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ABSTRACT 

Background 

Quality and quantity of stored grain is constantly changing due to insect and fungal activity. 

The efficacy of storage method dictates the quality of grain. Traditional chemical pesticides, 

though effective, were often criticised for issues like increasing insect resistance, chemical 

residue, environmental contamination and human health risk. The diatomaceous earth based 

formulations could reduce chemical pesticides usage at some extent. But the slow insect 

killing and being non-food grade limited wide application. The high recommended dosage 

(500 to 3500 ppm) results in several adverse effects on grain, including reduce in the flow 

ability and bulk density, visible residue, extra dust generation during processing. Synthetic 

amorphous silica (SAS) consists three types: pyrogenic, precipitated, surface-treated SAS. 

These dusts can be distinguished from natural amorphous silica such as diatomaceous earth 

by its high chemical purity, the finely particulate nature and characteristics of particles. All 

types of SAS have been widely used in topical and oral medicines, food and cosmetics for 

many decades without evidence of adverse human health risks. Based on extensive physico-

chemical, ecotoxicology, human health and epidemiology data, SAS as non-chemical method 

for pest management is revolutionary and advantageous compared to traditional approaches. 

However, their insecticidal mechanism is poorly understood. The optimal application 

protocol is not developed. This study described a comprehensive investigation of insecticidal 

mechanism of SAS particles and their application as an alternative practical stored grain pest 

control method. 

Results 

The first study was aimed to investigate the efficacy of different synthetic amorphous silica 

(SAS) powders against different insect species at multiple developmental stages compared 

with diatomaceous earth (DE). The stationary stages, egg and pupa, were more tolerant than 

that of the mobile stages, larva and adult, upon SAS and DE exposure. The insect infestation 
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cannot be completely control by all the SAS and DE. A 100% of hatching rate was observed 

and more than 32% of pupa emerged in all the dust treated groups. Larva stage was most 

susceptible to the SAS and DE. Newly emerged adults were more susceptible to SASs and 

DE than older adults. The outcome for larvae was opposite. Among the three insect species 

adults, when treated by SAS and DE, T. castaneum was the most tolerant species and C. 

ferrugineus was the most susceptible. The efficacy of SAS against insects was higher than 

that of DE. Among of SASs, precipitated SAS performed better than pyrogenic SAS in term 

of mortality. Hydrophobic SAS powders were more effective against T. castaneum adult, 

while hydrophilic SAS powders were more effective against T. castaneum larvae, pupae and 

Sitophilus oryzae adults. 

We evaluated the physical property of aforementioned SAS and DE in relation to efficacy. SAS 

powders have higher specific surface area, total pore volume, oil sorption capacity and smaller 

particle size than DE. In term of the SAS powders produced by different methods, pyrogenic 

SAS powders had higher oil sorption capacity but lower total pore volume and specific surface 

area, and larger particle size than precipitated SAS. Comparing with hydrophilic SAS, the 

particle size of hydrophobic SAS was smaller while has lower oil sorption capacity. There was 

a significant relationship between physical property of powder and insecticidal efficacy in SAS 

without a specific index. 

We developed and evaluated a rapid screening protocol to identify electrostatic charge 

dictates attachment processes during initial contact between SAS and insects. The charge 

ability of three major stored grain insects, Sitophilus oryzae, Tribolium castaneum and 

Cryptolestes ferrugineus and four hydrophilic precipitated SAS and one DE was assessed on 

two insulated surfaces filter paper and glass. After contact with insulation surfaces, synthetic 

amorphous silica (SAS) and DE carry negative charges due to attaining electrons from 

insulation surfaces, while stored product insects carry charges of opposite polarity from 
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electron loss. According to Coulomb’s law, the SAS particles would then be passively 

attracted by insect via the mere effect of electrostatic forces. A linear correlation was 

observed between electrostatic charge and bioactivity of dust. 

After exposure to SAS, the changes in water content and other physiological components of 

insects led to changes in coloration and gross appearance. The heterogeneous distribution 

made visual comparisons difficult. Hyperspectral imaging systems with optically tuneable 

filters can record images at hundreds of contiguous wavelengths (narrow spectral resolution) 

in the form of a hypercube (three-dimensional hyperspectral data). Hyperspectral imaging 

coupled with back propagation neural network models was employed to quantify differences 

in parameters which reflected the response of T. castaneum and S. oryzae to hydrophobic and 

hydrophilic precipitated SAS. The presence of SAS on ventral and dorsal cuticle of two 

insect species caused differential values of relative reflectance in visible and short-wave near-

infrared ranges. The control samples of all groups were correctly classified by BPNN model 

and misclassification occurred only with the two SAS treated. These results suggested that 

the differences in absorption characteristics of cuticular fat and protein contributed to the 

varied performance. The recognition rate between two SAS treated was within the acceptable 

identification range. This suggested that both SASs have similar effect on insect with varied 

degree. 

We investigated how these two hydrophobic and hydrophilic precipitated SASs physically 

influenced insect in intersegmental membrane and their biological effects. Both SASs rapidly 

reduced insect locomotion to the limiting value within 3.5 hours and 12 hours for S. oryzae 

and T. castaneum, respectively. In addition, we found that there was significant differential 

decrease in straightness and upward length which were used as parameters to evaluate insect 

behaviours. Environmental scanning electron microscope (ESEM) images and data of stride 

length directly exhibited SAS eroded insect intersegmental membrane and absorbed the vital 
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body fluid, eventually caused irreversible structural damage. The hydrophilic SAS was more 

effective in changing these parameters in S. oryzae, while hydrophobic SAS was more 

effective in T. castaneum. Male population was more susceptible than female. 

We further evaluated the efficacy of SAS structural treatment combined with a new 

integrated trap as insect control in the field trial. Insect infestation was monitored by 

integrated trap utilising insect behaviours. Prior to SAS treatment, five integrated traps 

captured 1722 g insect inside a warehouse in seven day. Synthetic amorphous silica was 

aerogelize and dispersed uniformly in different locations of the warehouse. The mortality of 

five major species of stored grain insect adults reached 100% within three days post 

exposure. 

Conclusion 

SAS powders are food-grade, quick, effective, low cost and easy to apply as an insect control 

method. They don’t have the disadvantages of traditional chemical pesticide regarding to 

occupational health, environmental and safety concern. Detecting the electrostatic charge is 

an effective protocol for SAS efficacy evaluation. As an emerging non-destructive and 

reagent-less analytical technique, hyperspectral imaging proved to be highly efficient in 

pesticidal effect evaluation. Intersegmental membrane is a promising target site for new inert 

dust pesticide products.  
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1.1 General introduction 

Food supply is an urgent global issue due to fast paced population growth and farmland 

deterioration (Boserup, 2017). The large time gap between harvest and utilization only 

exacerbates supply difficulties. Transport and process are often time consuming. As a 

result, both short-term and long-term storage is required post-harvest. The efficacy of 

storage method dictates the quality of grain and ultimately the maximal market price. A 

steadily increased demand in high quality grain is evident worldwide. In light of this 

global trend, we set out to review the management of insect pests in grain storage 

facilities and the potential and efficacy of inert dust as an alternative insecticide. The 

scope of this review covers the period from 1935 until July of 2018. A Dialog 

computer-based evaluation search was conducted in the CAB Abstracts, 1975-2016; 

Biosis Previews, 1975-2016; Life Sciences Collection, 1985-2016; Agricola, 1975-

2016; Agris International, 1975-2016; European Directory of Agrochemical Products; 

Oceanic Abstracts, 1975-2016; and Google and internet search accessed until 25th July 

2018. 

1.1.1 Stored grain  

Grains, oilseeds, legumes and their finished products or their by-products are not always 

consumed immediately after harvesting or processing, thus they frequently must be 

stored for relatively long periods. Due to their relative durability in storage, their value 

is not only as a food for mankind, but also it is safe to say, for the successful 

development of agriculture by man. Hence, the evolution of civilization would have 

been impossible if stored grain had not existed. We provide grain with the stable 

conditions in which it can be stored from season to season. Nevertheless, it is a mistake 
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to suppose that stored grain may be regarded as a perfectly stable material which may 

be treated like sand or bricks and left without any attention in any sort of storage. Grain 

is energy-rich, oxygen consuming and heat generating. Quality and nutritional changes 

in grain are unavoidable side effects of the storage process. Grain factors, 

environmental factors both organic and inorganic, and management methods determine 

the outcome at the end of the storage period (Jayas et al., 1994). Also, quality and 

quantity of stored grain are constantly changing (Oxley, 1949) due to fungal and insect 

pest activity. Insect infestation is deemed one of the most important factors, because it 

accounts for major loss of volume and the affected grain is automatically rejected by 

many countries (Emery et al., 2003). Therefore, storage difficulties must be fairly 

recognized and properly studied. 

1.1.2 Stored product insects 

Of the very many known insect species there are perhaps 100 which are responsible for 

damage to stored products and of these about 20 are major pests of cosmopolitan 

distribution. The stored product insect found in stored cereal grains, grain products and 

grain legumes as an infesting pest is not a new problem. The earliest records of insects 

associated with stored food products are those of a flour beetle which was found in an 

Egyptian tomb dating back to 2500 B.C., and of “beetles and weevils” which were 

found in the tomb of Tutankhamen (1390-1380 B.C.) (Munro, 1966). 

Most storage insects are found worldwide occupying various niches, according to 

commodity and weather conditions, although a few species are not always found in 

some countries (e.g., Trogoderma granarium Everts in Australia). The two main insects 

in Australia are the grain beetles Rhyzopertha dominica (F.) and Tribolium castaneum 

Herbst, presumably because these species can survive on the generally dry grain under 
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dry Australian weather conditions. The rice weevil (Sitophilus oryzae (L.)) and the 

maize weevil (Sitophilus zeamais Motschulsky) are often found on rice and maize in 

China. 

Storage insects are largely cosmopolitan. Some species damage whole cereals, legumes 

and grains, or solid cereal products. Some are cosmopolitan pests of grain products, 

such as flour, damaged grain and dried fruit. Some are scavengers or mould feeders. 

Stored product insects not only consume these materials but also contaminate them with 

insect fragments, faeces, webbing, and a variety of microflora (Snelson, 1987), which 

reduces commercial value. They can also increase the moisture content in grain locally, 

giving rise to mould growth. They therefore constitute a major sanitation and quality 

control problem. 

1.1.3 Stored product insect management 

Integrated Pest Management (IPM) that reduces infestation and avoids economic 

damage in raw commodities, food storage facilities, and milling and processing plants, 

typically involves chemical control methods (Zettler and Arthur, 2000). Since the 

1950s, synthetic pesticides have been widely utilized in large grain bulks for their high 

efficacy, relatively low cost and ease of application. Common fumigants include 

phosphine, methyl bromide, chloropicrin and dichlorvos, among which methyl bromide 

and phosphine (PH3) are the most widely used. Methyl bromide has been phased out of 

general use since 2005 due to environmental concerns as it depletes atmospheric ozone. 

Phosphine is the only registered fumigant which is likely to be continuously used in 

large scale given its favorable characteristics such as low sorption and rapid desorption 

in commodity fumigation. Yet, phosphine resistance in insects has been frequently 

reported across the world (Daglish and Collins, 1998) and is threatening its future use 
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(Benhalima et al., 2004; Collins et al., 2005; Herron, 1990; Lorini and Galley, 1999; 

Zettler et al., 1989; Zettler and Cuperus, 1990). 

Controlled atmosphere (CA) is a method that achieves insect pest control by storing 

grain in a low oxygen, high nitrogen atmosphere (Shejbal, 1980). Theoretically, this is 

very efficient, yet in practice, long exposure times are required to ensure the desired 

result. An air tight facility is mandatory to maintain the nitrogen gradient which is 

unachievable in most storage settings. 

Inert dust is a nonchemical method for management of stored grain insect pests. 

Commercial products in this category are immune to degradation due to temperature 

fluctuation, thus they provide protection throughout the storage period. Low 

environmental requirement makes this method compatible to all types of storage 

facilities. Inert dust has minimal mammalian toxicity. The oral lethal dose of silicon 

dioxide for 50% of a population of rats is 3160 mg/kg (Golob, 1997). FAO posts no 

limitation regarding its use in products for human consumption. The quality of treated 

grain is also not adversely affected. Through the processing of wheat or rice, 99% of 

dust can be removed (Subramanyam and Roesli, 2000). Given the unique physical 

nature of its pesticidal mechanism, insect resistance against inert dust is unlikely. In the 

last decade, many inert dust formulations have been assessed against stored grain insect 

pests in grain storage (Table 1.1). 

The idea of using inert dust to control grain insect pests is actually an ancient one with 

historical records dating back to more than a thousand years ago. In ancient China, plant 

ash and lime powder were used to prevent insect pest infestation in grain barns. In the 

1940s, Cotton and Frankenfeld (1949) initiated research on the control of stored grain 

insects and other types of commodity insects with inorganic powder. Inert dusts are 

often used as grain protectants (Golob and Webley, 1980), such as diatomaceous earth 
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and silica aerogel (Michalaki et al., 2006; Subramanyam and Roesli, 2000). Inert dust 

has been reported for structural treatments (Bridgeman, 1994; Cook et al., 2004) and as 

a direct grain surface application to prevent insect re-infestation from an outside source 

(Chomchalow, 2003; Naito, 1988). 

1.1.4 Discussion 

In the last 20 years, the development of safe and environmentally friendly pesticides has 

been given priority due to the increased concern about safety issues surrounding the 

traditional chemical products. Methyl bromide, an important stored grain fumigant, was 

included in the list of controlled materials by United Nations Environment Program in 

1992 because of its destructive effect on the atmospheric ozone layer. Its usage was 

prohibited in all developed countries in 2005 and in developing countries in 2015 

according to the Montreal Protocol (United Nations Environmental Program, 1995). In 

addition, strong resistance in stored grain pests to phosphine is spreading globally and 

threatens its continue use. There is, therefore, an urgent need to develop new fumigants 

and new methods for stored grain pest control. Inert dust is one of the non-chemical 

alternatives to replace or reduce application of chemical pesticides. 

1.2 Inert dust products for control of stored grain insect pests 

1.2.1 Natural dust products 

1.2.1.1 Mineral based products 

Diatomaceous earth dusts are currently the most widely used inert dusts in the field of 

grain storage. Diatomaceous earths (or diatomite) are the fossilized remains of diatoms 

(Fig. 1.1), composed mainly of amorphous hydrated silica with traces mostly of 

aluminum, iron oxide, magnesium, sodium and lime. Unprocessed diatomaceous earth 
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contains 50% or more water. During processing, the water content is reduced to 2-6% 

and milling reduces particle size to between 0.5 and 100 µm with the majority falling 

between 10 and 50 µm (Korunic, 1998). The result of this process is a fine, talc-like 

powder or dust considered to be non-toxic to mammals. Brief and occasional exposures 

to diatomaceous earth cause minimal health risk similar to other inert dusts (Clark-

Cooper, 1977; International Diatom Producers Association (IDPA), 1990a). According 

to the Environmental Protection Agency (EPA) in the USA, natural diatomaceous earth 

is described as amorphous silicon dioxide which is classified as Generally Recognized 

as Safe (GRAS) as a food additive (Anon, 1991). Because diatomaceous earth can 

absorb liquids two to three times its own weight and remains free flowing, it is 

frequently utilized as a pesticide adjuvant (Snetsinger, 1988). Diatomaceous earth 

shows good insecticidal efficacy. In some countries such as the United States, Canada, 

China, Australia and Japan, various commercial diatomaceous earth based insecticidal 

products are available. Common products on the market are: Insecto and Perma Guard 

D-10® from U.S.A, Protect-It from Canada, Dryacide from Australia and Pu Liang Tai® 

from China (Liu, 2005) (Table 1.1). The insecticidal action of diatomaceous earth 

occurs as a result of dusted insects slowly losing body water through cuticle damage 

caused by the abrasive particles. Diatomaceous earth alone is not usually considered to 

be an effective insecticide. Many formulations are composed of diatomaceous earth and 

other insecticides to reduce dust dosage, most frequently pyrethrum (0.1 to 0.2%) and 

piperonyl butoxide (1.0%) (e.g., Diacide Homeguard, Diatect, Perma Guard D-20 and 

Perma-Guard D-21), providing a “double barreled effect” and fast killing rate. 

However, when such physiological poisons are added to the diatomaceous earth 

compositions, the products became toxic to avian and mammalian species, including 

humans, and lose their insect specific killing advantage. Due to increased manufactural 
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cost, the relatively high price also makes the products less appealing to customers. 

Despite the vast potential, diatomaceous earth-based products are mostly limited to 

home and garden pest control, or research specimens. Application to stored grain is only 

occasionally done. Also, their efficacy is influenced by various factors like temperature, 

humidity, insect species and commodities (Alexander et al., 1944; Ebeling, 1971; Fields 

and Korunic, 2000). 

 

Fig. 1.1. Scanning electron micrograph of diatom remains in the diatomaceous earth, 

Celite 209 (Fields and Korunic, 2000). 

 

Since the 20th century, many researchers have conducted experiments on diatomaceous 

earth against numerous stored grain insects. The results suggested that diatomaceous 

earth was effective at killing Oryzaephilus surinamensis, Cryptolestes ferrugineus and 

Cryptolestes pusillus (Arthur, 2000a), and a few diatomaceous earth dusts have 

achieved promising results in stored grain insect control (Debnath et al., 2011; Fam et 

al., 1975). However, the efficacy of diatomaceous earth from different sources (mines) 
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on insects has not been very consistent (McLaughlin, 1994; Snetsinger, 1988). 

Diatomaceous earth from salt water is more commonly used, being cheaper but 

supposedly less efficacious (Snetsinger, 1988), while the results from Korunic (1997) 

showed that the efficacy of diatomaceous earth against insects depends on different 

physical and morphological characteristics of the diatoms rather than its origin. 

Formulations of diatomaceous earth collected from different parts of the world have 

displayed significant differences in their efficacy against insects despite a similar mode 

of action, similar physical properties and similar diatom species composition. This is a 

very intriguing finding. However, there is a current belief that different diatomaceous 

earth products have the same or similar efficacy against the same targeted insect pest. 

To register diatomaceous earth today in the USA, there is no need to submit the results 

of efficacy tests against insects. 

Table 1.1. Diatomaceous earth dusts registered in the United States and their 

components (Subramanyam and Roesli, 2000). 

Primary name of diatomaceous earth dust 

products 

EPA 

Registration 

NO.1 

% ingredients2 

 SIO: PBO: 

Pyrethrins 

Ant and Roach Killer 67425-1 5:0:0  

Chem Tech Insecticide 68276-3 88:1.1:0.2  

Crop Guard 7665-1 85:0:0 G3 

DE Insecticide 65462-4 90:1.1:0.2  

D-E Insecticide 64721-1 85:0:0  

Dia-Fil 610 56910-1 100:0:0  

Diatect D-20 42850-1 88:0.2:1.0  

Diatomic Earth 65460-1 99.9:0:0 H 

Diatoms Dust Insect Powder 45220-9 90:0:0  
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Diatect Multipurpose Powder 42850-2 88:0.2:1.0  

Diatect pet powder 42850-3 82:0:0  

Dryacide 67595-1 97:0:0 G.H 

Dry Purocide Insecticide 1021-1665 60:10:0.1  

Eaton’s K,I,O 55-67 85:0:0  

Eco-fresh Brand DE Insect And Slug Killer 664880-4 85:0:0  

Enforect Insecticide Powder 40849-66 95:0.1:0.1  

Flea Away 68497-1 95:0:0  

Harper Valley Diatomaceous Earth 69261-1 100:0:0 P.W 

Harper Valley Diatomaceous Earth 

Crawling Insect Killer 
69261-2 100:0:0 F 

Harper Valley Diatomaceous Earth Grain 

Insecticide 
69261-3 100:0:0 G 

Insectaside DE 56194-1 100:0:0  

Insectigone (Sure Fire) 59913-1 77.69:0:0 H 

Insecolo 66923-1 97:0:0 G 

Insecto 48398-1 90:0:0 G.H 

Melocide DE-100 65789-1 100:0:0 F.S 

Melocide DE-200 65789-2 83.6:0:0 G 

Organic Plus CROP Insecticide 65462-6 97.9:1.1:0.2  

Organic Plus DE/Pyrethium Insecticide 65462-7 97.9:1.1:0.2  

Organic Plus Diatomaccous Earth Crawling 

Insect Killer 
65462-1 90:0:0 H 

Organic Plus PCO 

Pyrethium/Diatomaccous Earth 
65462-5 97.9:1.1:0.2 H 

Organic Plus Pyrethium/DE Insecticide 65462-2 97.9:1.1:0.2  
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Organic Plus Pyrethium/Organic Solutions 

Pyrekill insecticide 
67197-4 88.5:1.0:0.1  

Supernatural Plant Protection Insecticide 64721-2 88.5:0.1:1.0  

Organic Resources Multipurpose 

Insecticide 
70126-1 82.9:1.0:0.2  

Perma Guard Commercial Insecticide-D-20 67197-6 88:1.0:0.2 F 

Perma Guard Grain or Seed Storage 

Insecticide-D-10 
67197-1 100:0:0 G 

Perma Guard Household Insecticide-D-10 67197-2 88:1.0:0.2 H 

Perma Guard Kleen Bind-20 67197-7 88:1.0:0.2 G 

Perma Guard Pet and Animal  Insecticide-

D-20 
67197-5 88.2:1.0:0.2  

Protect-it 66923-2 90:00:00 G 

Satetiworld 68215-1 81.1:0:0 H 

shellshock Insecticide 43739-10 66:0:0  

1The number after the hyphen refers to the number of products registered 

chronologically as primary name products. 2SIO2=silicon dioxide, PBO=piperonyl 

butoxide, a synergist typically used with pyrethrins. 3Labeled uses: F=food processing 

plants. G=Grain, H=household, P=poultry processing plants. S=stored bird seed. 

W=warehouse. The products without usage identification can be used to control insect 

pests of ornamentals, field crops, and vegetables. 

Zeolite powder is another kind of mineral based product and can be either alkaline 

metal based with water content, or aluminum silicate mineral containing alkaline earth 

metal. There are more than 30 types of zeolites. The mineral is processed to powder 

form by mechanical milling. Zeolite powder has been tested on S. Zeamais in corn 

storage by Haryadi et al., (1994). In a 4 week experiment, corn was mixed with 5% 

(w/w) zeolite powder and held under conditions simulating a storage facility. The death 
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rate of S. zeamais reached 100%. However, the efficacy of an inert dust is evaluated on 

the onset time of insecticidal effect more than the final mortality of the exposed insects. 

Tricalcium phosphate is also a mineral food additive used for its anti-agglomerating 

effect in maintaining food consistency. Researchers have used tricalcium phosphate as a 

grain protective agent against Bruchidae (Fam et al., 1975). A concentration of 1000-

2500 mg/kg effectively controlled a Bruchidae infestation. High cost accompanied with 

the high dosage rate rendered this approach impractical in the food industry. The high 

dust content in grain also caused concerns. 

1.2.1.2 Plant based products 

Paddy husk ash with high silicate content, is an effective protectant when mixed with 

maize at 1% (Mihale et al., 2009). This is a common practice on small farms in 

developing countries. In practice, desirable insecticidal effect requires the ash make up 

to 5% of grain weight (Golob and Webley, 1980). Sand and plant ash can effectively 

protect grain stored on small family farms with a dosage of more than 20% of the 

targeted grain weight (Golob et al., 1982). A higher dose usually provides better 

protection. Although the abrasive properties of the materials may play a role in 

interfering with insect development, it is more likely the physical blockage of inter-

grain space prevents insects from performing normal behaviour. Locally-available dusts 

will continue to be used as an important grain protectant on small financially strained 

family farms in developing countries because of their low cost and easy access. This 

method has no potential in large scale application, partly because it was developed for 

small-scale storage only and also due to the high ash volume involved. It is particularly 

difficult to remove ash from the grain and high ash content in food is unacceptable by 
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modern industrial standards. The replacements for ash need to either have a much lower 

effective dosage or require no removal at all. 

1.2.2 Synthetic powders products 

Diatomaceous earth dusts with high silica content and uniform size distribution present 

much better insecticidal efficacy (Korunić, 1997). Investigation of the entomotoxicity of 

synthetic powder products is mostly inspired by this finding. 

1.2.2.1 Silica aerogel 

Silica aerogel is produced from a distilled silicate solution. It is very light and 

hydrophilic. It has better efficacy than diatomaceous earth at a low dose. Low effective 

dose reduces potential inhalation compare to some products (Golob, 1997). Researchers 

such as Maceljski and Korunic (1972) suggested that silica aerogel possesses superior 

insecticidal efficacy among the inert dusts and is resistant to the adverse effect of high 

environmental moist level. Silica aerogel produces a much higher mortality rate in 

insects than diatomaceous earth, because of its stronger dehydration effect (La Hue, 

1965a; McLaughlin, 1994). Silica aerogel breaches the cement and wax sublayers of the 

insect’s epicuticle (Le Patourel et al., 1989; Maceljski and Korunic, 1972). Maceljski 

and Korunic (1972) conducted research and demonstrated that Dri-Die (95% silica 

aerogel + 5% ammonium fluorosilicate) could prevent regeneration of the cement and 

wax sublayers. But silica aerogel alone cannot achieve this without facilitation from 

ammonium fluorosilicate, especially under high moisture conditions. 

Silica aerogel spray provides better insect control in grain storage facilities. Cotton and 

Frankenfeld (1949) reported different efficacies of silica aerogel with different dosages 

against T. confusum, S. zeamais and S. granariues in wheat and other grains. In wheat 
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with 12% moisture content, the recommended dosage is 0.25 g/kg, while with 14% 

moisture content a dosage of 0.5 g/kg is required. In Australia, the inert dust product, 

Dryacide, was used together with silica aerogel. During a small scale experiment, 

Desmarchelier and Dines (1987) found that at 25℃ and 65% RH, a dosage of 0.1% 

(w/w) Dryacide achieved 100% mortality in R. dominica, T. castaneum and S. oryzae. 

Dryacide and Protect-It, the two products registered in the United States, both contain 

silica aerogel. Current data support the fact that combined diatomaceous earth and silica 

is more efficacious than diatomaceous earth alone. 

Although the aforementioned hydrophilic materials are quite effective when dry, such 

materials lose an appreciable portion of their insect killing capacity upon exposure to 

humid atmosphere or when in direct contact with water. Such “moisturized” silica dusts 

are ineffective as insecticides. An incidental finding (Ralph, 1964) showed that silica 

powder coated or impregnated with a proper hydrophobic agent, a liquid organosilicon 

polymer for instance, preserved most of its insecticidal activity in a high humidity 

environment. Hydrophobic siliceous insecticidal compositions described in U.S. Patent 

3,159,536, issued to Ralph (1964) showed substantial resistance to 100% RH during a 

twenty-four hour period, while comparison groups consisting of untreated hydrophilic 

siliceous material suffered loss of efficacy (Knight and Bessette, 1997). 

The environment within the grain storage facilities is generally in our favour given the 

low humidity. Under 30±1°C, 75±5% RH, modified silica nanoparticles (without any 

surface capping) (Fig. 1.2) and the surface-functionalized silica nanoparticles (Fig. 1.3) 

act with the same efficacy against S. oryzae, indicating that entomotoxicity of silica 

against insects is not related to the surface groups attachment to the insect cuticle 

(Debnath et al., 2011). 
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Fig. 1.2. Field emission scanning electron microscopy (FE-SEM) of modified silica 

(Debnath et al., 2011). 

 

Fig. 1.3. Electron micrographs of three different types of silica nanoparticles. a 

Transmission electron microscope (TEM) image of hydrophilic silica nanoparticle 

(SNP), b Transmission electron microscope (TEM) image of hydrophobic SNP, c 

Transmission electron microscope (TEM) image of lipophilic SNP (Debnath et al., 

2011). 

1.2.2.2 Synthetic zeolite 

Synthetic zeolites consist of microporous crystalline aluminosilicates with the formula, 

( ) ( )2 2 2x n x y
M AlO SiO wH O  

 
, where M is an alkali or alkaline-earth cation (Na, K, Li 

and/or Ca, Mg, Ba, Sr), n is the cation charge, w is the number of water molecules per 

unit cell, x and y are the total number of tetrahedral per unit cell, and the ratio y/x 
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usually has values ranging from 1 to   (Smedt et al., 2015). Some of the 3Al +  

replacing 4Si +  in the silica framework results in a higher bulk density and reduced 

stability (Celik et al., 2010). The aluminium-rich zeolites with large pores have the 

capability to absorb liquid approximate to 30% of its own weight without any volume 

modification. The ideal particle size of synthetic zeolites used against insects is less 

than 2 µm, possessing the strongest adhesive affinity to insect cuticle. Both 

characteristics contribute to the insecticidal effect (Smedt et al., 2015). 

Several commercial formulations are available for pest control in fruit tree production 

systems. For better deposition on the leaves and other tree surfaces, synthetic zeolites 

are applied as a particle film. However, the application of synthetic zeolites in the stored 

grain environment is limited. Lü et al., (2017) evaluated the effectiveness of a synthetic 

zeolite against the cowpea weevil, Callosobruchus macculatus (Fabricius), on concrete 

surfaces and cowpea products. On a concrete surface, the synthetic zeolite dose for 

100% mortality was 5 g/m2 after 72 h of exposure. Complete mortality of cowpea 

weevil with a 1 g/kg dose occurred after 4 days. Both doses were effective in killing 

cowpea weevils within 4 months. Compared with the control, the treated group showed 

marked reduction in fertility which is evident by the smaller number of eggs and 

progeny. Based on this result, the recommended dose is 1 g/kg as a surface treatment 

for cowpea. The obvious disadvantage is slow speed of kill which makes this choice a 

less than desirable one. The prolonged time for 100% kill increases the possibility of 

insect survival. The synthetic zeolites high affinity to water makes relative humidity an 

important factor regarding their efficacy and gives them a coincidental inhibiting effect 

on microbial organism activity (Glenn et al., 2001; Smedt et al., 2015). 

1.2.2.3 Synthetic nanostructured alumina 
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Synthetic nanostructured alumina are produced via a combustion synthesis technique by 

utilizing glycine as fuel and aluminum nitrate as oxidizer (Toniolo et al., 2005). The 

final products contain more than 99.6% alumina (Yang and Watts, 2005). These 

purified compounds are relatively dense (0.108 g/cc) (Stadler et al., 2012) small 

particles (primary particle size,13nm; average aggregate particle size, 201.0 nm) and 

have many industrial applications such as pesticide encapsulating agents (Chauzat and 

Faucon, 2007), biocompatible material for medical and dental composites, and 

abrasives because of their hardness, toughness and wear resistance (Toniolo et al., 

2005). 

A recent study by Stadler et al., (2012) compared the efficacy of a synthetic 

nanostructured aluminum and Protect-It, which is considered to be the most effective 

commercially available diatomaceous earth. The synthetic nanostructured aluminum 

was more effective at a lower dose than Protect-It. The LT95 values for the synthetic 

nanostructured aluminum against S. oryzae and R. dominica (controlled F1 progeny) 

with a dose of 250 ppm at 27±1°C and 75% RH (grain moisture of 14.7%) were 10.9 

days and 25 days, respectively. Protect-It was less effective and required 185.8 days and 

84.6 days, respectively, at a similar dose (Stadler et al., 2012). The insecticidal 

mechanism of synthetic nanostructured aluminum is not well documented. Stadler et al., 

(2012) reported that toxicity of synthetic nanostructured aluminum decreased as the 

relative humidity increase and they proposed that the mechanism may be similar to that 

of diatomaceous earth particles. Interestingly, they observed a higher tolerance in R. 

dominica than in S. oryzae, which is the opposite to the observed results for 

diatomaceous earth and silica treatments in the literature (Subramanyam and Roesli, 

2000). Among the chemical components, whether it is particle size or agglomerate 

structure, which contribute to the higher insecticidal activity of synthetic nanostructured 
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alumina is yet to be determined. In addition, the major reported adverse effect of 

synthetic nanostructured aluminum is plant growth inhibition (Yang and Watts, 2005). 

1.2.2.4 Synthetic amorphous silica 

Synthetic amorphous silica (SAS) consist of nano-sized primary particles of nano- or 

micrometer-size aggregates and of agglomerates in the micrometer-size range. Synthetic 

amorphous silica (SAS) are generated either via a wet processing method (includes 

silica gel, precipitated silica and colloidal silica) or a thermal processing method 

(pyrogenic silica). Surface treated, hydrophobic SAS types also belong to this category. 

Recognized as Generally Regarded AS Safe (GRAS) additives in food and feed, SAS 

are distinctive from other forms of amorphous silica in terms of their high chemical 

purity, their finely particulate nature and the characteristics of the particles observable 

via microscopy, e.g., shape, structure and degree of fusion. None of these intentionally 

manufactured SAS contain crystalline silica. Because of differences in physic-chemical 

properties, SAS are used in a variety of products, e.g., fillers in the rubber industry, 

additives in tyre compounds, free-flow and anti-caking agents in powder materials, and 

liquid carriers, particularly in the manufacture of animal feed and agrochemicals. Other 

uses are toothpaste additives, paints, silicon rubber, insulated material, liquid systems in 

coatings, adhesives, printing inks, plastisol car undercoats and cosmetics.  

A series of precipitated and fumed silica products were screened and identified to be 

lethal to adult Prostephanus truncatus (Barbosa et al., 1994). The persistence of two 

products, Gasil 23D and Aerosil R972, was then assessed over 40 weeks; a period 

equivalent to a storage season in most of tropical Africa. The results demonstrated the 

potential use as an insecticide in long-term storage. Very few progeny emerged from all 

four dosage groups tested. Gasil 23D was also found to be fast acting. It achieved 100% 
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adult mortality within a 48 hour exposure while Dryacide only resulted in 45% 

mortality under the same conditions. Dryacide was still much more effective compared 

to a standard diatomaceous earth product, Kensil F, obtained from Kenya, which 

produced only 3% adult mortality of P. truncatus after 28 d exposure to 0.5% (w/w) of 

the product (Golob, 1997). 

Preliminary simulated field trails have been conducted in Ghana to assess the potential 

of Gasil 23D and Dryacide as protectants for maize against insect infestation. Batches 

of 10 kg maize grain or husked maize cob were treated with these two products at 0.1 or 

0.2% (w/w) on grain and 0.2 or 0.4% (w/w) on cobs, and examined after 3 and 6 

months storage in jute sacks. Weight loss of stored grain after three months was half 

that of the controlled groups. Gasil-treated grain was less damaged than untreated grain 

at a six month check point, but there were no differences between Dryacide-treated 

grain and corresponding controls. The large variation in data may have masked 

Dryacide’s protective effect. Particle size is a key factor in determining efficacy. The 

products with smaller primary particles, such as pyrogenic silica, were selected for more 

intensive study. However, precipitated silica products with larger primary particle sizes, 

such as Gasil 23D, were more effective at different concentrations and different periods 

of storage (Barbosa et al., 1994). It is expected that SAS require lower protective doses. 

However, SAS application for stored grain is still at its infancy. 

1.2.3 Physical and chemical comparisons of dusts 

The variations in the dust properties lead to the different insecticidal efficacies. Faulde 

et al., (2006) reported that hydrophobic formation of diatomaceous earths was effective 

under high humidity for the control of German cockroaches, Blattella germanica (L.) 

(Orthoptera: Blattellidae). The efficacy of un-modified diatomaceous earths were 
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reduced, indicating the surface property is strongly linked to insecticidal efficacy 

(Alexander et al., 1944; Ebeling, 1971). Debnath et al., (2011) also reported lipophilic 

and hydrophobic silica nanoparticles (SNP) were more effective than hydrophilic SNPs 

against S. oryzae at the dose of 1 g/kg. Melichar and Willomitzer (1965) demonstrated 

strong correlation between insecticidal efficacy and particle surface properties in 17 

silica dioxides against the chicken mite, Dermanyssus gallinae. Silica aerogal (AL-1), 

which has an enormous specific surface (700 m2/g), caused complete knockdown of 

adult male German cockroaches in 2 min compared to 39 min by Dri-die (Ebeling, 

1960). Given the high oil absorption capacity, modified diatomaceous earths are 

expected to be highly effective pesticides. Baker et al., (1976) tested the effects of 

tricalcium phosphate on T. castaneum adults and Tenebrio molitor L. larvae. They were 

not able to establish correlation between toxicity and particle size, but suggested that 

lower bulk density tricalcium phosphate (0.37 g/cm3) was more effective than high bulk 

density tricalcium phosphate (0.52-0.9 g/cm3). Based on their findings, many 

researchers have initiated investigations on the entomotoxicity of SNPs. Among these 

follow up studies some results are contradictory. Fumed silica with extremely low bulk 

density and high surface area was expected to show high efficacy. However, Barbosa et 

al., (1994) reported the opposite result. In their evaluation study, precipitated silica, 

Gasil 23D, was more effective than the pyrogenic silica, Aerosil R972, against P. 

truncatus.  

Smaller substrate particles provide a larger surface area for effective attachment which 

is a favorable trait. However, excessively small substrate particle sizes may result in 

agglomeration and interfere with aeration. Larger particles provide better aeration 

efficiency (owing to increased interparticle space) but limited effective contact surface 

(Ashok et al., 2008). 
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Only the silica gel particles with a diameter smaller than 50 µm maximum can adhere to 

the surface of the termite’s body. The silica gel particles dehydrate the termites through 

the adhesion site (Miyazaki, 1993). In silica gel with mixed particle sizes, when the 

proportion of particles with less than 50 µm diameter increases, the mortality of 

termites increases accordingly (Miyazaki, 1993). 

1.2.4 The factors affecting insect mortality 

1.2.4.1 Temperature and humidity 

Many researchers have investigated the effects of environmental relative humidity and 

grain moisture content on diatomaceous earth, and concluded that an increase in 

environmental relative humidity and grain moisture content reduces the insecticidal 

effect (Alexander et al., 1944; Debnath et al., 2011; Li, 2013; Maceljski and Korunic, 

1972). Fields and Korunic (2000) evaluated the impact of grain moisture content and 

temperature on the insecticidal effect of diatomaceous earth from different sources. The 

results showed that grain moisture content and temperature both have a great negative 

impact on the insecticidal effect of diatomaceous earth. Over 15% grain moisture 

content or 75% RH and above, the insecticidal effect will be significantly reduced. Cao 

and Li (2001) tested the lethal effect of Protect-It on Liposcelis entomophila at 50-75％ 

RH. The results showed that the death rate of L. entomophila reduced gradually with the 

increase of humidity. Arthur (2000b) measured the influence of temperature on the 

insecticidal effect of diatomaceous earth. The results showed that different 

diatomaceous earths reacted differently to temperature changes and higher temperature 

increased the insecticidal effect for Protect-It. On the contrary, synthetic nanostructured 

aluminum performed better at low temperature (Stadler et al., 2012). For each 

diatomaceous earth, the same temperature has different effects on insecticidal efficacy 
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depending on insect species. Compared to grain moisture content and environmental 

relative humidity, temperature has less effect on the insecticidal effect of inert dusts. 

High temperature increased the efficacy of diatomaceous earth against C. ferrugineus, 

but had the opposite effect against T. castaneum. For S. oryzae, the sensitivity to 

diatomaceous earth shows a positive relation with temperature increase (Michalaki et 

al., 2006). For R. dominica and S. granarius, the sensitivity to Dryacide at 30℃ was 

twice that at 20℃. However, for T. confusum, the sensitivity decreased when 

temperature increased (Aldryhim, 1990). The level of insect activity may be key to 

explaining the temperature effect. When placed at the preferred temperature, the insects 

become more active. Increased roaming, feeding and other activities cause more 

frequent contact with the dust, and eventually higher mortality. 

It was presumed that because high temperature enhances the vaporization effect, 

abrasive diatomaceous earth or hydrophilic silica would provide greater killing 

efficiency at low humidity. Because moist air has little evaporative power, 

diatomaceous earth and hydrophilic silica was even less effective at high humidity 

(Knight and Bessette, 1997). 

Hydrophilic silica control insect pests by reducing environmental humidity, thus 

creating an environment too dry for household insect pest survival. Environmental 

humidity can be adjusted to a range of 50% to 100% RH with humidity-controlling 

hydrophilic silica. The expected survival time for Reticulitermes is only forty hours at a 

maximum relative humidity of 80%. Also, with Coptotermes, lethal dehydration can be 

expected within eighty hours at a maximum relative humidity of 60% (Miyazaki, 1993). 

The insecticidal activity of amorphous silica mixed with grain decreases rapidly when 

the grain moisture content is above 14% (Le Patourel, 1986). Moisture content of 15% 

is presumed to be the upper safe limit for wheat storage between 15 and 25℃ (Pixton, 
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1982). The Sitophilus spp. were particularly resistant to amorphous silica in wheat with 

high moisture content. At 9% moisture content the silica treatment was nearly twice 

more effective against S. oryzae at higher temperatures than at lower temperatures. 

Under the same conditions, the effectiveness of treatment against T. confusum did not 

vary markedly between 15 and 25℃ over a range of grain moisture contents. Deposition 

of silica particles on insect cuticle largely happens when the insect moves through the 

treated grain. T. confusum was observed to be more active than S. oryzae at 15℃, which 

may be the leading cause of this variation (Shawir et al., 1988). 

1.2.4.2 Commodities 

Diatomaceous earth showed different efficacy against different pests in different grains. 

Athanassiou et al., (2003) evaluated the effects of the diatomaceous earth product, 

SilicoSec, against S. oryzae in four grains. Death rates from high to low were obtained 

in the grains, paddy, barley, rice and corn, respectively, at a dose of 1 g/kg at 26℃, 60±

5％ RH for 48 hours (Aldryhim, 1990). Mewis and Ulrichs (2001) evaluated three 

diatomaceous earth products, Protect-It, PyriSecs and DEBBM, against S. oryzae in 

corn, wheat and barley. The highest death rate was observed in corn and the lowest in 

barley with a dose of 500 mg/kg at 25℃, 55％ RH for 7days. Some grains can also 

interfere with a diatomaceous earth’s insecticidal effectiveness. Chanbang et al., (2007) 

reported that Insecto and Protect-It performed suboptimally against R. dominica in 

brown rice at the recommended dose rate due to the present of cuticle rice bran. The 

characteristics of grains should be taken into consideration when inert dusts are utilized 

as a pest control method. The ranking according to inert dust LD50 from high to low is 

rice > corn > oat > barley > wheat (Athanassiou et al., 2003). Interestingly, Athanassiou 
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et al., (2008) conducted feeding trials on S. oryzae with barley, wheat and corn. S. 

oryzae fed on barley showed highest sensitivity to diatomaceous earth formulations, 

followed by the group on wheat, while those on maize were least sensitive. 

1.2.4.3 Insect species and development stage 

The efficacy of inert dust or silica against different species of stored-product insect 

pests is different (Fields and Korunic, 2000). This can be contributed to by the vast 

differences among species in cuticular permeability, composition of cuticle, mobility, 

feeding pattern, adaptation to low internal water content, and ability to avoid inert dust. 

Even different strains of the same species showed different tolerance to inert dust. 

According to Rigaux et al., (2001), for T. castaneum, the lethal dose for 50% mortality 

(LD50) for the most tolerant strains (413 ppm) is twice that for the most susceptible 

strains (238 ppm) upon exposure to diatomaceous earth. The tolerant strains lose their 

water much slower compared to their sensitive counterparts in both treated and 

untreated groups. Tolerant strains were also less active when forced to move through 

either treated grain or over filter paper treated with diatomaceous earth, which greatly 

reduced the exposure and allowed more time to compensate water loss (Rigaux et al., 

2001). Water is key for the insects’ physiological activities. As with mammals, 

dehydration leads to death. The lethal dehydration level for S. oryzae is 28% body 

weight (Arlian, 1979), while it is 15 to 18% for T. castaneum (Rigaux et al., 2001). 

Different insects have different inherent water content. Stored-product insects tend to 

have a lower water content (50% for S. oryzae, 52% for C. ferrugineus and 52-53% for 

T. castaneum (Fields et al., 1998; Rigaux et al., 2001)) compared to species living in 

other environments (an average of 69% (Hadley, 1994)). High water content coincides 

with high susceptibility to inert dusts. Liu (2005) reported that O. surinamensis and C. 
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ferrugineus were most susceptible and T. castaneum was most tolerant to diatomaceous 

earth in a structure treatment. 

Morphological and physiological differences also contribute to sensitivity to inert dusts. 

The greater the body surface relative to volume, the more susceptible an insect is to 

inert dusts. C. ferrugineus, C. pusillus and C. turcicus are readily susceptible to dusts 

given their large body surface to volume ratio. Li et al., (2011) confirmed this theory in 

their tests of four new silica dusts against adults of phosphine resistant strains of C. 

ferrugineus. A 100% of mortality can be obtained within 4 hours at the dosage of 50 

mg/kg. 

Different development stages of the same insect also show different susceptibility. The 

time required to kill 100% of adult T. confusum and Tenerbio molitor in the absence of 

food at a dose of 2 and 4 g/m2 of Fossil Shield® at 25±1C and 62±2% RH was within 

14 days (Mewis and Ulrichs, 2001), while a 100% mortality of larvae T. confusum was 

obtained within 4 days, but the larvae T. molitor were not affected by the product. Some 

developmental stages are significantly more sensitive, such as first instar larvae of 

Plodia interpunnctella. Here, 100% mortality can be achieved within 1 day at a dose of 

4 g/m2, while the 3rd instar and 4th instar larvae suffered little mortality. Also, two 

weeks old P. interpunnctella larvae tend to be less susceptible than T. confusum larvae 

at the same age. Vayias and Athanassiou (2004) reported the detrimental effect of 

SilicoSec®, which is a new diatomaceous earth formulation of freshwater origin from 

Germany. The T. confusum larvae were much more susceptible to SilicoSec® than 

adults, while the young larvae and young adults were more susceptible than old larvae 

and old adults, respectively (Vayias and Athanassiou, 2004). This phenomenon can be 

explained by structural differences and variation in cuticular lipid composition at 

different developmental stages (Bai et al., 2008, 2007). Noble-Nesbitt (1990) observed 
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that T. molitor larvae were able to absorb water from sub-saturated air, while adults 

were not, and this was due to the structural differences in the rectal complex of these 

two stages. Hydrophobic silica with sufficient exposure is lethal to  all developmental 

stages, except eggs, of the entire class Insecta (Hexapoda) (Vrba, 1992). 

Behavioural avoidance to insecticide treatments can also be used to explain variation in 

the susceptibility to dusts. The insecticidal activity of dusts and others insecticides 

decreases rapidly as insect behaviours are modified to avoid an insecticide-treated 

surface (Prickett and Ratcliffe, 1977). Generally, dust is applied as a 30 cm surface 

treatment to a grain bulk; a proportion of grain stored beetle pests are likely in time to 

encounter which acts as a boundary between the exterior and the untreated grain. The 

survival of these insects is largely dependent on the frequency of contact, the length of 

exposure time, the insecticide formulation, the physical persistence of the insecticide 

and the insects’ susceptibility to the dust. An avoidance response was observed in T. 

castaneum upon exposure to dusts, but not in S. granarius (Gowers and Le Patourel, 

1984). 

1.2.5 Mode of action 

1.2.5.1 Digestive tract obstruction theory 

Extensive research has been conducted on the insecticidal mechanism of inert dust since 

the 20th century. Smith (1969), in his popular article, suggested that colloidal silica 

particles ingested by larvae of Coleomegilla maculata lengi and Leptinotarsa 

decemlineata (Say), and that the particles interfere with digestion. There is very little 

scientific proof to validate this claim. According to Carlson and Ball (1962), insects 

feeding on diatomaceous earth was observed in S. oryzae and S. granaries adults. 

During necropsy, dyed diatomaceous earth was found in the esophagus, midgut and 
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hindgut, most often in the latter two sites. No abnormality, damage or inert dust particle 

penetration was found in the digestive tract linings. No clinical signs of disease were 

present in adjacent internal (fat body, Malpighian tubes and trachea, e.g.) organs. These 

findings did not support the possibility that feeding on diatomaceous earth was the 

cause of death. 

1.2.5.2 Respiratory dehydration and obstruction theory 

As early as 1953, Roeder (1953) reported that dehydration in insects could occur via the 

tracheal system, if the insects could be induced to keep spiracles open. However, when 

evaluating the effect of the silica aerogel, Aerosil 380, on the mortality of T. confusum, 

Vrba and Nosal (1983) were not able to secure evidence that silica aerogels caused 

permanent or long-term opening of the spiracles. In the middle of the 20th century, some 

researchers proposed that insect stoma and trachea blockage by diatomaceous earth 

particles was the cause of their death (DeCrosta, 1979). However, in earlier work, after 

treating S. granarius and Acanthosocelides obtrctus with crystal SiO2 and bentonite 

powder, Chiu (1939) reported no difference in the oxygen consumption of adult insects, 

which suggested tracheal obstruction was unlikely.  

1.2.5.3 Traumatic dehydration theory 

Many researchers reported epidermal damage in insects treated by diatomaceous earth. 

Mewis and Reichmuth (1998) observed epidermal wax layer damage and particle 

embedment in T. molitor adults under electron microscope, after they were treated with 

diatomaceous earth. The result confirmed absorption of the upper epidermal wax layer 

by diatomaceous earth particles. 
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Stored grain insects live in a dry environment. Water is attained through feeding. 

Insects rely on the epidermal wax layer to preserve water. Some scholars suggested that 

the insecticidal mechanism of diatomaceous earth was the breach of this protective 

barrier leading to death by dehydration (Ebeling, 1971). Through a series of 

investigations, Ebeling (1971) concluded that diatomaceous earth absorbed the 

epidermal lipid layer, inflicted mild abrasive damage, and eventually cause dehydration 

in pests. Ebeling (1971) reported that the loss of water holding ability in insect 

epidermis was induced by friction from diatomaceous earth particles. The insects 

consequently died of dehydration. Mewis and Reichmuth (1998) treated the pupae of T. 

molitor with diatomaceous earth (Home Shield), and observed weight loss in the treated 

groups. The most obvious reason was reduced water content, thus dehydration. Mewis 

and Ulrichs (2001) also observed similar results in T. confusum adults treated with 4 

g/m2 diatomaceous earth (Fossil Shield) for 7 days without food. The treated adults lost 

20% of their weight while the control group only lost 10%. Carlson and Ball (1962) 

reported the same finding as well. They placed T. castaneum, T. confusum, R. dominica, 

S. granaries and S. oryzae adults treated with diatomaceous earth for 10 seconds in a 

dry environment (0% RH), weighed the subjects every 24 hours and recorded the 

mortality. Treated T. castaneum and T. confusum presented significant weight 

reduction. The investigations of Rigaux et al., (2001) on T. castaneum echoed these 

findings. The traumatic dehydration theory is well supported given the ample amount of 

evidence. 

Inert dusts cause desiccation in insect cuticle by destroying the epidermal wax layer. 

The lethal threshold is 60% of body water content or 30% total body weight (Ebeling, 

1971). Inert dusts such as silica aerogels possess tremendous lipid absorbability 

(Subramanyam and Roesli, 2000). Waxes from cuticle are absorbed when in direct 
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contact with inert dusts. The dry environment the insects live in further exacerbate 

dehydration from the breached physical barrier. Due to the large surface area in relation 

to their body weight, insects often face more challenges in retaining their body water 

content than mammals. 

Currently, academics are unable to reach consensus on the insecticidal mechanism of 

inert dusts. Much of the recent results support physic-chemical removal of the 

epicuticular, lipid-water barrier as proposed by Ebeling (1971) and dehydration as the 

cause of death. But mortality in S. oryzae caused by diatomaceous earth cannot be 

explained by this theory (Carlson and Ball, 1962), since weight loss (i.e. desiccation) in 

these beetles is minimal. 

The weight loss in insects when exposed to inert dusts is a well documented fact. But 

whether superficial desiccation can cause such drastic dehydration is still questionable. 

1.2.5.4 Cuticular structural 

The insecticidal effect of inert dust by destroying the epidermal wax layer, blocking 

spiracles and tracheae is generally accepted. Due to the time consuming nature of 

dehydration via superficial damage or spiracles and tracheae blockage, rapid insect 

death after inert dust application cannot be well explained. Li (2006) studied the ultra-

structure of cuticle from six common grain storage pests. Environment scanning 

electron microscopy was employed. Li (2006) reported that little particles were found in 

the pronotum and crestal furrow of the shard base of S. oryzae and T. castaneum. Large 

amounts of particles accumulated at the femurotibial pleat of T. castaneum. In T. 

castaneum, the intersegmental membrane was obviously damaged and the 

intersegmental membrane in the articular fossa was completely destroyed. This finding 

supports the theory that the closed shielding of insect somite and the narrowness of 
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internode pleat or crestal furrow were among the key factors influencing the insecticidal 

efficacy of inert dust. 

It is widely accepted that silica is both abrasive and lipid sorptive, and both properties 

can cause surface desiccation by damaging the epicuticle waterproofing barrier (Fig. 

1.4). The epidermal wax layer in the insect cuticle consists of a uniform monolayer lipid 

and determines the permeability of the cuticle which is core to water balance. Cook et 

al., (2008) stated that a range of Acarus siro L. lipids was absorbed by three 

diatomaceous earth products after 18 and 72 h exposure. These long-chain lipids are 

believed to be responsible for the waterproofing property of cuticle. Although 

traditional methods can demonstrate the absorptive action through direct measurement 

of lipids transferred from the cuticle onto a silica particle, it is time consuming and 

labour intensive, and requires specialist skills and experience. Most of the research is 

focused on mode of action of diatomaceous earth. Synthetic amorphous silica received 

little attention until our ongoing investigation on the change to insect body surface post 

exposure. No related data were previously available. 

Adrien (1968) indicated that insecticidal effect of inert dusts may be stress related, 

caused by the release of a paralyzing agent from the corpora cardiac. He suggested the 

possible interaction of inert dusts and bursicon, a hormonal agent, which is involved in 

melanization, endocuticle decomposition, water regulation and tracheal emptying. 

Bursicon may also plays a role in cuticular dehydration and plastization. This latter 

work is particularly interesting since some of our preliminary studies with T. confusum 

have indicated that inert dusts absorb a photosensitive substance secreted by the insect. 

1.2.5.5 Exoskeleton junction damage 
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The efficacy of dust may vary when it encounters different cuticular waxes. Insects with 

thicker cuticular wax layers have been shown to be less susceptible (Bartlett, 1951). 

Nair (1957) investigated four species of beetles S. oryzae, T. castaneum, R. dominica 

and Bruchus chinensis. S. oryzae has a wax layer that is protected by an additional 

cement layer; T. castaneum has no such structure, but a very hard wax; and R. dominica 

has softer wax than T. castaneum. Bruchus chinensis has the softest layer of the four 

species. The rate of desiccation caused by three sorptive dusts was in descending order, 

B. chinensis > R. dominica > T. castaneum > S. oryzae, indicating the extra protective 

effect from the cement layer against desiccation. Insects with softer waxes were more 

susceptible than those with harder waxes (Ebeling, 1971). 

Wang (2008) discussed the effect of inert dust on the intersegmental membrane in 

insects. The investigation revealed behaviour changes in inert dust treated T. castaneum 

and O. surinamensis. Locomotion capacity was greatly reduced after treatment. Wang 

(2008) observed the behaviour of T. castaneum and O. surinamensis when challenged 

with new inert dust. Moving speed was reduced in treated O. surinamensis and eluding 

behaviour observed. In an attempt to remove attached inert dust and avoid abdominal 

contact with the dust, the insect stood upright on its tarsi. The paralysis of the hind legs 

set in next; the insect then lost normal posture and mobility. In the final stage, all the 

tarsi and antennae were completely paralyzed before death. Behavioural changes, 

neurological pathology and physical trauma were all observed in T. molitor treated with 

inert dust. These results further our understanding of the insecticidal mechanism of inert 

dust which provide guidelines for practical applications. 
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Fig. 1.4. Scanning electron micrographs of the ventral surface of four stored grain insect 

species after released in wheat treated with 600 ppm diatomaceous earth (Celite 209) 

for various durations (Debnath et al., 2011). 

1.2.6 Resistance of stored product insect pests to inert dust 

So far, no insect resistance to inert dust has been reported. Silicon dioxide and other 

trace metal oxides do not participate in insect metabolism like chemical insecticides. 

The possible resistance can only arise from behavioural changes, such as avoidance 

behaviour (Korunic, 1998). Tolerance varies among species. For example, 

Lepidoglyphus destructor is more resilient than Acarus siro and Tyrophagus 

putrescentiae (Cook and Armitage, 1999), possibly due to the  hard chaeta on the body 

surface preventing inert dust attachment (Collins and Cook, 2006). 



Introduction and literature review

 

34 

 

Although the presence of insecticide dust provides rapid kill under continuous exposure, 

the survival rate can be relatively high. Choice box studies confirmed that the repellent 

effect on insects is negatively related to the dust’s efficacy (Knight and Bessette, 1997). 

1.2.7 Field trial studies in stored grain 

Due to its safety, effectiveness and long-term protection, diatomaceous earths or silica 

aerogels have been used for eliminating stored grain insects in field trials since the 

1960s (La Hue, 1965b; Redlinger and Womack, 1966; Strong and Sbur, 1963). With a 

dosage of 0.35% (w/w), diatomaceous earths were effective for 12 months (Golob, 

1997). However, one unacceptable commercial disadvantage is that they cause wear to 

handling machinery. This disadvantage can be relieved to some extent by reducing the 

dose to 0.04-0.1% (w/w). However, users working in these areas worry about their 

health because these kinds of product are very light, tended to float in the air and have 

caused respiratory illnesses. The technology for using inert dusts for storage protection 

have not really been fully developed. The poor distribution of the dust throughout the 

grain bulk results in unreasonable control, allowing insects to survive in areas of low 

dust concentration. For example, although excellent control against a series of stored 

product insects with the product, Insecto, was obtained in the laboratory, there were 

significant numbers of live adult R. dominica and S. oryzae continually found in a small 

field trail (Golob, 1997). 

Dryacide is mainly used as a structural treatment in Australia either as a dust at 2 g/m2 

or as a 10% aqueous slurry to provide 6 g/m2. Dust application is confined to grain-

handling machinery, ducts and vertical silos, and slurries are applied to horizontal grain 

stores. Slurries are particularly useful where there is a need for personnel to avoid 

exposure to very dusty atmospheres which would be created if the dry dust was applied. 
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Although Dryacide remains sufficiently active to exert control when applied as an 

aqueous suspension, other inert dusts lose their efficacy when applied in this way 

(Maceljski and Korunic, 1972; McLaughlin, 1994). Dryacide is prohibited from use in 

bulk handling systems because it affects the physical properties of grain, such as bulk 

density and flow characteristics (Jackson and Webley, 1994). The same problems have 

been faced with other commercially available inert dusts. Furthermore, removing the 

dusts in order to process grain for consumption can be tedious. These dusts are therefore 

being replaced by methods which either require smaller quantities of material or use 

materials that do not need to be removed before the grain is consumed.  

In recent years, inert dust has been used on a very large scale in China, including at a 

national scale and for small farm stores. This is primarily due to the development of 

food grade inert dust and application technologies (Chen et al., 2016; Dong et al., 2016; 

Wang et al., 2016; Zhou et al., 2017). Three state endorsed projects are dedicated to 

develop application methods of diatomite insecticides that are adaptable to the local 

conditions, i.e., structure treatment, grain bulk surface treatment, and insect repellant for 

entrance and ventilation systems. Operators of warehouses, silos and other facilities 

conduct the sanitation before loading grain. Food grade inert dust can be used for 

structural treatment to replace or reduce chemical pesticide application. The 

recommended dosage of food grade inert dust is 1~2 g/m2, which is significantly lower 

than the dose that is allowed to be used in grain and does not need to be removed. The 

dust is very light and can be distributed evenly in different locations of the warehouse 

by being sprayed with a newly developed powder blower (Wu, 2011; Zhang et al., 

2014). Five major stored product insects, R. dominica, S. zeamais, O. surinamensis, T. 

castaneum and C. ferrugineus, exhibited 100% mortality when exposed for three days to 

surfaces treated with 3 g/m2 food grade inert dust. The 30-50 cm surface layer in a 6 m 
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high grain bulk is an important area for stored product insect activity. Mixing food 

grade inert dust with grain in this layer is effective at controlling most of an insect 

population in a grain bulk but also can prevent the insects from outside the warehouse 

getting into the grain bulk. Mixed with grain, food grade inert dust can effectively 

prevent and control R. dominica, O. surinamensis, S. zeamais, S. oryzae, C. ferrugineus, 

T. castaneum and other stored product insects (Li, 2006; Wang et al., 2011, 2009a). In 

addition, it does not influence the quality of the stored product (Wang et al., 2011, 

2009a). Food grade inert dust also has been used on gates or windows of warehouses as 

an insect repellent line to prevent and control insects from getting into the building. 

Aerosolized food grade inert dust is an innovative insecticide, which has been proven 

effective in field trials. The dusting can be completed in two hours in a 60 m × 21 m × 

11 m warehouse where the height of the grain bulk is 6 m with only two workers. Dust 

can be distributed evenly to the whole grain bulk and is very effective for insect control. 

A 100% mortality result for C. pusillus can be achieved with a very low dosage of 0.5 

mg/kg (Wang et al., 2016). 

1.2.8 Disadvantage of current commercially available dust products 

The recommended dosage for current commercialized diatomaceous earth is 500 to 

3500 ppm. The high dose rate does have some adverse effects on grain, including a 

reduction in the flow ability and bulk density, visible residue, extra dust generation 

during processing and interference with grain moisture test. 

For mite control, the dose of Dryacide is about 1000 times higher than organo- 

phosphorous (OP) pesticide. Consequently, the cost is also much higher (Cook and 

Armitage, 1999). Although a number of commercial formulations have been registered 

and are widely applied in the field (Wang et al., 2009b; Yang et al., 2011), the 
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complications mentioned above can make this practice difficult (Desmarchelier and 

Dines, 1987; Jackson and Webley, 1994; Korunić, 1997; Kozak, 1966). The most 

significant adverse effect is reduced bulk density which is extensively used as a grading 

criterion. Canadian Western Red Spring wheat requires a minimum bulk density of 750 

kg/m3 to be considered grade No. 1. Application of diatomaceous earth at the 

recommended dose of 500–3500 ppm would result in downgrading. Twenty five 

diatomaceous earths of different origin were tested for their effects on wheat bulk 

density (Fig. 1.5). All diatomaceous earth dusts decreased wheat bulk density with 

significant variation among them. The most active diatomaceous earth formulations 

against stored grain insects, such as Protect-It, Dryacide, Insecto, Dicalite, DE Eu and 

DiaFil, also had the greatest effect on the bulk density. 

Natural diatomaceous earth, registered as an insecticide, is predominately amorphous 

silicon dioxide with less than 1% (freshwater diatomaceous earth) or less than 3% 

(marine diatomaceous earth) crystalline silicon dioxide. Processing (particularly 

calcining) introduces contamination such as critobalite (IARC, 1997). Lung damage 

(silicosis) due to dust inhalation is a concern. Crystalline silica has been associated with 

silicosis and was classified by the International Agency for Research on Cancer (IARC) 

as a probable carcinogen. Amorphous silicon dioxide is a mild irritant to the human 

upper respiratory tract, eyes, and exposed skin, but this is unrelated to silicosis 

(International Diatom Producers Association (IDPA), 1990b). Developing more potent 

products are necessary. Minimal effective dosage is advised when inert dusts are used. 

Extensive data are available regarding the physic-chemical, ecotoxicological and 

toxicological properties of synthetic amorphous silica. Primary SAS particles usually 

form aggregates and agglomerates and are not normally found as discrete particles in air 

or aqueous environments. Both nanostructure synthetic amorphous silica (i.e., the “bulk 
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material”) and nano-objects of silica dissolve in aqueous environments. None of the 

synthetic amorphous silica types was shown to be biopersistent or bioaccumulative. All 

synthetic amorphous silica products have a short limited time in animals. In animal 

studies, no relevant differences in the toxicities of the different commercial synthetic 

amorphous silica types were found (Fruijtier-Pölloth, 2012). 

 

Fig.1.5. The predicted reduction in bulk density among five grains with different 

moisture contents caused by different dosage of enhanced diatomaceous earth (EDE) 

(Korunic et al., 1998). 

 

Particle surface characteristics are more relevant to synthetic amorphous silica 

insecticidal efficacy than the particle size. Synthetic amorphous silica products affect 
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insect membrane structures and integrity. Cellular toxicity is linked to the interactions 

between outer and inner cell membranes, signaling pathways, cross membrane transport 

and biomembrane integrity. Inflammatory responses can be induced by the release of 

cytokines and other proinflammatory agents due to compromised biomembrane. Most 

of these observations were attained in vitro; the only effect demonstrated in animal 

studies were inflammatory responses after high dose synthetic amorphous silica 

products were inhaled, or introduced via intratracheal, intraperitoneal, subcutaneous or 

intravenous methods (Fruijtier-Pölloth, 2012). 

Commercial synthetic amorphous silica products (including colloidal silicon dioxide 

and surface-treated forms) are well-studied materials that have been utilized for decades 

in oral and topical pharmaceutical and cosmetic products, and as an anti-caking agent in 

food. There were no reports of adverse reactions regarding human health. They are also 

considered environmentally friendly. All these properties make synthetic amorphous 

silica products attractive alternatives from traditional chemical pesticides. 

1.3 Study Aim 

Based on drawbacks from diatomaceous earth and limited or no information on mode of 

action for upcoming synthetic amorphous silica powders, my research is focused on the 

insecticidal mechanism of synthetic amorphous silica powders and their application as 

an alternative practical stored grain pest control method. Current results support the fact 

that synthetic amorphous silica powders are effective broad spectrum insecticides. 

Diatomaceous earth is the most commercially marketed inert dust. Synthetic amorphous 

silica powders share all its advantages while providing more effective pest control. Yet, 

very little attention has been given to these inert dusts by the scientific community. I am 

interested in the properties of synthetic amorphous silica powders and their interaction 
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with grain insect pests, and hope to provide valuable new insights to help reveal their 

insecticidal mechanism.  

Due to the extremely low human health risk, synthetic amorphous silica powders are 

much safer to both operators and consumers, an advantage not enjoyed by traditional 

chemical pest control products. The operation cost is also relatively low too. 

My investigation will also suggest several new possible approaches to develop future 

potent inert dust-based insecticide products. 

1.4 Research questions and the structure of the thesis 

The insecticidal mechanism and biological effect of synthetic amorphous silica (SAS) 

was investigated, involving aspects of biology, physics, optics, material science and 

kinematics. Both laboratory and field trial data were evaluated. The thesis is aimed to 

address the questions set out below. 

1.4.1 How does insect activity level affect the efficacy of SAS powders? 

Are there differences in effectiveness among different SAS powders? 

In Chapter 2, ten dusts (nine SAS powders with different polarity and processing 

procedures compared with one commercial diatomaceous earth (Dryacide)) were 

evaluated against various developmental stages (stationary stages and moving stages) of 

T. castaneum in a laboratory setting. The more highly effective SAS powders were then 

selected for mechanism studies. 

1.4.2 How do synthetic amorphous silica powders attach to an insect 

body? What is the key factor contributing to the efficacy of synthetic 

amorphous silica powders? 
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Chapter 3 investigated the hypothesis that electrostatic charge affects the attachment 

processes during initial contact of synthetic amorphous silica. In this chapter, precise 

measurement of electrostatic charges was carried out on three stored grain insect 

species, four selected synthetic amorphous silica powders and one diatomaceous earth. 

The Chapter described a comprehensive evaluation of dusting effectiveness in relation 

to electrostatic charge and proposed new protocols for dusting. 

1.4.3 How does synthetic amorphous silica affect the whole insect 

cuticle? 

In Chapter 4, the efficacy of two synthetic amorphous silica powders was investigated 

against two insect species and cuticle change in both species was measured with 

hyperspectral imaging techniques. The hyperspectral data were analyzed using a 

modified version of artificial neural network (ANN) to accurately demonstrate how 

synthetic amorphous silica impact the insect cuticle. 

1.4.4 What is the main target site of synthetic amorphous silica? 

In Chapter 5, the physical action and biological effects of synthetic amorphous silica 

were assessed by high speed photography and a locomotion compensator was used to 

further elucidate the effect of synthetic amorphous silica on T. castaneum and S. oryzae 

of both genders. Intersegmental frictional devices were chosen as the interesting areas 

based on Young’s modulus. 

1.4.5 How can dust application be optimized in a field trial? A case 

study of synthetic amorphous silica application 
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From Chapter 2 to Chapter 5 it was evident that synthetic amorphous silica would be a 

promising non-chemical pesticide. Therefore, Chapter 6 set out to develop a new insect 

detecting technology to identify the insect species in a grain bulk and evaluate the 

efficacy of one SAS as a structural treatment in a field trail. 

1.4.6 What are the key questions that should be addressed in future 

research? 

In the conclusion to the six chapters, the main results from this thesis are discussed and 

some unanswered questions are advocated as candidates for further study.   
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Chapter 2. Evaluation of efficacy of different synthetic 

amorphous silica powders and a diatomaceous earth against 

different developmental stages of Tribolium Castaneum 
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2.1 Abstract 

The present study was performed to investigate the efficacy of different synthetic 

amorphous silica (SAS) powders against Tribolium castaneum at multiple 

developmental stages and compare this with the efficacy of the commercial 

diatomaceous earth, Dryacide. T. castaneum was selected as the bioassay target for its 

feeding habit. As an external feeder, it was easy to collect specimens of different 

developmental stages. Synthetic amorphous silica powders have a higher specific 

surface area, total pore volume, oil sorption capacity and smaller particle size compared 

with diatomaceous earth. Among SAS, precipitated SAS powders have better value for 

these parameters, except oil sorption capacity than pyrogenic SAS powders. After 

surface modified, the oil sorption capacity decreases and the particle size becomes 

small. 

Bioassay studies suggested that eggs and pupas were the tolerance stages compared 

with larvae and adult, which implied that the stationary stages were less influenced by 

the above products. The efficacy of synthetic amorphous silica powders and 

diatomaceous earth against larvae (LD50 = 14.980-76.202 g h/m2; LD95 = 28.476-

153.478 g h/m2) was nearly two to three folds higher than adults (LD50 = 38.876-

119.246 g h/m2; LD95 = 55.694–164.302 g h/m2). Larvae and newly emerged adults 

were more sensitive to all the synthetic amorphous silica powders and diatomaceous 

earth than newly hatched larvae and adults, respectively. Two and five times more 

diatomaceous earth (> 4 g/m2) were required than the best synthetic amorphous silica to 

achieve a similar efficacy for larvae and adults, among which most of the precipitated 

SAS powders showed better effectiveness than the pyrogenic SAS powders (SAS8 and 

SAS9). In conclusion from the above results, hydrophobic SAS powders were more 
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effective against adults and hydrophilic powders were more effective against larvae. For 

larvae, the LD50 values of the hydrophilic synthetic silica powders, SAS4 and SAS8, 

were 15.586 g h/m2 and 20.394 g h/m2 at 252C and 555% RH, respectively, while 

the value for the hydrophobic synthetic silica powders, SAS5 and SAS9, were 38.876 g 

h/m2 and 51.928 g h/m2 at 252C and 555% RH respectively. However, LD50 values 

of adults were 47.298 and 119.246 g h/m2 for the hydrophilic synthetic silica powders, 

SAS4 and SAS8, respectively, while for the hydrophobic synthetic silica powders, 

SAS5 and SAS9, they were only 38.876 and 66.632 g h/m2, respectively. Particle size 

and oil sorption capacity had less impact on efficacy for larvae and adult, while specific 

surface area and total pore volume were negatively related to the larvicidal efficacy and 

only total pore volume was negatively related to the efficacy against adults. 

2.2 Introduction 

With increasing awareness of health and environmental risks caused by synthetic 

pesticides, many countries reject grain fumigated by phosphine or mixed with chemical 

pesticides. Insect resistance increases significantly with improper application of 

pesticides. Inherent biological factors also contribute to resistance. Although methyl 

bromide is an effective synthetic insecticide, its destructive effect on the ozone 

atmospheric ozone layer makes it unfit for future use. Developing an alternative grain 

pest control method is therefore unavoidable. 

Inert dusts are a promising nonchemical alternative. These products are persistent and 

stable at either high temperature or low temperature. Numbers of inert dust formulations 

are currently commercially available. Effective application for grain storage has been 

reported (Subramanyam and Roesli, 2000), although there are many factors that impact 

efficacy, including insects species, grain moisture content, relative humidity, 
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temperature and method of application (Subramanyam and Roesli, 2000). Many 

formulations are composed of diatomaceous earth and other insecticides, most 

frequently pyrethrum (0.1 to 0.2%) (e.g., PyriSec®) (Athanassiou et al., 2007) and 

piperonyl butoxide (1.0%) (e.g., Diacide Homeguard, Diatect, Perma Guard D-20, and 

Perma-Guard D-21), providing a “double barreled effect” and fast killing rate. 

However, when such chemicals are added to the diatomaceous earth compositions, the 

products became toxic to avian and mammalian species including humans, and 

therefore lose their insect specific killing advantage. The insecticidal efficacy of silica 

base is mainly relate to high amorphous silicon dioxide content with a uniform particle 

size (Korunić, 1997). In addition, diatomaceous earth is a natural product and its 

relatively low efficacy can partly be explained by the possibility that insects have had 

previous contact with similar material in the environment and become tolerant. 

Synthetic amorphous silica (SAS) consist of nano-sized primary particles, nano- or 

micrometer-size aggregates and agglomerates in the micrometer- size range. They have 

high chemical purity and contain no detectable crystalline silica (Fruijtier-Pölloth, 

2012). Synthetic amorphous silica powders are promising alternatives for insect 

management. 

Tribolium castaneum is the most tolerant species when exposed to inert dust, either 

from structure treatment or when dust is mixed with grain. Increase in temperature 

generally improves the effectiveness of inert dust against insects due to accelerated 

insect movement and increased rate of water loss via the spiracles. However, the 

opposite is true for T. castaneum (Arthur, 2000b). 

We investigate the potential of nine synthetic amorphous silica powders against four 

developmental stages of T. castaneum as a structure treatment in comparison with 

Dryacid (a commercially available diatomaceous earth product). T. castaneum was 
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selected as the bioassay target for its feeding habit. As an external feeder, it was easy to 

collect specimens of different developmental stage. The results also provide dosage 

guideline for other species as T. castaneum is the most tolerant insect pests to inert 

dusts. 

2.3 Materials and Methods 

2.3.1 Insects 

T. Castaneum was obtained from the Academy of State Administration of Grain 

(ASAG), Beijing, China. To ensure consistency within the experiment, adults were kept 

for one week after emergence. About 200 first-generation adults were mixed with 

medium comprising 1 part yeast and 10 parts whole-meal flour milled from Chinese 

hard wheat, and then kept for 4 days in a growth chamber at 30°C and 70% RH. The 

adults were then sieved out to obtain media that contained only insect eggs, which was 

then also kept at 30°C and 70% RH. As soon as the adult insects emerged from these 

eggs, they were transferred to new medium and kept at the same temperature and 

relative humidity conditions for another 20 days before testing.  

For easy egg separation, the mated adults were reared on the flour with particle size 

smaller than 80 meshes, while T. Castaneum eggs are bigger than 60 meshes. After 

ovipositing for 2 days, the adults were removed from the media and the eggs were 

collected from the media by sieving with an 80 meshes screen. The eggs were then 

examined under a binocular microscope and, if visibly healthy, transferred into a watch 

glass. Visual examination immediately afterwards confirmed that the specimens were 

undamaged and active. 

T. Castaneum larvae were 2-4 instars old when used and were separated from adults by 

sieving gently with 3500 µm mesh sieve. These larvae were then tipped gently onto a 
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15 cm diameter Whatman No.1 filter paper and left for sufficient time for the larvae to 

cling to the paper. This paper was then inverted at a 45º angle above a second paper and 

gently tapped so that media was removed from the larvae. 

Tests were performed with pupae (2-4 days old) at laboratory temperatures ranging 

from 26 to 30ºC and relative humidities from 65 to 75%. Adults and pupae were left 

behind on a 4000 µm mesh sieve when sieved from the medium. These adults and 

pupae were then put on the top of a “Pyramid” composed of three different sizes of petri 

dishes which left the adults to climb down to the bottom. The remaining pupae were 

examined microscopically to ensure only healthy specimens were used for testing. 

2.3.2 Dusts 

We evaluated the ten silica-based materials listed in Table 2.1. SAS5 and SAS9 were 

hydrophobic and the others were hydrophilic. Diatomaceous earth is a natural 

amorphous silica powder derived from fossilised diatoms, while the others are synthetic 

amorphous silica. They were prepared by different methods. Precipitated silica is 

produced by a wet process, and pyrogenic silica is produced by a thermal process. 

2.3.3 Measurement of dusts’ physical properties 

Pore-size distributions and Brunauer-Emmett-Teller (BET) surface areas were 

determined from N2 adsorption/desorption isotherms at 200°C for 2 hours (BK200C, 

JWGB SCI. & TECH., China), using the Barrett-Joyner-Halenda (BJH) and multipoint 

BET methods respectively. A Malvern laser diffraction analyzer (Mastersizer2000) 

measured the particle size distribution of the dusts in a dry analysis. The oil absorption 

capacity test followed the procedure described by Kim et al., (2015). 
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2.3.4 Bioassays 

Prior to bioassay, 9 cm (inner diameter) glass petri dishes were washed and disinfected 

by heating at 100°C for 2 hours. The same size of filter paper was pasted to the internal 

bottom of the petri dishes without any gaps as the cultures would otherwise escape 

under the paper which would affect population eradication. Also, using filter paper 

helped to distribute the dust evenly and prevent it to agglomerate. A total of 13.2 mg (2 

g/m2) of the SAS or 26.4 mg (4 g/m2) of diatomaceous earth, measured with a balance 

(0.1 mg, ML204/02, Mettler Toledo, Shanghai, China), was applied to each dish. Then, 

the dishes were shaken manually several times to achieve even distribution of dust on 

the surface of the filter paper. However, all the dusts flocculated easily even with gentle 

shaking. To avoid the variation among replicates and samples, we broke all the 

agglomerations with dissecting needles. For each dose, there were three replicates. An 

additional set was left untreated as control. All bioassays were performed at 30±1°C and 

65±5% RH. To each petri dish 30 T. Castaneum of a given development stage were 

added. 

To determine the ovicidal and pupicidal activity of the tested products, eggs and pupae 

were rolling on the dust-treated surface of the petri dish to ensure contact with the dust. 

This was achieved by the moving the petri dishes to and fro in different directions, 

before placing in a climate chamber as described for experiments above. Then, hatched 

larvae and emerged adults, whether dead or alive, were counted every 24 hours after 

treatment using a stereomicroscope. 

For determination of the larvicidal activity, the efficacy was measured as the mean 

percentage of dead larvae of the three replicates every hour after treatment. A larva was 
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counted as dead when no motion was visible after touching with a brush and further 

became black due to dehydration which was observed using a stereomicroscope. 

Every 2 h, the number of adults that were active (walking normally) or affected were 

recorded using a stereomicroscope. Affected adults included individuals that were 

walking abnormally, were immobile but with legs or antennae moving, or not moving 

and unresponsive to being touched with a probe. For calculation of mortality rate, adults 

that had not recovered by the end of the 24 h post-treatment observation period were 

assumed to have died or to be unable to recover. 

2.3.5 Statistical evaluation 

Efficacy was determined for each product by comparing LD50-values and LD95-values 

calculated by Probit analysis. Difference in the average survival time was estimated 

using the Log-Rank test. 

A two-factor analysis of variance (ANOVA) (Montgomery, 1959; Underwood, 1997) 

was used to test whether variation was significant between different times and between 

different dusts. Dust and time were treated as fixed factors that were orthogonal to each 

other. Although mortality, hatching and emergence values did not follow a Gaussian 

distribution, the major effects pointed to by the ANOVA were reliable because the 

method was particularly robust to such divergence in well replicated assays, and clear 

trends were pointed to by very high F values (Khan and Rayner, 2004). The analysis 

was performed on SPSS. 

Three replications were taken. A Student-Newman-Kreuls (SNK) test and Duncan test 

were used to perform post hoc multiple comparisons. 

To examine correlations between physical property and efficacy, an inter-item 

correlation matrix analysis was conducted with the LD50 value for larvae and adults as 
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dependent variable and the values of particle size, pore-size distributions, BET surface 

areas and oil sorption capacity as explanatory variables. 

2.4 Results 

2.4.1 Physical property of synthetic amorphous silica powders and 

diatomaceous earth 

In Table 2.1, the particle size of the nine SAS powders and diatomaceous earth are 

displayed. Regarding the particle size distribution, the hydrophilic and hydrophobic 

precipitated SAS showed particle size in the volume weighted mean range 3.33–8.04 

µm. In the case of the surface treated hydrophobic precipitated SAS (SAS5), the particle 

size was 3.33±0.04 µm and smaller than its bare precipitated SAS (SAS4). Compared 

with the precipitated SAS, thermal process on both hydrophilic and hydrophobic 

pyrogenic SAS resulted in a larger agglomerate size, increasing to 20.76±0.31 and 

7.32±0.42 µm for SAS8 and SAS9, respectively. 

We measured the specific surface areas of the SAS powders and diatomaceous earth 

and their porosity values using nitrogen isotherm experiments (Table 2.1, BET and BJH 

analyses). The SAS powders showed a specific surface area above 100 m2/g except for 

SAS7 which was 57.45 m2/g, whereas that of diatomaceous earth was only 37.59 m2/g. 

These particles showed the presence of surface coating with a specific surface area of 

123.44 and 101.33 m2/g for hydrophobic precipitated SAS (SAS5) and hydrophobic 

pyrogenic SAS (SAS9), respectively. Most of the precipitated SAS showed a larger 

specific surface area than that of the pyrogenic SAS. We also estimated the porosity of 

the SAS and diatomaceous earth. As summarized in Table 2.1, all of the samples 

showed an extremely high porosity. In particular, the single point adsorption total pore 

volume of the precipitated SAS was 0.40-1.05 cm3/g, which was higher than that of 



Evaluation of efficacy of different synthetic amorphous silica powders and a 

diatomaceous earth against different developmental stages of Tribolium Castaneum

 

52 

 

pyrogenic SAS. Regarding the treated surface, the coating process improved the 

porosity values. The single point adsorption total pore volume of the diatomaceous 

earth was 0.25 cm3/g, which was significantly lower than that of the SAS powders. 

The oil sorption capacity of various SAS powders and diatomaceous earth was 

determined by gelation with linseed oil, as shown in Table 2.1. It should be noted that 

the SAS powders showed oil sorption capacity from 209.30±1.69 to 642.37±2.84 mL 

oil/100g of dust, which was much higher than that of the diatomaceous earth 

(178.88±1.23 mL oil/100g of dust). By using two different SAS process samples, we 

clearly showed that pyrogenic SAS powders with thermal process demonstrated a 

superior absorption capacity of oil compared to that of the precipitated SAS powders. A 

surface coating of hydrophobic precipitated SAS5 and pyrogenic SAS9 was less 

efficient at absorbing oil than bare hydrophilic precipitated SAS4 and pyrogenic SAS8. 
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Table 2.1. Results of the laboratory analysis of nine SAS and one DE differentiated according to their properties and process methods. 
SAS and  

DE powder 

Processing  

methods 

Polarity Volume weighted mean 

D[4, 3] (µm) 

D(v, 0.1)a 

(µm) 

D(v, 0.5)a 

(µm) 

D(v, 0.9)a 

(µm) 

Specific surface area 

(BET) (m2/g) 

Total pore  

Volume (cm3/g) 

Oil sorption capacity 

(mL oil/100 g of dust) 

SAS1 precipitated hydrophilic 3.72±0.06 1.60±0.03 3.34±0.04 6.39±1.24 230.71 1.32 382.67±1.09 

SAS2 precipitated hydrophilic 8.04±1.08 1.63±0.01 4.92±0.11 15.39±2.76 180.91 1.03 319.74±1.12 

SAS3 precipitated hydrophilic 4.46±0.02 1.82±0.01 4.02±0.02 7.78±1.50 201.82 1.05 406.29±0.50 

SAS4 precipitated hydrophilic 7.09±0.02 2.14±0.01 5.78±0.03 14.12±2.62 207.07 0.94 446.36±1.18 

SAS5 precipitated hydrophobic 3.33±0.04 1.45±0.02 2.98±0.04 2.75±1.10 123.44 1.05 241.50±1.23 

SAS6 precipitated hydrophilic 26.30±0.66 2.62±0.03 15.86±0.61 65.10±12.07 162.17 0.93 305.32±0.95 

SAS7 precipitated hydrophilic 3.73±0.14 1.00±0.00 3.03±0.10 7.53±1.43 57.45 0.40 209.30±1.69 

SAS8 pyrogenic hydrophilic 7.32±0.42 1.73±0.05 5.91±0.27 15.02±2.90 101.33 0.29 334.99±0.89 

SAS9 pyrogenic hydrophobic 20.76±0.31 6.39±0.15 15.57±0.28 40.80±7.43 178.52 0.44 642.37±2.84 

DE milled hydrophilic 11.62±0.10 1.96±0.01 7.09±0.03 28.81±5.20 37.59 0.25 178.88±1.23 

a Where D(v, 0.1), D(v, 0.5) and D(v, 0.9) were the respective diameters at 10, 50 and 90% cumulative volume. 
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2.4.2 Hatchability of egg hatching and mortality of newly hatched 

larvae exposed to different dusts 

Figure 2.1 illustrates the effect on the hatchability of eggs and the survival of newly 

hatched larvae by different dusts. The ANOVA analysis for the hatchability of eggs 

revealed significant differences at each exposure interval (F = 1175.973; df = 5; P < 

0.001), but not for various treated and untreated groups (F = 1.476; df = 10). The 

associated interaction exposure interval × dust (F = 0.780; df = 50) (Table 2.2) was not 

significant. 

All the eggs in each group hatched in six days. Except for diatomaceous earth and 

SAS8, the lethal rate for newly hatched larvae experienced a significant increase above 

80% on the seventh day. On the eighth day, the mortality of newly hatched larvae 

reached a maximum of 100%. The ANOVA analysis indicated that newly hatched 

larval mortality was significantly affected by different dusts (F = 115.639; df = 10; P < 

0.001) and exposure times (F = 3036.023; df = 5; P < 0.001). The significant interaction 

between dust and time (F = 42.460; df = 50; P < 0.001) can be explained almost entirely 

by the large variance of the factor ‘time’, shown by its extremely high sum of squares 

value in comparison to the other term (Table 2.3). Mortality for all the synthetic 

amorphous silica except SAS8, was significantly different to that of diatomaceous earth 

(Fig. 1). Among the SAS powders most of the precipitated SAS powders showed better 

effectiveness than that of the pyrogenic SAS powders (SAS8 and SAS9). Mortality for 

all dusts was significantly different to the control (Fig. 1). For newly hatched larvae, 

hydrophobic SAS5 and 9 were more effective than hydrophilic SAS4 and 8 (Fig. 1).  
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Fig. 2.1. Mean percentage of hatchability of eggs and survivability of newly hatched 

larvae in T. castaneum eggs exposed to 2 g/m2 of various SAS powders and 4 g/m2 of 

diatomaceous earth (30±1°C and 65±5% RH).  
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Table 2.2. ANOVA parameters for main effects and interactions for hatchability of T. 

castaneum eggs (30±1°C and 65±5% RH). 

Source Type III Sum 

of Squares 

df Mean Square F P 

Dust 627.501 10 62.750 1.476 0.155 

Time 250014.645 5 50002.929 1175.973 0.000 

Dust × Time 1657.287 50 33.146 0.780 0.842 

Error 5612.705 132 42.520   

Total 1465081.121 198    

 

Table 2.3. ANOVA parameters for main effects and interactions for newly hatched T. 

castaneum larval mortality (30±1°C and 65±5% RH). 

Source Type III Sum 

of Squares 

df Mean Square F P 

Dust 22092.465 10 2209.246 115.639 0.000 

Time 290011.176 5 58002.235 3036.023 0.000 

Dust × Time 40559.142 50 811.183 42.460 0.000 

Error 2521.818 132 19.105   

Total 542816.119 198    

 

2.4.3 Mortality of larvae exposed to different dusts 

Using the Log-Rank test (Mantel, 1966) the average survival times were estimated (Fig. 

2.2) to compare the speed of action of the ten dusts at LD95 (Table 2.4). The LD95 values 

of the larvae treated with SAS1, SAS2, SAS3, SAS4, SAS5, SAS6, SAS7, SAS8, SAS9 

and diatomaceous earth were 28.476 g h/m2 (95% fiducial limits, 26.226-31.254 g 

h/m2), 37.052 g h/m2 (95% fiducial limits, 34.252-40.600 g h/m2), 37.956 g h/m2 (95% 

fiducial limits, 36.174-40.020 g h/m2), 31.750 g h/m2 (95% fiducial limits, 28.758-

35.598 g h/m2), 55.696 g h/m2 (95% fiducial limits, 52.452-60.188 g h/m2), 34.018 g 

h/m2 (95% fiducial limits, 31.706-36.844 g h/m2), 92.072 g h/m2 (95% fiducial limits, 

78.816-114.21 g h/m2), 35.626 g h/m2 (95% fiducial limits, 33.626-37.976 g h/m2), 

112.884 g h/m2 (95% fiducial limits, 96.338-139.986 g h/m2) and 153.478 g h/m2 (95% 

fiducial limits, 132.510-185.972 g h/m2), respectively. 
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For larval survival, the ANOVA analysis showed significant differences of the main 

effect of dusts ((F = 103.466; df = 9; P < 0.001), and exposure interval (F = 470.641; df 

= 10; P < 0.001) (Table 2.5). Results from the Log-Rank test showed that survival times 

for the larvae treated with different dusts for 3, 14 and 17.5 hours were significantly 

different (Table 2.5). Synthetic amorphous silica powders significantly reduced the 

survival of larvae of T. castaneum compared to diatomaceous earth (Fig. 2.2). 

Interestingly, hydrophilic SAS (SAS4 and SAS8) were more effective than hydrophobic 

SAS (SAS5 and SAS9) against larvae (Fig. 2.2). The lowest survival of larvae was from 

the precipitated silica treated groups (SAS1, SAS2, SAS4 and SAS6). 

Table 2.4. Lethal dose values and regression curve parameters for 2 g/m2 of various 

SAS powders and 4 g/m2 of diatomaceous earth tested against T. castaneum larva 

(30±1°C and 65±5% RH). 

dust Mean ± SE LD (95% CL)（g h/m2） 

Intercept  LD50 LD95 
SAS1 -1.826±0.061 14.980(13.668-16.412) 28.476(26.226-31.254 

SAS2 -2.184±0.074 21.136(19.098-23.156) 37.052(34.252-40.600) 

SAS3 -2.335±0.080 22.268(20.912-23.584) 37.956(36.174-40.020) 

SAS4 -1.586±0.055 15.586(13.618-17.624) 31.750(28.758-35.598) 

SAS5 -1.151±0.045 38.876(36.556-41.076) 55.696(52.452-60.188) 

SAS6 -2.290±0.078 19.796(18.180-21.446) 34.018(31.706-36.844) 

SAS7 -1.620±0.048 45.692(39.232-53.696) 92.072(78.816-114.21) 

SAS8 -2.202±0.073 20.394(18.896-21.868) 35.626(33.626-37.976) 

SAS9 -1.401±0.043 51.928(44.890-61.024) 112.884(96.338-139.986) 

DE -1.622±0.047 76.202(67.690-88.184) 153.478(132.510-185.972) 

 

 

Table 2.5. ANOVA parameters of main effects and interactions for T. castaneum larval 

survival (30±1°C and 65±5% RH). 

Source Type III Sum 

of Squares 

df Mean Square F P 

Dust 65677.203 9 7297.467 103.466 0.000 

Time 331942.105 10 33194.210 470.641 0.000 

Dust × Time 46786.021 75 623.814 8.845 0.000 

Error 13400.667 190 70.530   

Total 1016441.0 285    
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Fig. 2.2. Survival curve of the T. Castaneum larvae exposed to 2 g/m2 of various SAS 

powders and 4 g/m2 of diatomaceous earth at 30±1°C and 65±5% RH. 

2.4.4 Rate of pupal emergence and mortality of newly emerged adults 

after exposure to different dusts 

As shown in Fig. 2.3, the pupae, like eggs, were more tolerant than the other 

developmental stages when exposed to dusts and cannot be completely eliminated. 

However, all the newly emerged adults were completely killed by all the dusts within 

24 hours, while the pupae required 92 hours of exposure (Fig. 2.3). No mortality was 

observed in the young adult controls. 

There was significant difference in the emergence rate of T. Castaneum pupae among 

the treated and untreated groups, but not for the SAS4 treated group (F = 13.487; df = 

10; P < 0.001) (Table 2.6). One of the hydrophilic powders, SAS1, was most effective 
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in terms of eliminating pupae. Diatomaceous earth was ineffective against pupae in 

contrast to synthetic amorphous silica powders. The ANOVA analysis for pupal 

emergence revealed significant differences for exposure interval (F = 151.729; df = 10; 

P < 0.001) and interaction for exposure interval × dust (F = 1.889; df = 10; P < 0.001) 

(Table 2.6). 

For newly emerged adult mortality, the ANOVA analysis showed significant 

differences for the main effect of dust (F = 6.711; df = 9; P < 0.001) and exposure 

interval (F = 155.371; df = 10; P < 0.001), but not for interactions (Table 2.7). 

According to exposure interval analysis, the total mortality was significantly different 

among groups at 16.5, 42 and 90 hours. Although no significant differences were found 

for newly emerged adult mortality between diatomaceous earth and most synthetic 

amorphous silica powders, highest mortality was obtained with the precipitated silica 

treated groups (SAS1, SAS3 and SAS4) from the beginning of pupa emergence (12 h) 

to 4.5 hours later (16.5 h). There was no significant difference for newly emerged adult 

mortality between hydrophilic SAS and hydrophobic SAS (Fig. 2.3). 

Table 2.6. ANOVA parameters of main effects and interactions for T. castaneum pupal 

emergence (30±1°C and 65±5% RH). 

Source Type III Sum 

of Squares 

df Mean Square F P 

Dust 11453.168 10 1145.317 13.487 0.000 

Time 128844.077 10 12884.408 151.729 0.000 

Dust × Time 16043.802 100 160.438 1.889 0.000 

Error 20550.0 242 84.917   

Total 467450.0 363    
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Table 2.7. ANOVA parameters of main effects and interactions for newly emerged T. 

castaneum adult mortality (30±1°C and 65±5% RH). 

Source Type III Sum 

of Squares 

df Mean Square F P 

Dust 21496.803 9 2388.534 6.711 0.000 

Time 553010.074 10 55301.007 155.371 0.000 

Dust × Time 42794.767 90 475.497 1.336 0.046 

Error 73320.982 220 333.277   

Total 2088767.873 330    

 

Fig. 2.3. Mean percentage of Pupal emergence and newly emerged adult mortality of T. 

castaneum exposed during the pupal stage to 2 g/m2 of various SAS powders and 4 

g/m2 of diatomaceous earth (30±1°C and 65±5% RH). 

2.4.5 Mortality of adults exposed to different dusts 

Bioassay results were used to determine the lethal dose for T. Castaneum adults (Table 

2.8). These suggested that the lethal dose at LD95 for the most effective synthetic 

amorphous silica, SAS5, was 38.876 g h/m2 with a 95% confidence interval of 37.232-

40.458. SAS1 was the second more effective powder against T. Castaneum adults with 
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a lethal dose at LD95 being 42.764 g h/m2 with a 95% confidence interval of 41.246-

44.258. This was followed by SAS3, SAS4, SAS2, SAS9, SAS7, diatomaceous earth, 

SAS6 and SAS8. No mortality was observed in the control adults. 

ANOVA statistical analysis showed that adult mortality among dusts (F = 1130.431; df 

= 9; P < 0.001), exposure period (F = 336.855; df = 78; P < 0.001), and interaction 

between dust and time (F = 9.938; df = 368; P < 0.001) were significantly different 

(Table 2.9). Hydrophobic SAS powders (SAS5 and SAS9) were more effective than 

hydrophilic ones (SAS4 and SAS8) for adult elimination (Fig. 2.4). The survival time 

among synthetic amorphous silica treated adults was significantly lower than that for 

diatomaceous earth except for SAS6, SAS7 and SAS8 (Fig. 2.4). 

Table 2.8. Lethal dose values and regression curve parameters for 2 g/m2 of various 

SAS powders and 4 g/m2 of diatomaceous earth tested against T. castaneum adults 

(30±1°C and 65±5% RH). 

dust Mean ± SE LD (95% CL)（g h/m2） 

Intercept  LD50 LD95 
SAS1 -3.910±0.087 42.764(41.246-44.258) 60.760(58.290-63.854) 

SAS2 -3.485±0.061 56.872(55.832-57.898) 83.710(81.972-85.632) 

SAS3 -3.219±0.069 42.596(40.846-44.274) 64.362(61.678-67.658) 

SAS4 -3.600±0.071 47.298(45.718-48.846) 68.906(66.418-71.892) 

SAS5 -3.802±0.085 38.876(37.232-40.458) 55.694(53.270-58.756) 

SAS6 -3.374±0.040 95.126(94.106-96.132) 141.506(139.796-143.39) 

SAS7 -3.426±0.052 73.214(72.090-74.318) 108.368(106.470-110.440) 

SAS8 -4.353±0.053 19.246(118.126-120.370) 164.302(161.990-166.814) 

SAS9 -2.959±0.047 66.632(65.740-67.512) 103.668(102.146-105.294) 

DE -2.461±0.035 71.226(69.508-72.880) 118.828(116.392-121.482) 
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Table 2.9. ANOVA parameters of main effects and interactions for T. castaneum adult 

mortality (30±1°C and 65±5% RH). 

Source Type III Sum 

of Squares 

df Mean Square F P 

Dust 577902.761 9 64211.418 1130.431 0.000 

Time 1492471.522 78 19134.250 336.855 0.000 

Dust × Time 2077461.170 368 564.528 9.938 0.000 

Error 51803.962 912 56.803   

Total 6281226.676 1368    

 

Table 2.10. Inter-item correlation matrix analysis with the LD50 values of larvae and 

adults as the dependent variable and the values of particle size, pore-size distributions, 

BET surface areas and oil sorption capacity as explanatory variables. 

Parameters Coefficient of impact of parameters on LD50 values 

Larvae Adult 

Particle size 0.154 0.453 

Pore-size distributions -0.673 -0.660 

BET surface areas -0.723 -0.473 

Oil sorption capacity -0.248 -0.144 

 

 

Fig. 2.4. Survival curve of T. Castaneum adults exposed to 2 g/m2 of various SAS 

powders and 4 g/m2 of diatomaceous earth at 30±1°C and 65±5% RH. 
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2.4.6 Examination of correlations between physical properties of dust 

and efficacy 

Inter-item correlation matrix analysis of the parameters particle size, pore-size 

distribution, BET surface area, and oil sorption capacity, and the LD50 values showed 

that the pore size distribution and BET surface area are the main effect on speed of 

action against larvae, while only the pore size distribution is the main effect on speed of 

action against adults (Table 2.10). These parameters have a negative impact on LD50 

values which means they are related to a fast mode of action. In contrast, oil sorption 

capacity and particle size have less influence on speed of action than the other two 

parameters against larvae and adults. 

2.5 Discussion 

2.5.1 Effect of the physical properties of dust on efficacy against insects 

We evaluated the efficacy of nine SAS powders against T. Castaneum at different 

developmental stages and compared this with one commercial diatomaceous earth. 

Diatomaceous earth achieved 100% mortality slower than the SAS powders. This can 

be explained by the different patterns of physical properties between diatomaceous 

earth and SAS powders (Korunić, 1997) which have impacts on efficacy. Small 

particles (SAS) offer larger specific contact surface area compared to larger particles 

(diatomaceous earth). However, the hypothesis that the smaller the particle the better 

the efficacy is not proven. Pyrogenic silica (SAS8 and SAS9) have smaller primary 

particle sizes (5–50 nm) compared to precipitated silica (SAS1 to SAS7) (5-100 nm). 

These properties, especially the density, will influent the impingement of the dusts on 

the insects. Several independent studies also showed that smaller particles of aerosols 
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couldn’t be impinging on an insect surface (Arthur et al., 2014, 2017, 2018; Teske et al., 

2000). Korunic (1997) has reported that adherence positively correlates with the 

insecticidal activity of a given diatomaceous earth. Higher oil absorption capacity of 

SAS suggests cuticular lipid absorption in insects (Ebeling, 1971; Korunić, 1997). We 

did not observe this effect, thus doubt its relevance with insecticidal efficacy. 

2.5.2 Effect of morphological structure and physiology on mortality of 

insects 

Vayias and Athanassiou (2004) studied the mortality of adults and larvae of T. 

Castaneum when exposed to a diatomaceous earth formulation, SilicoSec, and 

concluded that larvae were more sensitive to diatomaceous earth than adults. In the 

same work, the sensitivity order in T. Castaneum larvae and adults to another 

diatomaceous earth formulation, Fossil Shield, was similar (Mewis and Ulrichs, 2001). 

In our experiment, we observed a similar variation in insecticidal efficacy against 

different developmental stages for all the dusts. Mortality was higher in larvae and 

newly emerged adults, but not in newly hatched larvae and adults. There was fluid 

present in the broken eggshells at hatching, which is possibly related to the low 

mortality in new hatching larvae. In our study, after the newly hatched larvae emerged, 

they were placed in the treated arenas. This treatment produced a high individual 

mortality. For larval control, the hydrophilic SAS are more effective than the 

hydrophobic ones. In contrast, the adult stage was more susceptible to the hydrophobic 

SAS than to hydrophilic SAS. 

One of the most interesting results from this study was that two stationary stages, egg 

and pupae, were far more tolerant to all the dusts than the two active stages, larvae and 

adults. At the egg stage, there was little or no mortality regardless of the exposure time 
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and high absorption ability of SAS. A 100% hatching rate was achieved for all the SAS 

powders and diatomaceous earth. The retention rate of dust on the surface indicated by 

visual observation was poor. In our later trail, the hatch rate of eggs was still 100% even 

when buried in the dust. Due to the absent of movement, there was not fresh dust 

exchange. Compared with the egg stage, pupae were not completely stationary and 

rolling occurs at intervals. Older pupal stages just prior to emergence were less active 

and showed better dust attachment on the surface, and better dust exchange. More than 

half of pupae could not emerge. 

Apart from these factors, insect activity level may also be responsible for these 

variations. Several studies have been carried out on the dust mechanisms of stored 

product insect pests, mostly on the cuticle damage caused by lipid absorption. However, 

the biological effect of dust was not well documented. In our study, we observed that 

different stages (eggs, young and old larvae, pupae, and adults) shared similar variation 

in mortality due to dust and respiration rates at 30°C in normal atmospheric air. 

Respiration is a good index of the physiological responses of insects to the environment 

(Emekci et al., 2002). Detailed information on insect activity level and mortality during 

dust applications is lacking, but would be useful to re-evaluate the current findings or 

for predicting efficacy in the field.  
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Chapter 3. Evaluation of the effect of electrostatic charge 

between stored grain insects and synthetic amorphous silica 

(SAS) on insect mortality 
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3.1 Abstract 

This chapter describes a comprehensive evaluation of dusting effectiveness and 

proposed new protocols for dusting. In this study, three major stored grain insects, 

Sitophilus oryzae, Tribolium castaneum and Cryptolestes ferrugineus carried positive 

electrostatic charge by contact with filter paper and glass. Statistical analysis showed 

that the insects could be grouped on the basis of charge-to-mass ratio. The properties 

and amount of the charge differed significantly among the electronic characteristics of 

the insulation surface and insect species. Charge accumulated by dusts in similar 

condition was negative and can be assigned to different groups statistically in relation to 

charge-to-mass ratio. The dosage of the dust also interacted with the dust charge-to-

mass ratio. During the investigation of the effect of electrostatic charge on the treatment 

of stored grain pests by dust, we observed a linear correlation between charge-to-mass 

ratio and bioactivity of dust. This discovery solves for the first time, the problem of how 

to apply dusting and provides an effective non-chemical pesticide alternative for pest 

management. 

3.2 Introduction 

Synthetic pesticides are widely used to control stored grain insect pests because of their 

high efficacy and relatively low cost. However, with increased consumer awareness of 

the potential abuse of chemical pesticides and concerns over insects developing 

pesticide resistance, there is an increasing interest in the development of alternatives to 

conventional pesticides. The high cost of developing new chemical products is another 

reason for this direction. 
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Inert dusts offer such an alternative method with successful precedents for commercial 

applications in stored grain pest control (Banks and Fields, 1995; Ebeling, 1971; Golob, 

1997; Korunic, 1998; Mewis and Ulrichs, 2001; Subramanyam and Roesli, 2000). The 

most recent research and application was largely focused on synthetic amorphous silica 

(SAS). Synthetic amorphous silicon is a distinct, manufactured form of silicon dioxide 

as a pyrogenic (fumed), precipitated, gel or colloidal SAS. It consists of nano-sized 

primary particles, nano- or micrometre-sized aggregates and micrometre-size 

agglomerates (Fruijtier-Pölloth, 2012). The vast majority of commercial SAS powders 

with the exception of colloidal SAS and some nanoscaled aggregates, are a mix of 

complex aciniform (grape-like) particle aggregates of dimensions no less than 100 nm 

(Fruijtier-pölloth, 2012). Analysis indicates that pyrogenic, precipitated and gel 

particles do not fit the classical definition of nanoparticles due to size (ISO, 2010). 

Therefore, only the precipitated SAS was involved in this study. No known incident has 

been reported regarding human health issues or environmental risks with these 

materials. Synthetic amorphous silica powders have been widely used as anti-caking 

agents, adsorbents, fillers, thickening agents, and free-flow agents in pharmaceuticals, 

cosmetics, and food and feed products. Particle shape and surface characteristics are 

directly related to the biological activity of SAS (Fruijtier-pölloth, 2012). 

The action of inert dust varies greatly depending on the composition of the products, 

type of formulation, insect species, and environmental conditions (Alexander et al., 

1944; Vayias and Stephou, 2009; Wigglesworth, 1944). However, no comprehensive 

investigation of its efficacy has been conducted. Like other contact insecticides, SAS 

particles have to establish attachment to the insect’s surface before insecticidal action. 

However, the attachment processes during initial contact of SAS with the insect is 

poorly understood. 
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It has been suspected electrostatic charge plays a significant role in dusting efficacy. A 

resting electric charge exists on the surface of any insulate body and establishes a 

surrounding electrostatic field. The polarity and strength of the electrostatic field differs 

based on the materials, surface roughness, temperature, insect species and other 

properties. However, there has been no comprehensive study that can confirm this 

theory and there is a critical need for a quantified protocol for applying dusting. 

Insects accumulate charge when in contact with an insulate substance (Davies, 1969; 

Edwards, 1962; McGonigle et al., 2002; McGonigle and Jackson, 2002). The quantity 

of the charge depends on the interaction between the insect and the substance (Takle 

and Lackie, 1985). The electrostatic charge in insects was first explored in 1929 (Law, 

2001) yet its important role in electrostatic spray technology has been largely neglected 

until recently (Moon et al., 2003; Warnke, 1976; Zhao et al., 2008). In Moon et al., 

(2003) the link between bio-efficacy and the electrostatic deposits of charged 

insecticide on electrically isolated insects was discovered. Electrostatic charge can 

affect the adhesion of entomopathogenic fungi to host insect cuticle (Boucias et al., 

1988; Colin et al., 1992; Hajek, 1994; Lord and Howard, 2004; Shah et al., 2007) and is 

involved in the interaction between the parasite Varroa jacobsoni and its host Apis 

mellifera (Castner and Nation, 1984). 

We have for the first time comprehensively investigated the correlation of the 

insecticidal efficacy and charge-mass-ratio in three stored grain insect pest populations 

with five dusts (four different hydrophilic precipitated SAS powders and Protect-it, 

which is one of the most effective commercial diatomaceous earth) on two dielectric 

surfaces. Our findings provide an explanation why poor dusts adhesion to some species 

has been observed, such as to Tribolium castaneum, and T. confusum, we therefore 

propose a new mechanism of action and new guidelines for dusting. 
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3.3 Materials and Methods 

3.3.1 Dusts 

We selected four hydrophilic precipitated SAS powders and one natural diatomaceous 

earth (DE) which were provided by Murdoch University (MU), Western Australia and 

Academy of State Administration of Grain (ASAG), China in this study. Synthetic 

amorphous silica powders exclusively contain amorphous silicon dioxide while natural 

products, based on diatomaceous earth (DE), contain a small amount (<1%) of 

crystalline silicon dioxide. All these products are classified as food additives (E551). 

3.3.2 Insects 

The insect species tested are shown in Table 3.1. They were cultured at 30±1℃, 75±5% 

RH at the Academy of State Administration of Grain, Beijing, China. The insect 

culturing and handing follows the protocols described by Winks (1982) for secondary 

feeders and primary feeders. Sitophilus oryzae was reared on wheat. Cryptolestes 

ferrugineus and T. castaneum were reared on a medium containing 10 parts wheat-meal 

flour milled from Chinese hard wheat, 10 parts oat and 1part yeast. Prior to grinding for 

rearing, the wheat was washed, disinfected in oven at 80℃ for 4 hours, and then 

conditioned to 13.5% moisture content. Twenty-day old adults were used in the study. 

Table 3.1. Contents of each insect sample. 

Insect species Geographical strains 

Sitophilus oryzae（L.） Tongzhou (TZ-SO) 

Cryptolestes ferrugineus (Stephens) Zhanjiang (ZJ-CF) 

Tribolium castaneum (Herbst) Qihe (QH-TC) 

3.3.3 Measurement of temperature and relative humidity 
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During the electrostatic charge measurement and bioassay assessment, the whole 

Faraday system and all replicates were kept in climate controlled laboratories at the 

desired temperature with a tolerance limit of ±0.2°C. Temperature and humidity were 

automatically monitored with a temperature and humidity control system (CD901, 

Guangzhou Shenzhen Dongdahengfeng Automotive Parts Co. Ltd). The individual 

bioassay experiments were performed at 28±1°C, 65±5% RH, while others were placed 

at 24.5±0.5°C, 28.5±0.8% RH. 

3.3.4 Measurement of electrostatic charge 

Two types of dielectric carriers were used: 9 cm diameter glass petri dishes and 

Whatman No.1 filter papers. 

The net charge of insects and dusts was measured by dropping them into a Faraday cup 

(ESD-China.com) connected to a Static Charge Coulomb meter (ES111B, 

www.ESDEMC.com) (Fig. 3.1). Both Faraday cup and the surface to be tested were 

housed within an earthed Faraday cage. The operator was also earthed. Prior to 

experimentation, each dielectric surface was cleaned with 100% ethyl alcohol to remove 

traces of dirt and allowed to dry. The Static Charge Coulomb meter showed that this 

was also effective in removing any residual charge. 

3.3.5 Triboelectric series of surface materials with relation to different 

insect species 

All the insects were placed on an earthed surface to remove charge before being 

allowed in contact with surface material. This discharging procedure was necessary to 

establish a baseline for the charging capacity of different insect species and was 

checked at regular intervals by placing the discharging insects into the Faraday cup. 
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Fig.3.1. Photograph of a faraday cup connected to a Static Charge Coulomb meter. 

 

Each group of fifty insects gained or lost electrons from/to the contact surfaces by 

gently shaking them in a lidded Petri dish for 1 minute before tipping into the Faraday 

cup. Any deflection of the Static Charge Coulomb meter was recorded. In the filter 

paper surface test, we used Whatman No.1 filter paper to cover all the inside surfaces of 

a seal container. The mass of each replica was measured, and the charge-to-mass ratio 

calculated. There were fifteen replications. 

3.3.6 Variation contributed by surface materials and categories on 

charge accumulation by dusts 

We evaluated the accumulated charge on four SAS powders and one DE after contact 

with different surfaces (glass and filter paper) at different dosages (1 and 2 g/m2). The 

dose of 2 g/m2 corresponds to that recommended for surface treatment to control S. 

oryzae and T. castaneum, while the low dose of 1 g/m2 was barely enough to produce a 

deflection on the indicator, yet still effective for sensitive species, such as C. 

ferrugineus. 
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The amount of each dust calculated for a 1 and 2 g/m2 dosage on a 9 cm diameter 

surface was added to the substrate surface and evenly spread by gently shaking it in a 

lidded petri dish for a period of 1 min before transferring the dusts into the Faraday cup. 

Any deflection of the electrometer indicator was recorded. In the filter paper surface 

test, we used Whatman No.1 filter paper to cover all of the inside surface of a lidded 

petri dish. The mass of the replica was measured, and the charge-to-mass ratio 

calculated. In each trial nine plates were used and residual charges removal was always 

ensured. 

3.3.7 Variation in dust efficacy contributed to by the different dusts, 

insect species and surface materials 

The effects of electrostatic charge on the efficacy of the five dusts were determined by 

exposing charged C. ferrugineus, S. oryzae and T. castaneum to the deposits of charged 

dusts and testing the outcome at 28±1℃, 65±5% RH. Each of the five dusts was added 

to the substrate surface at an estimated concentration of 0.2 g/m2 for C. ferrugineus, 2 

g/m2 for S. oryzae and 2 g/m2 for T. castaneum, and evenly charged by gently shaking 

backwards and forwards for 1 min. Replicated groups of 20 adults of each species 

achieved electrostatic charge by contact with the insulated surfaces before being 

transferred to the dust deposits. The onset of toxic action was determined by 

knockdown (KD) and paralysis. In the case of bioassays using S. oryzae, the sides of 

petri dishes were treated with “Fluon” to prevent escape. The time for irreversible KD 

to occur (KT) was determined by periodic observation. The insects were considered KD 

when they were dorsally recumbent or could regain sternal posture but lost 

proprioceptive coordination within at least two minutes. An additional set was left 

untreated as control. KD50 and KD95 values (time for 50% and 95% KD, respectively) 
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were calculated by interpolation of KD between times when data were collected; 

average KD values were obtained from the individual KD data. 

3.3.8 Data analysis 

Work function of static charge of three insect pests contacted with two dielectric 

surfaces was calculated as a charge-to-mass ratio. The data of charge-to-mass were 

transformed to a 𝑙𝑛 𝑥 scale. A two-way analysis of variance (ANOVA) was used to test 

whether the charge-to-mass ratios induced on three stored grain insect species by two 

different materials were significantly different and whether significant differences 

existed between filter paper and glass dielectric surfaces. Post hoc tests were performed 

using Student-Newman-Kreuls (SNK) and Tukey’s HSD test (p < 0.05) to compare both 

the surface and insect species (IBM SPSS Statistics ver. 20). 

The work function of static charge of dusts in contact with filter paper and glass was 

calculated as charge-to-mass ratios. The data of charge-to-mass ratios were transformed 

to a 𝑙𝑛 𝑥 scale and were subjected to three-way ANOVA to determine differences 

among the dusts on both surfaces. Tukey’s HSD test (p < 0.05) was performed to detect 

significant differences between treatments. 

Insecticidal efficacy of each product against three insect species was calculated as a 

percentage. Adult mortality on untreated surfaces (control) across all exposure times 

after treatment was 0%. Therefore, mortality data in dust treatment were not corrected 

for mortality in the control treatment (Abbott, 1925). Time-mortality data for three 

insect species against various dusts were subjected to probit analysis (Abbott, 1925) for 

determination of the time for 50% (KD50) and 95% (KD95) rates of KD and associated 

statistics. 
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In addition, we used a three-way ANOVA with partial interactions between factors to 

evaluate the effects of insect species (C. ferrugineus, S. oryzae and T. castaneum), dust 

categories (four hydrophilic precipitated SAS powders and one natural diatomaceous 

earth) and dielectric surfaces (filter paper and glass). To comply with ANOVA 

requirements (homoscedasticity for response variables and normal distribution of the 

residuals), the KD95 value was analysed after 𝑙𝑛 𝑥 transformation. Although KD95 

values did not strictly follow a normal distribution, ANOVA results are still reliable 

because ANOVA is fairly robust to such divergence in well replicated assays. Very high 

F values confirmed this. Means per experimental group were compared using the 

multiple comparison Tukey test at 5% when applicable. 

To examine correlations between electrostatic charge and efficacy, hierarchical 

clustering analysis using complete distance was conducted on the KD95 values of the 

three replicates as dependent variable and the values of insect, dust and dielectric 

surface as explanatory variables. Cluster robust standard error terms were calculated, 

considering the dependency of the three replicates. 

The relationship between electrostatic charge and efficacy was evaluated by multiple 

linear regression. 

3.4 Results 

Precise measurement of the electrostatic charges carried by stored grain insects and 

SAS powders allows us to investigate the role of this abiotic factor in pest control. The 

grain insects and SAS powders obtain positive and negative electrostatic charge 

respectively when in contact with the same surface. The polarity and the amount of 

charge is significantly different among insect species, dust categories and dielectric 
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surfaces. Electrostatic charge was a key component in efficacy of SAS powders against 

insect species. 

3.4.1 Triboelectric series of surface materials with relation to different 

insect species 

Three insect species were all positively charged on two types of surface. Filter paper 

surface charging different species were arranged in the order of charge-to-mass as 

follow: C. ferrugineus, then S. oryzae, then T. castaneum [3.457 (±0.317) × 10-6 C/kg, 

2.371 (±0.089) × 10-6 C/kg, 0.100 (±0.023) ×10-6 C/kg], respectively (Fig. 3.2). In C. 

ferrugineus and S. oryzae, the charge was higher on filter paper than on glass. 

Interestingly, in T. castaneum, we observed a totally opposite outcome where the glass 

surface generated a higher charge. The reduction in the amount of charge acquired by 

different species on glass varied. The charge-to-mass ratio of S. oryzae experienced a 

significant drop from filter paper carrier to glass carrier (Table 3.2). The charge-to-mass 

ratio of C. ferrugineus fell gradually from one medium to the other and the change was 

much less dramatic (Table 3.2). Thus, with glass surface the order of charge-to-mass 

were as follows: C. ferrugineus, then S. oryzae, then T. castaneum [3.419 (±0. 249) ×10-

6 C/kg, 1.947 (±0.130) ×10-6 C/kg, 1.066 (±0.075) ×10-6 C/kg, respectively] (Fig. 3.2). 

The significant interaction between insect × surface (F1.548, 1.264 = 7.346; P < 0.008) 

(Table 3.3) can be explained almost entirely by the large variance of the factor ‘insect’, 

shown by its extremely high sum of squares value in comparison to the other factor 

‘surface’ (Table 3.3). 

3.4.2 Variation contributed by surface material, dose and dust type on 

electrostatic charge of dust 
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When fraction occurred between dusts and two insulated materials, dusts tended to 

obtain electrons from both glass and filter paper carriers and were negatively charged, 

as shown in Fig. 3.3. 

The difference between the charging of glass carrier and filter paper (F2.311, 0.454 = 

198.399; P < 0.000) was most significant (Table 3.4). All the different dusts got a 

higher charge-to-mass on the glass carrier than on the filter paper carrier, which ranged 

from 1.38 times (2 g/m2 DE) to 9.89 times greater (1 g/m2 SAS4). 

Concentrations of 1 g/m2 and 2 g/m2 are recommended dosages of dust for pest control. 

Variation in capacity in gaining electrons from dust between low and high dose was 

significant (F29.617, 0.454 = 2542.903; P < 0.000). A large increase in electrostatic charge 

from 1.70 times (SAS1) to 4.88 times greater (DE) was observed when the lower dose 

was used on the glass carrier (Fig. 3.3). With the lower dose, SAS2 and SAS4 on the 

filter paper actually generated a much higher electrostatic charge compare to the high 

dose under the same condition. (Fig. 3.3). Over all, on filter paper, SAS2 and SAS4 

performed better under the lower dose, SAS1, SAS3 and DE performed better under the 

high dose; on glass carrier, all dusts attained a higher charge under the low dose. 

All the dusts behaved very differently from each other (F13.598, 0.454 = 194.596; P < 

0.000). The charge-to-mass ratio of all the SAS was higher than that of DE (Fig. 3.3). 

SAS1 was the best one in getting static charge among the five dusts, followed by SAS3, 

SAS2 and SAS4 at the 2 g/m2 dosage on both carriers and at the 1 g/m2 dose on the filter 

paper carrier. The range of charge-to-mass ratio fluctuated slightly among SAS3, SAS2 

and SAS4 at the 1 g/m2 dose on the glass carrier. 

The significant interaction between dust and dose (F2.158, 0.454 = 46.322; P < 0.000), and 

between dust and surface (F1.393, 0.454 = 29.907; P < 0.000) can be explained by the large 

variance of the factors ‘dose’, ‘dust’ and ‘surface,’ shown by their extremely high sum of 
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squares value (Table 3.4). This interaction term is significant because the rank order of 

dust was inconsistent from surface to surface and different dose. 

 

Fig. 3.2. Charge-to mass ratio acquired by three species of stored grain insect adults 

after shaking on two insulated surfaces for 1 min at 24.5±0.5°C and 28.5±0.8% RH. 
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Table 3.2. ANOVA parameters showing the significance of variation of charge-to-mass 

ratio of three insect species on two insulated surfaces at 24.5±0.5°C and 28.5±0.8% RH. 

Insect species Source Type III Sum 

of Squares 

df Mean 

Square 

F P 

T. castaneum Surface 7.017 1 7.017 152.561 0.000 

Error 1.288 28 0.046   

Total 18.482 30    

C. ferrugineus Surface 0.011 1 0.011 0.017 0.897 

Error 18.057 28 0.645   

Total 372.690 30    

S.oryzae Surface 0.809 1 0.809 7.261  

Error 1.782 16 0.111   

Total 86.506 18    

 

Table 3.3. ANOVA parameters showing the significance of variation between insect 

and surface based on the same weight of insect at 24.5±0.5°C and 28.5±0.8% RH. 

Source Type III Sum of 

Squares 

df Mean Square F P 

Insect 24.553 2 12.276 116.533 0.000 

Surface 0.127 1 0.127 1.210 0.293 

Insect × Surface 1.548 2 0.774 7.346 0.008 

Error 1.264 12 0.105   

Total 103.868 18    

 

Table 3.4. ANOVA parameters showing the significance of variation between dust, 

dose and surface on the same weight of dust at 24.5±0.5°C and 28.5±0.8% RH. 

Source Type III Sum of 

Squares 

df Mean 

Square 

F P 

Dust 13.598 6 2.266 194.596 0.000 

Dose 29.617 1 29.617 2542.903 0.000 

surface 2.311 1 2.311 198.399 0.000 

Dust × Dose 2.158 4 0.540 46.322 0.000 

Dust × Surface 1.393 4 0.348 29.907 0.000 

Dose × Surface 4.439 1 4.439 381.157 0.000 

Dose × Surface × 

Dust 

0.298 3 0.099 8.526 0.000 

Error 0.454 39 0.012   

Total 343.863 60    
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Fig. 3.3. Negative charge-to-mass ratio accumulation by two dosages of different inert dust products after shaking on each of two surfaces for 1 

min at 24.5±0.5℃ and 28.5±1%. 
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3.4.3 Comparison of efficacy 

For the bioassays, the following three species with different charge-to-mass were used: 

(i) T.castaneum, which lost the smallest number of electrons to two insulated surfaces 

and was the most tolerant species to diatomaceous earth; (ii) C. ferrugineus, which lost 

the largest number of electrons to two insulated surfaces and was the most sensitive 

species to diatomaceous earth; (iii) S.oryzae, which ranked second in charging capacity 

on two insulated surfaces and was more resistant to phosphine than its sibling species, 

S. zeamais. 

The results of the comparison of dust efficacy against the three insect species on two 

insulated surfaces are given in Tables 3.5, 3.7 and 3.9. Insecticidal efficacy was 

demonstrated for all tested dust products, with significant differences in speed onset of 

action (KD50 and KD95 values) (Tables 3.6, 3.8 and 3.10). The SAS powders were 

more effective against the three insect species than the DE on both surfaces. In addition, 

the SAS powders showed a significant ranking in insecticidal activity. The SAS1 was 

found to have the quickest onset of action with the lowest KD50 and KD95 values in all 

the tests except that against T.castaneum on filter paper. 

Among the three species, when treated by dust, T. castaneum was the most tolerant 

species and C. ferrugineus was the most sensitive. The duration of onset of action were 

1.3 and 19 times longer for T. castaneum compared to S.oryzae and C. ferrugineus. 

Also, a 0.2 g/m2 low dose of dusts provided very rapid knockdown of adult C. 

ferrugineus which is 10% of that for the other two species. The cumulative mortality 

was plotted against knockdown time in minutes. On filter paper, it took nearly 4 days 

for 95% knockdown of T. castaneum on SAS1, but less than 2.7 hours for knockdown 
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of C. ferrugineus. This rapid action suggests that the characteristic high positive charge-

to-mass ratio is likely to positively contribute to this phenomenon. 

The differences in KD95 on the two insulated surfaces were small for S.oryzae and C. 

ferrugineus (Tables 3.8 and 3.10). However, appreciable differences between the two 

insulated surfaces were observed for T.castaneum. For T.castaneum the values of KD50 

and KD95 on glass were smaller than on filter paper by 1.1 and 1.7 times, respectively. 
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Table 3.5. Probit regression estimates (mean ± SE) for T. castaneum adult exposed to two different surfaces treated with 2 g/m2 of various SAS 

powders and 4 g/m2 of diatomaceous earth at 28±1℃, 65±5% RH. 

Dielectric 

surface 

Dust Mean ± SE 

Intercept 
KD (95% CL)（h） 

KD50 KD95 

Filter paper SAS1 -1.793±0.115 38.286(31.914-42.748) 73.414(66.493-85.316) 

SAS2 -3.008±0.150 47.435(44.668-49.786) 73.372(69.944-77.917) 

SAS3 -2.058±0.122 38.033(32.850-41.864) 68.426(62.776-77.491) 

SAS4 -2.415±0.103 47.015(44.460-49.329) 79.041(75.296-83.761) 

DE -2.057±0.070 58.223(55.306-60.987) 104.771(99.888-110.707) 

Glass SAS1 -4.342±0.233 31.083(28.635-33.425) 42.856(39.250-49.923) 

SAS2 -3.141±0.118 42.027(39.623-44.332) 64.035(60.304-69.069) 

SAS3 -3.196±0.155 32.633(29.211-35.574) 49.430(45.035-57.146) 

SAS4 -4.024±0.148 41.098(39.454-42.717) 57.897(55.348-61.141) 

DE -3.461±0.142 46.082(43.296-48.646) 67.982(63.893-73.819) 
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Table 3.6. ANOVA parameters showing the significance of variation between dust and 

surface for T. castaneum at 28±1℃, 65±5% RH. 

Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 0.972 4 0.243 5.497 0.004 

Surface 0.547 1 0.547 12.376 0.002 

Dust × Surface 0.080 4 0.020 0.451 0.771 

Error 0.884 20 0.044   

Total 526.165 30    
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Table 3.7. Probit regression estimates (mean ± SE) for C. ferrugineus adult exposed to two different surfaces treated with 2 g/m2 of various 

SAS powders and 4 g/m2 of diatomaceous earth at 28±1℃, 65±5% RH.  

Dielectric 

surface 

Dust Mean ± SE 

Intercept 
KD (95% CL)（h） 

KD50 KD95 

Filter paper SAS1 -4.942±0.246 2.031(1.915-2.143) 2.706(2.536-2.979) 

SAS2 -3.907±0.243 2.261(2.096-2.390) 3.213(3.025-3.510) 

SAS3 -3.567±0.164 2.217(2.049-2.368) 3.239(3.009-3.596) 

SAS4 -3.253±0.152 2.717(2.359-2.987) 4.090(3.712-4.813) 

DE -3.478±0.122 3.476(3.135-3.784) 5.120(4.672-5.897) 

Glass SAS1 -3.277±0.207 1.409(1.323-1.485) 2.117(1.998-2.281) 

SAS2 -3.067±0.148 2.419(2.257-2.564) 3.717(3.478-4.065) 

SAS3 -4.271±0.203 2.162(2.044-2.272) 2.994(2.823-3.246) 

SAS4 -4.414±0.188 2.373(2.284-2.460) 3.258(3.119-3.438) 

DE -3.241±0.135 2.874(2.534-3.149) 4.333(3.954-4.990) 
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Table 3.8. ANOVA parameters showing the significance of variation between between 

dust and surface for C. ferrugineus at 28±1℃, 65±5% RH. 

Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 16280.0 4 4070.000 37.0 0.000 

Surface 367.5 1 367.500 3.341 0.083 

Dust × Surface 286.667 4 71.667 0.652 0.632 

Error 2200.0 20 110.0   

Total 131375.0 30    
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Table 3.9. Probit regression estimates (mean ± SE) for S.oryzae adult exposed to two different surfaces treated with 2 g/m2 of various SAS 

powders and 4 g/m2 of diatomaceous earth at 28±1℃, 65±5% RH. 

Dielectric 

surface 

Dust Mean ± SE 

Intercept 
KD (95% CL)（h） 

KD50 KD95 

Filter paper SAS1 -5.517±0.260 28.335(26.861-29.552) 36.783(34.734-40.434) 

SAS2 -5.361±0.240 30.852(29.443-32.272) 40.319(37.734-45.053) 

SAS3 -5.001±0.233 29.850(28.069-31.455) 39.668(36.843-45.362) 

SAS4 -4.295±0.166 30.509(28.171-32.962) 42.194(38.358-50.170) 

DE -3.167±0.089 41.162(38.864-43.639) 62.539(58.285-68.425) 

Glass SAS1 -5.431±0.256 28.634(27.951-29.258) 37.306(36.132-38.861) 

SAS2 -4.320±0.190 32.022(31.254-32.818) 44.214(42.415-46.586) 

SAS3 -4.346±0.201 30.905(29.370-32.428) 42.602(39.629-47.861) 

SAS4 -3.868±0.165 32.735(31.679-33.833) 46.656(44.268-49.973) 

DE -4.967±0.193 33.791(32.033-35.895) 44.980(41.531-51.345) 
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Table 3.10. ANOVA parameters showing the significance of variation between between 

dust and surface for S. oryzae at 28±1℃, 65±5% RH. 

Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 1.589 4 0.397 22.083 0.000 

Surface 0.006 1 0.006 0.332 0.571 

Dust × Surface 0.592 4 0.148 8.231 0.000 

Error 0.360 20 0.018   

Total 532.892 30    

 

3.4.4 Variation contributed by dust and insect species on the efficacy of 

the different dusts against insects on two insulated surfaces 

Some basic exploratory analysis was conducted to assess the variance of contribution 

from all factors, including dust variety, insulated surface type and insect species. The 

hierarchical clustering analysis on top variable was in accordance with the insect 

mortality results. Figure 3.4 presents the hierarchical clustering of the samples. Samples 

were marked with different colours based on: dust varieties, insulated surfaces and 

insect species. As shown, samples were clustered quite well according to variety and 

dust treatment. The difference between C. ferrugineus and the other two insect species 

appeared to be the main contributor of the data variance. The second major source of 

the data variance appeared to be the dust treatments. SAS1 behaved significantly 

differently from the rest of the dusts. 

There was a linear correlation between charge-to-mass ratio and bioactivity of dust. The 

multiple linear regression model was developed through multiple regression analysis of 

the KD50’s for each insect species to describe the relationship. 

f (,y) = a + b - cy  

where f (,y) is the time for KD50 for insect species,  is insect charge-to-mass ratio, y 

is dust charge-to-mass ratio (Coefficients with 95% confidence bounds, a = 50.32 
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(45.58 to 55.05), b = -6.062 (-8.496 to -3.629), c = -0.5232 (-0.8353 to -0.211); 

Goodness of fit: SSE: 340.4, R2: 0.7221, Adjusted R2: 0.6894, Root mean square error 

(RMSE): 4.475). Charge-to-mass ratio effects were similar for each insect species and 

could be made linear with a reciprocal transformation of the KD50 plotted against time. 

The effect of charge-to-mass ratio of insect on the KD50 was more obvious than that of 

dust. 
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Fig. 3.4. The hierarchical clustering analysis of mortality data. Samples were marked with different colours based on the factors: dust variety as 

“Dust”, surface material as “Surface” and insect type as “Insect”. Abbreviations used in the table: CF, C. ferrugineus; SO, S.oryzae; TC, 

T.castaneum; fg, filter paper; g, glass. 
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3.5 Discussion 

The results presented here are part of a research program to develop new non-chemical 

technology for controlling stored grain insects and other insects. Although insecticidal 

efficacy of silica products has been observed in various studies (Banks and Fields, 

1995; Ebeling, 1971; Fruijtier-Pölloth, 2012; Golob, 1997; Korunic, 1998; Mewis and 

Ulrichs, 2001; Subramanyam and Roesli, 2000), there is urgent need for precise 

protocols and guidelines in applying the dusts to obtain optimal results. Mewis and 

Ulrichs (2001) observed differences in insecticidal efficacy of different silica products 

among different insect species and even between developmental stages within species. 

However, what determines efficacy against stored grain insect pests is currently 

unknown. For different silica products, main variations in intrinsic toxicity and 

reactivity of the material, surface area and surface chemistry in contact with the cell, 

and morphology (size, shape, state of aggregation) (Zhang et al., 2012) explains 

differences in efficacy. However, all of these studies have a serious limitation since they 

only evaluate efficacy on one specific aspect. On the other hand, we have performed a 

comprehensive study taking all electrostatic factors between insects and insecticidal 

dusts into consideration, and thoroughly explored the relationship between efficacy and 

electrostatic field in terms of both insects and dusts. The experiments conducted showed 

that the polarity of electrostatic charge acquired by insects and dusts from dielectric 

surfaces is opposite and the amount varies with insect species, dust categories and 

dielectric surfaces, and we demonstrated the insecticidal efficacy was strongly 

correlated with electrostatic charge. 

The charge measurements on insects reported here varied significantly for different 

species. This can be explained by different levels of insect activity. The charge on the 
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insect increased with the level of activity and distance moved. This is in agreement with 

McGonigle’s (2002) study. He theorised that the amount of charge acquired by insects 

was directly proportional to the distance they crawled. Preliminary experiments 

revealed that species had inherent differences in behaviour. T. castaneum tended to 

congregate, while it was observed that, when transferred from filter paper to glass, the 

moving ability of S. oryzae was distinctly decreased as was that of C. ferrugineus to a 

lesser extent. On glass carrier, S. oryzae were prone to lose balance and took 54 (±11) 

seconds to regain proper posture (Gowers and Le Patourel, 1984). Their locomotion 

capacity was greatly compromised when the surface could not provide sufficient 

friction. However, due to high flexibility, the average time taken for C. ferrugineus to 

regain normal posture on glass was only 2 (±1) sec and their movement was less 

hindered, resulting a slight decrease of the charge quantity. Different charging rates of 

different insect species can also be explained by the different work function in contact 

with two dissimilar materials, meaning the substances with positive charge had a high 

work function (Davies, 1969). The outer layer of insect, which theoretically contains the 

determinants for work function of the cuticle, varies with the type of insect. These 

surface components, such as sialic acid from glycoconjugates, carboxyl groups of 

amino acids, phosphate groups from phospholids, and sulphated polysacchaies 

associated with the plasma membrane, were involved in surface charge (Burry and 

Wood, 1979). Verities of roughness of insect cuticle also play an important role in 

charging the insects. In preliminary experiments, insects with distinguishable surface 

topography were investigated. A rough surface provides larger contact surface and more 

contact opportunities than smooth surface (Federle et al., 2000; Gorb and Gorb, 2009). 

In all cases, the rate of dust picking up was directly proportional to the difference 

between the charge of adhering dust and insect’s charge. In field trial (Zhang et al., 
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2014), the dose of 2 g/m2 examined in the present study is effective for controlling T. 

castaneum, while at the same time, has satisfactory efficacy against S. oryzae. However, 

in bulk grain, where C. ferrugineus inhabit, the dose can likely be reduced. The 

presence of electrostatic charge on the insect could contribute to this reduction. 

Comparison between SAS and DE showed significantly larger amounts of SAS 

adhesion to and retention on insects throughout the experimental period because of their 

different electrostatic charge. This led to better effectiveness of SAS than DE. In theory, 

it is possible to device empirical methods for rapid screening of high effective SAS 

powders based on an electrostatic charge evaluation of siliceous particles, such as 

agitation test in a glass graduated cylinder. If a partially to completely surface-treated 

siliceous material has a specific electrical conductivity of 10-5 mho per centimetre or 

less, the particles will cling to the walls of the container and agitate. This property, 

presently referred to as “cingability”, persists for several hours. Siliceous materials with 

specific electrical conductivity less than 10-7 mho per centimetre and is likely to be 

effectively insecticidal (Ralph, 1964). The more effective dry hydrophobic siliceous 

insecticides are characterized by being finely divided, have a low bulk density with low 

unit weight per unit volume, and low electrical conductivity, or differently stated, 

electrical insulating properties. The particles that fall into this category can readily pick 

up electrostatic charged and tend to repel each other. For ideal insecticidal effect, the 

aggregate particles should have a size below 15 microns, a surface area between 100-

250 square meters per gram and retain the electrical conductivity of not more than 10-7 

gram per centimetre at a bulk density of 0.2 gram per cubic centimeter (Ralph, 1964). 

David and Gardiner (1950) listed several studies showing that fine particles adhere 

more readily to insects than coarse powders, and manufactured forms of amorphous 

silica (agglomerate: 1-250 µm) had smaller particles than milled natural DE (1-50 
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microns) which increased their electrostatic charge. Both observations may explain why 

the efficacy of SAS was higher than that of DE. We believe that integration of the 

particle’s electrostatic property into a rational design is highly beneficial in terms of 

improving efficacy of the products. 

According to Davies (1969), the key element that determines the size and the sign of 

electrostatic charge is the work function of two contact materials. Lewis and Hughes 

(1957) demonstrated that retention of dust by flies varied with exposure to different 

surfaces, which is in accordance with our results that show efficacy of dust against three 

stored grain insect pests is significantly different on different surfaces. Based on 

findings by different independent investigators and our own experiments, we formed a 

conclusion that efficacy of dust is directly linked to electrostatic charge of the powder 

and target pests. This is also supported by Gowers and Patourel’s (1984) discovery that 

toxicity of a deposit applied to grain and sacking was considerably lower than that 

applied to  three other substrates (glass, tile and concrete). The outer layer of grain 

kernels could be classified as a good dielectric material, thus contact with grain kernel 

surface is sufficient to charge a crawling insect and leads to an increase in the 

insecticidal effect of the SAS powders. However, the surfaces of kernels vary. Some are 

smooth, like those of maize and bean, and some are rough, such as rice and barley. 

Hence, applying dust is a very complex procedure. Apart from insects and dust 

products, characteristics of grain kernels should also be considered in our new protocol. 

In summary, electrostatic charge is a key component in determining efficacy of SAS. 

Based on this information, we are developing a module in our stored grain management 

system to provide a precise and personalized SAS application guideline for applying 

SAS to suit different conditions. The system can thus facilitate farmers and managers to 

design an optimal SAS strategy accommodating different commodities at ease. Our 
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findings have unraveled the factors contributing to the efficacy of SAS application, but 

also have the potential to revolutionize methods of industrial stored grain pest control. 
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Chapter 4. Effect of synthetic amorphous silica (SAS) powder 

on the cuticle of Tribolium castaneum and Sitophilus oryzae 

  



Effect of synthetic amorphous silica (SAS) powder on the cuticle of Tribolium 

castaneum and Sitophilus oryzae

 

97 

 

4.1 Abstract 

Insect cuticle is the first layer of protection from environment damage. Therefore, 

understanding the effect of synthetic amorphous silica (SAS) on insect cuticlular 

properties is essential to contribute to the mode of action and thereby, the development 

of highly efficient SAS products for the management of insect pests. A comparison of 

insect mortalities between hydrophobic and hydrophilic SAS against Tribolium 

castaneum and Sitophilus oryzae, showed there were significant differences in the LD50 

values 47.298 (45.716-48.846) and 38.998 (37.432-40.504) g h/m2for T. castaneum 

exposure to hydrophilic SAS and hydrophobic SAS, respectively; 47.220 (46.250-

48.182) and 57.636 (56.964-58.306) g h/m2for S. oryzae exposure to hydrophilic SAS 

and hydrophobic SAS, respectively) and in the LD95 values (68.908 (66.418-70.588) 

and 56.110 (53.782-59.008) g h/m2for T. castaneum exposure to hydrophilic SAS and 

hydrophobic SAS, respectively; 67.124 (65.464-69.012) and 78.888 (77.742-80.128) g 

h/m2 for S. oryzae exposure to hydrophilic SAS and hydrophobic SAS respectively. T. 

castaneum was more susceptible to hydrophobic SAS while S. oryzae was more 

susceptible to hydrophilic SAS.  

A hyperspectral reflectance imaging approach was used to directly indicate the impact 

of SAS on the insect cuticle. The results showed that ventral reflectance from control 

groups were higher than that of SAS-treated groups, both in visible and short-wave 

near-infrared wavelength ranges (400-1000 nm). In contrast, the SAS-treated groups 

showed much higher dorsal reflectance. Evidence suggested that the differences in 

absorption characteristics of cuticular fat and protein (866, 870, 927, 935,991, 993, 994, 

997, 998, 1000, 1003, 1007 and 1008 nm) may contribute to the varied performance. 

The overall recognition rates of the back propagation neural network models for control 
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and SAS-treated groups were 100% for the calibration and predictions sets, 

respectively, which indicated that the effects of both SAS on insect cuticles was 

significant. Also, consistent with the assumption that the efficacy was different between 

the SAS products, the lowest rates of the model for two treatment groups were 90.63 

and 76.92% in the calibration and prediction sets, respectively. 

4.2 Introduction 

Two types of synthetic amorphous silica (SAS), hydrophilic and hydrophobic SAS are 

described by different Chemical Abstracts Service (CAS) numbers. Hydrophilic SAS 

types can be further divided into two groups by process methods. One is produced in a 

wet process and is described by CAS number 112926-00-8 (includes silica gel, 

precipitated silica and colloidal silica), and the other is produced in a thermal process 

that is described by CAS number 112945-52-5 (pyrogenic silica). All forms of SAS can 

be surface modified and become hydrophobic, i.e., silica dimethicone silylate, silica 

dimethyl silylate and silica silylate (CAS 67762-90-7, 68611-44-9 and 68909-20-6). 

The SAS is used in a variety of products, such as free-flow and anti-caking agents in 

powder materials, and as liquid carriers, particularly in the manufacture of animal feed 

and agrochemicals, and no associated human health issue or environment risks have 

been reported (Fruijtier-Pölloth, 2012). 

Insect cuticle is the part of insect body most directly exposed and in contact to SAS. 

The efficacy of SAS powders varies against different species of insect (Chapter 3). 

These differences can be attributed to differences in the permeability of insect cuticle to 

SAS and the resultant loss of internal water content. Different insects have different 

body water contents. For example, stored-product insects generally have a relatively 

lower water content (50% for S. oryzae (Fields et al., 1998) and 52-53% for T. 
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castaneum (Rigaux et al., 2001)) compare to insects living in other environments which 

have an average of 69% (Hadley, 1994). Water is essential for maintaining insect life, 

e.g., the loss of 56% and 30-36% moisture is lethal to S. oryzae (Arlian, 1979) and T. 

castaneum (Rigaux et al., 2001), respectively. Previous studies have indicated several 

different insecticidal mechanisms of diatomaceous earth (DE) that include some factors 

which effect insect cuticle. These are abrasion (David and Gardiner, 1950; Kalmus, 

1944; Wigglesworth, 1944), absorption (Alexander et al., 1944; Ebeling and Wagner, 

1959; Hunt, 1947), waterproofing components of the epicuticle that cause desiccation, 

damage to the digestive tract (Boyce, 1932; Richardson and Glover, 1932), blockage of 

the spiracles and tracheae (Webb, 1946), and interference to insect hormone (Adrien, 

1968). The effectiveness of these insecticides is often related to their specific surface 

characteristics and decreases when humidity increases (Ebeling and Wagner, 1961; 

Fields and Korunic, 2000).  

Studies on DE demonstrated that there was a direct relationship between efficacy 

against insects and high silica content with a uniform size distribution (Korunić, 1997). 

Following this logic, SAS possesses the potential to be an effective insecticide. 

Diatomaceous earth is considered suitable for the storage environment, especially for 

products that cater to organic markets. Synthetic amorphous silicon could be a viable 

alternative to DE based on their shared properties and is likely to be superior in terms of 

safety and effectiveness. Preliminary studies on SAS showed insecticidal activity on 

Prostephanus truncaus (Horn), a major pest of stored maize in Africa (Barbosa et al., 

1994). Mortality due to SAS was observed at rates comparable to those recommended 

for DE. The mode of action of SAS has not yet been established. Detailed mortality 

studies are needed to understand mechanisms and to determine whether it is a reliable 

product for insect pest control. Our study investigated changes to cuticular properties of 
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two insect species treated with two different SAS products using the hyperspectral 

system. This technique records images at hundreds of contiguous wavelengths (narrow 

spectral resolution) in the form of a hypercube (three-dimensional hyperspectral data). 

The principals of the technique have been detailed in Maftoonazad and Ramaswamy 

(2006). This technique has the ability to rapidly and simultaneously measure multiple 

parameters, including internal structure characteristics, morphology information, and 

chemical composition, and it is superior to single machine vision technology or 

spectroscopy analysis technology. Visible/near-infrared hyperspectral imaging 

techniques were used to successfully identify different species and geographical strains 

of S. oryzae and Sitophilus zeamais (Cao et al., 2015). Consequently, we chose to utilize 

hyperspectral imaging for this study. 

The objectives of this study were: (1) to compare the efficacy of hydrophilic SAS and 

hydrophobic SAS against two different insect species, S. oryzae and T. castaneum; (2) 

based on mortality results from (1), to understand hyperspectral imaging changes of 

insect cuticle and subsequently to elucidate the effects of SAS on the cuticle of insect; 

and then (3) to accurately establish principal parameters for the two SAS products on T. 

castaneum and S. oryzae. 

4.3 Experimental procedures 

4.3.1 Synthetic amorphous silica 

We chose one hydrophobic and one hydrophilic SAS provided by Murdoch University 

(MU), Western Australia. The hydrophobic SAS was modified from the hydrophilic 

one. Both were precipitated SAS. Their specific surface areas were, respectively, 123.44 

and 207.07 m2/g (BET) for hydrophobic and hydrophilic SAS, determined from N2 
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adsorption/desorption isotherms at 200°C for 2 hours (BK200C, JWGB SCI. & TECH., 

China) (Fig. 4.1), using multipoint Brunauer-Emmett-Teller (BET) methods. 

 

Fig. 4.1. Photograph of surface area and pore size analyzer. 

4.3.2 Insects 

T. castaneum and S. oryzae were acquired from the academy of state administration of 

grain, Beijing, China, and cultured at 27±0.5C (mean ± SE) and 65±0.8% RH as 

described by Winks (1982). T. castaneum were maintained on a feed medium (1 kg) 

comprised of 1 part yeast and 12 parts whole meal flour milled from Chinese hard 

wheat. S. oryzae were cultured on whole wheat. All experiments were carried out on 5-

15 day old adults. The entire process was completed at the Academy of State 

Administration of Grain, Beijing, China. 

Adults were separated according to sex. Prior to the bioassay and imaging experiment, 

the insects were cleaned with purified water and the water on the surface of the insect 

was removed with water-absorbing paper. After the image acquisition had been 

completed, all insects were dissected to find the genitalia to confirm gender. 

4.3.3 Hyperspectral imaging system 
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A hyperspectral imaging system developed for acquiring reflectance images from insect 

samples was used (Cao et al., 2015) (Fig. 4.2). The system was composed of a 

hyperspectral imager (including a high performance CCD camera, model HSI- VNIR-

B1621, Isuzu Optics, Taiwan, China) coupled with a long-focus lens (model OL23; 

Schneider, Bad Kreuznach，Germany), a short-focus lens (model OL50; Schneider，

Bad Kreuznach，Germany), a linear motorized slide (model IRCP0076-1COMB; Isuzu 

Optics, Taiwan, China ), a light Source (for reflection) ( model 3900-ER; IT, New 

York，USA ), a light source (for Transmission) (model 9135-HT; IT, New York，

USA), a black box (model IRCP0075-1COMB; Isuzu Optics, Taiwan, China), a white 

calibration tile (300 mm×25 mm×10 mm; Speicm，Oulu，Finland) and a computer 

system for image analysis. The reflectance light source structure was composed of a 150 

W halogen light source, which was connected to a dual fiber optic line light.  

The linear motorized slide was set to run at a speed of 0.17 and 0.19 mm/s to move T. 

castaneum and S. oryzae, respectively, perpendicularly to the imaging area. The slide 

was set to operate in continuous acquisition mode and each insect was line scanned to 

obtain 3D hyperspectral reflectance. 
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Fig. 4.2. Schematic of the hyperspectral imaging system with details of the specimen stand: A-photograph of hyperspectral imaging system; B-

sketch map of stand; C-photograph of insect specimens on stand. 
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4.3.4 Bioassays 

Prior to use for bioassays, 16 cm diameter glass petri dishes were washed and 

disinfected by heating at 100°C for 2 hours. A Whatman No.1 filter paper of the same 

diameter was pasted to the internal base of a petri dish without any gaps in order to 

prevent insects crawling beneath the paper. The filter paper helped to distribute the SAS 

evenly and prevent agglomeration. A dose of SAS at 2 g/m2 was added into each dish. 

Dishes were shaken manually several times to achieve an even distribution of SAS on 

the filter paper. However, both of the powders flocculated easily even when shaken 

gently. Therefore, to avoid variation between replicates and samples, agglomerations 

were broken using dissecting needles. For each dosage, there were three replicates. An 

additional set was left untreated as the control. Replicates were at a 1:1 sex ratio with 

groups of 50 adults of each species. All bioassays were performed inside a growth 

chamber at 28±1°C, 65±5% RH. Every 2 h, mortality was measured and dead insects 

were collected in new clean petri dishes. In all cases, insects were counted as dead if 

they showed no movement over a period of one minute. Each SAS treatment was 

replicated three times with both insect species. In the case of bioassays using S. oryzae, 

the insides of the petri dishes were treated with a band of fluon to stop the insects from 

escaping. For this study, a total of 1800 insects were tested, with 900 insects of each 

species used. 

4.3.5 Spectral sample preparation 

Insect samples were collected after 100% mortality was achieved. After exposure, the 

content of each petri dish was transferred onto a 100 µm stainless steel mesh and SAS 

was blown from the insect body using clean air. The mesh retained the insects while 
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allowing the SAS particles to pass through. The mesh was then placed into a clean petri 

dish. After that, the insects were checked using a low-powered binocular microscope 

(model EZ4, Leica) to ensure that little, if any, of the SAS remained. Note: it was not 

possible to remove 100% of SAS from the insect body. 

The untreated control insects were subjected to the same cleaning procedure for 

comparison. To obtain the untreated control insect image, insects were frozen to keep 

them immobile temporarily. First, insects were put on a frozen cold gel pack and 

movement ceased immediately. Then they were picked up gently with a brush and fixed 

on a ready-made stand with the dorsum or venter downward. To avoid water 

condensation on the insects’ body, filter paper was used to separate the stands and cold 

gel pack. The procedure was followed as described by Cao et al., (2015). 

Using the steps described above, 50 insects were pasted in the same orientation onto a 

single stand. For the control groups, each stand sample was scanned before the insects 

recovered from freezing. During the image acquirement period, stands were put on a 

black flat cooled iron cube with a cold gel pack inside. In total, there were twelve stands 

prepared for the experiment. The experiment in total consisted of 600 insect samples 

with each sample placed dorsal-ventral or ventral-dorsal and subjected to a hyper-

spectrometer. When the platform moved, a few insects changed positions, and so their 

images were discarded. 

4.3.6 Image acquisition and preprocessing 

A total of 854 images were acquired for each test sample at an exposure time of 7 mins 

for each hyperspectral image. The hyperspectral imaging system had a 0.64 nm/pixel 

spectral resolution covering the spectral region of 400 to 1000 nm using a 1608 pixels 

camera. The resulting hyperspectral reflectance images had 6.4 nm-spectral resolution 
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per pixel and 854 wavelengths after 10 spectral binning operations. Thus, a special 

block of a 1608×854×854 reflectance image was created; that is, one representing a 2-D 

image with x axis and y axis coordinate information and the other one representing the 

spectral information. This information was stored for subsequent analyses. 

The calibration of hyperspectral images was conducted as done previously (Cao et al., 

2015). Starting from the spectral image of each sample, the reflectance spectrum was 

obtained by averaging the reflectance values of the pixels located inside a region of 

interest (ROI). Spectral reflectance data were converted into apparent absorbance units: 

log (1/R). 

Due to the small size of the insects, it was difficult to achieve identical positions of each 

specimen regarding the placement of legs and head. To combat this problem, a 

morphological open algorithm was previously developed. By choosing the pixels from 

the processed data along the edge of insect body, focusing on the tergum of the thorax 

and abdomen, the algorithm generated perfect results by estimating the background 

accurately (Cao et al., 2015). Threshold segmentation was then selected manually to cut 

the image into two parts (target area and background area). 

Single-insect images from 50 non-touching insects in the original images were obtained 

and labeled. A 50×50 median filter was applied to the sub-images to reduce the 

artifacts. A two-way array, in which all the pixels reflected intensities of a sample 

rearranged into a column at each of the 854 wavelengths, was extracted by ENVI 4.7 

(Research System, Inc., USA) software. This resulted in k×854 size two-dimensional 

arrays, where k is the total number of pixels in a labeled insect and given as the input to 

the discriminated classifier. 

4.3.7 Statistical analysis 
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4.3.7.1 Bioassay data analysis 

Adult mortality of T. castaneum and S. oryzae at different exposure times to surface 

treatments by both SAS products were calculated as a percentage. Adult mortality in 

control groups across all exposure times after treatment was 0%. Therefore, mortality 

data were not corrected for mortality in the control treatment using Abbott’s formula. 

Time-mortality data were subjected to probit analysis (SPSS, 2014) for determining 

50% (LD50) and 95% (LD95) mortality of T. castaneum and S. oryzae with associated 

statistics. 

4.3.7.2 Exploratory analysis 

All the spectral data collected from the ENVI platform were in TXT data format and 

were converted into a complete Excel sheet. All data were loaded into MATLAB (Math 

works, matlabR2009b, Inc., USA) for quality control, exploratory analysis, and all 

downstream statistical analysis. 

Exploratory analysis was performed on (1) the whole data which were merged using in-

house scripts and (2) the mean data, which were obtained by averaging the replicate 

measurements. Considering that hyperspectral data are highly interrelated (collinear), 

principal component analysis (PCA) was used to eliminate the problem. PCA can 

generate a set of uncorrelated variables from a set of correlated variables. These newly-

generated variables were called principal components (PCs). The goal of PCA is to 

reduce the dimensionality of the data set to an optimal level and thus, introduce a new 

set of meaning variables (Abdi and Williams, 2010). 

4.3.7.3 Characteristic wavelength selection 
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The images acquired by using the hyperspectral imaging system were particularly 

informative because images at 854 wavelength bands were obtained for each insect 

sample. The extracted spectral data from hyperspectral images possess variables 

(wavelengths) of dimensionality with redundancy among contiguous variables 

(wavelengths) (Cao et al., 2015) as the wavelength variables correlated with the nearby 

variables were considered redundant. Researchers tend to focus on a few vital 

wavelengths that are most influential on the quality evaluation of the product and 

wavelengths having no discrimination power are eliminated. The selected wavelengths 

reduce the data dimensionality while preserving the most important information 

contained in the lower dimensional data space. 

Principal components analysis was applied. The wavelengths that corresponded to the 

highest reflectance values were considered optimal wavelengths. These optimal 

wavelengths that carry maximum spectral information could be implemented in 

multispectral imaging in further studies. Wavelengths which correspond to the lowest 

reflectance values were ignored for they had little value in prediction. 

Only the selected optimal wavelengths were used to establish identification models 

instead of using the whole spectral range. 

4.3.7.4 Model development 

The corrected spectra for both species were used for classification of insect samples into 

three categories: control, hydrophilic SAS treatment, and hydrophobic SAS treatment. 

The linear classification method cannot provide a complete solution to the insect 

damage classification problem, thus the non-linear approach of an artificial neural 

network (ANN) was used. It is a powerful data-modelling tool that is capable of 

capturing and representing complex relationships between inputs and outputs (Bachtiar 
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et al., 2011; Kaya and Kayci, 2014). The ANN computational strategy applied in this 

study was similar to that developed by Cao et al., (2015). Data were randomly divided 

into a learning (training) set, a verification set and a test set. Each set consisted of a 

number of samples (insect damaged by SAS specimens) characterized by input 

variables (characters) and identified by cuticle changed by SAS (output). There are 

several different types of supervised ANN which can be used for classification 

problems. Preliminary experiments on the data set with some of these types (radial basis 

function, linear, probabilistic and multilayer perceptron networks) suggested that the 

back propagation artificial neural network (BPNN) would be the most efficient for the 

purpose. The BPNN is generally one of the most commonly used types of ANN and can 

model functions of almost any arbitrary complexity. The BPNN conventionally consists 

of neurons arranged in layers (an input layer, one or more hidden layers and an output 

layer). Each layer might have a different number of nodes. The input layer receives the 

information about the system (the nodes of this layer are simple distributive nodes, 

which do not alter the input value at all). The hidden layer processes the information 

initiated at the input, while the output layer is the observable response or behaviour. By 

running the data on specimens from the training set, including the output variable (the 

identification), through the network and comparing the actual output generate with the 

desired or target outputs, the network automatically adjusts the weights and thresholds 

in order to minimize the overall error. This process is equivalent to fitting the model 

represented by the network to the training data available. Reaching the desired value 

indicates the best moment to stop the training procedure and is helpful in the search for 

the optimal network architecture. The latter largely consists of the estimation of an 

appropriate number of nodes in the hidden layer(s), which is one of the most critical 
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tasks in ANN design. Unlike the input and output layers, the number and size of hidden 

layers are not predictable and will vary according to the complexity of the data. 

One cycle through all the training patterns is defined as an epoch. Before the optimal 

accordance of the network output errors is achieved for all training patterns, many 

epochs are required for the back propagation. 

In this study, the learning rate factor and momentum factor were set to 0.1; the initial 

weights were 0.3; the scale function used was the ‘tan h’ function. The permitted error 

was set at 0.002 and the epoch was set to 1000. 

The hyperspecTM-M image capture software platform was used during the entire 

experiment to acquire the hyperspectral reflection image from insects. Image processing 

and data analysis were implemented in ENVI 4.7 (Research System, Inc., USA) and 

MATLAB (Math works, matlabR2009b, Inc., USA), and ANN computation was 

performed using a NeuroShell 2. 

4.4 Results 

4.4.1 Lethal dose values 

The lethal dose regression slopes were significantly different between the two SAS 

products tested (Table 4.1). For T. castaneum, hydrophobic SAS was significantly more 

effective than the hydrophilic one. The LD95 for hydrophobic SAS was 56.110 g h/m2, 

while it was 68.908 g h/m2 for hydrophilic SAS. Interestingly, for S. oryzae, 

hydrophobic SAS was slower than hydrophilic SAS in killing 95% of the test 

population. The LD95 for hydrophobic and hydrophilic SAS against S. oryzae were 

78.88 g h/m2 and 67.12 g h/m2, respectively. Analysis of variance revealed that the 

difference between responses of the two insect species after exposure to hydrophilic 

SAS was numerically close but statistically different. T. castaneum was more 
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susceptible than S. oryzae to hydrophobic SAS. The LD95 values were 1.4 times higher 

than the corresponding LD50 values. 

The insects tested were of the same age and from similar geographical strains, so 

therefore they had similar visual appearance. After exposure to SAS, the changes in 

moisture and other physiological components of the insects led to changes in coloration 

and gross appearance between specimens. These differences in visual appearance 

between individuals of the same species indicated heterogeneous distribution of 

moisture and physiological components, making visual comparisons difficult. 

Therefore, hyperspectral imaging was used to quantify difference in parameters 

between insect species in response to the two SAS products. 

4.4.2 Spectral analysis 

Figure 4.3 shows the average relative reflectance spectra of dorsal and ventral regions 

of T. castaneum and S. oryzae before and after treatment with the two SAS products 

tested. The spectra are derived from the surface features of the insects and differences 

are based on their reflected spectral characteristics. Mean reflectance changed after the 

insects were treated with SAS. The untreated and SAS-treated dorsal and ventral 

regions of insects showed distinct differences in spectra obtained across the wavelength 

range. As shown (Fig. 4.3), values of the relative reflectance for the 400-700 nm range 

were much lower than those of 700-1000 nm range. These results suggest that near-

infrared regions have advantages over the visible wavelengths in distinguishing insect 

species and in detecting the effect of SAS treatment. In the 900-1000 nm range, values 

of reflectance of all T. castaneum groups were much higher than those of S. oryzae. 

Treated individuals of both insect species had significantly higher values than the 

control groups for the ventral side on the 600–1100 nm range. Values were lower for 
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the dorsal side. The differences between the values of the hydrophobic SAS treated 

groups and the control groups were greater than that of the hydrophilic SAS treated 

groups and their controls (except for the dorsal sides of S. oryzae). The identification 

criteria by reflectance spectroscopy are based on qualitative differences in the spectra. 

In our studies, different data pre-treatment combinations were employed to optimize the 

performance of classification and quantification. 

The characteristic wavelengths for SAS treated individuals and controls were selected 

based on multivariate image analysis and loading weights. Figure 4.4 shows the 

maximal coefficient in the first three PC loadings. Eight variable effective wavelength 

groups were selected. These were 489, 866 and 1008 nm for hydrophilic SAS 

treatments of T. castaneum, ventral surface; 456, 870 and 1008 nm for hydrophobic 

SAS treatments of T. castaneum, ventral surface; 423, 993 and 993 nm for hydrophilic 

SAS treatments of T. castaneum, dorsal surface; 994, 997 and 1003 nm for hydrophobic 

SAS treatments of T. castaneum, dorsal surface; 935, 1007 and 1007 nm for hydrophilic 

SAS treatments of S. oryzae, ventral surface; 553, 927 and 1000 nm for hydrophobic 

SAS treatments of S. oryzae, ventral surface; 449, 991 and 998 nm for hydrophilic SAS 

treatments of S. oryzae, dorsal surface; 456, 997 and 1003 nm for hydrophobic SAS 

treatments of S. oryzae, dorsal surface. Peaks at 866, 870, 927, 935,991, 993, 994, 997, 

998, 1000, 1003, 1007 and 1008 nm were due to C-H and O-H stretching overtones and 

combinations related to protein and fat contents (Nortvedt et al., 1998; Šašić and Ozaki, 

2001; Wold et al., 1996; Wu et al., 2008). Peaks at 423, 456, 449, 489 and 553 nm were 

due to the slight colour change after exposure to SAS. Interestingly, the selected optical 

wavelength here did not include the broad feature around 968 nm due to 2v1+v3 (v1: 

symmetric stretching; V3: anti symmetric stretching) water vibration (Wu et al., 2008). 

4.4.3 Principal component analysis (PCA) 
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Figure 4.5 shows a 3-dimensional (3D) principal component score plot of the dorsal and 

ventral regions of T. castaneum and S. oryzae before and after treatment. The scoring 

system consisted of the top three PCs. These factors covered most of the whole spectral 

information, thus providing the best parameter for a clear discrimination. On the dorsum 

of the insect, PC1 interpreted 98.64 and 93.58% variances, PC2 interpreted 1.06 and 

5.53% variances, and PC3 interpreted 0.24 and 0.79% variances, for T. castaneum and 

S. oryzae, respectively. Through PCA, the accumulated variance contribution rated from 

these three factors was up to 99.94 and 99.9% for the venter regions of T. castaneum 

and S. oryzae, respectively. Similarly, these first three PCs accounted for 99.8 and 

99.85 % of the overall variance for the venter of T. castaneum and S. oryzae, 

respectively (for T. castaneum, PC1 = 96.72%, PC2 = 2.29%, PC3 = 0.79%; for S. 

oryzae, PC1 = 97.99%, PC2 = 1.36%, PC3 = 0.5%). 
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Fig. 4.3. Spectral curve wavelengths from the effects of two types of SAS on the dorsal 

and ventral surfaces of T. castaneum and S. oryzae. a and b are for T. castaneum (a. 

venter, b. dorsum. − control; hydrophilic SAS; hydrophobic SAS); c and d are 

for S. oryzae (c. venter, d. dorsum. − control; hydrophilic SAS; hydrophobic 

SAS). 

  



Effect of synthetic amorphous silica (SAS) powder on the cuticle of Tribolium 

castaneum and Sitophilus oryzae

 

115 

 

 

Fig. 4.4. The first three PC mean factors (absolute values) of dorsal and ventral surface 

properties for T. castaneum and S. oryzae changed by hydrophilic SAS treatments and 

hydrophobic SAS treatments ( − First PC factor loadings; Second PC factor 

loadings and Third PC factor loadings). 

a. T. castaneum ventral surface: hydrophilic SAS and control 

b. T. castaneum ventral surface: hydrophobic SAS and control 

c. T. castaneum dorsal surface: hydrophilic SAS and control 

d. T. castaneum dorsal surface: hydrophobic SAS and control 

e. S. oryzae ventral surface: hydrophilic SAS and control 

f. S. oryzae ventral surface: hydrophobic SAS and control 

g. S. oryzae dorsal surface: hydrophilic SAS and control 

h. S. oryzae dorsal surface: hydrophobic SAS and control  
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Fig. 4.5. PCA three-dimensional score plot for discriminating dorsal and ventral surface 

properties of T. castaneum and S. oryzae pre- and post-treatment by hydrophilic and 

hydrophobic SAS. a and b are T. castaneum (a. venter, b. dorsum.  control;  

hydrophilic SAS;  hydrophobic SAS). c and d are S. oryzae (c. venter, d. dorsum.  

control;  hydrophilic SAS;  hydrophobic SAS). 
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As shown in Fig. 4.5, distribution patterns were clearly identified without overlapping 

between treatment groups and controls, however, the patterns were not well defined for 

groups treated with different SAS products within the same insect species and some 

overlap was observed. This may suggest that both SAS have similar effect on the 

insects even though their inherent compositional characteristics are very different. This 

demonstrates that geometrical exploration based on PCA score plots can generate a 

cluster trend in a 3-dimension space, but it is not the best tool for discriminating 

between insect groups. In addition, the PCA cannot provide a definite index to describe 

the exact differences and will reduce the reliability of the results. Based on this finding, 

different recognition model methods were utilized in following studies. 

4.4.4 BPNN 

The insects were separately processed according to positions and species to evaluate 

surface property changes on the insects’ dorsum and venter after exposure to two SAS 

products. All samples were randomly divided into a calibration set (two-thirds of the 

insect samples) and a validation set (one-third of the insect samples). The calibration set 

was used to compute the parameters of the models, while the validation set was used to 

validate the network generalization capability. 

The optimum models were obtained by the use of the principal components (PCs) after 

PCA was performed to eliminate multidimensionality. The optimal number of PCs was 

determined by the discriminating rate from the calibration set. Diagnostic results 

showed that all of the SAS treatment groups, regardless of species, were noticeably 

different from those of the control groups, which is consistent with the above results 

from PCA. In Table 4.2, the highest recognition models for the ventral and dorsal 

regions of T. castaneum were acquired with 6 and 8 PCs, respectively. For the dorsum, 
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the percent correct classifications of the calibration and the validation data from varied 

origins were 93.88 and 99%. For the venter, the optimal model classified hydrophilic 

SAS treated groups, hydrophobic SAS treated groups and the controls with 95.74 and 

96.88% accuracy in both the calibration set and prediction set as can be seen in Table 

4.2. Table 4.2 showed that the highest recognition BPNN model for ventral and dorsal 

regions of S. oryzae were acquired with nine PC inputs. With this, the highest 

recognition rate was 90.48 and 95.29% in the calibration and prediction sets for the S. 

oryzae dorsum. Also, for the S. oryzae venter, the percentage of correctly identified 

varieties was 97.67 and 95.4% for the calibration and prediction sample sets as can be 

seen in Table 4.2. Data presented in Tables 4.3 and 4.4 illustrated the detailed 

recognition results of the optimal BPNN model. The control samples of all groups were 

correctly classified by the model and misclassification occurred only with the two 

groups treated by the two different SAS products. One and two samples were 

misclassified between both SAS treated T. castaneum groups. Only one and two 

samples of the S. oryzae dorsum treated by hydrophilic SAS were misclassified 

respectively as that control and treated by hydrophobic SAS, resulting in the lowest 

recognition rate of 76.92%, yet still within the acceptable identification range. The 

detectable difference between hydrophobic and hydrophilic SAS treatment groups does 

exist. It is indisputable that the difference in characteristics between the SAS treated 

groups and controls was larger than that between groups treated by different SAS.  
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Table 4.1. Lethal dose values and regression curve parameters for hydrophilic and hydrophobic SAS tested on T. castaneum and S. oryzae. 

Insect species Polarity of SAS 
Mean ± SE LD (95% CL)（g h/m2） 

2 (df) P 
Intercept LD50 LD95 

T. castaneum 
hydrophilic -3.600±0.071 47.298(45.716-48.846) 68.908(66.418-70.588) 805.793(88) 0.000 

hydrophobic -3.748±0.084 38.998(37.432-40.504) 56.110(53.782-59.008) 668.650(64) 0.000 

S. oryzae 
hydrophilic -3.902±0.080 47.220(23.125-24.091) 67.124(65.464-69.012) 269.706(70) 0.000 

hydrophobic -4.461±0.082 57.636(56.964-58.306) 78.888(77.742-80.128) 160.928(88) 0.000 

 

Table 4.2. Recognition results of the BPNN model with a different number of PCs in distinguishing hydrophilic and hydrophobic SAS affected 

dorsal and ventral surface property of T. castaneum and S. oryzae. 

Number 

of PCs 

Dorsum Venter 

T. castaneum S. oryzae T. castaneum S. oryzae 

Calibration 

set 

Prediction 

set 

Calibration 

set 

Prediction 

set 

Calibration 

set 

Prediction 

set 

Calibration 

set 

Prediction 

set 

1 85.71 70.00 30.95 37.65 25.53 37.50 41.86 47.12 

2 83.67 90.00 85.71 85.88 93.62 85.42 86.04 81.61 

3 87.76 90.00 83.33 84.71 95.74 90.63 90.70 90.80 

4 89.80 92.00 85.71 88.24 95.74 93.75 93.02 89.66 

5 89.80 93.00 85.71 83.53 95.74 94.79 93.02 93.10 

6 89.80 98.00 90.48 91.67 95.74 96.88 93.02 89.66 

7 93.88 96.00 90.48 89.41 95.74 94.79 93.02 94.25 

8 93.88 99.00 92.86 88.24 95.74 94.79 93.02 91.95 

9 85.71 98.00 90.48 95.29 95.74 94.79 97.67 95.40 

10 91.84 96.00 88.10 95.29 95.74 95.83 90.70 94.25 
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Table 4.3. Classification accuracies for controls, and SAS treated ventral and dorsal surfaces of T. castaneum, using the optimal BPNN model. 

Regions Actual strain 

Recognized strain 
Recognition rate 

(%) control 
hydrophilic SAS 

treated 

hydrophobic SAS 

treated 

Venter 

Calibration set 

control 25 0 0 100 

hydrophilic SAS treated 0 35 1 97.22 

hydrophobic SAS treated 0 2 33 94.29 

Prediction set 

control 21 0 0 100 

hydrophilic SAS treated 0 12 0 100 

hydrophobic SAS treated 0 2 12 85.71 

Dorsum 

Calibration set 

control 26 0 0 100 

hydrophilic SAS treated 0 38 1 97.44 

hydrophobic SAS treated 0 0 35 100 

Prediction set 

control 22 0 0 100 

hydrophilic SAS treated 0 11 1 91.67 

hydrophobic SAS treated 0 2 13 86.67 
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Table 4.4. Classification accuracies for controls, and SAS treated ventral and dorsal surfaces of S. oryzae, using the optimal BPNN model. 

Regions Actual strain 

Recognized strain 
Recognition rate 

(%) control 
hydrophilic SAS 

treated 

hydrophobic SAS 

treated 

Venter 

Calibration set 

control 22 0 0 100 

hydrophilic SAS treated 0 32 2 96.97 

hydrophobic SAS treated 0 0 32 100 

Prediction set 

control 16 0 0 100 

hydrophilic SAS treated 0 8 2 80 

hydrophobic SAS treated 0 1 16 94.12 

Dorsum 

Calibration set 

control 20 0 0 100 

hydrophilic SAS treated 0 29 3 90.63 

hydrophobic SAS treated 0 1 32 96.97 

Prediction set 

control 14 0 0 100 

hydrophilic SAS treated 1 10 2 76.92 

hydrophobic SAS treated 0 1 14 93.33 
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4.5 Discussion 

Being the interface between a living animal and the environment, the cuticle surface of 

an insect serves many functions, such as defense against a variety of external factors 

(camouflage against predators, mechanical stresses and water loss), transport of 

epidermal secretions and as a chemical reservoir for the storage of metabolic waste 

products. It is also involved in communication between individuals. This makes the 

cuticle surface an ideal target for the development of new insecticides. Many existing 

insecticides exploit the cuticle surface characteristics to achieve control of the insect. 

When insects are in contact with hydrophilic SAS, they lose weight rapidly and it has 

been postulated that death is due to desiccation (Ebeling, 1971). The mode of action of 

desiccation is based on the hydrophilic nature of SAS. Hydrophilic particles compete 

for water in the insect body and absorb it. There are 2-6 silanol (Si-OH) numbers per 

square nanometre on a hydrophilic SAS surface (Fruijtier-Pölloth, 2012) resulting in a 

water layer being coated on particles upon exposure to humid atmospheric conditions or 

in direct contact with water. Such “moisturized” hydrophilic SAS materials are 

ineffective as insecticides under conditions of high moisture and humidity. 

Hydrophobic SAS is developed to circumvent this issue (Ralph, 1964). Hydrophobic 

siliceous insecticidal compositions described in U.S. Patent3,159,536, issued to Ralph 

(1964) were substantially unaffected when exposed to 100% relative humidity for 24 h. 

However, modified SAS (with surface-functionalized SAS) showed lower toxicity 

compare to hydrophilic SAS on S. oryzae. This indicates that this surface group of 

hydrophobic SAS are not superior in effectiveness. Further study is needed to establish 

the detailed mechanism of action of SAS. 
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Two hypothetical mechanisms against insects are most widely accepted for SAS. One is 

that of removing the waterproof layer and causing desiccation of the insect (Ebeling, 

1971). The other is destruction of the insect’s joint structure combined with absorption 

of body fluid. Both lead to discoloration upon death (Miyazaki, 1993). The results of 

this study demonstrated genuine cuticle damage caused by SAS. Although electron 

scanning microscopy can be applied to evaluate the sample’s surface topography and 

composition, its pretreatment and process requires high vacuum conditions, which have 

the potential to cause extra damage to insect soft tissue. Hyperspectral imaging 

techniques require no special pretreatment because it is undertaken under regular 

temperature and pressure conditions. After data collection, the control cultures are still 

alive and unaffected, thus, they can be used in the future while providing continuance 

between trials. 

Different SAS products cause differential changes to insect cuticles. Spectral readings 

supported this finding. In previous study (Cook et al., 2008), there was no evidence of 

abrasion caused by SAS that was detectable with scanning electron microscopy. The 

BPNN model is far superior in identifying change in surface structural parameters after 

exposure to SAS. It is possible that the changes in epicuticle are subtle and unevenly 

distributed, which lead to non-liner hyperspectral data. There is a high nonlinearity of 

the modeled relationship in ANN. Therefore, the hyperspectral imaging technique 

coupled with ANN models are better suited for classification of the cuticle parameters 

for the treatment and control of stored grain insect pests by SAS. These results are in 

agreement with those reported (Cao et al., 2015). 

Adult beetle cuticles are composed mainly of catecholes, protein, chitin, pigment 

melanin and water, and small amounts of lipids (Kramer et al., 1995; Vincent and 

Wegst, 2004) Chemical composition varies, even within the same species. Near-infrared 
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spectroscopy coupled with neural networks were employed previously(Dowell et al., 

1999). Changes in chemical composition during SAS treatment of T. castaneum and S. 

oryzae were determined using hyperspectral imaging techniques. During the selection 

of effective wavelength regions on classification accuracies, multivariate image analysis 

results showed that both the visible and NIR region generated useful data. Further 

analysis showed that some functional groups were responsible for peak values. The 

absorbance probably corresponds with the third overtone of a C-H stretching vibration 

of fat and protein, or the second overtone of an O-H stretching of fat or protein (Šašić 

and Ozaki, 2001; Wu et al., 2008). Although these short-wave NIR investigations are 

not exclusively used for insect studies, the proposed wavelengths are similar. The peak 

at around 968 nm due to 2v1 + v3 (v1: symmetric stretching; v3: anti-symmetric 

stretching) water vibration was weak with unclear indications, which suggested the 

influence of water was not strong. It is possible that 968 nm is only one of the feature 

peaks of water vibration and it is not the main factor. In addition, there is loss of body 

water by exposure to SAS and hence this is not obvious in short-wave NIR. Further 

investigation is needed to confirm desiccation of the powder model utilizing IR. 

Our trials showed that hyperspectral imaging techniques provided good accuracy in 

detecting powder damage to T. castaneum and S. oryzae. The BPNN classifiers give 

relatively good classification accuracy (100% for the powder-damaged samples). The 

results were achieved from the average spectral data for the dorsum and venter of 

insects, which were adequate for detection of insect surface changes caused by SAS. 

For further understanding of the mechanism of SAS damage against the insect, the 

frictional system of the insect is recommended as a region of interest.  
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Chapter 5. Evaluation of the physical effects on insect 

intersegment frictional devices and associated biological 

impacts of two synthetic amorphous silica (SAS) powders 
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5.1 Abstract 

Synthetic amorphous silicon (SAS) is a food-grade, fast acting, effective and low cost 

product in contrast to diatomaceous earth, and has become a promising nonchemical 

pesticide alternative to replace chemical products. The mechanism of its physical effects 

which generate no resistance was not well understood. This directly limits its practical 

application. To offer a better understanding of the mode of action of SAS, the current 

study qualitatively measures movement of and biological effects on insects affected by SAS 

based on computerized video tracking systems. New systems were developed for recording 

the biological effects on the anatomical structures of T. castaneum and S. oryzae by 

hydrophilic and hydrophobic SAS and the impact these have on the insects’ behaviour. 

Contact with SAS caused loss of locomotion and behavioural changes in adult insects, 

suggesting destruction of the intersegment frictional devices. The effect to the insects’ 

locomotor and stride length at various times during exposure to dried deposits of SAS 

was determined and in most cases was found to drop to a limiting value within about 

3.5 h and 12 h for S. oryzae and T. castaneum, respectively. The effect of SAS on insect 

locomotion and behaviour varies with insect species, gender and powder categories. S. 

oryzae’s locomotion and behaviour were more sensitive to SAS than T. castaneum’s 

and males were more affected. S. oryzae’s locomotion and behaviour were sensitive to 

hydrophilic SAS, and T. castaneum’s locomotion and behaviour to hydrophobic SAS. 

Synthetic amorphous silica invaded the intersegmental frictional devices and absorbed 

the vital body fluids. Lethal effect is not instantaneous, but structural damage is 

irreversible. The insects’ locomotion and behaviour was severely affected, which made 

activities necessary for survival and reproduction difficult or impossible, including 

feeding and mating. Resistance is unlikely to raise given the physical nature of the 
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causes. These findings further support the possibility that non-chemical pesticide SAS is 

superior to chemical pesticides. 

5.2 Introduction 

With regard to mode of action of inert dust, insect mortality could be attributed to the 

impairment of the digestive tract (Smith, 1969). Ingestion is the primary method of 

delivery for conventional pesticides. However, pests will only ingest certain substances 

and in small amounts. This fact limits the degree of tissue damage and insecticidal 

effectiveness. Observation has suggested that insects generally will not ingest fatal 

amounts of dehydrating pesticide. After exposure to the SAS, Aerosil 380, the rates, 

levels and concavity of mortality curves of T. castaneum had significant differences 

between the “fed” and “unfed” groups. With feeding, the mortality never attained 100% 

within the test periods, while under food deprivation condition, 100% mortality always 

occured (Vrba et al., 1983). Many recent results can be explained by the physic-

chemical removal of the epicuticular, lipid-water barrier as proposed by Ebeling (1971), 

with mortality resulting from desiccation. However, the basis for his theory cannot 

explain nor account for mortality in S. oryzae caused by diatomaceous earth as noted by 

Carlson and Ball (1962), since weight loss (i.e. desiccation) in these beetles was 

insignificant. Upon exposure to inert dust, insects lose weight rapidly. Death by 

desiccation has been postulated. But the link between desiccation and death cannot be 

demonstrated. There is no explanation that inert dust could cause insects to lose weight 

or to be desiccated unless the hydrophilic particles compete with the water in the body 

of the insect and absorb a large amount of body fluid. Many previous investigations 

were aimed to establish the mode of action for the inert dust insecticidal characteristic. 
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Yet several important questions remain unanswered, especially regarding the precise 

regional and temporal regulation of the various steps in the process. 

The external skeleton in arthropods is the main advantage and constraint in the 

evolution of their extremities. The anatomical structure of arthropod extremities is 

completely different from that of vertebrates. In arthropods, the leg is a cuticular tube 

containing muscles that control parts of the tube, called segments, and the physical 

properties of various parts of the tube are vastly different. Based on mechanical 

properties, the cuticle can be classified into two main types. One is present in each 

segment, relatively hard and stiff, which is typical of sclerites, and thus imparts skeletal 

rigidity. The other is commonly encountered in the arthrodial membrane area, and is 

relatively soft and flexible. These two types of cuticle can be related directly to 

function. The former chiefly serves as a protection device, while the latter often 

subserves locomotion. Usually, surfaces of both segments are smooth within the joint 

which decreases friction during segment movements. Also, microtrichia deformations 

enable epidermal secretions, which may be surface-active and aid in the lubrication of 

contacting microtrichia (Gorb, 2001). Previous studies suggested that damage caused by 

inert dust occurs to the insects’ protective wax coat on the cuticle of segments (Ebeling, 

1971; Subramanyam and Roesli, 2000). The exoskeleton provides absolute protection 

against most foreign agents such as pesticidal liquids and powders. Insects will try to 

remove the residue from their body surface. The inert dust on the hard, stable and dry 

segments is much easier to remove than it is on the soft, flexible and moist 

intersegmental membranes. Preliminary work has shown that the mortality rates were 

not significantly different in T. confusum that were “cleaned” and “not cleaned” after 

exposure to the SAS, Aerosil 380 (Vrba et al., 1983). It is therefore proposed that 

synthetic amorphous silica works against insects by destroying insect joint systems. 
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Building upon this, in the present study, specific nontoxic SAS are used as substitutes 

for the poisonous and environmental unfriendly chemical agents to prevent stored grain 

insect pests from rapidly developing large populations. Mobility analysis by high speed 

photography and locomotion compensator has been used to further elucidate the effects 

of SAS on the friction systems of T. castaneum and S. oryzae. In addition, a secondary 

aim of the study has been to propose a new delivery method of a pesticide via insect 

intersegment frictional devices. 

5.3 Methods and materials 

5.3.1 Insects 

S. oryzae and T. castaneum adults were collected from stored grain farms in Tongzhou 

country, Beijing and Qihe city, Shandong, China from June to September, 2015. A total 

of 2000 adults (1100 males and 900 females) were collected and reared in the laboratory 

of the Academy of State Administration of Grain, Beijing, China, under the following 

environmental conditions: 30±1℃, 75±5% RH. Healthy S. oryzae and T. castaneum 

were selected from the field collection. S. oryzae were reared on whole wheat. T. 

castaneum were reared were reared on 10 parts wheat-meal flour and 1 part yeast 

(Winks, 1982). Upon emergence, 20 day old adults were selected for use in the study. 

These unmated adults were sexed using their distinctive abdominal and leg 

characteristics. 

5.3.2 Dusts 

In our investigation, we used a custom-made hydrophilic SAS (SAS4) and a surface-

functional hydrophobic SAS (SAS5) from Murdoch University, Perth, Australia. These 
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were prepared by the precipitate method and have a D (v, 0.9) aggregated particle size 

of 14.12±2.62 µm and 2.75±1.10 µm respectively (Fig. 5.1). 

 

Fig. 5.1. Size distribution by volume weighted mean of hydrophilic and hydrophobic 

SAS. 

5.3.3 Continuous exposure tests 

The intrinsic insecticidal activity of both SAS powders was determined by exposing S. 

oryzae and T. castaneum to a powder deposition. The adults (13 male and 13 female 

adult replicates of each species per treatment) were dumped individually onto 

lightweight deposits of the hydrophilic and hydrophobic SAS (2 g/m2) spread evenly 

over the surface of filter papers waxed into the floor of 7 cm diameter glass petri dishes 

and maintained at a 28±1°C, 65±5% RH. Their speed of action in terms of knockdown 

(KD) and paralysis was determined from periodic observation. For S. oryzae, the 

locomotory capacity was observed every 30 minutes for a total 3.5 hours; for T. 

castaneum, we monitored the movement every 2 hours for a total 12 hours. An 

untreated set of papers served as a control series. 
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5.3.4 Locomotion recording 

To compare the damage to the frictional systems of the leg joints by the two SAS 

powders, we prepared two types of experimental evaluation, creeping speed and stride 

length. The creeping speed evaluation was performed with a locomotion compensator, 

TrackSpehere LC-100 (Syntech, Hilversum, Netherlands) (Fig. 5.2). This instrument 

has often been used for real-time tracking of the orientation behavior of mico-

arthropods (Van Tilborg et al., 2003). When the motion of the sphere ran stably, we 

placed a test insect on the top of the sphere. The optical and visual conditions of the test 

insect were controlled by a video camera inserted in the light path of a 

stereomicroscope. Prior to each recording session, each insect was allowed to walk 

freely on the top of the sphere for 1 min. The recording session was 1 min and was 

displayed on a computer screen under the control of the tracking software 

TrackSphereTM V3.1 (Syntech, Hilversum, Netherlands). For each replicate, a new 

insect was transferred with a fine camel brush to the top of the sphere. 

5.3.5 Stride length measurement 

The measurement of stride length of each insect was filmed using a high-speed video 

camera (TroubleShooter TS500ME, Fastec Imaging Corporation) mounted on the video 

tube of the microscope at 500 frames per second and the images were digitized and 

analyzed using Midas motion analysis software. The reflectance light source structure 

was composed of a 150 W halogen light source, which was connected to a dual fiber 

optic line light. To ensure accurate recording of minute insect footprints, the images 

were amplified by 1.5 times, so targets were visible only within a small region. A cold 

light source was used in the present study to avoid heating, which was connected to a 
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dual fiber optic line light. We prepared a wall-enclosed circular surface with a graph 

paper bottom (25×25×20 mm). The graph paper was used as a measuring scale. We 

place a single stored grain insect on the bottom left hand side of the paper and tracked 

the free walking behaviour for more than ten steps or 3 minutes, at which stage the 

insects were considered to be KD (Knight and Bessette, 1997). 

 

Fig. 5.2. Experimental setup of the locomotion compensator (LC-100 prototype). 

5.3.6 Observations on the structure of the insect joints 

For microstructural images, an environmental scanning electron microscope (ESEM) 

(LEO435P, London, UK) was used. The insect body became very fragile after exposure 

to SAS. Thus, their natural state cannot be maintained very well if processed under the 

conventional SEM. The advantage of ESEM was that the insects could be imaged under 

low pressure (up to around 10 torr) without a conductive coating. A gaseous 

environment in the specimen chamber can keep the specimen in the “wet” condition. 
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5.3.7 Track preprocessing and data analysis 

The following parameters were used to quantify the tracks in the locomotion 

compensator: (1) walking speed (mm/sec), is the distance (in mm) walked during one 

second. These values were averaged for each track; (2) straightness of walking (ranging 

from 0 to 1, straight line), i.e., the quotient of vector length (from the origin to the final 

point of the track) and total track length. It describes how straight or tortuous is the 

track of the insect. In general, the more tortuous the track the lower the walking speed 

will be as insects slow down when turning; (3) angles (x, y) (ranges from -1 to +1) 

shows preference for a particular angle, and should be interpreted in combination with 

the vector length; (4) upward length (mm) is the summed projection of the 

displacements made by the insect on the axis parallel to a particular direction. 

Experiments on the servo-sphere are frequently designed to study the responses to a 

stimulus, so the odours are coming from a particular direction, but kinetic responses can 

be studied as well. A positive or negative sign indicates that the insect moves toward or 

away from the source. For each experimental condition the mean angles by Rayleigh Z 

tests using the procedure described by Batschelet (1981) (U tests) were tested. Rayleigh 

Z tests is employed to analysis the distribution of the data. The data were distributed 

uniformly under null hypothesis. If not, it suggests that there is a direction insect 

prefers. Calculations and statistical tests on circular data were done using the Oriana 

software (Kovach Computing Services, Anglesey, UK). 

Each recording session was loaded into MATLAB (Math works, matlabR2009b, Inc., 

USA) to separate images by frame. From this huge image data set, the important 

frames, which were the continuous points when the insect pulvillus of the mesothoracic 

leg touched the graph paper, were selected. The selected points were marked to form a 



Evaluation of the physical effects on insect intersegment frictional devices and 

associated biological impacts of two synthetic amorphous silica (SAS) powders

 

134 

 

moving track. The stride length was calculated by two different pixel locations. Prior to 

measuring the stride length for further analyses, we calibrated the measurement scale on 

the mirs software. 

SPSS® 24.0 software was used for the statistical analysis. We calculated the average 

value of each set of observed data as the mean ± SE. The differences in each biological 

and physiological character were compared using a one-way analysis of variance 

(ANOVA) among all experimental groups. Although angle, speed, straightness and 

stride length values did not follow a Gaussian distribution very well, the major effects 

pointed to by the ANOVA were reliable because the method was particularly robust to 

such divergence in well replicated assays, and clear trends were pointed to by very high 

F values (Khan and Rayner, 2004). A Student-Newman-Kreuls (SNK) test and Duncan 

test were used to perform post hoc multiple comparisons for the exposure time periods. 

Levene’s test was used to determine the variances in the upward length of the two insect 

species groups when treated by two SAS powders. 

5.4 Results 

Hydrophilic and hydrophobic SAS at the dose of 2 g/m2 were shown to cause 

disorientation with subsequent knock-down in a high proportion of S. oryzae and T. 

castaneum within 3.5 h and 12 h, respectively. The particles attached to the insect 

joints, induced severe reduced ranges of motion and sensation that can lead to 

behavioural changes, such as abnormal walk, and upwards length. There were 

significant differences between the two SAS powders, genders, exposure time periods 

and species. 

5.4.1 Locomotion impairment 
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In order to analyze the tracks, we first examined the angle of the tracks (Tables 5.1 and 

5.2) for which no significant difference was not found between S. oryzae and T. 

castaneum when subjected to both SAS powders at several time periods (S. oryzae: F = 

0.932, df = 7; T. castaneum: F = 0.751, df = 6). The angle of the two insect species was 

not significantly different between hydrophilic and hydrophobic SAS (S. oryzae: F = 

1.082, df = 1; T. castaneum: F = 1.776, df = 1), and between male and female 

populations (S. oryzae: F = 1.308, df = 1; T. castaneum: F = 0.650, df = 1). In addition, 

no significant difference was observed in all the interactions for exposure time × dust 

(S. oryzae: F = 2.416, df = 7; T. castaneum: F = 0.842, df = 6), dust × gender (S. oryzae: 

F = 0.277, df = 1; T. castaneum: F = 0.152, df = 1), time × gender (S. oryzae: F = 0.666, 

df = 7; T. castaneum: F = 0.569, df = 6), and dust × time × gender (S. oryzae: F = 0.722, 

df = 7; T. castaneum: F = 0.557, df = 6). 

All the control groups walked continuously and vigorously on the top of the sphere, as 

soon as they were placed on it. We observed only a few occasional stops during head 

lifting. Although both of hydrophilic and hydrophobic SAS significantly influenced the 

friction systems of T. castaneum and S. oryzae, the locomotion ability of S. oryzae 

could be more affected by SAS powders according to specific test times (Fig. 5.3). In 

general, hydrophobic SAS caused more locomotion impairment in T. castaneum than 

hydrophilic SAS. The observation was the opposite for S. oryzae, which was consistent 

with our previous results. The ANOVA analysis (Tables 5.3 and 5.4) indicated the 

length of exposure time had significant effect on the reduction of average walking speed 

in both species (S. oryzae: F = 250.295, df = 7, P < 0.001; T. castaneum: F = 72.241, df 

= 6, P < 0.001) were significant. Most of the insects could not walked continuously for 

one minute at the end of the experimental session. Walking speed of both insect species 

was by far the main variable between hydrophobic and hydrophilic SAS (S. oryzae: F = 
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54.995, df = 1, P < 0.001; T. castaneum: F = 16.383, df = 1, P < 0.001). Gender dictated 

the average walking speed of S. oryzae which was evident in control group and treated 

group (1.5 hours after exposure) (F = 38.189, df = 1, P < 0.001). However, there was no 

significant difference in the speed of female and male T. castaneum (F = 0.039, df = 1, 

P < 0.001). The associated interactions for exposure time × dust (S. oryzae: F = 1.745, 

df = 7; T. castaneum: F = 0.871, df = 6), dust × gender (S. oryzae: F = 1.732, df = 1; T. 

castaneum: F = 0.411, df = 1), time × gender (S. oryzae: F = 1.999, df = 7; T. 

castaneum: F = 2.543, df = 6), and dust × time × gender (S. oryzae: F = 1.693, df = 7; T. 

castaneum: F = 0.535, df = 6) were not significant. 
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Fig. 5.3. Average walking speed of female and male T. castaneum and S. oryzae on the 

locomotion compensator after exposure to 2 g/m2 of hydrophilic and hydrophobic SAS 

respectively for different durations at 28±1°C, 65±5% RH. A. T. castaneum; B. S. 

oryzae.  
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Table 5.1. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the angle of S. oryzae exposure to 2 g/m2 of hydrophilic 

and hydrophobic SAS respectively for different periods at 28±1°C, 65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 0.351 1 0.351 1.082 0.299 

Gender 0.424 1 0.424 1.308 0.254 

Time 2.114 7 0.302 0.932 0.482 

Dust × Time 5.481 7 0.783 2.416 0.020 

Dust × Gender 0.090 1 0.090 0.277 0.599 

Time × Gender 1.511 7 0.216 0.666 0.701 

Dust × Time × Gender 1.638 7 0.234 0.722 0.653 

Error 124.131 383 0.324   

Total 136.878 415    

 

Table 5.2. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the angle of T. castaneum exposure to 2 g/m2 of 

hydrophilic and hydrophobic SAS respectively for different durations at 28±1°C, 

65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 0.610 1 0.610 1.776 0.183 

Gender 0.223 1 0.223 0.650 0.421 

Time 1.548 6 0.258 0.751 0.609 

Dust × Time 1.735 6 0.289 0.842 0.538 

Dust × Gender 0.052 1 0.052 0.152 0.697 

Time × Gender 1.173 6 0.196 0.569 0.755 

Dust × Time × Gender 1.148 6 0.191 0.557 0.764 

Error 115.098 335 0.344   

Total 126.167 363    
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Table 5.3. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the speed of S. oryzae exposure to 2 g/m2 of hydrophilic 

and hydrophobic SAS respectively for different periods at 28±1°C, 65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F  P 

Dust 3.415 1 3.415 54.995 0.000 

Gender 2.371 1 2.371 38.189 0.000 

Time 108.798 7 15.543 250.295 0.000 

Dust × Time 0.759 7 0.108 1.745 0.097 

Dust × Gender 0.108 1 0.108 1.732 0.189 

Time × Gender 0.869 7 0.124 1.999 0.054 

Dust × Time × Gender 0.736 7 0.105 1.693 0.109 

Error 23.783 383 0.062   

Total 227.640 415    

 

Table 5.4. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the speed of T. castaneum exposure to 2 g/m2 of 

hydrophilic and hydrophobic SAS respectively for different durations at 28±1°C, 

65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 65.095 1 65.095 16.383 0.000 

Gender 0.157 1 0.157 0.039 0.843 

Time 1722.227 6 287.038 72.241 0.000 

Dust × Time 20.762 6 3.460 0.871 0.516 

Dust × Gender 1.634 1 1.634 0.411 0.522 

Time × Gender 60.617 6 10.103 2.543 0.020 

Dust × Time × Gender 12.756 6 2.126 0.535 0.782 

Error 1335.039 336 3.973   

Total 7782.409 364    
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Table 5.5. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the straightness of S. oryzae exposure to 2 g/m2 of 

hydrophilic and hydrophobic SAS respectively for different durations at 28±1°C, 

65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 0.878 1 0.878 18.791 0.000 

Gender 0.051 1 0.051 1.082 0.299 

Time 3.943 7 0.563 12.062 0.000 

Dust × Time 0.630 7 0.090 1.928 0.064 

Dust × Gender 5.601E-6 1 5.601E-6 0.000 0.991 

Time × Gender 0.382 7 0.055 1.169 0.319 

Dust × Time × Gender 0.265 7 0.038 0.811 0.578 

Error 17.887 383 0.047   

Total 251.979 415    

 

Table 5.6. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the straightness of T. castaneum exposure to 2 g/m2 of 

hydrophilic and hydrophobic SAS respectively for different durations at 28±1°C, 

65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 0.731 1 0.731 8.758 0.003 

Gender 0.056 1 0.056 0.670 0.414 

Time 10.895 6 1.816 21.762 0.000 

Dust × Time 0.317 6 0.053 0.633 0.704 

Dust × Gender 0.006 1 0.006 0.071 0.790 

Time × Gender 1.816 6 0.303 3.627 0.002 

Dust × Time × Gender 0.199 6 0.033 0.397 0.881 

Error 28.036 336 0.083   

Total 173.901 364    
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5.4.2 Behavioral change 

The tracking pattern (straightness) was then analyzed (Fig. 5.4). Both synthetic 

amorphous silica powders significantly decreased the straightness of the paths 

compared to the control for different exposure time periods (S. oryzae: F = 12.062, df = 

7, P < 0.001; T. castaneum: F = 21.762, df = 6, P < 0.001) (Tables 5.5 and 5.6). The 

straightness value of S. oryzae under hydrophobic SAS was significantly lower than in 

the presence of hydrophilic SAS at 1 h, 1.5 h and 2 h exposure time (F = 18.791, df = 1, 

P < 0.001). In T. castaneum, both hydrophobic and hydrophilic SAS significantly 

reduced the straightness of path 2 h and 8 h post exposure (F = 8.758, df = 1, P < 

0.001). Straightness was not affected by gender factor for both insect species (S. oryzae: 

F = 1.082, df = 1; T. castaneum: F = 0.670, df = 1). No significant difference in 

straightness was observed for the two insect species in all the interactions for exposure 

time × dust (S. oryzae: F = 1.928, df = 7; T. castaneum: F = 0.633, df = 6), dust × 

gender (S. oryzae: F = 0.000, df = 1; T. castaneum: F = 0.071, df = 1), time × gender (S. 

oryzae: F = 1.169, df = 7; T. castaneum: F = 3.627, df = 6) and dust × time × gender (S. 

oryzae: F = 0.811, df = 7; T. castaneum: F = 0.397, df = 6) (Tables 5.5 and 5.6). 

Upward length (UL) of S. oryzae and T. castaneum was affected in the same way and to 

the same degree as straightness by both of the SAS powders. In the control groups, UL 

was high for both S. oryzae and T. castaneum. This changed in the presence of SAS 

(Fig. 5.5). Since no difference in the mean upward length existed between exposure 

periods, powder types, and male and female populations in either species, statistical 

comparisons of upward length variances can be made. Comparison of these variances 

by Levene’s Test showed the variance in upward length for S. oryzae and T. castaneum 

to be significantly reduced with increasing exposure time (S. oryzae: F = 74.518, df = 7, 
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P < 0.001; T. castaneum: F = 20.100, df = 6, P < 0.001). In turn, a weak direct effect of 

the types of SAS on the two insect species was observed (S. oryzae: F = 3.151, df = 1, 

P > 0.05; T. castaneum: F = 0.003, df = 1, P > 0.05). In addition, the average of UL 

value was similar for both genders of S. oryzae and T. castaneum (S. oryzae: F = 3.609, 

df = 1, P > 0.05; T. castaneum: F = 2.139, df = 1, P > 0.05). 

 

 

Fig. 5.4. Straightness of female and male T. castaneum and S. oryzae on the locomotion 

compensator after exposure to 2 g/m2 of hydrophilic and hydrophobic SAS respectively 

for different durations at 28±1°C, 65±5% RH. A. T. castaneum; B. S. oryzae. 
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Fig. 5.5. Upward length of female and male T. castaneum and S. oryzae on the 

locomotion compensator after exposure to 2 g/m2 of hydrophilic and hydrophobic SAS 

respectively for different duration at 28±1°C, 65±5% RH. A. T. castaneum; B. S. 

oryzae. 

5.4.3 Structure damage 

The results of the stride length of female and male S. oryzae and T. castaneum affected 

by hydrophilic and hydrophobic SAS are summarized in Fig. 5.6. The data were 

subjected to a one way ANOVA to determine any significant differences in the 
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deviations of gender, dusts and times (Tables 5.7 and 5.8). S. oryzae was more sensitive 

than T. castaneum to deposits of SAS, with the stride length dropped rapidly by more 

than 37.27% and 30.01% during the observation period for S. oryzae and T. castaneum, 

respectively (S. oryzae: F = 57.483, df = 5, P < 0.001; T. castaneum: F = 57.480, df = 6, 

P < 0.001). Appreciable differences between genders and between the two SAS 

powders were observed for S. oryzae (Fig. 5.6). The decreased rate of stride length for 

S. oryzae on hydrophilic SAS was larger than on hydrophobic SAS throughout the 

experimental period (F = 23.245, df = 1, P < 0.001), while it was not significant 

difference for T. castaneum exposed to the two SAS powders (F = 6.044, df = 1). Both 

SAS powders were noticeably more effective on the stride length of the male population 

than on the female population for S. oryzae (F = 52.289, df = 1, P < 0.001) but not for T. 

castaneum (F = 4.408, df = 1). No significant differences for two insect species were 

found in all the interactions, exposure time × dust (S. oryzae: F = 1.885, df = 5; T. 

castaneum: F = 1.535, df = 6), dust × gender (S. oryzae: F = 9.992, df = 1; T. 

castaneum: F = 0.985, df = 1), time × gender (S. oryzae: F = 2.000, df = 5; T. 

castaneum: F = 1.985, df = 6) and dust × time × gender (S. oryzae: F = 0.290, df = 5; T. 

castaneum: F = 0.891, df = 6) (Tables 5.7 and 5.8). 

Figure 5.7 is an enlarged view of leg joints of S. oryzae and T. castaneum invaded by 

SAS particles. The SAS particles are minute in relation to insect legs. The particles 

possess extremely sharp edges and thus are abrasive by nature. When insects move 

through the particles, they penetrate the protective body plates and tend to pierce the 

joints. Sharp SAS particles pierce and penetrate the insect intersegment frictional 

devices and wear off the setae during joint movement. 

Each particle can absorb liquid up to four times its own weight. Once the friction 

systems have been breached, the particles begin to absorb the vital body fluids. The 
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combined effects of both haemorrhage and particle adsorption quickly led to lethal 

dehydration (Figs. 5.7A, 5.7B, 5.7D, and 5.7E). The invading particles can also migrate 

further into the body cavities, and interfere with breathing, digestion, reproduction and/ 

or body movements. 

 

 

Fig. 5.6. Stride length of female and male T. castaneum and S. oryzae exposure to 2 

g/m2 of hydrophilic and hydrophobic SAS respectively for different durations at 

28±1°C, 65±5% RH. A. T. castaneum; B. S. oryzae. 
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Fig. 5.7. A and B: ESEM images of the friction system of T. castaneum and S. oryzae invaded by SAS. C: Thoraco-abdominal intersegmental 

frictional devices of S. oryzae, dorsal aspect. D: Cuticle of coxa of media leg and joint with body of S. oryzae. E: Crano-thoracic intersegmental 

frictional devices of T. castaneum, dorsal aspect. F: Thoraco-abdominal intersegmental frictional devices of T. castaneum, ventral aspect. 

Cuticle of coxa of proleg and joint with body of T. castaneum. 
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Table 5.7. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the stride length of S. oryzae exposure to 2 g/m2 of 

hydrophilic and hydrophobic SAS respectively for different durations at 28±1°C, 

65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 2383285.050 1 2383285.050 23.245 0.000 

Gender 5361090.790 1 5361090.790 52.289 0.001 

Time 29467783.600 5 5893556.719 57.483 0.000 

Dust × Time 966194.764 5 193238.953 1.885 0.097 

Dust × Gender 1024461.086 1 1024461.086 9.992 0.002 

Time × Gender 1025317.056 5 205063.411 2.000 0.079 

Dust × Time × Gender 148539.483 5 29707.897 0.290 0.918 

Error 29015252.830 283 102527.395   

Total 355181674.300 307    

 

Table 5.8. Results of one-way ANOVA for the significance of variation between dust, 

gender, and exposure time on the stride length of T. castaneum exposure to 2 g/m2 of 

hydrophilic and hydrophobic SAS respectively for different durations at 28±1°C, 

65±5% RH. 
Source Type III Sum of 

Squares 

df Mean Square F P 

Dust 1061971.136 1 1061971.136 6.044 0.014 

Gender 774537.024 1 774537.024 4.408 0.037 

Time 60600275.330 6 10100045.890 57.480 0.000 

Dust × Time 1618530.057 6 269755.010 1.535 0.166 

Dust × Gender 172998.894 1 172998.894 0.985 0.322 

Time × Gender 2092763.162 6 348793.860 1.985 0.067 

Dust × Time × Gender 939801.177 6 156633.530 0.891 0.501 

Error 58688260.760 334 175713.356   

Total 590964203.800 362    

 

5.5 Discussion 

The most obvious advantage of SAS powders is the physical nature of its insecticidal 

mechanism, which has been thoroughly examined in our investigation. The results 

suggest that the insect intersegmental frictional devices were damaged rapidly by the 

two SAS powders in a few hours, resulting in reduced locomotion and coordination, and 



Evaluation of the physical effects on insect intersegment frictional devices and 

associated biological impacts of two synthetic amorphous silica (SAS) powders

 

148 

 

additional behavioral changes. The locomotion capacity decreased after exposure to 

SAS for S. oryzae (0.5 h) and T. castaneum (2 h), respectively. The change in upward 

length and straightness reflected the behavioral changes. The male populations in the 

two species were more susceptible than the females to both SAS powders. Hydrophilic 

SAS was more effective against S. oryzae than hydrophobic SAS. Interestingly, it was 

the opposite for T. castaneum. This was consistent with our previous results. Based on 

these results, we propose a new pesticide delivery method via insect intersegment 

frictional devices. It is highly unlikely for insects to develop immunity to SAS powder. 

In principle, these SAS do not interrupt basic physiological activities by blocking a 

specific biochemical event, instead they cause non-specific adverse effects to multiple 

insect activities in a short period of time. 

5.5.1 Disruptionure of insect locomotion and coordination 

Insects were considered knocked down if they were unable to co-ordinate their 

locomotory movements and regain a normal stance  (Prickett and Ratcliffe, 1977). Large 

quantities of SAS accumulate on the legs, thorax and elytra (Gowers and Le Patourel, 

1984), especially covering different intersegmental frictional devices (Ebeling and 

Wagner, 1961). This research provides the first detailed examination of the structural 

destruction hypothesis by describing the kinematics of the leg in insects. Our kinematics 

data have described insect movability levels in relation to the degree of damage, thus 

allowing us to generate a preliminary hypothesis regarding the physical mechanisms of 

friction devices damage. Locomotion capacity is a prerequisite for many insect 

activities such as feeding and mating. Insect management can be achieved by crippling 

the target insects. Without an initial incursion into the grain bulk, an infestation is 

unlikely to occur. 
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5.5.2 Behavioral charges 

The arthrodial membranes exist in the movable joints of legs, antennae, organs of 

copulation, ovipositor, mouthparts and between segments of the body. During 

movement, the cuticular membranes exhibit great elasticity. The attachment of synthetic 

amorphous silica (SAS) particles induces a tactile deterrence that can lead to disruption 

of the insect’s behaviour to such a degree that it is unable to feed and eventually starves 

(Glenn et al., 2001). 

These results confirmed and extended previous studies on the orientation of insects and  

range of movement (Lang, 2009) upon inert dust exposure. However, nearly all of these 

studies used different methods ranging from simple racetrack tubes to artificial 

dispersal. The link between insect avoidance behaviour and resistance to SAS cannot be 

well established. The diverse nature of insect behaviour makes it difficult for cross 

species comparisons and repetition of certain experiments. The great advantage of a 

locomotion compensator over other approaches is that it allows exploration of the 

biological effect with direct parameters (straightness and upward length in relation to 

olfactory sensation). We can obtain more precise information about the relationship 

between insect signal transduction pathways and intermediary membrane. The 

disruption in the signal transduction pathways affects insect feeding, development, 

locomotion and reproduction. 

5.5.3 Structural damage 

In arthropods, their body is constituted by different segments with intermediary 

membranous connections. The segments are, more or less, hard and rigid (Hepburn and 

Chandler, 1976), and often serve as the fixation site for other structure. The 
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intermediary membranous area is flexible and/or elastic (Hackman and Goldberg, 

1987), and responsible for movability. The intersegmental membrane usually consists of 

very thin plates, with minor supportive function to increase the overall stability. In these 

areas cuticle is commonly less tanned and less rigid (Vincent and Wegst, 2004). This 

feature is reflected by the much lower value of Young’s modulus in intersegmental 

membrane comparing to deep tanned, dry cuticle on other parts of insect body (Vincent 

and Wegst, 2004). Synthetic amorphous silica (SAS) cause severe and extensive 

damage in the joints. The segments are mostly unaffected. Some joints are completely 

disabled. This further confirmed our previous results (Li, 2006). 

After the exposure of insects to the SAS, the exoskeleton is covered with the SAS 

particles. Differences in effect of SAS cannot be explained solely by the amount of 

powder deposit. It is necessary to consider the replenishment of dislodged powder 

(Gowers and Le Patourel, 1984). Results show that on intermediary membranous 

surfaces deposition of SAS is more rapid and these SAS aggregations are readily 

dislodged as the insects climb and rub over one another, resulting in fresh powder 

accumulating on the joints. Exchange of powder in this manner would ensure that there 

was always unsaturated powder available for adsorption, while any vigorous attempt to 

remove SAS may result in a more rapid loss of water. High toughness with a relatively 

low stiffness gives the insect leg an exceptional ability to tolerate defects such as cracks 

and damage. However, toughness of cuticle in insect legs decreases with desiccation 

(Dirks and Taylor, 2012). 

We observed a relationship between high mortality and severe structural damage. The 

leg of arthropods is a cuticular tube. Many insect joints contain surfaces that are 

covered by cuticular protuberances or depressions. This thin shell is the primary barrier 

isolating body fluids from the external environment. A 10% body fluid loss is fatal to 
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insects (Knight and Bessette, 1997). The joint types include simple polyaxial or 

monoaxial joints and complex joints with defined rotation axes. All the joints are open 

to the adjacent segments and allows free fluid communication. Thus, a structural breach 

can lead to severe systemic haemorrhage, not just limited to the fluid within the affected 

joint. This structure weakness is not only present in leg joints but also in antennal joints, 

and the craniothoracic joint (Gorb, 2001). For this reason, intersegmental membranes 

are the primary target areas for SAS and other pesticides. 

5.5.4 Difference in species and gender 

Our results showed that the movability and behaviour of two insect species affected by 

SAS were significantly different between species and gender. T. castaneum is the most 

tolerant stored product insect species to SAS, however, the male is more susceptible 

than the female. This can be explained by the effect of an electrical field generated 

between SAS and insect. The amount of electrostatic charge T. castaneum carries is 

significantly lower than that of S. oryzae, resulting in a lower attachment of SAS and a 

longer time to achieve the same biological effect (Chapter 3). 

Both species and gender have different morphological properties of the epicuticle 

(Kuitunen and Gorb, 2011). Scanning electron microscope (SEM) analysis showed that 

T. castaneum has smoother, smaller and tougher intersegmental frictional devices than 

S. oryzae. There is also a circle of hair in the crano-thoracic and thoraco-abdominal 

intersegmental frictional devices of T. castaneum (Li, 2006), which is likely to play an 

important role in preventing foreign material, such as SAS, entering these areas. The 

different sensitivity between male and female populations can be contribute to the 

differences in structure. Since the sexual signaling is based colour, the male colouration 

is often based on interference in the structure and wax coverage (Kuitunen and Gorb, 
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2011). Wax coverage plays an important role in the colour tuning of the male cuticle. In 

addition, the roughness of the epicuticle surface can cause the reflected light to scatter 

(Hooper et al., 2006; Parker et al., 1998). All these factors can cause the male to be 

more sensitive to SAS than the female. 

According to Whittier et al., (1992), changing the ratio of gender in a medfly population 

will result in unsuccessful mating. The SAS damage to the insect friction system may, 

at least in part, effect interactions between males and females during courtship, resulting 

in mating failure (Barton et al., 2006). This would be a very effective strategy for 

controlling the insect population. S. oryzae is a primary feeding insect and lives mostly 

inside the grain kernel. For attached pesticides, the main factor in terms of their 

effectiveness is the speed at which the insect moves when it emerges from the grain 

kernel. The effect on movability of S. oryzae appears within half an hour when exposed 

to SAS. These effects suggest SAS is a very promising method in stored grain insect 

control. 

5.5.5 Variation between hydrophobic and hydrophilic SAS 

The terms hydrophobic and hydrophilic describe the apparent repulsion and attraction 

between water and surfaces. When one material repels or attracts water from its surface, 

it shows hydrophobicity or hydrophilicity, respectively. Given the large specific surface 

area, hydrophobic and hydrophilic SAS are used as absorbents and drug carriers in 

industry. Hydrophobic SAS were found to be effective and efficient absorbents of oils 

and organic liquids (Dowell et al., 1999). Hydrophilic aerogels can especially be used as 

carrier materials for oral delivery of drugs whose immediate release is desirable 

(Dowell et al., 1999). 



Evaluation of the physical effects on insect intersegment frictional devices and 

associated biological impacts of two synthetic amorphous silica (SAS) powders

 

153 

 

Insect cuticular lipids are composed mainly of fatty acids, alcohols, esters, glycerides, 

sterols, aldehydes, ketones and hydrocarbons (Lockey, 1988). Long-chain hydrocarbons 

are one of the main components of cuticular lipids in insects, but their concentration can 

vary widely, from 3 to nearly 95% of the total lipid (Dowell et al., 1999). T. castaneum 

was more susceptible to hydrophobic SAS while S. oryzae was more susceptible to 

hydrophilic SAS. This difference can be explained by the lack of polar –OH groups on 

the surface of hydrophobic aerogels, which would interact with a relatively low 

hydrocarbon content of the total surface lipid in S. oryzae (Baker et al., 1984). 
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Chapter 6. Evaluation of synesthetic amorphous silica for 

structural treatment of empty grain storage 
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6.1 Abstract 

The distribution of application of synthetic amorphous silica, dispensed from an SAS 

applicator or blower was characterize inside an empty farm scale warehouse using 

measurements of concentration and assessments of effect on adults of five stored grain 

insect species in bioassay arenas. The infestations were monitored by a new integrated 

trap based on light, hormone, food luring, and insect behaviour in the grain storage 

system. The conventional screening method was used as the control. A new mobile 

duster was used to disperse the powder into aerosols. Petri dishes were prepared with 

Rhyzopertha dominica (Fabricius), Sitophilus zeamais (Motschulsky), Oryzaephilus 

surinamensis (Linne), Tribolium castaneum (Herbst), and Cryptolestes ferrugineus 

(Stephens) adults, using 20 specimens each. Twenty-four hours after insecticide 

exposure, the dishes were brought to the laboratory, and placed in a growth chamber 

and held for a 3 days moribund (knockdown) assessment. One gram of flour or 3 g of 

wheat kernels were added as feed. The assessment trend for both integrated traps and 

artificial screening methods was similar. The capture ability of the integrated trap was 

highly effective. At a C. ferrugineus population density of 45 per kg (grain), the manual 

screening detection method using 5 integrated traps captured 1722 g of mainly C. 

ferrugineus /warehouse in seven days. One gram of C. ferrugineus contains 

approximately 6791~7142 individuals. Food grade synthetic amorphous silica powder 

was used as a structural treatment in an empty warehouse. The duster dispersed the 

powder as an aerogel uniformly in several locations of the warehouse. The mortality 

rate of the adults of the five major species of stored grain pest reached 100% on the 

third day. Combing SAS structural treatments with new integrated trapping is a safe, 
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effective and time-saving method for insect control, and is easy to automate to reduce 

labour costs. 

6.2 Introduction 

Economic losses caused by pests include direct damage caused by their activities and 

indirect damage as a consequence of market rejection due to infestation and the cost of 

chemical treatment. Since the 1950s, synthetic pesticides have been widely utilized in 

large grain bulks for their high efficacy, relatively low cost and ease of application. 

Common fumigants include phosphine, methyl bromide, chloropicrin and dichlorvos. 

Methyl bromide and phosphine (PH3) are the most widely used. Methyl bromide was 

phased out of general use after 2005 due to environmental concerns as it depletes the 

atmospheric ozone. Phosphine is the only registered fumigant which is likely to be 

continuously used in a large scale given its favorable characteristics such as low 

sorption and rapid desorption in commodity fumigation. Yet, insect resistance to 

phosphine has been frequently reported across the world (Daglish and Collins, 1998) 

and is threatening the future use of phosphine (Benhalima et al., 2004; Collins et al., 

2005; Herron, 1990; Lorini and Galley, 1999). These events have placed an increasing 

demand on the development of low-cost, low chemical-input, integrated pest 

management storage strategies which must be able to guarantee the same degree of 

effectiveness as chemical strategies. 

Detection of insect populations is essential to limit damage to stored grain and is 

important for guiding the conduct of pest management and evaluating the efficacy of 

control. To detect insect infestation, grain is usually sampled using mechanical or 

manual methods, with the sampled grain then sieved to estimate insect numbers and the 

level of infestation. This is a commonly used laboratory method (Lippert and Hagstrum, 
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1987) and also conventionally used by elevator operators, grain buyers and farmers 

under most grain-storage conditions (Jian et al., 2012; Perez-Mendoza et al., 2004). An 

alternative method of detecting insects is using visual or pheromone lure traps. This 

method has been used for several decades to monitor the presence of insects and 

determine patterns of pest distribution (Neethirajan et al., 2007; Wu et al., 2009; Yao et 

al., 2005). Stored grain insect behaviour is influenced by food odours and aggregation 

pheromones (Phillips et al., 1993; Seifelnasr et al., 1982). However, these traps are too 

specific and catch only one or a few pest species, thus they are unable to provide an 

accurate overall estimation. This limitation has prevented wide usage of the trapping 

method. Different species are attracted only to certain wavelengths. Grain storage insect 

pests share many behavioural treats, such as, strongly phototaxic, a preference for flying 

and inhabiting the top layer of a grain bulk. An integrated trap is developed based on 

these facts. 

Sanitization of the structures before loading grain into a warehouse is an important 

procedure of integrated pest management (IPM) programs. Historically, pest 

management professionals utilized dichlorvos as a space or a structural treatment, but 

resistance to this insecticide has been reported (Li et al., 2016). The grain industry 

demands alternative control strategies. Due to their high safety, high effectiveness and 

long-term protection, diatomaceous earths or silica aerogels have been used for 

eliminating stored grain insects in field trials since the 1960s (Chen et al., 2016; Dong 

et al., 2016; La Hue, 1965a; Redlinger and Womack, 1966; Wang et al., 2016; Zhou et 

al., 2017). However, several adverse factors have limited their use such as high dosage, 

visible residue and slow “speed of kill”. Also, the technologies that utilize synthetic 

amorphous silica powders for storage protection have not been fully developed. The 

poor distribution of the powder throughout the grain bulk results in poor control by 
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allowing insects to survive in areas of low powder concentration. Food grade synthetic 

amorphous silica powder is a food additive and a new physical protective agent that 

contains no crystalline silica (Wu, 2011). It was developed by the Academy of State 

Administration of Grain, China. Compared to traditional diatomaceous earth, it has a 

good insecticidal effect, a fast acting speed, a low dosage rate, and a low cost. Food 

grade synthetic amorphous silica powder can kill R. dominica, T. castaneum, S. 

zeamais, O. surinamensis and C. ferrugineus (Li, 2006). 

In this study, the efficacy of food grade synthetic amorphous silica powder was directly 

assessed against five stored grain insect species using the same controlled environment 

(tightly sealed pilot scale warehouse. The insects were exposed to the powder in 

confined petri dishes that could be removed after treatment. Interpretation of insect 

captures obtained through a new light trap was used to evaluate the efficacy of food 

grade synthetic amorphous silica powder in a structural treatment. 

6.3 Methods and materials 

6.3.1 Structure of integrate trap 

The trap is mainly comprised of the following components (Fig. 6.1): lampshade, pest-

attracting modulator tube, light guide ball, fan, pest collecting bag, and chassis. The 

integrated light, colour, food and pheromone are all in one device. 

Three 15W fluorescent lamps were selected as the attracting light source. A yellow 

plastic ball was positioned in the middle of the annular modulator tube for the purpose 

of increasing illumination, providing a yellow colour and dispersing the light farther. A 

3W negative pressure fan was installed inside an insect sample collecting bag. A food 

lure, consisting of roasted bean flour, wheat flour, roasted peanut flour and 2 drops of 

sex pheromone, was also used in this study and placed in a dish under the light balls. A 
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sex pheromone lure was also arranged inside the light guide ball. The scent was 

released from the bottom of the ball and spread by the airflow from the fan. 

Four wavelengths (365nm (UV), 450nm (Vis), 550nm (Vis) and 720nm (NIR)) of LEDs 

were chosen to evaluate the wavelength effect. 

 

Fig. 6.1. Photograph of the integrate trap. 

6.3.2 Synthetic amorphous silica powder 

Food grade synthetic amorphous silica powder is a hydrophilic precipitated silica. It is 

compliant to the standards of food additive (E551) and is developed as a nonchemical 

pesticide by the Academy of State Administration of Grain, China. The D (v, 0.1), D (v, 

0.5), and D (v, 0.9) (The respective diameters at 10, 50, and 90% cumulative volume.) 

aggregated particle sizes were 1.78±0.04 µm, 4.31±0.03 µm and 9.42±1.75 µm, and 

aerosolized by the duster. 

6.3.3 Insect 
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The insect species tested are shown in Table 6.1. They were cultured at 30±1℃, 75±5% 

RH in the Academy of State Administration of Grain, Beijing, China. The techniques of 

insect culturing and handling generally follow those described by Winks (1982) for 

primary and secondary feeders. R. dominica, S. oryzae and S. zeamais were reared on 

wheat. O. surinamensis was reared on oats. C. ferrugineus, T. castaneum and T. 

confusum were reared on a medium containing 10 parts wheat-meal flour milled from 

Chinese hard wheat, 10 parts oats and 1part yeast. Prior to use for insect rearing, the 

wheat was wash and disinfested in the oven at 80℃ for 4 hours, and then conditioned to 

13.5% moisture content. For this experiment, adults 20 days old were used. 

6.3.4 Mobile duster 

The mobile duster used was manufactured by Tenghui Machinery Co., Ltd. and is 

shown in Fig. 6.2. The main technical parameters were, a 220 V (50 Hz) power supply, 

a motor with a speed of 5000 r/min, an 8 kg powder capacity, a 12 m horizontal 

spraying distance in static wind, and a 0.6 kg/min spraying volume. The power of this 

duster was 1.5 kW. The total weight was 39 kg. The principle of operation was the same 

as with a venturi gas jet pump. Airflow was supplied by a vortex air pump. When the 

working fluid flew through the venturi, the velocity increased and pressure reduced to 

form a vacuum in the throat of pipe. In the absorption process, the powder was evenly 

mixed with the airflow. Then the mixture of aerogel was ejected into the warehouse 

from the nozzle of an air hose. 

6.3.5 Warehouses and grain storage 

6.3.5.1 Conditions for testing integrate traps 
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The grain surface trapping tests were conducted in warehouses numbered, No.22, 46, 

47, and 51 in late September, 2014. Warehouse No.9 was empty and was 30 m in 

length, 18 m in width, and 7 meters in height for evaluating new trapping capacity in the 

empty warehouse. Details of the stored grain in each warehouse are shown in table 6.2. 

Table 6.1. Contents of each insect sample. 

Insect species Geographical strains 

Rhizopertha dominica (Fabricius) Wuhan (WH-RD) 

Sitophilus zeamais （Motschulsky） Guangzhou (GZ-SZ) 

Oryzaephilus surinamensis (Linné) Beihai (BH-OS) 

Cryptolestes ferrugineus (Stephens) Beihai (BH-CF) 

Tribolium castaneum (Herbst) Qihe (QH-TC) 

 

 

Fig. 6.2. Blower for the application of synthetic amorphous silica powder (1. Powder 

container, 2. ABS hard powder pipe connector, 3. Host, 4. Fan, 5. Moving wheels, 6. 

Handles, 7. ABS powder blowing host, 8. Powder blowing nozzle). 

 

6.3.5.2 Conditions for testing structural treatment 
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The total area of the empty warehouse used for testing structural treatment was 4885 

m2, 60 m in length, 27 m in width, 8 m vertical distance from the storehouse floor to 

platform, and 2.5 m vertical height from platform beam to ridge. 

6.3.6 Observation spots and sample collection spots 

6.3.6.1 Set-up of sample collection spots for manual method 

The manual screening method was used as the control and carried out at twenty two 

spots (Fig. 6.3), where one kilogram of grain was sampled. Each spot covered one 

square meter. 

Table 6.2. Basic indices of the grain in storage used in the trapping trials. 

Warehouse 

No. 
Variety 

Quantity 

(ton) 

Moisture 

content (%) 

Brown rice yield of 

paddy or test weight 

(%) 

22 Early indica rice 1474 12.2 77.9 

51 Early indica rice 1617 12.3 78.0 

46 Australian wheat 1678 10.4 782 

47 Australian wheat 1927 9.6 812 

9 empty 

 

 

Fig. 6.3. The diagram of manual screening method Spots in a test warehouse. 
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6.3.6.2 Evaluation of effect of SAS as structural treatment in empty grain 

storehouse 

Before used as a container, a clean petri dish (70 mm inner diameter base, and 75 mm 

diameter cover) was disinfected in a 100℃ oven for 2 hours. A Whatman No.1 filter 

paper of the same diameter was pasted onto the base of the petri dish to simulate the 

rough surface of the warehouse. Then a film of fluon was brushed onto the inner wall to 

prevent insects from escape. Twenty adult insects (<20 days old) of each species were 

added to each individual petri dish with small quantities of flour or wheat kernels to 

simulate spilled grain. During dusting, a complete set of petri dishes (five dishes for 

each insect species and three empty dishes for powder accumulation to evaluate the 

concentration) was located in each position of the warehouse illustrated in Fig. 6.4. 

Therefore, there were a total of 60 uncovered petri dishes in each warehouse. 

 

Fig. 6.4. Layout of test petri dishes in a test warehouse for structural treatment. 

6.3.7 Detecting methods and dusting 

6.3.7.1 Trapping procedures 
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For interior of empty warehouse trial and exterior area of the warehouse, light traps 

were hung approximately 3 m above the ground. For bulk grain trials, light traps were 

hung at approximately 1 to 1.5 m above the grain surface. There was a 1 m2 anti-fire 

blanket under the light traps for safety reasons and for the collection of the trapped 

insects. 

The insect population density was very high in No. 22 according to our pre-testing 

survey; thus 5 light traps were placed here. One was set up in the center of the 

warehouse and four were located four meters away from the four corners (Fig. 6.5). For 

the other warehouses, there was only one trap suspended in the middle of the building. 

Insects predominantly inhabit the top 30 cm layer of the grain bulk. We stirred the 

surface of the grain with a rake every two to three days to promote insect activity. 

The number of light-up hours for the traps were designed for two different purposes. 

When the population density was low, the purpose was to estimate the density. Thus, 

the light-up hours were from 17:00 – 24:00; the period when insects were most active. 

When the population density in grain bulk was high, the purpose was to control the 

insects, so the lights were switched on all the time. Leakage of light through doors and 

windows was eliminated to avoid affecting the effectiveness of light trapping. 

 

Fig. 6.5. Layout diagram of the five light traps in warehouse 22. 
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6.3.7.2 Method of dispersal from the duster 

Air outlet and hard tube were connected to a hose. The joints were fixed by clamps. 

Several hard tubes were designed according to the height of the grain loading line. The 

quantity of product in the duster reservoir was weighed before and after application to 

ensure accurate dose measurement. All the windows and doors were sealed before 

dusting to avoid powder leakage. The ratio of air velocity and powder was adjusted 

according to the size of the warehouse to achieve uniform powder distribution. Three 

operators were required, a nozzle holder, a driver and a door keeper. Retrograde 

application was used to reduce aerosol-operator contact time. The amount of powder 

used in this study was 15 kg. The calculation was as followed: 

Amount of powder = dosage × total inner surface area of warehouse 

The dosage was 3 g/m2. Total area was 4885 m2, including wall and ceiling surfaces. 

The total amount of powder was 14.7 kg. 

6.3.8 Capturing and mortality assessment 

The pest-collecting bags were collected at 3:00 pm every day and replaced by a new 

one. Due to the enormous quantity of attracted insects, it was impossible to count in 

individual with routine methods. Therefore, a microbalance was used to estimate the 

number of insect per gram. 

Following powder application, the warehouses remained sealed for 24 hours to allow 

the powder particles to settle. Following the settling period, petri dishes covered with 

lids were brought to the laboratory where they were placed in an environmental 

chamber maintained at 28℃ and 60% RH. Insects in dishes that did not receive any 

flour prior to powder application received 1.0 g of clean flour or wheat kernels as feed. 
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Individual adults in each dish were scored as live or moribund (knocked down or not 

capable of walking) at 3 days post application. For powder distribution, the amount of 

powder in each position was calculated by subtracting the weight of the empty dish 

prior to the powder application with the use of a microbalance. 

6.3.9 Statistical analysis 

Statistical comparison between the manual screening method and integrated traps was 

conducted using a generalized linear model approach to evaluate capture capacity. In 

addition, effects of temperature on insect population were further characterized using 

linear trend analyses. 

After structural treatment by food grade synthetic amorphous silica powder, adult 

mortality of T. castaneum and S. oryzae at different exposure times were calculated as a 

percentage. Adult mortality in control groups across all exposure times after treatment 

was 0%. Therefore, mortality data were not corrected for mortality in the control 

treatment using Abbott’s formula (Abbott, 1925). 

6.4 Results 

6.4.1 Improvement of collection means 

Instead of electric shock and adhesion, a 3W negative pressure fan was used to form a 

negative pressure zone under the light trap for insect collection. Besides the collecting 

function, it also prevented the captured insects from escaping. The airflow from the fan 

also contributed to pheromone dispersion. 

The number of trapped C. ferrugineus caught differed significantly among the four 

wavelengths. The most effective wavelength for C. ferrugineus was 365 nm, while C. 
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ferrugineus were equally attracted by 550 nm and 720 nm. The wavelength of 450 nm 

showed no attracting effect. 

Figure 6.6 shows that the capture capacity of the new integrated trap was positively 

correlated with that of manual screening methods. The integrated trapping method could 

replace the manual screening method. It was more reliable and less labour intensive. 

Fig. 6.6. Relationship between the new integrated trap and manual screening method. 

6.4.2 Detection in the insect population density 

The new integrated trap was highly effective for low insect population densities (Table 

6.3). In warehouse No.47, the manual screening method detected no insects, while 48 C. 

ferrugineus were captured by the new trap from 5 pm to 0 am on 17th September. After 

seven days, this number dropped to zero. 

For the empty warehouse (No. 9), the light trap was switched on for 24 hours. The 

manual detection method detected nothing, while 252 C. ferrugineus and 6 S. zeamais 

were captured by the new trap. Similarly, the number dropped to zero five days later. 

For exterior area of the warehouse, during the 12 h of trapping from 7 pm on 22nd 

September to 7am on 23rd September, an integrated trap captured six insect species, 
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including 124 C. ferrugineus, 5 R. dominica, 2 S. zeamais, 1 S. paniceum, 1 T. 

castaneum, 1 L. oryzae, and numerous flies and mosquitoes. Similar insect species were 

found inside and outside the warehouse (Table 6.4). This new trap is very useful to 

prevent insects entering the storage facility, especially when the windows were open for 

cooling at night. 

The insect species captured both inside and outside warehouse were C. ferrugineus, R. 

dominica, S. zeamais, T. castaneum, S. cerealella and Liposcelididae (Table 6.4). The 

predominant insect population was C. ferrugineus. 

There were 8 kg of insects captured on the four grain surfaces. Each gram of C. 

ferrugineus represents 6791 to 7142 individuals, so 8 kg of C. ferrugineus equaled 57 

million individuals. 

These numbers correlated with the temperature inside the warehouse. Largest numbers 

of insects of different species was captured above 26℃. When the temperature was 

between 20℃ and 26℃, the number dropped by half. Few insects were captured under 

the 20℃.  
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Table 6.3. Estimates of correlations of the quantity of pests among catching periods by screening method and new trapping method under four 

warehouse conditions. 
Check time Warehouse 

No. 

Temperature in space 

of warehouse (℃) 

Temperature in the upper 

layer of grain bulk (℃) 

Insect density 

(pests/kg) 

Number of 

lights 

Light up 

time (h) 

Insect trapped by 

new trap (g) 

17th -23rd 

September 
22 28.7 24.9 45 5 7×24 1722 

51 28.3 24.7 31 1 7×24 656 

46 28.8 24.3 22 1 7×24 447 

47 29.6 31.5 None 1 7×7 48  

24th -30th 

September 
22 27.2 24.3 38 5 7×24 1421 

51 26.8 23.9 26 1 7×24 541 

46 26.3 23.5 16 1 7×24 464 

47 27.8 31.2 None 1 7×7 0 

1st -7th October 22 24.3 23.0 27 5 7×24 857 

51 23.7 21.8 17 1 7×24 312 

46 25.3 22.4 12 1 7×24 206 

47 26.8 29.3 None 1 7×7 0 

8th -14th 

October 
22 22.6 23.0 18 5 7×24 623 

51 22.1 21.4 10 1 7×24 234 

46 22.2 22.0 7 1 7×24 152 

47 26.8 28.4 None 1 7×7 0 

15th -21st 

October 
22 23.2 22.4 11 5 7×24 346 

51 22.8 21.1 8 1 7×24 124 

46 22.7 21.2 4 1 7×24 86 

47 25.2 27.9 None 1 7×7 0 
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Table 6.4. Compare the captured insect species between inside and outside of the 

warehouse. 

types Inside of warehouse Outside of warehouse 

1 R. dominica R. dominica 

2 C. ferrugineus C. ferrugineus 

3 S. zeamais S. zeamais 

4 T. castaneum T. castaneum 

5 S. cerealella S. cerealella and C. cautella 

6 L. lididae L. oryzae 

7  L. serricone 

8  flies and mosquitoes 

 

6.4.3 SAS Powder distribution within the empty warehouse 

Powder concentration was an estimate of the mass of spray particles that landed on 

surfaces. The concentration decreased with increasing distance from the dispersion 

point. The graphs in Fig. 6.7 illustrated this relationship. The concentration of powder 

particles peaked primarily at the start (1 and 2) and end (9 and 10) of dusting. Even after 

24 h, certain concentrations of powder aerosol were still being registered in the air, but 

the data also indicate minimal particle settling during the last period of the treatment (5 

and 8) in the center of the warehouse (6 and 7). The powder concentration estimation 

and calculation were our first attempts to quantify this parameter. Potential validation 

testing and additions to the dispersion methods are being considered for future research 

efforts. 

6.4.4 Evaluation of the insecticidal effect of food grade synthetic 

amorphous silica powder against adults of five stored grain insect 

species in an empty warehouse 

http://www.gags.org.cn/content.asp?NewsID=548
http://www.gags.org.cn/content.asp?NewsID=548
http://www.gags.org.cn/content.asp?NewsID=548
http://www.gags.org.cn/content.asp?NewsID=548
http://www.gags.org.cn/content.asp?NewsID=548
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Although the powder deposition varied in different locations of the warehouse, it was 

still highly effective against the adults of five stored grain insect species and 100% 

mortality was observed within three days (Table 6.5). R. dominica, O. surinamensis and 

C. ferrugineus were the most sensitive species to the structural treatment, with above 

95% of the population eliminated within 24 hour in the presence of food. After a 24 

hour exposure, the mortality rate of S. zeamais and T. castaneum dropped. However, S. 

zeamais and T. castaneum had lost their locomotion and feeding ability, and rendered 

functionally incapable. 

Fig 6.7. The dosage of powder distributed at each sampling point in an empty 

warehouse 24 hours after application. 

 

Table 6.5. Percentage mortality of adult five stored grain insect species at 24-60 hours 

check points after SAS powder application in an empty warehouse. 

Type of test insect 
Average mortality of test group ± SE (%) 

24 h 36 h 60 h 

R. dominica 100.0±0.0 100.0±0.0 100.0±0.0 

S. zeamais 7.8±2.2 42.7±3.2 100.0±0.0 

O. surinamensis 98.4±1.0 100.0±0.0 100.0±0.0 

T. castneum 31.9±6.4 92.7±2.9 100.0±0.0 

C. ferrugineus 100.0±0.0 100.0±0.0 100.0±0.0 
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6.5 Discussion 

This is the first trial to evaluate the combined integrated trap and food grade synthetic 

amorphous silica powder method in insect pest control. The results demonstrated the 

effectiveness of the method of trapping in both high and low insect population density 

situations. Early detection of insects by trapping facilitates the management strategy 

design. The traditional detection methods in stored grain facilities, such as manual 

inspection, sieving, cracking-floatation and Berlese funnels, are less sensitive and 

labour intensive (Neethirajan et al., 2007). Several newly developed techniques, like 

acoustic detection, carbon dioxide measurement, uric acid measurement, near infrared 

spectroscopy and soft X-ray, to some extent increase the detection accuracy, but the 

high cost and complex operating procedures prohibited wide application (Neethirajan et 

al., 2007). Some of these detection techniques require removal of detection devices 

prior to fumigation procedure. In addition, all these techniques only focus on detection, 

but not on the pest control aspect. In our trial, the integrated trap positively reflected the 

manual screening method, such that it could replace the manual screening method for 

routine inspections. The scientific community and grain industry both showed great 

interest in this new combined pest control method, mainly for its high effectiveness, low 

cost, and integration of detection and pest elimination. 

The integrated trap was effective in attracting and sampling stored product insects. The 

insect species captured cover most of the stored product insects, certain flies and 

mosquitos. The effectiveness can be attributed to the fact that this trap integrates light, 

colour, food, and pheromone. The light sources used as traps include incandescent, 

fluorescent and ultraviolet. Different insect species respond uniquely to the visible and 

invisible spectral areas (Neethirajan et al., 2007), so four fluorescent bulbs of different 



Evaluation of synesthetic amorphous silica for structural treatment of empty grain 

storage

 

173 

 

wavelengths have been selected in this study. Previous studies suggested that yellow 

colour is most effective for attracting stored grain insects (Qi, 2015). Farmers and 

stored grain pest managers have used yellow stick boards to monitor pest insects. The 

attractiveness of coloured objects is a combination of their specific reflectance and 

shapes or silhouettes that stand out against a contrasting background. We placed a 

yellow plastic ball in the center of the annular fluorescent tubes to add colour attraction 

in the dark or dimly lit areas. For those insects that were less active and could not fly, 

the base was the major capture site. Collection of the captured insect is an indispensable 

part for trapping. Most traps or other devices mainly rely on electrocutors (Neethirajan 

et al., 2007). But this technology is unsafe when applied at the grain surface. Also, the 

smell from the burning insects interferes with food and pheromone lures. Therefore, the 

3 W negative pressure fan suction collection method was proposed. It was effective at 

collecting insects and improved the dispersion of food scent and pheromone. In areas of 

high pest population density, the anti-fire blanket and food attracting base under the 

main trap also function as trapped insect collectors. 

A comparison of aerosol concentrations at ten locations in the empty warehouse showed 

that the deposition was generally less at the beginning of powder dispersion and 

increased at the end of dispersion. The high concentration points suggested that the 

airflow from the powder blower is not very stable. The operators usually apply strong 

air volume at the beginning and the end of dispersion. During the application period, the 

air volume is switch to low or intermediate. We suspected that the lower concentration 

points (No. 6 and No. 7) were related to the long distance from these points to the 

aerosol dispersion outlet, which is in accordance with others reports on the utilization of 

aerosols for insect control inside storage facilities (Arthur et al., 2018). The deposition 

in most of the locations in the warehouse was lower than the desired value (3 g/m2). Our 
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previous laboratory study showed that D (v, 0.5) of food grade synthetic amorphous 

silica powder is 4.31±0.03 µm. In chapter 3, it was shown that the electrostatic charge 

was low at low dosage, so the smaller droplets may not be settling on the floor surface 

and continue to float in the air 24 h after application (Arthur et al., 2014, 2017). 

However, under this test condition, 100% mortality of adults of five major stored grain 

insect species was observed after 3 days and the order of the insect sensitivity to SAS 

was similar with our previous results (Li, 2006). Future research is needed to measure 

the aerosol particle size in the air and on the floor, and also to provide a means to help 

facilitate aerosol dispersal to mitigate the limitations that have been discussed. 

The trial examined a storage strategy that combined integrated pest detection with 

physical control instead of chemical application. The basic strategy is to prevent pest 

infestation by the application of food grade synthetic amorphous silica powder as a 

structural treatment and monitor the process with integrated traps. The number of 

trapped insects reflected the insect population change in the warehouses. The principle 

of this integrated trap was based on the insects’ ability to fly or climb. The food grade 

synthetic amorphous silica powder destroys the insect joint system, incapacitates 

locomotion and causes behavioural changes. In situations of low pest population 

density, it is only necessary to monitor the trends in insect population change with a 

trap. However, in situations of high population density, integrated traps and a food 

grade synthetic amorphous silica powder treatment should be combined. The aim of the 

strategy is to prevent insect infestation. The experiment showed that the strategy can 

also be effective in disinfesting grain. In addition to protection from insects, food grade 

synthetic amorphous silica powder does not require removal from the grain bulk, has no 

half-life period and provides long term protection, which no other insecticide can 

match. 
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Synthetic amorphous silica (SAS) powders, including pyrogenic, precipitated and their 

surface-treated SAS, have been widely used in industrial and consumer applications 

including food, cosmetics and pharmaceutical products for many decades without 

documented incidents regarding environment and human health. These is little 

information about SAS’s application in insect pest control or the mechanism of their 

insecticidal effect. In our study, SAS powder with different polarity and processing 

procedure against different stored grain insect species at multiple developmental stages 

were tested to evaluate their insecticidal efficacy. A diatomaceous earth was also used 

as comparison. Their mode of action against insects was comprehensively investigated 

from biology, physical, optical, material science and kinematic perspectives. These 

laboratory data provided an application guideline and were further proved in the field 

tests. The efficacy of SAS is higher than that of DE against stored product insect species 

due to distinct physical property. The different efficacy of SAS did not depend on one 

specific physical parameter but it rather depended on an integration of multiple factors. 

The stationary insect stages were buried into SAS with high absorption capacity, no 

significant difference in hatching and emergence rate between treated and control 

groups were detected. The activity of insects was a key factor in SAS bioactivity. A 

significant linear correlation between electrostatic charge and bioactivity of dust was 

observed accounting the surrounding electrostatic field of both insect and SAS particles. 

The stored grain insects and SAS obtained positive and negative electrostatic charges, 

respectively, when in contact with an insulate surface. Among the SAS, the precipitated 

SAS and their surface-treated form were significantly more effective against insects. 

The presence of these SAS powders on the insect cuticle resulted in changes in water 

content and other physiological features. The differences in absorption characteristics of 

cuticular fat and protein may contribute to the varied hyperspectral performance. 
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Hyperspectral imaging coupled with back propagation artificial neural network (BPNN) 

correctly classified the control samples of all groups from the hydrophilic and 

hydrophobic SAS treated and misclassified between two SAS treated groups resulting 

in low recognition rate but still within the acceptable identification range. These 

suggested that hydrophilic and hydrophobic SAS against insects shared similar mode of 

action with some variation. Different properties of hydrophilic and hydrophobic SAS 

were correlated with efficacy against different insect species, for example T. castaneum 

was more susceptible to hydrophobic SAS while S. oryzae was more susceptible to 

hydrophilic SAS. Insect cuticle was the most damaged part. But the insects were most 

severely affected by the SAS induced damage in the intersegmental membranes. The 

intersegmental membranes with irreversible structural damages was associated with 

locomotion impairment and biological effect within 3.5 and 12 h for S. oryzae and T. 

castaneum respectively. In the field trial, the mortality rate of adults from five major 

species of stored grain insect reached 100% by the third day with the SAS deposition in 

different locations of the warehouse. 

7.1 Development and evaluation of highly effective SAS 

These findings have important practical applications. Diatomaceous earth with a 

uniform size distribution of high amorphous silica content was more effective against 

insects (Korunić, 1997). This finding led to several investigations of the nanoparticle as 

an alternative to insecticide for its ultra-fine particle size (Debnath et al., 2011). Based 

on the results of current studies, the efficacy would be very different if insects were 

exposed to different primary particle sizes (pyrogenic silica and precipitated silica). The 

effectiveness of pyrogenic silica on insects is much lower than precipitated silica. 

Pyrogenic and precipitated SAS forms are composed of more than 100 nm diameter 
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aggregates and agglomerates. There were not primary particles outside of the reaction 

zone (Fruijtier-Pölloth, 2012). The effects of SAS in insect depend on the characteristics 

of their aggregates and agglomerates, as well as on the size of their primary particles. 

Our result showed that the size of aggregates and agglomerates of SAS together with 

their morphology and their charge, their coating and the reactivity of their surface were 

shown to influence their interactions with insects. 

Precipitated silica have a larger particle size and contain more bound water than 

pyrogenic silica (Fruijtier-Pölloth, 2012). The particle size distribution of both 

hydrophilic and hydrophobic pyrogenic silica was wider than the precipitated silica in 

either solid or liquid phase by Laser particle size analyser. Larger particles provide 

better aeration efficiency (owing to increased interparticle space) but limited surface for 

effective attachment (Ashok et al., 2008). Also the density of pyrogenic silica was lower 

than that of pyrogenic silica in a packaged product. 

Particle size is an important factor in determining deposition, distribution, and 

effectiveness of SAS powders and concentrated sprays. The failure to control insects 

with SAS is often due to low deposition and poor adherence, rather than to under 

dosing. Even with high dose pyrogenic SAS structural treatment, when the number of 

particles per square millimeter of surface exceed thousands, insect infestation can 

remain uncontrolled. Large and light agglomerates can be blocked by the insect’s hair 

and unable to breach the intersegmental membrane or cuticle. These SAS particles settle 

on insect surface and can be dislodged easily resulting in a low mortality rate (Mewis 

and Ulrichs, 2001). Under field conditions these extremely minute individual particles 

might be carried away by the air current. The heavy particles in precipitated silica, 

deposit better. However, heavier particles decreased powders picked up due to their 

weight. Based on our results, there was a linear relationship between electrostatic 
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charge and efficacy of SAS against stored product insect species. Synthetic amorphous 

silica (SAS) and stored product insects carry electrostatic charges of opposite polarity in 

contact with insulation surfaces. The electrical fields generated between SAS and 

insects affected the amount of SAS attachment on insect cuticle. According to 

Coulomb’s law, the SAS particles would then be passively attracted to insects via the 

mere effect of electrostatic forces. Therefore, the agglomerates deposit weight that 

should be smaller than electrostatic forces for optimal attachment. 

In our study, the results demonstrated that insecticidal effects of SAS were correlated 

with surface area and porosity. A large specific surface area and total pore volume may 

promote the adsorption of body fluid. Due to their surface characteristics, silica particles 

adsorb macromolecules, such as peptides and proteins from the body fluid onto their 

surface. We observed protein absorption by SAS in the experiment. The adsorption 

process was influenced by an affinity between specific biomolecules and pore size of 

particles. Precipitated silica is typically associated with meso/macroporous pore 

structures, while pyrogenic silica is generally associated more with microporous 

structures (Fruijtier-Pölloth, 2012). The large protein molecules were adsorbed rapidly 

onto the amorphous silica particles with large pores (Diao et al., 2010). The high 

specific area due to mesopores or micropores did not offer a higher coefficient of 

effective use of surface area (Katiyar et al., 2005). The morphology of these materials is 

also important for commercialization in protein purification. The synthesis procedures 

can be tuned to sharpen these distributions further. For example, the synthesis of 

amorphous mesoporous silica went through tetraethylorthosilicate (TEOS) with a 

template of surfactant molecules, typically amphiphilic polymers, under either alkaline 

or acidic conditions. The products have uniformed pores in the size range between 1.5 

and 50 nm (Fruijtier-Pölloth, 2012). 
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By treating with a reactive silane, the important surface parameters of hydrophilic SAS 

can be adjusted to produce a range of different hydrophobic types with water repellent 

characteristics. Hydrophilicity or hydrophobicity is distinguished from the value of 

effect by non-polar, resulting in hydrophobic surfaces as oil were removed from water 

and chemical separation processes to separate non-polar and polar compounds. The 

efficacy of hydrophobic SAS against insect species is less influenced by high humidity 

condition. However, there was an event showed that the surface silanol groups (Si-O-H) 

played an important role in absorbing the proteins from the cell membrane, causing loss 

of membrane flexibility and resiliency (Pandurangi et al., 1990). 

The primary particles of precipitated silica and pyrogenic silica tend to agglomerate. 

These agglomerates assemble by weak forces, such as van der Waals forces and simple 

physical adhesion forces (Gray and Muranko, 2006). After powder is expelled from a 

blower, these groups of particles tend to break up without liberation of primary particles 

(Fruijtier-Pölloth, 2012). The end agglomerate size depended on several parameters of 

the blower, such as airflow pressure, chamber temperature, and ultrasonication. 

Proportionately more powder is deposited from a cloud of heavy powder expelled from 

a blower at a low velocity than from a cloud of light powder expelled at a high velocity 

and with a large volume of air (Arthur et al., 2018, 2017, 2014). Factors worth further 

investigation include the size, concentration, and distribution of silica particles within 

treated arenas during silica applications, particularly the spatial and temporal deposition 

patterns. 

Under field conditions, very light and large particles or agglomerates did not deposited 

on insect surface very well. An electric field around the insect may possibly cause an 

abstraction conditions due to differences in temperature, humidity, insect species and 

commodities. It would be interesting to know if an insect in different stored bulk 
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commodities shows a similar or different pattern of electric field. There are numerous 

gaps in our knowledge regarding the relationships between efficacy and the parameters 

of SAS. For example, do insects always carry a positive electrostatic charge when 

contact with different types of stored products? What is the amount and polarity of 

different types of stored products? Are the stored products surrounded by a film, or field 

of resistance? What kinds of dust particles can penetrate the film of resistance and make 

contact with the surface of the stored product or other objects? What is the optimal 

primary particle size to form an effective agglomerate size against insects? What is the 

mostly weight range of protein molecular in a stored product? Which pore size of SAS 

is the best for absorbing body fluid, microporous, mesoporous or macroporous? What is 

the standpoint of particle density? The Faraday cup method of measuring electrostatic 

charge is a well-established, easy and cheap method and was used in our study to 

examine the relevance of electrostatic charge to the efficacy of different SAS against 

different insect species. For more exact analyses of insecticidal mechanism in an 

ecophysiological context, newer hyperspectral imaging systems are often used, allowing 

precise results to be obtained on hyperspectral changes of insect cuticle. With these 

methods, we were able to study the efficacy of SAS with different parameters at 

different environmental conditions and focus on the evaluation and development of 

effective SAS for insect control. 

7.2 Insecticidal mechanism of SAS 

The insecticidal mechanism of inert dusts, mainly DE, have been extensively researched 

by a wide variety of researchers over the last century (Alexander et al., 1944; Beament, 

1945; Ebeling, 1964; Ebeling and Wagner, 1959; Li, 2006; Malia et al., 2016; Smith, 

1969; Webb, 1946; Wigglesworth, 1942; Zacker and Kunike, 1931). Despite being used 
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in a wide range of industrial and consumer applications including food, cosmetics and 

pharmaceutical products for many decades, very little research has been carried out to 

establish the insecticidal mechanism of SAS. As summarized earlier, the most 

acceptable DE insecticidal mode of action is desiccation. Water loss occurs via 

evaporation through the cuticle and via respiration. Cuticular water loss may often 

represent more than 80% of the total water loss in many taxa under normal conditions 

(Chown, 2002). While epicuticular waxes (mainly hydrocarbons) limit water exchange, 

a considerable percentage of wax must be removed to enable water to pass through an 

insect’s the protective wax layers. The exoskeleton of insects shows expansive 

specializations across an individual, across the developmental stages, and across the 

class Insecta. The mechanical properties of cuticle displays a fare wider range that can 

vary over several orders of magnitude depending on the type of cuticle. Where is the 

target site on cuticle that is involved during the penetration of the insect epidermis by 

SAS? Our research has answered this question and shown that the structural damages to 

intersegmental membranes are crucial, leading to the loss of locomotion ability within 

12 hours for the most tolerant store product insect species, T. castaneum. This study has 

also found that insect behaviour substantially changes in response to the effects of SAS. 

Intersegmental membranes exist in attachment systems adapted to connect different 

structures together, such as leg-joints, antennae and large spines. Cuticle is acellular and 

is not vascularized. Insects have an open circulatory system in which their organs are 

“bathed” in hemolymph (the blood of the insect) which flows freely around them, not 

being contained in vessels like mammals (Chapman, 2013). Injury to intersegmental 

membranes of an insect caused by SAS will induce haemorrhage, and affect organ 

functions. Intersegmental injury also significantly hinder the antennae movement. If the 

intersegmental membranous damage cause change in water content of an insect body, 
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then it is possible that more severe damage occurs in other parts cuticle, such as the 

sclerotized cuticle. Several previous studies showed that very small changes in water 

content can strongly affect the static and dynamic biomechanical properties of cuticle 

(Klocke and Schmitz, 2011). It is unclear if this phenomena did occur, but it would 

definitely be worth investigate further in the future. This would imply some active 

modelling and possibly some remodeling within the cuticle, which up to now has been 

undiscovered. 

The slow “speed of kill” can give insects enough time in healing micro-damage induced 

by DE, resulting in low mortality of stored product insect exposure to DE in present of 

food (Mewis and Ulrichs, 2001). Thus the tissue repair process after dust treatment 

should be assessed in an efficacy evaluation of dusts. However, based on the 

mechanism in our study, the efficacy of a SAS is evaluated on the onset time of 

insecticidal effect more than the final mortality of the exposure insects. When the 

segments were sustained major damage, such as legs, the values of stiffness and load 

energies will decline (Parle and Taylor, 2013), especially in adults, who lack the repair 

capacity (Parle et al., 2017). To what the injury excesses the capabilities of repair? How 

much powder deposit in individual insect can induce this degree of damage? 

7.3 Adaptations and potential use 

In summary, SAS powders are food-grade, fast killing, low cost and easy to apply. 

Because they are highly effective, one advantage of their use is the avoidance of 

chemical insecticides. Another one is the reduction in cost due to the extremely low 

effective dosage and long term protection. Also the food grade synthetic amorphous 

silica application complies to current hygiene standards and application 
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recommendations, thus they do not require removal from grain bulks. They also no half-

life period, which no other insecticide can remedy. 

The SAS powders are capable of directly damaging the exoskeleton in most insects by 

penetration. There are over one million species of arthropods including common pests 

such as ants, cockroaches, fleas, termites, and spiders. All are potential targets. 

Investigation of these possibilities could open a whole new chapter on the search of this 

non-chemical methods for pest control. 
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