Rule Learning:
From Local Patterns
to Global Models

TECHNISCHE
UNIVERSITAT
DARMSTADT

Am Fachbereich Informatik der
Technischen Universitdat Darmstadt
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
eingereichte

Dissertation

von

Dipl.-Inform. Jan-Nikolas Sulzmann
(geboren in Langen)

Referent: Prof. Dr. Johannes Flirnkranz
Koreferent: Prof. Dr. Stefan Kramer
(Johannes Gutenberg Universitat Mainz)

Tag der Einreichung: 09.03.2018
Tag der miindlichen Priifung: 20.04.2018

D17
Darmstadt 2018

Sulzmann, Jan-Nikolas

Rule Learning: From Local Patterns to Global Models
Darmstadt, Technische Universitat Darmstadt,

Jahr der Veroffentlichung der Dissertation auf TUprints: 2019
Tag der mindlichen Prifung: 20.04.2018

Bitte zitieren Sie dieses Dokument als
Please cite this document as

URN: urn:nbn:de:tuda-tuprints-73879
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/7387

Dieses Dokument wird bereitgestellt von

This document is provided by

tuprints, E-Publishing-Service of the TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veroffentlichung steht unter folgender Creative Commons Lizenz:
This publication is licensed under the following Creative Commons license:

CC BY-NC-ND 4.0 International
https://creativecommons.org/licenses/

http://tuprints.ulb.tu-darmstadt.de/id/eprint/7387
http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/

Kurzfassung

Heutzutage werden grofe Datenmengen in vielen Bereichen des tédglichen
Lebens (z.B. im E-Commerce oder in sozialen Netzwerken) gesammelt und
in Datenbanken (fiir eine zukiinftige Verwendung) abgelegt. Obwohl die spe-
zifischen Informationen in den gesammelten Daten bereits von Interesse sein
konnen, sind allgemeinere Erkenntnisse iiber die Dateninhalte weitaus niitz-
licher. Eine Datenanalyse sollte aus diesem Grund darauf abzielen, derar-
tiges (Teil-)Wissen zu erlangen. Eine Inspektion der Daten durch Menschen
wird jedoch immer weniger praktikabel, da die vorliegenden Datenmengen
immer grofer und unhandlicher werden. Dieses Problem wird durch den
KDD-Prozess (kurz fiir “Knowledge Discovery in Databases”) gelost, der die
notwendigen Werkzeuge fiir eine halbautomatische Datenanalyse zur Ver-
fligung stellt. Dessen Hauptkomponente Data-Mining durchsucht die ex-
pliziten Fakten nach RegelméiRigkeiten. Ublicherweise werden derartige
Regelmalligkeiten als lokale Muster, die lokale Charakteristika der Daten
beschreiben, oder als globale Modelle, die die Daten in ihrer Gesamtheit
erkldren, formuliert. In unserer Arbeit werden wir uns mit lokalen Mustern
und globalen Modellen beschéftigen, die zukiinftige und unbekannte Daten
beziiglich eines Merkmals oder Klassenattributs klassifizieren. Interessanter-
weise konnen vorhersagende lokale Muster auf zwei Weisen eingesetzt wer-
den, um eine einzige globale Vorhersage zu erhalten. Der integrative Ansatz
behandelt die lokalen Muster als Bausteine und generiert aus ihnen ein glob-
ales Modell. Der dekodierende Ansatz verwendet die Vorhersagen mehrerer
lokaler Muster und dekodiert diese in eine gemeinsame Vorhersage. Ob-
wohl beide Ansétze vielversprechend sind, wurde bisher die Frage, wie lokale
Muster zur Modellierung globaler Modelle eingesetzt werden konnen, noch
nicht zufriedenstellend beantwortet. Daher betrachten wir drei wichtige
Teilaspekte dieser Frage, die jeweils in einem Teil unserer Arbeit behandelt
werden.

Der erste Teil unserer Arbeit befasst sich mit der Frage, wie eine Menge
lokaler Muster dazu eingesetzt werden kann, optimale globale Vorhersagen zu
erhalten. Das LeGo-Framework (ein Akronym fiir “from local patterns to global
models”) bietet einen Ansatz, um diese Frage zu behandeln. Es unterteilt den
Data-Mining-Prozess in drei aufeinanderfolgende Teilschritte: “Local Pattern
Discovery” generiert eine Menge lokaler Muster, “Pattern Set Discovery” se-
lektiert von dieser eine kleinere Teilmenge und “Global Modelling” verwendet
diese Teilmenge zur Erstellung eines globalen Modells. Fiir jeden dieser drei

Teilschritte stehen diverse anwendbare Methoden zur Verfiigung. Aus diesem
Grund selektieren wir fiir jeden Teilschritt eine Auswahl von Methoden und
evaluieren diese mittels eines empirischen Vergleichs.

Der zweite Teil unserer Arbeit behandelt die Frage, wie eine Menge lokaler
Muster dazu verwendet werden kann, optimale Klassenwahrscheinlichkeiten
vorherzusagen. Héufig sind Klassenwahrscheinlichkeiten niitzlicher als eine
einfache Vorhersage, da man sie als Konfidenzmal$ fiir die Vorhersage ver-
wenden kann (z.B. bei Abstimmungsschemata). Wir teilen diese Fragestel-
lung in zwei Teilaufgaben auf: die Wahrscheinlichkeitsabschatzung und die
Wahrscheinlichkeitsaggregation. Die Wahrscheinlichkeitsabschédtzung berech-
net fiir ein gegebenes lokales Muster die Klassenwahrscheinlichkeiten. Fiir
diese Aufgabe betrachten wir einfache Methoden zur Wahrscheinlichkeitsab-
schiatzung und die Technik Shrinkage, die die einfachen Wahrscheinlichkeitsab-
schitzungen glattet. Des Weiteren untersuchen wir auch den Einfluss der
Suche nach lokalen Mustern auf die Performanz der Wahrscheinlichkeitsab-
schitzung. Die Wahrscheinlichkeitsaggregation dekodiert die Wahrschein-
lichkeitsabschdtzungen mehrerer lokaler Muster in eine einzige Wahrschein-
lichkeitsabschatzung. Hierfiir betrachten wir die Performanz ausgewahlter Ag-
gregationsmethoden.

Der dritte Teil untersucht die Frage, wie eine Menge lokaler Muster in ein
kompaktes und verstindliches Modell transformiert werden kann. Ublicher-
weise sind Mengen lokaler Muster schwierig zu interpretieren und ihre Ver-
wendung zur Vorhersage erfordert zusdtzliche Malnahmen (z.B. Abstim-
mungsschemata). Diese beiden Probleme werden gleichzeitig gelost, wenn
man die lokalen Muster zur Erstellung eines globalen Modells verwendet. Zu
diesem Zweck stellen wir den neuen Ansatz Rule Stacking zur Erstellung glo-
baler Modelle vor. Rule Stacking entwickelt den allgemeinen Stackingansatz
in zwei Aspekten weiter: eine alternative Generierung der Metadaten und
eine zuséatzliche Riicktransformation des Metamodells. Auf diese Weise erhélt
man ein komprimiertes und interpretierbares globales Modell, das direkt auf
zukiinftige Daten angewandt werden kann.

Il Kurzfassung

Abstract

In many areas of daily life (e.g. in e-commerce or social networks), massive
amounts of data are collected and stored in databases (for future use). Even
though the specific information contained in the collected data may already be
interesting, more general insights into the data would be more useful. Clearly,
a data analysis should aim for a discovery of such pieces of knowledge, but
a human inspection becomes less and less feasible to do as the databases be-
come more and more unmanageable. To this end, the KDD process (short for
“Knowledge Discovery in Databases”) provides the tools for a semi-automatic
data analysis. Data mining, which is the main component of the KDD process,
searches the explicit facts for regularities which represent pieces of knowledge.
Usually, these regularities are formulated as local patterns which describe only
local characteristics of the data or as global models which explain the whole
data. In our work, we will concentrate on local patterns and global models
that may be used to predict a feature of interest or class attribute for future
and unknown data. Interestingly, predictive local patterns may be used to ob-
tain global predictions in two ways. The integrative approach treats the local
patterns as building blocks and builds with their help a global model. The de-
coding approach aggregates the predictions of the local patterns into a single
global prediction. While both approaches are promising, the question, how
local patterns may be employed for global modelling, has not been answered
satisfactorily yet. To this end, we consider three important aspects of this
question in this work.

The first aspect is, how may a set of local patterns be employed to obtain
optimal global predictions. The LeGo framework (an acronym for “from local
patterns to global models”) provides an approach to answer this question. It
divides the data mining process into three subsequent steps: the local pattern
discovery generates a set of local patterns, the pattern set discovery step se-
lects a smaller subset from the set of local patterns, and the global modelling
employs the reduced pattern set to build a global model. There are many
methods available for each step. So, we employ a selection of methods for
each step and evaluate their performances with respect to the first considered
aspect empirically.

The second aspect is, how may a set of local patterns be utilised to obtain
optimal class probabilities. Often class probabilities may be more useful than
a simple prediction as they may be used as a confidence measure in the pre-
diction (e.g. in voting schemes). We divide this aspect into two sub tasks:

the probability estimation and the probability aggregation. The probability
estimation calculates class probabilities given a single local pattern. For this
task, we consider basic probability estimation methods and shrinkage which is
a technique to smooth the basic probability estimations. Furthermore, we ex-
amine the effect of the local pattern discovery on the quality of the probability
estimation. The probability aggregation decodes the probability estimations
of multiple patterns into a single probability estimation. For this purpose, we
evaluate the performances of a selection of aggregation methods.

The third aspect is, how may a set of local patterns be transformed into a
compact and understandable model. Usually, local pattern sets are hard to in-
terpret and their utilisation for prediction necessitates additional efforts (e.g.
voting schemes). These issues may be solved at once if the local patterns are
employed to obtain a global model. To this end, we introduce rule stack-
ing, which is a novel approach for global modelling. Rule stacking advances
the standard stacking approach in two aspects: the meta data generation and
the additional retransformation of the meta model. In this way, we obtain a
compressed and interpretable global model that is directly applicable to future
data.

v Abstract

Contents

1.

Introduction 1
1.1, Motivationo vttt e e e e e e
1.2. Contributions. 3
1.3. Outline 5
Foundations 7
21, Data e e e 8
2.2. Knowledge Discovery in Databases & Data Mining 11
2.2.1. Domain Analysis & Selection of the Knowledge Discovery
Task . . . o 12
2.2.2. DataSelection, 13
2.23. DataCleaning 14
2.2.4. Data Reduction & Transformation 14
225, DataMining oo e 16
2.2.6. Evaluationt 21
2.2.7. Utilisation of the Discovered Knowledge 22
2.3. Local Pattern DiSCOVETY v v v v v it i e et e e 22
2.3.1. Learning a Single Pattern 25
2.3.2. Subgroup Discovery 28
2.3.2.1. Motivation 29
2.3.2.2. Properties of Subgroup Discovery 29
2.3.2.3. Bitset-based Subgroup Discovery Algorithm
(BSD) . . ot 31
2.3.3. Association Rule Mining 33
2.3.3.1. Motivation 34
2.3.3.2. Foundations of Association Rule Mining 34
2.3.3.3. Class AssociationRules 37
2334, Apriori 37
2.3.3.5. CHARM. ittt ii e 40
2.4. GlobalModels 44
2.4.1. Classifiers 45
2.4.2. Separate-and-Conquer: Learning a Global Model 46
2.43. Ensembles 47
2.4.3.1. Ensemble Learning 48
2.4.3.2. Class Binarisations 51

2.4.3.3. VotingMethods 54

2.4.4. Evaluation 55
2.4.4.1. Evaluation of Global Models 55

2.4.4.2. Comparison of Data Mining Algorithms 57

245, Ripper 61

2.5. The LeGo framework: From Local Patterns to Global Models .. 63
2.5.1. Ilustrative Example 64
2.5.2. Local Pattern Discovery 65
2.5.3. Pattern SetDiscovery, 65
2.5.4. Global Modelling 66
2.5.5. Advantages of the LeGo Framework 66

3. Theory Formation 69
3.1. Local Pattern DiSCOVETY v v v v v ittt et e e e e e e 69
3.2, Pattern SetDisCOVery o ittt e 70
3.3. Global Modelling, 72
3.3.1. VotingMethods 73
3.3.2. BayesianDecoding 74

3.4. Experimental Setup e 76
3.4.1. Implementation of Algorithms 76
3.4.2. Evaluation 78
3.4.3. Data. e e 79

3.5. Experimental Results 80
3.5.1. Local Pattern Discovery 80
3.5.2. Pattern SetDiscovery, 81
3.5.3. Global Modelling 82

3.6, SUMMATY o vt et e e e e e e e e e 85
4. Probability Estimation 87
4.1. Motivationt vttt e e e e e e 88
4.2. ProbabilisticPatternso v it 90
4.3. Basic Probability Estimation. 91
4.4. Shrinkage 92
4.5. Probability Aggregation 93
4.6. Experimental Setup 95
4.6.1. Pattern Discovery. 96
4.6.2. Evaluation 96

4.7. Experiment 1: Probability Estimation 97
4.7.1. Basic Probability Estimation 98
4.7.2. Shrinkage 99
4.7.3. Pattern discovery - Ordered vs. Unordered Generation . . 100
4.7.4. Pattern discovery - Pruning. 103

Vi Contents

4.8. Experiment 2: Probability Aggregation 104
4.8.1. Probability Aggregation - Number of Covering Patterns . 105
4.8.2. Probability Aggregation - Comparison of Probability Ag-

gregation Methods 106
4.9, SUMMATY . . . v vttt et e e et e e e e e 107
5. Theory Compression 111
5.1. Motivation 112
5.2. Encoding the Covering Information 114
5.3. Generatingthe MetaData 115
5.4. Retransforming the MetaModel 117
5.5. Experimental Setup 119
5.5.1. Pattern Discovery & Rule Stacking 120
5.5.2. Evaluation 121
5.6 Results e 122
5.6.1. ACCUTaACY . . . v v v v ottt 124
5.6.2. Complexity 124
5.6.3. Trade-off between Accuracy and Complexity 124
S.7. SUMMATY . . v o v v e e e e 127
6. Conclusions 129
6.1. Theory Formation 129
6.2. Probability Estimation 130
6.3. Theory COMpPressiono ueueunnnn.. 131
7. Future Work 135
7.1. TheoryFormationt enienen... 135
7.2. Probability Estimation 136
7.3. Theory Compression 136
Bibliography 139
Own Publications 147
A. Theory Formation: Detailed Experimental Results 149
B. Probability Estimation: Experiments 1 - Detailed Experimental
Results 161
C. Probability Estimation: Experiments 1 - Averaged Experimental

Results 171

Contents VI

D. Probability Estimation: Experiments 2 - Detailed Experimental
Results 177

VIII Contents

List of Figures

2.1. Patternsinnatureand arts 8
2.2, KDDProcesst e 12
2.3. Data mining paradigms, 16
2.4. Classification learning 45
2.5. Ensemble learning 48
2.6, Bagging e 49
2.7. Stacking: training and prediction phase 50
2.8. Stacking: meta data generation 51
2.9. Unordered class binarisation 52
2.10.Pairwise class binarisation, 53
2.11.Cross-validation 56
2.12.Critical distance chart 60
2.13.LEGo framework 65
3.1. Theory formation: critical distance charts 81
4.1. Basic probability estimation: critical distance chart. 100
4.2. Probability aggregation: critical distance chart 107
5.1. Rulestacking 112
52. Metadata 115
5.3. Theory compression: critical distance charts. 125
5.4. Accuracy-complexity charts 126

List of Algorithms

O RONAR W

SimpleFindBestPatternt 26
FindBestPatternt e... 27
BSD .. 32
Apriori - Frequent Itemset Generation 38
Apriori - Generate Confident Association Rules 39
CHARM e e 42
SeparateAndConquerl 47
LREP* .« . e 62
Ripper o 63

XI

List of Tables

3.1. Theory formation: datasets. 78
3.2. Local pattern discovery: average accuracy 79
3.3. Pattern set discovery: average acCcuracy. 80
3.4. Global modelling (part A): average accuracy 83
3.5. Global modelling (part B): average accuracy 84
4.1. Probability estimation: datasets 97
4.2. Basic probability estimation: average weighted AUC. 99
4.3. Shrinkage: average weighted AUC 101
4.4. Ordered & unordered pattern discovery: average weighted AUC 102
4.5. Pruning: average weighted AUC 103
4.6. Probability aggregation: average weighted AUC 106
5.1. Theory compression: datasets 120
5.2. Rule stacking: accuracy 122
5.3. Rule stacking: complexity 123
A.1. Theory formation: CHARM, all selector. 150
A.2. Theory formation: CHARM, exclusive coverage 151
A.3. Theory formation: CHARM, greedy confidence 152
A.4. Theory formation: CHARM, joint entropy 153
A.5. Theory formation: CHARM, minimum confidence 154
A.6. Theory formation: BSD, all selector 155
A.7. Theory formation: BSD, exclusive coverage 156
A.8. Theory formation: BSD, greedy confidence 157
A.9. Theory formation: BSD, jointentropy 158
A.10.Theory formation: BSD, minimum confidence 159
B.1. Basic probability estimation: ordered, unpruned patterns 162
B.2. Probability estimation by shrinkage: ordered, unpruned patterns 163
B.3. Basic probability estimation: ordered, pruned patterns 164
B.4. Probability estimation by shrinkage: ordered, pruned patterns . 165
B.5. Basic probability estimation: unordered, unpruned patterns . . . 166
B.6. Probability estimation by shrinkage: unordered, unpruned pat-

TEITIS . & v o i e e e e e e e e e e e e e e e 167
B.7. Basic probability estimation: unordered, pruned patterns 168

Xl

B.8. Probability estimation by shrinkage: unordered, pruned patterns 169
C.1. Comparison of shrinkage: precision & Laplace-Estimate 172
C.2. Comparison of shrinkage: m-Estimate 173
C.3. Comparison of pruning: precision & Laplace-Estimate 174
C.4. Comparison of pruning: m-Estimate 175
D.1. Probability aggregation: 10 samples, Bayesian decoding 178
D.2. Probability aggregation: 10 samples, bestrule 179
D.3. Probability aggregation: 10 samples, macro averaging 180
D.4. Probability aggregation: 10 samples, micro averaging 181
D.5. Probability aggregation: 20 samples, Bayesian decoding 182
D.6. Probability aggregation: 20 samples, bestrule 183
D.7. Probability aggregation: 20 samples, macro averaging 184
D.8. Probability aggregation: 20 samples, micro averaging 185
D.9. Probability aggregation: 50 samples, Bayesian decoding 186
D.10.Probability aggregation: 50 samples, bestrule 187
D.11.Probability aggregation: 50 samples, macro averaging 188
D.12.Probability aggregation: 50 samples, micro averaging 189
D.13.Probability aggregation: 100 samples, Bayesian decoding 190
D.14 Probability aggregation: 100 samples, bestrule. 191
D.15.Probability aggregation: 100 samples, macro averaging. 192
D.16.Probability aggregation: 100 samples, micro averaging 193

XIv

List of Tables

1 Introduction

1.1 Motivation

In almost every area of social and commercial life, an abundance of informa-
tion is generated for highly diverse purposes. Commonly, this information is
collected in ever-growing databases for later use. The omnipresent internet
and its various services are well-known examples for the collection of informa-
tion. Commercial web sites (e.g. electronic commerce, gambling, or gaming
sites) gather eagerly information about their customers such as their personal
data (e.g. name, age, location), their shopping behaviour (e.g. preferred prod-
uct categories or common shopping baskets) or web surfing behaviour (e.g.
the frequency and succession of visited sites). Members of social networks
(e.g. Facebook, Twitter, or LinkedIn) mutually share personal information
about their private lives such as their personal activities, interests, and pref-
erences, and/or about their professional life such as their curricula vitae and
business interests.

Even though all this explicit, very specific information may already be very
interesting, more general and hence more useful information could be derived
from it. Commercial sites could customise their offerings, promotions, or ad-
vertisements to be tailor-made for each customer. Social networks could offer
or upgrade services that alleviate the search for members that share common
interests. Both examples have in common that the specific information has
to be transformed into more generalised information or pieces of knowledge.
For example, the very specific information "John Smith who likes skiing often
visits Austria in winter" is less informative than the more general informa-
tion "“many persons which are interested in winter sports spent their winter
holidays in alpine regions", since it provides a more abstract insight into the
domain or, in other words, it represents a piece of knowledge about it.

Obviously, the main goal of the analysis of a data collection should be the dis-
covery of knowledge. In some areas, a manual data analysis by human domain
experts may be feasible, especially in small databases experts may interpret the
data and recognise pieces of knowledge. However, databases grow steadily in
size due to the availability of cheap storage space. Consequently, the interpre-
tation of data by human experts becomes less and less feasible, and automatic
methods for knowledge discovery are urgently needed. The interdisciplinary
field of "“Knowledge Discovery in Databases" (abbreviated KDD) addresses this

issue by providing a semi-automatic process (referred to as the KDD process)
that assists humans in the discovery of knowledge [PSF91, FPS96b]. Data min-
ing is the main component of the KDD process as it provides the tools to search
in the explicit facts of the data for regularities that each represent a single
piece of implicit knowledge. The regularities found in this way are formulated
explicitly as patterns. Depending on the intended use of these patterns, data
mining may be divided into two main categories. On the one hand, descriptive
data mining offers a wide range of algorithms for the discovery of local pat-
terns (e.g. association rules or subgroups). Each of these patterns describes
local characteristics of the data. Most of the information content of the data set
may be captured by the total of local patterns, however, a complete picture or
explaining global model is not obtained in this way. Obviously, the totality of
the local patterns may be hard to interpret. On the other hand, predictive data
mining provides algorithms for the generation of global models (e.g. decision
trees, or decision lists) that aim to make precise predictions on future, unseen
data. Such models may be seen as global patterns that explain the data as a
whole. Usually, global models predict the values of a feature of interest which
is commonly referred to as the class attribute of the data set. Classification, as
the data mining task of predicting the class attribute is called, will be the focus
of this work.

Even though descriptive data mining has been developed for a different pur-
pose, the global modelling of predictive data mining may clearly profit from the
local pattern discovery. To this end, two approaches to employ local patterns
for global modelling may be considered:

Integrative Approach

Since global models usually may be composed of local patterns (for instance,
decision lists consist of individual rules), an obvious way to combine these two
worlds is to integrate the local pattern discovery into the global modelling
process. This integrative approach is exemplified by the CBA algorithm (an
acronym for classification by association) [LHM98]. To this end, CBA employs
conventional local pattern discovery algorithms to generate association rules
(for example, the Apriori algorithm) for classification. Afterwards, a simple
covering algorithm turns the generated association rules into a useful global
model for prediction.

Decoding Approach

Alternatively to this integrative approach, each local pattern may be re-
garded as a model for the prediction of local properties. Analogous to en-
sembles of global models, the (local) predictions may be decoded into a single
global prediction, obtaining an implicit global model in this way. Commonly,
voting methods are employed to decode several predictions into a single one,

2 1. Introduction

predicting the class value that received the most votes. Since each local pattern
covers only a (small) part of the data space, only the votes of the covering local
patterns have to be considered for this purpose.

Both the integrative and the decoding approach have in common that they
employ a set of local patterns to obtain predictions for unseen data. Even
though this simple idea yields promising results, the general question, how
local patterns may be employed for global modelling, has not been answered
satisfactorily yet. We elaborate this question in this thesis, investigating three
important aspects of it:

* How may a set of local patterns be employed to obtain optimal predic-
tions?

* How may a set of local patterns be utilised to obtain optimal class prob-
abilities?

* How may a set of local patterns be transformed into a compact and un-
derstandable model?

In the following chapters, we will study these questions, searching for sat-
isfactory answers. In our studies, we utilise (propositional) rules as local pat-
terns since rules are in our opinion the most natural way to formulate pat-
terns. Thus, we will not distinguish between local patterns and rules, using
both terms interchangeably in this work.

1.2 Contributions

As mentioned before, in this work we investigate, how a set of local patterns
may be used to obtain accurate predictions on unseen data. To this end, we
study three questions (see above), each of which is related to a specific aspect
of the problem. According to these questions, the contribution of our work is
divided into three parts:

Theory Formation

In the first part of our work, we investigate the question, how a set of local
patterns may be employed to obtain optimal predictions [SFO8]. The LeGo
framework [KCFS08] provides a generic solution to this problem which is
divided into three sub steps for this purpose. Between the previously de-
scribed local pattern discovery and global modelling steps, an intermediate
step, the pattern set discovery, is introduced that reduces the local pattern set
to a smaller one. Ideally, the reduced pattern set consists only or at least mostly
of those patterns that are needed in the subsequent global modelling step to

1.2. Contributions 3

obtain an optimal model. For each of the three steps several methods exist that
may be employed for the associated task, allowing a myriad of configurations
of the LeGo framework. Since the LeGo framework and the options for each of
it steps have not been evaluated systematically so far, we are going to approach
this task with an extensive empirical study. To this end, we consider a selection
of different options for each step and identify the best amongst the selected
options respectively.

Probability Estimation

In the second part of our work, we tackle the problem, how a set of local
patterns may be utilised to obtain optimal (class) probabilities [SFO9]. In other
words, we want to estimate the probability that a data instance belongs to a
class, using the local pattern set. Class probabilities may be useful in situations,
when a mere prediction is not sufficient and a measure of confidence in the
prediction (in form of a probability distribution) may be more useful (e.g. for
optimising the weights for voting methods). The problem to obtain such class
probabilities may be divided into two sub tasks. The first task is to determine
the class probabilities of a given data instance from a single applicable local
pattern. For this purpose, we employ basic probability estimation methods
which estimate probabilities based on statistical properties of the pattern, and
a technique to smooth the probabilities obtained in this way. The second task is
to decode the class probability distributions of all applicable local patterns into
a single one. To this end, we utilise well-known decoding methods to combine
the basic probability estimations employed in the first task.

Theory Compression

In the third part of our work, we study the question, how a set of local pat-
terns may be transformed into a compact and understandable model [SF11].
As mentioned before, a set of (independent) local patterns may be hard to
interpret and additional efforts (e.g. the application of voting methods) are
needed to obtain predictions with the help of these patterns. Both issues may
be solved at once if we generate a global model on the basis of the local pattern
set. For this purpose, we suggest a novel approach for the global modelling of
rule-based local patterns. Rule stacking, as we named this approach, modifies
the general meta learning method stacking and adapts it to the aforemen-
tioned global modelling task. The main differences between rule stacking and
the standard stacking approach are the generation of the meta data and the
retransformation of the obtained meta model into a compressed global model
that is directly applicable to future data (and may be easily interpreted). Our
experiments show that the global models generated by rule stacking are of
lower complexity than the original local pattern set and are easier to interpret.

4 1. Introduction

1.3 Outline

This work is organised as follows. First, we explain the fundamentals of data
mining in Chapter 2. To this end, we give an introduction into the employed
data, local patterns, global models, and the LeGo framework. In Chapter 3, we
investigate the first question, how a set of local patterns may be employed to
obtain optimal predictions. Our solution approach involves the evaluation of
different configurations of the three-step generic LeGo framework, identifying
the best methods for each step. Next, we concern ourselves in Chapter 4 with
the second question, how a set of local patterns may be utilised to obtain op-
timal (class) probabilities. For this purpose, we investigate the performances
of basic probability estimation methods, a single shrinkage method and proba-
bility aggregation methods. In Chapter 5, we consider the third question, how
a set of local patterns may be transformed into a compact and understandable
model. For its solution, we propose a novel meta learning approach called rule
stacking. At last, we summarise the results of our work in Chapter 6.

1.3. Outline 5

2 Foundations

In our environment, we encounter a multitude of patterns which are either
of natural or artificial origin. Usually, natural rocks exhibit textures that are
witness to their formation (e.g. igneous rocks like speckled granite or meta-
morphic rocks like banded slate). Through evolution, Earth’s flora, fauna and
fungi have developed many different patterns for varied purposes, e.g. as cam-
ouflage (for example, the points and stripes of big cats like tigers, cheetahs,
and jaguars), or aposematism of colouration (for example, the red and white
patterns of fly agarics, or the yellow and black patterns of wasps respectively
are an evidence of their inedibility and toxicity). Due to its fascination of
natural patterns, humanity has created an abundance of artificial patterns in
various fields. Repetitive ornaments of geometrical or floral design are used
for decoration in arts, architecture, and fashion. Interestingly, those patterns
have not to be exact to be recognisable by the human eye (see Figure 2.1).

Common ground of all these patterns is that they indicate an (almost) invari-
ant structure that is repeated with a certain regularity. To apply this observa-
tion to data, a pattern represents a set of feature values that regularly co-occur
under certain conditions. Typically, this regularity is based on the occurrence
of other feature values that influence the appearance of the relevant feature set
with a sufficient certainty. From our point of view, the most natural, intuitive
way to model such data patterns is to use deterministic rules of the form

X =, 2.1

where both X and Y are sets of feature values. Hence, rules are the patterns we
prefer for data mining, and we will focus on rule-based data mining algorithms
[FGL12] in this work and its associated experiments.

In the remaining chapter, we give attention to the foundations of two data
mining tasks: the search for local patterns and the generation of global mod-
els. At first, we introduce in Section 2.1 the relevant properties of the data
that we consider in this work. Then, we illustrate the multi-step process of
“Knowledge Discovery in Databases” and its main component, the data min-
ing step in Section 2.2. Afterwards, we describe the properties of rule-based
local patterns, the general process of learning single local patterns and two
categories of local pattern discovery algorithms, subgroup discovery and as-
sociation rule mining, that will be relevant in our work, in Section 2.3. For
these categories, we explain practical pattern discovery algorithms that find

LAAAAA
00000

(a) Zebra pattern (b) Ornamental patterns

Figure 2.1.: Patterns in nature (a) and arts (b).

application in our experiments. In the subsequent Section 2.4, we deal with
the details of predictive global models. For this purpose, we describe classi-
fiers, the general separate-and-conquer-algorithm for combining local patterns
into global patterns or models, the applications of classifier ensembles, and the
evaluation of classifiers. We present the rule learning algorithm Ripper which
is a well-known and effective implementation of the separate-and-conquer ap-
proach. At last, we describe the LeGo framework [KCFS08] which provides a
generic solution to the problem, how a set of local patterns may be employed
to obtain a global model in Section 2.5.

2.1 Data

Before we are going into the details of data mining, we define data and its
relevant properties. Data may be divided into two categories: structured and
unstructured data. The first category, structured data, consists of relational
data tables, while unstructured data comprises texts and web documents. In
this work, we will only consider structured data. A structured data set is de-
fined by a specified set of attributes and consists of a set of instances. Each
attribute is determined by its type (e.g. numerical, nominal) and its domain.
The domain of an attribute is the set of permissible attribute values. For in-
stance, the domain of “cardinal directions” could be “north”, “east”, “south”,
and “west”. Each instance of a structured data set is a tuple of attribute values
that are drawn from their respective domain. Since the number of attributes

of a structured data set is determined, the length of these tuples is fixed, too.

8 2. Foundations

An attribute A is described basically by its domain dom (A) which is a set of
permissible values

dom (A) = {ala e >a|A|} P (2.2)

where
|A| = |dom (A)| (2.3)

is the number of possible attribute values qa; of attribute A.

Attributes may be divided into multiple categories or attribute types which
define the set of permissible attribute values of a respective attribute. In our
work, we consider two basic attribute types: numerical and nominal attributes.
If the set of attribute values is a set of numbers, the attribute is also called nu-
merical (dom (A) € R). Nominal attributes permit only a limited list of symbolic
attribute values. For example, the legal values of an attribute “primary colours”
could be “red”, “blue”, and “yellow”.

A data set D is defined by a fixed number of attributes

D Cdom(A;) x -+ x dom (A|S|) =S, 2.49)

where dom (A;) x --- x dom (A|S|) is the data space S and A; is one of its |S|
attributes. |S| is both the dimension of the data space and the number of
attributes.

An instance d of the data set D is defined by a tuple of attribute values

d=(ag1, " ,aq5) €D, (2.5)

where
aq x € dom (Ak) (26)

is one of the legal values of the attribute A;. For a given data set, |D| is the
number of instances in the data set.
In summary, a data set may be described by a matrix of attribute values

g0 0 Ay s
D= : : , 2.7)

Qdp, 1 "0 Adppls|

where the rows and columns represent instances and attributes respectively.
In many real-world databases, the values of some attributes may be known
only for parts of the available data, as these attribute values are not measur-
able or hard to determine. Unfortunately, these attributes are often of special
interest, as they may be used to categorise the instances of a data set into

2.1. Data 9

separate categories or classes. Consequently, these attribute values have to be
determined by other means for the unclassified available and future data. For
example, human experts may derive these values from the interpretation of
other attributes, that are more easily available, based on their experience. In
astronomy, an abundance of (physical) measuring data of astronomical objects
is collected automatically, but their category (e.g. star or planet class) still has
to be determined by human experts. Obviously, a precise prediction model
could be used for the assistance of the human experts in their categorisation
efforts (e.g. by providing a preliminary selection of interesting objects) or even
for the complete automation of the process.

Both approaches may be handled by classification which is as mentioned
before the focus of this work. The goal of classification learning is the pre-
diction of attribute values of a specific attribute whose values are only known
for a part of the available data. For this purpose, classification learning algo-
rithms process the observed data to generate models that predict these values
for previously unseen instances. According to this, we consider only rule-based
patterns that predict values of the class attribute in our work. Consequently,
we have to introduce the class attribute and extend the previous definitions of
the data set and its instances to classification.

As mentioned above, the main goal of classification learning is the prediction
of values of a specific nominal attribute (in contrast to regression where the
predicted attribute is numerical) for previously unseen data. In classification
learning, this attribute is called the class attribute or label of the data set.
According to this we define a classification data set as follows:

D Cdom(A;) x -+ x dom (Ajg_1) x dom (L) =S, (2.8)

where L is the class attribute or label. |L| denotes the number of possible class
values or labels. If |[L| = 2, the data set and the associated learning problem is
called binary. Analogously, if |L| > 2, we have to deal with a multi-class data
set and learning problem.

Additionally, the definition of data instances has to be extended:

d = (ad,l, ce ,ad,|5|_1,ld) S D, (2.9)

where [; € dom(L) is the class label of d. A data instance whose class label
is known is referred to as a labelled instance or an example (of its class). Ac-
cordingly, the class label of unlabelled instances is unknown. Likewise, a data
set that consists only of labelled or unlabelled instances is called labelled or
unlabelled respectively.

Furthermore, a labelled data set may be divided into subsets D, that each
consist of the data instances belonging to a specific class [:

10 2. Foundations

The size n; of the data set D; is defined as
m = |Dy] (2.11)

In real-world data sets, some attribute values of one or more data instances
may not reflect their real values, as the generation of data sets is for several
reasons prone to errors. Physical values which have to be determined by an
appropriate measuring instrument (e.g. length, weight, temperature) may be
quantified wrongly as these instruments have only limited precision. Addition-
ally, real-world data sets are often generated using form data (e.g. patients
filling in medical blanks in hospitals). The data collected may be faulty, as
on the one hand the data is only correct if the form is completed correctly,
and on the other hand, the forms have to be digitised without errors. In
machine learning (as in physics), this phenomenon is known as noise. Data
instances and data sets, in which it occurs, are called noisy. As we will see
later, successful data mining algorithms have to deal with noise in the data.

2.2 Knowledge Discovery in Databases & Data Mining

In this section, we concern ourselves with the interdisciplinary field of "“Knowl-
edge Discovery in Databases" (abbreviated KDD) and its main component
data mining. KDD provides a semi-automatic process (referred to as the KDD
process) that assists humans in the discovery of knowledge [PSF91, FPS96a,
FPS96b]. The associated KDD process has been defined as follows:

Knowledge discovery in databases is the non-trivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable
pattern in the data [FPS96a].

This definition introduces several important terms and concepts that have to
be clarified first.

Data often exhibits regularities, such as the frequent co-occurrence of cer-
tain feature values. Regularities may be formulated as expressions which are
referred to as patterns in some kind of representation language (e.g. rules,
or decision trees). Thus, each pattern describes a single characteristic of (a
subset of) the data and represents an explicit formulation of knowledge in this
way. A collection of patterns may be used to induce a model that describes the
complete data (set). The KDD definition makes demands on the extracted pat-
terns: validity, novelty, usefulness, and understandability. To check if patterns
meet these demands, quantitative measures, referred to as quality heuristics,
are employed to evaluate them. Normally, objective measures for validity or
certainty (e.g. the estimation of the prediction accuracy on data), or utility

2.2. Knowledge Discovery in Databases & Data Mining 1

Data Preprocessing Data Mining

Selection of the DM Task

Data Selection

Domain Analysis & Dt Selection of the DM i Exploiting the Discovered
Selection of the KDD task & Algorithm Knowledge
Data Reduction & Employment of the DM
Transformation Algorithm

Figure 2.2.: KDD Process: illustration of the life cycle of the process of “Knowl-
edge Discovery in Databases”.

1D

(e.g. the achieved gain in cost or time savings) may be easily defined. Mea-
sures for novelty and understandability are a bit problematic because they will
always be a bit subjective, depending on the user’s experience and preferences.
Nevertheless, we will concentrate on patterns that exhibit a high certainty and
are understandable, as we search for accurate local patterns in the form of
conjunctive rules, which may easily be interpreted.

The complete KDD process consists of multiple, consecutive steps, in which
one or more automated, parametrised methods are applied to the data (see
Figure 2.2). The interaction of these steps is not strictly linear, as unpromis-
ing results of one step can necessitate the restart at former steps using other
methods or parameters (please note that such restarts have been omitted in
the figure for a better overview). The key part of the KDD process is the data
mining step. The goal of this step is to discover and extract interesting pat-
terns from the database. Generally, the patterns gathered in this way are used
to generate models that may be used either to obtain a better understanding
of the current data (e.g. relations between feature values) or to analyse future
data (e.g. making predictions on unknown examples). In our work, we will
concentrate on the data mining step of the KDD process and especially on the
machine learning methods that we use in our experiments. Nevertheless, we
will describe the objectives and the employed techniques of each step of the
KDD process briefly in the next paragraphs.

2.2.1 Step 1: Domain Analysis & Selection of the Knowledge Discovery
Task

The initial step still has to be done manually by human experts. First, these
experts have to analyse the domain of the given data set, identify the special
properties of its domain and formulate possible goals of the knowledge discov-
ery. Next, they have to select one of the formulated goals as the main goal or

12 2. Foundations

task of the KDD process. Obviously, this decision has a major impact on the
following steps. On the one hand, it influences the manual preselection of the
data which is used for the knowledge discovery task, as only an appropriate
subset of the available data is normally needed. On the other hand, it con-
strains the number of meaningful choices in each of the following steps (e.g.
the selection of a prediction task appoints predictive data mining methods in
the later data mining step).

2.2.2 Step 2: Data Selection

In the data selection step, a target data set has to be prepared, on which the
knowledge discovery task will be performed. The tricky part of this step is
to select only the data that is relevant for the previously defined KDD goal.
Therefore, we have to determine a subset of the available data by selecting
only a relevant, representative portion of the available instances and features.
Obviously, this step has a major impact on the following steps. On the one
hand, if too few features or instances are selected, important information may
be missing and the entire process may fail. On the other hand, if too many
features or instances are chosen, irrelevant information may be considered
and processed. Hence, the entire process may be slowed down or may be even
impossible as some data mining methods are prone to a big number of features
and/or instances (e.g. nearest neighbour learning [Aggl4]). That being the
case, both aspects, the relevance and size of the considered data, have to be
traded off carefully.

Normally, the data that has been selected for the data analysis is distributed
over several relational tables which may be part of one or more data bases.
Therefore, we have to extract the previously determined parts of each re-
lational table. Afterwards, the selected parts have to be adjusted (e.g. the
normalisation of different denominations, values or formats of associated fea-
tures [Pyl99]) and integrated in to a single data set. Sometimes, the available
data may be not sufficient as the data misses important features or possesses
only an inadequate number of instances. In both cases, it may be worthwhile
to collect or generate additional data in an appropriate way. In a few cases,
target data sets for a given data analysis task may be already available (e.g.
created for a former, similar KDD task). Obviously, the direct use of available
data sets saves time and effort. Nevertheless, the creation of a new data set
may be rewarding in many cases, since different aspects of the domain may be
emphasised in this way.

Before the selected target data is used for data mining, the application of one
or more pre-processing methods could be worthwhile. The most popular goals
of pre-processing methods [Pyl99] are the data cleaning (e.g. removal of in-
consistencies, noise, or outliers) and the data reduction (e.g. by feature subset

2.2. Knowledge Discovery in Databases & Data Mining 13

selection or sampling), and the data transformation (e.g. discretisation) . The
utilisation of these pre-processing methods takes place in the two subsequent
steps.

2.2.3 Step 3: Data Cleaning

The pre-processing step data cleaning (a.k.a. data cleansing) focusses on the
treatment of faulty or misleading data to obtain a clean data set that is consis-
tent with its domain [Pyl99]. These faults comprises inconsistent, missing, and
noisy attribute values that may originate from technical problems (e.g. values
may have been corrupted by faulty measures, transmission, or storage), hu-
man interaction (e.g. users may have (in-)voluntarily entered wrong entries),
or different semantics or metrics (e.g. the utilised data sources use different
dictionaries, systems or units of measure). Obviously, these faults may influ-
ence the data mining process unfavourably and therefore should be treated
appropriately. Dependent on these reasons, the detection and treatment of
these faults may be either trivial (e.g. adjusting date formats or conversion
of units of measure) or somewhat expensive as additional means have to be
employed (e.g. filling missing values with a default or statistical value, for
example, the mean or median, or with a prediction of a data mining model).

Additionally, data sets may contain instances that deviate significantly from
other instances. Outliers, as those instances are called, are either caused by
noise or they represent exceptions to the distribution that generated the data
set. Independent of the reason, the removal of outliers may be reasonable,
as they may influence the induction process of data mining methods in a un-
favourable way (e.g. trying to fit every instance correctly, including the out-
liers, may lead to overfitting). The detection of outliers is normally based on
either statistical methods (e.g. the identification of unlikely observations given
an assumed probability distribution) or methods that take the spatial proxim-
ity into account (e.g. nearest neighbour learning [Agg14]). Please note, that
the detection and handling of noise may already solve the problem of outliers
if their occurrence may be traced back to noise.

2.2.4 Step 4: Data Reduction & Transformation

The data reduction and transformation step concentrates on two issues: re-
duction of dimensionality and feature engineering [Pyl99]. Data reduction
deals with the problem that machine learning methods may not scale very
well with big databases as these learning algorithms often employ counting
operations (e.g. calculating the frequency of specific feature values under
given constraints) and/or multi-dimensional access to the database (e.g. se-

14 2. Foundations

lecting a subset of feature values and samples). This problem may be solved
if the dimensionality of the data set is reduced to a size that may be stored in
memory, or if the design of the data mining algorithm minimises the number
of database accesses (e.g. Apriori, see Section 2.3.3.4). Obviously, there are
two approaches for this reduction: selecting either a subset of instances or a
subset of features. The first one is known as sampling [Pyl99], and the latter
one as feature subset selection [Pyl99] which is essentially a part of feature
engineering and will be discussed in the following paragraph. Sampling selects
a subset or sample of instances of the data set by drawing randomly (with or
without replacement) a (stratified) subset of instances from the data set. In
any case, the drawing should avoid any systematic errors (e.g. preferring one
sample to another) to prevent a biased subset of the data.

Feature engineering comprises three categories of techniques that address
the selection and processing of features: the feature subset selection, feature
transformation, and feature construction. Feature subset selection aims to re-
move redundant, uninteresting, or irrelevant features from the selected data
set, possibly increasing the efficiency of the data mining step (e.g. the gener-
ation time may be polynomial or even exponential in the number of features)
and the accuracy of the resulting model (e.g. by preventing overfitting). Fea-
ture transformation solves two issues. Occasionally, data mining methods are
designed inherently to handle only specific feature categories (e.g. numerical
or nominal ones) and are not able to process other categories for this reason.
This problem may be solved by discretisation and numerisation of unsuitable
features. Discretisation techniques transform numerical features into nominal
ones, mapping number intervals to nominal values (e.g. the explicit age into
age categories). Numerisation methods have the opposite effect, as they trans-
form nominal features into numerical ones. Two-valued nominal features are
transferred into binary numerical features representing the two feature values
by 0 and 1. Multivalued nominal features are either transformed into multiple
binary numerical features or into one multivalued numerical feature. Another
issue of feature transformation is the feature scaling of numerical values. If a
data set contains multiple numerical features or, in other words, has multiple
dimensions, it may be reasonable (e.g. for distance-based data mining learning
algorithms, such as nearest-neighbour learning [Agg14]) either to rescale and
map a numerical feature to a pre-defined interval (e.g. [0, 1] or [-1,1]) or to
standardise a numerical feature (e.g. translating it to have zero mean and unit
variance). Feature construction derives new features by combining existing fea-
tures (e.g. the body mass index is a function of a person’s height and weight).
In this way, data mining learning methods may exploit mutual information that
could be too complex in its original representation to be described by a pattern
or model.

2.2. Knowledge Discovery in Databases & Data Mining 15

Data Mining
Paradigms

Discovery

| Description | /

Local Pattern LS Visualisation (o Evaluation Statistical
Discovery Summarisation Techniques Classification Regression Methods Tosts

Figure 2.3.: Data mining paradigms: a simplified overview.

2.2.5 Step 5: Data Mining

In the previous steps (steps 1 to 4), we defined a knowledge discovery task for
this KDD process and generated a data set step-by-step for it. Thus, we have
everything at hand that we need for the next step: the application of data min-
ing. Data mining searches in the explicit facts of the data set for interesting,
previously unknown regularities, that represent bits of information or knowl-
edge about the data and its domain, and formulates them as patterns. To this
end, data mining provides a multitude of algorithms for the pattern extraction
which originated, amongst others, in the fields of statistics, machine learning,
and artificial intelligence. The data mining tasks that these algorithms solve
are as diverse as their origin.

Since there are several data mining tasks designed for different purposes and
even more data mining algorithms associated to each of these tasks, the data
mining task and an appropriate algorithm have to be selected and fitted to the
previously defined knowledge discovery task. Hence, the data mining step may
be divided into three phases. First, an appropriate data mining task has to be
selected. According to this selection, a data mining algorithm associated with
the selected task has to be chosen and employed in the second and third step
respectively. In the following paragraphs, we will briefly discuss these steps
without going into the details of data mining and its algorithms.

Phase 1: Selection of the Data Mining Task

In the first step of the KDD process, the discovery task selected for this KDD
process has been defined informally (in natural language). Now, the next step
is to match this informal task to an existing data mining task. To this end,
one or more data mining tasks may represent appropriate approaches for its

16 2. Foundations

solution. If more than one option is available, human experts have to decide
which data mining task will be utilised in this step. This decision depends
mainly on two factors: the performance of the data mining task (e.g. in terms
of the quality of the extracted patterns or model, or the time consumption),
and the personal preferences and experiences of the human experts.

Data mining (see Figure 2.3) and its tasks may be divided into two main
categories: description and prediction (respectively referred to as descriptive
and predictive data mining), that differ in their extraction process and the rep-
resentation and purpose of the extracted knowledge or patterns. Descriptive
data mining is orientated towards the interpretation and understanding of the
data at hand. The extracted patterns describe certain properties of the data
set and of its domain. Predictive data mining pursues a different goal as it
searches for a global model that aims to predict the values of a specific fea-
ture of interest, referred to as class attribute, for new and previously unseen
instances of this domain. In contrast to the patterns obtained by descriptive
data mining, the global models of predictive data mining explain the data as a
whole. Furthermore, global models range from black-box models (e.g. support
vector machines [SC08]) to interpretable models (e.g. decision trees [RM14]
and rule sets [FGL12]). Obviously, well interpretable models may provide a
description of the data, too. Analogously, descriptive data mining algorithms
may be used to obtain predictive patterns that may be combined to predic-
tive models as we will see later in this chapter. Hence, the border between
predictive and descriptive data mining algorithms is a bit fuzzy in this regard.

Furthermore, the general tasks of descriptive and predictive data mining
may be divided into categories according to more specifically defined descrip-
tive or predictive data mining tasks, respectively. Descriptive data mining
encompasses amongst others local pattern discovery (e.g. the search for de-
scriptive local patterns such as association rules or subgroups), summarisation
methods (e.g. the calculation of mean or average values of a feature) and
visualisation techniques (e.g. ROC space [Faw06]). Similarly, predictive data
mining may be further divided into two categories, depending on the type of
the predicted class attribute. Classification searches for models that predict
nominal feature values. On the contrary, regression discovers models that re-
turn numerical values for prediction. In many cases different approaches to
solve a data mining task have been developed. Algorithms that pursue a sim-
ilar approach (e.g. utilising the same base methodology, patterns, or models)
may be summarised in an algorithm family. However, the members of such
a family differ in their concrete implementation of the approach. For exam-
ple, the local pattern discovery algorithm families association rule mining and
subgroup discovery both search for local patterns in form of rules, namely asso-
ciation rules and subgroups respectively, but their discovery processes, patterns
and purpose differ. Analogously, classification may be solved amongst others

2.2. Knowledge Discovery in Databases & Data Mining 17

by decision tree and rule learning algorithms that both generate global models
- either decision trees or rule sets - for classification. As mentioned before,
we will concentrate on two data mining categories, local pattern discovery
and classification, and their approaches of association rule mining, subgroup
discovery, and rule learning respectively.

Phase 2: Selection of the Data Mining Algorithm

In the previous phase, a data mining task has been selected to solve the
knowledge discovery task. The next step will be the selection of a data mining
algorithm associated with the chosen task. As mentioned before, there exist
several categories of algorithms (e.g. classification problems may be processed
by decision tree or rule learning) for each data mining task that solve it. Anal-
ogously, each algorithm category summarises several algorithms that share a
similar model representation (e.g. association rules, classification rules, or
decision trees) but work more or less differently.

The decision to employ one of these data mining algorithms or categories de-
pends primarily on two factors: the quality of the induced patterns or model,
and the interpretability of both. In respect to the interpretability, the data min-
ing algorithm categories can be coarsely divided into black-box and white-box
algorithms. Black-box algorithms (e.g. SVMs [SC08]) are tuned up for per-
formance, though the internal patterns or models they generate are not repre-
sented in a form that is comprehensible for humans. On the contrary, white-box
algorithms have also been designed for performance, but their model represen-
tations display the generated patterns and, if applicable, how they are used in
the induced model. As a rule of thumb, up-to-date black-box algorithms tend to
outperform their white-box counterparts at least slightly although this advan-
tage is paid dearly by the loss of interpretability. Both aspects, the quality and
the interpretability of the generated patterns and models, have to be traded off
by human experts in respect to the given knowledge discovery task.

Data mining algorithms basically consist of three primary (algorithmic) com-
ponents: the representation of the patterns and models, the evaluation of these
objects, and the search for them. Additionally, data mining algorithms may in-
clude a overfitting avoidance component which may either be integrated in the
search or may be applied separately. In the following, these components will
be discussed briefly.

Representation: For each data mining algorithm, its representation is de-
fined by a representation language for the desired patterns and, if applicable,
for the induced model. Representation languages describe the valid values for
the discovered patterns (e.g. conjunctive or disjunctive rules) or models (e.g.
decision trees or decision lists) respectively. Obviously, patterns and models
are usually drawn from different representation languages. Nevertheless, the
pattern representation may influence the model representation, as a model

18 2. Foundations

may consist of a composition of extracted patterns (e.g. a decision list is made
up of one or more rules).

The choice of the representation language for patterns and models has a
major impact on the success of the data mining process. On the one hand, if
the expressiveness of the chosen representation language is too limited, the
resulting patterns and models may be too coarse or too general to cover all
intricacies of the considered data set. On the other hand, a highly expressive
representation language may increase the danger of overfitting the training
data. Both may lead to a suboptimal accuracy on the present or unseen data.
However, data mining algorithm families determine usually a specific base pat-
tern or model that may be differently instantiated by its members. For example,
classification rule learning demands the employment of rules as base patterns,
though implementing algorithms may choose the specific kind of rules (e.g.
conjunctive or disjunctive rules).

Evaluation: During the search for patterns and models, data mining algo-
rithms have to be able to determine or at least estimate the quality of a con-
sidered pattern or model. For this purpose, data mining algorithms employ
heuristic evaluation methods or functions that calculate a quantitative esti-
mate for the quality of patterns or models. Based on this quality estimate, data
mining algorithms may determine if a specific pattern or model is interesting
(e.g. if the estimate exceeds a pre-defined quality threshold) for the current
data mining task. Furthermore, data mining algorithms may compare two or
more patterns (or models) by their estimated quality and select the most qual-
itative ones as these may be the most promising ones for the final results or
further data mining steps.

Usually, data mining algorithms deploy several evaluation methods in their
life cycle as at least one evaluation method is necessary for the evaluation of
patterns and models respectively. Some data mining algorithms even utilise
variable evaluation methods in different stages of their process. For instance,
the classification rule learner Ripper which will be discussed later in this chap-
ter employs differing evaluation methods depending on its current phase (e.g.
training or pruning phase). Obviously, the diverse data mining tasks make dif-
fering demands on the extracted patterns and models and influence the reason-
able approaches to evaluate these (e.g. predictive accuracy versus descriptive
interestingness). Accordingly, evaluation methods may be designed for a given
data mining task and for either patterns or models only.

Search: After choosing the representation language and the evaluation
methods for patterns (and if applicable models), the pattern extraction pro-
cess of a data mining algorithm may be reduced basically to an optimisation
task: search in the domain of the chosen representation language for the pat-
terns or models that optimise the selected evaluation methods (and criteria,
e.g. a minimal interestingness threshold). Unfortunately, this is often not just

2.2. Knowledge Discovery in Databases & Data Mining 19

a simple optimisation task that may be solved by a deterministic computation.
Hence, data mining algorithms employ a heuristic search for patterns and/or
models that approximate the optimal solution step-wise. Commonly, such a
search starts with one or more candidate patterns (or models), refines them
iteratively and chooses the best one(s) as its solution.

Consequently, this refinement process is defined by three components: the
initialisation, the refinement, and the quantity of the considered candidate
patterns (or models). Basically, candidate patterns are initialised either as the
most specific or as the most general pattern in the chosen representation lan-
guage. Depending on the chosen initialisation, a pattern is refined bottom-up
by generalisation (removing one or more conditions) or top-down by speciali-
sation (adding one or more conditions respectively). In each refinement step,
the candidate patterns of the previous steps are refined and only one or more
of the best patterns obtained in this way are stored for the next step. The ex-
act number of stored candidates depends on the third component: the search
strategy. In data mining, three search strategies or algorithms are commonly
used: hill climbing, beam search, and exhaustive search. Hill climbing stores
in each step only the best refined pattern. Similarly, beam search stores the
k best patterns in each step and therefore is a generalisation of hill climbing.
Exhaustive search enumerates all patterns that are representable in the chosen
representation language.

Overfitting avoidance: As noisy data may lead to overfitted models that
tend to be overly complicated and to have a low accuracy on unseen data,
many learning algorithms employ methods to avoid it. The basic idea of these
methods is to keep the induced rules and consequently the model simple, as
a simple model may be more predictive than more complex ones. For this
purpose, rule learning algorithms utilise pruning methods that stop the refine-
ment process prematurely (known as pre-pruning), remove redundant condi-
tions or unnecessary rules from the induced model (known as post-pruning),
or integrate both pruning approaches (for example, incremental reduced error
pruning [FW94]).

Phase 3: Employment of the Data Mining Algorithm

So far, a data mining task and an associated data mining algorithm have
been selected in the previous phases. Next, the chosen algorithm will be em-
ployed to process the prepared data set. Most data mining algorithms and
their respective implementations feature several parameters. Amongst others,
those parameters modify the pattern extraction in different aspects: the search
strategy used for finding the patterns, the evaluation heuristic(s) employed to
approximate the quality of the patterns or model, or the pattern format utilised
to represent the patterns. Since there are multiple options for each parameter,
choosing a good or in the best case optimal parameter setup is not an easy

20 2. Foundations

task. Hence, it is common that several setups are considered. This approach
involves multiple repetitions of this step, the evaluation and comparison of the
results in the evaluation step, and the selection of the most promising setup
afterwards.

2.2.6 Step 6: Evaluation

Depending on the selected data mining task, patterns have been extracted from
the data set and if applicable a model has been induced using them. Before
these patterns or the model may be installed in a commercial or scientific op-
erational system or used for gaining insights into the domain, their quality
(e.g. their accuracy, or memory and time consumption) should be evaluated
first. Since an exact calculation of the quality is often not feasible in prac-
tice, approximations of the considered quality are required. For this purpose,
evaluation methods, as described before in the data mining step, have been
developed that approximate the quality of patterns and models or manage the
evaluation (e.g. cross-validation) and comparison (e.g. statistical tests, or vi-
sualisation techniques) of models. Relevant evaluation methods are illustrated
in detail in Section 2.3 for local patterns and in Section 2.4 for global models,
respectively. Nevertheless, we will give a short overview over the evaluation
here.

The evaluation of models, especially if the model is used for predictions,
needs further considerations, as the simple employment of quality heuristics to
rate models may be insufficient. Such ratings may be too overoptimistic, as the
patterns may be fitted too much to the present data set but generalise badly
on other data sets of the domain. As mentioned above, this phenomenon is
commonly referred to as overfitting. To avoid or recognise overfitted models,
evaluation techniques divide the available data set into two or more parts.
Then, some of these parts (referred to as the training data set) are used to
generate or train the model and the other parts (referred to as the testing or
evaluation data set) are employed only to evaluate this model. In practice,
there exist several modifications of this approach, the most common one is
the cross-validation technique which will be discussed later in this chapter (see
Section 2.4.4.1).

As mentioned in the previous step, it may be worthwhile to try out multiple
data mining algorithms and choose the best performing one. In this case, all
candidate data mining algorithms are evaluated, using the same quality heuris-
tic and evaluation technique, and are compared mutually with either statistical
tests (e.g. the sign test [Dem06]) or visualisation techniques (e.g. the ROC
space [Faw06]) using their derived heuristic qualities (see Section 2.4.4.2).
Statistical tests may be used to decide if the quality of two or more compared
models either is significantly different, given a pre-defined significance level,

2.2. Knowledge Discovery in Databases & Data Mining 21

or not. Visualisation techniques may be used to depict the quality of one or
more patterns or models and allow to choose visually the best performing one,
given specific constraints on their performance (e.g. cost-sensitive learning).
The results of some statistical tests may be visualised by similar techniques,
too.

If the patterns or model of the (best performing) data mining algorithm yield
a sufficient high quality, the discovered knowledge is ready for the incorpora-
tion in an operational system.

2.2.7 Step 7: Utilisation of the Discovered Knowledge

In the previous steps, patterns and/or models have been extracted and eval-
uated. The next step is to incorporate the results of the optimal data mining
algorithm in an operational system to solve the initially defined knowledge dis-
covery task. For this purpose, either an operational system is designed from
scratch or an existing one is modified, taking the newly discovered knowledge
into account. In the integration process, the pre-processing techniques that
have been employed in the KDD process have to be considered and applied to
the operational data if necessary. Additionally, further challenges may arise as
the KDD process has extracted the patterns or the model under laboratory con-
ditions. For example, the data set reflects only a snapshot of the domain, but
the domain and the data that describes it may undergo dynamic changes (e.g.
features and their respective values may change or even become unavailable).
In this case, the integration may have to be adjusted or in the worst case, the
KDD process has to be restarted.

2.3 Local Pattern Discovery

In the previous section, we briefly described the KDD process and emphasised
its main step data mining. In this section, we concern ourselves with the data
mining task of local pattern discovery. To this end, we will first (informally)
define local patterns and all concepts that are necessary in this context. Next,
we introduce the local pattern discovery task and show how local patterns may
be induced by a general discovery approach. At last, we describe two families
of local pattern discovery algorithms, subgroup discovery and association rule
mining, and two correspondent algorithms that we will later consider in our
experiments.

Let us start with the definition of local patterns. As previously mentioned,
we utilise decision rules of the following form X = Y for the representation
of local patterns. In general, the body or premise X and the head or consequent

22 2. Foundations

Y of a rule may consist of one or more attribute-value pairs which we refer to
as conditions or features

where A; is one of the attributes of the dataspace S, a;; € dom (4;) is one of its
permissible attribute values, and

o€ {<,<,=,>,2>,#}) (2.13)

is a comparison operator whose actual selection is determined by the type of
attribute A;. For nominal attributes, the comparison o is a test of (in-)equality
(= or #), whereas in the case of numerical attributes, the test may also be
less than (or equal) or greater than (or equal) a constant numerical value.
In this work, we restrict the head of the considered rules we induce in our
experiments to a single attribute-value pair, as the intention of these induced
rules is the prediction of values of the class attribute. Additionally, only the
predicted class label is denoted in the rule head since the class attribute is
already determined by the learning problem. As mentioned above, the body of
an induced rule consists of a set of features which we employ as a conjunction
of conditions. In summary, a conjunctive classification rule r has the following
form:

A oa = [, (2.14)

i N /\Ai|r| °

Ljir iy

condition, condition|

where i, € {1,---,|S| —1}, jx € {1,---, Aik|} and the predicted class value
[, € L. Accordingly, the length or size of a rule |r| is equal to the number of its
conditions.

A set of local patterns which we refer to either as a pattern set or rule set is
denoted as follows

R={r1,---,r|R|}, (215)

where |R| is the number of rules.

An instance d is said to be covered by the rule r (denoted by r 2 d), if each
condition; of the rule is met by d (aq; © a;, ;). In this case, the class value of
the rule is predicted for the covered instance. Similarly, the rule r is called a
covering rule for this instance. For a given set of instances D and a rule r, the
instances that are covered by this rule are denoted by

D.={d €D|r 2d} (2.16)
Hence, the number of covered instances is defined as

n, = |D,| (2.17)

2.3. Local Pattern Discovery 23

For each class [;, the number of instances n,;, that are covered by a given rule
r is defined as follows:

n.;, = |D, ND,| (2.18)

For the predicted class [, we define the total number of positive instances

P =D (2.19)
and the number of covered positive instances

p=n, (2.20)

that are classified correctly by the rule. Analogously, we denote the total num-
ber of negative instances

N=|D|—P (2.21)

and the number of covered negative instances
n=n,—p (2.22)

that are classified incorrectly.
The subset of patterns of the pattern set R that cover a given instance d is
denoted by

R(d)={r €R|r 2d} (2.23)

As mentioned before, patterns or models are rated by heuristic quality func-
tions for diverse purposes. The calculation of these heuristics is usually based
on one or more statistical values, and the four numbers p, n, P and N are
usually sufficient for the calculation of many of these quality functions. Es-
sentially, such a quality function h calculates a numerical value for patterns or
models. Usually, the higher this numerical value is, the better is the quality
of the considered object. Let us illustrate this rather abstract description by
the exemplification of a few well-known quality heuristics that are used in this
work.

The first quality function is precision or confidence which essentially calcu-
lates the percentage of positive instances among covered instances:

p
p+n

hpree(r, D) = (2.24)

A drawback of precision is that it is prone to overfitting. For example, covering
one positive instance and no negative ones is as good as covering a thousand
positive instances and no negative ones.

24 2. Foundations

The second quality function, the Laplace-corrected precision (or short the
Laplace function), remedies this effect by raising the number of positive and
negative covered instances by one. In this way, it calculates the quotient of
the number of correctly covered instances plus one and the total number of
covered instances plus two:

_ p+l1l
hlaplace(r:D) - m (2.25)

A third quality function is accuracy which determines the percentage of cor-
rectly classified instances (the total of covered positive and uncovered negative
instances):

hmAnD)=Bj§§%#9 (2.26)
Hence, covering one positive instance is as good as not covering one nega-
tive instance. For comparisons, the difference between positive and negative
covered instances may be used (p —n).

The fourth and last quality function is weighted relative accuracy which nor-
malises accuracy with the class distribution:

p+n(D P)
h D)= — 2.27
wra(7> D) P+N\p+n P+N (2.27)

Thus, covering one percent of positive instances is as good as not covering one
percent of negative instances

At last, we introduce two special patterns that are often used as the starting
point of the local pattern discovery: the most specific pattern

false = 1 (2.28)

that covers no instances at all and the most general pattern
true = 1 (2.29)

that covers all instances of the domain. The latter one is usually referred to as
the empty pattern or rule.

2.3.1 Learning a Single Pattern

Prior to this, we introduced the relevant definitions and properties of data and
local patterns. Now, we will show how local patterns may be derived from a
given data set. For this purpose, we illustrate the associated problem by a basic
pattern discovery algorithm that provides a simple solution [Fiir99]. We show
that this simple approach possesses all the main components of a data mining
algorithm and that it is an instantiation of a more general pattern discovery
algorithm that we describe afterwards.

Essentially, the problem of local pattern discovery may be defined as follows:

2.3. Local Pattern Discovery 25

Algorithm 1 SimpleFindBestPattern [Fiir99]
1: procedure SiMPLEFINDBESTPATTERN (Instances)

2: BestRule = EMPTYRULE()
3: Rule = BestRule
4: repeat
5: Nolmprovement = true
6: for Condition € Conditions do
7: Refinement = Rule U Condition
8: if PrecisioN(Refinement) > PrEcisioN(BestRule) then
9: BestRule = Refinement
10: NoImprovement = false
11: Rule = BestRule
12: until NoImprovement
13: return BestRule

Find the best pattern(s) according to a selected quality measure.

While this problem statement seems to be simple, the search for a solution may
turn out to be difficult. Finding an optimal solution may only be guaranteed, if
the pattern space is searched exhaustively for it. However, an exhaustive search
may not be feasible as e.g. the pattern space may be too large. Additionally,
the solution on the training data does not have to be necessarily optimal on
future, unseen data. For this reason, various local pattern discovery algorithms
were developed to find heuristically a solid solution that also performs well on
unknown data. The majority of these algorithms may be reduced essentially
to a common discovery approach and represent specific instantiations of the
associated generic algorithm. Before we deal with this generic algorithm, we
introduce a simplified algorithm that is also an instantiation of the generic
one. Both algorithms extract local patterns only for a single chosen class since
they were designed to solve binary learning problems. For this purpose, they
generate rules for one class, the positive class, and no rules for the other, the
negative class. Their instances are treated as positive and negative instances
respectively for quality evaluations. Consequently, a rule is completely defined
by the set of its conditions. Nevertheless, these algorithms may be used to
generate patterns for all classes of a binary or multi-class learning problem as
we will see later in Section 2.4.3.

The base idea of the simplified local pattern discovery algorithm SimpLEFIND-
BeSTPATTERN (see Algorithm 1) is to refine the most general rule step-by-step
until its precision may not be further improved. For this purpose, this algo-
rithm starts with the initialisation of two rules, the current considered rule
Rule and the best rule BestRule found so far, as the most general rule. After-
wards, Rule is refined by adding one of the available conditions. In this way,

26 2. Foundations

Algorithm 2 FindBestPattern [Fiir99]
1: procedure FINDBESTPATTERN (Instances)
2: BestRule = INiTiALISERULE(Instances)

3: BestQuality = EvaLuaTreRULE(BestRule)

4: Rules = {BestRule}

5: while Rules # () do

6: Candidates = SELECTCANDIDATES(Rules, Instances)

7: Rules = Rules \ Candidates

8: for Candidate € Candidates do

9: Refinements = RErINERULE(Candidate, Instances)
10: for Refinement € Refinements do
11: Quality = EvaLuaTreERULE(Refinement, Instances)
12: if not StorpINGCRITERIA(Refinement, Quality, Instances) then
13: INnserTSORT(Rules, Refinement)
14: if Quality > BestQuality then
15: BestRule = Refinement
16: BestQuality = Quality
17: Rules = FirterRRULES(Rules, Instances)
18: return BestRule

we obtain several more specific refinements of Rule. If one of these refinements
has a higher precision than the current best rule, BestRule is replaced by this
refinement. At last, Rule is set to BestRule. This refinement loop is repeated
until no refinement of the current Rule has a higher precision than BestRule.
When the algorithms stops, the best rule BestRule is returned as the result of
the algorithm.

Despite its simplicity, this simple algorithm features all the components of
a data mining algorithm as defined in Section 2.2.5. Each of its steps and
employed methods are related to one or more of these components. The ini-
tialisation of the most general pattern and the refining of patterns by adding
conditions depend on the chosen representation language, conjunctive rules,
and the chosen refinement strategy, the top-down refining principle. The eval-
uation of the pattern quality is done by the quality method precision. The
number of candidate rules, their replacement, and the stopping criterion are
due to the selected search strategy, hill climbing. Clearly, the components
influence the specific instantiations of the other components (e.g. the refin-
ing of patterns depends both on the representation and search). In summary,
SiMPLEFINDBESTPATTERN is a top-down hill-climbing rule learner that generates
local patterns in the form of conjunctive rules.

Since there are many more choices for the components of a data mining
algorithm, a more generic algorithm is needed that allows to model (almost)

2.3. Local Pattern Discovery 27

every configuration of components. For this purpose, we present the local
pattern discovery algorithm FINDBESTPATTERN (see Algorithm 2) which is an
adjusted version of FindBestRule in [Fiir99]. FINDBESTPATTERN searches the
pattern space for a single rule that optimises a given heuristic quality func-
tion (computed by the procedure EvaruareRuLe). For this purpose, it con-
siders one or more so-called candidate rules for refining and stores one or
more of the resulting refinements for the next iteration. The procedures INI-
TIALISERULE and EvALUATERULE are used to initialise and rate the initially best
rule BestRule which is used to set-up the initial candidate rule list Rules. Us-
ing the candidate rule list Rules, the inner loop refines the candidate rules
as long as Rules is not empty. At the beginning of each cycle, the procedure
SELECTCANDIDATES selects a subset of candidate rules from Rules. For each
selected candidate rule Candidate, the procedure REFINERULE determines all
possible refinements which are evaluated by EvaruareRuLe. If a refinement
NewRule is not discarded by the procedure STorPINGCRITERIA, it is inserted by
the procedure InserTSorT. If the heuristic quality of Candidate is better than
that of BestRule, NewRule is stored as the new BestRule. Similarly, its quality
replaces the current BestQuality. When all candidates have been processed in
this way, the procedure FiLTERRULES selects a subset of candidates for the next
iteration. When no candidate rules remain, the repetition ends and the current
BestRule is returned.

Similar to SiMPLEFINDBESTPATTERN the procedures of FINDBESTPATTERN may
be related to the main components of a data mining algorithm as follows.
The procedures INiTIALISERULE and REFINERULE determine the refinement or
search strategy as they define how the candidate rules are initialised and re-
fined. Additionally, they constitute the employed pattern representation of the
algorithm. The search strategy depends on the procedures SELECTCANDIDATES
and FirTerRULES since they determine which candidates are considered for the
refinement process. The search heuristic is provided by the procedure EvaLu-
ATERULE which computes the heuristic quality of a rule. The overfitting avoid-
ance is accomplished by the pre-pruning procedure SToPPINGCRITERIA.

2.3.2 Subgroup Discovery

In this section, we will deal with the first considered category of local pat-
tern discovery: subgroup discovery [NLWO09]. To this end, we will describe
briefly the motivation, relevant terms and properties, and the associated learn-
ing problem of subgroup discovery. Afterwards, we show exemplarily how this
problem may be solved by BSD [LRA10], a bit-set based algorithm, which we
later use in our experiments.

28 2. Foundations

2.3.2.1 Motivation

In the medical domain, the identification of high-risk groups for a given dis-
ease may be highly valuable as new insights in the causes of disease (e.g. a
patient’s predisposition, diet, lifestyle, or other factors) may be gained by the
analysis of the identified subgroups of patients. In this way, future afflictions of
people/patients may be predicted and at the best prevented if possible. Clearly,
such subgroups should consist only of patients that differ significantly in cer-
tain discriminatory characteristics from the healthy people. Interestingly, some
patients may belong to multiple relevant subgroups as they may exhibit multi-
ple risk factors.

The underlying data mining goal of this example may be summarised as
follows:

Find descriptions for subgroups of the data, that are most unusual
with respect to a specified concept of interest.

The concept of subgroup discovery which is a well-known data mining method
for the discovery of local patterns was introduced in [KI696, Wro97] to handle
this data mining task. The goal of subgroup discovery is to describe the most
unusual characteristics of a subset of the data, referred to as population in this
context, that is defined by an attribute-value pair (referred to as the concept of
interest). Such characteristics are unusual in the sense that they respectively
represent a differing behaviour of a subgroup of the considered population
with respect to the residual data. To this end, subgroup discovery searches
for interesting subgroup patterns that describe relations between the concept
of interest and a set of explaining conditions. Hence, subgroups are usually
described by conjunctive rules.

2.3.2.2 Properties of Subgroup Discovery

As mentioned before, a population is defined as a subset of the data that is de-
termined by a single attribute-value pair or feature (referred to as the concept
of interest in the context of subgroup discovery). In other words, a population
consists of all instances that are covered by a given feature. Subgroup dis-
covery searches for unusual subgroups of this population that exhibit different
properties in comparison to the residual data. Such a subgroup is determined
by a single subgroup description which consists of a conjunction of explaining
conditions. The subgroup description and the concept of interest compose to-
gether a subgroup pattern that may be modelled by a conjunctive rule. The
explaining conditions form the body of the rule, and the concept of interest
may be regarded as the rule head. Subgroup discovery may be easily adjusted

2.3. Local Pattern Discovery 29

to the discovery of local classification patterns. To this end, a class-label pair
L =1 is chosen as the concept of interest. Under these circumstances, a sub-
group discovery algorithm will generate classification rules that predict the
chosen class label. In addition to these properties, all the terms, properties,
statistical values, and functions that were described for general local patterns
are directly applicable to subgroups (see beginning of Section 2.3).

Since subgroup discovery usually searches for the (k) most interesting sub-
groups in respect to the concept of interest, the quality of subgroups has to be
determined. Although diverse heuristic quality functions for local patterns may
be employed to measure the interestingness of subgroups, subgroup discovery
algorithms usually employ quality functions that adhere to the monotonicity
axioms introduced in [Kl696]. These axioms imply that a quality function
should be monotone in the size of a subgroup and the frequency of the con-
cept of interest in the subgroup. Additionally, such quality functions may not
only be used to rate the current considered subgroup but also to compute op-
timistic estimates for it [GRWO08, AL09]. Such optimistic estimates are upper
boundaries for the maximally achievable quality of the possible refinements
of a subgroup. With the help of the optimistic estimates, large parts of the
considered pattern space may be pruned as unpromising areas may be ignored
without loss of performance.

Subgroup discovery algorithms usually search for subgroup patterns only
based on the measured quality of the individual subgroups and do not take
into account the redundancy and overlap between these patterns. A typical
k-best subgroup discovery algorithm does not employ covering approaches,
the discovered pattern set may consist of very similar, overlapping subgroups.
Additionally, further potentially more interesting and diverse subgroups are
hidden from the user, as only the k “best” but overlapping and irrelevant sub-
groups are returned. Clearly, additional techniques (e.g. filtering of overlap-
ping subgroups) have to be employed to prevent this loss of information.

For this purpose, the concept of irrelevancy has been introduced. Given two
subgroup patterns s; and s;, s; is irrelevant with respect to s;, if and only if the
positive instances covered by s; are a subset of the positive instances covered
by s; and the negative instances covered by s; are a subset of the negative
instances covered by s;:

D;ND;; S DN Dy A(D\D)N D, S (D\D)ND,,. (2.30)

For any quality function that satisfies the Kloesgen axioms in [KI696] holds
that the quality of s; is lower than that of s;, if 5; is irrelevant to s;.

Usually, subgroup discovery includes a relevancy check and a consequential
removal of irrelevant subgroups by filtering. There exist two standard ap-
proaches for such a relevancy check: filtering irrelevant subgroups as a post-
processing step and filtering during the search phase. The post-processing

30 2. Foundations

approach allows the employment of standard subgroup discovery algorithms
that do not have to be modified to integrate a relevancy check. After the ex-
traction of subgroups, a separate post-processing step removes the irrelevant
subgroups. Clearly, the advantage of this approach is that the discovery process
is not slowed down by an integrated relevancy check, but the size of the result-
ing set of subgroups is more or less unpredictable as the relevancy of induced
subgroups depends on the data set. Consequently, larger sets of subgroups
have to be extracted to assure that at least k relevant subgroups remain.

To remedy this problem, the second filtering approach incorporates a rele-
vancy check in the search process by either including it in the design of a new
algorithm or by modifying existing ones. After the generation of a subgroup,
two relevancy checks are applied. The first one checks if the new subgroup
is irrelevant to any previously generated subgroups. If this is not the case,
the new subgroup is added to the set of found subgroups and the second rele-
vancy check takes place. The second one checks the relevancy of the previously
found subgroups in respect to the newly found subgroup, removing the irrel-
evant ones. In this way, multiple subgroups could be removed by adding one
more relevant subgroup, but in practice the reduction of the result size is nor-
mally very limited. Clearly, the bottleneck of this approach are the relevancy
checks after the generation of each subgroup. For instance, a naive implemen-
tation of the relevancy check requires one complete pass over the database
[LRA10]. Hence, the relevancy check may be more time-intensive than the
actual search component of the employed subgroup discovery algorithm.

2.3.2.3 Bitset-based Subgroup Discovery Algorithm (BSD)

In our work, we employed the bitset-based subgroup discovery algorithm (ab-
breviated BSD) that was introduced in [LRA10] for the generation of subgroup
patterns. BSD is a novel branch-and-bound algorithm that efficiently extracts
the k-best relevant subgroups (of a pre-defined maximal length). For this pur-
pose, it incorporates an efficient data structure, an integrated relevancy check,
and a branch-and-bound strategy.

BSD employs bitset vectors as a vertical data structure that encodes bitwise,
for every feature value, which instances exhibit this value. The employment
of bitset vectors is motivated by two advantages over traditional horizontal
data structures (e.g. relational table). First, all necessary bitset vectors may
be generated by a single database pass, making additional database lookups
unnecessary. Second, all bitwise operations on bitset vectors are very time
and memory efficient. Consequently, the time consumption of all necessary
calculations, including the integrated relevancy check, is significantly reduced.

BSD employs a branch-and-bound strategy that explores the pattern space by
a depth-first search. This strategy utilises the previously mentioned optimistic

2.3. Local Pattern Discovery 31

Algorithm 3 BSD [LRA10]
: procedure INiTIALISE(Instances, k, length,,,.)
Conditions = INITIALISEBITSETVECTORS(Instances)
Rules =10
BSD(EmptYRULE(), Conditions, 1, Rules, length,,)
return Rules

1

2

3

4

5

1: procedure BSD(Rule, Conditions, Length, Rules, length,,,..)

2 Conditions,,,, = 0

3: for all Condition € Conditions do

4 if OpTEsTiMATER;, (Condition, Rule) > MiNQuALITY(Rules) then
5 Conditions,,,,, = Conditions,,,, U {Condition}

6 if Quality(Condition, Rule) > MiNQuaLiTY(Rules) then
7 Refinement = REFINESUBGROUPg;,(Condition, Rule)

8 if REFINEMENTISRELEVANTg; (Refinement, Rules) then
9 Rules = Rules U {Refinement}

10: REMOVEIRRELEVANTSGsg;,(Rules, Refinement)

11: if S1ze(Rules) > k then Rules = KBEsT(Rules)

12: if Length < length,,,, then

13: Sort(Conditions,,,,)

14: for all Condition € Conditions,,,, do

15: Conditions,y,, = Conditions,,,, \ Condition

16: if OpTEsTiMATER; (Condition, Rule) > MinQuaLiTy(Rules) then
17: Refinement = REFINESUBGROUPg;,(Condition, Rule)

18: BSD(Refinement, Conditions,,,,, Length + 1,Rules, length,,,.)

estimate for future refinements of a considered subgroup to prune whole areas
of the pattern space that in no case may improve the quality of the search
result. In this way, the resulting set of subgroups will not lose any relevant
subgroups, but the search process may be performed significantly faster.

In the following, we will describe the steps of BSD sketchily (its simplified
pseudocode is shown in Algorithm 3), for a more comprehensive description
we refer to [LRA10]. BSD searches for the k-best subgroups that are con-
fined by a pre-defined maximal length which is determined by the parameter
length,,,.. For an easier representation of the process, we assume that these
parameters, k and length,,,,, are globally available.

BSD starts with initialising the necessary bitset vectors. For each condition,
two bitset vectors are generated that encode which instances are covered by the
condition (one bit per condition). The first one encodes the positive instances,
the second one encodes the negative instances respectively. Using these bitset
vectors, the statistical values (e.g. the number of positive or negative covered
instances) may be easily computed. Functions whose operations benefit from

32 2. Foundations

the bitset vectors are marked with the index Bit. After the initialisation, the
main procedure BSD is executed, using an empty rule, the calculated bitset
vectors, a length of one, and an initially empty result set as its parameter.

The procedure BSD consists of two parts. In the first one, each of the avail-
able conditions is considered for refining the current rule. If the optimistic
estimate of the resulting refinement (without being generated) is lower than
or equal to the lowest quality in the current rule set, the condition is discarded
and the next condition may be considered. Otherwise, the condition is stored
in the set of promising conditions and its processing continues. If the quality of
the associated refinement is higher than the lowest quality in the current rule
set, the refinement of the current rule and the condition is computed. If the
refinement is relevant with respect to the current result set, the refinement is
added to it and all rules in result set that are irrelevant with respect to the re-
finement are removed. At last, the result set is reduced to the k best rules, if its
size is larger than k. When these steps have been executed for all conditions,
the second part takes place.

The steps of the second part are performed if the current length is below the
pre-defined maximum rule length length,,,.. If so, the set of promising condi-
tions is processed. For this purpose, it is sorted in descending order according
to the individual quality of its members. Afterwards, the optimistic quality
of each condition is compared to the current lowest quality in the result set
(which may have increased in the meantime). If the quality of a condition is
still higher, the procedure BSD is called recursively, using the following ad-
justed parameters. To this end, the refinement of the current rule and the
considered condition is calculated and used as the starting point for new re-
finements. The condition is then removed temporarily from the conditions that
are available for the next recursion. The length is increased by one.

2.3.3 Association Rule Mining

In this section, we will focus on the second considered category of local pattern
discovery: association rule mining. To this end, we will describe briefly the
motivation, relevant terms and properties, and the associated learning problem
of association rule mining. We explain how association rule mining algorithms
may be used to generate local patterns for classification. Afterwards, we show
exemplarily how this problem may be solved by the Apriori algorithm and
summarise the approach of the CHARM algorithm which we later employ in
our experiments.

2.3. Local Pattern Discovery 33

2.3.3.1 Motivation

Retail organisations and commercial websites are nowadays able to collect and
store large amounts of associated shopping data, referred to as market basket
data. Records in such data typically consist of shopping items, products or
services, that were bought or paid in a respective transaction. In this context, a
transaction does not have to occur at a single point in time but may consist of
items that a customer has bought over a prolonged time period. For example,
the transaction of services that are paid at the end of an accounting period
(e.g. video-on-demand or book/music online stores).

Many organisations consider this shopping data as an opportunity to obtain
a better understanding of the purchase behaviour of their customers. Using the
obtained knowledge, the marketing departments may improve their marketing
concepts (e.g. cross-selling or up-selling of complementary products) and cam-
paigns (e.g. sales promotions of or discounts on a product may increase the
sales of other related products) by tailoring them to the needs and wishes of
their customers. Additionally, the store or catalogue design of retail stores or
online shops may be improved based on the knowledge about buying patterns.

In the light of their value and usefulness, the problem of mining these buy-
ing patterns, in the form of association rules, over basket data was introduced
in [AIS93]. An informal example of such an association rule might be that
95 percent of the customers that bought the first two volumes of the Lord of
the Rings also bought the third volume. Obviously, such rules are, as men-
tioned before, very easy to interpret and thus may be easily utilised for the
information-driven development of customised marketing.

2.3.3.2 Foundations of Association Rule Mining

In the following, we will formulate the properties of market basket or transac-
tion data and association rules and introduce the associated problem of min-
ing the later. As mentioned before, a market basket consists of a subset of the
products and/or services that a vendor offers. These products and services are
uniformly referred to as items. Let

I={iy, iy, iy} (2.31)

be the finite set of all items. A set of items X C I is called an itemset. Further-
more, the size of an itemset is equal to the number of items it contains (|X|). An
itemset of size k is referred to as a k-itemset. Since itemsets are mathematical
sets, the standard set operations (e.g. union or intersection) may be applied to
them. The items that were bought in one accounting period are summarised in

34 2. Foundations

a single transaction. The market basket data is made up of such transactions.
Let

T={ty,ty, ", tip} (2.32)

be a set of transactions. Each transaction t; is an itemset so that t; C I. An
association rule

X =Y (2.33)

consists of two itemsets X C [and Y C I. Similarly to classification rules, X
forms the body or antecedent of the rule and Y is the head or consequent of
the association rule.

To determine the quality of itemsets or association rules, we introduce two
heuristic quality measures: support and confidence. The support of an itemset
is equal to its absolute or relative frequency in the considered market basket
data (set of transactions) T':

S UP gps (X)

Supabs(X) = Ht € T|X - t}l Suprel(X) = |T|

(2.34)

Please note that the absolute and relative support may be used interchange-
ably as long as only one of these methods is used in the same context (e.g.
for comparison purposes). Hence, we will not distinguish between these two
methods in the following and omit the identifying indices.

Itemsets and rules that have a support greater than a pre-defined minimum
support threshold sup,,;, are called frequent (or large). The set of all frequent
itemsets is defined as

F={X CI|Sup(X) > sup,,, } (2.35)

Correspondingly, F; denotes the set of all frequent k-itemsets.

The support of an itemset possesses a helpful property with respect to its
frequency, it is anti-monotone according to the number of items it contains.
For any itemsets X and Y holds:

Sup(XUY)

{teTIXUY)Ct}

HteTlX Ct}n{teT|Y Ct}

[{t € TIX C t}]

Sup(X) (2.36)

Al

This means that all subsets of a frequent itemset must be frequent, too. As we
will see later, this property turns out to be very useful to reduce the computa-
tional effort for the frequent itemset generation.

2.3. Local Pattern Discovery 35

The support of a rule X = Y is defined as the support of the union of its
antecedent and consequent:

Sup(X = Y)=Sup(XUY) (2.37)

The confidence of a rule X = Y measures the validity of the rule on the
data by the ratio of the transactions that contain antecedent X of the rule to
the transactions that contain both the antecedent X and the head Y:
Sup(XUY)

Sup(X)

Rules that have a confidence greater than a pre-defined minimum confidence
threshold conf,,;, are called confident.

Similarly to the support of an itemset, the confidence of an association rule

is anti-monotone in the size of its consequent. For any itemsets X, Y, and Z
holds:

Conf(X = Y)= (2.38)

Sup(XUuY UZ)

Sup(XUY)
Sup(XUuY UZ)
Sup(X)

= Conf[X = YUZ) (2.39)
Analogously to the anti-monotonicity of the support, this property may be ex-
ploited to make the generation of confident rules more efficient as we will see
later.

According to the introduced notions, the problem of mining association rules
may be formulated as follows:

Conf(XUY = Z)

Given a set of transactions T, generate all association rules whose
support and confidence are greater than the (user-specified) minimum
support and confidence thresholds.

Before the generation of the association rules may start, these thresholds have
to be specified. In other words, the problem of association rule mining is to
search for frequent, confident rules.

The discovery of such association rules can be decomposed into two sub-
problems or phases:

1. Find all frequent itemsets: in the first phase the given transaction data is
(efficiently) searched for frequent itemsets.

2. Generate all confident rules: the frequent itemsets found are used to
generate all confident association rules.

This decomposition into two sub-problems that has been introduced in [AIS93]
is a widely used approach for association rule mining. The best known repre-
sentative for an association rule mining algorithm that employs this approach
is the Apriori algorithm which we will describe later (see Section 2.3.3.4).

36 2. Foundations

2.3.3.3 Class Association Rules

So far, we assumed a transaction database for the discovery of general asso-
ciation rules. However, any structured (classification) data set may be used
for the extraction of these local patterns, and association rule mining algo-
rithms may be employed to obtain association rules for classification which are
commonly referred to as class association rules [LHM98]. In this section, we
explain briefly how to deal with these two issues.

Structured data sets may be easily transformed into transaction data sets
that consist of transactions and items. To this end, each instance of a structured
data set is treated as a transaction of the transformed data set. If necessary,
the transactions obtained in this way are extended by a unique transaction
identifier. The number of transactions is equal to the number of instances. Ad-
ditionally, each attribute-value pair (including the class attribute and its labels)
of the original data set is treated as an item of the transformed one. An item
is contained by a transaction, if the associated attribute-value pair covers the
associated instance.

After the transformation of a structured classification data set, the employed
association rule mining algorithm or its starting point respectively have to be
slightly adjusted, too. There are several approaches for this adjustment, but
we will concentrate on the one that we employ in our experiments. For this
purpose, we change the starting point of our algorithms. Instead of starting
with 1-itemsets, our algorithm runs receive a set of modified 2-itemsets. Such
an itemset is initialised with one item related to a class-label pair and the other
one related to an attribute-value pair of a non-class attribute. In this wayj, it is
guaranteed that each obtained frequent itemset contains exactly one class-label
pair and may be used to build a classification rule for this reason.

2.3.3.4 Apriori

The Apriori algorithm has been introduced to mine association rules efficiently
on large databases [AS94]. By the time it was introduced, it was the state-
of-the-art association rule miner being considerably faster than contemporary
algorithms [AS94], and even nowadays it may be considered as a benchmark
for other association rule mining algorithms. Apriori refined the two phases
approach that was introduced for the AIS algorithm [AIS93] by notably reduc-
ing the number of considered candidate itemsets and the number of database
lookups for the support calculation consequently.

The first phase of the Apriori algorithm Apriori-FREQSET (see Algorithm 4)
generates the set of all frequent itemsets F for a pre-defined minimum support
threshold sup,,;,,. For this purpose, it generates first all 1-itemsets, calculates

2.3. Local Pattern Discovery 37

Algorithm 4 Apriori - Frequent Itemset Generation [AS94]
1: procedure ArrIORI-FREQSET(I, sup,,;,)

2 C,={Xel}

3 F; = FREQUENTITEMSETSpg(C1, T, SUD, i)
4 F=F,

5: k=1
6

7

8

9

while F, # 0 do

k=k+1

C;. = GENERATECANDIDATES(Fj_;)

C) = FREQUENTITEMSETS g pser(Cics Fr—1)
10: F; = FREQUENTITEMSETS pg(Cy, T, SUP min)
11: F=FUF,

12: return F

their support on the transaction data and keeps only the frequent ones. Af-
terwards, it determines recursively the set of all frequent k-itemsets F; (where
k > 2) as long as frequent (k-1)-itemsets have been found in the previous itera-
tion (F_; # 0). This iterative generation of frequent itemsets consists basically
of three steps.

First, the frequent (k-1)-itemsets F,_; found in the previous pass are used
to generate the candidate itemsets C;. To this end, Apriori combines all (k-1)-
itemsets

a= {al’aZJ'“ ’ak—l} (240)

and
b:{bth:'“:bk—l}: (2.41)

that share the same first k-2 items (a; = b;, i < k—2) but differ in their (k-1)-th
item (a;_; < by_,), into candidate itemsets

c= {al,"' > Aje—1> bk—l}' (2.42)

This approach guarantees that all possibly frequent candidates are found ex-
actly once as it makes use of two properties of the considered itemsets. On
the one hand, we do not miss any frequent k-itemset as each has at least two
frequent subsets of size k-1 due to the anti-monotonicity of support. On the
other hand, we do not generate duplicates since the items of each itemset are
ordered by their lexicographical order and so each frequent k-itemset may be
generated only by the combination of a certain pair of itemsets.

In the second step of the itemset generation, the previously extracted candi-
dates C; are reduced by removing those itemsets that cannot be frequent due

38 2. Foundations

Algorithm 5 Apriori - Generate Confident Association Rules [AS94]
1: procedure ArriorI-CoNFRULES(F, conf,,;,)
2: Rules=10
for all f € F\F; do
Rules = Rules U Arriori-CoNrFRULES(f, f, conf,,;,)

return Rules

: procedure ApriorI-FREQSET(f, a, conf,,;,,)
Rules =0
RuleBodies = {b C a| |b| = |a| — 1}
for all RuleBody € RuleBodies do
RuleHead = f \ RuleBody
Rule = (RuleBody =—> RuleHead)
if Conf(Rule) > conf,,;, then
Rules = Rules U {Rule}
if |b| > 1 then
Rules = Rules U Arriori-CoNrRuULES(f, b, conf,,;,,)

WO N R W oW

._.
e

return Rules

—_
—

to the monotonicity of support. For each candidate, we compute its k subsets of
size k-1 by removing one of its items respectively and check if they have been
frequent in the previous iteration by checking if they are members of the set of
frequent (k-1)-itemsets F,_;. If one of the subsets of an itemset is infrequent,
this itemset cannot be frequent due to the anti-monotonicity of support and
may be removed from the candidate set Cy.

In the third and last step, the support of the remaining candidates C; has to
be calculated on the data by counting the number of transactions that contain a
respective candidate. To this end, a fast method to determine if a candidate is a
subset of a transaction is needed. Without going into details, Apriori employs
an hash-tree based structure that returns the candidates that are contained
in each transaction in a single pass over the data. The resulting information
is aggregated to the support of each candidate. Afterwards, we obtain the
frequent itemsets F, by removing the infrequent ones from the candidate set
Ci. The frequent itemsets and their support are stored in a efficient lookup
data structure (for example a hash table) for two purposes. On the one hand,
it speeds up the membership test for each subset in the previous step. On the
other hand, it allows a fast confidence calculation for candidate rules that are
considered in the second phase of the Apriori algorithm as we will see in the
following paragraphs. At last, we obtain all frequent itemsets by unifying the
results of this iteration and of previous ones (F =F, UF,---).

The second phase of the Apriori algorithm Apriori-ConFRULES (see Algo-
rithm 4) searches for all confident association rules. To this end, Apriori se-

2.3. Local Pattern Discovery 39

lects consecutively one of the frequent itemsets that were discovered in the
previous phase and uses it to construct association rules. In contrast to the AIS
algorithm, Apriori allows rules with one or more items in its consequent.

The basic idea is to partition the items of a selected frequent itemset F into
two itemsets and use them respectively as the antecedent and the consequent
of an association rule. In this way, we obtain rules of the form

A => F\A, (2.43)

where A C F. Since there are 2K — 2 possible subsets (omitting F and @) of
an k-itemset F, we obtain an equally large number of candidate rules whose
confidence scores have to be calculated. Obviously, many of these rules will
turn out to be inconfident and the calculation effort would be wasted. To
avoid generating inconfident rules, Apriori improves this naive approach by
exploiting the anti-monotonicity of confidence: if a rule

is inconfident, all rules
X\Z =Ynz, (2.45)

where Z C X cannot be confident either.

According to this observation, Apriori1-CoNFRULES generates the subsets A of
the frequent itemset F in a recursive depth-first search. This search starts with
a set of candidate rules that have a single item in its consequent. In each it-
eration, the confidence of the candidate rules has to be calculated. Since the
frequent itemsets and their support were stored in Apriori’s first phase, the
support counts that are needed to calculate the confidence may be retrieved
efficiently. If a candidate rule obtained in this way is found to be confident,
Apriori stores it, generates new rules by moving a single item from its body to
its head and adds these rules to the set of candidate rules. Otherwise, the in-
confident rule is discarded and may not be used as the seed of further candidate
rules due to the anti-monotonicity of confident rules.

2.3.3.5 CHARM

In the previous section, we described how the Apriori algorithm solves the
problem of the market basket analysis by an exhaustive search for frequent
itemsets and by the generation of all confident association rules based on these
itemsets. Depending (mainly) on the density of the transaction data and the
chosen minimum support and confidence thresholds, the set of frequent and
confident association rules may become very large and may obviously contain

40 2. Foundations

many redundant and uninteresting rules. Clearly, this bulk of association rules
may be hard to handle. To remedy this problem, the set of association rules
should only consist of non-redundant rules. For this purpose, an alternative
approach for association rule mining was proposed in [ZH02]. The basic idea
of this approach is to mine only a specific kind of frequent itemsets: closed fre-
quent itemsets (which we will define later). The set of closed frequent itemsets
is much smaller and easier to handle than the set of all frequent itemsets, it
may be used to generate all non-redundant association rules [ZH02].

Since the determination of the set of closed frequent itemsets is the most
computationally intensive step in this process, the bottom-up search employed
by the Apriori algorithm or similar algorithms is not feasible in this context.
Hence, CHARM was introduced in [ZHO02]. It is an effective algorithm for
the enumeration of closed frequent itemsets that features both a good time
and space performance. For this purpose, CHARM employs several innovative
ideas which include a novel tree-like search space that enables the simulta-
neous exploration of the itemset and transaction space, a hybrid search that
may skip levels and whole branches in the tree structure, and a hash-based
closedness checking. In this section, we will sketchily explain the CHARM al-
gorithm, concentrating on the ideas behind its hybrid search and employed
data structure. For further details, we refer to [ZHO02] which provides a survey
of this specific type of frequent itemset discovery and describes the theoretical
background and implementation details of the algorithm.

As mentioned above, CHARM explores the itemset space and the transaction
space simultaneously. Thus, we define the properties of these two spaces and
of closed frequent itemsets first. Each transaction

tia € T ={ty," -, tin} (2.46)
may be identified by its unique transaction identifier
tide TID ={1,---,|T|}. (2.47)

Comparable to itemsets, a set of transaction identifiers Y C TID is called a
tidset. Between the itemset space and the tidset space exist two mappings. For
an itemset X, the mapping t(X) is the set of all transactions (or transaction
identifiers) which contain the itemset X as a subset:

t :1— TID, t(X) = {tid € TID|X C t,4}. (2.48)

Please note that the size of a tidset |t(X)| is equal to the absolute support of
the itemset X.

For a tidset i(Y), the mapping i(Y) is the itemset that is contained in all the
transactions whose identifiers are in the tidset Y.

i:TID > Li(Y)={X€I|Vtid € Y.X C t;;4}. (2.49)

2.3. Local Pattern Discovery 41

Algorithm 6 CHARM - Closed Frequent Itemset Generation [ZH02]
1: procedure CHARM(I, sup,,;,)
2: FrequentITPairs = FREQUENTITPAIRSpg (I, T, SUP in)
3 return CHARM-EXTEND (FrequentITPairs, sup,,;,)

1: procedure CHARM-ExTEND(Candidates, sup,,;,)

2 ClosedITPairs = {)

3 for all X; x t(X;) € Candidates do

4 Candidates,,,,, =

5: for all X; x t(X;) € Candidates,X; < X; do

7 CHARM-PROPERTY(X;, X, X, Candidates,,,,,, Candidates, Supp;,)
8

9

if Candidates,,,,, # @ then CuarM-ExTEND(Candidates,,,,, SUP min)
if IsNorSuBsumED(X, L) then ClosedITPairs = ClosedITPairs U {X }
10: return ClosedITPairs

1: procedure CHARM-PROPERTY(X;, X, X, Candidates,,,,, Candidates, sup ;)
2 if Sup(X) = sup,,;,, then

3 if t(X;) = t(X;) then

4: RemOVE(X; x t(X};), Candidates)

5: REPLACEALLOCCURRENCES(X;, X, Candidates,,,,)

6 else if t(X;) C t(X;) then

7 RePLACEALLOCCURRENCES(X;, X, Candidates,,,,,)

8 else if t(X;) O t(X;) then

9 ReMOVE(X; X t(X}), Candidates)

10: Candidates,,,, = Candidates,,,,, U {X}
11: else if t(X;) # t(X;) then
12: Candidates,,,, = Candidates,,,,, U {X x t(X)}

Using t(X) and i(Y), we define the closure of an itemset X as
¢ (X) =iot(X)=1(t(X)), (2.50)

the composition of these two mappings. An itemset X is closed if it is equal to
its closure, i.e., X = ¢;(X). Once we map an itemset to the tidset that contains
it, and then map that tidset back to the set of items common to all tids in the
tidset, we obtain a closed itemset. After the application of such a round-trip
(i o t), we cannot extend the obtained closed itemset, no matter how many
additional round-trips we make. Since the support of an itemset X is equal
to the support of its closure (sup(X) = sup(c;(X))), it is sufficient to mine
only the set closed frequent itemsets [ZH02]. Afterwards, all frequent itemsets
may be re-constructed, if necessary, by calculating all subsets of each closed
frequent itemset.

42 2. Foundations

Together the itemset and tidset space form the search space of the CHARM
algorithm. Its elements

X xt(X),i(Y)xY €IxTID, (2.51)

which are referred to as itemset-tidset pairs (abbreviated IT-pair), are the base
data structure of the CHARM algorithm. Their advantage becomes obvious,
when we regard the fundamental operation on IT-pairs that CHARM employs
in its bottom-up search process: the union of two IT-pairs X; and X;. For this
purpose, we calculate the union of their itemsets and the intersection of their
tidsets:

X; x t(X)UX; x t(X;) = (X; UX;) x (¢(X)ne(X)) (2.52)

In this way, we obtain a new I'T-pair whose support has been calculated without
a database lookup, as the intersection of tidsets may be computed directly.

Now, we have all tools at hand to describe the CHARM algorithm. As men-
tioned above, CHARM explores both the itemset and tidset space and enumer-
ates only the closed frequent itemsets avoiding all subsets of a closed itemset.
For this purpose, CHARM employs a novel search method that intelligently
skips several levels and branches in the tree-like search space. Additionally,
CHARM prunes this search space by removing itemsets and their outgoing
branches that are either infrequent or non-closed. CHARM explores the search
space implicitly by a single fundamental operation on two IT-pairs: the union
of their two itemsets and the intersection of their tidsets. Dependent on the
result of this operation, CHARM decides how to update the search space (and
the current results) and how to continue its depth-first exploration. As the
algorithm employs a depth-first search for closed itemsets, the closure of a
non-closed itemset will be added to the result set before the itemset in ques-
tion. Hence, it suffices to check if a candidate IT-pair is subsumed by another
one in the result set by comparing their tidsets. If an identical tidset is found,
the candidate IT-pair cannot be closed as its closure is already in the results.
To reduce the number of comparison costs, CHARM stores the tidset in a hash
table according to the sum of their transaction identifiers.

The pseudocode of the CHARM algorithm is outlined in Algorithm 6. Its
search starts with an initial set of all 1-frequent IT-pairs that is successively ex-
tended or pruned. Afterwards, the algorithm calls two procedures recursively:
CuarM-ExTEND and CHARM-PROPERTY. CHARM-EXTEND organises the traversal of
the search space. For this purpose, it picks one IT-pair X; x t(X;) and combines
it with any IT-pair X; x t(X;), if X; < X; is valid according to a total ordering of
the itemsets, to obtain a new candidate IT-pair X = (X; UX;) x (t(X;) N t(X;)).
For each obtained IT-pair, CHARM-PROPERTY is called to check its properties. If
the obtained candidate IT-pair is frequent (|t(X;) N t(X;)| = supp,;,), the tidsets

2.3. Local Pattern Discovery 43

of the two parent IT-pairs are compared. There are four possible constellations
which are dealt with as follows:

1. t(X;) = t(X;): as the itemsets X;, X; and X have the same closure, all oc-
currences of X; are replaced by X, and X; does not have to be considered
further.

2. t(X;) c t(X;): all occurrences of X; are replaced by X as they have the
same closure. However, X; must be retained as it generates a different
closure.

3. t(X;) o t(X;): X; is removed from further considerations as it has the
same closure as X. Consequently, X is added to the itemset candidates.

4. t(X;) # t(X;): since both itemsets generate different closures, none may
be removed or replaced. X is added to the itemset candidates.

In summary, three operations are involved.

* X; x t(X;) is removed from the current set of candidate IT-pairs
Candidates.

* X replaces X; and all occurrences of X; in any IT-pair in the set of new
candidate IT-pairs Candidates,,,,

* X x t(X) is added to the set of new candidate IT-pairs Candidates,,,,

After each combination of X; x t(X;) with another IT-pair has been evaluated,
CuarM-EXTEND explores the new obtained candidate IT-pairs Candidates,,,,, in a
depth-first manner, if any new IT-pairs have been found by CHARM-PROPERTY. At
last, the current IT-pair X; x t(X;) is added to the result set if it is not subsumed
by any IT-pair in the result set. Then, the whole procedure is repeated with the
next IT-pair in the current set of candidate IT-pairs Candidates, until no further
itemsets may be combined. In the end, the set of closed IT-pairs ClosedITPairs
is returned.

2.4 Global Models

In the previous section, we dealt with the discovery of local patterns for clas-
sification. As these allow only local predictions, we will concern ourselves in
this section with global models for classification which are referred to as clas-
sifiers. To this end, we explain the properties of classifiers first. Afterwards,
we show how a global model may be learned with the aid of the separate-and-
conquer strategy (abbreviated SeCo strategy) which generates local patterns

44 2. Foundations

f Instance ;

Classifier

Prediction

Labelled Learning
Data Algorithm

A 4

Estimated
Performance

Evaluation
7 Method

Figure 2.4.: Classification learning: illustration of the life cycle of a classification
learning algorithm.

and employs them to obtain a global model [Fiir99]. Next, we deal with en-
semble learning and class binarisations that both employ several global models
for prediction, treating the global models as a single one. Subsequently, we ex-
plain how the performance of a global model may be evaluated. At last, we
present Ripper, a very efficient separate-and-conquer rule learning algorithm
that we employ in our experiments.

2.4.1 Classifiers

The learning algorithm generates a global model on the information contained
in the labelled classification data. The classifier, as such a global model is
called, may be used to predict the class labels of unlabelled instances. To
obtain an approximation of the quality of this prediction, an evaluation method
rates the performance or quality of the classifier heuristically. First, we will
concentrate on classifiers and their properties, while the evaluation of this type
of global models will be discussed later in this section.

As mentioned before, classification learning utilises the observed labelled
data, commonly referred to as training data, to generate a predictive global
model which classifies unlabelled instances. A classifier, as such a model is
called, tries to predict the class value of an (unlabelled) instance using only
the values of the attributes A; to Ajg_;. Thus, a classifier can be seen as a
function of the following format:

¢ :dom(A;) x --- x dom (A|S|_1) — L, d— c(d) (2.53)

The generation of a classifier is called its training or learning phase. Accord-
ingly, the application of a classifier is referred to as the prediction phase or, in

2.4. Global Models 45

the case of evaluation, as the test phase. The complete classification learning
scheme is depicted in Figure 2.4.

Decision lists are one category of classifiers that we will encounter several
times in this work. They consist of a list of rules that are sorted meaningfully
(e.g. by their creation order or individual quality). In the prediction phase,
these rules are evaluated according to this ordering. To this end, an instance
is classified by the first rule that covers the instance. Usually, the last rule in
the list is a default rule that covers all (yet uncovered) instances and predicts
a determined default class value. Such a decision list which consists of |R| —1
rules and one default rule has basically the following form:

b
)
(2.54)
TIR|—1
true => ljefauir

2.4.2 Separate-and-Conquer: Learning a Global Model

In this section, we describe the learning of a global model exemplified by
the separate-and-conquer strategy [Fiir99]. Many rule learning algorithms
are based on this generic separate-and-conquer strategy (abbreviated SeCo)
that essentially employs local pattern discovery to obtain a global model. The
basic idea of this approach is to iteratively generate local patterns and to utilise
them to construct a global model in form of a decision list [Fiir04]. For this
purpose, SeCo employs a local pattern discovery algorithm to extract a single
pattern from the training data. As it explains or covers only a part of the train-
ing instances, additional patterns are needed for a complete global model. To
obtain a different pattern, the instances that are covered by this rule are re-
moved or separated from the training instances. These two steps - learning a
single pattern and removing the instances that it covers - are repeated until all
remaining instances are conquered by learning additional covering rules. For
a deeper insight into the SeCo strategy and the different options for each of its
data mining components, we refer to [Fiir99].

The generic SeCo algorithm SErPARATEANDCONQUER which is an implementa-
tion of the SeCo strategy is shown in Algorithm 7. At the beginning of this
algorithm, the model DecisionList is initialised as an empty decision list. Then,
the SeCo or covering loop is repeated as long as there are still positive in-
stances that are not covered by one or more rules. In the first part of this loop,
Algorithm 2 FiNDBESTPATTERN that we described previously in Section 2.3.1

46 2. Foundations

Algorithm 7 SeparateAndConquer [F{ir99]
1: procedure SEPARATEANDCONQUER (Instances)
2: DecisionList = EMpTYLIST()
while Positives(Instances) do
Rule = FINDBESTPATTERN
if RuLESTOPPINGCRITERION(DecisionList, Rule, Instances) then
exit while
ReEMoVECOVEREDINSTANCES(Instances, Rule)
DecisionList = AppEND(DecisionList, Rule)

W P NL R W

PosTtProcEss(DecisionList)
10: return DecisionList

extracts from the yet uncovered instances a single learned rule Rule. Next,
RuLeSTorPINGCRITERION checks if the found rule is not beneficial for the result-
ing decision list. If so, the covering loop is exited. Otherwise, the processing
of the covering loop is continued. In the second part, the extracted rule Rule is
appended at the end of DecisionList, and the instances that are covered by this
rule are removed from the training data Instances. After the termination of the
covering loop, the obtained DecisionList may be modified by a post-processing
step provided by the procedure PostProckss which usually includes data min-
ing methods for the overfitting avoidance (e.g. post-pruning) and the addition
of a default rule.

Similarly to the algorithm FINDBESTPATTERN, SEPARATEANDCONQUER is inher-
ently designed to handle binary learning problems, but, as we will see later
in this section, there exist methods to apply it to multi-class learning prob-
lems (see Section 2.4.3). Its step may be related to the main components of
data mining algorithm. In addition to the components of FINDBESTPATTERN,
SEPARATEANDCONQUER features two procedures for the overfitting avoidance:
the pre-pruning procedure RuLESToPPINGCRITERION and the post-pruning pro-
cedure PosTPROCESS.

2.4.3 Ensembles

In the previous sections, we concerned ourselves with local patterns and their
utilisation to obtain global models. In this section, we deal with two data
mining categories, ensemble learning [Die00] and class binarisations [Fiir02],
that employ a group of global models for classification which we refer to as
an ensemble. Apparently, the predictions of the global models of an ensemble
have to be decoded into a single prediction using either a meta model (e.g. the
model induced by stacking) or a decoding method (e.g. voting methods) as we
will see later in this section.

2.4. Global Models 47

Unlabelled
Data

Learning
Algorithm(s)

\ Ensemble

Method

Classifier; Prediction(s);

Decoding a3
Method Prediction(s)

Labelled
Data

Figure 2.5.: Ensemble learning: illustration of the life cycle of an ensemble
learning algorithm.

Prediction(s)g

The remaining section is organised as follows. First, we introduce ensemble
learning, describing its main ideas, functionalities and properties, and the en-
semble methods bagging and stacking. Afterwards, we consider the concept of
class binarisation, introducing its main idea, its field of application, and three
representatives that were involved in our experiments. At last, we show how
the predictions of a group of classifiers may be decoded by voting methods.

2.4.3.1 Ensemble Learning

Ensemble learning [Die00], which is illustrated in Figure 2.5, employs several
individual base classifiers (referred to as an ensemble of classifiers) and com-
bines them in order to obtain a superior meta classifier that outperforms the
original ones. An important part of this approach is to guarantee the diversity
of the ensemble

E={cy, o} (2.55)

Different classifiers may be obtained either by the modification of the data
(e.g. by sampling of the instances or selecting randomly a subset of the fea-
tures) or by the exploitation of the learning algorithm characteristics (e.g. by
using algorithms with random components or by the application of multiple
algorithms with different properties). Evidently, the combination of multiple
classifiers may lead to a more expressive classification model than a single one.
Analogously, the multiple reuse or variation of the training data may reduce
the effect of noise or inconsistencies. Next, we will introduce two ensemble
learning methods, bagging and stacking, which are important representatives
in our experiments.

48 2. Foundations

Learning
Algorithm

Bootstrap
Sample4

I Classifiers

Learning

Algorithm Prediction,

Labelled
Data

Decoding A
Method —»GredlcnorD

Bootstrap Learning
Sampleg Algorithm

Figure 2.6.: Bagging: illustration of the life cycle of a bagging ensemble.

Classifier;g Prediction;g

Bagging

The bagging (the acronym of bootstrap aggregating) algorihm [Bre96]
builds an ensemble of different classifiers by training each of these classifier
on a bootstrap sample of the original data set. A bootstrap sample is gener-
ated by drawing randomly with replacement t instances of the training set.
Consequently, drawn instances are not removed from training set and may
be redrawn more than once. Repeating this technique |E|-times, we get the
bootstrap samples By, B,,- -+, Bjg. For each bootstrap sample B;, we generate
a classifier ¢;. The predictions of these classifiers are aggregated by voting
methods which will be introduced later in this section.

Whether the bagging approach yields an improved accuracy or not, depends
on the stability of the employed base classifiers [Bre96]. On the one hand,
an unstable classifier which is (very) sensitive to small changes in the train-
ing data generates an ensemble of distinctly different classifiers, leading to an
improved accuracy. On the other hand, a stable classifier generates an en-
semble of slightly differing or even equivalent classifiers, hence the overall
performance may be degraded slightly. Please note that in the case of inter-
pretable data mining methods (e.g. rule learning or decision tree learning) the
improved performance is bought by loosing the interpretability of the model.

Nevertheless, the bagging approach may be implemented easily. Only an
additional outer loop in the training phase that selects the bootstrap sample
and assigns it to the learning algorithm, and a voting method for the prediction
phase have to be added. The complete approach is depicted in Figure 2.6.

Stacking

Stacking is an ensemble learning method [Wol92], which generates a global
meta classifier based on the predictions of an ensemble of |E| base level clas-
sifiers. The key idea of stacking is to build a meta data set based on the pre-
dictions of these base level classifier. The meta data set uses the base level

2.4. Global Models 49

Prediction(s);

Labelled Unlabelled Meta Learning Meta Classifier
Data Data Data Algorithm (Global Model)

Prediction(s)g

(a) training phase

: Meta Meta Classifier Predictiot
. . Instance (Global Model)

(b) prediction phase

Figure 2.7.: Stacking: illustration of the training (a) and prediction phase (b) of
stacking, which uses the predictions of the base classifiers on the
original data sets as features of the meta level data set.

classifiers as meta attributes (c; to cg) and their predictions (e.g. c;(d;)) re-
spectively as their (attribute) values. In this way, the original |D| instances
are transformed into |D| meta instances. Each meta instance consists of the
predictions it receives from each classifier. For training the meta classifiers,
the meta instances are labelled with the class labels of the corresponding base
level instances (e.g. [4), as shown in Figure 2.8. Thus, the resulting meta
level model is based only on the predictions of the base level classifiers. In the
testing phase, the test instance is transformed into a meta instance by deter-
mining the prediction of each base classifier. Afterwards, the original instance
is classified by the prediction of the meta level classifier, using the meta in-
stance as its input. Thus, the meta level model acts as a global model and no
decoding methods (e.g. voting methods) are needed. The complete approach
is illustrated in Figure 2.7

Prior work has shown that the simple version of stacking described above
does not perform as well as other ensemble techniques, and several improve-
ments have been proposed. Most notably, it has been shown that instead of
using the class label as an attribute at the meta level, it is beneficial to aug-
ment the meta data set with the confidences of the base level classifiers into

50 2. Foundations

Attributes Class
g1 daygsier | L
Agyy 0 Agyisi-1 | la
Qap1 " Gdpisi1 | lay,

(a) original data set

1 Cy e ClE| Class
ca(dy) cldy) .- C|E|(d1) ld1
c1(d,) co(dy) -+ C|E|(d2) ld2
ci(dp) cdp) - cgldp) | Ly,

(b) training set for stacking

Figure 2.8.: Stacking: illustration of the meta data generation of stacking,
which uses the predictions of the base classifiers on the original
data sets (a) as features of the meta level data set (b).

their predictions [TW99]. Subsequently, it was shown that it may be even
better to use the entire predicted class probability distribution [See02].

2.4.3.2 Class Binarisations

As mentioned before, real-world learning problems are often multi-class prob-
lems. However, many classification algorithms are inherently binary, as they
are designed to discriminate only between two class labels. A well known
example of such a binary classifier are separate-and-conquer rule learning al-
gorithms which we encountered already in Section 2.4.2. Class binarisation
techniques [Fiir02] solve this problem by transforming the multi-class learning
problem into several binary learning problems that can be handled by binary
classifiers. This approach is widely used as binary classifiers may be directly
applied and no further modifications to the learning algorithm are necessary
(e.g. generalising the learning algorithm to multi-class case).

Class binarisations solve multi-class learning problems by decomposing the
original multi-class problem into several binary problems. For each of these
binary problems, a base classifier is trained. On the basis of the predictions
of these base classifiers, a prediction for the original multi-class problem is
decoded. For the decoding of the predictions, several methods may be used as
we will see later in this section. In the next sections, we introduce three class
binarisation methods: the unordered, ordered and pairwise class binarisation.

2.4. Global Models 51

A L ICAL L™
AA H |[AAHE
A A A A A A

(a) Original multi-class (b) Binary problem:
problem green vs. blue and red

(c) Binary problem: red (d) Binary problem:
vs. blue and green blue vs. green and red

Figure 2.9.: Unordered class binarisation: the original multi-class problem (a)
that consists of the blue, green and red classes is decomposed into
the three one-against-all binary problems (b),(c), and (d).

Unordered and Ordered Class Binarisation

The unordered class binarisation [CB91] is a popular class binarisation
method (see Figure 2.9). Its basic idea is to generate a binary learning problem
for each of the class label where one class is discriminated from all remaining
class labels. Hence, this class binarisation is also known as a one-against-all
class binarisation. Nevertheless, we will refer this approach as an unordered
class binarisation as this term is more common in the context of rule learning.

As already mentioned, the unordered class binarisation transforms a |L|-class
learning problem into |L| binary learning problems (one for each class in the
data set). Each of these binary learning problems, which are constructed by
modifying (a copy of) the original multi-class data set, aims to discriminate
one class from all other classes. For the class [;, all instances of this class are
used as positive instances, whereas the instances of all other classes [; € L \ [;
are used as the negative ones.

52 2. Foundations

....I ...DD

e LI ICASSISIS
AA B |[AA O
A A A A A A

(a) Original multi-class (b) Binary problem:
problem blue vs. green

0 pmy
A O
A A A

(c) Binary problem: (d) Binary problem:
green vs. red blue vs. red

Figure 2.10.: Pairwise class binarisation: the original multi-class problem (a)
that consists of the blue, green and red classes is decomposed
into the three pairwise binary problems (b),(c), and (d).

If we propose an ordering of the classes (e.g. in ascending order according
to the frequency of the classes in the data), this approach may be extended to
an ordered class binarisation. Here we also try to discriminate one class from
other classes, but this time only the instances of the classes that are ranked
higher are used as negative ones. Without loss of generality, we assume that
class labels were distributed according to this ordering. For the class [;, the
instances of the class [; are used as the positive instances and the instances of
the classes [;, to [;;| as the negative ones. In this way, we obtain |L|—1 binary
learning problems. Usually, the highest ranking class [, experiences a special
treatment (e.g. by a default rule).

Pairwise Class Binarisation

The pairwise or round-robin class binarisation [Fiir02] is named after the
round-robin tournament mode which is commonly used in tournaments of
sports and games (e.g. in sports leagues or chess). In this tournament mode,

2.4. Global Models 53

each participant has to compete with each other participant. Obviously, this
basic idea may easily be translated to class binarisations. To this end, pair-
wise class binarisation transforms a |L|-class learning problem into ILI-(ILI+1)/2
pairwise binary learning problems and trains one classifier for each of these
learning problems. Each pairwise classifier is trained only with the instances
of the classes [; and [;, ignoring the examples of all other classes [, (k # i, j)
completely in this training process.

The pairwise learning problems are usually much simpler than the original
multi-class learning problems and the (un-)ordered learning problems as two
classes may be more easily separated than multiple ones (see Figure 2.10).
Consequently, simpler and significantly more accurate classifiers may be found
in this way. Even though this approach has to train a quadratic number of
classifiers, the total training time of a pairwise class binarisation is comparable
to (or even less than) the total training time of an (un-)ordered class binari-
sation due to the reduced training set size of each pairwise problem [Fiir02].
However, the quadratic number of classifiers may be a bottleneck for the clas-
sification time, as a naive decoding employs all classifiers for prediction.

2.4.3.3 Voting Methods

Usually, the predictions of an ensemble have to be decoded into a single predic-
tion. For this purpose, the previously introduced ensemble learning and class
binarisations methods (with the exception of stacking) employ voting methods.
Common ground of all voting methods is, as the name suggests, the interpreta-
tion of the individual predictions as votes for the predicted class. The various
voting methods differ in the weights they assign to the vote of a classifier of
the ensemble.
For a classifier ensemble, the classification by voting works essentially as
follows:
cg(d) = argmaxleLZvote(c,l,d) (2.56)

ceE

where the weight of the vote vote(c, [, d) depends on the chosen voting method.
Commonly, two voting methods are used: (simple) voting

vote,(c,l,d) = {1’ feld)=1, (2.57)

0, otherwise.

that simply counts the votes for each predicted class (weight=1) and weighted
voting
h(c,D), if c(d) =1,
vote,,,(c,l,d) = { (e, D), if c(d) (2.58)

0, otherwise.

54 2. Foundations

that uses a measure of confidence h(c, D) of the voting classifiers as the weights
of these votes. Usually, the quality of a classifier or its confidence in its predic-
tion are used for this purpose. While the former may be estimated for every
classifier, the latter may only be used if it is provided by the classifier. In the
next section, we will show how the quality of a classifier may be estimated.

2.4.4 Evaluation

After the generation of a classifier, we usually want to evaluate its quality or
performance using appropriate performance measures. In our work, we con-
sider two categories of performance measures: the accuracy of the classifier
(on previously unseen data instances) and the complexity of the classifier.
While the complexity of a classifier normally may be measured exactly (for
example, by counting its components), its accuracy, as we will see later, may
only be estimated by evaluation methods (e.g. cross-validation). Based on the
evaluated performances of classifiers, statistical tests may be used to compare
the learning algorithms that generated those classifiers.

Below, we describe the statistical values that are needed to evaluate the ac-
curacy and complexity of a single global model and how the evaluation method
cross-validation may be employed to obtain an estimation of the true accuracy.
Afterwards, we show how multiple learning algorithms may be compared by
statistical tests.

2.4.4.1 Evaluation of Global Models

Before a classifier is used for prediction, the accuracy of the classifier on pre-
viously unseen data has to be evaluated. Of course, we cannot determine this
value exactly, since we do not know the class values of these unseen data in-
stances in general. For this reason, we calculate the accuracy of the classifier
on data instances whose class values are known previously and estimate the
true accuracy of the classifier using this accuracy value.

The accuracy of a classifier is a measure for the quality of its prediction. A
classifier ¢ predicts correctly, if c(d) = I, is valid. Otherwise (c(d) # l,), it
makes an error. The accuracy of a classifier is equal to the fraction of instances
of a D that are correctly classified by the classifier c:

[{d € D|c(d) =14}
heee(c,D) = 4 (2.59)
ID|
The error rate of a classifier ¢ on a data set D is complementary to its accu-

racy:

h,,.(c,D)=1—h,.(c,D). (2.60)

Please note that the accuracy of a rule and the accuracy of a classifier differ.

2.4. Global Models 55

Learning 4 Labelled
Lag::l:d Algorithm (el Data

Labelled Unlabelled Evaluation ()
Data Data By Comparison Rerfornates

Learning
Algorithm

Labelled — Classifier

Labelled
Data
Data
Labelled Unlabelled Evaluation Performan Decoding by Estimated
Data Data By Comparison Averaging Performance

\ i

Learning . Labelled
Labelled — Algorithm Classifier Data
Data L
Labelled Unlabelled Evaluation Performan e
Data Data By Comparison

| i

Figure 2.11.: Cross-validation: exemplary illustration of the scheme of a 3-fold
cross-validation. The data set is split into three separate folds
(coloured green, red or yellow, respectively). Each pair of folds
is used one time for training a classifier while the remaining third
fold is used to evaluate the resulting classifier. Afterwards the
obtained performance scores are averaged.

Cross-Validation

If we use the same data for the training and the evaluation of a classifier,
the estimated accuracy tends to be overly optimistic. Especially if the classifier
overfits the data. Several techniques solve this problem by partitioning the data
into two or more sets of data instances. One data set is used to generate or train
the classifier. On the other data set(s), we apply the classifier and calculate its
accuracy. One representative of this approach is the cross-validation which
we use in our work to estimate the performance of the considered classifiers.
Since labelled data instances are usually scarce, all instances should be used
for the training. The obtained classifier may be then evaluated using one of
the above-mentioned techniques.

Cross-validation partitions the data into f subsets or folds. For each fold, we
train a classifier on the union of all other folds, and estimate the performance
of the classifier on the selected fold. Afterwards, the estimated performance is
calculated as the average performance of these classifiers.

For a f-fold cross-validation, we partition our data set into f subsets (folds)
of equal size:

D=D,U---UD; (2.61)

56 2. Foundations

Usually the data set cannot be split into f subsets of exactly the same size,
hence the data is split as uniformly as possible, e.g. splitting a data set con-
sisting of 32 data instances into 3 subsets would result in two subsets of 11
data instances and one subset of 10 data instances. If the original distribution
of class labels is preserved approximately in all subsets, the cross-validation is
called stratified.

As we use only one of these subsets for testing and the rest of the data set
for the training, we introduce the complement of each subset:

D;=D\D;, (2.62)

where i € {1,---,f}. So, the complementary subsets D, are used as the train-
ing sets and the subsets D; as the test sets, respectively.

For each complementary subset D;, we train a classifier using only the infor-
mation contained in D;:

Cp; (2.63)

Hereafter we evaluate this classifier on the appropriate subset D; using the
heuristic evaluation function h,.:

hacc(CD_i’ Di)- (264)

After the computation of the heuristic value of each classifier, we calculate their
average value:

f
- 1
hacc =7 hacc(c_» Di) (2.65)
f le "

2.4.4.2 Comparison of Data Mining Algorithms

As mentioned before, there is an abundance of data mining learning algo-
rithms, and this number increases continuously. Thus, it is important to know
which of the available learning algorithms is the superior one for the given
data mining task. To compare several learning algorithms, statistical tests may
be employed. The base idea of these tests is to decide if one or more compared
algorithms are significantly better than the others. Usually, this approach is
used in the development of new algorithms, too.

For the evaluation of the learning algorithms in our experiments, we employ
statistical tests whose null hypothesis is that the performances of the compared
algorithms do not differ significantly. Consequently, the compared algorithms
perform significantly different if this null hypothesis is rejected. Otherwise, no
significant differences in performance could be detected. Depending on the

2.4. Global Models 57

number of compared learning algorithms, we employ two different test con-
figurations as proposed in [Dem06]: the Wilcoxon signed ranks test for the
comparison of two algorithms and the Friedman test with a post hoc Nemenyi
test for the comparison of multiple (three or more) algorithms. For both con-
figurations, the classifiers considered for comparison are applied to multiple
data sets. Subsequently, their performance may be estimated by an aforemen-
tioned evaluation method. We denote the evaluated performance score of c; on
D; as score; ;. Afterwards these scores are used to obtain performance rankings
whose members are numbered serially. Obviously, a performance score may
occur multiply in a ranking. In this case, an average score is calculated:

" rank, + rank, 0 66
rankgy = ———5—— (2.66)
for all equally performing ranked members from rank, to rank,. This average

score is then used to substitute the ranks from rank, to rank,,.

Comparison of two Data Mining Algorithms

For the comparison of two classifiers, we employ the non-parametric
Wilcoxon signed ranks test (Wilcoxon, 1945). It computes the differences in
performance of two classifiers for each data set, assigns ranks to these differ-
ences according to their absolute values, and compares the sums of assigned
ranks of the positive and the negative differences. If the minimum of these
sums is below the critical value, the null-hypothesis, that the two classifiers are
not significantly different, may be discarded.

The Wilcoxon signed ranks test works as follows. For each data set D;, we
calculate the difference between the performance scores of the two classifiers
¢, and cy:

diffj = score, j —scorey ; (2.67)

Afterwards, we sort these differences in descending order and assign ranks
to them according their absolute values (denoted by rank(diff;)). The largest
absolute difference receives the lowest rank of 1. In case of equal difference
values, average ranks are determined (see above). Then, we compute the sum
of positive differences where c; outperformed c, and the sum of the negative
ones where ¢, performed better than c¢;. The ranks of zero differences (diff; =
0) are split evenly among these two sums. Accordingly, we obtain the following
two sums:

1
ranks, = Z rank(diff) + Z rank(diff.) (2.68)
diff;>0 diff;=0
ranks_ = Z rank(diﬁfi)+% Z rank(diff;) (2.69)
dl]ﬁ<0 dl_ffl:O

58 2. Foundations

If the minimum

T = min(ranks,,ranks_) (2.70)

of these sums is below the critical value for the given number of data sets N,
the null hypothesis may be rejected. If more than 25 data sets are involved,
the statistic
min(ranks, , ranks_) — *N(N + 1)
g = al 4 (2.71)
VNIV +2)(2N + 1)

is distributed approximately normally.

Comparison of Multiple Data Mining Algorithms

For the evaluation of multiple learning algorithms in our experiments,
we employ the Friedman [Fri37, Fri40] test with a post hoc Nemenyi-Test
[Nem63]. The Friedman test is a non-parametric statistical test used for
the comparison of multiple learning algorithms. The null-hypothesis of the
Friedman test assumes that all learning algorithms are equivalent and so their
average ranks should be equal. So, its main idea is to rank the learning algo-
rithms for each data set separately and use the average ranks for comparisons.

In this ranking, the learning algorithms are sorted in a descending order,
assigning the best performing learning algorithms the rank 1, the second best
rank 2, and so on. We denote the rank of the j-th of k learning algorithms on
the i-th of N data sets with rl.] . If several learning algorithms perform equally
well on a data set, an average rank is assigned to those learning algorithms as
described above.

As already mentioned the Friedman tests uses the average rank (over all
data sets)

N
_1 j
rank = N Z r; (2.72)

of each learning algorithm for comparison. Using these average ranks, we
calculate the Friedman statistics

S——2 k(k+1)?

12N
2= = | > rank — ———— 2.73
XF k(k+1) ~ ran 4) (7)

which is itself used to calculate an improved statistics

(N—1)y2

= N—(k—l)—xlg (2.74)

F

2.4. Global Models 59

5 4 3 2 1

T A A N I
€1 Cs
%) Cq
C3

Figure 2.12.: Critical distance chart: an illustrative example.

proposed in [ID80]. Under the null-hypothesis Fj is distributed according to
the F-Distribution with k — 1 and (k — 1)(N — 1) degrees of freedom.

If the null hypothesis is rejected, we apply a post hoc Nemenyi test. Its
base idea is that two learning algorithms perform significantly different if their
corresponding average ranks differ by at least the critical difference

o =g ED) 279

The critical values q, are computed by dividing the studentized range statistics
by v2.

The results of the Nemenyi test can be depicted in a so called critical distance
chart (abbreviated CD chart). In this visualisation one can easily recognise
groups of learning algorithms that differ significantly or do not. The CD chart
consists basically of three parts: a number line, charted learning algorithms
and horizontal bars that connect learning algorithms that do not differ signifi-
cantly. The number line is, quite unusually, in descending order, starting with
the highest obtainable rank (the number of learning algorithms) and ending
with rank 1. Sometimes it may be more appropriate to display only a section of
the number line, e.g. cutting off the unnecessary outer parts (below or above
the lowest or highest average rank, respectively). The learning algorithms are
charted according to their average rank.

Let us illustrate such a CD chart with an example (see Figure 2.12). In
this example, five classifiers c¢; to cs are charted according to their average
performance. Three groups of learning algorithms whose performances do not
differ significantly may be identified. The first group consists of the classifiers
¢1, ¢ and c; which performed worst. The second group comprises classifiers c5,
which also belongs to the first group, and c,. To the last and best performing
group belongs only classifier cs. It is clearly the best classifier in this example
as it performed significantly better than the others.

60 2. Foundations

2.4.5 Ripper

In our work, we used Ripper (an acronym of repeated incremental pruning
to produce error reduction) as a base and benchmark learner for our exper-
iments [Coh95]. Ripper is a very efficient and accurate rule learner which
is designed to solve the problem that many rule learning systems scale very
poorly on large and noisy data sets. Its base algorithm I-REP* is a modification
of the incremental reduced error pruning approach (abbreviated I-REP) intro-
duced in [FW94]. I-REP* is a separate-and-conquer rule learning algorithm
that integrates pre-pruning and post-pruning into the learning process, com-
bining the advantages of both worlds. On the one hand, I-REP* prunes each
rule immediately after its generation, instead of pruning a completed rule set.
On the other hand, I-REP* stops adding rules and completes its learning pro-
cess when adding a new rule would increase the minimum description length
of the current decision list above a certain threshold.

The I-REP* algorithm starts with a binary training data, trying to separate
one class from the other. The first step of I-REP* splits the (uncovered) positive
and negative instances of the training data into a growing and pruning set. In
the second step, the growing data is used to grow a single rule. To this end,
a modified version of FOIL [Qui90, QC93] is used to generate the rules in the
growing phase. For this purpose, it considers conditions as follows: A = q; for
nominal attributes and A < a; and A > q; for numerical attributes. For growing
a rule, this modified FOIL selects from all available conditions the condition
that maximises FOIl's information gain criterion

hFOIL(r) =D (logZ (hprec (rparent)) - logz (p i n)) (276)

of the resulting rule (where r,,.,, is its parent rule) until the rule does not
cover any negative instances or no further conditions may be added.

Afterwards, we prune this rule by deleting conditions until any further dele-
tions would lead to a decreased accuracy on the pruning set. For pruning the
resulting rule, I-REP* considers the removal of any final sequence of conditions
and chooses the removal that maximises the rule-value metric

p-n(p _
hRVM(r) - p+n (— p+n hprec(r)) (277)

on the pruning data. Please note that this metric is equivalent to the precision
metric for this purpose.

Next, the stopping condition of I-REP*, which is based on the minimum
description length principle [Ris78], is checked. I-REP* employs the method
described in [Qui95] to calculate the total description length of the current

2.4. Global Models 61

Algorithm 8 I-REP* [Coh95]
1: procedure I-Rer*(Instances, SplitRatio, MDLp,eshold)
2 DecisionList = EMpTYLIST()
3 while Positives(Instances) # () do
4: SpLiTINSTANCES(SplitRatio, Instances, Instances oy, Instancespy,ne)
5
6
7

Rule = GrRowRULE(Instancesg, o)

Rule = PruNERULE(Rule, Instancesp,,,)

if MDL(AppenDp(DecisionList,Rule)) — MDL(DecisionList) >
MDLThreshold then

: exit while
9: else
10: DecisionList = AppEND(DecisionList, Rule)
11: ReMovVECOVEREDINSTANCES(Instances, Rule)
12: ArpEND(DecisionList, DefaultRule)
13: return DecisionList

rule set (including the last generated rule) and the uncovered examples and
compares it to the smallest total description length obtained so far. If the new
description length is more than d (default value is 64) bits larger than the
smallest one, or when there are no more uncovered examples, I-REP* stops
generating rules. Otherwise, we add the rule to the rule set, remove the cov-
ered instances from the training set (both the growing and pruning sets) and
restart the process at the first step with the remaining instances which are
again split in growing and pruning sets using a new division.

Ripper employs the I-REP* algorithm - at least twice - for the generation of
rules (see Algorithm 9). First, I-REP* is used to generate an initial rule set.
In the second step, this rule set is optimised using an optimisation approach
which resembles the effects of conventional reduced error pruning. The func-
tionality of this step will be explained in the subsequent paragraph. Next, the
examples that are covered by the optimised rule set are removed from the
training data. Afterwards I-REP* is employed again to cover any remaining
positive examples, adding new rules to the optimised rule sets. The last three
steps of Ripper may be iterated k-times using the result of the last step as the
input of the first one. Hence, the resulting algorithm is referred actually as
Ripper; and Ripper stands basically for the instantiation of this algorithm that
uses a single iteration (k = 1).

In the optimisation phase, Ripper evaluates the optimisation potential of
each of its rules, according to their order in the decision list (from the first one
to the last one). For each rule r;, two alternatives, a replacement and a revision
of r;, are generated. The replacement Rep(r;) is grown, starting with an empty
rule, and then pruned to minimise the error of the decision list in which Rep(r;)

62 2. Foundations

Algorithm 9 Ripper; [Coh95]
1: procedure Rirper(Instances, SplitRatio, MDL 1t eshotd> K)
2 DecisionList = I-REP*(Instances, SplitRatio, MDLpeshold)
3 fori— 1,k do
4: DecisionList = OpTiMISERULESET(DecisionList)
5
6
7

ReMovECOVEREDINSTANCES(Instances, DecisionList)
ArpeND(DecisionList, I-REP*(Instances, SplitRatio, MDLpeshotd))

return DecisionList

replaces the original rule r;. The revision Rev(r;) is generated analogously,
but the growing starts with the original rule r;. The revised rule replaces the
original rule in the decision list, too. Thus, we obtain three decision lists:
the original one and two decision lists that contain the replacement or the
revision of the rule. The minimum description length of each decision list is
calculated deleting the rules beforehand that increase the description length.
Afterwards, a decision is made if the original decision list, its replacement or
revision is included in the original rule set choosing the rule whose rule set has
the minimal description length.

Contrary to the original I-Rep, that has been designed inherently as a binary
learner, I-Rep* and consequently Ripper may also solve multi-class learning
problems. To this end, I-Rep* employs internally class binarisation methods -
either an ordered or unordered class binarisation - to break down the multi-
class problem into several binary ones. Depending on the class binarisation
method employed in I-Rep*, Ripper is run either in its ordered or unordered
mode. In the ordered mode, Ripper’s default mode, I-Rep* utilises an ordered
class binarisation that orders the classes according to their frequency in the
training data, generates rules that distinguishes one class from the more fre-
quent classes respectively, and arranges the resulting rules in a decision list
according to this ordering. For the most frequent class, a default rule is added
that predicts this class. In the unordered mode, I-Rep* learns one rule set for
each class that distinguishes this class from all other classes. For prediction,
the most precise covering rule in these rule sets is determined and used for
prediction.

Please note that the pseudocodes of the previously introduced algorithms
(Algorithm 8 and 9) describe consciously binary versions of the correspondent
algorithms for ease of notation and understanding.

2.5 The LeGo framework: From Local Patterns to Global Models

In this section, we describe the generic LeGo framework (an acronym for “from
local patterns to global models”) [KCFS08] that may be utilised for a variety of

2.5. The LeGo framework: From Local Patterns to Global Models 63

data mining task. In this framework, the process of solving a data mining task
is broken down into three subsequent steps. In the first step, a (local) pattern
discovery algorithm is employed to generate a (large) set of local patterns.
Afterwards, this set is reduced to a smaller one that at best contains only highly
informative and non-redundant patterns in the second step. In the third and
last step, the reduced pattern set is used to build a global model. Since none
of these steps is tied to a specific algorithm, several options are available for
each step, making the framework very flexible and adaptive. Many existing
data mining algorithms that are based on pattern discovery may be modelled
in this framework. Furthermore, the LeGo framework may be fitted into the
well-known KDD process. On the one hand, it provides a generic approach for
the data mining phase of the KDD process. On the other hand, it shares certain
similarities to other phases of the KDD process, as we will see later.

In the following, we illustrate this approach by an exemplary data mining
algorithm, give a short summary of the three steps of the LeGo framework
afterwards and discuss its advantages in the last section of this chapter.

2.5.1 lllustrative Example

The field of local pattern discovery provides a great range of techniques that
produce extensive collections of (local) patterns [MBS04]. Since most of these
techniques are exhaustive by nature, the discovered pattern collections com-
prehend more or less the complete information content of the database. How-
ever, the knowledge fragments represented by the local patterns need to be
further processed into a global model. As the pattern collections obtained by
local pattern discovery are usually rather large and show high redundancy, a
reduction to a (small) subset of patterns may be worthwhile. To this end, the
pattern set discovery step tries to select only patterns that are highly infor-
mative in the context of the global data mining problem. Using the reduced
pattern set, the global modelling step employs data mining methods to gener-
ate a global model.

A well-known example for an algorithm that utilises this step-wise approach
is CBA (an acronym for classification by association) [LHM98]. For the local
pattern discovery, it employs conventional association rule learning algorithms
(for example, the Apriori algorithm, see Section 2.3.3.4) to generate associa-
tion rules. Afterwards, the pattern collection achieved in this way is reduced to
a pattern set that contains only classification association rules. At last, CBA typ-
ically employs a simple covering algorithm. For this purpose, each candidate
rule is rated by some heuristic and the best rated one is repeatedly added to
the global model which most often is either a disjunction of rules or a decision
list.

64 2. Foundations

Data Local Patterns Pattern Set Global Model

| B

Local Pattern ‘ Pattern Set Global ‘ Prediction
Discovery Discovery Modelling

| L

Figure 2.13.: The LEGo framework [KCFS08]

In many cases, other data mining algorithms may not separated into the
LeGo phases as easily as the CBA algorithm could be separated, since the in-
dividual phases may be interleaved (for example, SeCo algorithms, see Sec-
tion 2.4.2). Consequently, these algorithms may not easily be recognised as
instantiation of the LeGo framework.

2.5.2 Local Pattern Discovery

Local pattern discovery explores (most often exhaustively) the pattern search
space, which is defined by the employed local pattern discovery algorithm (e.g.
frequent itemset mining algorithms search the itemset space), for candidate
patterns that adhere to user-specified constraints (e.g. the minimum support
for frequent itemsets). Usually, the quality of the found candidate patterns is
rated either by individual properties (e.g. by their support in the data set) or
in the context of some global data mining task (e.g. by their predictive power
in a classification context). In a way, local pattern discovery may be seen as an
automation of the feature construction phase of the KDD process.

2.5.3 Pattern Set Discovery

Usually, the algorithms used for local pattern discovery produce rather large
pattern collections. As the contained patterns are normally judged only by
their individual merits without consideration of their correlation to other pat-
terns, the pattern collections may exhibit high redundancy. Both the large
size and the redundancy of a pattern collection may be a hindrance for its
subsequent utilisation. Obviously, a manual interpretation of the patterns by
humans is only practicable for an acceptably small number of patterns. Sim-
ilarly, many data mining methods, especially machine learning methods for

2.5. The LeGo framework: From Local Patterns to Global Models 65

global modelling, are prone to large input data, as their computational efforts
depend mainly on this quantity. The main goal of the pattern set discovery step
is to solve these problems by reducing the pattern collection obtained by local
pattern discovery to a pattern set that features only little redundancy and is
highly informative for the considered data mining task. According to this, the
pattern set discovery has a similar role as the feature selection step of the KDD
process.

2.5.4 Global Modelling

In the two previous steps a large collection of local patterns was generated
and afterwards reduced to a significantly smaller pattern set that consists of
highly informative and non-redundant local patterns. The last step of the LeGo
framework, the global modelling, aims to decode the information contained in
the compressed pattern set into a valuable global model. To this end, mainly
two approaches for handling the modelling task may be identified.

The first approach is straightforward since it basically uses the extracted
patterns as binary features of a new data set as described above. In this way,
every machine learning algorithm that is able to handle such a data set may
be employed for the global modelling step. As the pattern quality has a higher
influence on the quality of the global model than the selection of the machine
learning algorithm or the tuning of its parameter, this approach (and the em-
ployed algorithm) may clearly benefit of the high-quality features obtained in
this way.

The second approach which is especially associated with rule learning treats
the pattern set as an ensemble of classifiers, considering each pattern (or rule)
as a weak classifier. Thus, different strategies for ensembles may be employed.
On the one hand, decoding methods may be utilised for decoding the pre-
dictions of the covering patterns (or rules) into a single global prediction,
obtaining an implicit global model in doing so. On the other hand, ensem-
ble methods that employ the pattern set as meta features (e.g. stacking) may
be used to obtain a global model.

2.5.5 Advantages of the LeGo Framework

In this section, we discuss the motivation for the LeGo framework and its ad-
vantages. Due to its exploratory and exhaustive nature, the employment of the
LeGo framework is usually more expensive and time-consuming than a direct
induction of a global model by conventional means. However, the utilisation
of this framework is motivated by several advantages that we will discuss in
this section.

66 2. Foundations

As an automated pattern generation is at least implicitly a component of
many effective machine learning algorithms (e.g. rule induction), one may
expect that a more exhaustive or exploratory local pattern discovery step will
increase the accuracy of the global model induction. On the one hand, local
pattern discovery should recognise most of the globally valuable patterns be-
cause they usually will exhibit locally a similarly high quality, too. In this way,
the extracted local patterns should be sufficient to generate a valuable global
model. On the other hand, the inherent pattern discovery of global modelling
algorithms often is accomplished by a greedy search and consequently may get
stuck in local optima. In contrast to this, local pattern discovery algorithms
tend to select a set of high-quality patterns that typically subsumes most of
the local optima. Thus, a bigger selection of locally optimal patterns may be
considered in the following global modelling step. Clearly, both points argue
for the employment of local pattern discovery as a preliminary pre-processing
step for the subsequent global modelling as this approach should expectedly
increase the quality of the induced model.

Due to its modularity, the LeGo framework is both a construction kit and
experimental laboratory for global modelling. On the one hand, it allows to
remodel or adjust existing data mining methods and to construct entirely new
ones by selecting methods for each step. In this way, the framework enables the
analysis and improvement of the employed data mining methods as they may
be utilised in different contexts and related to other methods for the same step.
The analysis may result in insights about alternative, better performing options
for the individual steps, about potential synergies between employed methods,
and about important research topics that may offer room for improvement. On
the other hand, the results of each step may be used to obtain a better under-
standing of valuable local patterns. First, the induced global models may be
used to identify valuable candidate patterns since the induced patterns are usu-
ally highly-informative and non-redundant. Therefore, the manual inspection
or utilisation of these patterns may be worthwhile. Analogously, the pattern
set obtained by the pattern set discovery shows what patterns were selected
into it and how they are related to each other.

Additionally, the modular nature of the LeGo framework turns out to be
advantageous for its optimal configuration and for the performance of the in-
duced global model. Since the local pattern discovery and pattern set discovery
steps may be respectively performed independently of the subsequent step(s),
its intermediate results may be stored and utilised for different configurations
of these steps. Obviously, the computational effort for trying out different con-
figurations is perceivably reduced in this way. Thus, the identification of an
optimal configuration for a given data mining task becomes more viable.

2.5. The LeGo framework: From Local Patterns to Global Models 67

3 Theory Formation

In this chapter, we deal with the first aspect of the question, how a set of local
patterns may be employed to obtain a global model. As mentioned before, this
problem may be solved by the generic LeGo framework (see Section 2.5) that
partitions this problem into three subsequent steps: the local pattern discov-
ery, the pattern set discovery, and the global modelling. Since many methods
are available for each of these three steps, an immense number of configura-
tions of the LeGo framework are possible. But the question, how a set of local
patterns may be utilised to obtain optimal predictions, has not been systemat-
ically investigated yet. Similar to the partitioning in three steps, this question
comprises three subquestions:

* Local pattern discovery: How is an optimal local pattern set discovered?

* Pattern set discovery: How is an optimal subset selected from a local
pattern set?

* Global modelling: How is a pattern set optimally employed as a global
model?

We will concentrate on the empirical comparison of a limited selection of meth-
ods for each step and on the identification of the best choice(s) among these
selected methods.

This chapter is organised as follows. In the subsequent Sections 3.1 to 3.3,
we briefly address each of the above-mentioned questions and present the asso-
ciated methods that we will compare in this context, respectively. Afterwards,
we describe the experimental setup in Section 3.4 and discuss the results of
our experiments that correspond to these questions in Section 3.5. At last, our
conclusions on these experiments are summarised in Section 3.6.

3.1 Local Pattern Discovery

In the first step of the LeGo framework, a local pattern discovery algorithm
(see Section 2.5.2) extracts an usually large set of local patterns which will be
processed in the subsequent pattern set discovery and global modelling steps.
Since these local patterns are the starting point for the later steps, we want
to investigate what effect the utilisation of different local pattern discovery
algorithms has on the resulting global model. To this end, we compare the
following two algorithms:

69

* BSD: The bitset-based subgroup discovery algorithm (abbreviated BSD)
is a novel branch-and-bound algorithm for the efficient generation sub-
group patterns (see Section 2.3.2.3).

* CHARM: The association rule mining algorithm CHARM extracts effi-
ciently closed association rules (see Section 2.3.3.5).

This decision is driven by the consideration to use two algorithms that differ
in their generation approaches. On the one hand, CHARM extracts the set
of frequent closed itemsets which is as mentioned before only a subset of all
frequent itemsets. On the other hand, BSD generates efficiently a pre-defined
number of patterns. Additionally, the computational efforts of the subsequent
steps depend mainly on the number of local patterns. Both algorithms gen-
erate a manageable number of patterns, either inherently or by adjustment.
Beside these two points, both algorithms differ also in several aspects (e.g. the
employed evaluation methods or search strategy).

3.2 Pattern Set Discovery

The previous local pattern discovery step generates usually a large set of local
patterns that normally is highly redundant and impractical for both human in-
terpretation or data mining. Hence, the second phase of the LeGo framework,
the pattern set discovery (see Section 2.5.3), reduces the large set of local pat-
terns to a smaller subset that preferably should feature only little redundancy
and should be highly informative in respect to the current data mining task.
Ideally, the reduced set should contain only those local patterns that are needed
to generate an optimal global model in the subsequent global modelling step.

To estimate the impact of this step on the global model, we consider five
representatives of pattern set discovery methods.

e All selector: The first and most simple one is not obviously a pattern
set discovery method, as it selects simply all previously generated pat-
terns for the following global modelling step. Therefore, this "all selec-
tor" (abbreviated ALL) may be considered as the neutral counterpart to
the global modelling techniques. In this way, we can check if the removal
of the pattern set discovery step has an effect on the performance of the
resulting global model.

The next two pattern set discovery methods are confidence selectors which
basically select local patterns on the basis of their confidence value (see Equa-
tion 2.38).

70 3. Theory Formation

¢ Minimum confidence selector: The minimum confidence selector (ab-
breviated MC) keeps all patterns that exceed a given minimum confi-
dence threshold.

* Greedy confidence selector: The greedy confidence selector (abbrevi-
ated GC) retains only the (k) most confident patterns.

In either case, the resulting pattern set depends only on the individual quality
of its members.

In contrast to this, the remaining two pattern set discovery methods, joint en-
tropy and exclusive coverage, that are taken from [KH06b] consider the quality
of the pattern set as a whole. These methods have in common that they select
a pattern set of a pre-defined size k that maximises an evaluation measure for
pattern sets. Due to the high number of possible pattern sets (of size k), the
exact computation of the optimal solution is usually not feasible. Hence, the
optimal solution is often only approximated (e.g. by an heuristic approach).
Details on the efficient search for the optimal solution and implementation
suggestions may be found in [KHO6a].

Joint entropy and exclusive coverage differ in the utilisation of their epony-
mous evaluation methods for pattern sets. These methods share that the per-
formance of a pattern set is computed based on the covering information which
instances are covered by a pattern in this set.

* Joint entropy: Joint entropy (abbreviated JE) has been proposed for
maximally informative k-itemsets [KHO6a] but can also be applied to the
general pattern set discovery task. Essentially, all patterns are treated as
binary features so that the joint entropy for each pattern set is equal to
the joint entropy of its features. The entropy measures the uniformity of
the distribution of instances over different contingencies (by what pat-
terns an instance is covered or not). For a considered pattern set R, each
of its subsets R’ C R defines such a contingency and implies a correspon-
dent subset of the data set D:

Dy=()D,n () (P\D,) (3.1)
riER’ rjER\R’
Each instance in this subset is covered by all the patterns in the pattern
set R’and is not covered by any pattern in its complement R \ R'.

Using these subsets, the joint entropy of a pattern set may be calculated

as follows:
Dy, Dy
h.(R,D)=— E —log —

R;CR

(3.2)

A pattern set that maximises the joint entropy will optimise the power to
distinguish between individuals [KHO6b].

3.2. Pattern Set Discovery 71

* Exclusive coverage: Exclusive coverage (abbreviated EC) tries to re-
duce the amount of overlap between patterns. Thus, a pattern set is
more favourable if many instances are covered only by a single pattern.
Essentially, exclusive coverage counts the coverage that is exclusive for
each pattern.

(3.3)

h(R,D)= Y.

ri€R

o\ {J D,

ri#Ti

3.3 Global Modelling

After the generation of the local patterns and their reduction to a pattern set,
the last step of the LeGo framework, the global modelling (see Section 2.5.4),
aims to obtain a global model based on the reduced pattern set. Basically, two
approaches may be employed to solve this problem:

* Generation of a global model: The first approach employs the pat-
tern set to induce an explicit global model. The model generation has
to be performed only once and may take place in advance (before the
prediction phase).

* On-the-fly decoding: The second approach decodes the individual pre-
dictions of the covering local patterns into a global prediction when
needed (in the prediction phase).

For the first approach, there are many choices for global modelling techniques
that may be applied on pattern sets. Essentially, any learning algorithm could
be used to generate a global model at this point. However, we decide not to
build an explicit global model but to utilise the obtained pattern set directly
for classification, as all the selected patterns may influence the predictions in
this way.

To this end, we treat the rules of the pattern set as an ensemble of local
models whose predictions are decoded into a global prediction. Basically, any
decoding method that is suitable for the decoding of a regular ensemble of
classifiers may be used for this purpose. They usually have to be adjusted
at least slightly, since local models influence only the predictions of instances
they cover (in contrast to global models that cover all instances). For the de-
coding of the predictions, we consider two groups of techniques. The first
group are voting methods which we already encountered in the context of en-
semble learning in Section 2.4.3. They use the predictions of all covering rules
as votes for the final prediction. The voting weight of a single rule may be
based either on its heuristic quality or on its position in a ranking of all rules

72 3. Theory Formation

according to these heuristic qualities. The second group are known proba-
bilistic methods which use estimated probabilities to predict the most probable
class. The required probabilities are estimated on the basis of the commonly
used Laplace-corrected precision hygjqc., which we introduced in Section 2.3,
of each rule.

3.3.1 Voting Methods

Since a pattern set is quite similar to an ensemble of full-fledged classifiers,
voting methods for classifier ensembles may be applied to pattern sets as well.
However, the voting procedure has to be adjusted, as not all patterns will cover
every instance. To this end, the individual predictions of the covering patterns
are interpreted as votes for the predicted class. In this context, the different
voting methods differ only in the weights they assign to the vote of a rule.
Essentially, the classification, which is based on predictions of the pattern set,
works as follows:

cg(d) = argmax;; Z vote(r,1,d), (3.4)
rer(d)

where R(d) is the set of rules covering the instance d and vote(r,l,d) is the
voting weight that depends on the chosen voting method.

* Best rule: The first voting method best rule (abbreviated BR) considers,
as hinted by its name, only the best pattern which covers the instance
whose class label is to be predicted. To this end, the quality of the cov-
ering patterns is determined by the heuristic g, (see Equation 2.25).
At first sight, best rule does not seem to be a voting method, but it is pos-
sible to choose voting weights that simulate its behaviour (by ordering
the rules descendingly according to their quality and using exponentially
decaying weights). Essentially, this method corresponds to using a deci-
sion list in which the rules are sorted according to their heuristic quality
values.

The next two voting methods are voting and weighted voting which we al-
ready encountered in the context of ensemble learning. These methods have
in common that they consider the votes of all covering rules.

* Voting: Voting (abbreviated V) assigns a weight of one to all covering
rules, essentially this can be considered as counting the covering rules
separately for each class:

1, ifr2d
votey(r,1,d) = { » fr2 (3.5)

0, otherwise.

3.3. Global Modelling 73

* Weighted voting: Weighted voting (abbreviated WV) uses the heuris-
tic hygpjqce to determine the voting weights of each rule, so basically the
Laplace weights are counted for each class:

hlaplace(r: D); lf rod

. (3.6)
0, otherwise.

voteyy(r,1,d) = {

The last two voting methods linear weighted voting and inverse weighted
voting [Mut04] differ from the two previously presented voting methods, vot-
ing and weighted voting, as they use a ranking that is based on the Laplace
value of each covering rule to obtain the weighting of the votes. So, each rule
r obtains a rank rank(r) according to the descending Laplace sorting. The
ranks are represented by integers, beginning with one for the best rule and
ending with the total number of rules for the worst (rank,,,, = |[R(d)|).

* Linear weighted voting: Linear weighted voting (abbreviated LV) em-
ploys for the calculation of the voting weights a linear monotonic de-
creasing function of the rank:

rank(r) .
]_—m, lfrgd (37)

voteyy(r,,d) = {O otherwise

* Inverse weighted voting: Inverse weighted voting (abbreviated IV) de-

termines the voting weights with the help of an inverse proportional func-
tion of the rank:

1 .
ek Yr2d

. (3.8)
0, otherwise.

votey(r,1,d) = {

3.3.2 Bayesian Decoding

Bayesian decoding (abbreviated BD) belongs to the probabilistic decoding
methods. The main idea of these methods is to estimate class probabilities
with the help of the covering patterns and their associated class probabil-
ity distributions. To this end, the covering rules are determined first. For
each covering rule, the conditional probability distribution that an instance
belongs to a class under observation of the covering rule is estimated. Using
these estimated local class probability distributions, the aggregated conditional
probability distribution that an instance belongs to a class under observation
of all the covering rules is approximated. On the basis of the aggregated class

74 3. Theory Formation

probability distribution, the supposedly most probable class is determined and
predicted for the instance.

For a given instance d and a pattern set R, Bayesian decoding aims to esti-
mate the probabilities that the instance belongs to a class [under the obser-
vation of the rules R(d) = {rl, Toyene r|R(d)|} that cover the instance, namely
Pr(I|r 2 d), and predicts the most probable class according to these class prob-
abilities:

cr(d) = argmax;; Pr(l|R(d)). (3.9

These probabilities may be translated in an computable form by applying the
Bayes theorem. This leads to the following formula:

Pr(I|R(d)) = Pr(R;f(ﬂl(zi');)r(” (3.10)

As the denominator Pr(R(d)) does not depend on the considered classes, it
does not affect the relative order of their estimated probabilities and may con-
sequently be ignored. If we additionally assume that the observation of one of
the rules r; € R(d) is independent of the occurrence of the other rules, we can
make the following naive assumption:

Pr(R(A|D) =Pr(ry ATy A ArgeylD) = | | Pr(riD) (3.11)

rer(d)

In summary, the classification works as follows:

arg max;; Pr(l) - l_[Pr(r|l) (3.12)

rer(d)

At last, we have to explain how the probabilities Pr(l) and Pr(r|l) may be
estimated. The former may be determined simply by counting the training in-
stances that belong to the class [and dividing this number by the total number
of instances in the training data set D:

n

Pr() = — 3.13
r(l) D] (3.13)

The latter probability Pr(r|l) can be estimated quite similarly. First, we de-
termine the number of training instances that are covered by the rule r and
belong to the class [and divide this number by the total number of instances
that belong to this class. Usually, some rules do not cover any instances of a
given class. Consequently, the total probability for this class would be zero,
since a single zero probability will lead to a product of zero. To avoid this

3.3. Global Modelling 75

problem, we apply an adjusted Laplace correction (see Equation 2.25) to the
estimated probabilities:

pr(rll) = Lt (3.14)
r(r|l) = ———— .

n + |R(d)]
Essentially, the number of instances that are covered by the rule r and belong
to the class is increased by one, increasing the total sum by the number of
covering rules [R(d)|.

3.4 Experimental Setup

In our experiments, we aim to identify the best choice(s) among a limited
selection for each step of the LeGo framework by an empirical comparison of
their prediction quality measured by accuracy (see Equation 2.59). We will
describe the implementation and configuration details of the methods for each
step, and the evaluation of the results in this section.

3.4.1 Implementation of Algorithms

For our experiments, we use our own extended implementation of the LeGo
framework (see Section 2.5) which has been integrated into the generic data
mining framework Weka [WFHP16]. Its main extension is an efficient storage
mechanism. The results of each step are stored and may be used several times
for different configurations of the subsequent step(s). This is possible as each
step of the LeGo framework only needs either the training data or the results
of the previous one (in addition to the necessary configuration parameters) for
its computations. In this way, the computational efforts of our experiments are
noticeably reduced, as unnecessary repetitions of previous steps are avoided.
For example, the local pattern discovery step is computed exactly twice: once
for BSD and CHARM, respectively. These results may then be used as the input
for every subsequent pattern set discovery algorithm. As our experimental
results are evaluated by cross-validation, the stored information is organised by
folds and comprises, dependent on the current step, either the discovered local
patterns, the selected pattern set or the predictions for each training instance
for each fold. The associated training instances are, except for the last step,
stored, too.

For the local pattern discovery step, we selected, as already mentioned, two
methods for comparison: BSD for the discovery of subgroups and CHARM for
the discovery of association rules. We employ the Vikamine implementation
of BSD [AL12] and our own implementation of CHARM. Both algorithms are
initialised appropriately to generate classification patterns for each class of the

76 3. Theory Formation

(multi-class) learning problems. To this end, they are repeatedly executed to
generate patterns for each class separately. Afterwards, the intermediate re-
sults of each algorithm are stored in a single set of local patterns. In each
repetition, BSD uses another class-label pair as the concept of interest, gener-
ating local patterns for the currently selected class. For CHARM, the data set is
partitioned into segments according to their class labels. Afterwards, CHARM
is started on each segment separately, generating classification patterns for the
associated class.

Vikamine’s implementation of BSD has been integrated in our extended
Weka framework and has been configured as follows. We choose weighted
relative accuracy (see Equation 2.27) for the pattern evaluation, as it is a solid
choice for pattern discovery. According to this heuristic, the best 100 patterns
per class are generated. The maximum pattern length is set to 5 conditions.
Aside of BSD’s integrated relevancy filtering (see BSD in Section 2.3.2.3), no
further filters are applied. Our own implementation of CHARM which has also
been integrated in our extended Weka framework is set-up as follows. We
employ both a relative and an absolute minimum support threshold collabora-
tively. The relative minimum support threshold is defined as 3% of the training
set size which is equal to the class size of the current segment. The absolute
minimum support threshold is set to two training instances. A pattern must
exceed both thresholds to be considered frequent.

For the second phase, we implemented the five pattern set discovery meth-
ods that we described briefly in the previous section: the all selector (which
basically returns its input), the minimum confidence selector, the greedy con-
fidence selector, exclusive coverage, and joint entropy. For the minimum confi-
dence selector, we set the minimum confidence threshold to 0.5. The selected
pattern set size is set to 25 patterns for the greedy confidence selector, exclu-
sive coverage, and joint entropy. We consider the implementation suggestions
in [KHO6a] and choose to employ a forward selection as proposed for the
methods exclusive coverage and joint entropy. Thus, the pattern set is assem-
bled incrementally by adding in each step the pattern which yields the highest
reward for the given heuristic until the predetermined size (in our case 25
patterns) for the pattern set is reached.

For the third phase, we implemented the global modelling methods: best
rule, voting, weighted voting, inverse weighted voting, linear weighted vot-
ing, and Bayesian decoding as described in the previous section. As these
methods are not parametrised, there are no further configuration details to be
mentioned.

For the comparison of two patterns, we use the following pattern properties
for tie breaking in each step (in descending order of relevance): the heuristic
value of the patterns, the number of instances that are correctly predicted, the
number of instances of the predicted class, and the size of the pattern (prefer-

3.4. Experimental Setup 77

Table 3.1.: Data sets used in the experiments with the number of instances,
number of nominal and numeric attributes, and number of classes.

Attributes
Data set Instances | Nominal | Numeric | Classes
Aneal.orig 798 29 9 6
Autos 205 10 15 7
Balance-scale 625 0 4 3
Breast-cancer 286 9 0 2
Breast-w 699 0 9 2
Bridges Version 1 107 9 3 6
Cars 1728 6 0 4
CMC 1473 7 2 3
Diabetes 768 0 8 2
Ecoli 336 0 7 8
Glass 214 0 9 7
Heart-c 303 7 6 5
Heart-h 294 7 6 5
Heart-statlog 270 0 13 2
Hepatitis 155 14 5 2
Iris 150 0 4 3
Labor 57 8 8 2
Lymph 148 15 3 4
Postoperative-patient-data 90 8 0 3
Solar-flare-c 1389 10 0 9
Tic-tac-toe 958 9 0 2
Titanic 2201 3 0 2
Vowel 990 3 10 11
Yeast 1484 0 8 10
Zoo 101 15 1 7

ring larger patterns). If these criteria are not able to discriminate between two
patterns, we choose one of the patterns at random.

3.4.2 Evaluation

For the evaluation of the considered methods, we configure every valid com-
bination in our LeGo framework by selecting one method of the local pattern
discovery, pattern set discovery and global modelling step, respectively. Their
performance is measured by their accuracy that is estimated by a stratified 10-
fold cross-validation (see Section 2.4.4.1). The detailed resulting performance
scores are listed in Appendix A. On the basis of the previously estimated
accuracy, we calculate the average accuracy per data set of each considered
method. To this end, we average the estimated accuracy values of the learn-
ing algorithms that involve a considered method (e.g. the accuracy values of
all learning algorithms that employed the minimum confidence selector for a
given data set). In this way, we obtain a measure of the general performance
of a method independent of the selected methods in the two other steps.

For each step, we evaluate the performance of the associated methods by
statistical tests (see Section 2.4.4.2) using their average accuracy values for

78 3. Theory Formation

Table 3.2.: Local pattern discovery: average accuracy (including standard devi-
ation) per data set of each method.

Data Set BSD CHARM

Anneal.orig .6583 +.2294 | .7813 +.0324
Autos 4747 £ 1154 | 4318 +£.1153
Balance-scale .5961 +£.1938 | .5350 + .2585
Breast-cancer .7077 £ .0204 .6229 £+ .1611
Breast-w .8181 +.1365 | .7140 = .2008
Bridges Version 1 4994 + .0970 | .4982 +.1021
Cars .6170 +£.1693 | .6088 +.1843
CMC 4431 +.0344 | .4133 +£.0637
Diabetes .6689 + .0372 | .6129 +.1410
Ecoli 5417 £.1571 .5442 £ .2250
Glass 4623 +£.1095 | 4730 +£.1717
Heart-c .7436 = .0867 | .6512 + .1598
Heart-h .7707 £ .0682 | .6653 +.1826
Heart-statlog .7496 £ .0705 | .6360 + .1705
Hepatitis .7307 +£.0732 | .7731 +£.0953
Iris .7109 £ .1803 | .7540 + .1428
Labor .6040 £+ .1087 6670 £ .0692
Lymph .6436 = .1244 | .6184 = .1564
Postoperative-patient-data | .5859 +.1288 | .6489 +.1289
Solar-flare-c .7548 £ .1455 | .7068 + .2797
Tic-tac-toe .7503 £.0999 | .6643 +.1727
Titanic .6730 +£.1693 | .4892 + .2049
Vowel .2688 £ .1364 .3006 £ .2284
Yeast 3747 +£.1188 | .3526 +.1321
Zoo .6654 + .2309 | .7105 + .2212

comparison. For the evaluation of the local pattern discovery step, we employ
the Wilcoxon signed ranks test, as it is suitable for the comparison of two meth-
ods (in our case the two local pattern discovery algorithms BSD and CHARM).
For the evaluation of the other two steps, in which more than two methods are
involved, we use the Friedman test and, if necessary, a post hoc Nemenyi test.
The results of the latter are visualised by a critical distance chart, respectively.
For all the statistical tests, a significance level of 5% is chosen.

3.4.3 Data

For our experiments, we use 25 data sets of the UCI repository [Lic13]. These
data sets were chosen for a great variety of the number of instances and classes,
and different ratios between numerical and nominal attributes. Numerical at-
tributes are discretised [FI93] separately for each cross-validation fold, using
only the information contained in its training data. Missing (numerical and
nominal) attribute values are ignored. The statistical properties of the utilised
data sets are displayed in Table 3.1 which contains the number of classes,
instances, and attributes (separately for numerical and nominal attributes).

3.4. Experimental Setup 79

Table 3.3.: Pattern set discovery: average accuracy (including standard devia-
tion) per data set of each method.

Data Set ALL EC GC JE MC

Anneal.orig .6824 +.1723 | .8096 +.0476 | .7617 £.0000 | .5328 +.2541 | .8124 + .0428
Autos .5197 £.1056 | .4333 +.1186 | .3906 £ .0496 | .3388 £.0305 | .5839 % .0360
Balance-scale 5157 £.2776 4522 + .2188 .6464 + 1783 4704 £ .2149 7431 £ .0146
Breast-cancer .6349 £.1529 | .6049 £ .1866 | .7125 £ .0132 | .6555 £.0792 .7186 £ .0239
Breast-w .8681 +.1655 | .7415 + .2586 | .6552 +.0000 | .6508 +.0180 | .9147 + .0880
Bridges Vers. 1 | .4653 £+.1508 | .4393 &+ .0235 | .5605 # .0095 | .4386 +.0664 | .5903 +.0359
Cars .5673 +.2548 | .4916 +.1687 | .7002 £ .0000 | .5760 +.1488 | .7292 £ .0433
CMC 4152 £.0779 | .3986 = .0550 | .4270 £.0000 | .4261 £.0418 | .4742 £ .0140
Diabetes .6394 + .1346 | .6118 +£.1387 | .6563 £.0052 | .5954 +£.1093 | .7014 £+ .0311
Ecoli 5447 +£.1931 | .3170+.1387 | .6773 £.0593 | .4668 +.1283 | .7089 + .0965
Glass 14801 +.1558 | .3057 +£.1032 | .5122 +.0278 | .4189 £.0979 | .6214 £ .0643
Heart-c .7253 +.1787 | .6453 +.1276 | .7610 £.0164 | .5583 +.0775 | .7972 + .0446
Heart-h .7023 £ .2104 | .7205 % .0982 | .7774 £.0022 | .5937 £.1641 | .7963 +.0518
Heart-statlog 7130 £.1935 | .6571 +.1344 | .7219 £.0454 | .5735+.1196 | .7988 + .0366
Hepatitis 7270 £.1393 | .7669 £ .0508 | .7893 £.0057 | .6902 £ .0859 | .7861 % .0414
Iris .7839 £.1927 | .6094 £ .1239 [.7706 £ .0967 | .6767 £.1169 | .8217 +.1697
Labor .6836 + .0804 | .6069 +.0737 | .6778 £.0202 | .5086 +.0812 | .7006 * .0486
Lymph .6833 +£.1761 | .5869 +.1112 | .6342 +.0811 | .5123 +.0683 | .7383 +.1256
Postop.-p.-d. .5259 +.1954 | .5463 +.1193 | .7111 £.0000 | .6472 £.0699 | .6565 + .0777
Solar-flare-c .6256 + .2727 | .6202 +.3255 | .8522 +.0012 | .7045 +.1335 | .8513 £ .0008
Tic-tac-toe .6942 +.1936 | .6947 +.1832 | .7649 £.0011 | .6169 £.1135 | .7657 £ .0980
Titanic .5114 £ .2037 | .5975+.1960 | .6202 +.2116 | .5624 £ .2089 | .6140 % .2060
Vowel .3949 + .1644 | .1797 £.0561 | .1461 £.0389 | .1550 £.0360 | .5479 £+ .1293
Yeast .3696 +.1810 | .3010 +.0533 | .3766 +.0434 | .2681 £.0945 | .5029 £ .0217
Z00o .8846 +.1185 | .7841 +.0435 | .4064 + .0000 | .4459 +.0395 | .9188 + .0398
Average Rank 3,20 3,92 2,40 4,32 1,16

3.5 Experimental Results

In this section, we discuss the results of our experiments. To this end, we will
separately discuss each step, aiming to identify the best method(s) respectively.

3.5.1 Local Pattern Discovery

For the local pattern discovery step, we compare the two learning algorithms
BSD and CHARM. The summary of the average performance of these algo-
rithms is depicted in Table 3.2. BSD, which generates a pre-defined number of
the best patterns according to weighted relative accuracy, wins 16 times against
CHARM, which generates all confident closed patterns. Vice versa CHARM out-
performs BSD in 9 cases. Despite the slightly better performance of BSD, the
performances of both algorithms do not differ significantly according to the
applied Wilcoxon signed ranks test, Nevertheless, both algorithms are clearly
preferable for specific data sets, e.g.titanic for BSD or anneal.orig for CHARM.
So, we conclude that these two local pattern discovery algorithms are inter-
changeable in this process.

80 3. Theory Formation

JE _I I_ MC
EC GC
All

(a) pattern set discovery

CD

6 5 4 3 2 1
N I Ll
v_T— i WV
IV
vV BD

(b) global modelling

Figure 3.1.: Critical distance charts.

3.5.2 Pattern Set Discovery

For the pattern set discovery, we compare the all selector, the minimum con-
fidence selector, the greedy confidence selector, and the two forward selectors
that utilise exclusive coverage and joint entropy, respectively. Their average
performances on each data set are summarised in Table 3.3. The Friedman
test is used to evaluate these results. It shows that the considered pattern set
discovery methods exhibit significantly different performances. Hence, a post
hoc Nemenyi test is applied whose results are depicted in the critical distance
chart in Figure 3.1(a).

The Nemenyi test identifies three groups of methods whose performances do
not differ significantly. The third and worst group contains the all selector and
the two forward selectors that employ exclusive coverage and joint entropy.
The latter two selectors are slightly but not significantly worse than the all
selector. However, the observed decrease in performance is not significant,
while the 25 selected patterns are only a very small fraction of the total set of
discovered local patterns. Additionally, the two selectors employed a forward
selection which is a greedy approximation of the optimal solution. So, there
may still be some potential that has not been exploited yet.

The second group consists of the all selector and the greedy confidence se-
lector. Both algorithms do not differ in performance, but the greedy confidence
selector selects only 25 local patterns. Consequently, we obtain in this way a

3.5. Experimental Results 81

pattern set that both retains the predictive performance of the total set of lo-
cal patterns and reduces the computational efforts of the subsequent global
modelling step.

The first and best group consists of a single member: the minimum confi-
dence selector. It performs significantly better than all other considered meth-
ods. Hence, it is clearly the optimal choice amongst our selection if we do not
consider the pattern set size. The number of selected patterns is obviously the
reason for the superiority of the minimum confidence selector which selects
all confident local patterns, as this is the only difference to the second best
algorithm greedy confidence selector which selects only the 25 most confident
patterns. The multiplicity of confident local patterns is advantageous as it al-
lows a better coverage of the pattern space and higher diversity of predictions.

In summary, the employment of a pattern set discovery step is obviously ben-
eficial as all selectors which selected a real subset of the total of local patterns
were either comparable to or better than the all selector which is essentially
analogous to skipping the pattern set discovery step. Confidence seems to be
a simple but efficient criterion in this scenario. Since both local pattern dis-
covery algorithms avoid to generate too specific patterns (by a maximum rule
length criterion and a minimum support threshold, respectively), confidence is
in this case not prone to overfitting and may improve the prediction quality of
the selected pattern set.

3.5.3 Global Modelling

For the global modelling, we compare the decoding methods Bayesian decod-
ing, best rule, voting, weighted voting, inverse weighted voting, and linear
weighted voting. Their average performance on each data set is summarised
in Tables 3.4 and 3.5. Analogously to the pattern set discovery step, the
Friedman test is used for the evaluation of these results. Again, it shows
that the considered global modelling methods feature significantly different
performances. Hence, a post hoc Nemenyi test is applied whose results are de-
picted in Figure 3.1(b). Four groups of comparable global modelling methods
may be identified.

The fourth and worst group comprises only the ranking based decoding
methods inverse weighted voting and linear weighted voting. Both meth-
ods use the quality of the covering patterns only for the calculation of a list
of ascending ranking scores. In this way, the exact quality values are not in-
corporated directly. Patterns with close quality values may be assigned highly
different weights by inverse weighted voting and linear weighted voting as
these weights exhibit a hyperbolic or linear decline, respectively.

The third group consists of linear weighted voting and voting. As voting
also ignores the exact quality values, this is not very surprising. Nevertheless,

82 3. Theory Formation

Table 3.4.: Global modelling (part A): average accuracy (including standard de-
viation) per data set of each method.

Data Set BD BR v

Anneal.orig 7783 £.0683 | .7266 £.1609 | .6689 * .2160
Autos 4578 £.0839 | .4903 £.1200 | .3975 £ .1347
Balance-scale .6790 £.0549 | .7013 +.0443 | .3068 + .2768
Breast-cancer .7053 £.0124 | .7141 £.0088 | .5929 £ .1650
Breast-w .7356 £.0984 | .7980 £.1163 | .7079 + .2268
Bridges Version 1 .5142 £ .0653 | .5184 £.0561 | .4184 £ .1554
Cars .7014 £.0039 | .6821 £.0494 | .4373 £.2579
CMC 14520 £.0248 | 4527 £.0245 | .3804 £ .0738
Diabetes 6857 £.0299 | .6920 +£.0331 | .5530 £ .1369
Ecoli .5703 £ .0952 5715 +.1335 4236 + .2281
Glass .5540 £.0858 | .4732+.0807 | .3548 +.1726
Heart-c .7166 £ .0835 | .7380 £.0905 | .6035 =+ .1857
Heart-h .7322 £.0786 | .7671 £.0654 | .6360 % .2174
Heart-statlog 7193 £.0735 | .7378 £.0704 | .6007 £+ .1980
Hepatitis 7478 £.0584 | .7875 £ .0360 | .6670 £ .1460
Iris .5420 £.1283 | .8007 £.1369 | .6787 £ .1548
Labor .6530 £ .1119 .6523 = .0996 .5950 £+ .0816
Lymph .5620 £.1232 | .6729 £.1189 | .5735+.1526
Postoperative-patient-data | .7044 +.0133 | .6856 +.0517 | .5067 +£.1748
Solar-flare-c .8511 £.0012 | .8259 £.0467 | .5567 £ .3217
Tic-tac-toe .7501 £.0574 | .8390 +£.1253 | .5770 £ .1664
Titanic 4131 £.1801 | .7317 £.0434 | .4344 +.1743
Vowel 3166 £ .1726 .3067 £ .1763 2172 £.1897
Yeast 14030 + .0650 4070 £+ .0787 .2570 £.1758
Zoo 7057 £.2316 | .6957 £.2274 | .6330 £ .2011
Average Rank 3.00 2.24 5.88

the linear weighted voting seems to be more on a par to voting than inverse
weighted voting is. A reason for this could be that the above-mentioned decay
of weights is less severe for linear weighted voting than for inverse weighted
voting (linear versus hyperbolic).

The second group contains voting, best rule, and Bayesian decoding. Al-
though the latter two methods utilise the quality values of the covering pat-
terns and feature therefore slightly better performances, they are comparable
to voting which ignores, as mentioned above, these values. However, the two
methods belong to the next group of comparable methods, too.

The first and best group comprises the three methods weighted voting, best
rule, and Bayesian decoding which employ the accuracy values of the cover-
ing patterns. The performance of the probabilistic Bayesian decoding is a little
bit lower than the performance of the other two methods. Bayesian decoding
assigns for every pattern an estimated probability to each class. In this way,
it may happen that classes that are predicted by many weak patterns are pre-
ferred as the voting scores of classes that are covered by fewer but stronger
patterns slowly decrease. So, we assume that single (or fewer) strong pat-
terns are preferable to a bigger number of weak patterns, especially if those
patterns exhibit (high) redundancy. This assumption is supported by the fact

3.5. Experimental Results 83

Table 3.5.: Global modelling (part B): average accuracy (including standard de-
viation) per data set of each method.

Data Set v \% wv

Anneal.orig .6883 +£.1912 | .7106 +£.1750 | .7461 £.1774
Autos 4295 +£.1217 | .4673 £.1072 | .4770 £ .1042
Balance-scale .3869 £ .2607 | .6147 £.1255 | .7047 £ .0377
Breast-cancer .6070 +£.1710 | .6532 +.1313 | .7190 +£.0183
Breast-w 7647 £.2128 | .7677 £.2125 | .8227 £.1398
Bridges Version 1 4865 = .0837 | .5207 +£.0714 | .5345 +.0823
Cars .5188 +£.1803 | .6364 +£.1441 | .7012 £.0712
CMC 14033 +£.0530 | .4288 £.0485 | .4522 +.0241
Diabetes .5871 +£.1257 | .6342 +£.1133 | .6932 £ .0339
Ecoli 14928 + .2258 | .5716 £.2002 | .6280 £.1719
Glass 4316 +.1478 | .4737 £.1452 | .5186 £.1175
Heart-c .6744 £ .1491 | .7086 £ .1341 | .7433 £.0922
Heart-h .6721 +£.1907 | .7304 £.1308 | .7704 £.0715
Heart-statlog .6426 £ .1710 | .7074 £ .1387 | .7493 £ .0794
Hepatitis .7488 £ .0671 | .7780 £.0562 | .7826 £ .0470
Iris .7433 +£.1254 | .8040 +.1087 | .8260 +.1305
Labor .6343 £.0851 | .6393 £.0860 | .6390 £ .0990
Lymph .6374 £.1320 | .6617 £.1505 | .6784 £.1229
Postoperative-patient-data | .5478 £.1412 | .6044 +£.1200 | .6556 +.0829
Solar-flare-c .6156 +.2583 | .7136 £.2261 | .8217 £.0495
Tic-tac-toe .5972 +£.1673 | .7309 £.0443 | .7496 £ .0572
Titanic .5522 +£.2054 | .5829 +£.2134 | .7722 £ .0193
Vowel .2514 +.1847 .2965 £ .1848 .3201 £ .2003
Yeast .3082 +.1289 | .3993 +£.0942 | .4076 £ .0867
Zoo .6850 +.2202 | .7056 +.2387 | .7026 £ .2338
Average Rank 4.80 3.40 1.68

that the method best rule, whose predictions are based only on a single but
strong pattern, ranks before Bayesian decoding, which uses all covering pat-
terns. Nevertheless, weighted voting, which performed best, also exploits the
confidence scores of all covering patterns. However, this increases only the
voting scores of the predicted class by summation. Thus, the above-mentioned
problem of Bayesian decoding is mitigated because the weak patterns of a class
do not influence the scores of other classes and the voting score of the class
increases only slowly.

In summary, the members of the best group global modelling methods
weighted voting, best rule, and Bayesian decoding that exploit the quality
values of the local patterns performed better than the methods voting, lin-
ear weighted voting, and inverse weighted voting which use this information
only indirectly as a coarsened or derived vote. Voting that assigns only the
value of 1 to the predicted class independent of the pattern quality is still com-
parable to best rule and Bayesian decoding. Inverse weighted voting and linear
weighted voting that derive ranking based votes are significantly worse than
the above-mentioned best group.

84 3. Theory Formation

3.6 Summary

In this chapter, we concerned ourselves with the question, how a set of local
patterns may be utilised to obtain optimal predictions. Since the generic LeGo
framework solves this problem by partitioning it into three steps: the local
pattern discovery, the pattern set discovery, and the global modelling, we split
the problem into three subquestions that we aimed to investigate. To this end,
we performed an empirical comparison of a selection of methods for each of
the three associated steps:

* Local pattern discovery: How is an optimal local pattern set discovered?

For the local pattern discovery step, we compared the two discovery al-
gorithms BSD and CHARM. The performance of both algorithms did not
differ significantly, even as the discovery approaches of these algorithms
differ in various aspects (e.g. the employed evaluation methods or search
strategy). In summary, the two employed local pattern discovery algo-
rithms are interchangeable in this process.

* Pattern set discovery: How is an optimal pattern set selected?

For the pattern set discovery step, we compared five methods: the all se-
lector which is essentially analogous to skipping the pattern set discovery
step, the two confidence-based methods minimum confidence selector
and greedy confidence selector, and the two methods exclusive cover-
age and joint entropy that employed a forward selection. Since all the
methods were better or at least comparable to the all selector, the pat-
tern set discovery step is clearly worthwhile. The two confidence-based
methods performed better than the other three methods. In the case
of the minimum confidence selector, the performance was significantly
better than those of the remaining methods. Since both employed local
pattern discovery algorithms feature an integrated overfitting avoidance,
confidence’s known proneness to it does not come into effect. Hence,
confidence is a simple but efficient criterion in this setting.

* Global modelling: How is a pattern set optimally employed as a global
model?

For the global modelling step, we compared six methods: Bayesian de-
coding, best rule, inverse weighted voting, linear weighted voting, vot-
ing, and weighted voting, that differ in their approach to exploiting the
covering information. Weighted voting, best rule, and Bayesian decoding
that exploit the exact quality values of the local patterns performed better
than the methods voting, linear weighted voting, and inverse weighted
voting which use this information only indirectly either as a binary or
derived ranking based vote.

3.6. Summary 85

In summary, we conclude that the optimal way to utilise local patterns for
prediction is to select a pattern set according to the confidence values of the
patterns and simply add up these confidence values for a global prediction.

86 3. Theory Formation

4 Probability Estimation

In this chapter, we focus on the question, how a set of local patterns may be
utilised to obtain proper class probabilities. Such a class probability represents
the likelihood that a data instance belongs to the associated class. The knowl-
edge of these probabilities may be advantageous, since occasionally a simple
prediction may turn out to be inadequate. Many practical applications require
a finer distinction between instances than is provided by the simple prediction
of class labels. For example, one may want to be able to provide a confidence
score for the certainty of a prediction or rank instances according to their prob-
ability of belonging to a given class. These and many other tasks may be solved
if class probabilities are available.

Unfortunately, class probabilities are usually unknown and may not be de-
termined exactly. This problem may be solved by the estimation of class prob-
abilities on the basis of the available data. Basically, the estimated class prob-
abilities for a given instance are based on the correlation between its attribute
values and the observed attribute values for each class. Consequently, the con-
sidered data may hamper the class probability estimation in two ways. First,
data sets are usually only samples that cover only small parts of the whole data
space. Such a sample may not be representative for the whole and thus lead
to falsified probability estimations. Second, the data may contain noise which
may also have a negative effect on the probability estimation, as it may distort
the relation between attribute values and classes.

Thus, we are going to investigate how class probabilities may be estimated
as accurately as possible, using a given set of local patterns. This problem may
be divided into two sub task: the probability estimation and the probability
aggregation. As we will see, the probability estimation may be further split
into the basic probability estimation and shrinkage tasks. We are going to
examine the three aforementioned tasks in this chapter:

* Basic probability estimation: The first and fundamental task aims to
determine the class probabilities of a given data instance under observa-
tion of a single covering local pattern. For this purpose, we employ basic
probability estimation methods which estimate probability distributions
on the basis of the statistical properties of the considered pattern.

* Shrinkage: The second task addresses the meta technique shrinkage that
intends to improve the probability estimates of (low coverage) patterns
by smoothing the estimates of the basic methods.

87

* Probability aggregation: The third and last task deals with the aggrega-
tion of the class probability estimates of several covering patterns. To
this end, we utilise well-known aggregation methods to combine the
probability estimations generated by the first task. In this way, a sin-
gle, preferably more accurate class probability distribution is obtained.

The remaining chapter is organised as follows. First, we will explain the mo-
tivation for our work on probability estimation for rule learning in Section 4.1.
Afterwards, we briefly describe the basics of probabilistic rule learning in Sec-
tion 4.2, recapitulate the basic probability estimation techniques in Section 4.3
and explain our adapted shrinkage approach in Section 4.4. Next, we investi-
gate how the class probability distributions of multiple covering patterns may
aggregated into a single one in Section 4.5. The performance of the introduced
probability estimation techniques are evaluated in our experiments which are
described in Section 4.6 and analysed in Sections 4.7 and 4.8. In the end, we
summarise our conclusions in Section 4.9.

4.1 Motivation

The main focus of learning algorithms, such as decision tree learners and pat-
tern discovery algorithms, is to produce a comprehensible explanation for a
class variable. However, many practical applications, as mentioned before, re-
quire a finer distinction between instances than is provided by a prediction
of class labels. For example, one would like to provide a confidence score
that estimates the certainty of a prediction, rank instances according to their
probability of belonging to a given class, make cost-sensitive predictions, or
combine multiple predictions into a single one. All these problems may be
solved straightforwardly if we can predict a probability distribution over all
classes instead of the simple prediction of a single class value.

As decision trees share some similarities with rule-based local patterns and
global models (for instance, a decision tree may be modelled as a decision
list), we took the preliminary work on probability estimation on the basis of
probabilistic decision trees (so-called probability estimation trees (PETS)) as a
starting point for our considerations. A straightforward approach to estimate
probability distributions using classification patterns is to compute the frac-
tions of the covered instances for each class. However, this naive approach has
obvious disadvantages, such as that patterns that cover only a few instances
may lead to extreme probability estimates. Thus, the probability estimates
need to be smoothed.

A very simple but quite powerful technique for improving class probability
estimates is the utilisation of m-estimates, or their special case, the Laplace-
estimate [Ces90]. [PD0O3] showed that unpruned decision trees with Laplace-

88 4. Probability Estimation

corrected probability estimates at the leaves produce quite reliable probabil-
ity estimates. [FFHO3] proposed a recursive computation of the m-estimate,
which uses the probability distribution at level k as the prior probabilities for
level k + 1. [WZ06] used a general shrinkage approach, which interpolates
the estimated class distribution at the leaf nodes with the estimates in interior
nodes on the path from the root to the leaf. Instead of trying to improve the
probability estimates for each individual leaf, one can also resort to averaging
multiple estimates, thereby reducing the variance of the resulting probability
estimates. For example, a technique based on bagging multiple unpruned de-
cision trees was used in [Dom99] to obtain improved probability estimates,
which were subsequently used for cost-sensitive classification.

An interesting observation is that, contrary to classification, class probabil-
ity estimation by decision trees typically works better on unpruned trees than
on pruned trees. The explanation for this is simply that, as all instances in a
leaf receive the same probability estimate, pruned trees provide a much coarser
ranking than unpruned trees. [HV09] have provided a simple but elegant anal-
ysis of this phenomenon, which shows that replacing a leaf with a subtree can
only lead to an increase in the area under the ROC curve (abbreviated AUC),
a commonly used measure for the ranking capabilities of an algorithm. Of
course, this only holds for the AUC estimate on the training data, but it still
may provide a strong indication why unpruned PETs typically also outperform
pruned PETs on the test set.

In contrast to the amount of work on probability estimation by decision trees,
there has been hardly any systematic work on probability estimation on the ba-
sis of local patterns. A key difference between probability estimation based on
decision trees and local patterns is that, in the case of decision trees, prob-
ability estimates will not change the prediction for an instance, because the
predicted class only depends on the estimated probability distribution of a sin-
gle leaf of the tree, and such local probability estimates are typically monotone
in the sense that they all maintain the majority class as the class with the max-
imum probability. In the case of pattern discovery, on the other hand, each
instance may be classified by multiple rules, which may possibly predict differ-
ent classes. As many tie breaking strategies depend on the class probabilities,
a local change in the class probability of a single rule may change the global
prediction of the pattern-based classifier.

Because of these non-local effects, it is not evident that the same methods
that work well for decision tree learning will also work well for pattern dis-
covery. For example, the above-mentioned argument that unpruned trees will
lead to a better (training set) AUC than pruned trees, does not straightfor-
wardly carry over to pattern discovery, because the replacement of a leaf with
a subtree is a local operation that only affects the instances that are covered
by this leaf. In pattern discovery, on the other hand, each instance may be

4.1. Motivation 89

covered by multiple patterns, so that the effect of replacing one pattern with
multiple, more specific patterns is less predictable. Moreover, every instance
will be covered by some leaf in a decision tree, whereas each pattern-based
classifier needs to induce a separate default pattern that covers the instances
that are covered by no other pattern.

4.2 Probabilistic Patterns

In this part of our work, we will focus on, as mentioned before, probabilistic
patterns which are an extension of regular classification patterns of the form

condition; A--- Acondition, = I “4.1)

that we have dealt with so far. Contrary to such regular patterns, probabilistic
patterns do not simply predict a single class label [but a probability distribution
over all possible class values:

condition; A--- Acondition, = (Pr(ll|r 2d), -, Pr(lylr 2 d)) (4.2)

class probabilities

This probability distribution consists of all probabilities that a covered instance
d belongs to any of the classes in the data set, so we get one conditional class
probability per class

Pr(l;|r 2 d). (4.3)

When a probabilistic rule is used for classification, covered instances are then
classified with the most probable class. Note that all instances which are clas-
sified by the same pattern receive the same probability distribution. Therefore,
the probability distribution of each pattern can be calculated in advance.

Obviously, the set of class probabilities can be denoted as a vector of proba-
bilities sorted by the class ordering:

Pr(Llr 2d) = (Pr(ly|r 2 d), -+, Pr(llr 2 d)) (4.4)
On the vector Pr(L|r 2 d) we define the following maximum function

max (Pr(L|r 2 d)) = l aLxPr(llr D d). (4.5)

On sets of class probability vectors U§=1 {ﬁr(L|rj) d)}, we define the average
function

=

. 1~
avg(Uf:1 {Pr(L|r; 2 d)}) =7 r(L|r; 2 d) (4.6)

j=1

90 4. Probability Estimation

and the multiplication

mult (U;{:l {ﬁr(Llrj o) d)}) 4.7)
- (TT5_, Pr(tlry 2 d), -+ T, Pr(ty Iy 2 4))
H(]‘[’;:l Pr(lylr; 2 d), -, [T, Pr(lpylr; 2 d))”1

Obviously, the results of the average and multiplication functions are again
class probability vectors.

4.3 Basic Probability Estimation

In this section, we will review the three basic probability estimation methods
that we employ in our experiments. The probability estimates of these methods
are based on the relation between the number of instances covered by the
pattern n, and the number of instances that are covered by the pattern but also
belong to a specific class n,;. The exact differences between these methods are
minor modifications of the calculation of this relation.

* Precision: The simplest approach to pattern probability estimation is
precision. It estimates directly a class probability distribution of a pattern
by the fraction of instances that belong to each class:

nr,l
Pr(llr2d)=— (4.8)
prec n

r

This naive approach has several well-known disadvantages, most notably
that patterns with a low coverage may lead to extreme probability val-
ues. For this reason, [Ces90] suggested the use of the Laplace- and m-
estimates.

* Laplace-estimate: The Laplace-estimate modifies the above-mentioned
relation by adding one additional instance to the counts n,; for each
class I € L. Hence, the number of covered instances n, is increased by
the number of classes |L|:

n.; +1
Pr (I|r 2d)= "
laplace n, +|L|

(4.9)

It may be viewed as a trade-off between Pr,,..(I|r 2 d) and an a priori
probability of Pr(l) = 1/iz| for each class. Thus, it implicitly assumes a
uniform class distribution.

4.3. Basic Probability Estimation 91

* m-Estimate: The m-estimate [Ces90] generalises this idea by making
the dependency on the prior class distribution explicit, and introducing
a parameter m, which allows to trade off the influence of the a priori
probability Pr(l) and Pr,,:

n.; +m-Pr(l)
Pr (rod)=—>——~- (4.10)

m-estimate n.+m

The m-parameter may be interpreted as a number of instances that are
distributed according to the prior probability, which are added to the
class frequencies n,;. The prior probability is typically estimated from
the data using Pr(l) = m/|p| (but one could, e.g., also use the above-
mentioned Laplace-correction if the class distribution is very skewed).
Clearly, the Laplace-estimate is a special case of the m-estimate with m =
|L| and Pr(l) = |1—|

4.4 Shrinkage

Frequently, patterns cover only a small number of instances. This fact can
be disadvantageous for the pattern-based probability estimation, as using a
small number of instances for the estimation may lead to coarse and uncer-
tain probabilities that need to be smoothed. Shrinkage, which is regularly
used in statistical language processing [CG99, MS99], is a general approach
for smoothing such probabilities, which has been successfully applied in vari-
ous research areas. Its key idea is to “shrink” probability estimates towards the
estimates of its generalised patterns ry, which cover more instances. This is
quite similar to the idea of the Laplace- and m-estimates, with two main differ-
ences. First, shrinkage does not only incorporate the prior probability (which
would correspond to a pattern covering all instances) but also interpolates be-
tween several different generalisations of a pattern. Second, the weights for
the trade-off between these probabilities are not specified a priori (e.g. as it is
the case for the m-parameter in the m-estimate), but they are estimated from
the data.
In general, shrinkage estimates the probability Pr(l|r 2 d) as follows:

Ir]

Pr (lr2d)= > w;Pr(llry), (4.11)

hrink
shrinkage =

where w; ; are weights that interpolate between the probability estimates of the
generalised patterns r;. In our implementation, we use only the generalisations
of a pattern that can be obtained by deleting a final sequence of conditions.

92 4. Probability Estimation

Thus, for a pattern r of length |r|, we obtain |r| + 1 generalisations r;, where
ro is the pattern covering all examples, and ry,| = r is the original one.

For instance, the rule condition; A condition, A condition; = [has the
following 4 (size + 1) generalisations:

* ry: condition; A condition, A condition; = [
* 1y : condition; A condition, = 1

* r; :conditiom\A = [

* 1y:true = 1

The weights w;; can be estimated in various ways. We employ a shrinkage
method proposed by [WZ06] which is intended for decision tree learning but
can be straightforwardly adapted to our task. The authors propose to estimate
the weights w;; with an iterative procedure which averages the probabilities
obtained by removing training instances covered by this pattern. In effect, we
obtain two probabilities per pattern generalisation and class: the removal of an
instance of class [leads to a decreased probability Pr_(I|r; 2 d), whereas the
removal of an instance of a different class results in an increased probability
Pr (I|r; 2 d). Weighting these probabilities with the relative occurrence of
training instances belonging to this class, we obtain a smoothed probability

Tlr_’l nr, — Tlr_’l
Pr (|rj2d)=—=-Pr_(l|r;2d)+ —=-Pr,(l|r;2d) (4.12)
n n

Smoothed rj rj
Using these smoothed probabilities, this shrinkage method computes the
weights of these nodes in linear time (linear in the number of covered in-
stances) by normalising the smoothed probabilities separately for each class.

PrSmoothed(l |rj 2 d)
W .

i = G (4.13)
Zi:o PrSmoothed(llri 2 d)

Multiplying the weights with their corresponding probability, we obtain
“shrinked” class probabilities for the instance.

4.5 Probability Aggregation

In the previous two sections, single covering patterns were utilised for the
class probability estimation, respectively. We suppose that the probabilities
obtained in this way may be improved by the employment of multiple patterns
for the class probability estimation, similarly to the predictive improvement of

4.5. Probability Aggregation 93

ensemble learning. Thus, we are going to investigate now how the probability
estimates of two or more covering patterns may be aggregated into a single
probability distribution.

To this end, we assume that there are |E| pattern sets R; available that were
arbitrarily generated (e.g. by an ensemble learning method). For prediction,
we determine first the covering patterns of each pattern set R;(d) for a given
instance d.

Let Cov;(d) denote the set of all class probability distributions that originate
from a pattern in the set of covering patterns

Cov;(d) = {Pr(L|r 2 d)|r € R(d)}. (4.14)

From this set of class probability distributions of the covering patterns, we try
to estimate a class probability distribution for the given instance d. For this
purpose, we have to decode the probability estimations of these covering pat-
terns Pr(L|r 2 d) into a single normalised global class probability distribution
ﬁrglobal(d)-

For our approach, we consider four aggregation methods. The first three
methods have in common that they average the class probability distributions
of (some of) the covering patterns.

* Best rule: Only the most confident covering rule Pr(L|r 2 d) of each
covering rule set R;(d) is determined.

ﬁri = argmax (ﬁr(LIr 2> d)) (4.15)

Pr(L|r2d)eCov;

Afterwards, the class probability distributions of these rules are averaged
and the result is normalised:

an(ﬁI'l, cee ,§T|E|)
||avg(ﬁr1, s ,§r|E|)”1 '

Pryiopar(d) = (4.16)

* Macro averaging: All covering rules are determined and their class prob-
ability distributions are macro-averaged in two steps. First, the class
probability distributions Cov;(d) of each covering rule set R;(d) are av-
eraged and normalised:

Pr. = avg (Cov;(d))
 llavg (Covi(d))lly

(4.17)

Next, these local class probabilities are averaged as above (see Equa-
tion 4.16).

94 4. Probability Estimation

* Micro averaging: All covering rules are determined and their class prob-
ability distributions are micro-averaged. Essentially, this means that all
learned rules are pooled, and the average is formed over the resulting set
of rules:

avg (Covl(d) U---u C0V|E|(d))
||avg (Covl(d) U---u Cov|E|(d))H1

P_)rglobal(d) = (418)

* Bayesian decoding: All covering rules are pooled as above (see micro
averaging), but their class probability distributions are multiplied with
each other and with the vector of the a priori class probabilities (see
Equation 3.13)

Prprior = (Pr(ly), -+, Pr(lyy)).

Thus, ﬁrglobal(d) is calculated as follows

mult (Ulill Cov;(d) U {ﬁrprior})
‘mult (Uill Cov;(d) U {ﬁrprior})"l

15’rglobal(d) = ’ (4.19)

4.6 Experimental Setup

For the evaluation of the performance of the previously introduced probability
estimation methods, we perform two experiments within the WEKA framework
[WFHP16]. In our first experiment, we investigate the performance of the basic
probability estimation techniques and the shrinkage method, and analyse the
impact of the pattern discovery algorithm on the probability estimation. In
our second experiment, we evaluate the impact of the previously introduced
aggregation methods on the probability estimation on the basis of multiple
patterns.

The common experimental setup of these experiments will be described in
this section. To this end, we summarise first the pattern discovery algorithm
that was employed in both experiments to generate the probabilistic patterns.
Afterwards, we explain the evaluation of the first and second experiments. The
specific configurations and results of these experiments will be discussed in the
subsequent sections.

4.6. Experimental Setup 95

4.6.1 Pattern Discovery

The probability estimation on the basis of local patterns does not impose
any obvious requirements on the employed local pattern discovery algorithm.
Thus, every local pattern discovery algorithm could be used to generate the
utilised patterns. We decided to employ the rule learning algorithm JRip, the
Weka [WFHP16] implementation of Ripper (see Section 2.4.5), instead of the
algorithms BSD or CHARM, which we used in our previous experiments, for
the pattern discovery, since Ripper is a widely known and accurate algorithm.
Furthermore, Ripper (and consequently JRip) features two interesting compo-
nents: its integrated incremental reduced error pruning and its two generation
modes, whose effects on the probability estimation we are going to investigate
in our experiments, too.

JRip allows to switch its integrated incremental reduced error pruning on or
off (see Section 2.4.5). In this way, we are able to test if pruning has the same
impact on the probability estimation for pattern discovery as it has on decision
tree learning (see Section 4.1). Note, however, that with turned off incremen-
tal reduced error pruning, JRip still performs pre-pruning using a minimum
description length heuristic. Ripper features two generations modes: the un-
ordered and ordered mode whose effects on the probability estimation will be
examined as well. Regrettably, JRip does not support the unordered mode, so
we had to add a reimplementation of that mode to it. The Weka framework
supports a general one-against-all procedure that can also be combined with
JRip. Unfortunately, we could not use this procedure because it does not allow
to directly access the pattern statistics that are needed for the probability esti-
mation. We also added a few other minor modifications which were necessary
for the probability estimation, e.g. the collection of statistical counts of the
patterns.

4.6.2 Evaluation

Both experiments are evaluated on 30 data sets of the UCI repository [Lic13]
which differ in the number of attributes (and their categories), classes, and
training instances (see Table 4.1). As a performance measure, we use the
weighted area under the ROC curve (wWAUC), as used for probabilistic decision
trees by [PDO3]. Its key idea is to extend the binary AUC to the multi-class case
by computing a weighted average of the AUCs of the one-against-all problems,
where each class [is paired with all other classes:

n

WAUC(c,D) = »_ —LAUC(c, Dy, D\ D)) (4.20)

leL| |

96 4. Probability Estimation

Table 4.1.: Data sets used in the experiments with the number of instances,
number of nominal and numeric attributes, and number of classes.

Attributes
Data set Instances | Nominal | Numeric | Classes
Aneal.orig 798 29 9 6
Audiology 226 69 0 24
Autos 205 10 15 7
Balance-scale 625 0 4 3
Breast-cancer 286 9 0 2
Breast-w 699 0 9 2
Colic 368 15 7 2
Credit-a 690 9 6 2
Credit-g 1000 13 7 2
Diabetes 768 0 8 2
Glass 214 0 9 7
Heart-c 303 7 6 5
Heart-h 294 7 6 5
Heart-statlog 270 0 13 2
Hepatitis 155 14 5 2
Hypothyroid 3772 22 7 4
Ionosphere 351 0 34 2
Iris 150 0 4 3
Kr-v-kp 3196 37 0 2
Labor 57 8 8 2
Lymph 148 15 3 4
Primary-tumor 339 17 0 22
Segment 2310 0 19 7
Sick 3772 22 7 2
Sonar 208 0 60 2
Soybean 683 35 0 19
Vehicle 846 0 18 4
Vote 435 16 0 2
Vowel 990 3 10 11
Zoo 101 15 1 7

For the evaluation of the results, we either use the Friedman test with a
post hoc Nemenyi test for the comparison of multiple methods or the Wilcoxon
signed ranks test for the comparison of two methods as proposed in [Dem06]
(see Section 2.4.4). The significance level was set to 5% for all tests.

4.7 Experiment 1: Probability Estimation

In our first experiment on probability estimation, we investigate the probabil-
ity estimation for single local patterns using the previously introduced basic
probability estimation methods and shrinkage. We evaluate the performance
of these methods and the influence of the employed local pattern discovery al-
gorithm on the probability estimation. To this end, we consider four question:

* Basic probability estimation: Which basic probability estimation
method exhibits the best performance?

4.7. Experiment 1: Probability Estimation 97

* Shrinkage: Does the introduced shrinkage method improve the perfor-
mance of the basic probability estimation methods?

e Pattern discovery - ordered vs. unordered generation: What is the
influence of the local pattern discovery in respect to the ordered and
unordered generation mode?

e Pattern discovery - pruning What is the impact of pruning on the per-
formance of the probability estimation?

To answer these questions, we use the following experimental setup. We
pair each of the four configurations of our extended JRip (using its unordered
or ordered mode and switching pruning on or off) with the 5 different ba-
sic probability estimation methods: precision, the Laplace-estimate, and the
m-estimate with m € {2,5,10} (abbreviated B L, M=2, M=5, and M=10, re-
spectively). All basic probability estimation methods are both used stand-alone
as a basic probability estimate (abbreviated with B) or in combination with the
described shrinkage method (abbreviated with S). As a baseline, we also in-
clude the performance of the pruned and unpruned regular JRip, accordingly.
Our unordered implementation of JRip that uses the Laplace-estimate stand-
alone for the probability estimation is comparable to the unordered version of
Ripper, which is, as mentioned before, not implemented in JRip.

In the test phase, all covering patterns are selected for a given test instance.
Using this reduced pattern set, we determine the pattern whose prediction is
most probable. For this purpose, we select the most probable class of each
pattern and use this class value as the prediction for the given test instance
and the class probability for comparison. Ties are solved by predicting the least
represented class. If no covering rules exist, the class probability distribution
of the default rule is used. We only discuss summarised results in this section,
detailed results may be found in Appendix B.

4.7.1 Basic Probability Estimation

In our first evaluation, we compare the performance of the basic probability
estimation methods. To this end, we calculate their average weighted AUC per
data set (see Table 4.2), considering only the experimental configurations that
employ the basic probability estimation methods stand-alone. The Friedman
test shows significant differences in performance for these methods. Hence,
we employ a post hoc Nemenyi test whose results are depicted in Figure 4.1.
Regarding this critical distance chart, three groups of methods whose perfor-
mances do not differ significantly may be identified.

The last and worst group consists of the original JRip algorithm, which ranks
last, and precision, which performs insignificantly better than the former. The

98 4. Probability Estimation

Table 4.2.: Basic probability estimation: average weighted AUC of each basic
probability estimation method, including their average rank.

Data Set JRip P L M=2 M=5 M=10
Anneal.orig 9316 .9581 9577 9597 .9591 9578
Audiology .8850 .8831 .8526 .8739 .8676 .8600
Autos 8771 .8863 .8846 .8891 .8869 .8864
Balance-scale .8378 .8438 .8606 .8595 .8613 .8616
Breast-cancer .5942 5856 .5909 .5909 .5912 .5918
Breast-w 9505 .9540 .9538 9537 .9535 .9526
Colic 7794 .7891 .8013 .8013 .8043 .8087
Credit-a .8579 .8717 .8811 .8811 .8818 .8825
Credit-g 5887 .6495 .6546 .6547 .6549 .6553
Diabetes .6903 .7219 .7286 .7287 .7285 .7278
Glass .8043 .8114 .8102 .8104 .8114 .8121
Heart-c 7965 .8047 .8317 .8320 .8325 .8335
Heart-h .7429 .7509 .7710 .7719 .7711 .7716
Heart-statlog 7715 .7861 .8142 .8135 .8154 .8153
Hepatitis .6714 .7001 .7070 .7081 .7062 .7069
Hypothyroid 9795 .9844 9875 9863 .9876 .9873
Ionosphere .8918 .9063 9172 9178 .9190 .9195
Iris 9650 .9300 .9332 .9332 .9332 .9331
Kr-vs-kp 9940 .9963 9968 .9968 .9967 .9965
Labor 7956 .8095 .7921 .7909 .7875 .7814
Lymph 7723 .8088 .8192 .8192 .8137 .8152
Primary-tumor | .6455 .6618 .6466 .6692 .6681 .6678
Segment 9853 .9747 9780 9779 .9780 .9778
Sick 9351 .9458 9520 .9523 .9524 .9522
Sonar 7664 .7903 .7984 .7985 .7985 .7980
Soybean 9719 9799 9759 9814 .9781 9774
Vehicle .8136 .8463 .8591 .8591 .8588 .8588
Vote 9467 9555 9616 .9595 .9616 .9613
Vowel 8968 .9109 9132 9152 .9157 .9135
Z00 9201 .9313 9286 .9436 .9433 .9407
Average Rank 5.200 4.400 3.350 2.600 2.483 3.000

second group comprises precision and the Laplace-estimate. So, the Laplace-
estimate offers a slight but not significant improvement over precision. The
first and best group consists of the Laplace-estimate and all configurations
of the m-Estimate. Since the m-Estimate - independent of the chosen m-
parameter - ranks before all other methods, we conclude that the m-Estimate
is the preferable option amongst the considered probability estimation meth-
ods. The m-Estimate with m = 5 ranks before the other two configurations of
the m-Estimate, but this difference is insignificant. Thus, the results we obtain
are similar to those of the probability estimation on the basis of probability
estimation trees (see Section 4.1).

4.7.2 Shrinkage

In our second evaluation, we investigate the impact of shrinkage on the proba-
bility estimation. To this end, we compare the average weighted AUC per data

4.7. Experiment 1: Probability Estimation 99

. | l | l | l |
JRip : t M=5
Precision M=2
Laplace M=10

Figure 4.1.: Basic probability estimation: critical distance chart.

set over all configurations that employ shrinkage to the similarly computed
weighted AUC that uses the basic probability estimation methods stand-alone
(see Table 4.3). The Wilcoxon signed ranks test shows for this comparison no
significant differences in performance. Shrinkage which worsens the perfor-
mance slightly is still comparable to the basic probability estimation without
shrinkage in general. Hence, we consider the performance of shrinkage for
each basic probability estimation method separately using the comparison ap-
proach as described before (see Table C.1 and C.2 in Appendix C).

For precision and the m-Estimates with m = 5 and m = 10, the Wilcoxon
signed ranks test does not show significant differences in performance, too.
For the m-Estimate with m = 2 and the Laplace-estimate, the Wilcoxon signed
ranks test rejects the null hypothesis that the probability estimation with and
without shrinkage performs equally. However, shrinkage worsens the perfor-
mance of the probability estimation in these two cases. In summary, shrinkage
does not yield any significant increases in performance for the probability es-
timation, independent of the employed basic probability estimation method.
Thus, we do not consider any experimental configurations that employ shrink-
age in the following evaluations of the first experiment and ignore it completely
in our second experiment. Nevertheless, the basic idea of shrinkage could still
offer potential performance increases as alternative approaches have not been
examined or developed, yet.

4.7.3 Pattern discovery - Ordered vs. Unordered Generation

In the third evaluation, we compare the performance of the ordered and un-
ordered pattern discovery modes. For this purpose, we calculate the average
performance for each of these two modes separately, as described above, con-
sidering only the configurations that employ the basic probability estimation
methods stand-alone. The Wilcoxon signed ranks test shows that there is a
significant difference in performance for ordered and unordered pattern sets.
The latter performs significantly better than the former. This result conforms

100 4. Probability Estimation

Table 4.3.: Shrinkage: average weighted AUC of the probability estimation
with and without shrinkage (stand-alone), including the sign, ab-
solute value, and the rank of the difference.

Difference

Data Set Stand-alone Shrinkage | Sign Abs. Rank
Anneal.orig .9585 9553 + .0032 19
Audiology .8674 .8579 + .0095 7
Autos .8867 .8832 + .0035 15
Balance-scale .8574 .8391 + .0183 1
Breast-cancer .5901 .5837 + .0064 11
Breast-w .9535 9569 - .0033 16
Colic .8009 .8101 - .0092 8
Credit-a .8796 .8812 - .0015 25
Credit-g .6538 .6566 - .0028 21
Diabetes 7271 7253 + .0018 24
Glass 8111 .8155 - .0044 13
Heart-c .8269 .8096 + .0173 2
Heart-h 7673 .7655 + .0018 23
Heart-statlog .8089 7979 + .0111 5
Hepatitis .7057 .7166 - .0109 6
Hypothyroid .9866 .9876 - .0010 27
Ionosphere .9160 9150 + .0009 28
Iris 9325 .9288 + .0037 14
Kr-vs-kp .9966 9951 + .0015 26
Labor 7923 7915 + .0008 29
Lymph 8152 .8040 + 0112 4
Primary-tumor .6627 .6714 - .0087 9
Segment 9773 .9638 + .0135 3
Sick .9509 .9487 + .0022 22
Sonar 7967 .7902 + .0065 10
Soybean 9785 9753 + .0033 18
Vehicle .8564 .8570 - .0006 30
Vote 9599 9566 + .0033 17
Vowel 9137 .9089 + .0048 12
Zoo 9375 .9405 - .0030 20

with our expectation that the unordered generation mode of JRip should dis-
cover patterns that are more suitable for the probability estimation than those
patterns that are generated by the ordered generation mode. Optimally, a
probabilistic pattern should feature a preferably high but accurate (estimated)
probability for the most probable class which is predicted for this reason. The
pattern discovery process should be aimed at the generation of patterns whose
probability estimates on the basis of the covered instances satisfy this assump-
tion. Additionally, each class should be represented by a sufficient high number
of accurate patterns in the utilised pattern set to guarantee the diversity of the
probability estimation.

In regard to these assumptions, the two generation modes differ. First, the
probability estimation is based on all instances that are covered by the con-
sidered pattern. In contrast to this, the pattern generation considers only the
instances that have not been covered by previous patterns (in the decision list)

4.7. Experiment 1: Probability Estimation 101

Table 4.4.: Ordered and unordered pattern discovery: average weighted AUC
of the probability estimation using ordered and unordered pattern
discovery, including the sign, absolute value, and the rank of the

difference.
Difference

Data Set Ordered Unordered | Sign Abs. Rank
Anneal.orig 9278 .9860 - .0582 11
Audiology .8340 .8913 - .0573 12
Autos .8643 .9055 - .0412 15
Balance-scale .8136 .8829 - .0693 6
Breast-cancer .5882 .5855 + .0026 30
Breast-w 9463 9641 - .0179 23
Colic .7783 .8327 - .0544 13
Credit-a .8666 .8942 - .0277 18
Credit-g .5997 .7107 - 1110 2
Diabetes 6951 7573 - .0621 9
Glass .8060 .8206 - .0146 26
Heart-c .8083 .8282 - .0199 22
Heart-h .7480 .7849 - .0369 16
Heart-statlog .7871 .8197 - .0326 17
Hepatitis .6290 .7932 - .1643 1
Hypothyroid 9819 9923 - 0103 28
Ionosphere .9039 .9270 - .0231 19
Iris .8868 .9746 - .0878 4
Kr-vs-kp 9941 .9976 - .0035 29
Labor .7810 .8028 - .0218 20
Lymph 7624 8568 - 0945 3
Primary-tumor .6349 .6992 - .0643 8
Segment .9487 .9923 - .0436 14
Sick .9392 .9604 - .0212 21
Sonar 7604 .8266 - .0662 7
Soybean 9704 .9834 - .0131 27
Vehicle .8273 .8862 - .0589 10
Vote 9504 .9662 - .0158 25
Vowel .9026 .9201 - .0175 24
Zoo .8984 .9796 - .0812 5

in both generation modes. Thus, the statistical information that is used for the
generation of a pattern differs usually from the statistical information that is
used for the probability estimation. This difference is less severe in the un-
ordered generation mode as all previously covering patterns predict the same
class (in contrast to this, previously covering patterns may predict different
classes in the ordered generation mode).

Second, the two generation modes treat the most represented class differ-
ently. The ordered generation mode does not induce patterns for this class (ex-
cept for a default pattern). However, the unordered generation mode aims to
generate patterns for each class, allowing more diverse patterns for the biggest
class. Hence, the probability estimation for this class will in the most cases be
more coarse in the ordered generation mode than in the unordered one. Con-
sidering the two aforementioned differences, we conclude that the unordered

102 4. Probability Estimation

Table 4.5.: Pruning: average weighted AUC of the probability estimation with
or without pruning, including the sign, absolute value, and the rank
of the difference.

Difference
Data Set Pruned Unpruned | Sign Abs. Rank
Anneal.orig .9618 9551 + .0067 17
Audiology .8670 .8679 - .0009 28
Autos .8584 .9149 - .0566 2
Balance-scale .8556 .8591 - .0035 24
Breast-cancer .5776 .6025 - .0249 4
Breast-w .9630 9441 + .0189 9
Colic .8032 .7987 + .0044 22
Credit-a .8759 .8833 - .0074 15
Credit-g .6582 .6494 + .0088 13
Diabetes 7373 .7169 + .0204 7
Glass .8207 .8015 + .0192 8
Heart-c .8354 .8183 + .0171 10
Heart-h .7383 .7963 - .0580 1
Heart-statlog .8038 .8141 - .0103 12
Hepatitis .6833 .7280 - .0448 3
Hypothyroid .9895 9837 + 0058 18
Ionosphere 9154 .9166 - .0012 27
Iris 9325 .9326 - .0000 30
Kr-vs-kp .9965 .9968 - .0003 29
Labor .7945 .7900 + .0045 21
Lymph 8192 8112 + 0080 14
Primary-tumor .6643 .6610 + .0033 25
Segment 9736 .9809 - .0073 16
Sick .9490 .9529 - .0039 23
Sonar .7845 .8090 - .0245 5
Soybean 9811 .9760 + .0051 19
Vehicle .8680 .8449 + .0230 6
Vote .9523 .9674 - .0151 11
Vowel 9123 9151 - .0027 26
Zoo 9350 .9400 - .0050 20

generation mode should be more suitable for the probability estimation than
the ordered one.

4.7.4 Pattern discovery - Pruning

In the fourth and last evaluation of our first experiment, we analyse the impact
of pruning on the performance of the probability estimation. To this end, we
consider only the configurations that employ the basic probability estimation
stand-alone and the unordered generation mode. First, we evaluate the perfor-
mance of the pruned and unpruned pattern sets over all the aforementioned
configurations (see Table 4.5). The Wilcoxon signed ranks test does not show
any significant differences between these two approaches. Hence, we repeat
the evaluation for each basic probability estimation method separately (see Ta-
bles C.3 and C.4 in Appendix C). The associated Wilcoxon signed ranks tests

4.7. Experiment 1: Probability Estimation 103

shows mixed results for the four basic probability estimation methods. For the
Laplace-estimate and the three instantiations of the m-estimate, the unpruned
pattern sets perform better than the pruned ones, but this difference is only
significant for the Laplace-estimate. Only for precision, the opposite is true,
since the pruned pattern sets perform significantly better than the unpruned
ones.

The integrated pruning method of Ripper takes place in the context of a de-
cision list. Thus, the determination to prune or re-learn a pattern does not aim
to increase the individual quality of the respective pattern but the quality of
the resulting decision list. In the case of pruning, a more general pattern is
obtained that covers more instances (that may belong to any class). The esti-
mated probability distribution may be more certain as more evidence (in the
form of an increased number of instances) is available. However, the probabil-
ity of the most probable class may be decreased in this way. Consequently, a
pruned pattern may be used less often in our classification scheme since only
the most probable pattern is used for prediction. The results of re-learning
a pattern is even more unpredictable in terms of the probability estimation.
Apparently, the disadvantages of pruning seem to prevail the advantages of
pruning in the context of probability estimation. The only exception to this
observation is the probability estimation using precision. In this case, pruning
offers an insignificant increase of performance. This may be attributed to the
fact that precision is susceptible to overfitting which is reduced by pruning in
general. In summary, we assume that the unpruned pattern discovery is in
general the better choice.

4.8 Experiment 2: Probability Aggregation

In our second experiment on probability estimation, we investigate the ag-
gregation of multiple probability estimations into a single one, using the
previously described probability aggregation methods. For this purpose, we
consider two questions:

* Probability aggregation - number of covering patterns: What is the
influence of the number of covering patterns on the probability estima-
tion?

* Probability aggregation - comparison of probability aggregation
methods: Which probability aggregation method offers the best perfor-
mance?

To answer these questions properly, multiple covering patterns for each data
instance are necessary. As the utilised pattern discovery algorithm Ripper does
not guarantee multiple covering patterns, we decide to employ an ensemble of

104 4. Probability Estimation

classifiers. Consequently, each data instance is covered by at least one pattern
per ensemble classifier. In this way, we are able to adjust the minimum number
of covering patterns by changing the ensemble size, and obtain multiple cov-
ering patterns whose basic probability estimations may be aggregated by the
considered methods.

For the configuration of this approach, we take the results of our first experi-
ments into account. In accordance with these results, we select the m-Estimate
with m = 5, which dominates the group of best performing probability esti-
mation methods, for the probability estimation. As the employed shrinkage
method worsens (insignificantly) the probability estimation, we abstain from
using shrinkage in these experiments. Furthermore, the local pattern discov-
ery algorithm JRip is adjusted to employ the unordered generation mode and
omit pruning, discovering now only unordered unpruned pattern sets. The
base classifier we obtain in this way is combined with the ensemble method
bagging. The main motivation for the employment of bagging is that we can
easily adjust the minimum number of covering patterns by changing the num-
ber of folds. Hence, we considered bagging with 10, 20, 50, or 100 samples,
respectively. For the aggregation of multiple probability estimations, all previ-
ously mentioned aggregation methods best pattern, macro and micro averag-
ing, and Bayesian decoding (abbreviated BR, Mac, Mic and BD, respectively)
are applied to each classifier ensemble. These methods are evaluated mutually
and compared to a bagged version of JRip that uses an analogous configura-
tion (unordered generation mode without pruning) and the same bootstrap
samples.

In all cases, the resulting class probability distribution ﬁrglobal(d) is used
for the prediction. For this purpose, the most probable class, according to
ﬁrglobal(d), is selected as the prediction for the given test instance d. Ties
are solved by predicting the least represented class. If no covering patterns (
R;(d) =) exist for a sampled pattern set R;, the class probability distribution
of the default pattern is used accordingly. We only discuss summarised results
in this section, detailed results may be found in Appendix D.

4.8.1 Probability Aggregation - Number of Covering Patterns

In our first evaluation, we examined the general advantage of a higher num-
ber of patterns. For this purpose, we compared the average performance (over
all data sets) of the four decoding methods mutually and to the average per-
formance of the m-estimate in our first experiments that employed only the
probability estimate of a single pattern. The results of this comparison are
represented in Table 4.6. For each number of folds, the regular bagged JRip
and each aggregation method performed better than the m-estimate in our first
experiments where no aggregation methods were employed. So, one may con-

4.8. Experiment 2: Probability Aggregation 105

Table 4.6.: Probability aggregation: average weighted AUC of each aggrega-
tion method (per number of folds using the m-estimate with m = 5)
and a default bagged JRip (added for comparison).

Number of Folds

Aggregation Method 10 20 50 100
No aggregation (1% experiments) .8864

Bagged JRip 9042 9103 9148 .9167
Bayesian Decoding 9233 9266 .9287 .9295
Best Rule 9217 9256 .9285 .9291
Macro Averaging 9239 9268 .9293 .9299
Micro Averaging 9248 9276 9295 .9302

clude that a higher number of patterns is clearly beneficial for the probability
estimation task. Furthermore, an increase in the number of folds also raised
the average performance of all aggregation methods.

Obviously, a higher number of patterns is beneficial independent of the em-
ployed decoding method as the performance of the probability estimation
increases accordingly. However, the performance increase diminishes with a
higher number of patterns. A possible explanation for this observation is that
at the beginning (new) high-quality patterns may be found more easily, but
later the chance to find less useful patterns, which either are redundant or less
predictive, increases. Clearly, such patterns do not contribute to the overall
probability meaningfully. On the one hand, the aggregation method best rule
will not profit from these less accurate patterns as the most predictive pattern
will not be replaced by these. On the other hand, redundant patterns may dis-
tort the probability aggregations of the other three methods, macro and micro
averaging and Bayesian decoding, because they are considered several times
in their calculation.

In summary, the utilisation of an increasing number of patterns has a positive
effect on the probability estimation, but the gain diminishes slightly with an
increasing number of patterns.

4.8.2 Probability Aggregation - Comparison of Probability Aggregation
Methods

In our second evaluation, we compare the considered probability aggregation
methods. As a starting point, Table 4.6 provides a first indication of their
performance. As one can see they are ranked in a descending order of perfor-
mance as follows: micro averaging, macro averaging, Bayesian decoding, and
best rule. Next, we examine if this observation may be supported by a statisti-
cal test. To this end, we computed a Friedman test for each fold size separately.
For 10 folds, the Friedman test showed significant differences between the em-

106 4. Probability Estimation

Best Rule

[Micro Averaging

Bayesian Decoding Macro Averaging

Figure 4.2.: Probability aggregation: critical distance chart for 10 folds.

ployed aggregation methods. The results of the subsequent Nemenyi test are
depicted in Figure 4.2. Two groups of comparable methods could be identified.
The worst group consists of best rule, Bayesian decoding and macro averaging.
The first group comprises Bayesian decoding, macro averaging and micro av-
eraging. Since micro averaging is the only member of the best group that does
not also belong to the worst group of methods, we consider it as the best choice
of probability aggregation in this scenario. For the other fold sizes, the Fried-
man test could not detect any significant differences between the considered
aggregation methods. Nevertheless, the ranking of these methods (for every
other fold size) was equal to the ranking, that we observed for 10 folds. For a
lower number of folds, the calculation of average probability distributions by
macro and micro averaging seems to profit from hi-quality patterns. With an
increasing number of folds, the performance of the worst aggregation method
best rule approaches to the performance of the other methods. Presumably,
the high quality patterns become lost in an increasing number of (low qual-
ity) patterns with an increasing of number folds. Hence, considering only the
best rule converges to averaging the probability distributions of all covering
patterns. This observation confirms our assumption that at first high quality
patterns are found and later the usefulness of the discovered patterns declines.

Nevertheless, we argue that micro averaging should be chosen for the prob-
ability aggregation as it ranked before the other three methods for all fold sizes
(even if the difference in performance is insignificant).

4.9 Summary

In this chapter, we investigated the question, how class probabilities may be
estimated as accurately as possible, using a given set of local patterns. This
problem may be divided into two associated tasks: the probability estimation
for a single pattern, and the probability aggregation for multiple patterns. For
these tasks, we considered the following aspects:

4.9. Summary 107

* Basic probability estimation: For the basic probability estimation, we

compared the performances of the methods m-Estimate (with m=2, 5,
or 10), Laplace-estimate and precision mutually and to the performance
of the original JRip algorithm. All methods performed better than JRip.
The best performing methods were the three configurations of the m-
Estimate. Among these configurations, the m-Estimate with m=5 ranked
before the two others. However, the difference in performance is insignif-
icant in this case.

Shrinkage: Furthermore, we investigated the impact of shrinkage on the
probability estimation. To this end, we adapted a shrinkage algorithm to
the probability estimation for patterns whose key idea is to improve the
probability estimation of the basic methods by considering the probabil-
ity estimations of selected sub patterns. Unfortunately, the evaluation of
this shrinkage approach showed that it performed worse than the prob-
ability estimation that employs the basic probability estimation methods
stand-alone. In the case of the m-Estimate with m = 2 and the Laplace-
estimate, this difference in performance was even significant. So, we
advise against the employment of this specific shrinkage approach. How-
ever, other approaches could yield better results.

Pattern discovery: Additionally, we examined the impact of the pat-
tern discovery on the probability estimation. In our experiments, we em-
ployed a modified JRip, an reimplementation of the Ripper algorithm,
that offered two configuration options. The first option allowed us to
either utilise the ordered and unordered generation mode of JRip. The
pattern sets discovered by the unordered generation mode performed sig-
nificantly better than the sets obtained by the ordered generation mode.
JRip’s second option enabled us to switch the integrated reduced error
pruning on or off. Unpruned pattern sets performed insignificantly better
than the pruned ones with the exception of the Laplace-estimate where
the difference in performance was even significant and precision where
the pruned pattern sets performed insignificantly better.

Probability aggregation: In our seconds experiments, we examined if
the aggregation of several probability estimations into a single one is
worthwhile and how this aggregation may be achieved. For this pur-
pose, we employed the common aggregation methods macro and micro
averaging, Bayesian decoding and best rule. We observed that the em-
ployment of several estimated probability distributions is clearly advan-
tageous for all of the four methods. Amongst the considered methods,
micro averaging stood out as it performed better than the other three

108

4. Probability Estimation

methods in most of the cases. But its performance was not always signif-
icantly better than the performances of the other methods.

In summary, we advise to employ the basic probability estimation method m-
Estimate on unpruned unordered pattern sets for the probability estimation.
If multiple patterns are used for the probability estimation, their estimated
probability distributions should be aggregated by micro averaging.

4.9. Summary 109

5 Theory Compression

In this chapter, we investigate the question, how a set of local patterns may
be transformed into a compact and understandable model. Pattern discovery
methods may generate sets of local patterns (either independent ones or as
parts of a global model) that often may be hard to interpret. This is even
more true if multiple local pattern sets have been generated (e.g. by an en-
semble learning method). Furthermore, additional means (e.g. the utilisation
of voting methods) may be necessary to obtain predictions with the help of the
(covering) patterns. Both problems, the low interpretability of local pattern
sets and the necessity of a decoding approach, may be solved by the genera-
tion of a global model on the basis of the local pattern set(s).

To this end, we propose a novel approach called rule stacking which adapts
the general meta learning method stacking (see Section 2.4.3.1) to the global
modelling of rule-based local patterns. Rule stacking and the original stacking
differ in three decisive aspects. The first aspect is that the meta data generation
of the two approaches occurs on different levels of granularity. While stacking
encodes the training instances on the basis of the individual predictions of
multiple classifiers, rule stacking takes the covering information of each avail-
able pattern into account. For each instance, the information about which of
these patterns cover it or not is stored. The second aspect is that rule stacking
features an additional retransformation step. In this step, the generated meta
model is retransformed into a compressed global model which is directly ap-
plicable to instances of the original data space (that means that instances do
not have to be translated into meta instances in the prediction phase). For this
reason, the obtained global model may also be more easily interpreted. The
last aspect is that rule stacking may be applied to one or more arbitrary local
pattern sets that do not have to be generated necessarily by an ensemble of
learning algorithms. Thus, we will explain our approach in the general case
that one or more local pattern sets are available for processing.

This chapter is organised as follows. We explain our motivation for our rule
stacking approach and its differences to stacking in Section 5.1. Next, we intro-
duce several notations in Section 5.2 that are necessary to encode the covering
information for our meta data generation approach in Section 5.3. Thereafter,
we show how rule stacking retransforms the meta model (and in this manner
the utilised local pattern sets) into a global classifier in the original data format
in Section 5.4, focusing on the retransformation step of our approach. In the

m

Labelled
Data

Rule Stacking L

Ensemble
Method

y
r3: conditionsy = |y
=1k

Labelled
Meta Data

r4: conditionsy = I,
rs: conditions; = |,
rs: conditions, = I,
=Tk

ry: conditions = I,
ro: conditions; = I
=1k

Learning
Algorithm

r AT |y
=l
=1k

Y

conditionss A conditionss = |,
conditions; = |,
=T

Figure 5.1.: Schematic illustration of the life cycle of a rule stacking scheme,
which uses an ensemble method for the pattern generation.

subsequent Sections 5.5 and 5.6, we describe the setup and the results of our
experiments, which are concluded in the summary in Section 5.7.

5.1 Motivation

Pattern discovery algorithms usually generate large sets of local patterns which
are chosen for their individual quality. With the large number of patterns come
some obvious disadvantages (see Section 2.5.3). Clearly, the interpretation of
local pattern sets as a whole may not be feasible. Even though individual pat-
terns may be more easily interpreted, the interesting ones have to be found in
the large redundant local pattern sets. Additionally, further efforts are needed

112 5. Theory Compression

to obtain global predictions for future data. The most common solutions are
voting methods (see Section 2.4.3.3), which use the prediction of each base
pattern as a (weighted) vote, or the similarity to prediction vectors for the in-
dividual classes (e.g. as used in error correcting output codes [DB95]). The
size of the local pattern sets is a bottleneck for the overall prediction time, since
independent of the employed decoding method, several or all members of the
pattern set are needed for the prediction. Finally, the resulting prediction is
also harder to explain and justify, which is particularly crucial for rule-based
classifiers.

The aforementioned problems may be solved if the local pattern set is trans-
formed or better is compressed into a compact and understandable global
model. A straightforward solution to this approach is the employment of the
covering strategy of separate-and-conquer rule learning (see Section 2.4.2).
Thus, the best patterns in the local pattern set are selected and added to a
decision list one after another, afterwards the covered instances are removed
from the training data. In this way, we obtain a model that is clearly more in-
terpretable than the complete local pattern set. However, it is not guaranteed
that the (potential) predictive accuracy of the set is maintained, since only a
subset of the patterns is used and no new patterns are created.

Alternatively, each member of the local pattern set may be treated as an
individual (but incomplete) local model. Hence, several models have to be
transformed into a single one essentially. This task may be handled by the
ensemble learning method stacking (see Section 2.4.3). Unfortunately, this
approach only partially solves our problem, because the model at the meta
level involves the predictions of the base level, which is still a problem for
both efficiency and comprehensibility. Consequently, we propose rule stacking
as an alternative approach (see Figure 5.1) that adapts the standard stacking
method to our purposes.

This adoption differs from stacking in two major aspects. The first aspect
is the different meta data generation approach. In contrast to stacking, where
each meta instance encodes the prediction of each classifier of the ensemble for
a respective base level instance, rule stacking determines for each base level
instance by which patterns of the local pattern set(s) it is covered and stores
this information in one meta attribute for each pattern, respectively. Our moti-
vation for this approach is the assumption that the covering information yields
more information than the prediction alone. Obviously, knowing which pat-
terns cover an instance is more informative than simply knowing the predicted
class label, and implicitly also captures the predicted confidence or class prob-
ability distribution, which, in a pattern-based classifier, are determined by the
quality of the patterns that cover an instance.

The second aspect is the additional retransformation step. Stacking gener-
ates a meta model which needs instances in the meta level format. To obtain

5.1. Motivation 113

such meta instances, the predictions of all base level classifiers are necessary
which have to be stored for later use for this reason. The main idea of the re-
transformation step is to avoid the transformation of instances (of the original
data space) into meta instances in the prediction phase (including the utilisa-
tion and storage of the base level models). To this end, we retransform the
generated meta model into a global model that may be applied to instances
in the original format, since its patterns consist only of a conjunction of the
original patterns. In this way, the obtained global model is more compact and
interpretable than the local pattern sets or the set of models (the meta model
and the base level models).

In the following sections, we will concentrate on the two above-mentioned
aspects, since the other two steps: the pattern discovery and the generation
of the meta model may be executed arbitrarily (for instance, analogously to
the general stacking approach). To this end, we show how the meta data is
generated in Section 5.3 and how the resulting meta model can be transformed
into a global classifier which can be directly applied to the original instances
in Section 5.4.

5.2 Encoding the Covering Information

Before we may explain our meta data generation approach, we have to intro-
duce three notations that are needed to encode the covering information for
this purpose. Given a pattern r € R and an instance d € D, the first function
covers(r,d) determines whether this pattern covers the considered instance or
not:

true, ifr2d
covers(r,d) =) (5.1)
false, otherwise.
If we assume that the local patterns are members of one or more decision lists
(Ry,Ry,++ ,Rg), two additional functions are feasible. Given a decision list R
and an instance d, the function first(c, d) determines the first covering pattern
in the considered decision list:

first(R,d) = mqin (R(d))eR (5.2)

Finally, the function index(c, d) determines the index of the first covering pat-
tern in the decision list R and a given instance d:

index(R,d) = argmkin(rk €R(d)) €{1,2, -+, [R(d)[} (5.3)

Please note that the functions first and index are used to store the first cov-
ering pattern as a nominal or numerical value, respectively. Now, we have all
functions at hand that are needed for the definition of the meta data in the
following section.

114 5. Theory Compression

r;l e rrcli e rrcl‘lill L
covers(ri*,d;) - covers(rf&, d,) - COVGI’S(T;Ell ,dy) |
covers(rfl, d,) - covers(rf&, d,) - covers(r,cl‘é'| ,dy) | Ly
covers(rfl, dp) - covers(rf&, dp) - covers(r,i‘é'l, dp) | Lip|

(a) using binary features
Cq Co cee ClE| L
first(cy,dy) first(cy,dy) --- first(cg, dy) | L
first(cy,dy) first(cy,dy) -+ first(cp,dy) | Lo
ﬁrst(cl,d|D|) ﬁrst(cz,d|D|) ce ﬁrst(c|E|,d|D|) l|D|
(b) using nominal features
Cq Cy e Clg| L
index(c;,d;) index(cy,d;) -+ index(cpg,d;) |
index(c;,d,) index(cy,dy) -+ index(cig,dy) | Iy
index(cl, d|D|) index(cz, d|D|) tee indEX(C|E|, d|D|) l|D|

(c) using numerical features

Figure 5.2.: lllustration of the modified meta data variants.

5.3 Generating the Meta Data

The first major difference between the standard stacking scheme and our rule
stacking approach is the generation of the meta data. As mentioned before,
pattern discovery methods provide more information than just predictions,
namely the information which patterns cover a given test instance and which
do not. Since we assume that this additional covering information may turn
out to be advantageous for the model induction, we want to exploit this infor-
mation. So, the attributes of our meta data set are not the predictions of base
learners but either the information if a specific pattern covers the instance or
the information which is the first pattern of a given decision list that covers
the instance. This information can, essentially, be encoded at the meta level
in three different ways. These three variants assume that one or more local
pattern sets are available for the meta data generation. While the first variant
is suitable for arbitrarily generated local pattern sets in principle, the two oth-
ers may only be applied to local pattern sets that are organised in a decision
list. Furthermore, the last two variants are only reasonable for multiple local
pattern sets.

5.3. Generating the Meta Data 115

Binary Features: For each pattern in the local pattern set(s), we create
a binary attribute with boolean values. The attribute value is true if the
corresponding pattern covers the instance, else it is false. Thus, a meta
instance is composed of a number of boolean values and, if known, its
original class label.

Meta instance format (for a single local pattern set R): (cf. Figure 5.2 (a))

(covers(rl, d),covers(ry,d), -+ ,covers(rgj,d), l)

Nominal Features: For each decision list R, we create a nomi-
nal attribute whose domain consists of the identifiers of its members
(ry, 73, ,7z) used as nominal values. A meta instance is composed of
the respective first covering pattern of each decision list R; and if known
its original class value.

Meta instance format (for multiple decision lists): (cf. Figure 5.2 (b))

(first(Ry,d), - , first (Rg, d) , 1)

Numerical Features: For each base decision list R, we create a numerical
attribute whose domain consists of its pattern indices ({1,---,|R|}) used
as numerical values. A meta instance is composed of the indices of the
respective first covering rule of each classifier and if known its original
class value.

Meta instance format (for multiple decision lists): (cf. Figure 5.2 (c))

(index(cl,d), e ,index(cm,d),l)

Please note that the default patterns of the base level decision lists are ig-
nored in the meta data generation. Consequently, the resulting meta data set
using nominal or numerical features has the same number of attributes as the
number of decision lists, analogous to the standard stacking approach where
the number of meta attributes is equal to the number of base models. In the
case of binary features, the resulting meta data set has as many attributes
as the total number of patterns in the local pattern set(s). Additionally, bi-
nary features allow two types of pattern conditions. The first one, which is
also used for nominal and numerical features respectively, encodes that an in-
stance d must be covered by the pattern r in the pattern set R (denoted as
covers(r,d) = true) to meet the condition. The second one is analogous except

116 5. Theory Compression

that its test is negated. So, the condition is met if the instance is not covered
by the pattern (denoted as covers(r,d) = false). In our experiments, we will
investigate if negated conditions are a good addition to the first condition type.

Let us illustrate the generation of the meta data set with the help of a toy
example. One of the data sets used in our experiments was zoo (see Sec-
tion 5.5.2), which records the characteristics of animals divided in different
classes (referred to as types in this data set), e.g. insects or invertebrates. The
last classifier of the learned pairwise ensemble tries to distinguish exactly these
two animal classes:

ID | Rule

r, | (airborne = true) = type=insect

r, | (predator = false) A (legs > 6) = type=insect
r; | = type=invertebrate

In the following explanations, we will use this decision list as a local pat-
tern set for rule stacking. Assuming that we want to transform the following
instances (only relevant attribute values are shown):

Name Airborne Predator Legs | Type
Termite false false 6 insect
Lobster false true 6 invertebrate
Crow true true 2 bird

in the respective meta data format, we would get the following values for the
meta attributes belonging to the given decision list (only the meta attribute
values are shown, and the default pattern is ignored):

Name Binary Features Nominal Features | Numerical Feat.
Termite | (---,false,true,insect) | (---,r,,insect) (---,2,insect)
Lobster | (---,false,false,invert.) | (---,rs,invert.) (---,3,invert.)
Crow (--- ,true, false, bird) (---,r,bird) (---,1,bird)

5.4 Retransforming the Meta Model

In this section, we are going to show how the model obtained at the meta level
may be retransformed into the original data format so that it can be directly
used for the classification of unknown instances. This simple idea is the key
advantage of our approach which distinguishes it from previous works on com-
pressing. Eventually, we obtain a single classifier that directly operates on the
base level, as it is composed of all relevant patterns from the rule-based local
pattern sets, and additionally maintains the accuracy of the meta level classi-
fier. In contrast to the original stacking scheme, we do not need to store the

5.4. Retransforming the Meta Model 117

original ensemble of global models (or the local pattern sets), nor do we need
to transform a test instance into the meta format, sparing the use of the afore-
mentioned base classifiers. Furthermore, the obtained retransformed model
is obviously easier to understand or interpret than an ensemble of classifiers
whose predictions are combined by an additional meta model.

The efficiency of this retransformation process depends on the meta feature
generation approach. The proposed meta features (binary, nominal, or nu-
merical features) are based on different assumptions and therefore necessitate
different retransformation schemes. Consequently, they are differently suitable
for the retransformation process. In the following, we will discuss the proper-
ties of each of the suggested meta features and explain why we choose only
one of them for our experiments.

In the case of nominal features, the pattern conditions encode whether a
specific pattern is the first covering one in a decision list (first(R,d) = r).
This type of condition contains additional implicit information, since we know
that all rules which are in a higher position in the decision list did not cover
the instance. So, if we want to retransform this condition we would have
to determine a conjunction of base conditions for each of these predecessor
rules and negate each of these conjunctions. Obviously, this would greatly
boost the size of our retransformed meta classifier. Otherwise, if we ignore
this additional information in the retransformation process, the resulting meta
classifier would be inferior to the meta classifier before its retransformation.
Hence, we assume that nominal features are not a good choice for our purpose.

For numerical features, a conjunction of meta level features may denote
eventually whether the first covering rule lies in a given interval of the base
rules (determined by an interval of indices), i.e., the conditions can be of the
form k < index(R, d) < (please note that open intervals are likewise feasible).
Obviously, this approach is more expressive than the previous one and there-
fore the resulting global rule set could be more compact than in the nominal
case. On the other hand, a back transformation of one condition of this type
does not result in a simple conjunction but in a more complex DNF expression
(a disjunction of conjunctions). If a meta level rule combines multiple such
interval features into a conjunctive rule, the premise of the resulting base level
rule would be a conjunction of DNF expressions. Thus, the direct utilisation of
these features in base level rules results in much more complex rules. One may
consider to compress these complex expressions into simpler DNF expressions,
but we have not yet dealt with this issue because preliminary experiments
showed that this complex approach does not offer any gain in predictive accu-
racy over the simpler nominal or binary encodings. Consequently, we refrain
from using numerical features in our experiments, too.

In the case of binary features, a condition tests whether a specific pattern
covers an instance or not. Hence, we get two possible meta conditions:

118 5. Theory Compression

“covers(r,d) = true” and its negation “covers(r,d) # true” (corresponds to
“covers(r,d) = false”). In both cases, the truth value of the meta condition
can be established by only testing the conditions of a single base rule, all
other rules of the base local pattern set R may be ignored. As the transfor-
mation of negated meta conditions is a bit more delicate we will describe the
conversion of patterns without negated conditions first and address this issue
afterwards. Since we know that the local pattern sets consist of conditions
which are based on rules of the base classifiers, we can distinguish two cases.
In the first case, the global rule consists of only one condition, so we can di-
rectly replace the condition of the global rule with the conditions of the base
rule. In the second case, the global rule consists of more than one condi-
tion hence the conditions must be merged. Each global condition corresponds
to a test if a base rule covers an instance and consequently corresponds to a
conjunction of the conditions of the involved base patterns. Thus, the global
conditions can be merged by concatenating the conjunctions of the conditions
of their corresponding base patterns. Duplicate conditions are removed. Of
the three considered meta feature approaches, the binary one offers the most
promising retransformation process. The retransformation of binary features
is illustrated in Figure 5.1.

As already mentioned, the situation is somewhat more complicated if
negated meta conditions are allowed, because a negated meta condition corre-
sponds to a negated conjunction of base conditions. We currently simply add
the negated conjunction directly to the retransformed rule. This has the effect
that the resulting rule set is no longer in disjunctive normal form (DNF). One
may argue that in this case, rule stacking may have a somewhat unfair advan-
tage over ordinary rule learners which are confined to conjunctions in their
rule bodies. For this reason, we report results on both variants, the one where
negated meta conditions are allowed, and the one where they are forbidden.

5.5 Experimental Setup

The goal of our experiments is to investigate, how well our rule stacking
approach solves the task to transform local patterns into a compressed un-
derstandable model. To this end, we decide to utilise an ensemble learning
method in liaison with a decision list learner to obtain several classifiers. In
this way, we examine whether our rule stacking approach can maintain the
improved performance of a classifier ensemble, and we consider the under-
standability of the compressed global model. As mentioned before, under-
standability is a subjective measure. So, we choose to use the complexity of
the model instead, as it may be regarded as an approximation of the model’s
understandability (less complex models should be easier to understand) and
it may be used to measure the compression of the model, too. Additionally,

5.5. Experimental Setup 119

Table 5.1.: Data sets used in the experiments with the number of instances,
number of nominal and numeric attributes, and number of classes.

Attributes
Data set Instances | Nominal | Numeric | Classes
Aneal.orig 798 29 9 6
Autos 205 10 15 7
Balance-scale 625 0 4 3
Bridges Version 1 107 9 3 6
Cars 1728 6 0 4
CMC 1473 7 2 3
Dermatology 366 34 1 6
Ecoli 336 0 7 8
Glass 214 0 9 7
Hypothyroid 3772 22 7 4
Lymph 148 15 3 4
Optdigits 5620 0 64 10
Pageblocks 5473 0 10 5
Segment 2310 0 19 7
Solar-flare-c 1389 10 0 9
Soybean 683 35 0 19
Splice 3190 60 0 3
Thyroid_hyper 3772 22 7 5
Thyroid_rep 3772 22 7 5
Vehicle 846 0 18 4
Vowel 990 3 10 11
Waveform-5K 5000 0 40 3
Yeast 1484 0 8 10
Zoo 101 15 1 7

we consider the accuracy of the model, since without regard of accuracy the
least complex and in most of the times inaccurate model would be a model
that consists only of a single default rule.

5.5.1 Pattern Discovery & Rule Stacking

In our experiments, we decide to use the ensemble method pairwise class bi-
narisation for the generation of a classifier ensemble and Ripper as its base
learner. This decision is driven by three reasons. First, the diversity of the
learning tasks in the individual ensemble members of pairwise classifiers is
considerably higher than for sampling-based ensemble methods such as bag-
ging, because each base level classifier tackles a different binary learning prob-
lem, whereas bagging tackles different training sets for the same classifier. We
expect that this higher diversity makes it harder to compress the rules into
a single classifier. Second, pairwise theories are obviously hard to interpret.
At last, it is known that a pairwise ensemble of Ripper has a better perfor-
mance than a single standard Ripper [Coh95], and we want to see whether
this improved performance may be maintained.

120 5. Theory Compression

Our experiments are performed within the WEKA framework [WFHP16].
For the pattern generation, we employ again the rule learner JRip (the Weka
implementation of Ripper [Coh95]). As previously mentioned, this reimple-
mentation does not support the unordered mode for learning rule sets, but,
as we only deal with binary base level classification problems obtained by the
pairwise class binarisation of multi-class classification problems [Fiir02], there
is no practical difference between these two modes. However, we employ only
the ordered mode of Ripper as it seemed more adequate for our purposes.
Additionally, both pruning methods of Ripper, the incremental reduced error
pruning and the pre-pruning that uses a minimum description length heuristic
are applied.

For our rule stacking instantiation, the resulting decision lists are trans-
formed into local pattern sets that consists of all their patterns except for the
default rules. In the meta data generation step (see Section 5.4), we employ
binary features only, since the nominal and numerical features are less suited
for the subsequent retransformation step (as we explained in Section 5.3).

5.5.2 Evaluation

We evaluate the above setup on 24 multi-class data sets (see Table 5.1) of the
UCI repository [Licl3]. Since the number of classes differs highly in these
data sets we get a great range of different ensemble sizes. In our experiments,
we always employ binary features at the meta level and either allow negated
meta conditions (abbreviated as w.N., an acronym for with negation) or we
do not (abbreviated as wo.N., an acronym for without negation). We compare
our rule stacking approach (denoted by RS) to the standard JRip and to its
pairwise variant using a pairwise class binarisation (denoted by PW). For this
comparison, we consider the accuracy of each classifier and the size of the
generated model measured by the number of rules and the total number of
conditions of all rules. The number of conditions of our retransformed meta
classifier is determined by removing duplicate conditions, so each condition is
only counted once. The accuracy of each classifier is estimated using a 10-fold
cross-validation. For the evaluation of these comparisons, we use the Friedman
test with a post hoc Nemenyi test as proposed in [DemO06] (see Section 2.4.4).
The significance level is set to 5% for both tests. The results of the Nemenyi
tests are depicted as critical distance charts.

Additionally, we calculate a normalised average complexity score for the
number of rules and rule conditions for both configurations of the rule stacking
approach, for JRip and its pairwise variant. For each data set, we divide their
complexity scores by the maximum, non-redundant complexity of the data set.
Afterwards, we calculate the average complexity of the four compared learning
algorithms. For the number of rules, the maximum complexity is equal to the

5.5. Experimental Setup 121

Table 5.2.: Comparison of the performance of the standard JRip, its pairwise
variant (PW) and rule stacking with (w.N.) or without negated meta
conditions (wo.N.): number of classes (|L|) and pairwise problems
(PP), and accuracy.

Accuracy
Data Set |L| PP JRip PW w.N. wo.N.
anneal 6 15 9532 9488 9521 .9499
autos 6 15 7317 .7512 .7415 .7659
balance-scale 3 3 .8080 .7872 .7904 .7376
bridges v1 6 15 6190 .6286 .6571 .6190
car 4 6 .8646 .9034 8750 .8791
cme 3 3 .5241 .5485 .5336 .5255
dermatology 6 15 .8689 9126 .9262 .9153
ecoli 8 28 .8125 .8155 .8125 .8065
glass 7 21 .6869 .6822 .6963 .6869
hypothyroid 4 6 9934 9939 9939 .9939
lymph 4 6 7770 .7973 .7973 .7973
optdigits 10 45 9078 9496 9301 .9251
pageblocks 5 10 9684 9702 .9693 .9693
segment 7 21 9571 9645 9615 .9216
solar-flare-c 8 28 .8540 .8522 .8534 .8534
soybean 19 | 171 | 9195 .9283 .9092 .9165
splice 3 3 9370 .9455 9486 .9473
thyroid_hyper 5 10 9849 9867 .9870 .9870
thyroid_rep 5 10 9894 9905 .9902 .9902
vehicle 4 6 6856 .7151 .6998 .6927
vowel 11 55 .6970 .8081 .7828 .7525
waveform-5K 3 3 7920 .7922 .7892 .7908
yeast 10 45 .5809 .5788 .5748 .5735
Z00 7 21 .8614 .8713 .9208 .9109
Average .8239 .8384 .8372 .8295
Average Rank 3.13 2.00 2.15 2.73

number of instances as each rule covers only one instance. Since the maximal
length of a rule is equal to the number of attributes, the maximum number
of rule conditions is the product of the number of instances and the number
of attributes. The results of the calculations are summarised in two accuracy-
complexity-charts.

5.6 Results

In our experiments, we investigate how well our rule stacking approach solves
the task to transform local patterns into a compressed understandable model.
For this purpose, we apply rule stacking to local patterns generated by a classi-
fier ensemble and compare the resulting models of rule stacking to the models
of the base classifier and of the classifier ensemble. In our evaluation of the
experimental results, we consider the following three aspects:

* Accuracy: Does rule stacking maintain the (high) accuracy of the classi-
fier ensemble?

122 5. Theory Compression

Table 5.3.: Comparison of the performance of the standard JRip, its pairwise
variant (PW) and rule stacking with (w.N.) or without negated meta
conditions (wo.N.): number of classes (|L|) and pairwise problems
(PP), and size of the model (number of rules and conditions).

Rules Conditions

Data Set L| PP JRip PW WN. WON. | JRip PW WN. WON.
anneal 6 15 14 36 12 12 37 38 36 28
autos 6 15 13 41 14 14 25 42 30 29
balance-scale 3 3 12 15 9 2 39 35 24 2
bridges v1 6 15 5 33 6 7 6 21 12 14
car 4 6 49 66 37 38 195 210 143 146
cme 3 3 5 12 4 4 14 26 15 16
dermatology 6 15 15 39 8 13 27 32 23 39
ecoli 8 28 10 55 9 8 19 35 22 18
glass 7 21 8 42 10 11 18 39 34 37
hypothyroid 4 6 5 16 6 6 11 21 19 16
lymph 4 6 6 14 6 6 8 11 9 9
optdigits 10 45 74 220 80 90 312 391 614 657
pageblocks 5 10 14 36 15 17 30 54 44 53
segment 7 21 24 63 24 25 63 72 85 78
solar-flare-c 8 28 2 33 2 2 4 11 3 3
soybean 19 171 26 355 26 27 45 199 48 56
splice 3 3 14 15 11 12 55 38 43 48
thyroid_hyper 5 10 5 20 6 6 14 29 21 20
thyroid_rep 5 10 8 14 6 6 22 18 16 16
vehicle 4 6 17 31 19 14 43 55 77 56
vowel 11 55 48 199 52 61 138 260 292 325
waveform-5K 3 3 30 46 46 46 121 163 316 284
yeast 10 45 15 127 18 16 38 153 69 59
Z00 7 21 6 43 7 7 6 23 12 15
Average 23,21 17,71 65,46 18,04 18,75 53,75 82,33 83,63 84,33
Average Rank 1,83 3,96 1,98 2,23 1,71 3,33 2,44 2,52

* Complexity: Does rule stacking reduce the complexity of the classifier
ensemble?

* Trade-off between accuracy and complexity: What is the trade-off
between the accuracy and complexity of the models obtained by rule
stacking?

The detailed results of our experiments are shown in Tables 5.2 and 5.3.
We apply a Friedman test to each considered evaluation measure: accuracy,

number of rules and number of conditions.

In all three cases, the test re-

jects the equality of the compared classifiers. So, post hoc Nemenyi tests are
performed, the corresponding CD-charts are depicted in Figure 5.3. For the
trade-off between accuracy and complexity, we chart the four learning algo-

rithms according to their accuracy and complexity in Figure 5.4.

5.6. Results

123

5.6.1 Accuracy

For accuracy, the Nemenyi test identifies two groups of equivalent classifiers
(see Figure 5.3(a)). One can see that the pairwise variant of JRip significantly
outperforms its standard variant, confirming the results of [F{ir02]. Moreover,
both variants of rule stacking are not significantly worse than the pairwise
variant, but allowing negations at the meta level clearly seems to be prefer-
able. While this variant is somewhat worse than the original pairwise version
of JRip, this difference is quite small, and not significant. However, it is still
significantly better than the conventional JRip. On the other hand, the variant
that does not allow negated meta conditions still seems to be preferable over
conventional JRip, but this result is not statistically significant. Similar obser-
vations can be made if the average accuracies of the classifiers are compared
in Table 5.2.

5.6.2 Complexity

Considering the number of induced rules (see Figure 5.3(b)), we discern two
disjunct groups of equivalent classifiers. Pairwise JRip is the single member of
the worst group, i.e., it typically induces larger rule sets than the other three
classifiers. All of them belong to the best group of classifiers, hence their rule
sets are of a comparable size. This finding is also reflected in the average
number of induced rules for each classifier in Table 5.3.

At last, we compare the number of rule conditions of the considered classi-
fiers (see Figure 5.3(c)). Here, the results are more diverse. In essence, both
versions of the rule stacking approach lie in the middle of these two classi-
fiers, being neither significantly worse than JRip nor significantly better than
pairwise JRip. The detailed results in Table 5.3 confirm this diversity, mix-
ing results where the size of the resulting theory is even smaller than JRip’s
(e.g., car or soybean), with results where it is considerably higher than the
simple pairwise approach (e.g. optdigits or waveform500). The latter results
dominate the average values.

5.6.3 Trade-off between Accuracy and Complexity

After the individual evaluation of the two performance measures (accuracy
and complexity), we consider the trade-off between accuracy and complexity
of the considered rule learning algorithms. As mentioned before, we use two
accuracy-complexity-charts to visualise the trade-off between these two mea-
sures. In each of these charts, the standard and the pairwise version of JRip
and our two rule stacking configurations are charted according to their average

124 5. Theory Compression

Critical Distance

4 3 2 1
| 1 | 1 1
—.’_- PW JRip
JRip
RS w.N.
RS wo.N.
(a) accuracy
Critical Distance
4 3 2 1
| 1 1 T 1 X
PW JRip J t— JRp
RS w.N.
RS wo.N.
(b) number of rules
Critical Distance
4 3 2 1
1 | T 1 .
PW JRip | t—— JRp
RS w.N.
RS wo.N.

(¢) number of rule conditions

Figure 5.3.: Critical distance charts.

accuracy and normalised average complexity score (based on either the num-
ber of rules or the number of rule conditions). Additionally, the empty rule set
([0, 0]), the complete rule set ([1, 1]), and the standard and pairwise JRip are
utilised to plot a convex hull. For a better visibility, only partial views of these
accuracy-complexity charts are shown (see Figure 5.4). In the first accuracy-
complexity chart (see Figure 5.4(a)), the trade-off between accuracy and the
complexity score based on the number of rules is depicted. Both configurations
of rule stacking lie above the convex hull of the benchmark learner, therefore
one can conclude that rule stacking is an eligible alternative to the standard
and the pairwise JRip. Additionally, rule stacking maintains the low complex-
ity score of the standard JRip and provides an increased average accuracy. Of
the two configurations, the one that allows negated meta conditions exhibits
a better trade-off between accuracy and complexity than the other one, as its
average accuracy is comparable to that of the pairwise JRip. However, this su-

5.6. Results 125

0.84

0.835

>
o
©
5 0.83 B
3
<
0.825 B
JRip +
PWJRip X
Rule Stacking (Ww.N.) %
Rule Stacking (wo.N.)
0.82 | | | | | | | | |
0.02 0.03 0.04 0.05 0.06 007 0.08 009 0.1 0.11 0.12
Complexity (number of rules)
(a) number of rules
0.84
0.835 |-
oy
©
5 0.83 -
3
<
0.825 |-
JRip +
PWJRip X
Rule Stacking (w.N.) %
Rule Stacking (wo.N.)
0.82 | | | | |

0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065

Complexity (number of conditions)

(b) number of rule conditions

Figure 5.4.: Accuracy-complexity charts: trading off accuracy against the num-
ber of rules and rule conditions, respectively.

periority may be traced back to the fact that the first one uses more expressive
rules than the latter.

In the second chart (see Figure 5.4(b)), the trade-off between accuracy and
the complexity score based on the number of rule conditions is shown. As

126 5. Theory Compression

the average accuracies of the considered rule learner is the same as in the
first chart, we compare only the complexity scores. Expectedly, the average
complexity scores of the two rule stacking configurations lie above the convex
hull and midway between those of the standard and the pairwise JRip. Never-
theless, rule stacking is, according to the number of rule conditions, a sound
alternative to the two variants of JRip. Summarising the results of both charts,
rule stacking generates a similar number of rules as the standard JRip, but
these rules are slightly more complex.

5.7 Summary

In this chapter, we introduced our rule stacking algorithm that allows to com-
press local pattern sets into a single compact and understandable model. In
our experiments, we investigated how well rule stacking solves this task. To
this end, rule stacking transformed the local patterns obtained by a classifier
ensemble into a global model. Afterwards, we compared the performance of
the models obtained by rule stacking (with and without negations at the meta
level), by the base classifier (in our experiments Ripper was employed), and
by the classifier ensemble (applying a pairwise class binarisation):

* Accuracy: First, we investigated the accuracy of these models. Rule
stacking with or without negated conditions maintained the high perfor-
mance of the classifier ensemble which performed best. The ensemble
and rule stacking with negated conditions performed even significantly
better than the base classifier, while rule stacking without negated con-
ditions was only insignificantly better than the latter. Hence, the em-
ployment of negated conditions at the meta level is clearly favourable in
respect of accuracy.

* Complexity: The resulting model is often of comparable complexity to
the one directly learned by the base learner, and considerably less com-
plex than the original local pattern sets. In terms of the number of pat-
terns, this advantage is consistent and significant. However, in terms of
the number of conditions, there are also a few cases where the retrans-
formed rules are considerably more complex because of base patterns
that are used multiple times in various meta patterns. However, we have
to note that a structured representation of these patterns (e.g., through
generated meta level features) may still provide a useful compression of
the pairwise theories.

* Trade-off between accuracy and complexity: Last, we examined the
trade-off between the accuracy and complexity of the models. To this
end, we displayed the four methods according to their performance in

5.7. Summary 127

two accuracy-complexity charts: one for the number of patterns and one
for the number of conditions. In both charts, one can see that the two
rule stacking configurations are good alternatives to the other two meth-
ods as they may not be approximated by a linear interpolation of the
base classifier and the classifier ensemble. Additionally, rule stacking ob-
viously performs better when negated meta conditions are allowed as it
may use in this case more expressive rules than rule stacking without
negated meta conditions.

The key result of these experiments is that rule stacking, in particular if
negated meta conditions are allowed, maintains the high improvement in ac-
curacy of the classifier ensemble, while often providing a good compression of
the classifier ensemble. As a result, we often obtain rule sets that are of com-
parable complexity to those learned by the base classifier but are considerably
more accurate. In summary, our rule stacking approach proved to be a good
solution to the question, how a set of local patterns may be transformed into a
compact and understandable model.

Our work may be viewed in the context of approaches that induce rules
from opaque concepts such as neural networks [ADT95], support vector ma-
chines [Die08], or ensembles [Dom99]. Our approach differs from these ap-
proaches in that it extracts patterns from interpretable concepts, and therefore
does not need to consider the predictions of these models but can directly use
the learned patterns. Such ideas have already been used in somewhat differ-
ent context (cf., e.g., [vdB0O0]), but its implementation in terms of a stacking
framework and, most importantly, with the goal of compressing pattern sets, is
new.

128 5. Theory Compression

6 Conclusions

In this thesis, we tried to answer the question, how local patterns may be
employed for global modelling. To this end, we investigated three important
aspects of this problem:

6.1 Theory Formation

In the first part of our work, we investigated the question, how a set of local
patterns may be employed to obtain optimal predictions. As mentioned be-
fore, this problem may be solved by the generic LeGo framework which divides
it into three sub steps. Subsequently, these steps - the local pattern discovery,
the pattern set discovery, and the global modelling - generate an usually large
set of local patterns, reduce it to a smaller one that ideally contains all neces-
sary patterns, and utilise this reduced pattern set to generate a global model. In
accordance with this division, we have split the initial problem into three sub-
questions that we have investigated by an empirical comparison of a selection
of methods for each of the three associated steps:

* Local pattern discovery: How is an optimal local pattern set discovered?

For the local pattern discovery step, the performances of the two pattern
discovery algorithms BSD and CHARM were compared. Despite differing
in various aspects, the two algorithms (e.g. supervised vs. unsupervised
learning) did not differ significantly in their performance. Even though
the discovered patterns are the basic components of the global model,
the way they are discovered seems less important (as long as the patterns
feature a sufficiently high quality).

* Pattern set discovery: How is an optimal pattern set selected?

For the pattern set discovery step, we compared the performance of five
selection methods: the all selector which keeps all of the original pat-
terns, two confidence-based methods that select either the k-most con-
fident patterns or all patterns above a minimum confidence threshold,
and the two forward selection methods that similarly select only k pat-
terns. The latter four methods that generated reduced patterns set all
performed at least as well or better than the all selector that returned
the complete pattern set. Consequently, we conclude that the pattern

129

discovery step is an essential component of the global modelling process
that may eventually be improved by it. Furthermore, the two confidence
based methods worked best. The method that employed a minimum con-
fidence threshold even performed significantly better than the remaining
methods, but we have to admit that it selected considerably more pat-
terns than the other methods (except for the all selector). A reason for
this may be that confidence does not suffer from its common deficiency
as the two employed pattern discovery methods feature an integrated
overfitting avoidance.

* Global modelling: How is a pattern set optimally employed as a global
model?

For the global modelling step, we compared six decoding methods:
Bayesian decoding, best rule, inverse weighted voting, linear weighted
voting, voting, and weighted voting, that all pursue an different ap-
proach to exploiting the information which patterns cover an instance.
The decoding methods weighted voting, best rule and Bayesian decod-
ing (in descending ordering according to their performance) that utilised
the estimated unmodified quality values directly performed better than
voting that binarised the quality values, and better than inverse weighted
voting and linear weighted voting that both employed the quality values
to derive a coarse ranking.

In summary, we conclude that the optimal way to utilise local patterns for
prediction is to select a pattern set according to the confidence values of the
patterns and simply add up these confidence values for a global prediction.

6.2 Probability Estimation

In the second part of our work, we considered the problem, how a set of lo-
cal patterns may be utilised to obtain optimal (class) probabilities. The
prediction of class probabilities, which determine the probability that a data
instance belongs to a given class, may often be more useful as a simple pre-
diction of a class label as we have seen in the first part of our work where
a measure of confidence was employed for voting. The problem of the class
probability estimation may be divided into two main tasks: the probability es-
timation, which involves a basic probability estimation and if applicable the
employment of shrinkage, and the probability aggregation. In our evaluations,
we considered the following four aspects of these tasks:

* Basic probability estimation: The first and fundamental aspect is the
basic probability estimation which aims to estimate the class probabil-
ity distribution of a considered data instance given a single covering

130 6. Conclusions

local pattern. All considered methods performed better than the origi-
nal benchmark learner Ripper. Among the considered methods the m-
Estimate (indifferent of the employed m-parameter) ranked before the
others, but this difference in performance was insignificant.

* Shrinkage: The second aspect is shrinkage whose base idea is to improve
the basic probability estimation by combining it with further information
(sources). For our considerations, we adapted a shrinkage algorithm
that intends to exploit the probability estimates of selected sub patterns.
This approach turned out to decrease (in some cases even significantly)
the performance in comparison to the performance of the basic proba-
bility estimation used stand-alone. Thus, the employment of this specific
shrinkage approach is not recommended, but other approaches may po-
tentially lead to improvements.

* Pattern discovery: The third aspect is the effect of the pattern discovery
approach on the probability estimation. Ripper, which was also employed
for the pattern discovery, offers two options that had an impact on the
performance of the probability estimation: the generation mode and the
employment of pruning. The unordered generation mode performed sig-
nificantly better than the ordered one as the discovered patterns of the
former are more suitable for the probability estimation as the latter. Sim-
ilarly, unpruned pattern sets outperformed (insignificantly) the pruned
ones.

* Probability aggregation: The fourth and last aspect is the probabil-
ity aggregation which intends to combine the probability estimates of
multiple covering patterns into a single one. We observed that this ap-
proach clearly improves the probability estimation process. Amongst the
considered methods, micro averaging that simply calculates the average
class probability of all covering patterns outperformed the other methods
though this difference in performance was insignificant.

In summary, unpruned local patterns that are generated in an unordered way
should be used for class probability estimation. The basic probability estima-
tion method m-estimate is preferable for this task. If possible, the probability
estimates of multiple covering patterns should be combined by micro averag-
ing.

6.3 Theory Compression

In the third part of our work, we studied the question, how a set of local
patterns may be transformed into a compact and understandable model.

6.3. Theory Compression 131

The generation of a global model with the help of local patterns solves as men-
tioned before two problems of local pattern sets. On the one hand, pattern
discovery methods usually return large and redundant sets of local patterns
that are consequently hard to handle and interpret. On the other hand, local
pattern sets may only be employed for predictions by an additional decoding
of the individual predictions of each pattern into a single one (e.g. by voting
methods). To solve the aforementioned question, we proposed a novel ap-
proach, which we call rule stacking. This approach adapts the general meta
learning method stacking to the global modelling of rule-based local pattern
sets. For this purpose, rule stacking introduces an alternative meta data gener-
ation approach and an additional retransformation of the obtained meta model
into a global model in the original data format. In this way, the model may be
directly applied to data instances in the original data format, which do not
have to be translated into meta instances any more.

In our experiments, we employed a base learner (Ripper was chosen for
this task) to generate multiple local pattern sets in liaison with a pairwise
class binarisation and to induce global models. Afterwards, we compared the
models of rule stacking, which also employed Ripper for the model induction,
to the models of the base classifier and the classifier ensemble. To this end, we
considered the following aspects:

* Accuracy: First, we investigated the accuracy of the four above-
mentioned models. As desired, the performance of rule stacking did not
differ significantly from the performance of the classifier ensemble. In
other word, rule stacking was able to maintain the high performance
of the classifier ensemble. Rule stacking was even significantly more
accurate than the base classifier if it employed negated meta conditions.

* Complexity: Next, we compared the complexity of the models. Com-
plexity was chosen as an approximation of the interpretability of a model
which may not be measured objectively. However, as a rule of thumb less
complex models are easier to interpret. To this end, we measured the
complexity of a model by its number of patterns and by the total num-
ber of conditions. In terms of the number of patterns, the complexity
of rule stacking was comparable to the complexity of the base classifier.
Additionally, rule stacking was still comparable to the base classifier, but
its complexity is only insignificantly better than the complexity of the
classifier ensemble. In a nutshell, the complexity of rule stacking is com-
parable to the complexity of the base classifier, but the learned patterns
are slightly more complex.

* Trade-off between accuracy and complexity: At last, we examined the
trade-off between the accuracy and complexity of the models. So far,

132 6. Conclusions

we have seen that rule stacking maintained the high accuracy of the
classifier ensemble and the models obtained have a comparable num-
ber of (slightly longer) patterns as the base classifier. This observation
was backed up by two accuracy-complexity charts. In these charts, it is
obvious that rule stacking is a good alternative to the base classifier or
classifier ensemble, respectively, as rule stacking with or without negated
meta conditions lies outside of the convex hull of the base classifier and
classifier ensemble. Furthermore, the employment of negated meta con-
ditions is clearly advisable although the difference in performance of rule
stacking with or without negated meta conditions is insignificant.

In summary, rule stacking provides a good solution to the question, how a
set of local patterns may be transformed into a compact and understandable
model. To this end, rule stacking, in particular if negated meta conditions are
allowed, maintains the high accuracy of the classifier ensemble, while it offers
a considerable compression of the classifier ensemble.

6.3. Theory Compression 133

7 Future Work

In this thesis, we considered three aspects of the question, how local patterns
may be employed for global modelling. For this purpose, we evaluated various
approaches that may be utilised to solve these aspects. Our investigations
opened up new issues and improvement opportunities. On the one hand, some
approaches did not perform as well as we expected, but alternative setups or
implementations of these approaches could still yield better results. On the
other hand, the above-mentioned three aspects were investigated separately,
but the results of the last two aspects, the probability estimation and theory
compression, may clearly be used for an improvement of the first aspect, the
theory formation.

7.1 Theory Formation

In the first part of our work, we performed empirical evaluations in the LeGo
framework. To this end, we selected several methods for each of its steps and
evaluated their performance aiming to identify the best choice(s) in each step:

* Pattern set discovery: For the pattern set discovery, we employed a
greedy forward selection for the two methods joint entropy and exclu-
sive coverage to obtain a pattern set. As both methods did not perform
very well in comparison to the other simpler methods (including the all
selector which essentially skips the pattern set discovery) in our exper-
iments, we assume that the forward selection was not an optimal ap-
proach in this scenario. Hence, alternative search approaches should be
considered for the greedy pattern set generation (e.g. a beam search or
an exhaustive search) as they could possibly improve the performance of
the above-mentioned methods.

* Global modelling: In the global modelling step, we employed a decod-
ing approach using several voting methods to decode multiple predic-
tions into a single one. This decision was driven by the consideration
that in this way all the patterns selected in the pattern set discovery step
are involved in the prediction phase. Nevertheless, an investigation of
an integrative approach could be worthwhile. Since classifiers usually
have to be modified at least slightly to be able to handle such pattern
sets, we suggest to employ our introduced rule stacking algorithm as an
integrative approach for the global modelling step.

135

7.2 Probability Estimation

In the second part of our work, we considered several methods for the proba-
bility estimation and aggregation, respectively:

* Shrinkage: While the basic probability estimation methods did perform

well, the employed shrinkage method did not increase their performance.
Nevertheless, we still think that the concept of smoothing the basic prob-
ability estimation on the basis of shorter sub rules, which may usually
draw upon a higher evidence, may lead to improved probability es-
timates. Thus, the search for or development of alternative shrinkage
approaches and their evaluation could turn out to be reasonable.

Probability aggregation: For the probability aggregation, we employed
four aggregation methods. While the performance of these methods dif-
fered significantly for a lower number of patterns, the performance differ-
ences decreased for a higher number. We concluded that in the latter case
the method best rule performed similar to the other methods, which cal-
culate an aggregated probability distribution, because the calculations
of the latter are unfavourably influenced by lower quality patterns. To
solve this problem, we assume that an additional filtering of the cover-
ing patterns (e.g. in accordance to their estimated probability) could be
worthwhile.

7.3 Theory Compression

In the third part of our work, we introduced rule stacking as a novel approach
to generate a compressed and understandable model:

* Local pattern discovery: We employed for this purpose the rule learner

JRip and its pairwise variant both as learning algorithms and for the local
pattern discovery. In this way, we obtained strong base rules and global
models that could be used as benchmarks for the accuracy and complex-
ity of the global models generated by rule stacking. For a more general
evaluation, the next step would be the application of rule stacking to
larger and more arbitrarily generated local pattern sets.

Pruning: At the moment, rule stacking does not include any pruning
methods, except for the pruning methods that are integrated in the em-
ployed local pattern discovery algorithm. As the latter operate only on
the meta level, no base level pruning takes place. We argue that the em-
ployment of pruning - especially when applied to the base level - may be

136

7. Future Work

reasonable as pruning decreases the complexity of the obtained model
and increases usually its interpretability and accuracy in this way. The
simplest way to integrate pruning in the rule stacking process is the ad-
dition of a post-pruning method, which consequently occurs on the base
level, after the retransformation of the meta model. Nevertheless, pre-
pruning on the base level may also feasible. To this end, the base learner
may have to be modified since the retransformation must be performed
after each refinement step.

7.3. Theory Compression 137

Bibliography

[ADT95]

[Aggl4]

[AIS93]

[ALO9]

[AL12]

[AS94]

[Bre96]

[CBI1]

Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey
and critique of techniques for extracting rules from trained arti-
ficial neural networks. Knowledge Based Systems, 8(6):373-389,
1995.

Charu C. Aggarwal. Instance-based learning: A survey. In Charu C.
Aggarwal, editor, Data Classification: Algorithms and Applications,
pages 157-186. CRC Press, 2014.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining
association rules between sets of items in large databases. In Peter
Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, Wash-
ington, D.C., USA, pages 207-216. ACM Press, 1993.

Martin Atzmiiller and Florian Lemmerich. Fast subgroup discovery
for continuous target concepts. In Jan Rauch, Zbigniew W. Ras,
Petr Berka, and Tapio Elomaa, editors, Foundations of Intelligent
Systems, 18th International Symposium, ISMIS 2009, Prague, Czech
Republic, Proceedings, volume 5722 of Lecture Notes in Computer
Science, pages 35—-44. Springer, 2009.

Martin Atzmiiller and Florian Lemmerich. VIKAMINE - Open-
source subgroup discovery, pattern mining, and analytics. In Pe-
ter A. Flach, Tijl De Bie, and Nello Cristianini, editors, Machine
Learning and Knowledge Discovery in Databases, European Con-
ference, ECML PKDD 2012, Bristol, UK, Proceedings, Part II, vol-
ume 7524 of Lecture Notes in Computer Science, pages 842-845.
Springer, 2012.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for
mining association rules in large databases. In Jorge B. Bocca,
Matthias Jarke, and Carlo Zaniolo, editors, Proceedings of 20th In-
ternational Conference on Very Large Data Bases (VLDB’94), Santi-
ago de Chile, Chile, pages 487-499. Morgan Kaufmann, 1994.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-
140, 1996.

Peter Clark and Robin Boswell. Rule induction with CN2: Some
recent improvements. In Yves Kodratoff, editor, Machine Learning
- EWSL-91, European Working Session on Learning, Porto, Portugal,

Bibliography

139

[Ces90]

[CG99]

[Coh95]

[DB95]

[DemO06]

[Die00]

[Die08]

[Dom99]

[Faw06]

[FFHO3]

Proceedings, volume 482 of Lecture Notes in Artificial Intelligence,
pages 151-163. Springer, 1991.

Bojan Cestnik. Estimating probabilities: A crucial task in Machine
Learning. In Luigia Carlucci Aiello, editor, ECAI 90, Proceedings
of the 9th European Conference on Artificial Intelligence, Stockholm,
pages 147-150. Pitman, 1990.

Stanley E Chen and Joshua Goodman. An empirical study of
smoothing techniques for language modeling. Computer Speech
& Language, 13(4):359-393, 1999.

William W. Cohen. Fast effective rule induction. In Prieditis and
Russell [PR95], pages 115-123.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learn-
ing problems via error-correcting output codes. Journal of Artificial
Intelligence Research, 2:263-286, 1995.

Janez Demsar. Statistical comparisons of classifiers over multiple
data sets. Journal of Machine Learning Research, 7:1-30, 2006.

Thomas G. Dietterich. Ensemble methods in machine learning.
In Josef Kittler and Fabio Roli, editors, Multiple Classifier Systems,
First International Workshop, MCS 2000, Cagliari, Italy, Proceed-
ings, volume 1857 of Lecture Notes in Computer Science, pages 1—
15. Springer, 2000.

Joachim Diederich, editor. Rule Extraction from Support Vec-
tor Machines, volume 80 of Studies in Computational Intelligence.
Springer, 2008.

Pedro M. Domingos. Metacost: A general method for making clas-
sifiers cost-sensitive. In Usama M. Fayyad, Surajit Chaudhuri, and
David Madigan, editors, KDD 99, Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, pages 155-164. ACM, 1999.

Tom Fawcett. An introduction to ROC analysis. Pattern Recognition
Letters, 27(8):861-874, 2006.

César Ferri, Peter A. Flach, and José Herndndez-Orallo. Improving
the AUC of probabilistic estimation trees. In Nada Lavra¢, Dragan
Gamberger, Ljupco Todorovski, and Hendrik Blockeel, editors, Ma-
chine Learning: ECML 2003, 14th European Conference on Machine

140

Bibliography

[FGL12]

[FI93]

[FPS96a]

[FPS96b]

[Fri37]

[Fri40]

[Fiir99]

[Fur02]

[Fiir04]

[FW94]

[GRWO08]

Learning, Cavtat-Dubrovnik, Croatia, Proceedings, volume 2837 of
Lecture Notes in Computer Science, pages 121-132. Springer, 2003.

Johannes Fiirnkranz, Dragan Gamberger, and Nada Lavra¢. Foun-
dations of Rule Learning. Cognitive Technologies. Springer, 2012.

Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In Ruzena
Bajcsy, editor, IJCAI-93: Proceedings of the 13th International Joint
Conference on Artificial Intelligence, Chambéry, France, volume 2,
pages 1022-1029. Morgan Kaufmann, 1993.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.
From data mining to knowledge discovery: An overview. In Ad-
vances in Knowledge Discovery and Data Mining, pages 1-34. AAAI
Press, 1996.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.
From data mining to knowledge discovery in databases. Al Maga-
zine, 17(3):37-54, 1996.

Milton Friedman. The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. Journal of the American
Statistical Association, 32(200):675-701, 1937.

Milton Friedman. A comparison of alternative tests of significance
for the problem of m rankings. The Annals of Mathematical Statis-
tics, 11(1):86-92, 1940.

Johannes Fiirnkranz. Separate-and-conquer rule learning. Artifi-
cial Intelligence Review, 13(1):3-54, February 1999.

Johannes Fiirnkranz. Round robin classification. Journal of Ma-
chine Learning Research, 2:721-747, 2002.

Johannes Fiirnkranz. From local to global patterns: Evaluation
issues in rule learning algorithms. In Morik et al. [MBS04], pages
20-38.

Johannes Fiirnkranz and Gerhard Widmer. Incremental reduced
error pruning. In William W. Cohen and Haym Hirsh, editors, Ma-
chine Learning, Proceedings of the Eleventh International Conference,
New Brunswick, NJ, USA, pages 70-77. Morgan Kaufmann, 1994.

Henrik Grosskreutz, Stefan Riiping, and Stefan Wrobel. Tight opti-
mistic estimates for fast subgroup discovery. In Walter Daelemans,

Bibliography

141

[HV09]

[ID8O0]

[KCFSO08]

[KHO6a]

[KHO6b]

[K1696]

[LHM98]

[Lic13]

Bart Goethals, and Katharina Morik, editors, Machine Learning
and Knowledge Discovery in Databases, European Conference, ECML
PKDD 2008, Antwerp, Belgium, Proceedings, Part I, volume 5211 of
Lecture Notes in Computer Science, pages 440—-456. Springer, 2008.

Eyke Hiillermeier and Stijn Vanderlooy. Why fuzzy decision trees
are good rankers. IEEE Transactions on Fuzzy Systems, 17(6):1233—
1244, 2009.

Ronald L. Iman and James M. Davenport. Approximations of the
critical region of the Friedman statistic. Communications in Statis-
tics, A: Theory and Methods, 9:571-595, 1980.

Arno J. Knobbe, Bruno Crémilleux, Johannes Fiirnkranz, and Mar-
tin Scholz. From local patterns to global models: The LeGo ap-
proach to data mining. In Arno J. Knobbe, editor, From Local Pat-
terns to Global Models: Proceedings of the ECML PKDD-08 Workshop
(LeGo-08), pages 1-16, Antwerp, Belgium, 2008.

Arno J. Knobbe and Eric K. Y. Ho. Maximally informative k-itemsets
and their efficient discovery. In Tina Eliassi-Rad, Lyle H. Ungar,
Mark Craven, and Dimitrios Gunopulos, editors, KDD ’06, Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Philadelphia, PA, USA, pages 237-
244. ACM, 2006.

Arno J. Knobbe and FEric K. Y. Ho. Pattern teams. In Johannes
Flirnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Know!-
edge Discovery in Databases: PKDD 2006, 10th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases,
Berlin, Germany, Proceedings, volume 4213 of Lecture Notes in Com-
puter Science, pages 577-584. Springer, 2006.

Willi Klosgen. Explora: A multipattern and multistrategy discovery
assistant. In Advances in Knowledge Discovery and Data Mining,
pages 249-271. AAAI Press, 1996.

Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification
and association rule mining. In Rakesh Agrawal, Paul E. Stolorz,
and Gregory Piatetsky-Shapiro, editors, KDD 98, Proceedings of the
Fourth International Conference on Knowledge Discovery and Data
Mining, New York City, NY, USA, pages 80-86. AAAI Press, 1998.

Moshe Lichman. UCI machine learning repository, 2013.

142

Bibliography

[LRA10]

[MBS04]

[MS99]

[Mut04]

[Nem63]

[NLWO09]

[PDO3]

[PRY5]

[PSFO1]

[Pyl99]

[QC93]

Florian Lemmerich, Mathias Rohlfs, and Martin Atzmiiller. Fast
discovery of relevant subgroup patterns. In Hans W. Guesgen and
R. Charles Murray, editors, Proceedings of the Twenty-Third Inter-
national Florida Artificial Intelligence Research Society Conference,
Daytona Beach, Florida. AAAI Press, 2010.

Katharina Morik, Jean-Francois Boulicaut, and Arno Siebes, edi-
tors. Local Pattern Detection, International Seminar, Dagstuhl Cas-
tle, Germany, Revised Selected Papers, volume 3539 of Lecture Notes
in Computer Science. Springer, 2004.

Christopher D. Manning and Hinrich Schiitze. Foundations of Sta-
tistical Natural Language Processing. The MIT Press, 1999.

Stefan Mutter. Classification using association rules. Master’s the-
sis, Department of Computer Science, University of Freiburg, Ger-
many, March 2004.

Peter Bjorn Nemenyi. Distribution-free multiple comparisons. PhD
thesis, Princeton University, 1963.

Petra Kralj Novak, Nada Lavrac¢, and Geoffrey I. Webb. Super-
vised descriptive rule discovery: A unifying survey of contrast
set, emerging pattern and subgroup mining. Journal of Machine
Learning Research, 10:377-403, 2009.

Foster J. Provost and Pedro M. Domingos. Tree induction for
probability-based ranking. Machine Learning, 52(3):199-215,
2003.

Armand Prieditis and Stuart J. Russell, editors. Machine Learn-
ing: Proceedings of the Twelfth International Conference on Machine
Learning, Tahoe City, CA, USA. Morgan Kaufmann, 1995.

Gregory Piatetsky-Shapiro and William J. Frawley, editors. Knowl-
edge Discovery in Databases. AAAI Press, 1991.

Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann,
1999.

J. Ross Quinlan and R. Mike Cameron-Jones. FOIL: A midterm
report. In Pavel Brazdil, editor, Machine Learning: ECML-93, Eu-
ropean Conference on Machine Learning, Vienna, Austria, Proceed-
ings, volume 667 of Lecture Notes in Computer Science, pages 3-20.
Springer, 1993.

Bibliography

143

[Qui90]

[Qui%5]

[Ris78]

[RM14]

[SCO8]

[See02]

[SFO8]

[SF09]

[SF11]

[TW99]

J. Ross Quinlan. Learning logical definitions from relations. Ma-
chine Learning, 5:239-266, 1990.

J. Ross Quinlan. MDL and categorial theories (continued). In
Prieditis and Russell [PR95], pages 464—470.

Jorma Rissanen. Minimax codes for finite alphabets (Corresp.).
IEEE Transactions on Information Theory, 24(3):389-392, 1978.

Lior Rokach and Oded Maimon. Data Mining With Decision Trees:
Theory and Applications. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2nd edition, 2014.

Ingo Steinwart and Andreas Christmann. Support Vector Machines.
Springer, 1st edition, 2008.

Alexander K. Seewald. How to make stacking better and faster
while also taking care of an unknown weakness. In Claude Sam-
mut and Achim G. Hoffmann, editors, ICML ’02, Proceedings of the
Nineteenth International Conference on Machine Learning, Univer-
sity of New South Wales, Sydney, Australia, pages 554-561. Morgan
Kaufmann, 2002.

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. A comparison of
techniques for selecting and combining class association rules. In
Arno J. Knobbe, editor, From Local Patterns to Global Models: Pro-
ceedings of the ECML/PKDD-08 Workshop (LeGo-08), pages 154—
168, Antwerp, Belgium, 2008.

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. An empirical
comparison of probability estimation techniques for probabilistic
rules. Carl Smith award for the best student paper. In Jodo Gama,
Vitor Santos Costa, Alipio Mario Jorge, and Pavel Brazdil, editors,
Discovery Science, 12th International Conference, DS 2009, Porto,
Portugal, volume 5808 of Lecture Notes in Computer Science, pages
317-331. Springer, 2009.

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. Rule stacking:
An approach for compressing an ensemble of rule sets into a single
classifier. In Tapio Elomaa, Jaakko Hollmén, and Heikki Mannila,
editors, Discovery Science - 14th International Conference, DS 2011,
Espoo, Finland, Proceedings, volume 6926 of Lecture Notes in Com-
puter Science, pages 323-334. Springer, 2011.

Kai Ming Ting and Ian H. Witten. Issues in stacked generalization.
Journal of Artificial Intelligence Research, 10:271-289, 1999.

144

Bibliography

[vdB0OO]

[WFHP16]

[Wol92]

[Wro97]

[WZ06]

[ZHO02]

Antal van den Bosch. Using induced rules as complex features
in memory-based language learning. In Walter Daelemans and
Rémi Zajac, editors, Fourth Conference on Computational Natural
Language Learning, CoNLL 2000, and the Second Learning Language
in Logic Workshop, LLL 2000, Held in cooperation with ICGI-2000,
Lisbon, Portugal, pages 73-78. ACL, 2000.

Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal.
Data Mining, Fourth Edition: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 4th edition, 2016.

David H. Wolpert. Stacked generalization. Neural Networks,
5(2):241-259, 1992.

Stefan Wrobel. An algorithm for multi-relational discovery of sub-
groups. In Henryk Jan Komorowski and Jan M. Zytkow, editors,
Principles of Data Mining and Knowledge Discovery, First European
Symposium, PKDD 97, Trondheim, Norway, Proceedings, volume
1263 of Lecture Notes in Computer Science, pages 78-87. Springer,
1997.

Bin Wang and Harry Zhang. Improving the ranking performance of
decision trees. In Johannes Fiirnkranz, Tobias Scheffer, and Myra
Spiliopoulou, editors, Machine Learning: ECML 2006, 17th Euro-
pean Conference on Machine Learning, Berlin, Germany, Proceedings,
volume 4212 of Lecture Notes in Computer Science, pages 461-472.
Springer, 2006.

Mohammed Javeed Zaki and Ching-Jiu Hsiao. CHARM: an efficient
algorithm for closed itemset mining. In Robert L. Grossman, Jiawei
Han, Vipin Kumar, Heikki Mannila, and Rajeev Motwani, editors,
Proceedings of the Second SIAM International Conference on Data
Mining, Arlington, VA, USA, pages 457-473. SIAM, 2002.

Bibliography

145

Own Publications

Conference Papers

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. Rule stacking: An approach
for compressing an ensemble of rule sets into a single classifier. In Tapio
Elomaa, Jaakko Hollmén, and Heikki Mannila, editors, Discovery Science -
14th International Conference, DS 2011, Espoo, Finland, Proceedings, volume
6926 of Lecture Notes in Computer Science, pages 323-334. Springer, 2011.

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. An empirical comparison of
probability estimation techniques for probabilistic rules. Carl Smith award for
the best student paper. In Jodo Gama, Vitor Santos Costa, Alipio Mério Jorge,
and Pavel Brazdil, editors, Discovery Science, 12th International Conference,
DS 2009, Porto, Portugal, volume 5808 of Lecture Notes in Computer Science,
pages 317-331. Springer, 2009.

Jan-Nikolas Sulzmann, Johannes Fiirnkranz, and Eyke Hiillermeier. On pair-
wise naive Bayes classifiers. In Joost N. Kok, Jacek Koronacki, Ramon Lopez
de Mantaras, Stan Matwin, Dunja Mladenic, and Andrzej Skowron, editors,
ECML, volume 4701 of Lecture Notes in Computer Science, pages 371-381.
Springer, 2007.

Workshop Papers

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. Probability estimation and
aggregation for rule learning. In Martin Atzmiiller, Dominik Benz, Andreas
Hotho, and Gerd Stumme, editors, Proceedings of LWA2010 - Workshop-Woche:
Lernen, Wissen & Adaptivitdt, Kassel, Germany, 2010.

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. A study of probability es-
timation techniques for rule learning. In Arno J. Knobbe and Johannes
Fiirnkranz, editors, From Local Patterns to Global Models: Proceedings of the
ECMIL,/PKDD-09 Workshop (LeGo-09), pages 123-138, Bled, Slovenia, 2009.

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. A comparison of techniques
for selecting and combining class association rules. In Arno J. Knobbe, edi-
tor, From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08
Workshop (LeGo-08), pages 154-168, Antwerp, Belgium, 2008.

147

Jan-Nikolas Sulzmann and Johannes Fiirnkranz. A comparison of techniques
for selecting and combining class association rules. In Joachim Baumeister
and Martin Atzmiiller, editors, LWA, volume 448 of Technical Report, pages
87-93. Department of Computer Science, University of Wiirzburg, Germany,
2008.

Jan-Nikolas Sulzmann. Pairwise naive Bayes classifier. In Klaus-Dieter Althoff
and Martin Schaaf, editors, LWA, volume 1/2006 of Hildesheimer Informatik-
Berichte, pages 356-363. University of Hildesheim, Institute of Computer Sci-
ence, 2006.

148 Workshop Papers

A Theory Formation: Detailed
Experimental Results

149

Table A.1.: Accuracy using all local patterns generated by CHARM and the de-
coding methods Bayesian decoding (BD), best rule (BR), inverse
weighted voting (IV), linear weighted voting (LV), voting (V), and
weighted voting (WV).

Data Set BD BR v vV A% WV

Anneal.orig .8173 .7817 .7428 .7617 .7617 .7617
Autos 4826 .6298 .2576 .4140 .4729 .5069
Balance-scale .7059 .7425 .0784 .0784 .6899 .7410
Breast-cancer .7030 .7101 .2970 .2970 .6892 .7382
Breast-w 5700 .5509 .1827 .4445 .5245 .5891
Bridges Version 1 .7002 .7002 .0417 .3779 .8171 .7112
Cars .7326 .8216 .2049 .5253 .7987 .8346
CMC 4433 4806 .2295 .3389 .4595 .4609
Diabetes .5895 .6493 .2145 .2943 .6299 .7798
Ecoli .6645 5563 .1357 .3833 .5147 .6130
Glass .7519 .7852 .1889 .4074 .8185 .8370
Heart-c 7946 .7996 .3229 .7933 .7938 .7938
Heart-h .6395 .8136 .1799 .3191 .7990 .8271
Heart-statlog .5333 .8800 .5600 .7200 .8667 .9200
Hepatitis 7767 .7233 .4567 .6633 .7000 .7167
Iris .6414 8033 .2776 .6819 .8038 .7905
Labor 7187 .7344 .3033 .4335 .7370 .7344
Lymph 7111 7111 .2667 .4000 .7000 .7111
Postoperative-patient-data | .3230 .6883 .3230 .3230 .3230 .7815
Solar-flare-c .8493 .8516 .0280 .4288 .8347 .8534
Tic-tac-toe .7307 .9624 .3466 .3507 .7943 .8007
Titanic .5141 5667 .0838 .1788 .4172 .5929
Vowel .6552 .8927 .4009 .9542 .9685 .9699
Yeast 4461 4879 .0203 .1638 .4354 .4542
700 .8918 .9118 .9018 .9218 .9418 .9318

150 A. Theory Formation: Detailed Experimental Results

Table A.2.: Accuracy using the 25 local patterns generated by CHARM and se-
lected by exclusive coverage, and the decoding methods Bayesian
decoding (BD), best rule (BR), inverse weighted voting (IV), linear
weighted voting (LV), voting (V), and weighted voting (WV).

Data Set BD BR v v \Y wv

Anneal.orig 8475 7795 .8475 .8475 .8385 .8374
Autos 4086 .4086 .1898 .2140 .3893 .4086
Balance-scale 6212 .6291 .0784 .1039 .4068 .6595
Breast-cancer 7202 7236 .2762 .2762 .2936 .7202
Breast-w 4482 4473 4000 .4191 4291 .4291
Bridges Version 1 .6968 .7002 .2598 .2604 .3843 .6997
Cars .6042 .5974 4555 4555 4555 .6042
CMC 4270 4284 3021 .3062 .3082 .4257
Diabetes 4969 2621 1278 1575 .1666 .2621
Ecoli 3931 .3314 .1452 .1452 .1545 .3364
Glass .6370 .6370 .4481 .4444 .4444 .6333
Heart-c .8133 .8196 .8133 .8133 .8196 .8196
Heart-h .6492 .6395 .6079 .6079 .6079 .6254
Heart-statlog .5400 .8133 .5067 .6267 .7600 .8533
Hepatitis .7033 .6867 .6333 .6700 .6867 .6867
Iris .5405 .5271 .4257 4324 4324 .5338
Labor 7253 .7122 .3749 .3749 .3763 .7253
Lymph .6889 .7111 .3889 .4000 .4000 .7111
Postoperative-patient-data | .3230 .6883 .3230 .3230 .3230 .7815
Solar-flare-c .8505 .8505 .0403 .0403 .0993 .8487
Tic-tac-toe 6993 .6993 .3236 .3194 .6722 .6993
Titanic .1434 .1343 .1000 .1111 .1313 .1343
Vowel .8240 .8240 .2990 .2990 .2990 .8240
Yeast 3302 3147 2116 .2197 .2682 .3167
Zoo .8527 .8118 .7818 .8118 .8218 .8218

151

Table A.3.: Accuracy using the 25 most confident local patterns generated by
CHARM and the decoding methods Bayesian decoding (BD), best
rule (BR), inverse weighted voting (IV), linear weighted voting (LV),
voting (V), and weighted voting (WV).

Data Set BD BR v vV A% WV

Anneal.orig .7617 .7617 .7617 .7617 .7617 .7617
Autos 4402 4402 .4402 .4402 .4402 .4402
Balance-scale 7426 .7409 .1788 .3324 .6962 .7442
Breast-cancer 6994 .6994 .6994 .6994 .6994 .6994
Breast-w 5509 .5509 .5509 .5509 .5509 .5509
Bridges Version 1 .7002 .7002 .7002 .7002 .7002 .7002
Cars 7459 7426 .7491 .7459 .7426 .7426
CMC 4270 4270 4270 .4270 4270 .4270
Diabetes 7412 7411 .7023 .7412 .7441 .7441
Ecoli 5420 .5420 .5281 .5420 .5420 .5420
Glass .6741 .6741 .6778 .6778 .6778 .6778
Heart-c .7938 .7938 .7938 .7938 .7938 .7938
Heart-h 7752 .7752 .7752 7752 .7752 .7752
Heart-statlog .5667 .8800 .6267 .7867 .9000 .9067
Hepatitis .6833 .6833 .6833 .7367 .6833 .6833
Iris 7152 7152 7152 .7152 .7152 .7152
Labor .6615 .6615 .6615 .6615 .6615 .6615
Lymph 7111 7111 7111 .7111 .7111 .7111
Postoperative-patient-data | .3230 .6883 .3230 .3230 .3230 .7815
Solar-flare-c .8534 .8534 .8534 .8534 .8534 .8534
Tic-tac-toe .7651 .7651 .7630 .7630 .7630 .7651
Titanic .2020 .1798 .1798 .1798 .1798 .1798
Vowel .6552 .6552 .6552 .6552 .6552 .6552
Yeast 4239 4239 4056 4164 .4245 .4239
700 4064 4064 .4064 .4064 .4064 .4064

152 A. Theory Formation: Detailed Experimental Results

Table A.4.: Accuracy using the 25 local patterns generated by CHARM and se-
lected by joint entropy, and the decoding methods Bayesian de-
coding (BD), best rule (BR), inverse weighted voting (IV), linear

weighted voting (LV), voting (V), and weighted voting (WV).

Data Set BD BR v v \Y wv

Anneal.orig .7517 .7617 .7617 .7617 .7617 .7617
Autos .3805 .3652 .2588 .3069 .3517 .3705
Balance-scale .6450 .6373 .0768 .1278 .4674 .6515
Breast-cancer .7030 .7030 .5041 .5181 .5424 .6823
Breast-w 5127 .5227 .2409 .4300 .4391 .4482
Bridges Version 1 .7002 .7025 .2875 .4594 .6498 .6997
Cars .6005 .6401 .3761 .4354 .4981 .6467
CMC 4230 .4202 .3360 .3598 .3904 .4263
Diabetes .6078 .6492 .2494 2652 .4667 .6701
Ecoli .5385 .5426 .2242 .3229 .5011 .5147
Glass .6074 .7000 .3222 .3444 4852 .7111
Heart-c 7742 .8058 .5688 .6992 .7996 .8058
Heart-h .7287 .7860 .2616 .3197 .4083 .7826
Heart-statlog .7067 .9067 .5267 .6067 .7600 .9067
Hepatitis .5600 .5400 .6300 .6133 .6133 .5567
Iris 5348 .4871 .3938 .4071 .4138 .4938
Labor .6719 .6563 .3815 .3854 .4599 .6563
Lymph 7111 .7333 .5778 .6556 .7222 .7333
Postoperative-patient-data | .3230 .6883 .3230 .3230 .3230 .7815
Solar-flare-c .8516 .8516 .5077 .5089 .8271 .8516
Tic-tac-toe .6576 .6576 .3674 .3957 .6545 .6534
Titanic 1677 1576 .0929 .0980 .1222 .1434
Vowel .6724 .6695 .6138 .6181 .6366 .6681
Yeast 3322 .3524 .0526 .1059 .3160 .3288
Zoo 4855 .4855 .4855 4855 .4855 .4855

153

Table A.5.: Accuracy using all confident local patterns generated by CHARM
and the decoding methods Bayesian decoding (BD), best rule (BR),
inverse weighted voting (IV), linear weighted voting (LV), voting
(V), and weighted voting (WV).

Data Set BD BR v v \Y WV

Anneal.orig .8207 .7817 .7962 .7617 .7617 .7617
Autos 5117 .6298 .6305 .5612 .5712 .5910
Balance-scale 7379 .7425 .7330 .7634 .7538 .7442
Breast-cancer .7030 .7101 .7268 .7484 .7518 .7518
Breast-w .6273 .5509 .6000 .6182 .6082 .6082
Bridges Version 1 .7002 .7002 .7118 .7002 .7002 .7002
Cars 7326 .8216 .7490 .8346 .8247 .8182
CMC 4888 .4806 .4596 .4691 .4860 .4867
Diabetes .6760 .6493 .7113 .7767 .7799 .7799
Ecoli .6786 .5563 .6695 .6693 .6924 .6690
Glass .7519 .7852 .7704 .8370 .8370 .8370
Heart-c .8008 .7996 .8000 .7938 .7938 .7938
Heart-h .6395 .8136 .7684 .8237 .8305 .8305
Heart-statlog .6000 .8667 .8267 .8800 .8933 .8933
Hepatitis .7933 .7233 .6800 .6467 .6633 .7333
Iris .6814 .8033 .7705 .7900 .8038 .7900
Labor 7174 7344 6797 .6836 .7201 .7201
Lymph 7111 .7111 .7111 .7111 .7111 .7111
Postoperative-patient-data | .3230 .6883 .3294 .7828 .7524 .7524
Solar-flare-c .8493 .8516 .8522 .8528 .8516 .8516
Tic-tac-toe 7411 .9624 .6690 .7161 .7338 .7370
Titanic .6485 .5707 .7232 .7222 .6869 .6768
Vowel .6552 .8927 .9470 .9657 .9699 .9699
Yeast 4610 .4778 .5014 .4987 .4846 .4805
Zoo 9318 .9118 .9218 .9318 .9318 .9318

154 A. Theory Formation: Detailed Experimental Results

Table A.6.: Accuracy using all local patterns generated by BSD and the de-
coding methods Bayesian decoding (BD), best rule (BR), inverse
weighted voting (IV), linear weighted voting (LV), voting (V), and
weighted voting (WV).

Data Set BD BR v v V VA%

Anneal.orig .6603 .7695 .2561 .4197 .5823 .8742
Autos .5655 .6098 .4676 .5898 .6298 .6100
Balance-scale .6947 .7313 .0944 .2721 .6339 .7265
Breast-cancer .6888 .7169 .6395 .6990 .7132 .7273
Breast-w 3909 5709 .1809 .3536 .5800 .6455
Bridges Version 1 .7002 .7002 .1522 .3559 .7078 .8432
Cars .8144 .8180 .6897 .8114 .8212 .8311
CMC 4690 .4820 .3197 .3734 .4453 4799
Diabetes 4373 .6191 .2448 .5561 .7563 .7651
Ecoli .6128 .4868 .2381 .4297 .4859 .6407
Glass .8074 .8185 .7185 .7778 .8259 .8185
Heart-c .6517 .8129 .6058 .7108 .8133 .8321
Heart-h .8269 .8000 .7654 .8199 .8236 .8136
Heart-statlog .3333 .9067 .9333 .9200 .9133 .9200
Hepatitis .7067 .7567 .6000 .6900 .7067 .7067
Iris .3500 .7829 .6629 .7638 .8171 .8238
Labor .6614 .7201 .5429 .6589 .7044 .7240
Lymph 7222 .6889 .1889 .3000 .4222 .4889
Postoperative-patient-data | .3230 .7751 .3230 .4676 .7129 .7733
Solar-flare-c .8516 .8131 .2494 4072 .5690 .7711
Tic-tac-toe .7432 .9843 .5387 .6368 .7015 .7411
Titanic 4515 .4869 .1434 .3273 .4747 .5020
Vowel .8311 .9055 .9671 .9628 .9570 .9528
Yeast 4501 .5061 .0546 .3066 .5552 .5552
Zoo 9318 .9318 .5036 .8436 .9618 .9418

155

Table A.7.: Accuracy using the 25 local patterns generated by BSD and se-
lected by exclusive coverage, and the decoding methods Bayesian
decoding (BD), best rule (BR), inverse weighted voting (1V), linear
weighted voting (LV), voting (V), and weighted voting (WV).

Data Set BD BR I\Y v \Y WV

Anneal.orig .8319 .8386 .7173 .7173 .7751 .8375
Autos .5314 5419 .5169 .5169 .5169 .5562
Balance-scale .6339 .6753 .2256 .2847 .4400 .6674
Breast-cancer .7065 .7097 .7099 .7064 .7065 .7099
Breast-w 5045 .4309 .4409 .4409 .4409 .4409
Bridges Version 1 7123 .5347 .3704 .3744 .3761 .5306
Cars 7624 7624 7591 .7624 .7624 .7624
CMC 4535 .4439 4148 .4148 .4148 .4439
Diabetes .6010 .4307 .2767 .2767 .3213 .4249
Ecoli 5056 .3457 .3171 .3171 .3266 .3504
Glass 7704 7741 7741 7741 7741 .7741
Heart-c .7288 .7475 .7038 .7038 .7104 .7104
Heart-h .8169 .8238 .8169 .8169 .8169 .8169
Heart-statlog 4667 .4867 .5467 5733 .5933 .5467
Hepatitis .5133 .5333 .5633 .5467 .5467 .5133
Iris .6895 .7029 .6895 .6895 .6895 .6895
Labor .7253 .6656 .6642 .6642 .6642 .6695
Lymph .6889 .5556 .4889 .5000 .5000 .5222
Postoperative-patient-data | .7733 .7733 .7097 .7097 .7210 .7210
Solar-flare-c .8511 .7827 .7652 .7652 .7658 .7827
Tic-tac-toe .8871 .9007 .7337 .7452 .7807 .8756
Titanic 2404 .2495 .2131 .2131 .2364 .2495
Vowel 9213 .9242 9184 .9184 .9227 .9242
Yeast 4016 .3423 .2655 .2662 .3309 .3444
Zoo .8227 .7536 .7227 7227 .7327 .7527

156 A. Theory Formation: Detailed Experimental Results

Table A.8.: Accuracy using the 25 most confident local patterns generated by
BSD and the decoding methods Bayesian decoding (BD), best rule
(BR), inverse weighted voting (IV), linear weighted voting (LV), vot-
ing (V), and weighted voting (WV).

Data Set BD BR v v \Y wv

Anneal.orig .7617 .7617 .7617 .7617 .7617 .7617
Autos .3410 .3410 .3410 .3410 .3410 .3410
Balance-scale .7186 .7265 .6867 .7330 .7282 .7282
Breast-cancer 7239 7239 .7273 7273 7273 .7239
Breast-w .5700 .5700 .5700 .5700 .5700 .5700
Bridges Version 1 .7002 .7002 .7002 .7002 .7002 .7002
Cars 7751 7751 .7784 .7784 .7784 .7784
CMC 4270 .4270 4270 .4270 4270 .4270
Diabetes .6190 .6190 .6190 .6190 .6190 .6190
Ecoli 4861 .4816 .4816 .4861 .4861 .4861
Glass .7667 .7667 .7704 .7667 .7667 .7667
Heart-c .7738 .7871 .7871 .7871 .7871 .7871
Heart-h 7795 .7795 .7795 .7795 .7795 .7795
Heart-statlog .7333 .7467 .7600 .7800 .7800 .7800
Hepatitis .6633 .6633 .6633 .6633 .6633 .6633
Iris .5476 .5543 .5543 .5543 .5543 .5543
Labor .6511 .6511 .6511 .6511 .6511 .6511
Lymph 7111 .7111 .7111 .7111 .7111 .7111
Postoperative-patient-data | .7733 .7751 .7792 .7860 .7837 .7833
Solar-flare-c .8511 .8511 .8511 .8511 .8511 .8511
Tic-tac-toe .7662 .7662 .7651 .7651 .7651 .7662
Titanic .1374 .1030 .1030 .1030 .1030 .1030
Vowel .6552 .6552 .6552 .6552 .6552 .6552
Yeast .3335 .3335 .3335 .3335 .3335 .3335
Zoo 4064 .4064 .4064 .4064 .4064 .4064

157

Table A.9.: Accuracy using the 25 local patterns generated by BSD and selected
by joint entropy, and the decoding methods: Bayesian decoding
(BD), best rule (BR), inverse weighted voting (IV), linear weighted
voting (LV), voting (V), and weighted voting (WV).

Data Set BD BR I\Y v \Y WV

Anneal.orig .6648 .2483 .2294 2294 2305 .2316
Autos 3410 .3267 .3410 .3410 .3410 .3410
Balance-scale 5699 .6548 .1667 .4001 .5878 .6595
Breast-cancer .7206 .7276 .6780 .6814 .6884 .7169
Breast-w 4645 4273 4473 4473 4464 .4364
Bridges Version 1 .7031 .6823 .3321 .4501 .5532 .6915
Cars .5838 .5838 .5838 .5838 .5838 .5838
CMC 4745 4644 4488 4521 4562 .4610
Diabetes 4879 .4758 .3487 .4406 .4643 .4758
Ecoli 4920 .4024 .2948 .3978 .3976 .3976
Glass .6185 .6185 .6185 .6185 .6185 .6185
Heart-c .6563 .6958 .5717 .5917 .6371 .6767
Heart-h .6395 .6395 .6395 .6395 .6395 .6395
Heart-statlog .6067 .6133 .5933 .6267 .6533 .6133
Hepatitis 4233 .4567 .4400 .4233 .4233 .4233
Iris 5695 5695 .5695 .5695 5695 .5695
Labor .6576 .6642 .6485 .6485 .6538 .6603
Lymph 7111 .6222 .5444 5556 .5778 .6222
Postoperative-patient-data | .3230 .7769 .5880 .7324 .7833 .7833
Solar-flare-c .8516 .7027 .5684 .5970 .6332 .7027
Tic-tac-toe .7234 .7077 .5804 .5930 .7046 .7078
Titanic 2141 .1899 .1394 .1606 .1838 .1899
Vowel .6552 6552 .6552 .6552 .6552 .6552
Yeast 3302 .3180 .1915 .2548 .3194 .3160
Zoo 4064 .4064 .4064 .4064 .4064 .4064

158 A. Theory Formation: Detailed Experimental Results

Table A.10.: Accuracy using all confident local patterns generated by BSD and
the decoding methods: Bayesian decoding (BD), best rule (BR),
inverse weighted voting (IV), linear weighted voting (LV), voting
(V), and weighted voting (WV).

Data Set BD BR v v \Y% \AY

Anneal.orig .8653 .7817 .8151 .8608 .8708 .8719
Autos 5755 .6098 .5314 .5705 .6195 .6048
Balance-scale 7203 .7329 .7490 .7730 .7425 .7249
Breast-cancer .6851 .7169 .6712 .7167 .7204 .7203
Breast-w .5027 .5618 .5700 .5909 .6182 .6273
Bridges Version 1 .7002 .7002 .8172 .8090 .7755 .7355
Cars .8144 .8180 .6897 .8114 .8212 .8311
CMC 4868 4725 .4392 4643 4738 .4833
Diabetes 4463 .6191 .7410 .8004 .7680 .7590
Ecoli .6268 .4868 .5136 .6223 .6359 .6361
Glass .8074 .8185 .7185 .7778 .8259 .8185
Heart-c .6904 .8129 .7029 .8008 .8321 .8129
Heart-h .8269 .8000 .7654 .8199 .8236 .8136
Heart-statlog 3333 .9067 .9067 .9133 .9200 .9200
Hepatitis .7067 .7567 .6000 .6900 .7067 .7067
Iris .3500 .7829 .6762 .7705 .8171 .8238
Labor .6666 .7201 .6224 .7097 .7136 .7292
Lymph .6778 .7000 .4778 .5333 .5889 .6333
Postoperative-patient-data | .3230 .7751 .3230 .7515 .7833 .7833
Solar-flare-c .8516 .8511 .8511 .8511 .8511 .8511
Tic-tac-toe .7870 .9843 .6827 .6868 .7390 .7494
Titanic 4465 4283 .3929 4202 4293 .4293
Vowel .8311 .9055 .9671 .9628 .9570 .9528
Yeast .5209 .5135 .5330 .5162 .5249 .5229
Zoo 9218 .9318 .7936 .9136 .9618 .9418

159

B Probability Estimation:
Experiments 1 - Detailed
Experimental Results

161

Table B.1.: Basic probability estimation using patterns generated by ordered,
unpruned JRip.

Name Jrip p L M=2 M=5 M=10
Anneal.orig 9210 .9172 9196 .9199 .9199 .9189
Audiology .8630 .8449 .8323 .8396 .8388 .8310
Autos 9042 .9072 .8998 .9071 .9041 .9030
Balance-scale | .8233 .8013 .8205 .8203 .8209 .8209
Breast-cancer | .5908 .5768 .5781 .5780 .5778 .5768
Breast-w 9280 .9298 .9351 .9351 .9351 .9351
Colic 7357 .7387 7474 7475 7475 .7475
Credit-a .8419 .8487 .8608 .8607 .8607 .8607
Credit-g .5847 .5874 .5868 .5868 .5868 .5868
Diabetes .6416 .6538 .6554 .6554 .6554 .6554
Glass .8059 .8034 .7895 .7941 .7929 .7919
Heart-c 7621 .7647 .7963 .7963 .7963 .7963
Heart-h .7276 .7365 .7580 .7580 .7580 .7580
Heart-statlog .7626 .7592 .8065 .8065 .8065 .8065
Hepatitis .6791 .6608 .6599 .6599 .6599 .6599
Hypothyroid 9713 .9734 9743 9744 9743 9734
Ionosphere .8842 .8853 .9026 .9026 .9026 .9026
Iris 9565 .8888 .8894 .8895 .8893 .8887
Kr-vs-kp 9931 9941 .9948 .9948 .9948 .9948
Labor .8122 .8000 .7939 .7926 .7926 .7926
Lymph .7500 .7388 .7480 .7459 .7437 .7490
Primary-tumor | .6490 .6358 .6147 .6448 .6409 .6422
Segment 9827 .9637 .9665 .9660 .9666 .9662
Sick 9221 9276 .9294 9293 .9293 .9293
Sonar 7737 .7712 .7836 .7832 .7832 .7832
Soybean 9624 9713 9656 .9735 .9675 .9671
Vehicle 7723 .7995 8113 .8117 .8109 .8118
Vote 9518 .9535 .9552 9552 .9547 .9530
Vowel .8841 .9057 .9091 .9095 .9110 .9095
Z00 9155 .8989 .9023 .9081 .9068 .8994

162 B. Probability Estimation: Experiments 1 - Detailed Experimental Results

Table B.2.: Probability estimation by shrinkage using patterns generated by or-
dered, unpruned JRip.

Name Jrip p L M=2 M=5 M=10
Anneal.orig 9210 .9197 .9187 .9191 .9203 .9192
Audiology .8630 .8433 .8364 .8437 .8414 .8324
Autos 9042 .9005 .8908 .9016 .9022 .8982
Balance-scale | .8233 .8116 .8116 .8111 .8123 .8152
Breast-cancer | .5908 .5805 .5803 .5803 .5794 .5788
Breast-w 9280 .9294 .9302 .9310 .9323 .9332
Colic .7357 .7414 .7457 7458 .7449 .7459
Credit-a .8419 .8571 .8592 .8594 .8622 .8638
Credit-g .5847 .5866 .5866 .5866 .5869 .5870
Diabetes .6416 .6559 .6560 .6559 .6559 .6555
Glass .8059 .7947 .7866 .7966 .7986 .7947
Heart-c 7621 7747 7774 7773 .7798 .7890
Heart-h 7276 .7554 .7570 .7554 .7565 .7573
Heart-statlog .7626 .7807 .7824 .7827 .7899 .7908
Hepatitis .6791 .6615 .6627 .6645 .6635 .6626
Hypothyroid 9713 9738 .9738 .9739 .9741 .9736
Ionosphere .8842 .8972 .8996 .8993 .9004 .9017
Iris .9565 .8760 .8783 .8783 .8782 .8777
Kr-vs-kp 9931 .9943 .9943 .9943 .9943 .9943
Labor .8122 .8101 .8101 .8061 .7953 .7831
Lymph .7500 .7482 .7450 .7482 .7457 .7458
Primary-tumor | .6490 .6523 .6383 .6563 .6531 .6623
Segment 9827 .9439 .9431 .9440 .9431 .9430
Sick 9221 .9286 .9286 .9287 .9290 .9290
Sonar .7737 .7786 .7780 .7778 .7794 .7808
Soybean 9624 9724 9709 .9721 9726 9714
Vehicle 7723 .8110 .8158 .8134 .8157 .8190
Vote 9518 .9502 .9494 .9491 .9525 .9559
Vowel .8841 .9086 .9061 .9103 .9104 .9074
Zoo 9155 .9156 .8969 .8999 .8953 .8901

163

Table B.3.: Basic probability estimation using patterns generated by ordered,

pruned JRip.
Name Jrip p L M=2 M=5 M=10
Anneal.orig 9422 9383 .9364 .9370 .9360 .9352
Audiology 9071 .8650 .8097 .8517 .8391 .8341
Autos .8500 .8330 .8212 .8286 .8229 .8213
Balance-scale | .8523 .8119 .8150 .8146 .8160 .8160
Breast-cancer | .5976 .5960 .5960 .5963 .5980 .5982
Breast-w 9730 .9649 .9645 .9643 .9636 .9612
Colic .8231 .8014 .8044 .8090 .8131 .8163
Credit-a .8738 .8720 .8733 .8736 .8745 .8753
Credit-g 5927 .6129 .6128 .6131 .6133 .6132
Diabetes .7389 .7337 .7338 .7339 .7339 .7338
Glass .8027 .8137 .8217 .8200 .8199 .8203
Heart-c .8310 .8372 .8428 .8420 .8453 .8473
Heart-h 7582 .7392 .7396 .7397 .7412 .7415
Heart-statlog .7805 .7916 .7904 .7903 .7909 .7899
Hepatitis .6637 .5996 .5996 .5995 .5987 .5972
Hypothyroid 9877 .9895 .9899 .9900 .9900 .9898
Ionosphere .8995 .9041 .9068 .9083 .9097 .9103
Iris 9735 .8884 .8904 .8904 .8904 .8904
Kr-vs-kp 9949 19943 .9943 .9943 .9942 .9941
Labor 7791 .7824 .7824 7811 .7676 .7459
Lymph .7947 .7953 .7880 .7900 .7793 .7766
Primary-tumor | .6420 .6261 .6215 .6297 .6271 .6294
Segment 9878 .9530 .9534 9535 .9532 9531
Sick 9481 .9493 .9496 .9498 .9500 .9500
Sonar .7591 .7404 .7420 .7430 .7463 .7445
Soybean 9813 .9798 .9676 9777 9714 .9688
Vehicle .8549 .8426 .8436 .8440 .8433 .8423
Vote 9417 .9485 .9485 .9485 .9485 .9485
Vowel 9095 .9000 .8977 .9036 .9046 .8982
Z00 9247 .8888 .8871 .8948 .8947 .8891

164 B. Probability Estimation: Experiments 1 - Detailed Experimental Results

Table B.4.: Probability estimation by shrinkage using patterns generated by or-
dered, pruned JRip.

Name Jrip p L M=2 M=5 M=10
Anneal.orig 9422 9366 .9356 .9365 .9366 .9357
Audiology 9071 .8539 .7762 .8399 .8260 .8012
Autos .8500 .8364 .8292 .8303 .8302 .8187
Balance-scale | .8523 .8095 .8101 .8101 .8107 .8112
Breast-cancer | .5976 .5969 .5970 .5973 .5990 .6024
Breast-w 9730 .9558 .9557 .9558 .9566 .9569
Colic .8231 .8083 .8154 .8154 .8154 .8156
Credit-a .8738 .8742 .8735 .8739 .8733 .8745
Credit-g 5927 .6119 .6120 .6121 .6120 .6117
Diabetes .7389 .7357 .7360 .7360 .7358 .7360
Glass .8027 .8095 .8250 .8178 .8169 .8121
Heart-c .8310 .8176 .8183 .8184 .8231 .8250
Heart-h 7582 .7421 .7403 .7421 .7422 .7412
Heart-statlog .7805 .7764 .7760 .7756 .7754 .7733
Hepatitis .6637 .5962 .5962 .5957 .5949 .5864
Hypothyroid 9877 .9900 .9900 .9902 .9902 .9900
Ionosphere .8995 .9088 .9086 .9092 .9099 .9093
Iris .9735 .8886 .8907 .8905 .8907 .8907
Kr-vs-kp 9949 9931 .9932 .9932 .9937 .9938
Labor 7791 .7554 .7608 .7635 .7595 .7446
Lymph 7947 7671 7722 .7732 .7734 .7741
Primary-tumor | .6420 .6237 .6270 .6224 .6223 .6280
Segment 9878 .9322 .9325 .9322 .9325 .9331
Sick 9481 .9491 .9492 9492 .9496 .9499
Sonar 7591 .7341 .7370 .7374 .7400 .7437
Soybean 9813 .9699 .9647 9695 .9669 .9665
Vehicle .8549 .8389 .8428 .8418 .8427 .8440
Vote 9417 9472 9472 9472 9472 .9472
Vowel 9095 .8914 .8914 .8916 .8932 .8918
Zoo 9247 9086 .8947 .9024 .9012 .8931

165

Table B.5.: Basic probability estimation using patterns generated by unordered,
unpruned JRip.

Name Jrip p L M=2 M=5 M=10
Anneal.orig 9210 .9869 .9898 .9932 .9930 .9930
Audiology .8630 .9105 .8773 .9087 .9034 .8922
Autos 9042 9162 .9264 .9270 .9286 .9302
Balance-scale | .8233 .8740 .9084 .9082 .9086 .9082
Breast-cancer | .5908 .6077 .6329 .6327 .6325 .6320
Breast-w 9280 .9588 .9532 .9530 .9530 .9530
Colic .7357 .8348 .8546 .8553 .8553 .8586
Credit-a .8419 .8899 .9129 9129 .9129 .9129
Credit-g .5847 .6953 .7160 .7160 .7160 .7160
Diabetes .6416 .7600 .7834 .7834 .7834 .7834
Glass .8059 .8096 .8083 .8083 .8084 .8086
Heart-c .7621 .7901 .8610 .8606 .8606 .8606
Heart-h .7276 .7891 .8510 .8530 .8492 .8523
Heart-statlog .7626 .7880 .8446 .8409 .8409 .8409
Hepatitis 6791 7743 .7990 .8022 .8022 .8022
Hypothyroid 9713 9912 9941 .9940 .9940 .9940
Ionosphere .8842 9176 .9379 .9379 .9379 .9386
Iris 9565 .9681 .9779 9779 9779 .9779
Kr-vs-kp 9931 .9978 .9991 .9991 .9991 .9991
Labor .8122 .8182 .7770 .7777 7777 .7777
Lymph .7500 .8431 .8914 .8875 .8808 .8838
Primary-tumor | .6490 .6821 .6714 .6929 .6942 .6914
Segment 9827 9911 .9973 .9973 .9973 .9973
Sick 9221 9577 .9814 9817 .9817 .9817
Sonar 7737 .8227 .8409 .8407 .8407 .8407
Soybean 9624 9791 .9820 .9847 .9843 .9846
Vehicle 7723 .8512 .8883 .8882 .8882 .8882
Vote 9518 .9726 .9822 9826 .9827 .9827
Vowel .8841 .9168 .9223 .9223 .9223 .9222
Zoo 9155 .9643 .9648 .9843 .9843 .9869

166 B. Probability Estimation: Experiments 1 - Detailed Experimental Results

Table B.6.: Probability estimation by shrinkage using patterns generated by un-
ordered, unpruned JRip.

Name Jrip p L M=2 M=5 M=10
Anneal.orig 9210 .9835 .9826 .9838 .9839 .9839
Audiology .8630 .8875 .8739 .8951 .8935 .8887
Autos 9042 9146 .9142 9142 .9183 .9262
Balance-scale | .8233 .8655 .8729 .8664 .8705 .8819
Breast-cancer | .5908 .5873 .6053 .5893 .6061 .6169
Breast-w 9280 .9659 .9660 .9668 .9690 .9691
Colic .7357 .8399 .8509 .8486 .8492 .8494
Credit-a .8419 .9088 .9107 .9108 .9143 .9169
Credit-g .5847 .7168 .7161 .7163 .7161 .7178
Diabetes .6416 .7776 .7795 .7787 .7806 .7831
Glass .8059 .8261 .8326 .8249 .8273 .8303
Heart-c .7621 .8134 .8268 .8232 .8308 .8442
Heart-h .7276 .8030 .8388 .8193 .8349 .8372
Heart-statlog .7626 .8113 .8045 .8046 .8204 .8287
Hepatitis .6791 .8175 .8190 .8205 .8172 .8159
Hypothyroid 9713 9936 .9928 .9937 .9932 .9932
Ionosphere .8842 9317 .9309 .9308 .9312 .9346
Iris 9565 .9729 .9799 9757 .9797 .9802
Kr-vs-kp 9931 .9973 .9972 .9972 .9972 .9974
Labor .8122 .8063 .8034 .8034 .7899 .7750
Lymph .7500 .8522 .8572 .8481 .8524 .8784
Primary-tumor | .6490 .7066 .6897 .7119 .7107 .7115
Segment 9827 .9892 9897 9895 .9896 .9897
Sick 9221 .9790 .9840 .9790 .9795 .9802
Sonar .7737 .8264 .8263 .8262 .8283 .8357
Soybean 9624 9809 .9795 .9808 .9810 .9807
Vehicle 7723 .8787 .8807 .8795 .8811 .8838
Vote 9518 .9675 .9680 .9679 .9748 .9783
Vowel .8841 .9194 .9202 .9205 .9203 .9202
Zoo 9155 .9651 .9702 .9816 .9823 .9883

167

Table B.7.: Basic probability estimation using patterns generated by unordered,

pruned JRip.
Name Jrip p L M=2 M=5 M=10
Anneal.orig 9422 9898 .9849 9889 .9875 .9842
Audiology 9071 .9120 .8913 .8955 .8892 .8825
Autos .8500 .8889 .8910 .8936 .8920 .8913
Balance-scale | .8523 .8880 .8986 .8948 .8997 .9013
Breast-cancer | .5976 .5620 .5565 .5565 .5565 .5603
Breast-w 9730 .9624 .9626 .9625 .9626 9611
Colic .8231 .7815 .7990 .7933 .8012 .8125
Credit-a .8738 .8763 .8773 .8771 .8789 .8811
Credit-g .5927 .7023 .7027 .7030 .7034 .7051
Diabetes .7389 .7401 .7418 .7421 .7413 .7387
Glass .8027 .8189 .8213 .8191 .8243 .8275
Heart-c .8310 .8267 .8266 .8292 .8278 .8295
Heart-h .7582 .7390 .7353 .7368 .7360 .7348
Heart-statlog .7805 .8057 .8155 .8164 .8232 .8237
Hepatitis .6637 .7658 .7693 .7708 .7640 .7682
Hypothyroid 9877 .9835 .9916 .9866 .9921 .9921
Ionosphere .8995 .9184 .9213 .9224 9259 .9264
Iris 9735 .9746 9752 9750 .9752 9752
Kr-vs-kp 9949 9989 .9990 .9989 .9989 .9981
Labor 7791 8372 .8149 .8122 .8122 .8095
Lymph .7947 .8580 .8493 .8533 .8510 .8514
Primary-tumor | .6420 .7033 .6789 .7092 .7101 .7081
Segment 9878 .9910 .9948 .9947 .9948 .9948
Sick 9481 .9488 9477 .9483 .9484 .9479
Sonar .7591 .8269 .8270 .8272 .8240 .8236
Soybean 9813 .9892 9883 .9897 .9892 .9890
Vehicle .8549 .8921 .8932 .8927 .8930 .8930
Vote 9417 9475 9605 .9517 .9604 .9608
Vowel 9095 .9211 .9238 .9255 .9248 .9240
Z00 9247 9733 .9601 .9873 .9873 .9873

168 B. Probability Estimation: Experiments 1 - Detailed Experimental Results

Table B.8.: Probability estimation by shrinkage using patterns generated by un-
ordered, pruned JRip.

Name Jrip p L M=2 M=5 M=10
Anneal.orig 9422 9834 9795 .9833 .9822 .9821
Audiology 9071 .8889 .8782 .8926 .8853 .8807
Autos .8500 .8823 .8893 .8877 .8889 .8892
Balance-scale | .8523 .8607 .8640 .8604 .8615 .8643
Breast-cancer | .5976 .5546 .5546 .5546 .5546 .5582
Breast-w 9730 .9721 9725 9726 .9730 .9737
Colic .8231 .8306 .8296 .8361 .8370 .8374
Credit-a .8738 .8776 .8773 .8775 .8789 .8794
Credit-g 5927 .7113 .7108 .7110 .7110 .7111
Diabetes .7389 .7287 .7293 .7288 .7298 .7315
Glass .8027 .8208 .8260 .8206 .8244 .8246
Heart-c .8310 .8159 .8039 .8155 .8101 .8072
Heart-h .7582 .7401 .7362 .7379 .7371 .7359
Heart-statlog .7805 .8145 .8125 .8122 .8187 .8266
Hepatitis .6637 .7899 .7929 .7901 .7948 .7891
Hypothyroid 9877 .9935 .9927 .9937 .9930 .9930
Ionosphere 8995 9152 9174 .9184 .9231 .9234
Iris 9735 .9686 .9686 .9686 .9701 .9726
Kr-vs-kp 9949 9952 .9952 .9952 .9957 .9970
Labor .7791 .8203 .8108 .8176 .8122 .8027
Lymph .7947 .8321 .8331 .8358 .8419 .8558
Primary-tumor | .6420 .7006 .6945 .7039 .7062 .7075
Segment 9878 .9892 .9900 .9897 .9899 .9901
Sick 9481 .9338 .9376 .9353 .9369 .9374
Sonar .7591 .8148 .8143 .8146 .8131 .8177
Soybean 9813 .9815 .9811 .9809 .9811 .9808
Vehicle .8549 .8914 .8900 .8904 .8901 .8900
Vote 9417 9557 .9565 .9565 .9562 .9583
Vowel 9095 .9147 9151 9153 9157 .9152
Zoo 9247 9892 9692 .9892 .9890 .9886

169

C Probability Estimation:
Experiments 1 - Averaged
Experimental Results

171

Table C.1.: Average weighted AUC results of precision and the Laplace-estimate
used as a basic probability estimation method or in liaison with

shrinkage.
Precision Laplace
Data Set Basic Shrinkage | Basic Shrinkage
Anneal.orig .9581 .9558 | .9577 .9541
Audiology .8831 .8684 | .8526 .8412
Autos .8863 .8835 | .8846 .8809
Balance-scale | .8438 .8368 | .8606 .8397
Breast-cancer | .5856 .5798 | .5909 .5843
Breast-w .9540 .9558 | .9538 .9561
Colic .7891 .8050 | .8013 .8104
Credit-a .8717 .8794 | .8811 .8802
Credit-g .6495 .6567 | .6546 .6564
Diabetes 7219 .7245 | .7286 7252
Glass .8114 .8128 | .8102 .8175
Heart-c .8047 .8054 | .8317 .8066
Heart-h .7509 .7602 | .7710 .7681
Heart-statlog .7861 .7957 | .8142 .7939
Hepatitis .7001 .7162 | .7070 7177
Hypothyroid .9844 .9878 | .9875 .9873
Ionosphere .9063 9132 | 9172 9141
Iris .9300 9265 | .9332 .9294
Kr-vs-kp .9963 9950 | .9968 .9950
Labor .8095 7981 | .7921 .7963
Lymph .8088 .7999 | .8192 .8019
Primary-tumor | .6618 .6708 | .6466 .6624
Segment 9747 .9636 | .9780 .9638
Sick .9458 .9476 | .9520 .9499
Sonar .7903 .7885 | .7984 .7889
Soybean 9799 9762 | .9759 .9740
Vehicle .8463 .8550 | .8591 .8573
Vote .9555 9551 | .9616 .9553
Vowel .9109 .9085 | .9132 .9082
Zoo .9313 .9446 | .9286 .9328

172 C. Probability Estimation: Experiments 1 - Averaged Experimental Results

Table C.2.: Average weighted AUC results of the m-Estimate (m=2, 5, or 10)
used as a basic probability estimation method or in liaison with

shrinkage.
M=2 M=5 M=10
Data Set Basic Shrink. | Basic Shrink. | Basic Shrink.
Anneal.orig 9597 .9557 | .9591 .9558 | .9578 .9552
Audiology .8739 .8678 | .8676 .8615 | .8600 .8508
Autos .8891 .8834 | .8869 .8849 | .8864 .8831
Balance-scale | .8595 .8370 | .8613 .8388 | .8616 .8432
Breast-cancer | .5909 .5804 | .5912 .5848 | .5918 .5891
Breast-w .9537 .9565 | .9535 9577 | .9526 .9582
Colic .8013 .8115 | .8043 .8116 | .8087 .8121
Credit-a .8811 .8804 | .8818 .8821 | .8825 .8836
Credit-g .6547 .6565 | .6549 .6565 | .6553 .6569
Diabetes .7287 .7248 | .7285 .7255 | .7278 .7265
Glass .8104 .8150 | .8114 .8168 | .8121 .8154
Heart-c .8320 .8086 | .8325 .8109 | .8335 .8164
Heart-h 7719 .7637 | .7711 .7677 | .7716 .7679
Heart-statlog .8135 .7938 | .8154 .8011 | .8153 .8049
Hepatitis .7081 .7177 | .7062 .7176 | .7069 .7135
Hypothyroid 9863 .9879 | .9876 .9876 | .9873 .9874
Ionosphere 9178 9144 | 9190 9161 | .9195 .9172
Iris 9332 9283 | .9332 .9297 | .9331 .9303
Kr-vs-kp 9968 9950 | .9967 .9952 | .9965 .9956
Labor .7909 .7976 | .7875 .7892 | .7814 .7764
Lymph .8192 8013 | .8137 .8033 | .8152 .8135
Primary-tumor | .6692 .6736 | .6681 .6731 | .6678 .6773
Segment 9779 .9638 | .9780 .9638 | .9778 .9640
Sick 9523 9481 | .9524 9488 | .9522 .9491
Sonar 7985 .7890 | .7985 .7902 | .7980 .7945
Soybean 9814 9758 | .9781 .9754 | .9774 .9748
Vehicle .8591 .8563 | .8588 .8574 | .8588 .8592
Vote 9595 9552 | .9616 9577 | .9613 .9599
Vowel 9152 9094 | .9157 .9099 | .9135 .9087
Z0o 9436 9433 | .9433 9420 | .9407 .9400

173

Table C.3.: Average weighted AUC results of precision and the Laplace-estimate
applied to unpruned or pruned pattern sets.

Precision Laplace
Data Set Unpruned Pruned | Unpruned Pruned
Anneal.orig 9869 .9898 .9898 .9849
Audiology 9105 .9120 .8773 .8913
Autos 9162 .8889 9264 .8910
Balance-scale .8740 .8880 .9084 .8986
Breast-cancer .6077 .5620 .6329 .5565
Breast-w 9588 .9624 9532 .9626
Colic .8348 .7815 .8546 .7990
Credit-a .8899 .8763 9129 .8773
Credit-g .6953 .7023 .7160 .7027
Diabetes .7600 .7401 .7834 .7418
Glass .8096 .8189 .8083 .8213
Heart-c .7901 .8267 .8610 .8266
Heart-h .7891 .7390 .8510 .7353
Heart-statlog .7880 .8057 .8446 .8155
Hepatitis 7743 .7658 .7990 .7693
Hypothyroid 9912 9835 9941 9916
Ionosphere 9176 9184 9379 9213
Iris 9681 .9746 9779 .9752
Kr-vs-kp 9978 .9989 9991 .9990
Labor .8182 .8372 .7770 .8149
Lymph .8431 .8580 .8914 .8493
Primary-tumor .6821 .7033 .6714 .6789
Segment 9911 9910 9973 .9948
Sick 9577 9488 9814 .9477
Sonar .8227 .8269 .8409 .8270
Soybean .9791 .9892 9820 .9883
Vehicle .8512 .8921 .8883 .8932
Vote 9726 9475 9822 .9605
Vowel 9168 9211 9223 .9238
Zoo 9643 9733 9648 .9601

174 C. Probability Estimation: Experiments 1 - Averaged Experimental Results

Table C.4.: Average weighted AUC results of the m-Estimate (m=2, 5, or 10)
applied to unpruned or pruned pattern sets.

M=2 M=5 M=10
Data Set Unprun. Pruned | Unprun. Pruned | Unprun. Pruned
Anneal.orig 9932 .9889 9930 .9875 9930 .9842
Audiology 9087 .8955 9034 .8892 .8922 .8825
Autos .9270 .8936 .9286 .8920 .9302 .8913
Balance-scale 9082 .8948 9086 .8997 9082 .9013
Breast-cancer .6327 .5565 .6325 .5565 .6320 .5603
Breast-w .9530 .9625 .9530 .9626 .9530 9611
Colic .8553 .7933 .8553 .8012 .8586 .8125
Credit-a 9129 8771 9129 .8789 9129 .8811
Credit-g 7160 .7030 .7160 .7034 .7160 .7051
Diabetes 7834 .7421 .7834 .7413 .7834 .7387
Glass .8083 .8191 .8084 .8243 .8086 .8275
Heart-c .8606 .8292 .8606 .8278 .8606 .8295
Heart-h .8530 .7368 .8492 .7360 .8523 .7348
Heart-statlog .8409 .8164 .8409 .8232 .8409 .8237
Hepatitis .8022 .7708 .8022 .7640 .8022 .7682
Hypothyroid 9940 .9866 9940 .9921 9940 9921
Ionosphere 9379 .9224 9379 .9259 9386 .9264
Iris 9779 .9750 9779 9752 9779 9752
Kr-vs-kp 9991 .9989 9991 .9989 9991 .9981
Labor 7777 8122 7777 8122 7777 .8095
Lymph .8875 .8533 .8808 .8510 .8838 .8514
Primary-tumor 6929 .7092 6942 .7101 .6914 .7081
Segment 9973 9947 9973 .9948 9973 .9948
Sick 9817 .9483 9817 .9484 9817 .9479
Sonar .8407 .8272 .8407 .8240 .8407 .8236
Soybean .9847 .9897 9843 .9892 9846 .9890
Vehicle .8882 .8927 .8882 .8930 .8882 .8930
Vote 9826 9517 9827 .9604 9827 .9608
Vowel 9223 9255 9223 .9248 9222 .9240
Zoo 9843 .9873 .9843 .9873 .9869 .9873

175

D Probability Estimation:
Experiments 2 - Detailed
Experimental Results

177

Table D.1.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: Bayesian decoding, 10 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9826 .9947 9952 9952 .9948 .9948
Audiology .9310 .9454 9221 .9260 .9246 .9202
Autos .9529 .9368 9470 9473 .9460 .9448
Balance-Scale .9291 .9633 9584 9591 .9616 .9634
Breast-cancer .6339 .6501 .6589 .6605 .6613 .6599
Breast-w .9872 .9909 9918 .9918 .9918 .9917
Colic .8613 .8935 8931 .8932 .8933 .8930
Credit-a .9224 .9338 9333 .9332 .9335 .9336
Credit-g .7307 7736 7797 7793 .7804 .7814
Diabetes .7812 .8180 .8142 8137 .8151 .8166
Glass .8912 .8984 .8942 .8990 .8952 .8905
Heart-c .8913 .9026 9043 .9031 .9045 .9053
Heart-h .8463 .8846 .8734 .8730 .8749 .8769
Heart-statlog .8646 .8983 .9023 .9020 .9030 .9031
Hepatitis .7622 .8481 .8417 .8420 .8425 .8402
Hypothyroid .9929 .9957 9981 .9977 9977 .9977
Ionosphere .9635 .9570 9737 9736 .9733 .9722
Iris 9811 9923 9915 .9913 .9909 .9908
Kr-vs-kp .9979 .9996 9997 .9997 .9999 .9998
Labor .8838 .8959 9122 9081 .9027 .8973
Lymph .8945 9273 9229 9258 .9247 9235
Primary-tumor .7316 .8034 .7490 .7884 .7849 .7776
Segment .9993 .9986 .9988 .9989 .9989 .9988
Sick .9831 .9964 9965 .9963 .9963 .9963
Sonar .9055 .9057 9161 .9155 .9153 9133
Soybean .9937 9955 9925 .9948 .9947 .9944
Vehicle .9289 .9301 9302 .9300 .9301 .9302
Vote .9646 9925 9928 .9928 .9928 .9926
Vowel .9887 .9907 9899 .9915 .9909 .9900
Zoo .9495 9910 9623 9876 .9819 9753

178 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.2.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: best rule, 10 samples, unpruned rule
sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9826 .9946 9925 .9937 .9937 .9937
Audiology .9310 .9487 9295 .9283 .9243 .9210
Autos .9529 .9367 9469 .9486 .9471 .9449
Balance-Scale 9291 .9548 9546 .9547 9567 .9590
Breast-cancer .6339 .6284 .6662 .6676 .6643 .6609
Breast-w .9872 .9876 9859 .9852 .9850 .9850
Colic .8613 .8920 .8849 .8872 .8881 .8876
Credit-a .9224 .9295 9300 .9300 .9305 .9308
Credit-g .7307 .7643 7726 .7695 .7708 .7733
Diabetes .7812 .8052 .8062 .8049 .8067 .8085
Glass .8912 .8963 .8884 .8879 .8876 .8873
Heart-c .8913 .8909 9088 .9068 .9072 .9073
Heart-h .8463 .8840 .8745 .8744 .8750 .8766
Heart-statlog .8646 .8922 .8959 .8956 .8960 .8961
Hepatitis .7622 .8471 .8434 .8487 .8505 .8512
Hypothyroid .9929 .9937 9954 9957 9957 .9957
Ionosphere .9635 .9534 9702 .9702 .9702 .9706
Iris 9811 9930 9931 .9929 .9933 .9937
Kr-vs-kp 9979 .9997 9998 .9998 .9998 .9998
Labor .8838 .8932 9216 .9189 .9149 .9054
Lymph .8945 .9245 9242 9256 .9258 .9247
Primary-tumor .7316 .8045 .7529 .7786 .7755 .7738
Segment .9993 .9987 9988 .9988 .9988 .9988
Sick .9831 9932 9943 .9949 .9949 .9947
Sonar .9055 .9008 9098 .9084 .9083 .9075
Soybean .9937 .9955 9914 9941 .9940 .9937
Vehicle .9289 .9248 9266 .9262 .9269 .9276
Vote .9646 .9821 9870 .9871 .9871 .9869
Vowel .9887 .9905 9886 .9903 .9895 .9887
Zoo .9495 9936 9703 .9928 .9936 .9919

179

Table D.3.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: macro averaging, 10 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9826 9974 9960 .9972 .9972 .9972
Audiology .9310 9561 9328 .9367 .9337 .9300
Autos .9529 .9395 9510 .9514 .9498 .9486
Balance-Scale .9291 .9582 9558 .9562 .9587 .9605
Breast-cancer .6339 .6469 .6604 .6611 .6618 .6617
Breast-w .9872 .9864 9870 .9869 .9871 .9870
Colic .8613 .8928 .8911 .8916 .8920 .8923
Credit-a .9224 9310 9326 .9323 .9329 .9335
Credit-g .7307 .7690 7729 7727 7742 7757
Diabetes .7812 .8089 .8088 .8084 .8102 .8126
Glass .8912 .8991 .8956 .9003 .8971 .8936
Heart-c .8913 .8983 9060 .9057 .9064 .9066
Heart-h .8463 .8829 .8764 .8762 .8785 .8794
Heart-statlog .8646 .8934 .8999 .8999 .9006 .9001
Hepatitis .7622 .8417 .8498 .8509 .8521 .8504
Hypothyroid .9929 .9939 9960 .9963 .9962 .9962
Ionosphere .9635 .9552 9721 9722 9723 .9720
Iris 9811 .9930 9929 .9927 9931 .9933
Kr-vs-kp .9979 .9996 9997 .9997 .9997 .9997
Labor .8838 .8959 .9081 .9068 .9000 .8932
Lymph .8945 .9268 9277 9278 .9290 .9275
Primary-tumor .7316 .8108 7615 .7925 .7905 .7863
Segment .9993 .9989 9990 .9990 .9990 .9990
Sick .9831 .9947 9940 .9943 .9942 .9940
Sonar .9055 .9057 9172 9168 .9154 .9140
Soybean .9937 9957 9929 .9949 .9948 .9946
Vehicle .9289 .9294 9291 .9288 .9291 .9293
Vote .9646 .9829 .9861 .9862 .9858 .9857
Vowel .9887 9911 9907 .9922 .9915 .9908
Zoo .9495 .9944 9723 .9943 .9941 9913

180 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.4.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: micro averaging, 10 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9826 .9970 9954 9966 .9968 .9969
Audiology .9310 .9563 9369 .9361 .9324 .9292
Autos .9529 .9387 9481 .9491 .9471 .9450
Balance-Scale 9291 .9596 9565 .9572 .9598 .9618
Breast-cancer .6339 .6602 .6601 .6607 .6614 .6598
Breast-w .9872 .9867 9876 .9876 9875 .9874
Colic .8613 .8959 .8933 .8938 .8940 .8937
Credit-a .9224 .9306 9329 9326 .9335 .9341
Credit-g .7307 .7691 .7765 .7759 .7780 .7795
Diabetes .7812 .8129 .8121 .8115 .8136 .8151
Glass .8912 .9013 .8989 .9036 .9014 .8976
Heart-c .8913 .8987 9053 .9050 .9054 .9054
Heart-h .8463 .8825 .8758 .8760 .8778 .8779
Heart-statlog .8646 .8960 9023 .9022 .9029 .9032
Hepatitis .7622 .8422 .8504 .8529 .8552 .8526
Hypothyroid .9929 .9938 9962 .9963 .9963 .9962
Ionosphere .9635 .9552 9718 .9719 9719 9717
Iris 9811 9927 9922 9921 .9925 .9925
Kr-vs-kp 9979 .9996 9997 .9997 .9997 .9997
Labor .8838 .9095 9135 .9135 .9068 .9054
Lymph .8945 .9286 9283 .9293 .9301 .9283
Primary-tumor .7316 .8104 .7653 .7963 .7942 .7895
Segment .9993 .9988 9990 .9990 .9990 .9989
Sick .9831 9951 9937 .9941 .9940 .9938
Sonar .9055 .9095 9174 9172 9159 9145
Soybean .9937 9952 9928 .9945 9946 .9945
Vehicle .9289 .9304 9304 .9300 .9304 .9305
Vote .9646 .9832 9862 .9863 .9860 .9854
Vowel .9887 .9905 9899 .9914 .9907 .9900
Zoo .9495 .9939 9720 .9943 .9938 .9913

181

Table D.5.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: Bayesian decoding, 20 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9821 9957 9959 .9961 .9963 .9964
Audiology 9415 .9428 9276 .9262 .9244 9219
Autos .9573 9418 9475 9497 9478 .9450
Balance-Scale .9344 .9630 9598 .9607 .9633 .9654
Breast-cancer .6213 .6651 .6619 .6604 .6637 .6666
Breast-w .9888 9919 9920 .9919 .9919 .9919
Colic .8664 .8942 .8945 .8945 .8940 .8928
Credit-a .9265 .9384 9371 .9370 .9373 .9373
Credit-g .7438 .7832 7842 7840 .7843 .7847
Diabetes .7935 .8233 .8208 .8207 .8221 .8230
Glass .8975 .9084 9029 .9093 .9072 .9032
Heart-c .8952 .9070 9079 .9072 .9081 .9095
Heart-h .8536 .8892 .8755 .8742 .8761 .8767
Heart-statlog .8769 .8993 9028 .9029 .9031 .9028
Hepatitis 7671 .8478 .8572 .8572 .8582 .8580
Hypothyroid 9922 9955 9983 .9979 .9979 .9978
Ionosphere .9621 .9582 9726 .9726 .9717 .9708
Iris 9910 9931 9922 9922 .9923 .9923
Kr-vs-kp .9982 .9997 9998 .9998 .9998 .9998
Labor 9135 .9108 9243 9257 9189 9122
Lymph .9048 .9276 9335 .9345 .9328 .9292
Primary-tumor 7479 .8044 .7560 .7929 .7894 .7829
Segment .9994 .9989 9990 .9991 .9991 .9990
Sick .9883 9973 9967 .9965 .9962 .9957
Sonar .9223 9111 9200 .9199 .9180 .9161
Soybean .9934 .9958 9948 9953 .9952 9951
Vehicle .9344 9331 9345 .9345 .9345 .9344
Vote .9668 9927 9923 .9924 9921 .9919
Vowel .9955 9931 9928 .9940 .9935 .9929
Zoo .9536 .9940 9664 .9930 .9895 .9838

182 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.6.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: best rule, 20 samples, unpruned rule
sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9821 9950 9929 .9937 .9938 .9938
Audiology 9415 .9490 9381 .9362 .9326 .9295
Autos .9573 .9418 9488 .9513 .9496 .9466
Balance-Scale .9344 .9581 9572 9576 .9607 .9630
Breast-cancer .6213 .6596 .6699 .6637 .6652 .6664
Breast-w .9888 .9888 9889 .9890 .9890 .9890
Colic .8664 .9045 .8888 .8886 .8892 .8874
Credit-a .9265 .9329 9338 .9338 .9341 .9341
Credit-g .7438 .7766 7760 .7730 .7749 .7768
Diabetes .7935 .8138 .8185 .8166 .8172 .8186
Glass .8975 .9101 .8943 .8963 .8949 .8946
Heart-c .8952 .9027 9091 .9095 .9101 .9096
Heart-h .8536 .8846 .8758 .8758 .8764 .8773
Heart-statlog .8769 .8942 .8992 .8996 .8998 .8988
Hepatitis .7671 .8438 .8562 .8577 .8598 .8615
Hypothyroid .9922 .9940 9956 .9957 .9957 .9957
Ionosphere .9621 .9543 9713 9714 9711 .9704
Iris 9910 .9937 9931 .9931 .9932 .9933
Kr-vs-kp .9982 .9997 9998 .9998 .9998 .9998
Labor 9135 .8973 9243 9257 9257 .9243
Lymph .9048 .9257 9332 .9348 .9331 .9300
Primary-tumor .7479 .8062 .7694 .7949 .7907 .7857
Segment .9994 9991 9991 .9992 .9992 .9991
Sick .9883 9951 9958 .9964 .9963 .9962
Sonar .9223 9172 9136 .9127 9112 9102
Soybean .9934 .9957 9936 .9946 .9945 .9943
Vehicle .9344 .9300 9320 .9319 .9322 .9325
Vote .9668 .9812 9903 .9903 .9902 .9900
Vowel .9955 9932 9917 .9933 .9927 .9919
Zoo .9536 .9939 9715 .9947 .9943 .9934

183

Table D.7.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: macro averaging, 20 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9821 9974 9964 9972 .9973 .9975
Audiology .9415 .9534 9395 .9368 .9334 .9296
Autos .9573 9431 9517 .9540 .9518 .9495
Balance-Scale .9344 .9603 9578 .9592 .9615 .9635
Breast-cancer .6213 .6675 .6643 .6630 .6668 .6692
Breast-w .9888 .9901 .9882 .9882 .9881 .9880
Colic .8664 .8983 .8948 .8944 .8943 .8939
Credit-a .9265 .9360 9357 .9357 .9362 .9361
Credit-g .7438 .7808 7797 .7791 .7802 .7812
Diabetes .7935 .8184 .8175 .8172 .8187 .8202
Glass .8975 .9104 .9048 .9100 .9079 .9055
Heart-c .8952 9051 9076 .9070 .9084 .9089
Heart-h .8536 .8837 .8770 .8761 .8768 .8779
Heart-statlog .8769 .8970 9022 .9019 .9011 .9007
Hepatitis .7671 .8509 .8565 .8608 .8600 .8585
Hypothyroid .9922 .9940 9960 .9960 .9960 .9959
Ionosphere .9621 .9563 9716 .9716 .9713 .9705
Iris 9910 9935 9927 .9927 .9928 .9931
Kr-vs-kp .9982 .9996 9996 .9996 .9996 .9996
Labor 9135 .8959 9176 9189 9135 .9081
Lymph .9048 9271 9364 .9365 .9359 .9314
Primary-tumor 7479 .8122 .7701 .8000 .7972 .7936
Segment .9994 9991 9992 .9992 .9992 .9992
Sick .9883 9975 9973 9976 .9975 .9973
Sonar .9223 9136 9170 .9172 .9159 .9140
Soybean .9934 .9959 9949 9955 .9954 9952
Vehicle .9344 .9329 9345 .9342 .9344 9342
Vote .9668 .9825 .9854 9855 .9850 .9845
Vowel .9955 .9935 9931 .9944 9938 .9933
Zoo .9536 .9948 9719 .9948 .9944 .9931

184 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.8.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: micro averaging, 20 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9821 .9969 9958 .9968 .9968 .9971
Audiology 9415 .9542 9418 .9364 .9329 .9294
Autos .9573 9441 9498 9517 .9492 .9464
Balance-Scale .9344 .9607 9586 .9602 .9627 .9647
Breast-cancer .6213 .6735 .6628 .6595 .6634 .6657
Breast-w .9888 .9907 9886 .9886 .9884 .9881
Colic .8664 .9013 .8963 .8965 .8963 .8945
Credit-a .9265 9371 9357 .9356 .9366 .9369
Credit-g .7438 .7827 .7839 .7833 .7845 .7851
Diabetes .7935 .8216 8205 .8202 .8222 .8234
Glass .8975 9125 9075 .9134 .9124 .9098
Heart-c .8952 .9052 9068 .9061 .9074 .9076
Heart-h .8536 .8863 .8764 8746 .8755 .8770
Heart-statlog .8769 .8975 9026 .9026 .9032 .9035
Hepatitis .7671 .8519 .8598 .8610 .8626 .8626
Hypothyroid .9922 .9940 9961 .9961 .9961 .9960
Ionosphere .9621 .9571 9718 .9718 .9713 .9705
Iris 9910 9927 9919 .9919 .9920 .9922
Kr-vs-kp .9982 .9995 9996 .9996 .9996 .9996
Labor 9135 9122 9243 9230 .9203 .9135
Lymph .9048 .9276 9360 .9365 .9361 .9341
Primary-tumor 7479 8112 7734 .8033 .8000 .7955
Segment .9994 9991 9992 .9992 .9992 .9992
Sick .9883 .9974 9968 .9975 .9974 9971
Sonar .9223 .9127 9211 .9208 .9191 9176
Soybean .9934 .9956 9946 9950 .9950 .9948
Vehicle .9344 .9338 9349 .9347 .9348 .9344
Vote .9668 .9826 9856 .9857 .9850 .9839
Vowel .9955 .9929 9925 9937 .9932 .9926
Zoo .9536 .9944 9717 .9949 .9943 .9929

185

Table D.9.: Average weighted AUC of the bagged JRip and the employed prob-
ability estimation techniques: Bayesian decoding, 50 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9898 .9956 9957 .9958 .9959 .9957
Audiology .9454 .9468 9366 .9383 .9374 .9342
Autos .9592 .9487 9506 .9527 .9504 .9468
Balance-Scale .9383 .9648 9614 .9623 .9653 .9678
Breast-cancer .6206 .6736 6712 .6694 .6737 .6750
Breast-w 9916 9917 9920 .9920 .9919 9919
Colic .8789 .8972 .8950 .8954 .8949 .8938
Credit-a .9285 9374 9364 .9363 .9365 .9365
Credit-g .7526 .7873 .7875 .7874 .7876 .7873
Diabetes .8066 .8258 .8206 .8202 .8217 .8228
Glass .8994 .9147 9114 9170 .9146 .9100
Heart-c .8967 9119 9105 .9091 .9101 .9107
Heart-h .8676 .8907 .8794 8773 .8789 .8802
Heart-statlog .8831 .9022 .8998 .8998 .9005 .9008
Hepatitis .7887 .8585 .8544 .8549 .8554 .8526
Hypothyroid .9927 9973 9984 .9979 .9979 .9979
Ionosphere .9700 .9625 9715 .9715 .9709 .9695
Iris 9941 9919 9927 .9926 .9927 .9927
Kr-vs-kp .9984 .9996 9998 .9998 .9998 .9998
Labor 9135 .9230 9311 .9324 9257 9216
Lymph .8994 9377 9382 .9392 .9368 .9352
Primary-tumor .7555 .8120 7550 .7926 .7898 .7846
Segment .9996 .9993 9991 9991 .9991 .9991
Sick 9913 9973 9969 .9963 .9961 .9959
Sonar .9316 .9233 9274 9272 .9261 .9239
Soybean .9947 .9959 9949 9953 .9952 .9948
Vehicle .9370 9351 9361 .9362 .9360 .9357
Vote .9739 .9933 9931 .9932 .9930 .9926
Vowel .9959 .9940 9942 9952 .9947 .9942
Zoo .9479 9942 9676 .9942 9924 9881

186 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.10.: Average weighted AUC of the bagged JRip and the employed
probability estimation techniques: best rule, 50 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9898 9953 9933 9936 .9938 .9940
Audiology .9454 .9570 9464 .9453 .9440 .9422
Autos .9592 .9500 9500 .9524 .9492 .9466
Balance-Scale .9383 .9581 9593 .9602 .9634 .9661
Breast-cancer .6206 .6646 .6778 .6753 .6784 .6789
Breast-w 9916 .9914 9917 9918 .9918 .9917
Colic .8789 .9015 .8929 .8931 .8920 .8910
Credit-a .9285 .9348 9337 .9336 .9337 .9336
Credit-g 7526 .7843 .7823 .7822 .7833 .7839
Diabetes .8066 .8192 .8205 .8186 .8188 .8197
Glass .8994 9132 9049 .9101 .9067 .9021
Heart-c .8967 .9076 9123 .9123 9127 9119
Heart-h .8676 .8876 .8790 .8775 .8782 .8791
Heart-statlog .8831 9012 .9007 .8997 .9002 .8996
Hepatitis .7887 .8450 .8496 .8514 .8549 .8565
Hypothyroid .9927 .9940 9958 .9960 .9960 .9960
Ionosphere .9700 .9642 9768 .9768 .9764 .9755
Iris 9941 9930 9938 .9936 .9938 .9939
Kr-vs-kp .9984 .9997 9997 .9997 .9997 .9997
Labor 9135 .9203 9270 .9270 .9270 .9243
Lymph .8994 .9407 9382 .9397 .9392 .9380
Primary-tumor .7555 .8161 .7707 .7982 .7932 .7885
Segment .9996 .9993 9992 .9992 .9992 .9992
Sick 9913 .9977 9961 .9966 .9965 .9963
Sonar 9316 .9284 9224 9222 .9206 .9201
Soybean .9947 .9957 9940 .9948 .9947 .9944
Vehicle .9370 .9331 9353 .9352 .9351 .9349
Vote 9739 .9873 9923 .9925 .9922 9919
Vowel .9959 .9944 9936 .9948 .9942 .9936
Zoo .9479 .9948 9739 .9952 .9950 .9942

187

Table D.11.: Average weighted AUC of the bagged JRip and the employed
probability estimation techniques: macro averaging, 50 samples,
unpruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9898 9975 9964 9971 .9973 .9974
Audiology 9454 .9565 9468 .9456 .9443 .9426
Autos .9592 .9508 9533 .9551 .9532 .9497
Balance-Scale .9383 9621 9593 .9607 .9633 .9656
Breast-cancer .6206 .6749 .6773 .6753 .6805 .6817
Breast-w .9916 9911 9916 .9916 .9915 .9915
Colic .8789 .8993 .8981 .8975 .8975 .8969
Credit-a .9285 .9366 9351 .9350 .9353 .9355
Credit-g .7526 .7856 .7837 .7836 .7841 .7839
Diabetes .8066 .8210 .8196 .8193 .8204 .8216
Glass .8994 .9169 9134 9179 .9169 .9135
Heart-c .8967 .9103 9112 9102 .9114 9118
Heart-h .8676 .8873 .8787 .8769 .8778 .8792
Heart-statlog .8831 .9006 .89088 .8987 .8991 .8993
Hepatitis .7887 .8537 .8544 .8554 .8549 .8506
Hypothyroid .9927 9967 9960 .9960 .9960 .9959
Ionosphere .9700 .9623 9741 9742 9732 .9720
Iris 9941 9927 9936 .9935 .9938 .9941
Kr-vs-kp .9984 .9995 9995 9995 .9995 .9995
Labor 9135 9162 9230 .9216 9176 9162
Lymph .8994 .9389 9393 .9400 .9383 .9368
Primary-tumor .7555 .8201 .7688 .7999 .7976 .7934
Segment .9996 .9993 9993 9994 9993 .9993
Sick 9913 9975 9976 .9977 .9976 .9975
Sonar .9316 .9233 9283 .9281 .9263 .9241
Soybean .9947 .9960 9948 9955 .9952 .9948
Vehicle .9370 .9352 9361 .9362 .9361 .9359
Vote .9739 .9877 9928 .9929 .9924 .9916
Vowel .9959 .9944 9945 9955 .9951 .9946
Zoo .9479 .9948 9741 9953 .9949 .9942

188 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.12.: Average weighted AUC of the bagged JRip and the employed
probability estimation techniques: micro averaging, 50 samples,
unpruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9898 .9970 9958 .9967 .9969 .9970
Audiology .9454 .9569 9475 .9448 9430 .9414
Autos .9592 .9503 9503 .9531 .9510 .9483
Balance-Scale .9383 .9623 9591 .9609 .9638 .9662
Breast-cancer .6206 .6784 .6719 .6703 .6751 .6771
Breast-w 9916 .9909 9914 9914 9913 .9912
Colic .8789 .9041 .8967 .8972 .8965 .8955
Credit-a .9285 .9383 9350 .9349 .9354 .9357
Credit-g 7526 .7872 .7873 .7865 .7873 .7875
Diabetes .8066 .8237 .8206 .8204 .8215 .8227
Glass .8994 9157 9148 .9193 9170 .9136
Heart-c .8967 9132 9103 .9097 .9103 .9112
Heart-h .8676 .8884 .8817 .8793 .8805 .8820
Heart-statlog .8831 9014 .8992 .8991 .9001 .9010
Hepatitis .7887 .8577 .8526 .8542 .8534 .8532
Hypothyroid .9927 9967 9961 .9961 .9961 .9960
Ionosphere .9700 .9645 9753 9753 .9744 .9735
Iris 9941 9922 9921 .9921 .9929 .9930
Kr-vs-kp .9984 .9995 9995 9995 .9995 .9995
Labor 9135 .9203 9270 .9270 .9243 .9243
Lymph .8994 .9403 9407 .9420 .9400 .9378
Primary-tumor .7555 .8173 .7705 .8010 .7988 .7956
Segment .9996 .9993 9993 .9994 .9993 .9993
Sick 9913 9973 9975 9976 9975 .9974
Sonar 9316 .9237 9276 9277 .9262 .9244
Soybean .9947 .9957 9949 9951 .9950 .9948
Vehicle .9370 .9355 9364 .9365 .9363 .9360
Vote 9739 .9882 9931 .9931 .9925 .9915
Vowel .9959 .9938 9939 .9950 .9945 .9940
Zoo .9479 9942 9739 .9950 .9948 .9941

189

Table D.13.: Average weighted AUC of the bagged JRip and the employed
probability estimation techniques: Bayesian decoding, 100 sam-
ples, unpruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9903 .9956 9958 .9958 .9959 .9958
Audiology .9444 .9465 9335 .9384 .9372 .9329
Autos .9595 .9498 9509 .9532 .9505 .9483
Balance-Scale .9386 .9652 9621 .9630 .9661 .9684
Breast-cancer .6349 .6700 .6708 .6683 .6711 .6722
Breast-w .9920 9913 9920 .9920 .9919 .9919
Colic .8802 .8985 .8938 .8934 .8933 .8922
Credit-a .9298 .9373 9365 .9364 .9367 .9365
Credit-g .7559 .7883 7912 .7913 .7915 .7912
Diabetes .8098 .8257 .8203 .8201 .8216 .8226
Glass .9022 .9203 9141 9198 9172 9134
Heart-c .8951 9115 9108 .9105 .9113 .9120
Heart-h .8630 .8911 .8817 .8792 .8809 .8831
Heart-statlog .8821 .9029 .9003 .9004 .9016 .9014
Hepatitis .8161 .8572 .8514 .8537 .8521 .8501
Hypothyroid .9953 .9986 9983 .9979 .9979 .9979
Ionosphere 9724 .9639 9732 9732 9722 9711
Iris .9937 .9929 9929 .9929 9932 .9933
Kr-vs-kp .9984 .9997 9996 .9996 .9998 .9998
Labor 9115 .9257 9365 .9365 .9324 9257
Lymph .9076 9375 9378 .9391 .9388 .9364
Primary-tumor 7547 .8138 7553 .7943 .7909 .7857
Segment .9996 .9993 9994 9994 9994 .9994
Sick .9947 9973 9977 .9977 .9976 .9974
Sonar .9283 .9200 9303 .9304 .9288 .9261
Soybean .9953 .9959 9950 .9953 .9952 .9949
Vehicle .9368 .9354 9367 .9368 .9366 .9363
Vote .9764 .9938 9933 .9933 .9930 .9928
Vowel .9969 .9945 9946 .9955 .9951 .9947
Zoo .9452 .9944 9708 .9944 9937 .9905

190 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.14.: Average weighted AUC of the bagged JRip and the employed
probability estimation techniques: best rule, 100 samples, un-
pruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9903 9953 9936 .9945 .9944 .9945
Audiology .9444 .9561 9434 .9458 .9437 .9405
Autos .9595 9507 9501 .9528 .9500 .9478
Balance-Scale .9386 .9595 9616 .9626 .9659 .9685
Breast-cancer .6349 .6588 .6736 .6702 .6725 .6740
Breast-w .9920 9913 9919 .9919 .9918 .9918
Colic .8802 .9014 .8894 .8901 .8889 .8881
Credit-a .9298 .9358 9344 9344 .9348 .9349
Credit-g .7559 .7865 .7890 .7894 .7901 .7899
Diabetes .8098 .8216 .8216 .8206 .8208 .8211
Glass .9022 9213 9059 .9133 .9103 .9048
Heart-c .8951 .9091 9127 9129 9136 9134
Heart-h .8630 .8912 .8806 .8787 .8802 .8804
Heart-statlog .8821 .9008 9028 .9021 .9023 .9016
Hepatitis .8161 .8458 .8488 .8486 .8516 .8544
Hypothyroid .9953 .9940 9958 .9962 .9963 .9962
Ionosphere .9724 .9683 9782 .9783 9776 .9769
Iris .9937 9936 9935 .9935 .9936 .9937
Kr-vs-kp .9984 .9997 9996 .9996 .9996 .9996
Labor 9115 .9203 9311 .9311 .9257 .9270
Lymph .9076 9416 9382 .9381 .9373 .9359
Primary-tumor 7547 .8164 .7678 .7984 .7941 .7892
Segment .9996 .9993 9992 .9993 .9992 .9992
Sick .9947 9978 9961 .9966 .9965 .9963
Sonar .9283 .9268 9299 .9301 .9278 .9258
Soybean .9953 .9957 9941 .9949 .9948 .9947
Vehicle .9368 .9343 9361 .9363 .9360 .9356
Vote .9764 .9878 9922 9923 9920 .9918
Vowel .9969 .9950 9945 9955 .9951 .9946
Zoo .9452 .9948 9750 .9952 .9950 .9946

191

Table D.15.: Average weighted AUC of the bagged JRip and the employed
probability estimation techniques: macro averaging, 100 samples,
unpruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9903 9975 9964 9972 9973 .9974
Audiology .9444 9555 9447 9464 .9445 9421
Autos .9595 .9518 9538 .9561 .9538 .9513
Balance-Scale .9386 .9626 9603 .9617 .9646 .9669
Breast-cancer .6349 .6705 .6738 .6730 .6747 .6760
Breast-w .9920 .9909 9917 9916 .9917 .9914
Colic .8802 .9023 .8962 .8964 .8958 .8945
Credit-a .9298 .9368 9353 .9351 .9355 .9354
Credit-g .7559 .7862 .7887 .7888 .7890 .7886
Diabetes .8098 .8220 8191 .8190 .8201 .8215
Glass .9022 9232 9171 .9216 .9198 .9166
Heart-c .8951 9110 9114 9110 .9122 9123
Heart-h .8630 .8898 8813 .8793 .8812 .8825
Heart-statlog .8821 .9021 .8993 .8993 .8996 .9002
Hepatitis .8161 .8554 .8557 .8542 8552 .8516
Hypothyroid .9953 .9966 9960 .9960 .9960 .9959
Ionosphere .9724 .9673 .9760 .9760 .9750 .9737
Iris .9937 .9936 9933 .9932 .9935 .9935
Kr-vs-kp .9984 .9995 9995 9995 .9995 .9995
Labor 9115 9176 9243 9230 .9189 9162
Lymph .9076 .9400 9398 .9412 .9402 .9377
Primary-tumor 7547 .8208 .7678 .8002 .7984 .7944
Segment .9996 .9993 9994 9994 9994 .9994
Sick .9947 9975 9977 .9979 9978 .9976
Sonar .9283 9213 9316 .9316 .9290 .9266
Soybean .9953 .9959 9948 .9954 .9951 .9949
Vehicle .9368 .9353 9368 .9369 .9366 .9363
Vote .9764 .9881 9924 9924 9918 9911
Vowel .9969 .9950 9950 .9959 9955 .9951
Zoo .9452 .9948 9751 .9953 .9952 .9944

192 D. Probability Estimation: Experiments 2 - Detailed Experimental Results

Table D.16.: Average weighted AUC of the bagged JRip and the employed
probability estimation techniques: micro averaging, 100 samples,
unpruned rule sets (except for precision).

Name Bagged Jrip Precison Laplace M=2 M=5 M=10
Anneal.orig .9903 .9970 9959 .9967 .9969 .9970
Audiology .9444 .9565 9458 .9450 .9429 .9404
Autos .9595 .9502 9511 9537 .9513 .9487
Balance-Scale .9386 .9627 9601 .9618 .9649 .9674
Breast-cancer .6349 .6717 .6757 .6737 .6760 .6773
Breast-w .9920 .9906 9914 9914 9913 9911
Colic .8802 .9050 .8963 .8962 .8961 .8945
Credit-a .9298 .9385 9355 .9353 .9358 .9359
Credit-g .7559 .7871 .7901 .7901 .7903 .7899
Diabetes .8098 .8232 .8203 .8202 .8215 .8226
Glass .9022 .9214 9171 9215 .9194 9163
Heart-c .8951 9133 9114 9106 .9118 9122
Heart-h .8630 .8893 .8837 .8808 .8833 .8850
Heart-statlog .8821 .9031 .9000 .8997 .8998 .8997
Hepatitis .8161 .8565 .8554 .8554 .8562 .8526
Hypothyroid .9953 .9967 9962 .9961 .9961 .9961
Ionosphere .9724 .9681 9770 .9770 .9762 .9752
Iris .9937 9928 9923 .9925 .9925 .9927
Kr-vs-kp .9984 .9995 9995 9995 .9995 .9995
Labor 9115 .9230 9284 .9297 9257 .9243
Lymph .9076 .9393 9408 .9422 .9409 .9388
Primary-tumor 7547 .8194 .7713 .8018 .8001 .7973
Segment .9996 .9993 9994 9994 9994 .9994
Sick .9947 9973 9976 .9978 .9977 .9975
Sonar .9283 .9184 9296 .9297 9278 .9264
Soybean .9953 .9956 9948 9951 .9949 .9946
Vehicle .9368 .9356 9372 9373 .9370 .9366
Vote .9764 .9885 9927 .9927 .9921 .9910
Vowel .9969 .9943 9943 .9953 .9949 .9944
Zoo .9452 .9947 9750 9951 .9948 .9943

193

	Introduction
	Motivation
	Contributions
	Outline

	Foundations
	Data
	Knowledge Discovery in Databases & Data Mining
	Domain Analysis & Selection of the Knowledge Discovery Task
	Data Selection
	Data Cleaning
	Data Reduction & Transformation
	Data Mining
	Evaluation
	Utilisation of the Discovered Knowledge

	Local Pattern Discovery
	Learning a Single Pattern
	Subgroup Discovery
	Motivation
	Properties of Subgroup Discovery
	Bitset-based Subgroup Discovery Algorithm (BSD)

	Association Rule Mining
	Motivation
	Foundations of Association Rule Mining
	Class Association Rules
	Apriori
	CHARM

	Global Models
	Classifiers
	Separate-and-Conquer: Learning a Global Model
	Ensembles
	Ensemble Learning
	Class Binarisations
	Voting Methods

	Evaluation
	Evaluation of Global Models
	Comparison of Data Mining Algorithms

	Ripper

	The LeGo framework: From Local Patterns to Global Models
	Illustrative Example
	Local Pattern Discovery
	Pattern Set Discovery
	Global Modelling
	Advantages of the LeGo Framework

	Theory Formation
	Local Pattern Discovery
	Pattern Set Discovery
	Global Modelling
	Voting Methods
	Bayesian Decoding

	Experimental Setup
	Implementation of Algorithms
	Evaluation
	Data

	Experimental Results
	Local Pattern Discovery
	Pattern Set Discovery
	Global Modelling

	Summary

	Probability Estimation
	Motivation
	Probabilistic Patterns
	Basic Probability Estimation
	Shrinkage
	Probability Aggregation
	Experimental Setup
	Pattern Discovery
	Evaluation

	Experiment 1: Probability Estimation
	Basic Probability Estimation
	Shrinkage
	Pattern discovery - Ordered vs. Unordered Generation
	Pattern discovery - Pruning

	Experiment 2: Probability Aggregation
	Probability Aggregation - Number of Covering Patterns
	Probability Aggregation - Comparison of Probability Aggregation Methods

	Summary

	Theory Compression
	Motivation
	Encoding the Covering Information
	Generating the Meta Data
	Retransforming the Meta Model
	Experimental Setup
	Pattern Discovery & Rule Stacking
	Evaluation

	Results
	Accuracy
	Complexity
	Trade-off between Accuracy and Complexity

	Summary

	Conclusions
	Theory Formation
	Probability Estimation
	Theory Compression

	Future Work
	Theory Formation
	Probability Estimation
	Theory Compression

	Bibliography
	Own Publications
	Theory Formation: Detailed Experimental Results
	Probability Estimation: Experiments 1 - Detailed Experimental Results
	Probability Estimation: Experiments 1 - Averaged Experimental Results
	Probability Estimation: Experiments 2 - Detailed Experimental Results

