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Abstract— Image enhancement is the widespread application of the image 
processing field. Conventional methods which are studied in contrast 

enhancement such as Histogram Equalization (HE) have not satisfactory results 

on many different low contrast images and they also cannot automatically handle 

different images. These problems result of specifying parameters manually in 

order to produce high contrast images. In this paper, Modified Histogram 
Segmentation Bi-Histogram Equalization (MHSBHE) is proposed. In this study, 

histogram is modified before segmentation to improve the input image contrast. 

The proposed method accomplishes multi goals of preserving brightness, 

retaining the shape features of the original histogram and controlling excessive 

enhancement rate, suiting for applications of consumer electronics. By this 
simulation results, it has been shown that in terms of visual assessment, Absolute 

Mean Brightness Error (AMBE), Peak Signal-To-Noise (PSNR) and average 

information content (entropy) the proposed method has better results compared 

to literature methods. The proposed method enhances the natural appearance of 

images especially in no static range images and the improved image is helpful in 
generation of the consumer electronic.  

Keywords: Histogram Equalization, Histogram Segmentation, Image Contrast 

Enhancement. 

1 Introduction 

Artificial intelligence has significant effect in different domains such as data mining 

[1-7], pattern recognition [8-12], machine learning [13-19] and image processing [20-

23]. One of the application of image processing is image enhancement  [24]. In image 

contrast enhancement, numerous image enhancement techniques have been researched 

like a gray-level transformation techniques and histogram processing techniques. In the 

first group, these methods map the gray-level value in the image to the new one by 

using transformation function such as power-law transformation, logarithm 

transformation, etc. For example, in Ref. [25] proposed a method on the statistic image 

features. The proposed method which is a local, adaptive and multiscale takes the local 

average and local minimum/maximum in the window at the center of each pixel and 
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then for each pixel identifies a transformation function. Another method in this group 

is on the 2D Taeger–Kaiser Energy Operator which is quadratic filter. This filter 

computes the average of the gray values at each pixel by the energy activity. A certain 

function transforms this value in order to enhance the pixel’s contrast. After that the 

updated pixel is obtained by applying the reverse steps. 

In histogram processing techniques, various studies have already been studied on 

histogram equalization. Histogram Equalization (HE) is a method in this application. 

This method is applied widely [26-28]. Achieving a uniform distributed histogram is 

the major aim of this method. Using the Cumulative Density Function (CDF) of the 

input image can lead to reach this goal [29]. The prominent drawback of HE is that it 

may cause to a faded looking, intensified noise and every undesirable objects. It is a 

verified fact that the mean brightness of the enhanced image is placed at the center of 

original image gray level regardless of its mean. This property is annoying 

characteristic in the number of application where brightness preservation is needed 

[25].  

To solve the aforementioned problems different methods with different ability such 

as mean preserving Bi-Histogram Equalization (BBHE) [30] have been proposed. In 

BBHE, the histogram of the image divided into sub histogram based on the image mean 

then each sub histogram equalized, individually. Equal Area Dualistic Sub-Image 

Histogram Equalization (DSIHE) [31] is very similar to the BBHE, but the cutting point 

is median instead of the mean. Recursive Mean-Spread Histogram Equalization 

(RMSHE) [29] is an recursive method that splits each new histogram of the image 

recursively based on the mean of the original image. In [32] exposure based sub-image 

histogram equalization (ESIHE) method is proposed by Singh and Kapoor. This method 

is useful for low exposure image enhancement. In this approach the histogram is split 

into sub-histograms and the cutting point is calculated by the exposure threshold. 

Recursive exposure based sub-image histogram equalization (R-ESIHE) [33] calls 

ESIHE in recursive steps. This method continues until the value from computing the 

exposure of the histogram is under a certain value. K. Singh and et al. proposed another 

work as recursively separated exposure based sub image histogram equalization (RS-

ESIHE) [33]. In this method, the algorithm recursively segregates the histogram of 

image based on the related exposure value. After that each generated sub-histogram is 

equalized, exclusively. In the another research study, they have also study on Median-

Mean based Sub-Image Clipped Histogram Equalization (MMSICHE) [34] algorithm. 

This has two steps: In first step, median intensity value split the histogram of original 

image and in the second step, mean intensity value divide the generated sub-histograms. 

Finally, the algorithm equalize each clipped sub histograms.   

Generally, methods based on the Histogram Equalization are grouped into two main 

groups: local and global [35]. In Global Histogram Equalization (GHE) [36], it is used 

the total image histogram for enhancement of input image. This method is good for 

equal frequency gray levels and it fails in image with very high frequency gray levels. 

Because the image contrast is limited in high frequency gray levels, therefore, it leads 

to considerable contrast lack for gray levels with lower frequency [35]. To solve this 

drawback, local histogram equalization (LHE) is proposed [37-39]. In block-overlap 

histogram equalization [40] which is a LHE method used a windows placed on each 

pixel of image and HE is implemented only on sub-image that are encompassed in this 

windows. Then, the gray level of center pixel of window is mapped for enhancement. 



Shape preserving histogram modification [41] and Partially Overlapped Sub Block 

Histogram Equalization (POSHE) [42] are different LHE methods. The only different 

between the mentioned methods and block-overlap histogram equalization is that in 

shape preserving histogram modification instead of rectangular window, it is used 

connected components and level set while in POSHE method the block size is increased 

in horizontal and vertical coordinate by the constant step size  not in one pixel similar 

to in block-overlap histogram equalization method. These approaches need a 

considerable computational cost and also it strengthens the noise of original image. 

Recently, combination of both LHE and GHE is proposed [43]. 

In this study, a Modified Histogram Segmentation Bi-Histogram Equalization 

(MHSBHE) is proposed. In this study, the histogram segmentation is modified based 

on average bins. The main contribution of MHSBHE is that it can handle images 

automatically with high brightness . Results of Simulation illustrate that MHSBHE 

outperforms recent existing methods in the literature in PSNR, entropy, AMBE and also 

visual assessment. 

This paper is as follows: section 2 will describe MHSBHE. Experimental results will 

be explain in section 3 and conclusion will be discussed in section 4. 

2 The Proposed Method 

We introduce Modified Histogram Segmentation Bi-Histogram Equalization 

(MHSBHE) method in this section. MHSBHE is applied in three steps: histogram 

modification, histogram segmentation, sub-histogram equalization. 

In first step, the histogram is modified before segmentation. In fact, this step is 

considerably helpful in the segmentation of histogram and is effective in brightness 

preservation. The past methods have not any modification in segmentation (Table 1).  

In this way, the value of histogram bins is more than the average number of gray 

levels and they are confined to the threshold. The average value is calculated in (1) and 

(2): 
 

𝑇ℎ𝑐 =
1

𝐿
∑ ℎ𝑖𝑠𝑡(𝑚)

𝐿

𝑚=1

 (1) 

ℎ𝑖𝑠𝑡𝑐 (𝑚) = 𝑇ℎ𝑐                     ℎ𝑖𝑠𝑡(𝑚) ≥ 𝑇ℎ𝑐 (2) 

 

Where ℎ𝑖𝑠𝑡(𝑚) and ℎ𝑖𝑠𝑡𝑐 (𝑚) are the input and clipped histogram, respectively.  

In the second step, an exposure threshold [32] is applied to compute severity image 

exposure. This step splits the modified image in two sub-images, under/over exposed 

sub-image. [0–1] is the normalized exposure value range. If this value is more than 0.5, 

it shows that the majority area of image is over-exposed and if this value is lower than 

0.5 then image has majority of under exposed area. Contrast enhancement should be 

done in both cases. This value is formulated as  
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(3) 

Where 𝐿  is total gray levels number. In addition that parameter  𝑋𝛼  (Eq. (4)) is 

introduced, which determines the gray level value threshold. By this parameter the input 

image is split into under/over-exposed subimages. 

If the exposure value is lower/larger than 0.5 then  𝑋𝛼  obtains a value of larger 

(lower) than 𝐿/2 for the range of 0 to 𝐿. 

 

 𝑋𝛼 = 𝐿(1 − exposure ) (4) 

Finally, in step three, HE is implemented on sub-histograms. In such process, the 

original image histogram is divided rely on the parameter of exposure threshold, 𝑋𝛼 , as 

formulated in (4) and its results are ILow sub-image from 0 to  𝑋𝛼  gray level and IUp 

sub-image from  𝑋𝛼 + 1 to 𝐿 − 1 gray level. This is known as under/over exposed 

sub-images. 𝑃𝐿𝑜𝑤
(𝑘), 𝑃𝑈𝑝

(𝑘) , 𝐶𝐿𝑜𝑤
(𝑘) , and 𝐶𝑈𝑝

(𝑘) are related to Probability Density 

Function (PDF) and Cumulative Density Function (CDF) of these sub-images, 

respectively and they are defined in (5)-(8). 
 

𝑃𝐿𝑜𝑤 (𝑘) = ℎ𝑖𝑠𝑡𝑐(𝑘)/𝑁𝐿𝑜𝑤,           k = 0… 𝑋𝛼. (5) 

𝑃𝑈𝑝 (𝑘) = ℎ𝑖𝑠𝑡𝑐 (𝑘)/𝑁𝑈𝑝,         k = 𝑋𝛼 + 1…𝐿 − 1. (6) 

𝐶𝐿𝑜𝑤(𝑘) = ∑ 𝑃𝐿𝑜𝑤 (𝑘)

 𝑋𝛼

𝑘=0

, (7) 

𝐶𝑈𝑝(𝑘) = ∑ 𝑃𝑈𝑝 (𝑘),

𝐿 −1

𝑘= 𝑋𝛼+1

 (8) 

 

Where 𝑁𝐿𝑜𝑤  and 𝑁𝑈𝑝 are pixels number in sub-images ILow and IUp, respectively. 

Equalization is implemented on two sub-histograms, individually. For histogram 

equalization, the transfer functions can be defined as  
 

𝐹𝐿𝑜𝑤 =  𝑋𝛼 ×  𝐶𝐿𝑜𝑤 
(9) 

𝐹𝑈𝑝 = (𝑋𝛼 + 1) + (𝐿 − 𝑋𝛼 + 1) 𝐶𝑈𝑝 (10) 

𝐹𝐿𝑜𝑤 and 𝐹𝑈𝑝  are two transfer-functions which are applied in equalization of these 

sub-histograms, exclusively. Finally, these sub-images combine in one full image. The 

high quality image is generated by merging two transfer-functions. 

3 Experimental Results 

The simulation results of MHSBHE, are presented and the result of comparisons to 



six well-known literature works i.e. HE, BBHE [30], DSIHE [31], RMSHE [29], 

ESIHE [32]  and R_ESIHE [33]. To analyze these methods, 400 test images are used. 

Two images, i.e. Road and Mass, are compared based on visual quality and the results 

are illustrated in Figs. 1-2. 

To measure the function of MHSBHE, Entropy is introduced. It is one of the measure 

in order to calculate the image quality to evaluate enhanced image [33]. The value of 

Entropy shows the amount of information bring to the enhanced image. This mean that 

if the value of entropy is high, the amount of information that bring is greater. Eq. (11) 

calculates Entropy 

 

𝐸𝑛𝑡 (𝑖𝑚𝑔) =  − ∑ 𝑃𝐷𝐹(𝑘)

𝐿 −1

𝑘=0

𝑙𝑜𝑔𝑃𝐷𝐹 (𝑘) (11) 

 

Where 𝑃𝐷𝐹(𝑘) shows PDF of image at intensity level 𝑘.  

In addition that entropy is measured in units as bits and can be as a criteria of 

affluence of the image details. Referred to Shannon Entropy, this entropy measures the 

uncertainty related to image’s gray levels. The higher amount of entropy shows that the 

enhanced image has high quality as well as richness of details.  

To evaluate the performance of MHSBHE, AMBE [44] is used. AMBE is a useful 

in calculating the brightness preservation level. The AMBE between two input and 

improved image is computed as follow: 

 

𝐴𝑀𝐵𝐸(𝐼𝑛, 𝑂𝑢𝑡) =  |𝑚𝑒𝑎𝑛𝐼𝑛  −  𝑚𝑒𝑎𝑛𝑂𝑢𝑡 | (12) 

 

Where In and Out are input and enhanced image, respectively. Also, 𝑚𝑒𝑎𝑛𝐼𝑛  and 

𝑚𝑒𝑎𝑛𝑂𝑢𝑡  are the mean of the two original and enhanced image, respectively. If this 

difference is less, this shows that the improved image has preserved the brightness from 

the original image. 

Lastly, 𝑃𝑠𝑛𝑟  measures the peak signal-to-noise of the enhanced image. Regarding to 

noise expanding problem during the enhancement, PSNR quantifies the quality of an 

enhanced image: 

  

(13) 𝑃𝑠𝑛𝑟 (𝐼(𝑐) ) =
10×𝑙𝑜𝑔10 (𝐿−1)2

𝑀𝑆𝐸
, 

3.1  Performance Assessment  

For comparison, accuracy measurement is necessary between MHSBHE and 

literature work based on the PSNR, entropy and AMBE for 400 benchmark images. 

Table 2 shows quantitative analyses for two test images. MHSBHE produces highest 

values in most cases. Beside this comparison, MHSBHE implemented on 400 images 

on different databases such as USC-SIPI (Misc and Sequences), USF-DM, 

Astronomical images, Medical images, Miscelaneous and etc. The comparison results 

are presented in Table 3. As it can be seen in this Table, the proposed method, 

MHSBHE, has better results in all measurements. 

http://marathon.csee.usf.edu/Mammography/Database.html
http://decsai.ugr.es/cvg/dbimagenes/g256.php


3.2  Assessment of visual quality 

Finally, the methods are compared based on image visual assessment. The enhanced 

images which are resulted after applying the MHSBHE and the mentioned method are 

demonstration in Fig. 1-2. As shown in these enhanced images, MHSBHE has better 

natural appearance and high contrast images. 

Obviously, in Fig. 1 of Road image, it is shown that the MHSBHE image improves 

the Truck in the image, effectively. This enhancement obviously can be seen compared 

to other methods. In Fig. 2, by applying MHSBHE, an extreme contrast of the results 

in contrast enhancement as well as natural appearance, can be obviously observed in 

this figure. Results of other methods enhance the noise. However, by managing on over-

enhancement, MHSBHE can reach to the desirable enhancement outputs.  

Although the MHSBHE results in some images are visually comparable to literature 

approaches, MHSBHE gives considerably the highest PSNR, entropy and AM BE for 

such test images. From both quality and quantity simulation results, it can be concluded 

that the MHSBHE generates improved images with preserving brightness, retaining the 

shape features of the original histogram and control over enhancement rate.  

Table 1. Quantitative analyses for six test images. 

Image contrast enhancement methods Implementation Steps 

 HE 1. HE 

 BBHE   1. HS based on the input image mean 

2. HE 

 DSIHE  1. HS based on density function 

2. HE 

 RMSHE  1. HS based on the input image mean, recursively  

2. HE 

 ESIHE  1. HC based on the average number of intensity occurrence 

2. HS based on exposure threshold 

3. HE 

 R-ESIHE  1. HC based on the average number of intensity occurrence, recursively 
until predefined threshold 

2. HS based on exposure threshold 

3. HE 

 MHSBHE (proposed method) 1. Histogram Modification 

2. HS based on exposure threshold 

3. HE 

 

 



3.3  The Assessment and Discussion Summary 

By visually inspecting the enhanced images and the value of PSNR, entropy and 

AMBE, it can be summarized that: 
(i) Compared to other method MHSBHE technique is the superior method in maximum 

signal value of the image (PSNR) and high richness of details (entropy) and the 

degree of brightness preservation (AMBE).  

(ii) MHSBHE is robust against the noise compared to other methods which enhance 

noise during enhancement. 

(iii) MHSBHE performs well in high dynamic range images with the low and high 

illumination. 

(iv) MHSBHE, by managing an over-enhancement, can generates images with high 

quality. 

In this proposed method, it generates images with high quality as well as high 

quantity compared to other literature methods. 

4 Conclusion 

In this study, the Modified Histogram Segmentation Bi-Histogram Equalization was 

proposed. In this study, MHSBHE was applied in three steps: histogram modification, 

histogram segmentation, sub-histogram equalization. The histogram segmentation was 

modified based on average bins. The main motivation of MHSBHE is that it can handle 

images automatically with high brightness. 

MHSBHE is suitable for a wide variety of images with low-contrast. Also, the 

proposed method can control various images, automatically. This method attains multi 

objective of preserving brightness, maintaining the shape features of the original 

    
Original HE BBHE DSIHE 

    

RMSHE ESIHE R-ESIHE MHSBHE 

Fig. 1 the results of Road image by applying different methods. 

 

 

 



histogram and controlling over-enhancement rate, suiting for applications of consumer 

electronics. 

MHSBHE eschewed over-enhancement and generated images with natural 

enhancement. In experimental results, the proposed method was applied on 400 

standard images and it outperformed based on four criteria: PSNR, entropy, AMBE and 

visual assessment. In addition that the results showed that MHSBHE is applicable for 

consumer electronic products. 
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Table 2. Quantitative analyses for six test images. 

Test images PSNR Entropy AMBE 

Test image Road 

HE 9.9755 5.9461 72.3376 
BBHE 15.1492 0.008 27.699 
DSIHE 14.693 6.8269 31.9066 
RMSHE 15.6982 6.8514 26.4207 

ESIHE 19.0273 6.975 22.381 
R_ESIHE 18.6507 6.9619 23.0011 
MHSBHE 21.3353 6.9877 16.9791 

Test image Mass 

HE 10.2326 5.8887 64.2599 
BBHE 14.7022 0.0005 20.7681 
DSIHE 15.651 6.5896 20.8272 

RMSHE 16.2275 6.5724 17.6217 
ESIHE 20.9084 6.7167 17.4432 
R_ESIHE 20.054 6.6978 18.043 
MHSBHE 22.8458 6.7237 13.2481 

 

 
Table 3 Quantitative analyses from average values of 400 images. 

Test images PSNR Entropy AMBE 

HE 14.3642 5.18160 29.45891 
BBHE 16.9769 0.01453 13.94287 
DSIHE 18.8017 5.78793 11.49561 

RMSHE 18.6658 5.81110 12.58389 
ESIHE 22.6868 5.92269 13.56786 
R_ESIHE 21.8907 5.88817 11.83819 
MHSBHE 23.1671 5.92385 10.95996 

 


