is automaton-like within several elementary hypersquares will also be automaton-like within the
union of all sets of elementary hypersquares. In particular, a recurrent fuzzy system that has a single
state variable will be automaton-like throughout the full extent of the space X × U if its rule base
is everywhere rule-continuous. This is the case for the example of the insect population.

Proof of the similarity theorem. Since the recurrent fuzzy system involved has a single state variable
only, its core positions, sxj in X , will be identical to its core position vectors, sxj in X .

(a) Assume that the rules applicable to a recurrent fuzzy system having a single state variable, x,
only are rule-continuous within an elementary hypersquare, M . Consider a state/input vector, (x; u),
in M and its elementary hypersquare, H ⊆M . The vector involved, (x; u), will then be correlated to
each corner of that hypersquare only. The corners of that hypersquare, H , will be mapped onto a set,
R, of core positions taken from X by the transition function, f. Due to the rule-continuity condition,
the set R will contain all core positions contained within X falling within the range rmin = min{R}
to rmax = max{R}. To see how this follows, consider that rule of the elementary hypersquare, H ,
that leads to the core position rmin and alter the linguistic values appearing in the premises on which
the rules involved are based step by step until that rule for the elementary hypersquare that leads
to core position rmax results. Due to the rule-continuity condition, each such step will alter the core
positions appearing in the conclusion part of the rules involved by a single unit at most, i.e., all
core positions falling within the range rmin to rmax will have been transited.

All that remains to be done in order to prove that the recurrent fuzzy system involved is automaton-
like is to show that a core position correlated to the transition vector, f(x; u), falls within the interval
[rmin; rmax]. Since the subsequent state, f(x; u), will be either a convex combination in accordance
with Eq. (8) or a generalized mean of core positions taken from R, as de/ned by Eq. (6), we have
that rmin6f(x; u)6rmax. All core positions correlated to f(x; u) will also fall within [rmin; rmax], since
otherwise either rmin or rmax would fall within the range de/ned by f(x; u) and its correlated core
positions. The system involved must thus necessarily be automaton-like.

(b) In view of the conclusions reached under (a), above, it will be su8cient to prove that a
continuous recurrent fuzzy system cannot be automaton-like within an elementary hypersquare, M ,
if the rule base is not rule-continuous on the rules of the elementary hypersquare, M .
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Fig. 8. Transition function for a simpli/ed model of an insect population.

Assume that the rules applicable to a recurrent fuzzy system having a single state variable, x,
are not rule-continuous within the elementary hypersquare, M . Further assume that there exist two
adjacent linguistic states, Lx

a and Lx
b, that do not lead to adjacent subsequent states for a /xed

linguistic input, Lu
q. Since f is continuous in the variables x, there exists some state value, x3,

falling in between the core positions x1 = sxa and x2 = sxb such that f(x3; u) takes on the value of
a core position falling within the range f(x1; u) to f(x2; u). However, if that were the case, then
neither (x1; u) nor (x2; u), the two core positions only correlated to (x3; u), would be mapped onto
f(x3; u), i.e., onto the sole core position correlated to f(x3; u), which would violate the necessary
condition for the automaton-like property. The other case involved, that where identical linguistic
values lead to non-adjacent subsequent states for adjacent linguistic inputs, may be treated in an
entirely similar manner.

The range of /elds were linguistic models may be used to describe a dynamic system is wide:
engineering, biology, ecology, economics and social sciences [27,10,5]. If the rule base governing
a one-dimensional linguistic model is rule-continuous, the similarity theorem guarantees that the
extension of that linguistic model to a recurrent fuzzy system will be automaton-like, and thus the
dynamic of the resultant mathematical model can be approximately described by the linguistic model.
As automaton-like recurrent fuzzy systems are capable of describing mathematical diBerentiation
and integration linguistically [5] they are expected to appear in many linguistic models of dynamic
processes.

As an example, we return to the model of the insect population. The system is automaton-like
as the similarity theorem is applicable due to the rule-continuity of the systems rule base. In the
case of a large food supply, the transition function in plotted in Fig. 8. The /xed-point straight line
serves as a guide in determining the population’s evolution, which is depicted in Fig. 9. Running
its population through the recursion relation n times, where

x(k + n) = fn(x(k)) = f(f(f : : : (x(k)))); (14)

yields cycles of length 2. In general, a numerical sequence, a; f(a); : : : ; fn−1(a); fn(a) = a, and
fi(a) �= a for i= 1; : : : ; n − 1, is termed a cycle of length n. The amplitude of these cycles will
depend upon the initial values involved and, in this particular case, will fall within the interval
[6; 7]. This behavior is similar to that of the associated linguistic automaton as the state graph of
this automaton also exhibits a cycle of length 2 in the case of a large food supply (cf. Fig. 6).
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Fig. 9. Time series for the population size under the simpli/ed model of an insect population for an initial population of
x(0) = 5:2.

If the recurrent fuzzy system is automaton-like it has got a predictable regularity as described in
the similarity theorem. However, if just one single rule fails to satisfy the rule-continuity condition,
that failure may lead to a totally new type of behavior of the dynamic system involved and chaos
may occur, which will now be illustrated through an example.

6. An example of a chaotic recurrent fuzzy system

We now change a single rule, as shown in Fig. 10. If the food supply is large and the population
is also large, intraspeci/c competition will become even stronger and there will be such strong
competition for food that the population will decline and be small the following year. Then the
population’s dynamic behavior will drastically change and chaos will occur in the case of a large
food supply, as has been indicated by the jagged arrows appearing on the state graph shown in
Fig. 11.

From Eq. (10), the transition function, f, for the case of a large food supply becomes

x(k + 1) = f(x(k); u(k)) = 6 · �x
1(x(k)) + 7 · �x

2(x(k)) + 5 · �x
3(x(k)): (15)

This function is plotted in Fig. 12. The simulation for two nearly identical initial populations
shown in Figs. 13 and 14 illustrates the chaotic dynamics involved. The chaos that occurs represents
chaos in the sense of Li and Yorke, which is de/ned as follows [32,26,6]:

De�nition 6 (Chaos in the sense of Li and Yorke1). Given a continuous function, f : I → I , where
I is a compact interval, i.e. a bounded and closed interval, this function will be termed “chaotic” in
the sense of Li and Yorke if there exists an uncountably in/nite set, S ⊆ I , such that the conditions
lim supn→∞ |fn(x1) − fn(x2)|¿0 and lim inf n→∞ |fn(x1) − fn(x2)|= 0 will be satis/ed for every
x1; x2 ∈ S, where x1 �= x2.

1Under the original de/nition stated by Li and Yorke [32], a further condition for chaos is that cycles having periods
of every arbitrary length must exist. In the literature, however, most authors refer to chaos, in the sense of Li and Yorke,
without requiring that this condition be satis/ed [31,6].
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Fig. 10. Rule base for a chaotic model of an insect population.

Fig. 11. State graph for a model of an insect populution that is chaotic under some circumstances and based solely on
population size, PS, and food supply, FS.

Fig. 12. Transition function for a chaotic model of an insect population.

In other words, there exist state trajectories that, with the passage of time, repeatedly approach
one another arbitrarily closely and then separate, and nearly identical initial values may lead to
widely diBering dynamic behaviors. This property may be seen from Figs. 13 and 14. It should be
noted that these two trajectories approach one another once again after 40 iterations before they,
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Fig. 13. Chaotic time series for the population size under the chaotic model of an insect population for an initial population
of x(0) = 5:3001.

Fig. 14. Chaotic time series for the population size under the chaotic model of an insect population for an initial population
of x(0) = 5:3007.

once again, separate. A su8cient condition for chaos, in the sense of Li and Yorke, is given by the
following theorem [32]:

Theorem 2 (Li and Yorke). If the function f : I → I is continuous on a compact interval, I , and
there exists a point, a∈ I , for which f3(a)6a¡f(a)¡f2(a) (or f3(a)¿a¿f(a)¿f2(a)), then
f has a cycle of length 3 and is chaotic, in the sense of Li and Yorke.

This theorem will now be applied to the function, f, appearing in Eq. (15), for the case of
the example under consideration. Letting a= 5, we have f(a) =f(5) = 6; f2(a) =f(6) = 7; and
f3(a) =f(7) = 5, as may readily be seen from Fig. 12 and veri/ed using Eq. (15). The conditions of
Theorem 2 are thus satis/ed and f is chaotic, in the sense of Li and Yorke. However, the existence
of a cycle of length 3, a→f(a)→f2(a)→f3(a) = a, and thus compliance with Theorem 2, is
already apparent from both the rule base (cf. Fig. 10) and the state graph (cf. Fig. 11) involved.

This example allows us to hope that criteria for the existence of chaotic behavior that may
be analyzed based on the rule bases or state graphs involved will be derivable. However, before
we proceed to derive those criteria, let us /rst cover those aspects of chaos theory that will be
required.
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7. Chaos in dynamic systems

The de/nition of chaos presented in the preceding section is but one of many that may be applied
to discrete-time, dynamic systems. Another de/nition that is commonly employed is that given by
Devaney [13].

De�nition 7 (Chaos in the sense of Devaney). A continuous function, f : I → I , is said to be chaotic
on an invariant set, M ⊆ I , if its restriction f|M to the set M satis/es the following conditions:

1. It is topologically transitive, i.e., if there exists a k¿0 such that fk(U )∩V �= {}, where fk(U ) =
{fk(x)|x∈U}, for any pair of open sets, U; V ⊆M .

2. Its periodic points are dense in M .
3. It is sensitive to the initial conditions, i.e., if there exists a  ¿0 such that for any x∈M and any

neighborhood N of x there exists a y∈N and an n¿0 such that |fn(x) − fn(y)|¿ .

However, the third condition is redundant in the nontrivial case where M is in/nite, since it follows
from Conditions 1 and 2 [26,6]. If the set I is a compact interval, then chaos in the sense of Devaney
implies chaos in the sense of Li and Yorke [6] and the two de/nitions of chaos are reduced to being
virtually identical. A /ner distinction between the two de/nitions of chaos and deeper insights into
chaotic behavior can be gained by a theorem that was /rst stated by Sarkovskii [40,13]. It addresses
the existence of cycles having certain period lengths. Consider the following ordering of the natural
numbers:

3 . 5 . 7 . · · · . 2 · 3 . 2 · 5 . · · · . 22 · 3 . 22 · 5 . · · · . 23 · 3 . 23 · 5 . · · · . 23 . 22 . 2 . 1:

Under this ordering, the sequence of all odd integers ranging from 3 to ∞ is followed by another
sequence whose terms consist of that same sequence multiplied, in turn, by 2, 22, 23, etc. Appearing
at the end of that sequence is yet another sequence consisting of all integral powers of 2, arranged
in descending order and terminating in 20 = 1. The theorem by Sarkovskii states, that a function that
has a cycle of length k will also have a cycle of length l, provided that k . l. This theorem allows
categorizing functions, f, in terms of their maximum period lengths using this particular ordering,
where three major cases may be distinguished:

(1) Functions, f, that have a cycle of length n, where n is not an integral power of 2, and are
thus, according to [6], chaotic, both in the sense of Devaney and in the sense of Li and Yorke [26,6].

(2) Functions, f, all of whose cycles have period lengths that are both integral powers of 2 and
less than some maximum, in which case the dynamic system will converge to a limiting cycle for
every initial value and not be chaotic anywhere [22].

(3) Functions, f, between these two cases, i.e., all of whose cycles have period lengths for all
integral powers of 2. Such functions are also termed “functions of type 2∞.” Although some of
these functions are chaotic in the sense of Li and Yorke, none of them are chaotic in the sense of
Devaney. Readers are referred to the literature [42,33,22,6] for further information on such functions.

In the following, we shall regard only those functions that are chaotic in the sense of Devaney
as chaotic. This class of one-dimensional chaotic functions has the convenient property that it forms
an open subset in the set of continuous functions [8,6], which is of importance when considering
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functions that are continuously dependent upon one or more parameters. If one such function is
chaotic for certain values, up, of their parameters, then all such functions whose parameters have
values su8ciently close to up will be chaotic.

Several other su8cient conditions for chaos may be derived from Theorem 2. For example, as
mentioned earlier, the following theorem appears in [26,6]:

Theorem 3. If f : I → I is a continuous function on a compact interval, I , and has a cycle of period
length n, where n is not an integral power of 2, i.e., if n �= 2k ; k ∈N0, then f is chaotic.

In addition Theorem 2 may be extended to read as follows:

Theorem 4. If f : I → I is a continuous function on a compact interval, I , and there exists a point,
a∈ I , for which fn(a)6a¡f(a)¡f2(a) (or fn(a)¿a¿f(a)¿f2(a)) for any n¿3, then f is
chaotic.

Proof. According to Theorem 9 appearing in the second chapter of [8], it follows from the condition
that fn(a)6a¡f(a) that either f has a cycle whose period length is an odd integer, in which case,
f will be chaotic according to Theorem 3, or that fk(a)¡fj(a) for all even integers, k, and all
odd integers, j, for which 06j6n and 06k6n. However, the second case is excluded in view of
the fact that f(a)¡f2(a).

Finally, chaos criteria that are not con/ned to considering single orbits may also be derived with
the aid of Theorem 2, as the following theorem shows:

Theorem 5. If f : I → I is a continuous function on a compact interval, I , and there exist points,
a; b∈ I , for which f(b)6a¡b¡f(a)6f2(a) (or f(b)¿a¿b¿f(a)¿f2(a)), then f is chaotic.

Proof. (1) Assume that f(b)6a¡b¡f(a)6f2(a). The other case may be treated in similar fash-
ion.

(2) The value of the function, f, at the point b is f(b)¡b and its value at the point x=f(a)¿b
is f(x) =f2(a)¿f(a) = x, i.e., f(x)¿x. There thus exists a /xed point, p1 ∈ (b; x] = (b; f(a)].

(3) From (2) and (1), we have that f(a)¿p1¿b and b¿f(b), i.e., f(a)¿p1¿f(b). According
to the mean-value theorem, there thus exists a point, p2, on the interval [a; b) for which f(p2) =p1.

(4) From (1), (3), and (2), we have that f(b)6a, a6p2¡b, and b¡p1 =f(p1), i.e., that
f(b)6p2¡f(p1). According to the mean-value theorem, there thus exists a point, p3, on the
interval [b; p1) for which f(p3) =p2.

(5) Since p2 ∈ [a; b) and p3 ∈ [b; p1), it follows that p2¡p3. Applying the result, f(p3) =p2,
obtained under (4), we then have that f(p3)¡p3.

(6) From (5) and (4), we have that f(p3)¡p3 and p3¡p1 =f(p1), i.e., f(p3)¡p3¡f(p1).
Applying the mean-value theorem once again, we /nd that there exists a point, p4, on the interval
(p3; p1) for which f(p4) =p3.

(7) Applying (6) and (5), we obtain the chain inequality p1¿p4¿p3¿p2. From the relations
p1 =f(p2), p2 =f(p3), and p3 =f(p4), we obtain the further relations p1 =f3(p4), p2 =f2(p4),
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and p3 =f(p4). Making these substitutions in the above chain inequality, we obtain f3(p4)¿p4¿
f(p4)¿f2(p4). The conditions of Theorem 2 are thus satis/ed and f is chaotic.

In the section that follows, we shall apply the above theorems to recurrent fuzzy systems, which
will yield further theorems that will allow concluding whether chaos occurs in recurrent fuzzy
systems, based on their state graphs or rule bases alone.

8. Chaos in recurrent fuzzy systems

As represented in the preceding section, chaos in one-dimensional dynamic systems is a conse-
quence of the existence of certain cycles and certain orbits. The aim of this section is applying those
results to recurrent fuzzy systems in a manner that will allow determining whether recurrent fuzzy
systems are chaotic based on their state graphs or rule bases alone. However, there are several terms
that need to be de/ned before we will be in a position to de/ne useful criteria for the occurrence
of chaos in recurrent fuzzy systems:

De�nition 8 (“linguistic orbits and core position orbits”). For a given /xed linguistic input vector,
Lu
q, a linguistic automaton generates a sequence of linguistic state values, L(0), L(1), : : : , by mapping

the linguistic state values, L(k), onto L(k + 1) for k = 0; 1; 2; : : : . This sequence of linguistic state
values is termed a linguistic orbit.

For a given /xed input vector at a core position vector, suq, a recurrent fuzzy system generates a
sequence of states at core positions, s(0), s(1); : : : by s(k + 1) =f(s(k); suq) for k = 0; 1; 2; : : : . This
sequence of states at core positions is termed a core position orbit.

De�nition 9 (“linguistic cycles and core position cycles”). A linguistic orbit, L(0); L(1); : : :, whose
elements satisfy L(k) �=L(0) for k = 1; 2; : : : ; n − 1 and L(n) =L(0), is termed a linguistic cycle of
length n.

A core position orbit s(0); s(1); : : :, whose elements satisfy s(k) �= s(0) for k = 1; 2; : : : ; n − 1 and
s(n) = s(0), is termed a core position cycle of length n.

De�nition 10 (“neighborhood of a core position orbit”). Given is a core position orbit, s(0); s(1); : : :,
for an input vector at a core position vector suq. An open set, N ⊆X × U , in the product space of
the state space X and the input space U , which contains all vectors, (s(k); suq) for k = 0; 1; 2; : : : ; is
termed a neighborhood of the core position orbit involved.

De�nition 11 (“chaos in recurrent fuzzy systems”). Given is a recurrent fuzzy system and a set,
N ∈X×U , such that for all input vectors, u, in the case of all nonempty sets, X̃ (u)={x∈X |(x;u)∈N},
the transition function, f(x; u), of this recurrent fuzzy system is chaotic on a subset of X̃ (u). This
recurrent fuzzy system is termed chaotic in this set, N .

Lemma 1 states that linguistic automata are isomorphic to recurrent fuzzy systems, con/ned to the
core positions for their state values and the core position vectors for their input vectors. Therefore,
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each linguistic orbit L(0), L(1), : : : for a linguistic input value, Lu
q, corresponds to, i.e. is isomorphic

to, a core position orbit s(0); s(1); : : :, for the input vector at the core position vector, suq.
In addition, the ordering relation for the core positions, sx1¡sx2¡sx3¡ · · ·, also generates an ordering

relation for the corresponding linguistic values, Lx
1¡Lx

2¡Lx
3¡ · · · . Theorems 2–5 may thus be

immediately applied to linguistic values appearing in the rule base of recurrent fuzzy systems. From
Theorems 3 and 4, we then obtain the following theorems, Theorems 6 and 7, applying to linguistic
cycles:

Theorem 6. If a one-dimensional, continuous, recurrent fuzzy system has a linguistic cycle of length
n �= 2k , where k = 0; 1; : : :, then that recurrent fuzzy system will be chaotic in a neighborhood of
the corresponding core position cycle.

Proof. If the system’s input vector, u, coincides with the core position vector, suq, of its linguistic
input vector, Lu

q, then this linguistic cycle of length n is isomorphic to the corresponding core position
cycle of the same length. In this case the transition function f(x; u) will thus be chaotic according
to Theorem 3. Since the set of chaotic functions is open on the set of continuous functions and the
functions f(x; u) are continuous in the parameters up, there exists a neighborhood around the vector
u= suq such that these f(x; u) will also be chaotic for all u falling within that neighborhood.

Theorem 7. If a one-dimensional, continuous, recurrent fuzzy system has a linguistic cycle, L(0);
L(1); L(2); : : : ; whose linguistic values satisfy the chain inequality L(0)¡L(1)¡L(2) (or L(0)¿L(1)
¿L(2)), then that recurrent fuzzy system will be chaotic in a neighborhood of the corresponding
core position cycle.

The proof of Theorem 7 proceeds similarly to that for Theorem 6, where, in this case, Theorem 4,
instead of Theorem 3, is used.

In the case of our example of an insect population, the occurrence of chaos may be proven using
either of these theorems, provided that the food supply is large. The linguistic cycle represented by
the jagged line appearing in Fig. 11 has both a length that is not an integral power of 2 and three
monotonically increasing linguistic state values. As mentioned earlier, the jagged line symbolizes the
occurrence of chaos. The evolution of the insect population will thus proceed chaotically, even if
the input value for the food supply diBers from the input at the core position of “large,” provided
that it is su8ciently close to that value.

If we consider linguistic orbits, Theorems 4 and 5 yield the following theorems, Theorems 8
and 9, whose proofs proceed similarly to that for Theorem 6:

Theorem 8. If a one-dimensional, continuous, recurrent fuzzy system has a linguistic orbit, L(0);
L(1); L(2); : : : ; L(n); : : : ; whose linguistic values satisfy the chain inequality L(n)6L(0)¡L(1)¡L(2)
(or L(n)¿L(0)¿L(1)¿L(2)), then that recurrent fuzzy system will be chaotic in a neighborhood
of the corresponding core position orbit.

Theorem 9. If a one-dimensional, continuous, recurrent fuzzy system has two linguistic orbits, a and
b, for the same linguistic input vector Lu

q, whose respective linguistic values, La(0), La(1), La(2), and
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Fig. 15. The chaos criteria at a glance. The jagged dashed arrows indicate alternative paths. Further criteria may be
obtained by reTecting the plots through the horizontal plane.

Lb(0), Lb(1), satisfy the chain inequality Lb(1)6La(0)¡Lb(0)¡La(1)6La(2) (or Lb(1)¿La(0)¿
Lb(0)¿La(1)¿La(2)), then that recurrent fuzzy system will be chaotic in the union of neighbor-
hoods of the two corresponding core position orbits.

We now have a number of su8cient conditions for the occurrence of chaos in one-dimensional,
recurrent fuzzy systems. Those conditions may be readily graphically analyzed using their state graphs
if their linguistic state values are arranged in ascending or descending order. If certain sections of
their state graphs exhibit patterns like those depicted in Fig. 15, then they will be chaotic.

As has been shown, a recurrent fuzzy system that is chaotic for all input vectors, u, that coincide
with core position vectors, suq, will also be chaotic on neighborhoods of those core positions. However,
how large those neighborhoods will be is not readily determinable, as will become evident from the
example shown in Fig. 16. x The /gure shows the membership functions and core positions (cf.
Fig. 16a) of the state variable x and some transition functions f for certain input values (cf. Fig. 16b–
d). According to Theorem 9, the recurrent fuzzy system involved will be chaotic for input values
for which �u

1(u) = 1 (cf. Fig. 16b) and �u
2(u) = 1 (cf. Fig. 16d). However, if the latter rules are only

halfway satis/ed, i.e., if �u
1(u) = 0:5 and �u

2(u) = 0:5, then the associated transition function, f(x; u),
will be constant (cf. Fig. 16c) and therefore nonchaotic.

On the other hand, a recurrent fuzzy system that is nonchaotic for input vectors that coincide
with core position vectors may, nevertheless, be chaotic for other input values, as may be seen from
Fig. 17. The /gure shows the membership functions and core positions (cf. Fig. 17a) of the state
variable x and some transition functions f for certain input values (cf. Fig. 17b–d). Both cases in
which the input values coincide with core positions, i.e., the cases where �u

1(u) = 1 (cf. Fig. 17b) and
�u

2(u) = 1 (cf. Fig. 17d), respectively, yield monotonic transition functions. As will subsequently be
shown, chaos is thus precluded for these cases. For intermediate input values, i.e., for the case where
�u

1(u) = 0:75 and �u
2(u) = 0:25, the transition function will exhibit a cycle of length 3 (cf. Fig. 17c)

and, according to Theorem 2, will be chaotic. This example shows that the above theorems state
su8cient conditions only.
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Fig. 16. The recurrent fuzzy system with membership functions and core positions for the state variable x shown in (a)
and an appropriate rule base illustrates that although input values u at core positions lead to chaotic transition functions
f(x; u) (cf. (b),(d)), the transition function need not be chaotic for all intermediate input values (cf. (c)).

It will thus be helpful to also have available statements that preclude chaos for all input values.
Such a statement can be given in the case of one-dimensional, monotonic, recurrent fuzzy systems.
They are characterized by the fact that, for every linguistic input vector, a pair of linguistic state
values, La(0)¡Lb(0), will be mapped onto the linguistic state values La(1) and Lb(1), which, in the
case of monotonically increasing fuzzy systems, will satisfy the condition La(1)6Lb(1), or, in the
case of monotonically decreasing fuzzy systems, the condition La(1)¿Lb(1). We then have that:
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Fig. 17. The recurrent fuzzy system with membership functions and core positions for the state variable x shown in (a)
and an appropriate rule base illustrates that although input values u at core positions yield nonchaotic functions f(x; u)
(cf. (b),(d)), chaos may occur for intermediate input values (cf. (c)).

Theorem 10. Every one-dimensional, monotonically increasing or decreasing, recurrent fuzzy sys-
tem is nonchaotic for any input value.

Proof. According to Eq. (8), the transition function, f, will be monotonic for any input value.
Monotonically increasing transition functions f(x) have no cycles of period length 2, as the two
points, x1 =f(x2) and x2 =f(x1), of such a cycle satisfying x1¡x2 would also have to satisfy the
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contradicting condition x2 =f(x1)6f(x2) = x1 in the case of a monotonically increasing transition
function f(x).

Monotonically decreasing transition functions, f(x), will yield monotonically increasing functions,
f2(x), that have no cycles of period length 2. In this case it follows that f(x) has no cycles of
length 4, as this would imply that f2(x) would have cycles of length 2.

In both cases the maximum length n of a cycle in the ordering given by Sarkovskii is an
integral power of 2 and the transition function, f, is nonchaotic for any input value, as discussed in
Section 7.

All of the above criteria will be of value in devising and analyzing recurrent fuzzy systems.
Employment of chaotic recurrent fuzzy systems would appear to be a highly promising prospect,
since systems with chaotic dynamics turn up in, among other /elds, engineering, biology, ecol-
ogy, epidemiology, economics, the social sciences, and physics [34,9,23]. Concrete examples include
a microelectromechanical oscillator [47], chaos in digital communications systems [25], chaos in
economic cycles [36,17], chaotic marketing models [16] and population dynamics [37]. Chaotic
systems are also increasingly becoming the object of research in systems theory and control the-
ory [44,26,19,18,38]. The tools commonly employed for their description are “classical” diBerence
and diBerential equations. Supplementing these tools by making use of recurrent fuzzy systems
would be a sensible approach. Their facilities for modeling employing verbal forms of description
have numerous applications, particularly in those /elds mentioned above.

Recurrent fuzzy systems are not the only possibility to use fuzzy principles in order to model
chaotic dynamical processes. As mentioned in the introduction, there are also dynamical fuzzy sys-
tems [27–29,41] as well as iterated fuzzy systems [12,14]. They diBer from recurrent fuzzy systems
by the fact that they feed back not a defuzzi/ed value, but a whole fuzzy set. Depending on their
setup they may be parameterized and regarded as multidimensional, but /nite-dimensional, mappings
or have to be treated as maps in a fuzzy metric space. Due to the dimension of the domains of the
functions involved in such systems, most of the results presented here are not directly applicable.
Nevertheless, su8cient conditions for chaos in such systems are known [24,14].

9. Summary and conclusions

Recurrent fuzzy systems allow deriving mathematical descriptions of dynamic processes from their
linguistic descriptions. It is shown in this article that recurrent fuzzy systems behave similarly to
automata in many cases. There are also recurrent fuzzy systems that exhibit chaotic behaviors. The
present article states criteria for the occurrence of chaos in recurrent fuzzy systems that both allow
detecting chaos at the quantitative level by solely analyzing the qualitative, linguistically formulated
models and devising recurrent fuzzy systems that will exhibit chaotic behavior. Since linguistically
described systems play a role in many /elds, such as ecology, economics, and engineering, recurrent
fuzzy systems represent a useful tool for modeling such systems.
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