

THAYNARA TOMÉ BORGES PIRES

AVALIAÇÃO DO TRANSFORMADOR DE CORRENTE DA LINHA DE TRANSMISSÃO DE 138kV QUANTO AS SUAS CONDIÇÕES OPERACIONAIS

Orientador: Prof. MSc. Luciano Henrique Duque

Brasília 2018

THAYNARA TOMÉ BORGES PIRES

AVALIAÇÃO DO TRANSFORMADOR DE CORRENTE DA LINHA DE TRANSMISSÃO DE 138kV QUANTO AS SUAS CONDIÇÕES OPERACIONAIS

Trabalho apresentado ao Centro Universitário de Brasília (UniCEUB) como pré-requisito para a obtenção de Certificado de Conclusão de Curso de Engenharia Elétrica.

THAYNARA TOMÉ BORGES PIRES

AVALIAÇÃO DO TRANSFORMADOR DE CORRENTE DA LINHA DE TRANSMISSÃO DE 138kV QUANTO AS SUAS CONDIÇÕES OPERACIONAIS

Trabalho apresentado ao Centro Universitário de Brasília (UniCEUB) como pré-requisito para a obtenção de Certificado de Conclusão de Curso de Engenharia Elétrica.

Este trabalho foi julgado adequado para a obtenção do Título de Engenheiro Eletricista, e aprovado em sua forma final pela Faculdade de Tecnologia e Ciências Sociais Aplicadas -FATECS.

	Brasília, 03 de dezembro de 2018
	Prof. Dr. Abiezer Amarilia Fernandes Coordenador do Curso
Banca Examinadora:	
	Prof. Msc. Luciano Duque. Orientador
	Prof. Dr. Rogério Diogne de Souza e Silva. Membro da banca
	Prof. Msc. Antônio Barbosa Júnior. Membro da banca

AGRADECIMENTO

Primeiramente, agradeço a Deus e a Nossa Senhora, por ter me dado força para concluir esta etapa de minha vida, por toda a Sua benção concedida em minha vida. Gostaria de agradecer aos meus pais Adaídio e Márcia pelo amor, carinho, educação e paciência que tiveram, por me apoiarem sempre e por me proporcionar esta jornada. Assim como aos meus irmão Michael e Viviany, por todo suporte e cumplicidade comigo. Um agradecimento especial aos meus avós Napoleão e Vivian, por acreditar na minha capacidade, me incentivar e entender as vezes que infelizmente não pude visita-los por causa dos meus estudos.

A todos os meus amigos que de alguma forma fizeram parte desta minha jornada, em especial aos meus amigos de sala Carolina Almeida, João Ventura, Karoline Dayane, Pedro Salazar, Pedro Souza, Roseana Bomfim e Rubens Piovesan, que sempre me apoiaram e me deram suporte quando necessário. À todos os funcionários da empresa Furnas, onde me proporcionaram o melhor ambiente, com ótimas oportunidades para conseguir tanto um crescimento profissional quanto pessoal, com todo apoio e suporte necessário.

Gostaria de agradecer aos meus professores por toda a dedicação e pelos ensinamentos que me proporcionaram nesta etapa, em especial ao meu orientador Msc. Luciano Duque e ao coordenador Abiezer Fernandes, por todo o apoio na realização deste projeto e durante todo o curso.

Sou muito grata aos esforços, suporte e apoio oferecidos de todos os envolvidos na minha formação.

RESUMO

A modernização dos equipamentos de alta tensão é essencial para proporcionar a confiabilidade do sistema elétrico. Este trabalho tem a finalidade de analisar as condições operacionais do transformador de corrente, com o intuito de proporcionar mais segurança aos funcionários envolvidos e ao sistema elétrico. Inicialmente, é apresentado o conteúdo teórico com as principais características do transformador de corrente, em seguida, foi detalhado os métodos de ensaio de resistência de isolação CA e CC, de relação de transformação, de resistência ôhmica e de saturação, de acordo com a norma associada. Posteriormente, foram realizados os ensaios, utilizando os instrumentos de medição CPC 100 e MIC 5005, em três transformadores de corrente que serão instalados na linha de transmissão de 138kV, analisando as características de resistência ôhmica, a polaridade, o fator de potência, relação de transformação, capacitância e a curva de saturação. A partir dos resultados verificou se os equipamentos possuem condições operacionais adequados para serem instalados no sistema de transmissão de energia elétrica.

Palavras-chave: Sistema Elétrico. Transformador de Corrente. Ensaio.

ABSTRACT

The modernization of high voltage equipment is essential to provide the reliability of the electric system. This work has the purpose of the analyzing the operational conditions of the current transformer, in order to provide more safely to the employees involved and to the electric system. Initially, the theoretical content with the main characteristics of the current transformer are presented. Next, the methods of testing AC and DC insulation resistance, transform ratio, ohmic resistance and saturation according to the associated standard were detailed. Subsequently, the tests were carried out, using the CPC 100 and MIC 5005 measuring instruments, in three current transformers that will be installed in the 138kV transmission line, analyzing the characteristics of ohmic resistance, polarity, power factor, transformation, capacitance and the saturation curve. From the results it was verified that the equipment has adequate operating conditions to be installed in the electric power transmission system.

Keywords: Electric System. Current Transformer. Test.

LISTA DE FIGURAS

Figura 1.1 – Linha de Transmissão de 500kV da Subestação Samamba	
Figura 1.2 – CPC 100 Omicron	21
Figura 1.3 – MIC-5005 - Sonel	21
Figura 1.4 – Esquemático do Projeto	24
Figura 2.1 – Transformador	27
Figura 2.2 – Transformador com secundário aberto	28
Figura 2.3 – Diagrama fasorial sem carga	30
Figura 2.4 – Transformador em carga	31
Figura 2.5 – Transformador com carga	32
Figura 2.6 – Representação esquemática de um transformador real	33
Figura 2.7 – Esquemático do Transformador de Corrente	34
Figura 2.8 – Detalhes construtivos do Transformador de Corrente	37
Figura 2.9 – TC do tipo enrolado	39
Figura 2.10 – TC do tipo barra	39
Figura 2.11 – TC do tipo janela	40
Figura 2.12 – TC do tipo bucha	40
Figura 2.13 – TC com núcleo separável	41
Figura 2.14 – TC com vários enrolamentos primários	41
Figura 2.15 – TC com núcleo núcleos	42
Figura 2.16 – TC com múltipla relação	42
Figura 2.17 – TC tipo pedestal	43
Figura 2.18 – Diagrama fasorial de um TC	54
Figura 2.19 – Esquemático do Circuito Equivalente do TC	60
Figura 2.20 – Ilustração do teste de polaridade no TC	62
Figura 2.21 – Ilustrativo TC com polaridade subtrativa e aditiva	62

Figura 3.1 – Diagrama em blocos dos ensaios	66
Figura 3.2 – Transformadores de Corrente - PFIFFNER	67
Figura 3.3 – Placa de Identificação do TC nº 2014.8432.06/19	68
Figura 3.4 – Placa de Identificação do TC nº 2014.8432.06/20	69
Figura 3.5 – Placa de Identificação do TC nº 2014.8432.06/22	70
Figura 3.6 – Componentes fundamentais do CPC 100 e CPTD1	71
Figura 3.7 – Componentes fundamentais do CPC 100 e CPTD1	71
Figura 3.8 – Painel do CPC 100 – Vista frontal	72
Figura 3.9 – Saídas de corrente e alta tensão do CPC 100	73
Figura 3.10 – Conectores disponíveis do CPC 100	73
Figura 3.11 – Esquemático do modo de medição GSTg-A+B	74
Figura 3.12 – Painel do CPC 100 do ensaio de resistência de isolação CA	A.75
Figura 3.13 – Ligação do CP TD1 no CPC 100	76
Figura 3.14 – Secundário do TC curto-circuitado e aterrado	77
Figura 3.15 – Conexão do CP TD1 no primário do TC	77
Figura 3.16 - O instrumento CPC 100 durante a realização do ensaio de resistência de isolação CA	78
Figura 3.17 – Esquemático da ligação para o ensaio de relação de transformação	79
Figura 3.18 – Conexão do CPC 100 com o primário do TC	79
Figura 3.19 – Conexão do CPC 100 para o ensaio de relação de transformação	80
Fonte 3.20 – Conexão nas derivações do secundário do TC	80
Figura 3.21 – Painel do CPC 100 do ensaio de relação de transformação	81
Figura 3.22 – Esquemático da ligação para o ensaio de resistência ôhmica	82
Figura 3.23 – Conexão do CPC 100 para o ensaio	83
Figura 3.24 – Conexão nas derivações do secundário do TC	83
Figura 3.25 – Instrumento Airflow	84

Figura 3.26 – Painel do CPC 100 do ensaio de resistência ôhmica	.84
Figura 3.27 – Esquemático da ligação para o ensaio de saturação	86
Figura 3.28 – Conexão do CPC 100 para o ensaio	86
Figura 3.29 – Conexão nas derivações do secundário do TC	.87
Figura 3.30 – Painel do CPC 100 do ensaio de saturação	.87
Figura 3.31 – Componentes fundamentais do MIC 5005	.88
Figura 3.32 – Conexão do MIC 5005 com os terminais de alta do TC	90
Figura 3.33 – Conexão do MIC 5005 com a carcaça do TC	.91

LISTA DE TABELAS

Tabela	2.1 – Ordem de grandeza de K4	7
Tabela	2.2 – Cargas Nominais para TC's a 60Hz e 5A	ŀS
Tabela	2.3 – Cargas dos principais aparelhos para TC's	50
	2.4 – Limites do fator de correção da relação e do fator de correção sformação5	
Tabela	4.1 – Parâmetros para aprovação dos ensaios9)2

LISTA DE QUADROS

Quadro 2.1 – Correntes primárias nominais e relações para TC's36
Quadro 2.2 – Correntes Primárias Nominais e Relações Nominais Duplas44
Quadro 2.3 – Correntes Primárias Nominais e Relações Nominais Triplas45
Quadro 2.4 – Sinais para representação de correntes e relação nominais para
TC's45
Quadro 2.5 – Nível de Isolamento nominal para equipamento tensão máxima ≤
245kV48
Quadro 2.6 – Limites de erro para TC's para proteção classe P56
Quadro 2.7 – Limites de erro para TC's para proteção classe PR56
Quadro 2.8 – Exemplos de relações nominais e marcações de terminais63
Quadro 4.1 – Dados de medição do TC nº 2014.8432.06/1993
Quadro 4.2 – Dados de medição do TC nº 2014.8432.06/2094
Quadro 4.3 – Dados de medição do TC nº 2014.8432.06/2295
Quadro 4.4 – Dados de medição de relação de transformação do enrolamento 1S do
TC nº 2014.8432.06/19
Quadro 4.5 – Dados de medição de relação de transformação do enrolamento 2S do
TC nº 2014.8432.06/1998
Quadro 4.6 – Dados de medição de relação de transformação do enrolamento 3S do
TC nº 2014.8432.06/1999
Quadro 4.7 – Dados de medição de relação de transformação do enrolamento 4S do
TC nº 2014.8432.06/19101
Quadro 4.8 – Dados de medição de relação de transformação do enrolamento 5S do
TC nº 2014.8432.06/19103
Quadro 4.9 – Dados de medição de relação de transformação do enrolamento 6S do
TC nº 2014.8432.06/19105
Quadro 4.10 – Dados de medição de relação de transformação do enrolamento 1S
do TC nº 2014.8432.06/20107
Quadro 4.11 – Dados de medição de relação de transformação do enrolamento 2S
do TC nº 2014.8432.06/20108
Quadro 4.12 – Dados de medição de relação de transformação do enrolamento 3S
do TC nº 2014.8432.06/20109

Quadro 4.13 – Dados de medição de relação de transformação do enrolamento 4S
do TC nº 2014.8432.06/20111
Quadro 4.14 – Dados de medição de relação de transformação do enrolamento 5S
do TC nº 2014.8432.06/20113
Quadro 4.15 – Dados de medição de relação de transformação do enrolamento 6S
do TC nº 2014.8432.06/20115
Quadro 4.16 – Dados de medição de relação de transformação do enrolamento 1S
do TC nº 2014.8432.06/22117
Quadro 4.17 – Dados de medição de relação de transformação do enrolamento 2S
do TC nº 2014.8432.06/22118
Quadro 4.18 – Dados de medição de relação de transformação do enrolamento 3S
do TC nº 2014.8432.06/22119
Quadro 4.19 – Dados de medição de relação de transformação do enrolamento 4S
do TC nº 2014.8432.06/22121
Quadro 4.20 – Dados de medição de relação de transformação do enrolamento 5S
do TC nº2014.8432.06/22123
Quadro 4.21 – Dados de medição de relação de transformação do enrolamento 6S
do TC nº 2014.8432.06/22125
Quadro 4.22 – Dados de medição de resistência ôhmica do enrolamento 1S do TC
nº 2014.8432.06/19127
Quadro 4.23 – Dados de medição de resistência ôhmica do enrolamento 2S do TC
nº 2014.8432.06/19127
Quadro 4.24 – Dados de medição de resistência ôhmica do enrolamento 3S do TC
nº 2014.8432.06/19128
Quadro 4.25 – Dados de medição de resistência ôhmica do enrolamento 4S do TC
nº 2014.8432.06/19128
Quadro 4.26 – Dados de medição de resistência ôhmica do enrolamento 5S do TC
nº 2014.8432.06/19129
Quadro 4.27 – Dados de medição de resistência ôhmica do enrolamento 6S do TC
nº 2014.8432.06/19129
Quadro 4.28 – Dados de medição de resistência ôhmica do enrolamento 1S do TC
nº 2014.8432.06/20130
Quadro 4.29 – Dados de medição de resistência ôhmica do enrolamento 2S do TC
nº 2014.8432.06/20130

Quadro 4.30 – Dados de medição de resistência ôhmica do enrolamento 3S do TC
nº 2014.8432.06/20130
Quadro 4.31 – Dados de medição de resistência ôhmica do enrolamento 4S do TC
nº 2014.8432.06/20131
Quadro 4.32 – Dados de medição de resistência ôhmica do enrolamento 5S do TC
nº 2014.8432.06/20131
Quadro 4.33 – Dados de medição de resistência ôhmica do enrolamento 6S do TC
nº 2014.8432.06/20132
Quadro 4.34 – Dados de medição de resistência ôhmica do enrolamento 1S do TC
nº 2014.8432.06/22132
Quadro 4.35 – Dados de medição de resistência ôhmica do enrolamento 2S do TC
nº 2014.8432.06/22132
Quadro 4.36 – Dados de medição de resistência ôhmica do enrolamento 3S do TC
nº 2014.8432.06/22133
Quadro 4.37 – Dados de medição de resistência ôhmica do enrolamento 4S do TC
nº 2014.8432.06/22133
Quadro 4.38 – Dados de medição de resistência ôhmica do enrolamento 5S do TC
nº 2014.8432.06/22134
Quadro 4.39 – Dados de medição de resistência ôhmica do enrolamento 6S do TC
nº 2014.8432.06/22134
Quadro 4.40 – Dados de medição de saturação dos enrolamentos 1, 2 e 3 do TC nº
2014.8432.06/19136
Quadro 4.41 – Dados de medição de saturação dos enrolamentos 4, 5 e 6 do TC nº
2014.8432.06/19137
Quadro 4.42 – Dados de medição de saturação dos enrolamentos 1, 2 e 3 do TC nº
2014.8432.06/20138
Quadro 4.43 – Dados de medição de saturação dos enrolamentos 4, 5 e 6 do TC nº
2014.8432.06/20139
Quadro 4.44 – Dados de medição de saturação dos enrolamentos 1, 2 e 3 do TC nº
2014.8432.06/22140
Quadro 4.45 – Dados de medição de saturação dos enrolamentos 4, 5 e 6 do TC nº
2014.8432.06/22141

Quadro 4.46 – Dados do ponto do joelho da curva de saturação dos enrolamen	tos
do TC nº2014.8432.06/19	151
Quadro 4.47 – Dados do ponto do joelho da curva de saturação do TC nº	
2014.8432.06/20	151
Quadro 4.48 – Dados do ponto do joelho da curva de saturação do TC nº	
2014.8432.06/22	151
Quadro 4.49 – Dados de medição do ensaio de isolamento CC do TC nº	
2014.8432.06/19	152
Quadro 4.50 – Dados de medição do ensaio de isolamento CC do TC nº	
2014.8432.06/20	153
Quadro 4.51 – Dados de medição do ensaio de isolamento CC do TC nº	
2014.8432.06/22	154

LISTA DE GRÁFICOS

Gráfico 2.1 – Curva de magnetização de um TC	46
Gráfico 2.2 – Curva de magnetização	47
Gráfico 2.3 – Exatidão dos TC's classe 0,3	51
Gráfico 2.4 – Exatidão dos TC's classe 0,6	52
Gráfico 2.5 – Exatidão dos TC's classe 1,2	52
Gráfico 2.6 – Curva de excitação secundária de um TC	64
Gráfico 2.7 – Ilustrativo de saturação dos TC's	65
Gráfico 4.1 – Curva de saturação do enrolamento 1 do TC nº 2014.8432.06/19	142
Gráfico 4.2 – Curva de saturação do enrolamento 2 do TC nº 2014.8432.06/19	142
Gráfico 4.3 – Curva de saturação do enrolamento 3 do TC nº 2014.8432.06/19	143
Gráfico 4.4 – Curva de saturação do enrolamento 4 do TC nº 2014.8432.06/19	143
Gráfico 4.5 – Curva de saturação do enrolamento 5 do TC nº 2014.8432.06/19	144
Gráfico 4.6 – Curva de saturação do enrolamento 6 do TC nº 2014.8432.06/19	144
Gráfico 4.7 – Curva de saturação do enrolamento 1 do TC nº 2014.8432.06/20	145
Gráfico 4.8 – Curva de saturação do enrolamento 2 do TC nº 2014.8432.06/20	145
Gráfico 4.9 – Curva de saturação do enrolamento 3 do TC nº 2014.8432.06/20	146
Gráfico 4.10 – Curva de saturação do enrolamento 4 do TC nº 2014.8432.06/20	146
Gráfico 4.11 – Curva de saturação do enrolamento 5 do TC nº 2014.8432.06/20	147
Gráfico 4.12 – Curva de saturação do enrolamento 6 do TC nº 2014.8432.06/20	147
Gráfico 4.13 – Curva de saturação do enrolamento 1 do TC nº 2014.8432.06/22	148

Gráfico 4.14 – Curva de saturação do enrolamento 2 do TC nº 2014.8432.06/22	.148
Gráfico 4.15 – Curva de saturação do enrolamento 3 do TC nº 2014.8432.06/22	.149
Gráfico 4.16 – Curva de saturação do enrolamento 4 do TC nº 2014.8432.06/22	.149
Gráfico 4.17 – Curva de saturação do enrolamento 5 do TC nº 2014.8432.06/22	.150
Gráfico 4.18 – Curva de saturação do enrolamento 6 do TC nº 2014.8432.06/22	.150

Sumário

1 II	NTRODUÇÃO	19
1.1	Objetivos do Trabalho	22
1.1.1	Objetivo Geral	22
1.1.2	Objetivos Específicos	22
1.2	Metodologia	23
1.3	Motivação	24
1.4	Resultados Esperados	25
1.5	Trabalhos Correlacionados	25
1.6	Estrutura do Trabalho	26
2 R	EFERENCIAL TEÓRICO	27
2.1	Transformador	27
2.1.1	Transformador a Vazio	28
2.1.2	Transformador em Carga	30
2.2	Transformador para Instrumento	34
2.3	Transformador de Corrente	34
	Norma Associada	
2.3.2	Classificação dos TC's	38
2.3.2.	1 Transformadores de Corrente destinados à Medição	38
2.3.2.	2 Transformadores de Corrente destinados à Proteção	38
2.3.3	Tipos dos TC's	39
2.3.3.	1 TC tipo enrolado	39
2.3.3.	2 TC tipo barra	39
2.3.3.	3 TC tipo janela	40
2.3.3.	4 TC tipo bucha	40
2.3.3.	5 TC com núcleo separável	41
2.3.3.	6 TC com vários enrolamentos primários	42
2.3.3.	7 TC com vários núcleos	42
2.3.3.		
	8 TC de múltipla relação	42
2.3.3.	9 TC tipo pedestal	43
2.3.3. 2.3.4	9 TC tipo pedestal	43 44
2.3.3. 2.3.4	9 TC tipo pedestal	43 44
2.3.3.2.3.4.2.3.4.	9 TC tipo pedestal	43 44 44 45
2.3.3.2.3.4.2.3.4.	9 TC tipo pedestal	43 44 44 45

2.3.4.	4 Carga Nominal	49
2.3.4.	5 Classe de Exatidão	50
2.3.4.	5.1 TC para serviço de medição	50
2.3.4.	5.2 TC para serviço de proteção	55
2.3.4.	6 Fator de Sobrecorrente Nominal	56
2.3.4.	7 Fator Térmico Nominal	57
2.3.4.	8 Corrente de Curta Duração	58
2.3.4.	9 Corrente Térmica Nominal	58
2.3.4.	10 Corrente Dinâmica Nominal	58
2.3.5	Erros do TC	58
2.3.5.	1 Erro de Corrente	58
2.3.5.	2 Erro de Corrente Composta	59
2.3.6	Número de Núcleos para Proteção e Medição	59
2.3.7	Circuito Equivalente	60
2.3.8	Polaridade	61
2.3.9	Marcação de terminais do TC	62
2.3.10	Curva de Excitação do TC	63
2.3.11	Saturação do TC	64
3 E	NSAIOS	66
3.1	Detalhe dos TC's	67
3.2	CPC 100 – OMICRON	70
3.2.1	Ensaio de Resistencia de Isolação CA	74
3.2.2	Ensaio de Relação de Transformação	78
3.2.3	Ensaio de Resistência Ôhmica	81
3.2.4	Ensaio de Saturação	85
3.3	MIC 5005 - Sonel	88
3.3.1	Ensaio de Isolamento CC	89
4 R	ESULTADOS OBTIDOS	92
4.1	Resultado do Ensaio de Resistência de Isolação CA	92
4.2	Resultado do Ensaio de Relação de Transformação	96
4.3	Resultado do Ensaio de Resistência Ôhmica	126
4.4	Resultado do Ensaio de Saturação	135
4.5	Resultado de Isolamento CC	151
5 C	ONCLUSÃO	155
5.1	Trabalhos Futuros	156
REFE	RÊNCIAIS	157

1 INTRODUÇÃO

O sistema elétrico precisa ser modernizado para garantir a segurança da operação do Sistema Interligado Nacional (SIN). O Operador Nacional do Sistema Elétrico (ONS) direciona para Agencia Nacional de Energia Elétrica (ANEEL) um conjunto de melhorias necessárias para serem modernizadas, conhecido como Plano de Modernização de Instalações (PMI), deste modo, informa os locais que necessitam de implantação das ampliações e reforços para assegurar a confiabilidade do SIN (ONS, 2016).

Por conseguinte, a realização de manutenção em equipamentos é fundamental para a qualidade do sistema elétrico, eliminando os riscos de falhas nos equipamentos. A idade, o histórico de operações e a prática de manutenção são alguns dos fatores de funcionalidade dos equipamentos que influenciam no sistema (ONS, 2016).

O Sistema Elétrico de Potência (SEP) possui vários equipamentos com a função de gerar, transmitir e distribuir energia elétrica aos consumidores. Com finalidade de garantir essa transmissão e a distribuição em corrente alternada é necessário subestações para poder regular as tensões geradas, ter uma operação mais segura, diminuindo ou eliminando falhas na transmissão, ainda promove mais flexibilidade no sistema elétrico (DARIO FUCHS, 2015).

Em uma subestação existem equipamentos de proteção, medição e controle. Alguns dos equipamentos necessários em uma subestação são chaves seccionadoras, disjuntores e transformador de corrente, que estão ilustradas na Figura 1.1 (DARIO FUCHS, 2015).

Figura 1.1 – Linha de Transmissão de 500kV da Subestação Samambaia - DF.

Fonte: Elaboração Própria.

Os Transformadores para Instrumento conectam com equipamentos de medição, controle e proteção, sendo eles de suma importância para o funcionamento do sistema. Existe dois tipos de transformadores para instrumento, o transformador de potencial (TP) e transformador de corrente (TC), eles funcionam mudando a magnitude para adequar aos relés ou outro tipo de medição (MEDEIROS FILHO, 1997).

O TC possui a finalidade de alimentar instrumentos de medição, controle e proteção, proporcionando o funcionamento adequado dos instrumentos. No qual, o seu enrolamento primário está conectado em série com o circuito elétrico e o enrolamento secundário é ligado a instrumentos de proteção e medição, que são instrumentos com baixa resistência elétrica, essa ligação do primário com o secundário é por meio do fenômeno de conversão eletromagnética (MAMEDE FILHO, 2013).

Antes de instalar os equipamentos em uma subestação é necessário realizar ensaios nestes, para garantir a segurança e a confiabilidade do sistema. Os ensaios são realizados conforme a norma NBR 6856/2015, que prescreve os métodos para execução dos ensaios em transformadores de corrente. Com os ensaios adequado e uma metodologia eficaz, há a certificação que o equipamento está apto para a instalação no sistema elétrico (ABNT, 2015).

Nos testes realizados durante os ensaios são utilizados o CPC 100, do fabricante OMICRON, e o MIC-5005, do fabricante Sonel, as respectivas imagens dos instrumentos de medição estão mostrados nas Figuras 1.2 e 1.3. Por meio desses instrumentos de medição, são realizados os ensaios necessários para a

confiabilidade do equipamento. Porém, existem outros instrumentos de medição, de marcas diferentes, que realizam a mesma função. Segundo o fabricante OMICRON, o CPC 100 pode realizar os seguintes testes em TC: resistência de isolação CA, relação de transformação, resistência ôhmica, saturação, polaridade, entre outros. No equipamento MIC-5005, são realizados os testes de resistência de isolação CC de 5kV e 500V.

Figura 1.2 – CPC 100 Omicron.

Fonte: Elaboração Própria.

Fonte: Elaboração Própria.

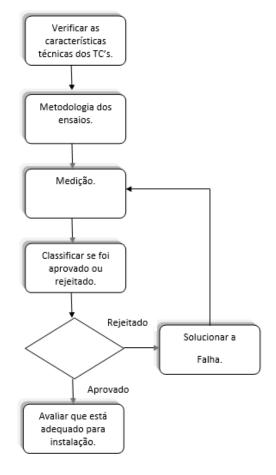
O propósito deste trabalho é corroborar as condições operacionais dos TCs, que serão instalados na linha de transmissão de 138kV, por meio de ensaios que estão em conformidade com a NBR 6856/2015. Os instrumentos de medição CPC 100 e MIC-5005 serão utilizados para verificar se os TC's estão aptos para serem instalados, executando os ensaios de resistência de isolação CA, fator de potência, resistência de isolação CC, relação de transformação, medição de resistência ôhmica, polaridade e saturação, dessa forma é esperado assegurar a confiabilidade do equipamento, garantindo a segurança do sistema elétrico.

1.1 Objetivos do Trabalho

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é certificar as condições operacionais de instalação dos equipamentos TC's para linha de transmissão de 138kV, verificando se seus parâmetros estão adequados para o sistema elétrico.

1.1.2 Objetivos Específicos


- Identificar as características operacionais dos TC's;
- Descrever os ensaios realizados, baseado nas normas;
- Verificar a qualidade do isolamento do TC, por meio de ensaio;
- Examinar a relação entre espiras dos enrolamentos primário e secundário do TC:
- Identificar as características de excitação do núcleo de proteção do TC;
- Analisar a resistência de isolamento e dos enrolamentos secundários do TC;
- Relatar as condições operacionais do TC, avaliando se possui as condições adequadas para a instalação.

1.2 Metodologia

O procedimento utilizado no projeto é do tipo qualitativo, ou seja, identificar hipóteses de um problema, por meio de ensaios que foi realizado no equipamento TC da subestação do sistema elétrico. Nesse contexto, a técnica empregada visa atingir os objetivos específicos e para tal, o projeto é dividido nas etapas:

- 1ª Etapa: Revisar a bibliografia e aprofundar os conhecimentos em transformador de corrente, aprofundar o estudo da NBR 6856. Esta norma estabelece as características de desempenho de TC, nos serviços de medição e proteção.
- 2ª Etapa: Esquematizar os ensaios realizados no TC, com base na norma, permitindo verificar e avaliar a qualidade e o desempenho do mesmo.
- 3ª Etapa: Analisar e avaliar os equipamentos de teste utilizados para os ensaios.
- 4ª Etapa: Realizar os ensaios em campo nos equipamentos, tendo como base as especificações da norma sobre os ensaios.
- 5ª Etapa: Avaliar se os TC's analisados estão aptos para serem instalados com base nos ensaios realizados.

A Figura 1.4 mostra a metodologia que é utilizada para a concepção do trabalho (OMICRON, 2015) de uma forma simplificada.

Figura 1.4 – Esquemático do Projeto.

Fonte: Elaboração Própria.

Primeiramente, é verificado as características técnicas dos TC's, por meio das informações do fabricante. Em seguida, identificado a metodologia dos ensaios necessários para certificar se o TC obtém as condições operacionais adequadas para a instalação.

Assim, realização dos testes nos TCs, posteriormente classificando se o equipamento foi aprovado ou rejeitado. Se rejeitado, solucionar a falha, logo após, realizando os ensaios e classificando novamente. Entretanto, se for aprovado, avaliar que o equipamento está adequado para a instalação eletromecânica.

1.3 Motivação

Almeja-se a garantia de um melhor funcionamento do sistema elétrico de potência, em razão disso, a realização de modernização nos equipamentos é necessária, por isso é essencial execução de ensaios para tal garantia. Além do

mais, a modernização do sistema elétrico preserva a segurança dos funcionários envolvidos e do sistema elétrico.

1.4 Resultados Esperados

Esse trabalho visa aprofundar o conhecimento sobre o equipamento TC. Consequentemente, realização de testes nos mesmos, sendo em conformidades com a norma já citada, para uma modernização do sistema elétrico.

Almejando a identificação dos equipamentos com falhas. Com o intuito de instalar um equipamento com confiabilidade no sistema elétrico, garantindo segurança não só para o sistema elétrico, como também para os funcionários envolvidos, nas manutenções e operações.

1.5 Trabalhos Correlacionados

Em relação aos outros temas, existem poucos trabalhos de conclusão de curso sobre ensaios de equipamentos transformador de corrente de alta tensão, por precisar de informações internas das empresas que normalmente não são divulgados.

Em junho de 2017, Sppezapria apresentou um trabalho sobre métodos de ensaio aplicados na manutenção de transformadores de corrente de alta tensão, realizando um documento em forma de instrução para a realização dos principais ensaios e métodos de manutenção aplicados nos transformadores de corrente, com realização prática dos ensaios.

De outra forma, Leite realizou, em fevereiro de 2017, o trabalho com o objetivo de propor uma Instrução Técnica de Comissionamento – ITC, sendo um manual de comissionamento, possuindo roteiros de ensaios para a realização do comissionamento no transformador estudado.

Em janeiro de 2015, Nascimento realizou um trabalho de conclusão de curso com o objetivo de realizar uma manutenção preditiva nos transformadores de corrente, avaliando o fator de potência por meio do instrumento de medição CPC-

100. For fim, comparando o resultado entre um transformador com falha e em condições normais.

Porém, neste trabalho observa-se realizar os ensaios adequados para avaliar as condições operacionais dos TC's, segundo a NBR 6856/2015, utilizando equipamentos modernos para os testes e uma metodologia eficaz. Assim, garantindo a segurança e a confiabilidade da subestação onde será instalada os TC's analisados.

1.6 Estrutura do Trabalho

A organização desse trabalho é por meio de cinco capítulos, nos quais são distribuídos da seguinte maneira:

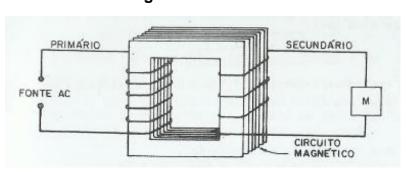
Capítulo 1 – composto pela introdução ao tema, objetivos geral e específicos do trabalho, metodologia utilizada para a sua realização, motivação dos mesmos, resultados esperados do trabalho e trabalhos correlacionados.

Capítulo 2 – constituído pelo referencial teórico, no qual apresenta o conteúdo teórico necessário para a realização e o entendimento do trabalho.

Capítulo 3 – relata a metodologia dos ensaios realizados nos transformadores de corrente.

Capítulo 4 – expõe os resultados obtidos nos ensaios, bem como a avaliação dos equipamentos.

Capítulo 5 – retrata as considerações finais, conclusões e comentários sobre o trabalho desenvolvido, juntamente com as recomendações de melhorias para trabalhos futuros.

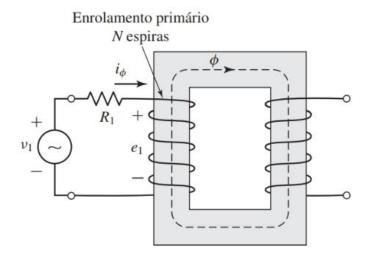

2 REFERENCIAL TEÓRICO

Neste capítulo é tratado o conteúdo teórico necessário para o entendimento e realização deste trabalho. Assim, é apresentado as principais características do transformador de corrente, baseado principalmente na norma ABNT NBR 6856 (2015).

2.1 Transformador

O transformador é um equipamento elétrico que recebe e fornece energia elétrica. Ele é composto por pelo menos dois circuitos elétricos, acoplados por meio de um circuito magnético comum. Esses circuitos elétricos são bobinas de fio de cobre, geralmente o número de espiras de cada circuito é diferente. No entanto, o circuito magnético é mais eficiente usando um núcleo de ferro ou de algum material ferromagnético, como por exemplo, o núcleo formado por chapas de ferrosilício justapostas, mostrada na Figura 2.1 abaixo, porém estão isoladas entre si, para reduzir as perdas por correntes de Foucault (MEDEIROS FILHO, 1997).

O enrolamento conectado com a fonte elétrica, no geral é chamado de enrolamento primário, logo o enrolamento conectado a carga é, geralmente, chamado de enrolamento secundário. Se o enrolamento primário for alimentado por uma fonte de tensão alternada, irá produzir um fluxo magnético alternado, sendo que a amplitude dependerá da tensão do primário, da frequência da tensão aplicada e do número de esperas. Esse fluxo magnético comum induz uma tensão no secundário, cuja amplitude depende do número de espiras do enrolamento secundário, da magnitude do fluxo magnético comum e da frequência (UMANS, 2014).


Figura 2.1 – Transformador.

Fonte: (MEDEIROS FILHO, 1997).

2.1.1 Transformador a Vazio

Considerando um transformador com o seu circuito primário alimentado por uma tensão alternada v_1 e o circuito secundário aberto, esquematizado na Figura 2.2. A corrente de excitação i_{φ} , corresponde ao valor líquido de ampère-espiras que atua no circuito magnético, neste caso de valor muito pequeno, em regime estacionário, percorre no circuito primário e estabelece um fluxo alternado no o circuito magnético, induzindo uma FEM no circuito primário e secundário (FITZGERALD, 2008).

Figura 2.2 – Transformador com secundário aberto.

Fonte: (FITZGERALD, 2008).

$$e_1 = \frac{d\lambda_1}{dt} = N_1 \frac{d\varphi}{dt}$$

Onde

 λ_1 = fluxo concatenado do enrolamento primário;

 φ = fluxo no núcleo enlaçando ambos os enrolamentos;

 N_1 = número de espiras do enrolamento primário.

A tensão e_1 é em volts (V) e o fluxo φ é em webers. Essa FEM, juntamente com a queda de tensão na resistência primária R_1 , como mostra na Figura 2.2,

precisa de igualar a tensão aplicada v_1 . Com isso, desprezando os efeitos do fluxo disperso do primário, temos:

$$v_1 = R_{1*}i_{\varphi} + e_1$$

Em transformadores comuns, o fluxo de dispersão do primário é desprezado, por ter uma porcentagem pequena no fluxo do núcleo. A maior parte dos transformadores de grande porte, a queda de tensão a vazio na resistência do primário é muito pequena. Além da FEM induzida e_1 igualar bem próximo da tensão aplicada v_1 . Ademais, as formas de onda de tensão e do fluxo são quase senoidais. Assim, se o fluxo instantâneo φ for:

$$\varphi = \phi_{max} * \sin \omega t$$

Assim, a tensão induzida e_1 será:

$$e_1 = N_1 * \frac{d\varphi}{dt} = \omega N_1 \phi_{max} * \cos \omega t$$

Onde

 ϕ_{max} = valor máximo do fluxo;

 $\omega = 2\pi f$, em que f é a frequência em Hz;

A FEM induzida e_1 está adiantada 90° em relação ao fluxo. O valor eficaz de e_1 é:

$$E_1 = \frac{2\pi}{\sqrt{2}} f N_1 \phi_{max} = \sqrt{2\pi} f N_1 \phi_{max}$$

De acordo como mencionado anteriormente, se a queda de tensão na resistência do primário for desprezível, a força contraeletromotriz (FCEM) será igual a tensão aplicada. Assim, quando uma tensão senoidal é aplicada no enrolamento, o fluxo que estabelece no núcleo deve ser máximo ϕ_{max} , de modo que E_1 é igual a tensão aplicada eficaz V_1 .

$$\phi_{max} = \frac{V_1}{\sqrt{2}\pi f N_1}$$

Diante disso, o fluxo do núcleo é determinado apenas pela tensão aplicada, frequência e número de espiras do enrolamento. A Figura 2.3 representa o diagrama

fasorial sem carga, que é uma representação em forma vetorial as relações de fase entre várias tensões e correntes de um sistema.

 \hat{I}_{m} \hat{I}_{p}

Figura 2.3 – Diagrama fasorial sem carga.

Fonte: (FITZGERALD, 2008).

Onde

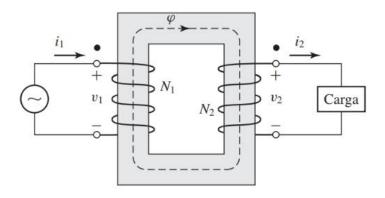
 \hat{E}_1 = FEM eficaz induzida;

 ϕ = fluxo;

 $\theta_{\mathcal{C}}$ = ângulo de atraso da FEM induzida \hat{E}_1 ;

 $\hat{\mathbf{l}}_{\varphi}$ = corrente senoidal equivalente eficaz de excitação;

 $\hat{I}_{\mathcal{C}}$ = componente de perdas no núcleo da corrente de excitação, em fase com $\hat{E}_1;$


 \hat{I}_m = corrente senoidal equivalente com o mesmo valor eficaz que a corrente de magnetização, em fase com o fluxo.

2.1.2 Transformador em Carga

Considerando um transformador com o seu enrolamento primário possuindo N_1 espiras, alimentado por uma tensão alternada v_1 e o circuito secundário possuindo um enrolamento com N_2 número de espiras, como mostra o esquemático da Figura 2.4. Supondo que todo o fluxo está confinado ao núcleo, que não há perdas no núcleo, permeabilidade do núcleo alta, resistência dos enrolamentos são

desprezíveis, essas características designa um transformador ideal (FITZGERALD, 2008).

Figura 2.4 – Transformador em carga.

Fonte: (FITZGERALD, 2008).

Aplicando uma tensão v_1 variável aos terminais do circuito primário, um fluxo deve ser estabelecido no núcleo, tornando a força contraeletromotriz FCEM e_1 igual a aplicada v_1 . Assim,

$$v_1 = e_1 = N_1 \frac{d\varphi}{dt}$$

Do mesmo modo, o fluxo do núcleo provoca uma FEM induzida e_2 e assim como ocorreu no circuito primário, uma tensão v_2 igual a e_2 nos terminais do secundário.

$$v_2 = e_2 = N_2 \frac{d\varphi}{dt}$$

Semelhante a um transformador ideal, a razão da transformação de tensão é direta com as espiras de seus enrolamentos, como mostra na equação a seguir:

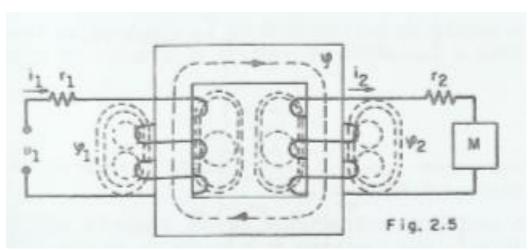
$$\frac{v_1}{v_2} = \frac{N_1}{N_2}$$

Conforme a Figura 2.4, assumindo uma carga nos terminais do circuito secundário que consome uma corrente i_2 . A corrente da carga produz uma FMM N_2i_2 no secundário do transformador. Porém, o fluxo no núcleo não é alterado pela

presença de uma carga no secundário. Assim, a FMM líquida que atua no núcleo deve permanecer desprezível, tendo que satisfazer a equação:

$$N_1 i_1 - N_2 i_2 = 0$$

Assim, qualquer mudança na FMM circulada no secundário, decorrente da carga no circuito secundário, se faz acompanhada de uma mudança correspondente na FMM do primário. As correntes da FMM de i_1 e i_2 estão com sentidos opostos entre si, como nas equações a seguir:


$$N_1 i_1 = N_2 i_2$$

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

Observando as equações anteriores, percebe-se que a potência instantânea de entrada do primário é igual a potência instantânea de saída do enrolamento secundário, conforme a equação abaixo.

$$v_1 i_1 = v_2 i_2$$

Consideramos, até o momento, um transformador ideal, não possuindo nenhuma perda. Porém, na realidade, existe dispersão de fluxo tanto no circuito primário, quanto no secundário, ou seja, no primário e no secundário existe linhas de fluxos próprias, φ_1 e φ_2 , como ilustrada na Figura 2.5 (MEDEIROS FILHO, 1997).

Figura 2.5 – Transformador com carga.

Fonte: (MEDEIROS FILHO, 1997).

Conforme mostra a Figura 2.5, além do fluxo φ que é comum entre os dois circuitos, no primário existe o fluxo de dispersão φ_1 que lhe auto induzirá a FEM e_1 .

Igualmente ocorre no secundário, no qual existe o fluxo de dispersão φ_2 que lhe auto induzirá a FEM e_1 . Essa FEM pode ser considerada como originada em uma pequena bobina, de coeficiente l_1 , em serie com a bobina primária.

$$e_1 = -N_1 * \frac{d\varphi_1}{dt} = -l_1 * \frac{di_1}{dt}$$

$$e_2 = -N_2 * \frac{d\varphi_2}{dt} = -l_2 * \frac{di_2}{dt}$$

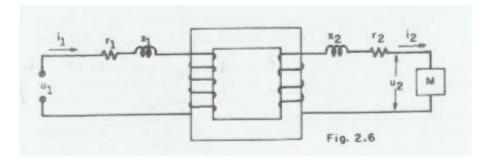
Considerando $i_1 = I_{1m} \sin(\omega t - \theta_1)$ e $i_2 = I_{2m} \sin(\omega t - \theta_2)$, obtemos:

$$e_1 = -\omega l_1 I_{1m} \sin(\omega t - \theta_1)$$

$$e_2 = -\omega l_2 I_{2m} \sin(\omega t - \theta_2)$$

Onde, $\omega l_1 = x_1$ e $\omega l_2 = x_2$ são as "reatâncias de fuga" ou "reatância de dispersão" do circuito primário e secundaria, respectivamente. Assim, os valores eficazes serão:

$$E_1 = x_1 I_1 e E_2 = x_2 I_2$$


Levando em consideração as resistências do primário e do secundário, temos as seguintes expressões:

$$U_1 = -E_1 + r_1I_1 = -E_1 + r_1I_1 + jx_1I_1$$

$$U_2 = -E_2 + r_2 I_2 = -E_2 + r_2 I_2 + j x_2 I_2$$

A representação esquemática real de um transformador, com todos os seus elementos considerados, está representado na Figura 2.6.

Figura 2.6 – Representação esquemática de um transformador real.

Fonte: (MEDEIROS FILHO, 1997).

2.2 Transformador para Instrumento

Segundo Medeiros Filho (1997), os transformadores para instrumentos são equipamentos elétricos projetados para alimentar instrumentos elétricos de medição, controle e proteção. Existem dois tipos de transformadores para instrumento: transformador de potencial (TP) e o transformador de corrente (TC).

O enrolamento primário do TP é ligado em derivação com o circuito elétrico. A tensão obtida no secundário é reduzida em relação a tensão do primário, no qual se destina a alimentar os instrumentos elétricos. O TC será especificamente tratado neste trabalho (FRONTIN, 2013).

2.3 Transformador de Corrente

O transformador de corrente é um equipamento elétrico designado para promover o funcionamento adequado dos instrumentos de medição, controle e proteção, que não suportam as elevadas correntes do circuito elétrico, também chamado de circuito de alta-tensão ou de potência. Desta forma, os TC's são destinados a suprir equipamentos que possuem baixa resistência elétrica, como por exemplo, relés, multimedidores, amperímetro e wattímetro. Deste modo, o TC proporciona um isolamento contra alta-tensão do circuito primário (MAMEDE FILHO, 2013).

O circuito primário do TC é ligado em série com o circuito de alta-tensão, constituindo-se por um número pequeno de espiras, normalmente com uma espira. Por meio do fenômeno de conversão eletromagnético, a corrente elevada que circula no enrolamento primário, vindo do circuito elétrico, transforma em corrente com menor intensidade nos enrolamentos secundários, sendo que a corrente secundária nominal é padronizada, em geral, de 5 A, corrente que é adequada para alimentar os instrumentos com baixa resistência. Diferente do enrolamento primário, o enrolamento secundário possui elevado número de espiras, como mostra na Figura 2.7 a esquematização do TC (MEDEIROS FILHO, 1997).

TC 77 2 Fig. 2.20

Figura 2.7 – Esquemático do Transformador de Corrente.

Fonte: (MEDEIROS FILHO, 1997).

A corrente secundária do TC é proporcional à sua corrente primária, que são inversamente proporcionais aos seus números de espiras. Desprezando a corrente de magnetização, a equação abaixo representa o equilíbrio do funcionamento do TC. No entanto, quando se considera a corrente de magnetização do núcleo, ocorrerá um pequeno erro na transformação das correntes, esses erros são identificados como erro de relação e erro de fase. A classificação dos TC's é relacionada quanto a estes erros (MEDEIROS FILHO, 1997).

$$N_1 * I_1 = N_2 * I_2 \text{ ou } \frac{I_1}{I_2} = \frac{N_2}{N_1}$$

onde:

 I_1 = corrente do circuito primário

 I_2 = corrente do circuito secundário

 N_1 = número de espiras do enrolamento primário

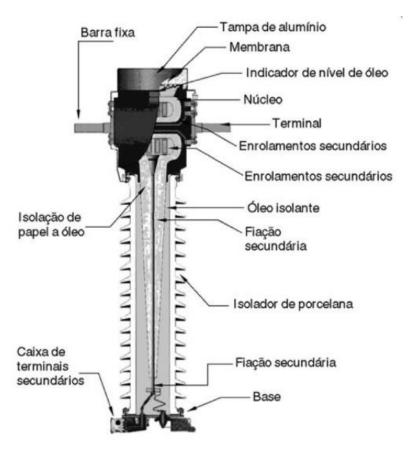
 N_2 = número de espiras do enrolamento secundário

Como o TC trabalha com tensão variável, quando no circuito primário percorre por uma corrente nominal para o TC construído para 5 A, no seu circuito secundário tem-se 5 A. Porém, quando no circuito primário percorre uma corrente diferente da nominal, no secundário também terá uma corrente diferente da sua nominal, entretanto, na mesma proporção das correntes nominais do TC utilizado (MEDEIROS FILHO, 1997).

A relação de transformação nominal pertinente a relação entre as correntes nominais do primário e do secundário é de acordo com a norma ABNT NBR 6856:2015, como o Quadro 2.1, que mostra as correntes primárias nominais e as relações nominais padronizadas para TC's fabricados em linha normal no Brasil (ABNT, 2015).

Quadro 2.1 – Correntes primárias nominais e relações para TC's.

Corrente primária nominal (A)	Relação nominal (5 A)	Relação nominal (1 A)	Corrente primária nominal (A)	Relação nominal (5 A)	Relação nominal (1 A)	Corrente primária nominal (A)	Relação nominal (5 A)	Relação nominal (1 A)
5	1:1	5:1	100	20:1	100:1	1 200	240:1	1 200:1
10	2:1	10:1	150	30:1	150:1	1 500	300:1	1 500:1
15	3:1	15:1	200	40:1	200:1	2 000	400:1	2 000:1
20	4:1	20:1	250	50:1	250:1	2 500	500:1	2 500:1
25	5:1	25:1	300	60:1	300:1	3 000	600:1	3 000:1
30	6:1	30:1	400	80:1	400:1	4 000	800:1	4 000:1
40	8:1	40:1	500	100:1	500:1	5 000	1 000:1	5 000:1
50	10:1	50:1	600	120:1	600:1	6 000	1 200:1	6 000:1
60	12:1	60:1	800	160:1	800:1	8 000	1 600:1	8 000:1
75	15:1	75:1	1 000	200:1	1 000:1	10 000	2 000:1	10 000:1


Fonte: (ABNT, 2015).

Tendo em vista que a tensão do sistema elétrico é extremamente superior em relação à queda de tensão provocada pelo TC, pode-se considerar a corrente primária como constante, independente da carga ligada no seu circuito secundário. Consequentemente, a corrente primária do TC é dependente da carga do sistema elétrico, desta forma, a corrente do secundário é uma consequência do primário, não tendo influência dos instrumentos elétricos ligados no seu secundário (MEDEIROS FILHO, 1997).

O princípio de funcionamento do TC está conforme a Figura 2.7, onde a corrente I_1 alternada, que percorre o enrolamento primário, gera no circuito magnético um fluxo ao circular pelo núcleo do TC passa pelas bobinas do enrolamento secundário, provocando uma indução nessa diferença de potencial. Com o secundário ligado à instrumentos, faz circular uma corrente I_2 , com valor proporcional a I_1 (FURNAS, 2014).

A Figura 2.8 mostra os detalhes construtivos de um tipo de TC, vista em corte. O núcleo do equipamento possui uma forma toroidal, enrolado com tira de aço silício, em geral, os TC's podem conter até quatro núcleos. O enrolamento é

distribuído ao redor do núcleo de modo uniforme, no qual, o enrolamento secundário é composto por fio esmaltado e isolado por meio de tecido de algodão (MAMEDE FILHO, 2013).

Figura 2.8 – Detalhes construtivos do Transformador de Corrente.

Fonte: (MAMEDE FILHO, 2013).

2.3.1 Norma Associada

As especificações e aplicações dos TC's devem seguir as regras e padrões definidos em normas técnicas. No Brasil, a norma utilizada para esta finalidade é a ABNT NBR 6856/2015: Transformador de corrente – Especificação e ensaio, no qual expõe das especificação e ensaios aplicados a estes equipamentos.

Entre as normas internacionais, referentes aos TC's convencionais, tem-se: ANSI/IEEE c57.13/2003: Standard Requirements for Instrument Transformers, ANSI/IEEE c37.110/2007: Guide for the Application of Current Transformers used for Instrument Transformers, IEC 60044-1: Instruments Transformers – Part 1: Current

Transformers e IEC 60044-6: Instruments Transformers – Part 6: Requirements for Protective Current Transformers for Transient Performance.

2.3.2 Classificação dos TC's

Os TC's são classificados em dois tipos, TC para serviço de Medição e TC para serviço de Proteção, segundo (ABNT, 2015). Os TC's devem ser fabricados de acordo com a sua destinação no circuito onde será instalado, sendo ela para medição ou proteção.

2.3.2.1 Transformadores de Corrente destinados à Medição

Como a sua finalidade é alimentar instrumentos de medição diversos, incluindo para faturamento, este TC deve retratar com bastante precisão as correntes do circuito, segundo a ABNT, este valores variam entre 0,1 e 1 vez a corrente nominal. Projetados para saturarem com correntes acima da nominal, com finalidade de proteger os instrumentos de medição conectados a ele, em virtude de que as correntes de curto-circuito não serão transformadas na mesma proporção para o circuito secundário (FURNAS, 2014).

Eventualmente, são utilizados TC's do tipo com vários núcleos, uns destinados à medição de energia e outros para serviços de proteção (MAMEDE FILHO, 2013).

2.3.2.2 Transformadores de Corrente destinados à Proteção

Neste caso são os TC's projetados para alimentação de relés, capazes de transformar elevadas correntes de sobrecarga ou de curto-circuito em correntes com valores menores, assegurando a segurança aos operadores e na manutenção do mesmo. Possui nível de saturação elevada, igual a 20 vezes a corrente nominal, diferentemente do TC destinado à medição, que possui nível de saturação 4 vezes a corrente nominal (MAMEDE FILHO, 2013).

2.3.3 Tipos dos TC's

Tipos dos TC's quanto a sua construção mecânica, segundo a ABNT (2015), são classificados com dos tipo: enrolado, barra, janela, bucha, com núcleo separável, com vários enrolamentos primários, com vários núcleos, de múltipla relação e pedestal.

2.3.3.1 TC tipo enrolado

O enrolamento primário do TC é construído de um ou mais espiras envolvidas mecanicamente ao núcleo do transformador, exposto na Figura 2.9.

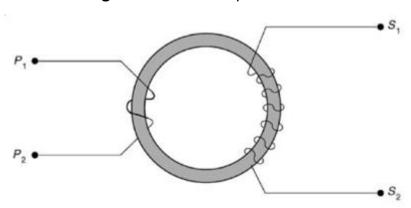


Figura 2.9 – TC do tipo enrolado.

Fonte: (MAMEDE FILHO, 2013).

2.3.3.2 TC tipo barra

O primário do TC é constituído por uma barra, montada fixamente através do núcleo do transformador, como mostra a Figura 2.10.

Barra fixa

Figura 2.10 – TC do tipo barra.

Fonte: (MAMEDE FILHO, 2013).

2.3.3.3 TC tipo janela

Como mostra a Figura 2.11, o TC não possui enrolamento primário próprio, ele é construído de uma abertura através do núcleo, por onde passa um condutor do circuito primário, composto por uma ou mais espiras.

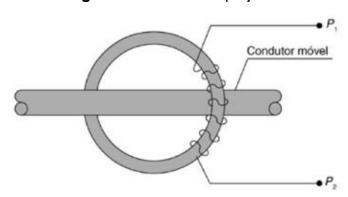


Figura 2.11 – TC do tipo janela.

Fonte: (MAMEDE FILHO, 2013).

2.3.3.4 TC tipo bucha

As suas características são semelhantes às do TC tipo barra, destinado para ser instalado sobre uma bucha de um equipamento elétrico, sendo parte integrante do equipamento instalado. A Figura 2.12 ilustra esse tipo de TC.

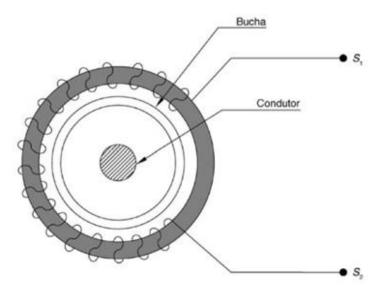


Figura 2.12 – TC do tipo bucha.

Fonte: (MAMEDE FILHO, 2013).

2.3.3.5 TC com núcleo separável

As suas características são semelhantes às do TC tipo barra, sendo que o núcleo no qual está enrolado o secundário pode ser separado para facilitar o envolvimento do condutor primário, como mostra a Figura 2.13

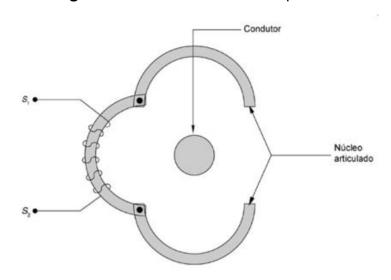


Figura 2.13 – TC com núcleo separável.

Fonte: (MAMEDE FILHO, 2013).

2.3.3.6 TC com vários enrolamentos primários

O TC possui vários enrolamentos primários distintos e isolados entre si, ilustrado na Figura 2.14.

S, • P, S, • P₂

Figura 2.14 – TC com vários enrolamentos primários.

Fonte: (MAMEDE FILHO, 2013).

2.3.3.7 TC com vários núcleos

Transformador de corrente com vários enrolamentos secundários isolados entre si, montados cada um com seu próprio núcleo. Ilustrado na Figura 2.15.

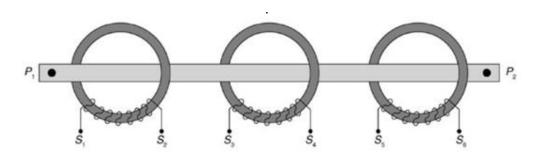


Figura 2.15 – TC com núcleo núcleos

Fonte: (MAMEDE FILHO, 2013).

2.3.3.8 TC de múltipla relação

Transformador de corrente com vários relações no enrolamento secundário conectado no enrolamento primário. Conforme a Figura 2.16.

 P_1 S_1 S_2 S_3 S_4

Figura 2.16 – TC com múltipla relação.

Fonte: (MAMEDE FILHO, 2013).

2.3.3.9 TC tipo pedestal

Transformador de corrente possui um suporte para o condutor primário. Conforme a Figura 2.17.



Figura 2.17 – TC tipo pedestal.

Fonte: (MAMEDE FILHO, 2013).

2.3.4 Valores Nominais

2.3.4.1 Corrente Nominal e Relação Nominal

As correntes nominais, do primário e secundário, e as relações nominais são padronizadas por norma. Segundo a ABNT (2015), a corrente nominal no secundário do TC é padronizada por 1 e 5 A.

Na norma NBR 6856 padroniza as correntes primarias nominais e as relações nominais para transformadores de corrente, como mostra nos Quadro 2.1, 2.2 e 2.3. O Quadro 2.4 mostra os sinais definidas pela ABNT, para representar a corrente nominal e relações nominais da corrente.

Quadro 2.2 – Correntes Primárias Nominais e Relações Nominais Duplas.

Corrente Primária Nominal	Relação Nominal	Relação Nominal
A	5A	1A
5 x 10	1 x 2:1	5 x 10:1
10 x 20	2 x 4:1	10 x 20:1
15 x 30	3 x 6:1	15 x 30:1
20 x 40	4 x 8:1	20 x 40:1
25 x 50	5 x 10:1	25 x 50:1
30 x 60	6 x 12:1	30 x 60:1
50 x 100	10 x 20:1	50 x 100:1
75 x 150	15 x 30:1	75 x 150:1
100 x 200	20 x 40:1	100 x 200:1
150 x 300	30 x 60:1	150 x 300:1
200 x 400	40 x 80:1	200 x 400:1
250 x 500	50 x 100:1	250 x 500:1
300 x 600	60 x 120:1	300 x 600:1
400 x 800	80 x 160:1	400 x 800:1
500 x 1000	100 x 200:1	500 x 1000:1
600 x 1200	120 x 240:1	600 x 1200:1
800 x 1600	160 x 320:1	800 x 1600:1
1000 x 2000	200 x 400:1	1000 x 2000:1
1200 x 2400	240 x 480:1	1200 x 2400:1
1500 x 3000	300 x 600:1	1500 x 3000:1
2000 x 4000	400 x 800:1	2000 x 4000:1
2500 x 5000	500 x 1000:1	2500 x 5000:1

Fonte: Adaptado de (ABNT, 2015).

Quadro 2.3 – Correntes Primárias Nominais e Relações Nominais Triplas.

Corrente Primária Nominal	Relação Nominal 5A	Relação Nominal 1A
A	5A	1A
25 x 50 x 100	5 x 10 x 20:1	25 x 50 x 100:1
50 x 100 x 200	10 x 20 x 40:1	50 x 100 x 200:1
75 x 150 x 300	15 x 30 x 60:1	75 x 150 x 300:1
100 x 200 x 400	20 x 40 x 80:1	100 x 200 x 400:1
150 x 300 x 600	30 x 60 x 120:1	150 x 300 x 600:1
200 x 400 x 800	40 x 80 x 160:1	200 x 400 x 800:1
250 x 500 x 1000	50 x 100 x 200:1	250 x 500 x 1000:1
300 x 600 x 1200	60 x 120 x 240:1	300 x 600 1200:1
400 x 800 x 1600	80 x 160 x 320:1	400 x 800 x 1600:1
500 x 1000 x 2000	100 x 200 x 400:1	500 x 1000 x 2000:1
1000 x 2000 x 4000	200 x 400 x 800:1	1000 x 2000 4000:1

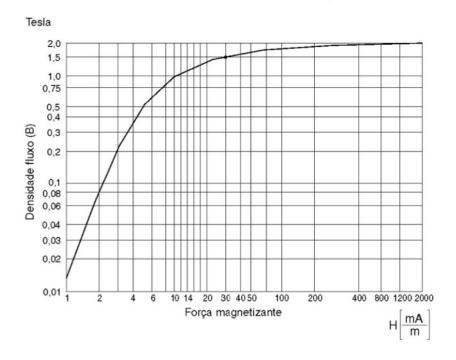
Fonte: Adaptado de (ABNT, 2015).

Quadro 2.4 – Sinais para representação de correntes e relação nominais para TC's.

Sinal	Função			
:	Representar relações nominais.			
_	Separar correntes nominais e relações nominais de enrolamentos diferentes.			
Х	Separar correntes nominais e relações nominais obtidas por religações em série ou em paralelo.			
/	Separar correntes nominais e relações nominais obtidas por derivações secundárias.			
//	Separar correntes nominais e relações nominais obtidas por derivações primárias.			

Fonte: Adaptado de (ABNT, 2015).

2.3.4.2 Corrente de Magnetização


A curva de magnetização de um TC destinado a serviço de proteção, representada pelo Gráfico 2.1, a tensão do joelho da curva equivale a densidade de fluxo de 1,5 tesla (T), ou seja, depois deste ponto ocorre a saturação do equipamento. A densidade do fluxo de magnetização do núcleo possui 1 tesla, a seção é de $1m^2$, por onde circula um fluxo Φ de 1 weber (Wb), a baixo mostra as relações de unidade (MAMEDE FILHO, 2013):

$$1T = \frac{1Wb}{1m^2}$$

$$1 T = 10^4 G (gauss)$$

$$G = \frac{n^{\circ} de \ linhas \ de \ fluxo}{cm^2}$$

Gráfico 2.1 – Curva de magnetização de um TC.

Fonte: (MAMEDE FILHO, 2013).

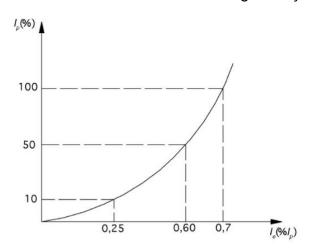
A corrente de magnetização é fornecida pelos fabricantes dos TC's, com ela é possível obter a tensão induzida no secundário e a corrente magnetizante correspondente. A corrente de magnetização pode ser apresentada por meio da equação a seguir, onde ela representa menos de 1% da corrente nominal primária, está equação considera o TC operando em carga nominal (MAMEDE FILHO, 2013).

$$I_e = K * H (mA)$$

Onde:

H – foça de magnetização.

K – valor que depende da distância do cominho magnético e do número de espiras, de acordo com a ordem de grandeza mostrada na Tabela 2.1.


Tabela 2.1 – Ordem de grandeza de K.

Ampères-espiras	Te	nsão nominal do TC (k	(V)
(AS)	15	34,5	72,6
100	10,3	16,6	25,0
200	5,2	8,3	12,5
300	3,4	5,5	8,3
400	2,6	4,2	6,3
500	2,0	3,3	5,0
600	1,7	2,8	4,2
800	1,3	2,1	3,2
1000	1,0	1,6	2,5

Fonte: (MAMEDE FILHO, 2013).

Por causa da não linearidade magnética dos materiais dos núcleos, a corrente de magnetização varia para cada TC. Conforme, a curva do Gráfico 2.2, a corrente de magnetização não cresce proporcionalmente quando a corrente primária cresce (MAMEDE FILHO, 2013).

Gráfico 2.2 – Curva de magnetização.

Fonte: (MAMEDE FILHO, 2013).

É importante frisar que o circuito secundário do TC não deve ficar aberto, quando o circuito primário estiver conectado com a rede, porque como não há força desmagnetizante no secundário para opor a força magnetizante do primário, causará elevadas corrente primárias que irão exercer um fluxo magnético no núcleo. Assim, ocorre a saturação do TC, resultando elevadas perdas por efeito Joule, perigo para os operadores e alteração nas características de exatidão do equipamento (MAMEDE FILHO, 2013).

2.3.4.3 Tensão Máxima e Nível de Isolamento

A tensão máxima do TC e o seu nível de isolamento é especificada pela norma NBR 6856. O Quadro 2.5 especifica os nível de isolamento tendo como base a sua tensão máxima suportável.

Quadro 2.5 – Nível de Isolamento nominal para equipamento tensão máxima ≤ 245kV.

Tensão máxima do equipamento Um	Tensão suportável nominal à frequência industrial durante 1 min	Tensão suportável nominal de impulso atmosférico
kV	kV	kV crista
0,6	4	-
1,2	10	30
3,6	10	20
٥,٥	10	40
7,2	20	40
<i>3</i> ₁ Z	20	60
12	28	60
	2.0	75
15	34	95
13	34	110
17,5	38	95
2,7	3.	110
24	50	125
24	30	150
36	70	170
.00	70	200
52	95	250
72,5	140	325
72,3	140	350
92,4	185	450
123	185	450
125	230	550
145	230	550
143	275	650
170	275	650
170	325	750
245	395	950
243	460	1050

Fonte: Adaptado de (ABNT, 2015).

2.3.4.4 Frequência Nominal

Normalmente, as frequências nominais dos TC's são de 50 e 60Hz. Dependendo da frequência que foi determinada no sistema elétrico do país, no caso do Brasil é de 60Hz (FRONTIN, 2013).

2.3.4.5 Carga Nominal

O transformador de corrente deve ser previamente projetado de acordo com a especificação da carga que será conectado no secundário. As cargas secundarias do TC são especificadas pela (ABNT, 2015), de acordo com a Tabela 2.2. Essas especificações estão considerando estar em uma frequência de 60Hz, corrente nominal no secundário de 5A e fator de potência normalizada.

Tabela 2.2 – Cargas Nominais para TC's a 60Hz e 5A.

Designação	Resistência	Indutância	Potência nominal	Fator de potência	Impedância
	Ω	mH	VA		Ω
C2,5	0,09	0,116	2,5	0,9	0,1
C5,0	0,18	0,232	5,0	0,9	0,2
C12,5	0,45	0,580	12,5	0,9	0,5
C25	0,50	2,300	25,0	0,5	1,0
C50	1,00	4,600	50,0	0,5	2,0
C100	2,00	9,200	100,0	0,5	4,0
C200	4,00	18,400	200,0	0,5	8,0

Fonte: (MAMEDE FILHO, 2013).

A norma da ABNT designa a carga pelo símbolo formado pela letra "C", seguida pela a sua potência em VA. Como por exemplo, considerando um TC C100, a impedância de carga nominal é de 4Ω , conforme a equação abaixo.

$$Z_s = \frac{P_{tc}}{I_s^2} = \frac{100}{5^2} = 4\Omega$$

No entanto, se a corrente nominal no secundário for diferente de 5 A, os valores das cargas da Tabela 2.2 devem ser multiplicadas pelo quadrado da relação entre 5ª e a corrente secundaria nominal do TC (ABNT, 2015).

Deve-se frisar que, se a carga conectada no secundário possuir um valor muito inferior do que a sua carga nominal, o TC pode sair de sua classe de exatidão. Podendo queimar os instrumentos conectados no secundário, já que a corrente de curto-circuito não estaria corretamente adequada para o TC (MAMEDE FILHO, 2013).

A tabela 2.3 indica as cargas médias dos principais aparelhos conectados nos terminais do secundário do TC. Considerando que os condutores de interligação sejam de 4, 6 e 10mm^2 e possua resistência ôhmica de , respectivamente, 5,5518, 3,7035 e 2,2221 $m\Omega/m$ (MAMEDE FILHO, 2013).

Tabela 2.3 – Cargas dos principais aparelhos para TC's.

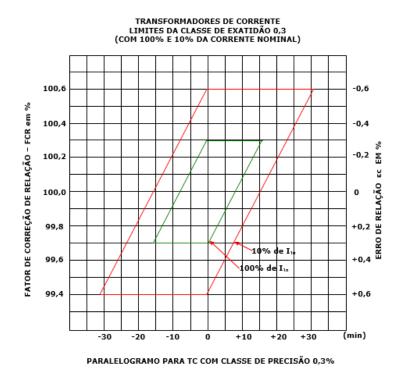
Annallina	Consumo aproximado (VA)		
Aparelhos	Eletromecânico	Digital	
Amperimetros registradores	15 a 5	0,15 a 3,5	
Amperímetros indicadores	3,5 a 15	1,0 a 2,5	
Wattimetros registradores	5 a 12	0,15 a 3,5	
Wattimetros indicadores	6 a 10	1 a 2,5	
Medidores de fase registradores	15 a 20	2,5 a 5	
Medidores de fase indicadores	7 a 20	2,5 a 5	
Relés direcionais de corrente	25 a 40	2,5 a 6,5	
Relés de distância	10 a 15	2,0 a 8	
Relés diferenciais de corrente	8 a 15	2,0 a 8	
Medidor de kW – kWh	2,2	0,94	
Medidor de kvarh	2,2	0,94	

Fonte: (MAMEDE FILHO, 2013).

2.3.4.6 Classe de Exatidão

A classe de exatidão é determinada por norma, diferencia pela finalidade do TC, se é para serviço de medição ou de proteção.

2.3.4.6.1 TC para serviço de medição


Os transformadores de corrente destinados a serviços de medição estão enquadrados nas classes de exatidão de 0.3-0.6-1.2-3.0, segundo ABNT

(2015). Sendo que, depende dos instrumentos a serem ligados no secundário do TC:

- 0,3 medidores para fins de faturamento;
- 0,6 medidores para fins de acompanhamento de custo industriais;
- 1,2 amperímetros indicadores e registradores;
- 3,0 instrumentos de medida de ponteiro.

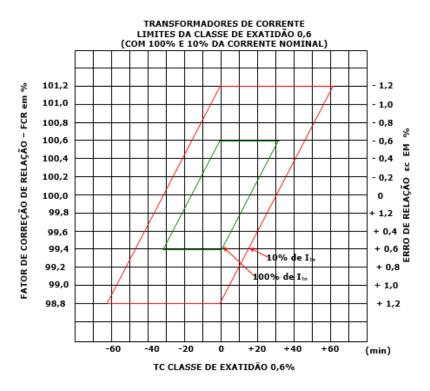

Segundo a norma 6856, o TC para serviço de medição só está em conformidade com a classe de exatidão nominal, se os pontos determinados pelos fatores de correção de relação (FCR) e os ângulos de fase (β) estiverem dentro dos seus "paralelogramos de exatidão", para valores de 10% a 100% da corrente nominal, em que referem-se, respectivamente, ao paralelogramo maior e paralelogramo menor, conforme os Gráficos 2.3, 2.4 e 2.5.

Gráfico 2.3 – Exatidão dos TC's classe 0,3.

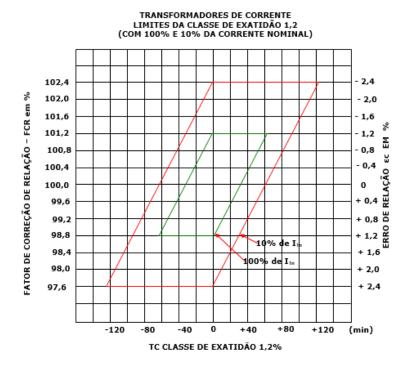

Fonte: (FURNAS, 2014).

Gráfico 2.4 - Exatidão dos TC's classe 0,6.

Fonte: (FURNAS, 2014).

Gráfico 2.5 – Exatidão dos TC's classe 1,2.

Fonte: (FURNAS, 2014).

Ao analisar os paralelogramos de exatidão, notou-se que as correntes primária inversamente proporcionais em relação ao erro de relação do TC. Sendo assim, quanto maior for a corrente primária, menor será o erro, de modo contrário, quanto menor for a corrente primaria, maior será o erro de relação. Isso se dá por causa da corrente de magnetização (MAMEDE FILHO, 2013).

O fator de correção da relação (FCR) é representado pela relação de transformação real e relação nominal de placa:

$$FCR = \frac{I_1/I_2}{K} = \frac{I_2 + I_e}{I_2}$$

Onde:

 I_1 - valor eficaz da corrente primaria, em ampère;

 I_2 – valor eficaz da corrente secundaria, em ampère;

 I_e - corrente de excitação referida ao secundário, em ampère;

 $\it K$ - relação de espiras secundarias para primaria ($^{N_2}/_{N_1}$).

O ângulo de fase (β) mede o erro de defasagem entre a corrente primaria e a corrente secundaria do TC. No qual, este erro no ângulo de fase provoca uma alteração da relação de fase entre corrente e a tensão do secundário do TC, quando comparada com a mesma relação do primário. A Figura 2.18 mostra o diagrama fasorial de um TC, onde pode-se observar o ângulo de fase (MAMEDE FILHO, 2013).

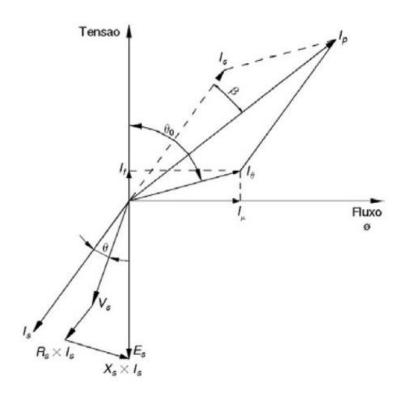


Figura 2.18 – Diagrama fasorial de um TC.

Fonte: (MAMEDE FILHO, 2013).

Onde, as variáveis da Figura 2.23 são:

I_e- corrente de excitação;

 I_m - corrente devido ao fluxo do TC;

β - ângulo de fase;

 V_s - tensão no secundário do TC;

 I_s - corrente do secundário;

 E_s - força eletromotriz do enrolamento secundário;

 I_p - corrente circulante no primário;

 I_f - corrente de perda ôhmicas no ferro;

 R_s X I_s - queda de tensão resistiva do secundário;

 $\it X_{\it S}$ X $\it I_{\it S}$ - queda de tensão reativa de dispersão do secundário.

No entanto, só é necessário considerar o erro do ângulo de fase se o TC alimentar instrumentos de medição de energia e de demanda. Assim, se o TC

alimentar somente instrumentos para medir corrente, o valor do erro do ângulo de fase não é relevante (MAMEDE FILHO, 2013).

O fator de correção do transformação (FCT) representa o efeito combinado do erro de relação e do ângulo de fase em medidas de potência ou similar. O FCT é padronizado pela ABNT, conforme a Tabela 2.4 (FRONTIN, 2013).

Tabela 2.4 – Limites do fator de correção da relação e do fator de correção da transformação.

Classe de		ites do fator de c ator de correção			Limites do fator de potência
exatidão	100% da corr	ente nominal	10% da corre	ente nominal	(atrasado) da
	Mínimo	Máximo	Mínimo	Máximo	carga medida
1,2	0,988	1,012	0,976	1,024	0,6 – 1,0
0,6	0,994	1,006	0,988	1,012	0,6 – 1,0
0,3	0,997	1,003	0,994	1,006	0,6 – 1,0

Fonte: (FRONTIN, 2013).

Consequentemente, os valores máximos e mínimos do ângulo de fase (β) , em minutos, é representado pela formula:

$$\beta = 2.600(FCR - FCT)$$

Na classe de exatidão 3,0 não possui limitação de erro de ângulo de fase, por isso, não deve ser usado para serviço de medição de potência ou energia. Para ser considerado dentro da sua classe de exatidão, o fator de correção de relação deve estar entre os limites de 1,03 a 0,97 (FRONTIN, 2013) (MAMEDE FILHO, 2013).

2.3.4.6.2 TC para serviço de proteção

Segundo (ABNT, 2015), a classe de exatidão dos TC's destinados a serviços de proteção é representado pela letra "P", em seguida pelo valor correspondente ao maior erro composto representado em porcentagem. Bem como, é representado "PR", nesta classe de exatidão é aceita o maior erro composto especificado, em porcentagem.

As classes de exatidão padronizadas para TC a serviço de proteção são de 5P e 10P. Em que, o erro de corrente, o ângulo de fase e o erro composto não

podem exceder os valores especificados pelo quadro 2.6, considerando estar em frequência e carga nominal (ABNT, 2015).

Quadro 2.6 – Limites de erro para TC's para proteção classe P.

Classe de exatidão	Erro de corrente para a corrente primária		m para corrente nominal	Erro composto da corrente primária limite	
Classe de exalidad	nominal %	Minutos	Centirradianos	de exatidão %	
5P	± 1	± 60	± 1,8	5	
10P	± 3	_	_	10	

Fonte: (ABNT, 2015).

As classes de exatidão PR padronizadas para TC a serviço de proteção são de 5PR e 10PR, para proteção com baixa remanência, sendo que o fator de remanência não pode exceder 10%. Em que, o erro de corrente, o ângulo de fase e o erro composto não podem exceder os valores especificados pelo Quadro 2.7, considerando estar em frequência e carga nominal (ABNT, 2015).

Quadro 2.7 – Limites de erro para TC's para proteção classe PR.

	Erro de corrente na corrente	primaria nominal		Erro composto da corrente
Classe de exatidão	primaria nominal %	Minutos	centirradianos	primaria limite de exatidão %
5 PR	± 1	± 60	± 1,8	5
10 PR	± 3	_	_	10

Fonte: (ABNT, 2015).

2.3.4.7 Fator de Sobrecorrente Nominal

O fator de sobrecorrente nominal corresponde ao valor que deve multiplicar a corrente nominal primaria do transformador de corrente, afim de estabelecer a corrente primaria máxima capaz de conduzir em regime contínuo. Na equação a seguir, o valor do fator de sobrecorrente é determinado pela função da relação entre a carga nominal do TC e a carga ligada ao secundário. É importante descartar que, a saturação do TC só ocorrerá para o valor F_1 superior a F_s (FRONTIN, 2013) (MAMEDE FILHO, 2013).

$$F_1 = \frac{C_n}{C_s} * F_s$$

Onde:

 C_n – Carga nominal, em VA;

C_s – Carga ligada ao secundário, em VA;

 F_s – fator de sobrecorrente nominal.

2.3.4.8 Fator Térmico Nominal

O fator térmico nominal corresponde ao valor que deve multiplicar a corrente nominal primaria do transformador de corrente para obter a corrente primaria máxima capaz de conduzir em regime permanente, em frequência nominal e cargas especificadas, sem superar os limites de elevação de temperatura definidos pela norma (MAMEDE FILHO, 2013).

A norma NBR 6856/2015 especifica os fatores térmicos nominais, baseado na temperatura do meio ambiente. Sendo que, os fatores términos especificadas pela norma são: 1.0 - 1.2 - 1.3 - 1.5 - 2.0. Quando o TC possuir mais de um núcleo, sem derivação, e ter a mesma corrente nominal no secundário, o fator térmico da menor relação é um dos especificados anteriormente, mas os fatores térmicos das outras relações são determinados pela equação abaixo, podendo resultar em um valor menor que 1.0.

$$Ft_i = Ft_1 * \frac{Rn_1}{Rn_i}$$

Onde.

 Ft_i - fator térmico da outra relação;

 Ft_1 - fator térmico da menor relação;

 Rn_i - para outra relação;

 Rn_1 - para a menor relação.

2.3.4.9 Corrente de Curta Duração

Representa o valor máximo da corrente primária suportável pelo TC, normalmente em um tempo de um segundo, se, ocorrer danos elétricos ou mecânicos e sem exceder a temperatura máxima especificada em todos os enrolamentos, sendo que os enrolamentos secundários estão curto-circuitados (FRONTIN, 2013).

2.3.4.10 Corrente Térmica Nominal

A corrente térmica nominal é o valor eficaz da corrente primária simétrica, maior corrente primaria simétrica, que pode suportar em um tempo de 1 segundo, estando com os enrolamentos secundário curto-circuitados, sem ultrapassar os limites de elevação de temperatura especificada por norma (MAMEDE FILHO, 2013).

2.3.4.11 Corrente Dinâmica Nominal

A corrente dinâmica nominal é o valor de impulso da corrente primaria que o TC é capaz de suportar, pelo tempo estabelecido de meio ciclo, com o enrolamento secundário curto-circuitado, sem danos mecânicos resultados das forças eletrodinâmicas desenvolvidas (MAMEDE FILHO, 2013).

Segundo a ABNT (2015), se a corrente dinâmica nominal não for especificado, deve considerá-la como 2,5 vezes a corrente térmica nominal.

2.3.5 Erros do TC

2.3.5.1 Erro de Corrente

O erro de corrente, ou erro de relação, corresponde ao valor percentual, referido à corrente primaria, da diferença da corrente secundaria e a corrente eficaz primaria, onde deve multiplicar a relação de transformação nominal pela corrente

secundaria, em regime senoidal. Este erro é obtido por meio da equação a seguir (ABNT, 2015).

$$E_r(\%) = \frac{R_n * I_s - I_p}{I_p} * 100$$

Onde:

 R_n – relação nominal do TC;

 I_p – valor eficaz da corrente primária;

 I_s - valor eficaz da corrente secundária.

2.3.5.2 Erro de Corrente Composta

Corresponde ao valor percentual, referido à corrente primaria, do valor eficaz da diferença entre os valores instantâneos da corrente secundaria multiplicada pela relação nominal e a corrente primaria, em regime permanente, obtido pela equação a seguir. Os sinais positivos das correntes primária e secundária depende das conversões adotadas por marcação dos terminais (ABNT, 2015).

$$E_c(\%) = \frac{1}{I_p} \frac{1}{T} \left[\int_0^T (R_n * i_s - i_p)^2 dt \right]^{\frac{1}{2}} * 100$$

Onde:

 R_n – relação nominal do TC;

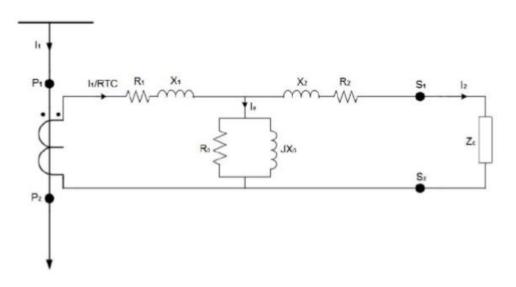
 I_p – valor eficaz da corrente primária;

 i_p – valor instantâneo da corrente primária;

 i_s – valor instantâneo da corrente secundária;

T – duração de um ciclo da corrente primária.

2.3.6 Número de Núcleos para Proteção e Medição


A quantidade de números de núcleos destinados para proteção ou medição de um TC tem que ser especificado em conformidade com as necessidades de informação de corrente para alimentar. Sendo que a especificação deve ser feita de

acordo com o sistema elétrico do local que será instalado, obedecendo os padrões já utilizados pela empresa proprietária da subestação (FRONTIN, 2013).

2.3.7 Circuito Equivalente

O circuito de equivalente do TC pode ser representado pela Figura 2.19.

Figura 2.19 – Esquemático do Circuito Equivalente do TC.

Fonte: (HOJO, 2012)

Onde:

 R_1 - resistência do primário.

 X_1 - reatância do primário.

 R_2 - resistência do secundário.

 X_2 - reatância do secundário.

 R_0 - resistência referente às perdas no ferro do núcleo, perdas ôhmicas por meio das correntes de histerese e de Foucault.

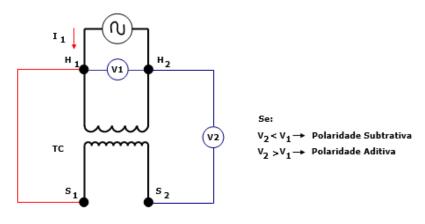
 X_0 - reatância de magnetização do núcleo.

 ${\it Z_c}$ - carga conectado ao secundário.

 P_1 e P_2 - terminais do primário.

 $S_1e S_2$ - terminais do secundário.

Observando o circuito equivalente da Figura 2.19, nota-se que a corrente I_1 refere a corrente vinda da rede, que circula no primário do TC, que possui uma impedância de $Z_1 = R_1 + jX_1$. Esta corrente induzira um corrente no secundário do TC, representada por I_2 , que provoca uma queda de tensão na impedância da caga Z_C e na sua impedância interna do secundário $Z_2 = R_2 + jX_2$. Além disso, induz uma corrente no núcleo, I_e , em que a corrente do primário deve corresponder a soma da corrente do secundário e a corrente magnetizante do núcleo (MAMEDE FILHO, 2013).


$$I_1 = I_e + + I_2$$

2.3.8 Polaridade

A polaridade do TC não precisa ser levada em consideração se alimentar somente amperímetros e reles de corrente. Entretanto, os instrumentos elétricos em que a bobina de corrente possui polaridade relativa é importante considerar a polaridade do TC, como por exemplo, wattímetros e medidor de energia elétrica. É necessário marcar a direção instantânea relativa da corrente no TC, indicando o sentido das correntes primaria e secundaria, nos seus terminais (FURNAS, 2014).

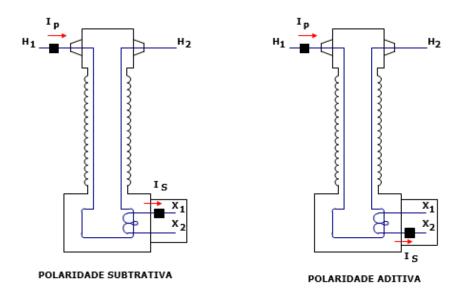

O TC pode ter polaridade subtrativa ou aditiva. No teste de polaridade, a tensão medida entre os terminais primário e secundário, se a tensão do secundário for menor que a tensão do primário é considerado polaridade subtrativa, caso contrário, se a tensão do secundário for maior que a do primário é considerado polaridade aditiva, conforme ilustra as Figura 2.20 e 2.21 a seguir (FURNAS, 2014).

Figura 2.20 – Ilustração do teste de polaridade no TC.

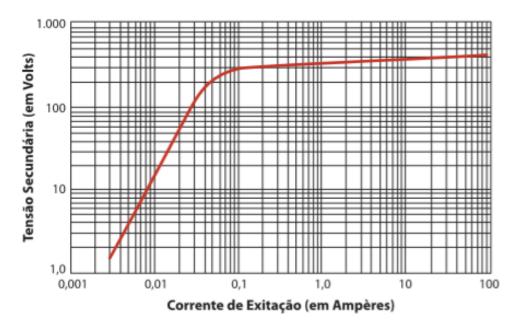
Fonte: (FURNAS, 2014)

Figura 2.21 – Ilustrativo TC com polaridade subtrativa e aditiva.

Fonte: (FURNAS, 2014)

2.3.9 Marcação de terminais do TC

O Quadro 2.8 mostra alguns exemplos dos diversos tipos de marcações de terminais do TC, que é determinado pela norma NBR 6856. Em que $P_1\ e\ P_2$ representam os terminais do enrolamento primário e $S_1\ e\ S_2$ representam os terminais do enrolamento secundário do TC (ABNT, 2015).


Quadro 2.8 – Exemplos de relações nominais e marcações de terminais.

Relação/ Esquema	Descrição
P1 P2 S1 S2	TC com um enrolamento primário e um enrolamento secundário.
P1 P2 P3 P4	TC com dois enrolamentos primários para conexão em serie ou paralelo e um enrolamento secundário.
P1 P2 P3 P4 P5 P6 P7 P8 S1 S2	TC com quatro enrolamentos primários para conexão em série, paralelo ou mista e um enrolamento secundário.
P1 P3 P2 P4 S1 S2 S3	TC com dois enrolamentos primários para conexão em serie e paralela, com diferentes correntes primarias obtidas por derivação no enrolamento secundário e religação primaria, com um enrolamento secundário.

Fonte: Adaptado de (ABNT, 2015)

2.3.10 Curva de Excitação do TC

Conforme mencionado anteriormente, a diferença ente a corrente primaria (I_1) e a corrente de excitação secundário (I_e) , representa a corrente secundaria (I_2) . A relação entre a tensão de excitação secundaria (V_s) e a corrente de excitação secundaria (I_e) retrata a curva de excitação, o Gráfico 2.6 mostra um exemplo desta curva (FRONTIN, 2013).

Gráfico 2.6 – Curva de excitação secundária de um TC.

Fonte: (FRONTIN, 2013).

Analisando o gráfico da curva de excitação, percebe-se que a corrente de excitação aumenta, proporcionalmente, por meio do aumento da corrente primaria. Entretanto, esse aumento proporcional acontece até um certo ponto, sendo esse ponto o de saturação do núcleo.

Segundo a ABNT (2015), o ponto de joelho representa na curva de excitação a transição da região linear para a região de saturação. No qual, quando aumenta 10% da tensão (V_s) no TC, causa um aumento de 50% da corrente de excitação (I_e).

2.3.11 Saturação do TC

De acordo com as curvas de saturação dos TC's mostrado no Gráfico 2.7, o TC's destinados a serviço de proteção apresentam um elevado nível de saturação, deferente dos TC's destinados a serviços de medição. Esse equipamento deve ser projetado para suportar correntes de curto circuito, corrente que possuem valor maior que a nominal (MAMEDE FILHO, 2013).

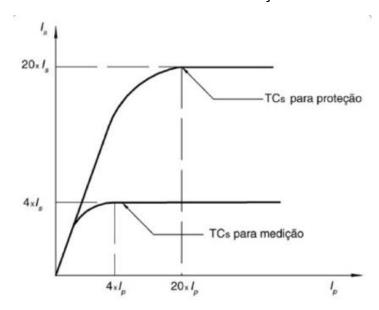


Gráfico 2.7 – Ilustrativo de saturação dos TC's.

Fonte: (MAMEDE FILHO, 2013).

O núcleo dos TC's para serviço de medição é desenvolvido com material de elevada permeabilidade magnética, trabalhando em baixa indução magnética, cerca de 0,1 tesla, a saturação deste equipamento é de 0,4 testa. Sendo assim, quando a corrente primaria ultrapasse esta grandeza, atingindo valores elevados, a corrente que será induzida no secundário chega no máximo a quatro vezes a corrente nominal (MEDEIROS FILHO, 1997).

No entanto, o núcleo dos TC's para serviço de proteção é feito com material com permeabilidade magnética diferente, a sua saturação só ocorre com valores elevados, cerca de 20 vezes a corrente nominal. Deste modo, os relés de proteção conseguem suportar correntes desta grandeza sem danificá-los, diferentemente dos instrumentos de medição, que para valores desta grandeza poderiam ser danificados (MEDEIROS FILHO, 1997).

Por meio desta característica, pode-se constatar que não se deve utilizar transformadores de medição em serviço de proteção, nem ao contrário. Visto que, se o TC para serviço de medição alimentar relés, provavelmente os relés não entrarão em funcionamento quando for necessário, em curto circuito por exemplo, pois a corrente secundaria poderá não ser suficiente para sensibiliza-los (MAMEDE FILHO, 2013).

3 ENSAIOS

Neste capítulo detalha-se os ensaios realizados nos transformadores de corrente, tendo como objetivo verificar as condições operacionais do equipamento, analisando se estão aptos para instalação em uma subestação.

Após chegar os equipamentos da fábrica, é realizado ensaio de aceitação, que segundo a norma NBR 6856, são ensaios especificados pelo usuário, mediante acordo entre fabricante e o usuário, para a aceitação dos TC's vindo das fábricas. Foi especificado que os ensaios de aceitação para este trabalho são: curva de saturação, polaridade, isolação CA e CC, relação de transformação e resistência ôhmica. Em seguida, são comparados os resultados encontrados com os dados fornecido pelo fabricante, assim, o TC pode ser aceito ou não para ser colocado em operação.

Este capítulo está dividido de acordo com o diagrama em blocos representado na Figura 3.1. Em que, primeiramente serão especificados os TC's que foram utilizados nos ensaios, em seguida serão mencionados os equipamentos utilizados nos ensaios e posteriormente o detalhamento dos mesmos.

Figura 3.1 – Diagrama em blocos dos ensaios.

Fonte: Elaboração própria.

Foram realizados cinco ensaios nos TC's, sendo eles ensaio de resistência de isolação CA, ensaio de relação de transformação, ensaio de resistência ôhmica, ensaio de saturação e ensaio de resistência de isolamento CC. Entre eles, os 4

primeiros foram realizados por meio do equipamento CPC 100, do fabricante OMICRON electronics GmbH, e o último ensaio citado foi pelo equipamento MIC 5005, do fabricante Sonel.

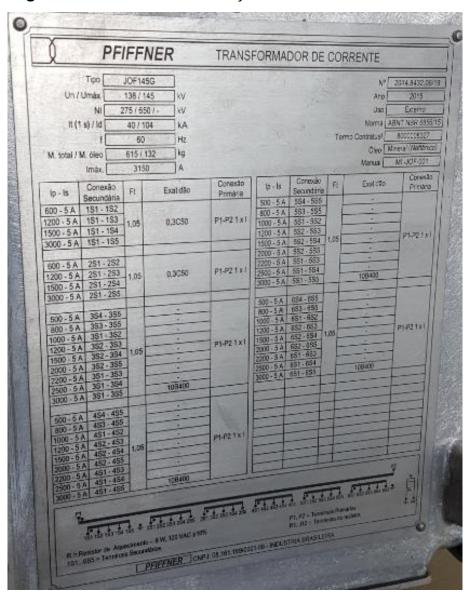
3.1 Detalhe dos TC's

Foram realizados ensaios em três TC's do fabricante PFIFFNER, no qual estão identificados na Figura 3.2. Estes TC's analisados são do tipo JOF 145G e serão instalados em sistema de alta tensão de 138kV, possuem cinco enrolamentos secundários com derivações, assim, pode ser destinado a cinco circuitos diferentes.

Figura 3.2 – Transformadores de Corrente - PFIFFNER.

Fonte: Elaboração própria.

As placas de identificação dos TC's são identificadas pelas Figuras 3.3, 3.4 e 3.5, onde são identificadas as características dos equipamentos. Destacando as seguintes informações:


Tensão nominal: 138kV;

~ ~

Frequência de Operação: 60Hz;

- Corrente máxima: 3.150 A;
- Norma de referência: ABNT NBR 6856/2015.

Figura 3.3 – Placa de Identificação do TC nº 2014.8432.06/19.

Fonte: Elaboração própria.

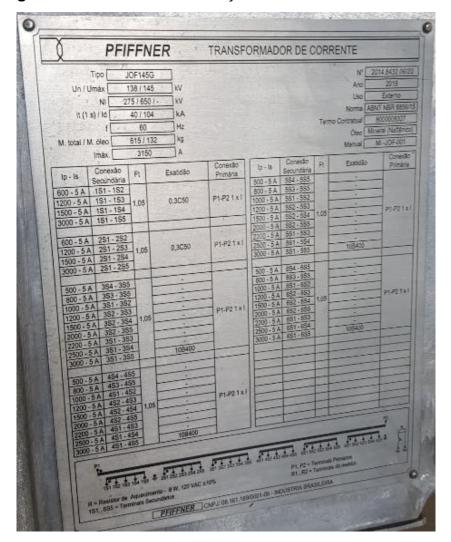


Figura 3.4 – Placa de Identificação do TC nº 2014.8432.06/20.

Fonte: Elaboração própria.

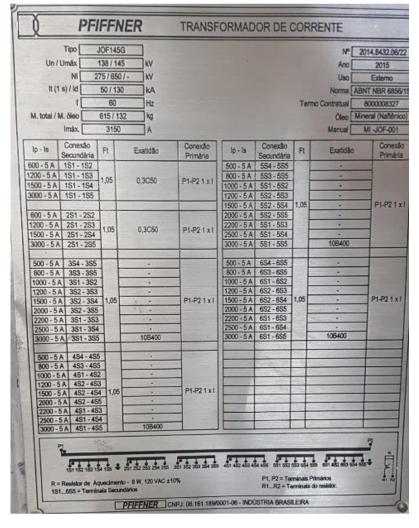


Figura 3.5 – Placa de Identificação do TC nº 2014.8432.06/22.

Fonte: Elaboração própria.

3.2 CPC 100 - OMICRON

O instrumento de medição CPC 100 é do fabricante OMICRON ELECTRONICS, o software desenvolvido pela INTRINSYC Software. Ele é designado para a realização de testes para comissionamento e manutenção, em que as medições são realizadas com métodos automáticos, de maneira rápida e eficiente em equipamentos de subestações. As Figuras 3.6 e 3.7 mostram os componentes fundamentais do instrumento. (OMICRON, 2015)

Carrinho do equipamento. Cabo de saída de dupla blindagem para alimentar a alta tensão no objeto de CPC 100. teste. Cabos para medição. Cabo booster CPC 100 <-> CP TD 1. Por meio deste cabo o CPC 100 controla a tensão de saída do CP TD1. Saída de alta tensão com plugue rosqueado e plugue de Os equipamentos CPC 100 e CP TD 1 estão aterramento amarelo. conectados à barra de aterramento do carrinho. CP TD1. Ligação equipotencial ao terra.

Figura 3.6 – Componentes fundamentais do CPC 100 e CPTD1.

Fonte: Adaptado de (OMICRON, 2015).

Figura 3.7 – Componentes fundamentais do CPC 100 e CPTD1.

Fonte: Adaptado de (OMICRON, 2015).

O CPC 100 possui acessórios e dispositivo adicional, CP TD1. O CP TD1 consiste em um sistema de teste de alta precisão, podendo ser usados como acionamento e medição de transformadores, disjuntores, capacitores e isoladores. Utilizando o CP TD1 com o CPC 100 aumenta sua possível aplicação em medição de alta tensão, com isso, é possível medir capacitância, fator de dissipação, fator de potência, potência real, aparente e reativa, fator de qualidade, indutância, impedância, ângulo de fase, tensão e corrente de teste. (OMICRON, 2015)

O instrumento de medição trabalha em uma faixa de frequência entre 15 a 400Hz, pode gerar até 800A (CA), 2kV (CA) e 400A (CC), como também com valores de menor intensidade para alimentar circuitos secundários, sendo de 6A (CA), 130V (CA) e 6A (CC). O CPC 100 é automatizado para a segurança do usuário, quando seleciona o teste que deseja ser realizado, o equipamento informa ligando uma luz vermelha, quais serão as entradas ou saídas que serão realizadas naquele teste, se conectada incorretamente não se inicia o teste. As Figuras 3.8, 3.9 e 3.10 mostram uma breve explicação do painel do CPC 100, juntamente com as suas saídas e entradas.

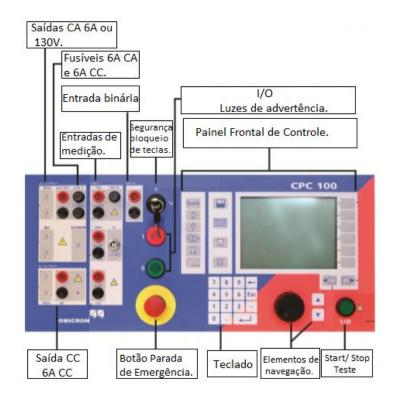


Figura 3.8 – Painel do CPC 100 – Vista frontal.

Fonte: Adaptado de (OMICRON, 2015).

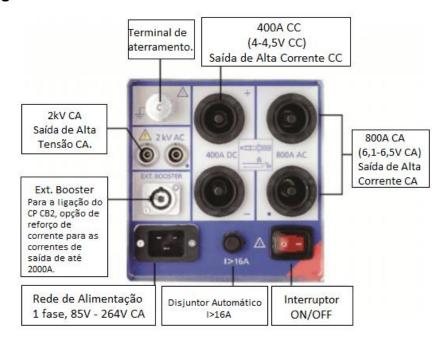
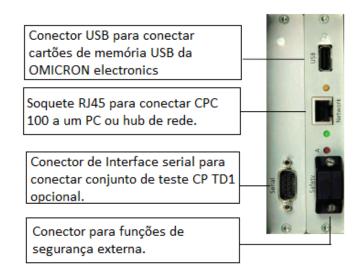



Figura 3.9 – Saídas de corrente e alta tensão do CPC 100.

Fonte: Adaptado de (OMICRON, 2015).

Figura 3.10 - Conectores disponíveis do CPC 100.

Fonte: Adaptado de (OMICRON, 2015).

Os testes realizados por esse equipamento neste projeto são de TanDelta-PF, relação (e burden), excitação do TC (kneepoint) e resistência de enrolamento, que serão explicados posteriormente. É importante mencionar que existe outros testes que o CPC 100 pode realizar em TC's, como por exemplo teste de resistência de tensão.

3.2.1 Ensaio de Resistencia de Isolação CA

Segundo a NBR 6856, este ensaio tem objetivo de verificar a qualidade do isolamento principal do TC, detectando isolamentos defeituosos com a medição do fator de potência da isolação. O ensaio consiste na comparação dos valores medidos em campo com os medidos em fábrica. Como critério de aprovação, o fator de perdas dielétricas não pode ser superior a 0,5% para TC imerso a óleo e com nível de tensão acima de 72,5kV.

Os instrumentos de medição utilizados são o CPC 100, juntamente com o CP TD1, no qual o cartão de teste operado é o TanDelta-PF. Primeiramente é necessário definir as tensões e frequências para realização do teste, neste trabalho foram utilizado as tensões de 2kV, 4kV, 6kV, 8kV, 10kV e 12kV e as frequências foram de 55Hz, 60Hz e 65Hz.

Na prática, é conectado o instrumento CP TD1 no CPC 100, para injetar a tensão no terminais do primário, é necessário identificar qual modo de medição e seus arranjos correspondentes da matriz de conexão interna, foi configurado o de GSTg-A+B, como mostra a Figura 3.11.

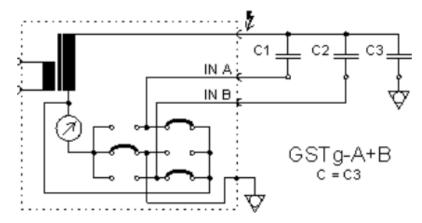
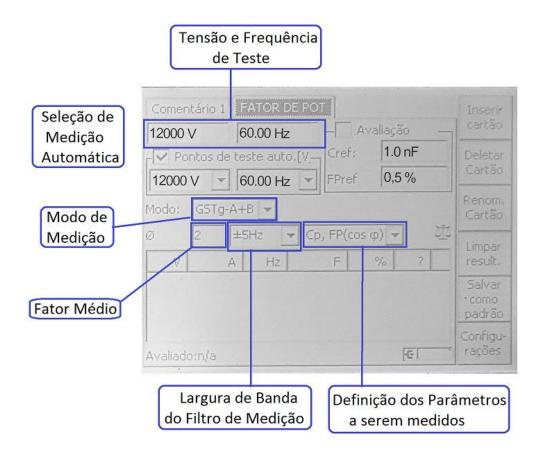



Figura 3.11 – Esquemático do modo de medição GSTg-A+B.

Fonte: (OMICRON, 2015).

- Execução do ensaio:
 - a. Configurar o CPC 100 para o ensaio no painel do instrumento, ilustrada na Figura 3.12:

Figura 3.12 – Painel do CPC 100 do ensaio de resistência de isolação CA.

- Selecionar o ponto de teste automático, que permite definir as combinações de valores de tensão e de frequência, ocorrendo a medição automática. Neste trabalho foi definido as tensões de 2kV, 4kV, 6kV, 8kV, 10kV e 12kV e as frequências de 55Hz, 60Hz e 65Hz;
- Selecionar o modo de medição do arranjo do CP TD1, neste caso foi utilizado o GSTg -A+B;
- Selecionar o fator médio, referindo-se ao número de medição a ser realizado, neste caso foi definido como 2.

- Selecionar a largura de banda do filtro de medição, neste caso foi utilizado ±5, representando que a frequência de teste é igual a frequência padrão, não considerando interferência da rede;
- Selecionar os parâmetros a serem medidos, neste trabalho foi definido a Cp e FP(cosφ), ou seja, medição da capacitância e do fator de potência.
- b. Conectar o CP TD1 no CPC 100, como mostra a Figura 3.13;

Figura 3.13 – Ligação do CP TD1 no CPC 100.

c. Curto-circuitar e aterrar os enrolamentos, conforme a Figura 3.14;

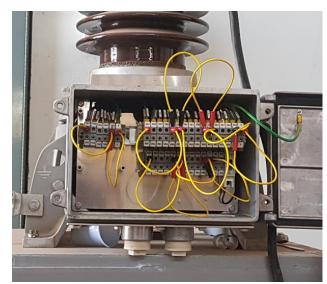
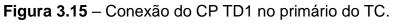



Figura 3.14 – Secundário do TC curto-circuitado e aterrado.

d. Conectar o CP TD1 nos terminais do primário do TC, apresentado na Figura 3.15;

e. Realizar o ensaio, apertando o botão I/O do CPC 100. A Figura 3.16 ilustra o CPC 100 na realização do teste.

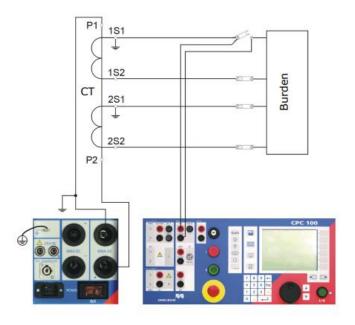
Figura 3.16 – O instrumento CPC 100 durante a realização do ensaio de resistência de isolação CA.

Fonte: Elaboração própria.

3.2.2 Ensaio de Relação de Transformação

O ensaio de relação de transformação é referente a norma IEEE C57.13.1-2006, tendo como objetivo de verificar a relação entre espiras dos enrolamentos primário e secundário do TC, podendo analisar se o TC está danificado com algum curto entre as espiras ou se possui enrolamentos abertos.

Segundo a norma, existe duas maneiras para a realização do teste, pelo método da tensão e pelo método da corrente. Realizando pelo método da tensão, seria a aplicação de uma tensão nos terminais do secundário do TC e verificando a tensão no primário. O método realizado neste trabalho foi o método da corrente, no qual é aplicado no terminal primário uma corrente CA e medido o valor no secundário.


O instrumento de medição utilizado na realização do ensaio foi o CPC 100, com o cartão de teste TCRelação. Na prática, é injetado uma corrente CA no primário do TC de até 800A. É importante destacar que os enrolamentos secundários que não estão sendo utilizados no ensaio, devem estar curto-circuitados, evitando altas tensões nos terminais secundário.

Além disso, este ensaio analisa a polaridade dos enrolamentos, tem como finalidade verificar se as marcações de polaridade mencionado no diagrama do fabricante estão corretas, analisando também, se foram invertidas durante a

montagem. Na prática, é injetado uma corrente no lado primário do TC, que será transmitido para o secundário onde será verificado se está no sentido adequado.

- Execução do ensaio:
 - a. Curto-circuitar e aterrar os enrolamentos secundários do TC, conforme a Figura 3.13;
 - b. Conexão do cabo de alta corrente de 800A no terminal primário, conforme o esquemático da Figura 3.17, identificado as saídas na Figura 3.18;

Figura 3.17 – Esquemático da ligação para o ensaio de relação de transformação.

Fonte: (OMICRON, 2015).

Figura 3.18 - Conexão do CPC 100 com o primário do TC.

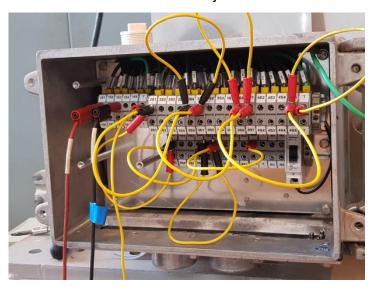

c. Conexão dos cabos nas derivações dos enrolamentos secundários para medição, ilustrados nas Figuras 3.19 e 3.20;

Figura 3.19 – Conexão do CPC 100 para o ensaio de relação de transformação.

Fonte: Elaboração Própria.

Fonte 3.20 – Conexão nas derivações do secundário do TC.

Fonte: Elaboração Própria.

d. Realizar o ensaio, apertando o botão I/O do CPC 100. O ensaio possui uma duração média de 6 segundos por derivação, na Figura 3.21 observa o painel do CPC 100 onde mostra o resultado do ensaio.

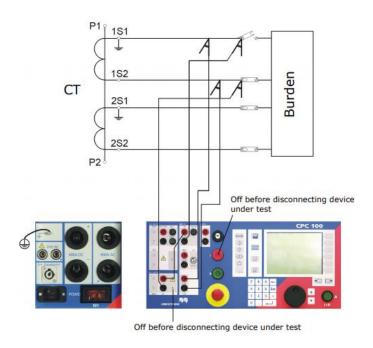
Interrompe o teste Corrente Primária Faixa de Saída automaticamente após a Nominal medicão Corrente Secundária Corrente de REL \$1-153 | REL 151-154 | REL 151-155 Injeção Primária Nominal AC 800A Auto. 3000.0 A 5.000 A Corrente Real 500.0 A 60.00 Hz Injetada no Lado Ângulo de fase 499.88 A Primário de TC relativo a Iprim 832.72 mA -0.05 ° 3000:4.9975 -0.05 % Corrente Secundária OK Medida Relação Iprim/Isec: Polaridade Desvio em % Isec real x (Iprim nom/ Iprim real)

Figura 3.21 – Painel do CPC 100 do ensaio de relação de transformação.

3.2.3 Ensaio de Resistência Ôhmica

De acordo com a ABNT (2015), o ensaio de resistência ôhmica determina a resistência dos enrolamentos secundários do TC. Analisando se existe abertura ou defeitos nos enrolamentos. Para a realização deste ensaio é necessário a medição da temperatura ambiente, pressupondo que não tenha circulado corrente e que a temperatura dos enrolamentos estão em equilíbrio térmico com o ambiente, considerada como a mesma temperatura.

Esta resistência pode ser medida utilizando os seguintes métodos: método de queda de tensão e método da ponte. Referindo ao método da ponte, ele emprega a ponte de Wheatstone na medição. Entretanto, no método da queda de tensão é aplicado uma tensão continua e realizado simultaneamente a medição da corrente e tensão.


Com o intuito de assegurar a proteção do equipamento, evitando o aquecimento, a corrente não pode ser superior a 15% da corrente nominal. Além disso, os enrolamentos que não estão sob ensaio deveram estar curto-circuitados.

O instrumento utilizado para medição é o CPC 100, com o cartão de teste REnrolamento, juntamente com o Airflow, com a finalidade de medir a temperatura ambiente no momento da realização do ensaio.

• Execução do ensaio:

- a. Curto-circuitar e aterrar os enrolamentos secundários do TC, conforme a Figura 3.13;
- b. Conexão, conforme a Figura 3.22, do CPC 100 com os terminais do secundário do TC, conectando o amperímetro, voltímetro e a bateria, ilustrado as ligações nas Figuras 3.23 e 3.24;

Figura 3.22 - Esquemático da ligação para o ensaio de resistência ôhmica.

Fonte: (OMICRON, 2015).

Figura 3.23 - Conexão do CPC 100 para o ensaio.

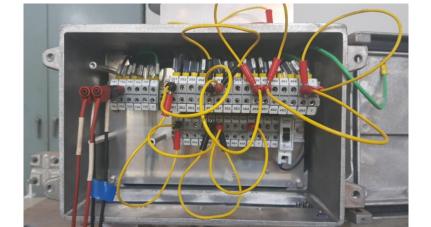


Figura 3.24 – Conexão nas derivações do secundário do TC.

Fonte: Elaboração Própria.

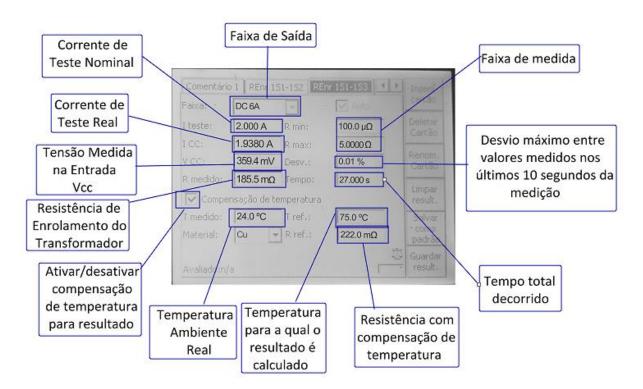

c. Medir a temperatura ambiente, utilizando Airflow, mostrado na Figura 3.25;

Figura 3.25 – Instrumento Airflow.

e. Executar o ensaio em cada derivação do enrolamento, apertando o botão I/O do CPC 100. O ensaio possui uma duração média de 45 segundos, na Figura 3.26 observa o painel do CPC 100 onde mostra o resultado do ensaio.

Figura 3.26 – Painel do CPC 100 do ensaio de resistência ôhmica.

3.2.4 Ensaio de Saturação

Conforme a NBR 6856/2015, o objetivo do ensaio de saturação é definir as características de excitação do núcleo de proteção do TC, sendo esta curva a relação da tensão de excitação secundária e a corrente de excitação.

Na prática, é aplicado uma tensão senoidal nos terminais do enrolamento secundário sob análise e medindo a corrente de excitação correspondente a tensão aplicada. É importante frisar que o enrolamento primário e os demais enrolamentos secundários que não estão em análise, deveram estar abertos.

O instrumento de medição manuseado na execução do ensaio foi o CPC 100, com o cartão de teste TCexcitação. A execução deste ensaio consiste em aplicar uma tensão de teste de até 2kV nos terminais do secundário sob ensaio. O teste define o ponto do joelho da curva, que representa a saturação do TC, de acordo com a norma IEC 60044-1 refere ao o ponto onde um aumento de tensão de 10% acarreta um aumento de 50% na corrente. Com intuito de eliminar qualquer magnetismo residual resultante do teste, após a realização do ensaio é necessário desmagnetizar o núcleo do TC.

É o único ensaio que foi realizado deste trabalho que provoca ruído durante a execução, como também é o único ensaio realizado que tem característica destrutiva no equipamento, por proporcionar uma elevada tensão no TC.

Execução do ensaio:

- a. Curto-circuitar e aterrar os enrolamentos secundários do TC, como mostra a Figura 3.13;
- b. Conexão dos cabos nos terminais dos enrolamentos secundários para medição, conforme a Figura 3.27 e 3.28, como mostra na Figura 3.29 os testes são realizados em cada enrolamento:

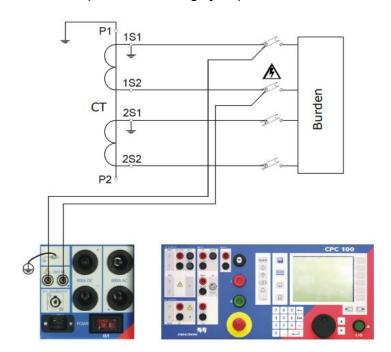


Figura 3.27 – Esquemático da ligação para o ensaio de saturação.

Fonte: (OMICRON, 2015).

Figura 3.28 – Conexão do CPC 100 para o ensaio.

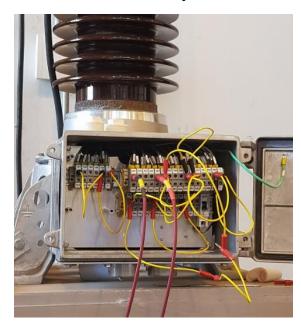


Figura 3.29 – Conexão nas derivações do secundário do TC.

c. Executar o ensaio em cada enrolamento, apertando o botão I/O do CPC 100. Observa o painel do CPC 100 durante a exclusão do ensaio através da Figura 3.30.

Tensão de Corrente de teste máxima teste máxima TO SATENR 1 > TC SAT ENR I max; 3.00000 A 500.0 V Frequência 60.00 Hz de Saída Tensão Real n/a 5 Corrente n/a Real IEC/BS 6.705 mA 88.470 V V joelho:

Figura 3.30 - Painel do CPC 100 do ensaio de saturação.

 d. Desmagnetização do TC após a realização do teste, apertando no botão desmagnetização.

3.3 MIC 5005 - Sonel

O instrumento MIC 5005 é do fabricante Sonel. Destinado para a realização de ensaios de medição de resistência de isolamento, tendo como finalidade identificar se existe correntes de fuga. O MIC 5005 está de acordo com a norma IEC 61557-2, podendo realizar medições de resistência de isolamento de até 15ΤΩ. Para facilitar no ensaio, o equipamento realiza avisos acústicos com intervalos de 5 segundos. A Figura 3.31 mostra as configurações fundamentais do instrumento de medição (SONEL, 2018).

Plugue de rede Porta USB Plugue Riso+: medição Riso e Rcont Ligando e desligando o medidor. Plugue do cabo Ligando e desligando a de exibição: iluminação da tela. medição com três condutores Riso Movimento / seleção: esquerda, direita, para Plugue Riso-: medição cima e baixo. Riso e Rcont Interruptor de função rotativa, seleção de Botão de filtro. função de medição. MENU - escolha de Botão de calibração dos cabos de medição. configurações adicionais do medidor. Revisão dos O LED indica a Início do ESC - retorna componentes do presença de alta procedimento à tela anterior, resultado da medição. tensão nos terminais. de medição. saída da função.

Figura 3.31 – Componentes fundamentais do MIC 5005.

Fonte: (SONEL,2008).

3.3.1 Ensaio de Isolamento CC

A finalidade do ensaio de resistência de isolamento CC é verificar a resistência de isolamento do TC. O equipamento é isolado por uma coluna de porcelana, podendo desgastar, como por exemplo, com fatores externos e elevado nível de tensão, tendo como consequência a redução da vida útil do TC. (ABNT, 2015)

Na pratica, é aplicado uma tensão de 5kV nos terminais de alta tensão e 500V nos terminais de baixa tensão, por pelo menos um minuto. Durante esse tempo não dever ser identificado descargas disruptivas ou evidencias de falha no isolamento, para a aprovação do equipamento.

O ensaio deve ser realizado com conexões diferentes, sendo elas: entre o primário e o secundário, entre o primário e o terra, entre o secundário e o terra, entre os enrolamentos secundários. Segundo a norma IEEE C57.13.1, a mínima resistência de isolação aceita é de $1M\Omega$.

Execução do ensaio:

Primário com Terra

- a) Curto-circuitar os terminais de baixa;
- a) Conectar o MIC 5005, com o cabo LINE, nos terminais de alta, conforme a Figura 3.32.
- b) Conectar o MIC 5005, com o cabo EARTH, na carcaça do equipamento;
- c) Conectar o MIC 5005, com o cabo GUARD, no secundário do TC.
- d) Executar o ensaio aplicando 5kV e fazendo a leitura aos 15s, 30s, 45s e 60s.

Figura 3.32 – Conexão do MIC 5005 com os terminais de alta do TC.

Primário com Secundário

- b) Curto-circuitar os terminais de baixa;
- c) Conectar o MIC 5005, com o cabo LINE, nos terminais de alta;
- d) Conectar o MIC 5005, com o cabo EARTH, no secundário do TC;
- e) Conectar o MIC 5005, com o cabo GUARD, na carcaça do equipamento;
- f) Executar o ensaio aplicando 5kV e fazendo a leitura aos 15s, 30s, 45s e 60s.

• Secundário com Terra

- a) Curto-circuitar os terminais de baixa;
- b) Conectar o MIC 5005, com o cabo LINE, no terminal de baixa;
- c) Conectar o MIC 5005, com o cabo EARTH, na carcaça do equipamento, mostrado na Figura 3.33;
- d) Conectar o MIC 5005, com o cabo GUARD, nos terminais de alta;

e) Executar o ensaio aplicando 500V e fazendo a leitura aos 15s, 30s, 45s e 60s.

Figura 3.33 – Conexão do MIC 5005 com a carcaça do TC.

Fonte: Elaboração própria.

• Secundário com Secundário

- a) Curto-circuitar os terminais de baixa.
- b) Conectar o MIC 5005, com o cabo LINE, em um dos enrolamentos do secundário.
- c) Conectar o MIC 5005, com o cabo EARTH, em outro enrolamentos do secundário.
- d) Conectar o MIC 5005, com o cabo GUARD, na carcaça do equipamento;
- e) Executar o ensaio aplicando 500V e fazendo a leitura aos 15s, 30s, 45s e 60s.
- f) Repetir conectando até executar em todos os enrolamentos do secundários entre si.

4 Resultados Obtidos

Neste capítulo será apresentado os resultados dos ensaios nos transformadores de corrente mencionados no item 3.1, com o objetivo de serem analisados para verificar as condições operacionais dos TC's. A Tabela 4.1 determina os parâmetros de avaliação para aprovação utilizadas nestes ensaios.

Tabela 4.1 – Parâmetros para aprovação dos ensaios.

Parâmetros para aprovação	
Capacitância	Constante
Desvio da relação de transformação	< 0,5%
Desvio de resistência ôhmica	< 0,1%
Fator de potência	< 1,0%
Polaridade	De acordo com o fabricante.
Ponto de saturação	De acordo com o fabricante.
Resistência de Isolação CC	> 1MΩ

Fonte: Elaboração Própria.

4.1 Resultado do Ensaio de Resistência de Isolação CA

A análise dos resultados desta seção refere-se ao ensaio de resistência de isolação CA, no qual, o procedimento está especificado no item 3.2.1. Utilizando o equipamento de medição CPC 100, obteve os resultados apresentados nos Quadros 4.1, 4.2 e 4.3, representando ao TC nº 2014.8432.06/19, nº 2014.8432.06/20 e nº 2014.8432.06/22. O quadro indica a tensão de teste, a tensão e a corrente medida, a frequência, a capacitância (Cp), o fator de potência (FP) e a avaliação. Sendo que as tensões de teste injetadas foram 2kV, 4kV, 6kV, 8kV, 10kV e 12kV, e que as frequências analisadas foram 55Hz, 60Hz e 65Hz.

Quadro 4.1 – Dados de medição do TC nº 2014.8432.06/19.

V teste	V med,	I med,	Frequência	Ср	FP
2000,00 V	2003 V	1,0003 mA	60,00 Hz	1,3216 nF	0,2575 %
4000,00 V	4006 V	2,0007 mA	60,00 Hz	1,3216 nF	0,2580 %
6000,00 V	6012 V	3,0023 mA	60,00 Hz	1,3216 nF	0,2580 %
8000,00 V	7999 V	3,9944 mA	60,00 Hz	1,3216 nF	0,2582 %
10000,00 V	10002 V	4,9949 mA	60,00 Hz	1,3217 nF	0,2582 %
12000,00 V	12003 V	5,9943 mA	60,00 Hz	1,3217 nF	0,2584 %
2000,00 V	1984 V	908,54 μΑ	55,00 Hz	1,3218 nF	0,2567 %
4000,00 V	4001 V	1,8316 mA	55,00 Hz	1,3218 nF	0,2573 %
6000,00 V	6009 V	2,7510 mA	55,00 Hz	1,3218 nF	0,2573 %
8000,00 V	7999 V	3,6623 mA	55,00 Hz	1,3218 nF	0,2574 %
10000,00 V	9998 V	4,5772 mA	55,00 Hz	1,3218 nF	0,2575 %
12000,00 V	12007 V	5,4971 mA	55,00 Hz	1,3219 nF	0,2578 %
2000,00 V	1983 V	1,0729 mA	65,00 Hz	1,3215 nF	0,2583 %
4000,00 V	4001 V	2,1643 mA	65,00 Hz	1,3215 nF	0,2586 %
6000,00 V	6009 V	3,2506 mA	65,00 Hz	1,3215 nF	0,2586 %
8000,00 V	7999 V	4,3270 mA	65,00 Hz	1,3215 nF	0,2589 %
10000,00 V	10001 V	5,4096 mA	65,00 Hz	1,3215 nF	0,2589 %
12000,00 V	12001 V	6,4919 mA	65,00 Hz	1,3215 nF	0,2590 %

Quadro 4.2 – Dados de medição do TC nº 2014.8432.06/20.

V teste	V med,	I med,	Frequência	Ср	FP
2000,00 V	2005 V	1,0040 mA	60,00 Hz	1,3252 nF	0,2548 %
4000,00 V	4005 V	2,0056 mA	60,00 Hz	1,3252 nF	0,2554 %
6000,00 V	6005 V	3,0069 mA	60,00 Hz	1,3252 nF	0,2553 %
8000,00 V	7999 V	4,0054 mA	60,00 Hz	1,3252 nF	0,2556 %
10000,00 V	10002 V	5,0085 mA	60,00 Hz	1,3252 nF	0,2557 %
12000,00 V	12008 V	6,0128 mA	60,00 Hz	1,3252 nF	0,2559 %
2000,00 V	1987 V	912,27 μΑ	55,00 Hz	1,3254 nF	0,2542 %
4000,00 V	4001 V	1,8365 mA	55,00 Hz	1,3254 nF	0,2552 %
6000,00 V	6008 V	2,7582 mA	55,00 Hz	1,3254 nF	0,2550 %
8000,00 V	8000 V	3,6723 mA	55,00 Hz	1,3254 nF	0,2550 %
10000,00 V	9996 V	4,5888 mA	55,00 Hz	1,3254 nF	0,2552 %
12000,00 V	12009 V	5,5131 mA	55,00 Hz	1,3254 nF	0,2550 %
2000,00 V	1986 V	1,0770 mA	65,00 Hz	1,3250 nF	0,2552 %
4000,00 V	4001 V	2,1700 mA	65,00 Hz	1,3250 nF	0,2557 %
6000,00 V	6009 V	3,2590 mA	65,00 Hz	1,3250 nF	0,2558 %
8000,00 V	7999 V	4,3383 mA	65,00 Hz	1,3251 nF	0,2560 %
10000,00 V	10000 V	5,4242 mA	65,00 Hz	1,3251 nF	0,2562 %
12000,00 V	12002 V	6,5099 mA	65,00 Hz	1,3251 nF	0,2562 %

Quadro 4.3 - Dados de medição do TC

V teste	V med,	I med,	Frequência	Ср	FP
2000,00 V	2006 V	0,97334 mA	60,00 Hz	1,2843 nF	0,2325 %
4000,00 V	4010 V	1,9462 mA	60,00 Hz	1,2845 nF	0,2328 %
6000,00 V	6011 V	2,9175 mA	60,00 Hz	1,2845 nF	0,2329 %
8000,00 V	8000 V	3,8831 mA	60,00 Hz	1,2845 nF	0,2330 %
10000,00 V	10004 V	4,8556 mA	60,00 Hz	1,2845 nF	0,2331 %
12000,00 V	12004 V	5,8260 mA	60,00 Hz	1,2844 nF	0,2332 %
2000,00 V	1984 V	882,88 µA	55,00 Hz	1,2846 nF	0,2325 %
4000,00 V	4001 V	1,7802 mA	55,00 Hz	1,2846 nF	0,2330 %
6000,00 V	6009 V	2,6741 mA	55,00 Hz	1,2847 nF	0,2327 %
8000,00 V	7999 V	3,5595 mA	55,00 Hz	1,2847 nF	0,2328 %
10000,00 V	9997 V	4,4479 mA	55,00 Hz	1,2845 nF	0,2330 %
12000,00 V	12008 V	5,3433 mA	55,00 Hz	1,2847 nF	0,2331 %
2000,00 V	1983 V	1,0427 mA	65,00 Hz	1,2843 nF	0,2325 %
4000,00 V	4001 V	2,1033 mA	65,00 Hz	1,2842 nF	0,2329 %
6000,00 V	6010 V	3,1599 mA	65,00 Hz	1,2843 nF	0,2329 %
8000,00 V	7998 V	4,2045 mA	65,00 Hz	1,2842 nF	0,2331 %
10000,00 V	10001 V	5,2579 mA	65,00 Hz	1,2842 nF	0,2332 %
12000,00 V	12002 V	6,3106 mA	65,00 Hz	1,2844 nF	0,2333 %

Esses resultados mostram que as capacitâncias apresentaram valores constantes nos três TC's, com valores médios de 13,2165 nF, 13,25216nF e 1,28445nF. Como também, em nenhum dos testes o valor do fator de potência ultrapassou 1%. Concluindo que os ensaios deram como resultado que os TC's estão aprovados, analisando que a isolação dos equipamentos estão em perfeito estado.

4.2 Resultado do Ensaio de Relação de Transformação

O resultado analisado foi baseado no ensaio de relação de transformação, descrito na subseção 3.2.2. Os Quadros 4.4, 4.5, 4.6, 4.7, 4.8 e 4.9 mostram os resultados do TC nº 2014.8432.06/19, os quadros 4.10, 4.11, 4.12, 4.13, 4.14 e 4.15 referem-se ao TC nº 2014.8432.06/20 , por fim, os quadros 4.16, 4.17, 4.18, 4.19, 4.20 e 4.21 representam os resultados do TC nº 2014.8432.06/22. Como mencionado no capítulo anterior, para a medição foi utilizado o equipamento de medição CPC 100 e foi realizada conforme o método da corrente, em todas as medições foi utilizado a opção automático do equipamento, que proporciona que o teste seja interrompido automaticamente quando finalizado.

Os TC's possuem um enrolamento primário e seis secundários, sendo que os enrolamentos 1S e 2S são destinados para a medição e cada um possui 5 derivações, os enrolamentos 3S, 4S, 5S e 6S são destinados a proteção e cada um possui 5 derivações. O ensaio é realizado para cada derivação do enrolamento, com os valores nominais detalhado na placa do TC. Conforme mencionado anteriormente, não é necessário injetar uma corrente de teste com o valor da corrente nominal, neste ensaio foi injetado corrente de teste inferior da nominal e em seguida realizado a relação de transformação para identificar a relação de transformação.

Os quadros estão separado por enrolamentos e indicam os valores nominais da corrente primaria e secundário, a frequência e a corrente de teste, como também os resultados das correntes primária e secundária, com o seu ângulo de fase, a relação de transformação, a porcentagem do desvio e se a polaridade está no sentido certo.

Quadro 4.4 – Dados de medição de relação de transformação do enrolamento 1S do TC nº 2014.8432.06/19.

Enrolamento 1S				
Relação	1S1-1S2			
	ores inais		Resultados	
I prim.	600 A	I prim.	300,00 A	0,00°
I sec.	5,0 A	I sec.	2,50614 A	0,05°
Freq.	60 Hz	Relação:	600A:5,0123A	0,25%
I teste	300 A	Polaridade	OK	
Relação 1S1-1S3				
	ores inais		Resultados	
I prim.	1200 A	I prim.	499,91 A	0,00°
I sec.	5,0 A	I sec.	2,08465 A	0,000
Freq.	60 Hz	Relação:	1200A:5,0041A	0,08%
I teste	600 A	Polaridade	OK	
Relação	1S1-1S4			
	ores inais		Resultados	
I prim.	1500 A	I prim.	499,91 A	0,00°
I sec.	5,0 A	I sec.	1,66705 A	-0,02°
Freq.	60 Hz	Relação:	1500A:5,0021A	0,04%
I teste	500 A	Polaridade	OK	
Relação	1S1-1S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	499,88 A	0,00°
I sec.	5,0 A	I sec.	832,72 mA	-0,05°
Freq.	60 Hz	Relação:	3000A:4,9975A	-0,05%
I teste	600 A	Polaridade	OK	

Quadro 4.5 – Dados de medição de relação de transformação do enrolamento 2S do TC nº 2014.8432.06/19.

	Enrolamento 2S			
Relação	2S1-2S2			
	ores inais		Resultados	
I prim.	600 A	I prim	299,94 A	0,00°
I sec.	5,0 A	I sec.	2,50602 A	0,040
Freq.	60 Hz	Relação:	600A:5,0130A	0,26%
I teste	300 A	Polaridade	ОК	
Relação 2S1-2S3				
	ores inais		Resultados	
I prim.	1200 A	I prim.	499,91 A	0,00°
I sec.	5,0 A	I sec.	2,08458 A	-0,01°
Freq.	60 Hz	Relação:	1200A:5,0039A	0,08%
I teste	600 A	Polaridade	OK	
Relação	2S1-2S4			
	ores inais		Resultados	
I prim.	1500 A	I prim.	499,89 A	0,00°
I sec.	5,0 A	I sec.	1,66704 A	-0,01°
Freq.	60 Hz	Relação:	1500A:5,0022A	0,04%
I teste	500 A	Polaridade	OK	
Relação	2S1-2S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	499,91 A	0,00°
I sec.	5,0 A	I sec.	832,75 mA	-0,05°
Freq.	60 Hz	Relação:	3000A:4,9974A	-0,05%
I teste	600 A	Polaridade	OK	

Quadro 4.6 – Dados de medição de relação de transformação do enrolamento 3S do TC nº 2014.8432.06/19.

		Enrolam	ento 3S	
Relação	3S1-3S2			
	ores inais		Resultados	
I prim.	1000 A	I prim.	399,90 A	0,00°
I sec.	5,0 A	I sec.	1,99478 A	0,05°
Freq.	60 Hz	Relação:	1000A:4,9882A	-0,24%
I teste	400 A	Polaridade	OK	
Relação	3S1-3S3			
	ores inais		Resultados	
I prim.	2200 A	I prim.	399,91 A	0,00°
I sec.	5,0 A	I sec.	907,20 mA	0,01°
Freq.	60 Hz	Relação:	2200A:4,9907A	-0,19%
I teste	400 A	Polaridade	OK	
Relação 3S1-3S4				
	ores inais		Resultados	
I prim.	2500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	798,36 mA	0,000
Freq.	60 Hz	Relação:	2500A:4,9907A	-0,19%
I teste	400 A	Polaridade	OK	
Relação	3S1-3S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	665,31 mA	-0,020
Freq.	60 Hz	Relação:	3000A:4,9908A	-0,18%
I teste	400 A	Polaridade	OK	
Relação	3S2-3S3			
	ores inais		Resultados	
I prim.	1200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,66260 A	0,050
Freq.	60 Hz	Relação:	1200A:4,9888A	-0,22%

I teste	400 A	Polaridade	OK	
Relação	3S2-3S4			
	ores inais		Resultados	
I prim.	1500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,33030 A	0,02°
Freq.	60 Hz	Relação:	1500A:4,9896A	-0,21%
I teste	400 A	Polaridade	OK	
Relação	3S2-3S5	5		
	ores inais		Resultados	
I prim.	2000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	0,99785 A	0,01°
Freq.	60 Hz	Relação:	2000A:4,9902A	-0,20%
I teste	400 A	Polaridade	OK	
Relação	3S3-3S5			
	ores inais		Resultados	
I prim.	800 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	2,49283 A	0,11°
Freq.	60 Hz	Relação:	800A:4,9867A	-0,27%
I teste	400 A	Polaridade	OK	
Relação	3S4-3S5			
	ores inais		Resultados	
I prim.	500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	3,98373 A	0,17°
Freq.	60 Hz	Relação:	500A:4,9807A	-0,39%
I teste	400 A	Polaridade	OK	

Quadro 4.7 – Dados de medição de relação de transformação do enrolamento 4S do TC nº 2014.8432.06/19.

Enrolamento 4S				
Relação	4S1-4S2			
	ores inais		Resultados	
I prim.	1000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,99453 A	0,03°
Freq.	60 Hz	Relação:	1000A:4,9873A	-0,25%
I teste	400 A	Polaridade	OK	
Relação	4S1-4S3			
	ores inais	Resultados		
I prim.	2200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	907,20 mA	-0,02°
Freq.	60 Hz	Relação:	2200A:4,9906A	-0,19%
I teste	400 A	Polaridade	OK	
Relação	4S1-4S4			
	ores inais	Resultados		
I prim.	2500 A	I prim.	399,93 A	0,00°
I sec.	5,0 A	I sec.	798,39 mA	-0,03°
Freq.	60 Hz	Relação:	2500A:4,9908A	-0,18%
I teste	400 A	Polaridade	OK	
Relação	4S1-4S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	665,34 mA	-0,03°
Freq.	60 Hz	Relação:	3000A:4,9910A	-0,18%
I teste	400 A	Polaridade	OK	
Relação	4S2-4S3			
	ores inais	Resultados		
I prim.	1200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,66263 A	0,02°
Freq.	60 Hz	Relação:	1200A:4,9889A	-0,22%

I teste	400 A	Polaridade	OK		
Relação	4S2-4S4				
	ores inais		Resultados		
I prim.	1500 A	I prim.	399,92 A	0,00°	
I sec.	5,0 A	I sec.	1,33039 A	0,01°	
Freq.	60 Hz	Relação:	1500A:4,9900A	-0,20%	
I teste	400 A	Polaridade	OK		
Relação	4S2-4S5	55			
	ores inais	Resultados			
I prim.	2000 A	I prim.	399,92 A	0,00°	
I sec.	5,0 A	I sec.	0,99792 A	0,02°	
Freq.	60 Hz	Relação:	2000A:4,9906A	-0,19%	
I teste	400 A	Polaridade	OK		
Relação	4S3-4S5				
	ores inais		Resultados		
I prim.	800 A	I prim.	399,92 A	0,00°	
I sec.	5,0 A	I sec.	2,49278 A	0,11°	
Freq.	60 Hz	Relação:	800A:4,9866A	-0,27%	
I teste	400 A	Polaridade	OK		
Relação	484-485				
	ores inais		Resultados		
I prim.	500 A	I prim.	399,92 A	0,00°	
I sec.	5,0 A	I sec.	3,98363 A	0,17°	
Freq.	60 Hz	Relação:	500A:4,9805A	-0,39%	
I teste	400 A	Polaridade	ОК		

Quadro 4.8 – Dados de medição de relação de transformação do enrolamento 5S do TC nº 2014.8432.06/19.

Enrolamento 5S				
Relação	5S1-5S2			
	ores inais		Resultados	
I prim.	1000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,99444 A	0,080
Freq.	60 Hz	Relação:	1000A:4,9871A	-0,26%
I teste	400 A	Polaridade	OK	
Relação	5S1-5S3			
	ores inais		Resultados	
I prim.	2200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	907,14 mA	0,01°
Freq.	60 Hz	Relação:	2200A:4,9903A	-0,19%
I teste	400 A	Polaridade	OK	
Relação 5S1-5S4				
	ores inais	Resultados		
I prim.	2500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	798,34 mA	0,01°
Freq.	60 Hz	Relação:	2500A:4,9906A	-0,19%
I teste	400 A	Polaridade	OK	
Relação	5S1-5S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	665,33 mA	-0,02°
Freq.	60 Hz	Relação:	3000A:4,9910A	-0,18%
I teste	400 A	Polaridade	OK	
Relação	5S2-5S3			
	ores inais	Resultados		
I prim.	1200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,66246 A	0,07°
Freq.	60 Hz	Relação:	1200A:4,9884A	-0,23%

I teste	400 A	Polaridade	OK	
Relação	5S2-5S4	•		
	ores inais		Resultados	
I prim.	1500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,33024 A	0,03°
Freq.	60 Hz	Relação:	1500A:4,9894A	-0,21%
I teste	400 A	Polaridade	OK	
Relação 5S2-5S5				
	ores inais	Resultados		
I prim.	2000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	0,99783 A	0,02°
Freq.	60 Hz	Relação:	2000A:4,9901A	-0,20%
I teste	400 A	Polaridade	OK	
Relação	5S3-5S5			
	ores inais		Resultados	
I prim.	800 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	2,49215 A	0,14°
Freq.	60 Hz	Relação:	800A:4,9853A	-0,29%
I teste	400 A	Polaridade	OK	
Relação	5S4-5S5			
	ores inais		Resultados	
I prim.	500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	3,98052 A	0,24°
Freq.	60 Hz	Relação:	500A:4,9766A	-0,47%
I teste	400 A	Polaridade	OK	

Quadro 4.9 – Dados de medição de relação de transformação do enrolamento 6S do TC nº 2014.8432.06/19.

Enrolamento 6S							
Relação 6S1-6S2							
Valores Nominais		Resultados					
I prim.	1000 A	I prim.	399,93 A	0,00°			
I sec.	5,0 A	I sec.	1,99390 A	0,09°			
Freq.	60 Hz	Relação:	1000A:4,9856A	-0,29%			
I teste	400 A	Polaridade	OK				
Relação	6S1-6S3						
Valores Nominais		Resultados					
I prim.	2200 A	I prim.	399,92 A	0,00°			
I sec.	5,0 A	I sec.	907,06 mA	0,01°			
Freq.	60 Hz	Relação:	2200A:4,9898A	-0,20%			
I teste	400 A	Polaridade	OK				
Relação	6S1-6S4						
Valores Nominais		Resultados					
I prim.	2500 A	I prim.	399,92 A	0,00°			
I sec.	5,0 A	I sec.	798,26 mA	0,01°			
Freq.	60 Hz	Relação:	2500A:4,9901A	-0,20%			
I teste	400 A	Polaridade OK					
Relação 6S1-6S5							
Valores Nominais		Resultados					
I prim.	3000 A	I prim.	399,92 A	0,00°			
I sec.	5,0 A	I sec.	665,25 mA	0,000			
Freq.	60 Hz	Relação:	3000A:4,9904A	-0,19%			
I teste	400 A	Polaridade	OK				
Relação	Relação 6S2-6S3						
Valores Nominais		Resultados					
I prim.	1200 A	I prim.	399,92 A	0,00°			
I sec.	5,0 A	I sec.	1,66206 A	0,07°			
Freq.	60 Hz	Relação:	1200A:4,9872A	-0,26%			

I teste	400 A	Polaridade OK				
Relação 6S2-6S4						
Valores Nominais		Resultados				
I prim.	1500 A	I prim.	399,93 A	0,00°		
I sec.	5,0 A	I sec.	1,32994 A	0,06°		
Freq.	60 Hz	Relação:	1500A:4,9881A	-0,24%		
I teste	400 A	Polaridade OK				
Relação	6S2-6S5					
Valores Nominais		Resultados				
I prim.	2000 A	I prim.	399,92 A	0,00°		
I sec.	5,000 A	I sec.	0,99768 A	0,03°		
Freq.	60 Hz	Relação:	2000A:4,9894A	-0,21%		
I teste	400 A	Polaridade	OK			
Relação 6S3-6S5						
Valores Nominais		Resultados				
I prim.	800 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	2,49137 A	0,16°		
Freq.	60 Hz	Relação:	800A:4,9837A	-0,33%		
I teste	400 A	Polaridade	OK			
Relação 6S4-6S5						
Valores Nominais		Resultados				
I prim.	500 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	3,97859 A	0,26°		
Freq.	60 Hz	Relação:	500A:4,9742A	-0,52%		
I teste	400 A	Polaridade	ОК			

Quadro 4.10 – Dados de medição de relação de transformação do enrolamento 1S do TC nº 2014.8432.06/20.

Enrolamento 1S						
Relação 1S1-1S2						
Valores Nominais		Resultados				
I prim.	600 A	I prim.	300,04 A	0,00°		
I sec.	5,0 A	I sec.	2,50675 A	0,03°		
Freq.	60 Hz	Relação:	600A:5,0128A	0,26%		
I teste	12,5 A	Polaridade OK				
Relação	1S1-1S3					
Valores Nominais		Resultados				
I prim.	1200 A	I prim.	499,91 A	0,00°		
I sec.	5,0 A	I sec.	2,08455 A	-0,01°		
Freq.	60 Hz	Relação:	1200A:5,0038A	0,08%		
I teste	600 A	Polaridade	OK			
Relação	Relação 1S1-1S4					
Valores Nominais		Resultados				
I prim.	1500 A	I prim.	499,90 A	0,00°		
I sec.	5,0 A	I sec.	1,66688 A	-0,02°		
Freq.	60 Hz	Relação:	1500A:5,0016A	0,03%		
I teste	500 A	Polaridade	OK			
Relação 1S1-1S5						
Valores Nominais		Resultados				
I prim.	3000 A	I prim.	499,90 A	0,00°		
I sec.	5,0 A	I sec.	832,51 mA	-0,06°		
Freq.	60 Hz	Relação:	3000A:4,9961A	-0,08%		
I teste	600 A	Polaridade OK				

Quadro 4.11 – Dados de medição de relação de transformação do enrolamento 2S do TC nº 2014.8432.06/20.

	Enrolamento 2S			
Relação	2S1-2S2			
	ores inais	Resultados		
I prim.	600 A	I prim.	299,94 A	0,00°
I sec.	5,0 A	I sec.	2,50603 A	0,04°
Freq.	60 Hz	Relação:	600A:5,0131A	0,26%
I teste	300 A	Polaridade	OK	
Relação	2S1-2S3			
	ores inais	Resultados		
I prim.	1200 A	I prim.	499,90 A	0,00°
I sec.	5,0 A	I sec.	2,08452 A	-0,02°
Freq.	60 Hz	Relação:	1200A:5,0038A	0,08%
I teste	600 A	Polaridade	OK	
Relação	2S1-2S4			
	ores inais		Resultados	
I prim.	1500 A	I prim.	499,90 A	0,00°
I sec.	5,0 A	I sec.	1,66689 A	-0,02°
Freq.	60 Hz	Relação:	1500A:5,0017A	0,03%
I teste	500 A	Polaridade	OK	
Relação	2S1-2S5			
	ores inais	Resultados		
I prim.	3000 A	I prim.	499,90 A	0,00°
I sec.	5,0 A	I sec.	832,53 mA	-0,06°
Freq.	60 Hz	Relação:	3000A:4,9962A	-0,08%
I teste	600 A	Polaridade	OK	

Quadro 4.12 – Dados de medição de relação de transformação do enrolamento 3S do TC nº 2014.8432.06/20.

Enrolamento 3S				
Relação	3S1-3S2			
	ores inais		Resultados	
I prim.	1000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,99478 A	0,05°
Freq.	60 Hz	Relação:	1000A:4,9879A	-0,24%
I teste	400 A	Polaridade	OK	0,2470
	3S1-3S3	1 Glaridade	<u> </u>	
Val	ores inais		Resultados	
I prim.	2200 A	I prim.	399,93 A	0,00°
l sec.	5,0 A	I sec.	907,08 mA	-0,02°
Freq.	60 Hz	Relação:	2200A:4,9898A	-0,20%
I teste	400 A	Polaridade	OK	·
Relação	3S1-3S4	1		
Val	ores inais	Resultados		
I prim.	2500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	798,23 mA	-0,03°
Freq.	60 Hz	Relação:	2500A:4,9899A	-0,20%
I teste	400 A	Polaridade	OK	
Relação	3S1-3S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	665,16 mA	-0,040
Freq.	60 Hz	Relação:	3000A:4,9897A	-0,21%
I teste	400 A	Polaridade	OK	
Relação	3S2-3S3			
	ores		Resultados	
	inais	Lnrim		0.000
I prim.	1200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	l sec.	1,66262 A	0,010
Freq.	60 Hz	Relação:	1200A:4,9889A	-0,22%
I teste	400 A Polaridade OK			
Val	Relação 3S2-3S4 Valores Nominais Resultados			

	1	1	1	
I prim.	1500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,33024 A	0,01°
Freq.	60 Hz	Relação:	1500A:4,9894A	-0,21%
I teste	400 A	Polaridade OK		
Relação	3S2-3S5			
	ores inais	Resultados		
I prim.	2000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	0,99775 A	0,00°
Freq.	60 Hz	Relação:	2000A:4,9897A	-0,21%
I teste	400 A	Polaridade OK		
Relação 3S3-3S5				
	ores		Resultados	
Nom	inais		11000110000	
I prim.	800 A	I prim.	399,93 A	0,00°
I sec.	5,0 A	I sec.	2,49308 A	0,09°
Freq.	60 Hz	Relação:	800A:4,9870A	-0,26%
I teste	400 A	Polaridade	OK	
Relação	3S4-3S5			
	ores inais	Resultados		
I prim.	500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	3,98501 A	0,160
Freq.	60 Hz	Relação:	500A:4,9823A	-0,35%
I teste	400 A	Polaridade	OK	

Quadro 4.13 – Dados de medição de relação de transformação do enrolamento 4S do TC nº 2014.8432.06/20.

	Enrolamento 4S			
Relação	4S1-4S2			
	ores inais		Resultados	
I prim.	1000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,99526 A	0,04°
Freq.	60 Hz	Relação:	1000A:4,9891A	-0,22%
I teste	400 A	Polaridade	OK	
Relação 4S1-4S3				
	ores inais		Resultados	
I prim.	2200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	907,17 mA	-0,02°
Freq.	60 Hz	Relação:	2200A:4,9904A	-0,19%
I teste	400 A	Polaridade	OK	
Relação 4S1-4S4				
	ores inais	Resultados		
I prim.	2500 A	I prim.	399,93 A	0,00°
I sec.	5,0 A	I sec.	798,33 mA	-0,03°
Freq.	60 Hz	Relação:	2500A:4,9904A	-0,19%
I teste	400 A	Polaridade	OK	
Relação	4S1-4S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	399,93 A	0,00°
I sec.	5,0 A	I sec.	665,21 mA	-0,04°
Freq.	60 Hz	Relação:	3000A:4,9899A	-0,20%
I teste	400 A	Polaridade	OK	
Relação	4S2-4S3			
	ores inais		Resultados	
I prim.	1200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,66295 A	0,020
Freq.	60 Hz	Relação:	1200A:4,9898A	-0,20%
I teste	400 A	Polaridade	OK	
Relação	4S2-4S4			
Valores Nominais Resultados				

I prim.	1500 A	I prim.	399,93 A	0,00°
I sec.	5,0 A	I sec.	1,33052 A	0,00°
Freq.	60 Hz	Relação:	1500A:4,9903A	-0,19%
I teste	400 A	Polaridade	OK	
Relação	4S2-4S5			
	ores inais		Resultados	
I prim.	2000 A	I prim.	399,91 A	0,00°
I sec.	5,0 A	I sec.	0,99785 A	-0,01°
Freq.	60 Hz	Relação:	2000A:4,9904A	-0,19%
I teste	400 A	Polaridade	OK	
Relação 4S3-4S5				
	ores		Resultados	
Nom	inais		Rosandass	
I prim.	800 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	2,49359 A	0,09°
Freq.	60 Hz	Relação:	800A:4,9882A	-0,24%
I teste	400 A	Polaridade	OK	
Relação	4S4-4S5			
Valores Nominais			Resultados	
I prim.	500 A	I prim.	399,93 A	0,00°
I sec.	5,0 A	I sec.	3,98586 A	0,16°
Freq.	60 Hz	Relação:	500A:4,9832A	-0,34%
I teste	400 A	Polaridade	ОК	

Quadro 4.14 – Dados de medição de relação de transformação do enrolamento 5S do TC nº 2014.8432.06/20.

Enrolamento 5S				
Relação	5S1-5S2			
	ores inais		Resultados	
I prim.	1000 A	I prim.	399,92 A	0,00°
l sec.	5,0 A	I sec.	1,99465 A	0,060
Freq.	60 Hz	Relação:	1000A:4,9876A	-0,25%
I teste	400 A	Polaridade	OK	
Relação 5S1-5S3				
Val	ores inais		Resultados	
I prim.	2200 A	I prim.	399,94 A	0,00°
I sec.	5,0 A	I sec.	907,07 mA	0,000
Freq.	60 Hz	Relação:	2200A:4,9896A	-0,21%
I teste	400 A	Polaridade	OK	
Relação 5S1-5S4				
	ores inais		Resultados	
I prim.	2500 A	I prim.	399,91 A	0,00°
I sec.	5,0 A	I sec.	798,20 mA	-0,01°
Freq.	60 Hz	Relação:	2500A:4,9899A	-0,20%
I teste	400 A	Polaridade	OK	
Relação	5S1-5S5			
	ores inais		Resultados	
I prim.	3000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	665,17 mA	-0,03°
Freq.	60 Hz	Relação:	3000A:4,9898A	-0,20%
I teste	400 A	Polaridade	OK	
Relação	5S2-5S3			
	ores		Resultados	
	inais	Larim		0.000
I prim.	1200 A	I prim.	399,91 A	0,00°
I sec.	5,0 A	I sec.	1,66258 A	0,06°
Freq.	60 Hz	Relação:	1200A:4,9889A	-0,22%
I teste	400 A	Polaridade	OK	
	5S2-5S4	T		
Valores Nominais Resultados				

		1		
I prim.	1500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,33023 A	0,020
Freq.	60 Hz	Relação:	1500A:4,9894A	-0,21%
I teste	400 A	Polaridade	OK	
Relação	5S2-5S5			
	ores inais	Resultados		
I prim.	2000 A	I prim.	399,92 A	0,00°
		•	•	
I sec.	5,0 A	I sec.	0,99775 A	0,020
Freq.	60 Hz	Relação:	2000A:4,98775A	-0,21%
I teste	400 A	Polaridade	OK	
Relação 5S3-5S5				
	ores		Resultados	
Nom	inais		rtocurtado	
I prim.	800 A	I prim.	399,92 A	0,00°
I sec.	5A	I sec.	2,49289 A	0,120
Freq.	60 Hz	Relação:	800A:4,9868A	-0,26%
I teste	400 A	Polaridade	ОК	
Relação	5S4-5S5			
	ores inais		Resultados	
I prim.	500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	3,98333 A	0,20°
Freq.	60 Hz	Relação:	500A:4,9802A	-0,40%
I teste	400 A	Polaridade	ОК	

Quadro 4.15 – Dados de medição de relação de transformação do enrolamento 6S do TC nº 2014.8432.06/20.

	Enrolamento 6S			
Relação	6S1-6S2			
	ores ninais		Resultados	
I prim.	1000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,99455 A	0,05°
Freq.	60 Hz	Relação:	1000A:4,9874A	-0,25%
I teste	400 A	Polaridade	OK	
Relação 6S1-6S3				
	ores ninais		Resultados	
I prim.	2200 A	I prim.	399,92 A	0,00°
I sec.	5,000 A	I sec.	907,01 mA	0,00°
Freq.	60 Hz	Relação:	2200A:4,9896A	-0,21%
I teste	400 A	Polaridade	OK	
Relação 6S1-6S4				
	ores ninais	Resultados		
I prim.	2500 A	I prim.	399,92 A	0,00°
I sec.	5,000 A	I sec.	798,19 mA	-0,02°
Freq.	60 Hz	Relação:	2500A:4,9897A	-0,21%
I teste	400 A	Polaridade	OK	
Val	6S1-6S5 ores ninais		Resultados	
I prim.	3000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	665,13 mA	-0,04°
Freq.	60 Hz	Relação:	3000A:4,9895A	-0,21%
I teste	400 A	Polaridade	OK	,
Relação	6S2-6S3	l	I	
Val	ores ninais		Resultados	
I prim.	1200 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,66245 A	0,020
Freq.	60 Hz	Relação:	1200A:4,9883A	-0,23%
I teste	400 A	Polaridade	OK	
Relação	6S2-6S4			
Valores Nominais Resultados				

I prim.	1500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	1,33012 A	0,01°
Freq.	60 Hz	Relação:	1500A:4,9889A	-0,22%
I teste	400 A	Polaridade	OK	
Relação	6S2-6S5			
	ores		.	
	ninais		Resultados	
I prim.	2000 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	0,99765 A	0,000
Freq.	60 Hz	Relação:	2000A:4,9892A	-0,22%
I teste	400 A	Polaridade	OK	
Relação 6S3-6S5				
Val	ores		Resultados	
Non	ninais		Resultatios	
I prim.	800 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	2,49274 A	0,11°
Freq.	60 Hz	Relação:	800A:4,9865A	-0,27%
I teste	400 A	Polaridade	ОК	
Relação	6S4-6S5			
	Valores Iominais		Resultados	
I prim.	500 A	I prim.	399,92 A	0,00°
I sec.	5,0 A	I sec.	3,98310 A	0,20°
Freq.	60 Hz	Relação:	500A:4,9799A	-0,40%
I teste	400 A	Polaridade	ОК	

Quadro 4.16 – Dados de medição de relação de transformação do enrolamento 1S do TC nº 2014.8432.06/22.

		Enrolame	nto 1S	
Relação	1S1-1S2			
	ores		Resultados	
Nom	inais		Nesultados	
I prim.	600 A	I prim.	300,74 A	0,00°
I sec.	5,0 A	I sec.	2,51233 A	0,06°
Freq.	60 Hz	Relação:	600A:5,0123A	0,25%
I teste	300 A	Polaridade	OK	
	1S1-1S3			
	ores		Resultados	
Nom	inais		resultados	
I prim.	1200 A	I prim.	499,93 A	0,00°
I sec.	5,0 A	I sec.	2,08477 A	0,00°
Freq.	60 Hz	Relação:	1200A:5,0041A	0,08%
I teste	600 A	Polaridade	OK	
	1S1-1S4			
	ores		Resultados	
Nom	inais		Nesultados	
I prim.	1500 A	I prim.	499,88 A	0,00°
I sec.	5,0 A	I sec.	1,66705 A	-0,01°
Freq.	60 Hz	Relação:	1500A:5,0024A	0,05%
I teste	500 A	Polaridade	OK	
Relação	1S1-1S5			
	ores		Resultados	
	inais		resultates	
I prim.	3000 A	I prim.	499,91 A	0,00°
I sec.	5,0 A	I sec.	832,72 mA	-0,06°
Freq.	60 Hz	Relação:	3000A:4,9972A	-0,06%
I teste	600 A	Polaridade	OK	

Quadro 4.17 – Dados de medição de relação de transformação do enrolamento 2S do TC nº 2014.8432.06/22.

	Enrolamento 2S			
Relação	2S1-2S2			
	ores		Resultados	
_	inais			
I prim.	600 A	I prim.	299,94 A	0,00°
I sec.	5,0 A	I sec.	2,5059 A	0,04°
Freq.	60 Hz	Relação:	600A:5,0128A	0,26%
I teste	300 A	Polaridade	OK	
	2S1-2S3			
	ores		Resultados	
Nom	inais		resultados	
I prim.	1200 A	I prim.	499,89 A	0,00°
I sec.	5,0 A	I sec.	2,08471 A	-0,01°
Freq.	60 Hz	Relação:	1200A:5,0044A	0,09%
I teste	600 A	Polaridade	OK	
Relação	2S1-2S4			
	ores		Resultados	
Nom	inais		Nesultados	
I prim.	1500 A	I prim.	499,89 A	0,00°
I sec.	5,0 A	I sec.	1,66708 A	-0,020
Freq.	60 Hz	Relação:	1500A:5,0023A	0,05%
I teste	500 A	Polaridade	OK	
Relação	2S1-2S5			
	ores		Resultados	
Nom	inais	Resultatios		
I prim.	3000 A	I prim.	499,92 A	0,00°
I sec.	5,0 A	I sec.	832,75 mA	-0,05°
Freq.	60 Hz	Relação:	3000A:4,9973A	-0,05%
I teste	600 A	Polaridade	OK	

Quadro 4.18 – Dados de medição de relação de transformação do enrolamento 3S do TC nº 2014.8432.06/22.

		Enrolam	ento 3S		
Relação	3S1-3S2				
Val	ores inais		Resultados		
I prim.	1000 A	I prim.	400,04 A	0,00°	
I sec.	5,0 A	I sec.	1,99522 A	0,02°	
Freq.	60 Hz	Relação:	1000A:4,9876A	-0,25%	
I teste	400 A	Polaridade	OK		
Relação	3S1-3S3				
Val	ores	Resultados			
Nom	inais		Resultatios		
I prim.	2200 A	I prim.	399,92 A	0,00°	
I sec.	5,0 A	I sec.	907,19 mA	0,01°	
Freq.	60 Hz	Relação:	2200A:4,9905A	-0,19%	
I teste	400 A	Polaridade	OK		
Relação	3S1-3S4				
	ores		Resultados		
	inais		T		
I prim.	2500 A	I prim.	399,92 A	0,00°	
I sec.	5,0 A	I sec.	798,36 mA	0,02°	
Freq.	60 Hz	Relação:	1500A:4,9901A	-0,20%	
I teste	400 A	Polaridade	OK		
	3S1-3S5				
	ores		Resultados		
	inais		T		
I prim.	3000 A	I prim.	399,92 A	0,00°	
l sec.	5,0 A	I sec.	665,32 A	-0,03°	
Freq.	60 Hz	Relação:	3000A:4,9909A	-0,18%	
I teste	400 A	Polaridade	OK		
	3S2-3S3	1			
	ores		Resultados		
	inais	l muima	200.02.4	0.000	
I prim.	1200 A	I prim.	399,93 A	0,00°	
I sec.	5,0 A	I sec.	1,66276 A	0,040	
Freq.	60 Hz	Relação:	1200A:4,9892A	-0,22%	
I teste	400 A	Polaridade	OK		
	3S2-3S4				
	ores inais		Resultados		
I prim.	1500 A	I prim.	399,93 A	0,00°	
I sec.	5,0 A	I sec.	1,33046 A	0,00	
Freq.	60 Hz	Relação:	1500A:4,9901A	-0,20%	
I teste	400 A	Polaridade	OK	-0,2070	
1 16216	400 A	rualiuaue	UK UK		

Relação	Relação 3S2-3S5					
	ores inais		Resultados			
I prim.	2000 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	0,99797 A	0,01°		
Freq.	60 Hz	Relação:	2000A:4,9908A	-0,18%		
I teste	400 A	Polaridade	OK			
Relação	3S3-3S5	S5				
	ores inais	Resultados				
I prim.	800 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	2,49295 A	0,10°		
Freq.	60 Hz	Relação:	800A:4,9869A	-0,26%		
I teste	400 A	Polaridade	OK			
Relação	3S4-3S5					
	ores inais		Resultados			
I prim.	500 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	3,98394 A	0,16°		
Freq.	60 Hz	Relação:	500A:4,9809A	-0,38%		
I teste	400 A	Polaridade	OK			

Quadro 4.19 – Dados de medição de relação de transformação do enrolamento 4S do TC nº 2014.8432.06/22.

	Enrolamento 4S							
Relação	4S1-4S2							
	ores inais		Resultados					
I prim.	1000 A	I prim.	399,92 A	0,00°				
I sec.	5,0 A	I sec.	0,05°					
Freq.	60 Hz	Relação:	-0,22%					
I teste	400 A	Polaridade OK						
Relação	4S1-4S3							
Val	ores		Resultados					
	inais		Nesultados	0,00°				
I prim.	2200 A	I prim.	I prim. 399,92 A					
I sec.	5,0 A	I sec.	907,33 mA	0,00°				
Freq.	60 Hz	Relação:	2200A:4,9913A	-0,17%				
I teste	400 A	Polaridade	OK					
	4S1-4S4							
	ores		Resultados					
	inais		ı					
I prim.	2500 A	I prim. 399,92 A		0,00°				
I sec.	5,0 A	I sec.	798,48 mA	0,00° -0,17%				
Freq.	60 Hz		Relação: 2500A:4,9915A					
I teste	400 A	Polaridade	OK					
	<u>4S1-4S5</u>	T						
	ores		Resultados					
	inais		1	0.000				
I prim.	3000 A	I prim.	399,93 A	0,00°				
I sec.	5,0 A	I sec.	665,43 mA	-0,03°				
Freq.	60 Hz	Relação:	3000A:4,9916A	-0,17%				
I teste	400 A	Polaridade	OK					
	4S2-4S3	T						
	ores		Resultados					
	1200 A	I prim.	200.02.4	0,00°				
I prim.		•	399,92 A	,				
I sec.	5,0 A	I sec.	1,66294 A	0,030				
Freq.	60 Hz	Relação:	1200A:4,9898A	-0,20%				
I teste	400 A	Polaridade	OK					
	4S2-4S4 ores	T						
	ores inais		Resultados					
I prim.	1500 A	0 A I prim. 399,92 A 0						
I sec.	5,0 A	I sec.	1,33057 A	0,020				
Freq.	60 Hz	Relação:	1500A:4,9906A	-0,19%				
I teste	400 A	Polaridade	OK	-, , -				
	.0071							

Relação	4S2-4S5			Relação 4S2-4S5							
Vale	ores inais		Resultados								
I prim.	2000 A	I prim.	399,91 A	0,00°							
I sec.	5,0 A	I sec.	0,99802 A	0,010							
Freq.	60 Hz	Relação:	2000A:4,9912A	-0,18%							
I teste	400 A	Polaridade	OK								
Relação 4S3-4S5											
	ores inais		Resultados								
I prim.	800 A	I prim.	399,92 A	0,00°							
I sec.	5,0 A	I sec.	2,49325 A	0,090							
Freq.	60 Hz	Relação:	800A:4,9875A	-0,25%							
I teste	400 A	Polaridade	OK								
Relação	4\$4-4\$5										
	ores inais		Resultados								
I prim.	500 A	I prim.	399,92 A	0,00°							
I sec.	5,0 A	I sec.	3,98429 A	0,16°							
Freq.	60 Hz	Relação: 500A:4,9814A -0,379									
I teste	400 A	Polaridade	OK								

Quadro 4.20 – Dados de medição de relação de transformação do enrolamento 5S do TC nº 2014.8432.06/22.

		Enrolamer	nto 5S			
Relação	5S1-5S2					
Val	ores inais		Resultados			
I prim.	1000 A	I prim.	399,92 A	0,00°		
l sec.	5,0 A	I sec.	1,99466 A	0,060		
Freq.	60 Hz	Relação:	-0,25%			
I teste	400 A	Polaridade OK				
Relação	5S1-5S3					
	ores		Resultados			
	inais	_	T			
I prim.	2200 A	I prim.	399,91 A	0,00°		
I sec.	5,0 A	I sec.	907,22 mA	0,01°		
Freq.	60 Hz	Relação:	2200A:4,9908A	-0,18%		
I teste	400 A	Polaridade	OK			
	5S1-5S4	T				
	ores		Resultados			
	2500 A	I prim.	300 03 4	0,00°		
I prim.	5,0 A	•		0,00 0,01°		
	60 Hz	,		•		
Freq.	400 A	Relação: Polaridade	2500A:4,9909A OK	-0,18%		
	5S1-5S5	i Olaridade	<u> </u>			
	ores					
	inais		Resultados			
I prim.	3000 A	I prim.	399,92 A	0,00°		
l sec.	5,0 A	I sec.	665,33 mA	-0,01°		
Freq.	60 Hz	Relação:	3000A:4,9910A	-0,18%		
I teste	400 A	Polaridade	OK			
Relação	5S2-5S3					
	ores		Resultados			
	inais	_	Г			
I prim.	1200 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	1,66261 A	0,07°		
Freq.	60 Hz	Relação:	1200A:4,9888A	-0,22%		
I teste	400 A	Polaridade	OK			
	5S2-5S4	Τ				
	ores		Resultados			
I prim.	Nominais rim. 1500 A I prim. 399,92 A 0,			0,00°		
I sec.	5,0 A	I sec.	1,33035 A	0,00°		
Freq.	60 Hz	Relação:	1500A:4,9898A	-0,20%		
I teste	400 A	Polaridade	OK	0,2070		
1 10310	+00 A	i viailuaue	UK.			

Relação	Relação 5S2-5S5							
Val	ores inais		Resultados					
I prim.	2000 A	I prim.	399,92 A	0,00°				
I sec.	5,0 A	I sec.	0,99790 A	0,020				
Freq.	60 Hz	Relação:	2000A:4,9905A	-0,19%				
I teste	400 A	Polaridade	OK					
Relação 5S3-5S5								
	ores inais		Resultados					
I prim.	800 A	I prim.	399,92 A	0,00°				
I sec.	5,0 A	I sec.	2,49234 A	0,120				
Freq.	60 Hz	Relação:	800A:4,9857A	-0,29%				
I teste	400 A	Polaridade	OK					
Relação	5S4-5S5							
	ores inais		Resultados					
I prim.	500 A	I prim.	399,92 A	0,00°				
I sec.	5,0 A	I sec.	3,98117 A	0,21°				
Freq.	60 Hz	Relação:	Relação: 500A:4,9775A -0,45°					
I teste	400 A	Polaridade	OK					

Quadro 4.21 – Dados de medição de relação de transformação do enrolamento 6S do TC nº 2014.8432.06/22.

Relação 6S1-6S2 Valores Resultados	
Valores	
Nominais Resultados	
I prim. 1000 A I prim. 399,94 A	0,00°
I sec. 5,0 A I sec. 1,99395 A	0,07°
Freq. 60 Hz Relação: 1000A:4,9856A	-0,29%
I teste 400 A Polaridade OK	
Relação 6S1-6S3	
Valores Resultados	
Nominais	
I prim. 2200 A I prim. 399,92 A	0,00°
I sec. 5,0 A I sec. 907,05 mA	0,01°
Freq. 60 Hz Relação: 2200A:4,9898A	-0,20%
I teste 400 A Polaridade OK	
Relação 6S1-6S4	
Valores Resultados	
Nominais	
I prim. 2500 A I prim. 399,92 A	0,00°
I sec. 5,0 A I sec. 798,25 mA	0,000
Freq. 60 Hz Relação: 2500A:4,9901A	-0,20%
I teste 400 A Polaridade OK	
Relação 6S1-6S5	
Valores Resultados	
Nominais 2000 A Lovins 200 03 A	0.000
I prim. 3000 A I prim. 399,92 A	0,00°
Sec. 5,0 A Sec. 665,24 mA	0,000
Freq. 60 Hz Relação: 3000A:4,9903A	-0,19%
I teste 400 A Polaridade OK	
Relação 6S2-6S3 Valores	
Nominais Resultados	
I prim. 1200 A I prim. 399,92 A	0,00°
I sec. 5,0 A I sec. 1,66205 A	0,06°
Freq. 60 Hz Relação: 1200A:4,9871A	-0,26%
I teste 400 A Polaridade OK	0,2070
Relação 6S2-6S4	
Valores	
Nominais Resultados	
I prim. 1500 A I prim. 399,92 A	0,00°
I sec. 5,0 A I sec. 1,32995 A	0,040
Freq. 60 Hz Relação: 1500A:4,9883A	-0,23%
I teste 400 A Polaridade OK	-

Relação	6S2-6S5					
	ores inais		Resultados			
I prim.	2000 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	0,99768 A	0,03°		
Freq.	60 Hz	Relação:	2000A:4,9894A	-0,21%		
I teste	400 A	Polaridade OK				
Relação 6S3-6S5						
	ores inais		Resultados			
I prim.	800 A	I prim.	399,92 A	0,00°		
I sec.	5,0 A	I sec.	2,49123 A	0,140		
Freq.	60 Hz	Relação:	800A:4,9836A	-0,33%		
I teste	400 A	Polaridade	OK			
Relação	6S4-6S5					
	ores inais		Resultados			
I prim.	500 A	I prim. 399,92 A 0,0				
I sec.	5,0 A	I sec.	3,97936 A	0,23°		
Freq.	60 Hz	Relação: 500A:4,9752A -0,50				
I teste	400 A	Polaridade	OK			

Os resultados mostrados apresentam que os TC's estão aptos para serem instalados com base na relação de transformação, estabelecendo que os equipamentos não possuem falha com algum curto entre as espiras ou se possui enrolamentos abertos. Pois, o desvio calculado da relação de transformação não atingiu em nenhum caso ±0,5% e a polaridade de todos estão certa, de maneira subtrativa.

4.3 Resultado do Ensaio de Resistência Ôhmica

Foi realizado o ensaio de resistência ôhmica, conforme a subseção 3.2.3, utilizando o método da ponte, pelo instrumento de medição CPC 100. Os resultados obtidos estão separados por enrolamentos e estão exposto nos Quadros 4.22, 4.23, 4.24, 4.25, 4.26 e 4.27; 4.28, 4.29, 4.30, 4.31, 4.32 e 4.33; 4.34, 4.35, 4.36, 4.37, 4.38 e 4.39, representando respectivamente, ao TC nº 2014.8432.06/19, nº

2014.8432.06/20 e nº 2014.8432.06/22. Com intuito de uma melhor análise do resultado é necessário medir a temperatura ambiente durante o teste.

Os quadros especificam a corrente de teste real (Icc), a tensão medida (Vcc), resistência medida (R med), desvio máximo entre valores medidos nos últimos 10 segundos de teste, tempo decorrido do teste, compensação de temperatura para cobre com a relação da temperatura ambiente real (T medido) e da temperatura para q qual o resultado é calculado (T ref), dando por meio da equação abaixo a resistência calculada (R ref).

$$Rref = \frac{Vcc}{Icc} * \frac{235^{\circ}C + Tref}{235^{\circ}C + Tmedido}$$

Quadro 4.22 – Dados de medição de resistência ôhmica do enrolamento 1S do TC nº 2014.8432.06/19.

Enrolamento 1S									
Derivações	Resultados					-	ação de te para Cobr	emperatura e:	
3	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:	
1S1 - 1S2	1,95468 A	256,25 mV	131,10 mΩ	0,00%	27,0 s	27,0°C	75,0°C	156,91 mΩ	
1S1 - 1S3	1,93801 A	359,43 mV	185,46 mΩ	0,01%	27,0 s	24,0°C	75,0°C	221,98 mΩ	
1S1 - 1S4	1,93766 A	415,19 mV	214,27 mΩ	0,03%	27,0 s	24,0°C	75,0°C	256,46 mΩ	
1S1 - 1S5	2,04947 A	757,08 mV	$369,40~\text{m}\Omega$	0,01%	27,0 s	24,0°C	75,0°C	442,14 mΩ	

Fonte: Elaboração própria.

Quadro 4.23 – Dados de medição de resistência ôhmica do enrolamento 2S do TC nº 2014.8432.06/19.

Enrolamento 2S									
Derivações		Re	esultados				ação de te para Cobr	emperatura e:	
3	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:	
2S1 - 2S2	1,93917 A	242,56 mV	125,09 mΩ	0,01%	26,0 s	24,0°C	75,0°C	149,72 mΩ	
2S1 - 2S3	1,92514 A	345,28 mV	179,36 mΩ	0,03%	27,0 s	24,0°C	75,0°C	214,67 mΩ	
2S1 - 2S4	1,92766 A	403,45 mV	209,30 mΩ	0,02%	27,0 s	24,0°C	75,0°C	250,51 mΩ	
2S1 - 2S5	2,04334 A	744,01 mV	364,11 mΩ	0,01%	27,0 s	24,0°C	75,0°C	435,81 mΩ	

Quadro 4.24 – Dados de medição de resistência ôhmica do enrolamento 3S do TC nº 2014.8432.06/19.

	Enrolamento 3S									
Derivações		Resultados					Compensação de temperatura para Cobre:			
,	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
3S1 - 3S2	2,38372 A	368,36 mV	154,53 mΩ	0,01%	24,0 s	24,0°C	75,0°C	184,96 mΩ		
3S1 - 3S3	2,29883 A	715,60 mV	311,29 mΩ	0,01%	27,0 s	24,8°C	75,0°C	371,44 mΩ		
3S1 - 3S4	2,26861 A	787,85 mV	347,28 mΩ	0,02%	27,0 s	24,8°C	75,0°C	414,38 mΩ		
3S1 -3S5	2,25668 A	942,98 mV	417,86 mΩ	0,02%	27,0 s	24,8°C	75,0°C	498,60 mΩ		
3S2 -3S3	2,38764 A	453,30 mV	189,85 m Ω	0,01%	27,0 s	24,9°C	75,0°C	226,45 mΩ		
3S2 -3S4	2,37503 A	542,50 mV	228,42 mΩ	0,03%	27,0 s	24,9°C	75,0°C	272,45 mΩ		
3S2 -3S5	2,31455 A	693,86 mV	299,78 mΩ	0,03%	27,0 s	24,9°C	75,0°C	357,57 mΩ		
3S3 -3S4	2,27814 A	172,01 mV	75,503 mΩ	0,06%	37,0 s	25,0°C	75,0°C	90,023 mΩ		
3S3 -3S5	2,36808 A	348,74 mV	147,27 mΩ	0,04%	26,0 s	24,9°C	75,0°C	175,66 mΩ		
3S4 -3S5	2,35323 A	241,98 mV	102,83 mΩ	0,06%	33,0 s	25,0°C	75,0°C	122,60 mΩ		

Quadro 4.25 – Dados de medição de resistência ôhmica do enrolamento 4S do TC nº 2014.8432.06/19.

	Enrolamento 4S									
Derivações		Resultados					Compensação de temperatura para Cobre:			
,	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
4S1 - 4S2	2,36235 A	371,59 mV	157,30 mΩ	0,03%	26,0 s	25,0°C	75,0°C	187,55 mΩ		
4S1 - 4S3	2,28108 A	722,37 mV	316,68 mΩ	0,02%	27,0 s	25,0°C	75,0°C	377,58 mΩ		
4S1 - 4S4	2,26163 A	795,18 mV	351,60 mΩ	0,02%	27,0 s	25,0°C	75,0°C	419,21 mΩ		
4S1 - 4S5	2,24618 A	945,92 mV	421,12 mΩ	0,02%	27,0 s	25,0°C	75,0°C	502,11 mΩ		
4S2 - 4S3	2,32569 A	469,96 mV	202,07 mΩ	0,01%	27,0 s	25,0°C	75,0°C	240,93 mΩ		
4S2 - 4S4	2,32236 A	547,03 mV	235,55 mΩ	0,03%	27,0 s	25,5°C	75,0°C	280,31 mΩ		
4S2 - 4S5	2,25686 A	685,03 mV	$303,53~\text{m}\Omega$	0,04%	27,0 s	25,4°C	75,0°C	$361,35~\text{m}\Omega$		
4S3- 4S4	2,16670 A	161,05 mV	74,329 mΩ	0,06%	25,0 s	25,5°C	75,0°C	88,453 mΩ		
4S3- 4S5	2,32946 A	360,49 mV	154,75 mΩ	0,06%	26,0 s	25,6°C	75,0°C	184,09 mΩ		
4S4- 4S5	2,28938 A	236,26 mV	103,20 mΩ	0,05%	41,0 s	25,8°C	75,0°C	122,67 mΩ		

Quadro 4.26 – Dados de medição de resistência ôhmica do enrolamento 5S do TC nº 2014.8432.06/19.

	Enrolamento 5S									
Derivações	ñes Resultados					Compensação de temperatura para Cobre:				
,	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
5S1 - 5S2	2,27989 A	390,64 mV	171,34 mΩ	0,07%	70,0 s	26,0°C	75,0°C	$203,51~\text{m}\Omega$		
5S1 - 5S3	2,22722 A	722,71 mV	$324,49~\text{m}\Omega$	0,02%	28,0 s	26,0°C	75,0°C	$385,41~\text{m}\Omega$		
5S1 - 5S4	2,22017 A	782,85 mV	352,61 mΩ	0,03%	27,0 s	26,0°C	75,0°C	$418,80~\text{m}\Omega$		
5S1 - 5S5	2,19961 A	0,97831 mV	444,76 mΩ	0,06%	102,0 s	26,0°C	75,0°C	$528,26~\text{m}\Omega$		
5S2 - 5S3	2,26363 A	445,19 mV	196,67 mΩ	0,05%	27,0 s	26,0°C	75,0°C	$233,59~\text{m}\Omega$		
5S2 - 5S4	2,24841 A	527,78 mV	234,73 mΩ	0,03%	29,0 s	26,0°C	75,0°C	$278,80~\text{m}\Omega$		
5S2 - 5S5	2,22635 A	682,78 mV	306,68 mΩ	0,04%	28,0 s	26,0°C	75,0°C	$364,26~\text{m}\Omega$		
5S3 - 5S4	2,14618 A	175,22 mV	81,641 mΩ	0,06%	29,0 s	26,0°C	75,0°C	$96,969~\text{m}\Omega$		
5S3 - 5S5	2,26831 A	342,91 mV	151,17 mΩ	0,03%	26,0 s	26,0°C	75,0°C	179,56 m Ω		
5S4 - 5S5	2,25294 A	250,35 mV	111,12 mΩ	0,05%	26,0 s	26,0°C	75,0°C	131,98 mΩ		

Quadro 4.27 – Dados de medição de resistência ôhmica do enrolamento 6S do TC nº 2014.8432.06/19.

	Enrolamento 6S										
Derivações		Re	esultados	Compensação de temperatura para Cobre:							
3	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:			
6S1 - 6S2	2,25971 A	385,07 mV	170,41 mΩ	0,05%	33,0 s	26,5°C	75,0°C	202,01 mΩ			
6S1 - 6S3	2,21137 A	694,10 mV	313,88 mΩ	0,02%	29,0 s	26,5°C	75,0°C	372,09 mΩ			
6S1 - 6S4	2,20188 A	789,99 mV	$358,78~\text{m}\Omega$	0,03%	27,0 s	26,5°C	75,0°C	425,32 mΩ			
6S1 - 6S5	2,18701 A	922,51 mV	421,81 mΩ	0,03%	26,0 s	26,5°C	75,0°C	500,05 mΩ			
6S2 - 6S3	2,25558 A	455,19 mV	201,81 mΩ	0,06%	37,0 s	26,5°C	75,0°C	239,24 mΩ			
6S2 - 6S4	2,23862 A	530,48 mV	236,97 mΩ	0,05%	38,0 s	26,5°C	75,0°C	280,92 mΩ			
6S2 - 6S5	2,21602 A	680,15 mV	$306,93~\text{m}\Omega$	0,04%	27,0 s	26,5°C	75,0°C	363,85 mΩ			
6S3 - 6S4	2,20228 A	186,17 mV	84,534 mΩ	0,07%	60,0 s	26,7°C	75,0°C	100,14 mΩ			
6S3 - 6S5	2,26621 A	333,95 mV	147,36 mΩ	0,06%	33,0 s	26,8°C	75,0°C	174,49 mΩ			
6S3 - 6S6	2,26248 A	251,45 mV	111,14 mΩ	0,08%	72,0 s	26,8°C	75,0°C	131,60 mΩ			

Quadro 4.28 – Dados de medição de resistência ôhmica do enrolamento 1S do TC nº 2014.8432.06/20.

	Enrolamento 1S									
Derivações		Re	esultados			Compensação de temperatura para Cobre:				
	I CC:	V CC:	R med.:	T medido:	T ref.:	R ref.:				
1S1 - 1S2	1,90769 A	242,98 mV	127,37mΩ	0,02%	37,0 s	30,0°C	75,0°C	149,00 mΩ		
1S1 - 1S3	1,89167 A	343,35 mV	181,51 mΩ	0,50%	31,0 s	30,0°C	75,0°C	212,33 mΩ		
1S1 - 1S4	1,89247 A	395,21 mV	208,83 mΩ	0,03%	27,0 s	30,0°C	75,0°C	244,29 mΩ		
1S1 - 1S5	1,98583 A	723,46 mV	364,31 mΩ	0,02%	27,0 s	30,0°C	75,0°C	426,18 mΩ		

Quadro 4.29 – Dados de medição de resistência ôhmica do enrolamento 2S do TC nº 2014.8432.06/20.

	Enrolamento 2S									
Derivações		Re	esultados			Compensação de temperatura para Cobre:				
3	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
2S1 - 2S2	1,90271 A	242,31 mV	127,35 m Ω	0,02%	26,0 s	29,0°C	75,0°C	149,54 mΩ		
2S1 - 2S3	1,88547 A	340,62 mV	180,66 mΩ	0,07%	31,0 s	31,0°C	75,0°C	212,13 mΩ		
2S1 - 2S4	1,88533 A	390,18 mV	$206,96~\text{m}\Omega$	0,02%	27,0 s	29,0°C	75,0°C	243,02 mΩ		
2S1 - 2S5	1,97801 A	717,38 mV	$362,68~\text{m}\Omega$	0,03%	27,0 s	27,0°C	75,0°C	429,12 mΩ		

Fonte: Elaboração própria.

Quadro 4.30 – Dados de medição de resistência ôhmica do enrolamento 3S do TC nº 2014.8432.06/20.

	Enrolamento 3S									
Derivações		Resultados					Compensação de temperat para Cobre:			
,	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
3S1 - 3S2	2,32863 A	360,94 mV	155,00 mΩ	0,04%	27,0 s	29,0°C	75,0°C	182,01 mΩ		
3S1 - 3S3	2,24150 A	693,95 mV	$309,59~\text{m}\Omega$	0,02%	28,0 s	29,0°C	75,0°C	$365,53~\text{m}\Omega$		
3S1 - 3S4	2,22673 A	782,42 mV	351,38 mΩ	0,02%	27,0 s	29,0°C	75,0°C	412,60 mΩ		
3S1 -3S5	2,21263 A	935,08 mV	422,61 mΩ	0,03%	27,0 s	29,0°C	75,0°C	496,24 mΩ		
3S2 -3S3	2,37102 A	441,16 mV	186,06 mΩ	0,00%	27,0 s	29,0°C	75,0°C	220,99 mΩ		
3S2 -3S4	2,36637 A	546,64 mV	231,00 mΩ	0,06%	27,0 s	26,0°C	75,0°C	274,37 mΩ		
3S2 -3S5	2,31146 A	702,30 mV	303,84 mΩ	0,05%	27,0 s	26,0°C	75,0°C	360,88 mΩ		
3S3 -3S4	2,13570 A	156,61 mV	73,330 mΩ	0,07%	53,0 s	26,0°C	75,0°C	87,097 mΩ		
3S3 -3S5	2,36981 A	343,70 mV	145,03 mΩ	0,04%	26,0 s	26,0°C	75,0°C	172,26 mΩ		
3S4 -3S5	2,30265 A	236,59 mV	102,75 mΩ	0,05%	44,0 s	26,0°C	75,0°C	122,04 mΩ		

Quadro 4.31 – Dados de medição de resistência ôhmica do enrolamento 4S do TC nº 2014.8432.06/20.

			Enrolam	ento 4S					
Dorivooãos		Re	esultados			Compensação de temperatura para Cobre:			
Derivações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:	
4S1 - 4S2	2,35686 A	361,25 mV	153,28 mΩ	0,01%	22,0 s	26,0°C	75,0°C	182,05 mΩ	
4S1 - 4S3	2,26469 A	702,47 mV	$310,19~\text{m}\Omega$	0,01%	27,0 s	27,0°C	75,0°C	367,01 mΩ	
4S1 - 4S4	2,24697 A	790,60 mV	$351,85~\text{m}\Omega$	0,02%	27,0 s	26,0°C	75,0°C	417,91 mΩ	
4S1 - 4S5	2,23226 A	946,75 mV	424,12 mΩ	0,01%	27,0 s	26,0°C	75,0°C	$503,75~\text{m}\Omega$	
4S2 - 4S3	2,34724 A	439,18 mV	187,10 mΩ	0,02%	27,0 s	26,0°C	75,0°C	222,23 mΩ	
4S2 - 4S4	2,33010 A	532,48 mV	228,52 mΩ	0,02%	27,0 s	26,0°C	75,0°C	271,43 mΩ	
4S2 - 4S5	2,27469 A	685,79 mV	301,49 mΩ	0,01%	40,0 s	26,0°C	75,0°C	$358,09~\text{m}\Omega$	
4S3- 4S4	2,08246 A	149,36 mV	71,722 mΩ	0,07%	37,0 s	26,0°C	75,0°C	85,187 mΩ	
4S3- 4S5	2,35258 A	339,64 mV	144,37 mΩ	0,04%	26,0 s	26,0°C	75,0°C	171,48 mΩ	
4S4- 4S5	2,27168 A	233,19 mV	102,65 mΩ	0,06%	34,0 s	26,0°C	75,0°C	121,92 mΩ	

Quadro 4.32 – Dados de medição de resistência ôhmica do enrolamento 5S do TC nº 2014.8432.06/20.

	Enrolamento 5S									
Darivaçãos		Resultados					Compensação de temperatura para Cobre			
Derivações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
5S1 - 5S2	2,30380 A	355,38 mV	154,26 mΩ	0,02%	25,0 s	26,0°C	75,0°C	183,22 mΩ		
5S1 - 5S3	2,24015 A	688,94 mV	307,54 mΩ	0,03%	27,0 s	26,0°C	75,0°C	365,28 mΩ		
5S1 - 5S4	2,23187 A	778,59 mV	$348,59~\text{m}\Omega$	0,01%	27,0 s	26,0°C	75,0°C	414,04 mΩ		
5S1 - 5S5	2,21678 A	933,53 mV	421,12 mΩ	0,02%	27,0 s	26,0°C	75,0°C	500,18 mΩ		
5S2 - 5S3	2,28649 A	420,30 mV	183,82 mΩ	0,02%	27,0 s	26,0°C	75,0°C	218,33 mΩ		
5S2 - 5S4	2,26803 A	510,02 mV	224,87 mΩ	0,02%	27,0 s	26,0°C	75,0°C	267,09 mΩ		
5S2 - 5S5	2,24213 A	661,76 mV	$295,15~\text{m}\Omega$	0,01%	27,0 s	26,0°C	75,0°C	350,56 mΩ		
5S3 - 5S4	2,10348 A	150,71 mV	71,646 mΩ	0,06%	34,0 s	26,0°C	75,0°C	85,097 mΩ		
5S3 - 5S5	2,29701 A	326,26 mV	142,04 mΩ	0,03%	26,0 s	26,0°C	75,0°C	168,70 mΩ		
5S4 - 5S5	2,25751 A	229,48 mV	101,65 mΩ	0,03%	26,0 s	26,0°C	75,0°C	120,74 mΩ		

Quadro 4.33 – Dados de medição de resistência ôhmica do enrolamento 6S do TC nº 2014.8432.06/20.

	Enrolamento 6S										
Derivações	Resultados					Compensação de temperatura para Cobre:					
Denvações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:			
6S1 - 6S2	2,30284 A	347,81 mV	151,04 mΩ	0,01%	25,0 s	26,0°C	75,0°C	179,39 mΩ			
6S1 - 6S3	2,23752 A	672,85 mV	300,71 mΩ	0,01%	28,0 s	26,0°C	75,0°C	357,17 mΩ			
6S1 - 6S4	2,22084 A	757,07 mV	340,89 mΩ	0,01%	27,0 s	26,0°C	75,0°C	404,89 mΩ			
6S1 - 6S5	2,20644 A	906,57 mV	410,88 mΩ	0,01%	27,0 s	26,0°C	75,0°C	488,01 mΩ			
6S2 - 6S3	2,28500 A	411,04 mV	179,89 mΩ	0,02%	26,0 s	25,0°C	75,0°C	214,48 mΩ			
6S2 - 6S4	2,26581 A	499,41 mV	220,41 mΩ	0,01%	27,0 s	26,0°C	75,0°C	261,79 mΩ			
6S2 - 6S5	2,23719 A	649,90 mV	290,50 mΩ	0,01%	27,0 s	25,0°C	75,0°C	346,37 mΩ			
6S3 - 6S4	2,11239 A	147,28 mV	69,724 mΩ	0,06%	21,0 s	26,0°C	75,0°C	82,813 mΩ			
6S3 - 6S5	2,28503 A	318,28 mV	139,29 mΩ	0,03%	26,0 s	26,0°C	75,0°C	165,44 mΩ			
6S3 - 6S6	2,22975 A	222,53 mV	99,799 mΩ	0,05%	26,0 s	26,0°C	75,0°C	118,53 mΩ			

Quadro 4.34 – Dados de medição de resistência ôhmica do enrolamento 1S do TC nº 2014.8432.06/22.

	Enrolamento 1S									
Dorivosãos		Re	esultados				mpensaç ratura pa	ão de ra Cobre:		
Derivações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
1S1 - 1S2	1,88845 A	247,14 mV	130,87mΩ	0,01%	26,0 s	28,0°C	75,0°C	154,26mΩ		
1S1 - 1S3	1,86843 A	342,03 mV	183,06 mΩ	0,03%	27,0 s	28,0°C	75,0°C	215,77 mΩ		
1S1 - 1S4	1,87272 A	396,28 mV	183,06 mΩ	0,01%	27,0 s	28,0°C	75,0°C	249,42 mΩ		
1S1 - 1S5	1,97446 A	723,62 mV	183,06 mΩ	0,01%	27,0 s	28,0°C	75,0°C	431,99 mΩ		

Fonte: Elaboração própria.

Quadro 4.35 – Dados de medição de resistência ôhmica do enrolamento 2S do TC nº 2014.8432.06/22.

	Enrolamento 2S										
Dariyasãos		Re	esultados				ompensação de eratura para Cobre: T ref.: R ref.:				
Derivações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:			
2S1 - 2S2	1,88286 A	247,46 mV	131,43 mΩ	0,07%	36,0 s	27,0°C	75,0°C	155,50 m Ω			
2S1 - 2S3	1,86888 A	342,68 mV	183,36 mΩ	0,04%	28,0 s	27,0°C	75,0°C	$216,95~\text{m}\Omega$			
2S1 - 2S4	1,87001 A	397,90 mV	212,78 mΩ	0,03%	28,0 s	27,0°C	75,0°C	$251,76~\text{m}\Omega$			
2S1 - 2S5	1,96792 A	722,14 mV	366,96 mΩ	0,03%	27,0 s	27,0°C	75,0°C	434,19 mΩ			

Quadro 4.36 – Dados de medição de resistência ôhmica do enrolamento 3S do TC nº 2014.8432.06/22.

			Enrolar	mento 3S				
Derivações		Compensação de temperatura para Cobre:						
Derivações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:
3S1 - 3S2	2,26618 A	347,86 mV	153,50 mΩ	0,01%	26,0 s	26,0°C	75,0°C	182,32 mΩ
3S1 - 3S3	2,19604 A	673,38 mV	306,63 mΩ	0,02%	28,0 s	27,0°C	75,0°C	364,20 mΩ
3S1 - 3S4	2,18670 A	762,98 mV	348,92 mΩ	0,02%	27,0 s	26,0°C	75,0°C	414,43 mΩ
3S1 -3S5	2,17091 A	911,19 mV	419,73 mΩ	0,03%	27,0 s	26,0°C	75,0°C	$498,53~\text{m}\Omega$
3S2 -3S3	2,24799 A	421,15 mV	187,35 mΩ	0,03%	27,0 s	26,0°C	75,0°C	222,52 mΩ
3S2 -3S4	2,22353 A	507,03 mV	228,03 mΩ	0,02%	27,0 s	26,0°C	75,0°C	270,84 mΩ
3S2 -3S5	2,19644 A	655,24 mV	298,32 mΩ	0,02%	27,0 s	27,0°C	75,0°C	$352,97~\text{m}\Omega$
3S3 -3S4	2,17981 A	160,42 mV	73,594 mΩ	0,07%	39,0 s	26,0°C	75,0°C	87,411 mΩ
3S3 -3S5	2,26198 A	327,82 mV	144,92 mΩ	0,04%	26,0 s	27,0°C	75,0°C	171,47 mΩ
3S4 -3S5	2,24723 A	233,34 mV	103,84 mΩ	0,03%	26,0 s	26,2°C	75,0°C	123,24 mΩ

Quadro 4.37 – Dados de medição de resistência ôhmica do enrolamento 4S do TC nº 2014.8432.06/22.

	Enrolamento 4S										
Danis a s		Re	Compens	sação de t para Cob	emperatura re:						
Derivações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:			
4S1 - 4S2	2,35260 A	365,41 mV	155,41 mΩ	0,07%	33,0 s	24,0°C	75,0°C	186,01 mΩ			
4S1 - 4S3	2,25642 A	700,84 mV	310,60 mΩ	0,05%	26,0 s	24,4°C	75,0°C	371,18 mΩ			
4S1 - 4S4	2,24810 A	790,30 mV	351,54 mΩ	0,02%	27,0 s	27,0°C	75,0°C	415,95 mΩ			
4S1 - 4S5	2,23325 A	943,85 mV	422,63 mΩ	0,01%	27,0 s	27,0°C	75,0°C	500,06 mΩ			
4S2 - 4S3	2,27851 A	687,99 mV	301,95 mΩ	0,02%	27,0 s	27,0°C	75,0°C	357,27 mΩ			
4S2 - 4S4	2,27666 A	686,94 mV	301,73 mΩ	0,00%	27,0 s	27,0°C	75,0°C	357,01 mΩ			
4S2 - 4S5	2,34506 A	339,05 mV	144,58 mΩ	0,05%	26,0 s	27,0°C	75,0°C	171,07 mΩ			
4S3- 4S4	2,32553 A	242,18 mV	104,14 mΩ	0,03%	26,0 s	27,0°C	75,0°C	123,22 mΩ			
4S3- 4S5	2,34424 A	338,82 mV	144,53 mΩ	0,03%	26,0 s	26,7°C	75,0°C	171,21 mΩ			
4S4- 4S5	2,33518 A	240,83 mV	103,57 mΩ	0,05%	26,0 s	27,0°C	75,0°C	122,55 mΩ			

Quadro 4.38 – Dados de medição de resistência ôhmica do enrolamento 5S do TC nº 2014.8432.06/22.

			Enrolan	nento 5S						
Dorivosões	Resultados						Compensação de temperatura para Cobre:			
Derivações	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:		
5S1 - 5S2	2,33604 A	356,41 mV	152,57 mΩ	0,02%	25,0 s	24,0°C	75,0°C	182,33 mΩ		
5S1 - 5S3	2,27748 A	700,07 mV	307,39 mΩ	0,04%	28,0 s	24,4°C	75,0°C	367,35 mΩ		
5S1 - 5S4	2,24937 A	783,58 mV	348,36 mΩ	0,01%	27,0 s	24,0°C	75,0°C	416,95 mΩ		
5S1 - 5S5	2,22938 A	934,55 mV	419,20 mΩ	0,01%	27,0 s	24,0°C	75,0°C	501,74 mΩ		
5S2 - 5S3	2,31923 A	427,40 mV	184,29 mΩ	0,00%	27,0 s	24,0°C	75,0°C	220,57 mΩ		
5S2 - 5S4	2,31122 A	523,98 mV	226,71 mΩ	0,02%	27,0 s	24,0°C	75,0°C	271,35 mΩ		
5S2 - 5S5	2,27241 A	676,52 mV	297,71 mΩ	0,04%	27,0 s	24,0°C	75,0°C	$356,33~\text{m}\Omega$		
5S3 - 5S4	2,16781 A	162,20 mV	74,821 mΩ	0,06%	38,0 s	20,0°C	75,0°C	$90,958~\text{m}\Omega$		
5S3 - 5S5	2,32501 A	338,18 mV	145,45 mΩ	0,05%	31,0 s	20,0°C	75,0°C	176,83 mΩ		
5S4 - 5S5	2,28441 A	238,84 mV	104,55 mΩ	0,04%	26,0 s	20,0°C	75,0°C	127,10 mΩ		

Quadro 4.39 – Dados de medição de resistência ôhmica do enrolamento 6S do TC nº 2014.8432.06/22.

Enrolamento 6S									
Derivações		Resultados					Compensação de temperatura para Cobre:		
	I CC:	V CC:	R med.:	Desvio:	Tempo:	T medido:	T ref.:	R ref.:	
6S1 - 6S2	2,30373 A	357,34 mV	155,11 mΩ	0,02%	23,0 s	24,0°C	75,0°C	185,66 m Ω	
6S1 - 6S3	2,24164 A	686,71 mV	306,34 mΩ	0,01%	28,0 s	24,0°C	75,0°C	$366,66~\text{m}\Omega$	
6S1 - 6S4	2,23025 A	773,96 mV	347,03 mΩ	0,01%	27,0 s	24,0°C	75,0°C	415,36 mΩ	
6S1 - 6S5	2,21357 A	920,47 mV	415,83 mΩ	0,01%	27,0 s	24,0°C	75,0°C	$497,71~\text{m}\Omega$	
6S2 - 6S3	2,28477 A	420,38 mV	183,99 mΩ	0,02%	27,0 s	25,0°C	75,0°C	219,37 mΩ	
6S2 - 6S4	2,26634 A	509,37 mV	224,75 mΩ	0,02%	27,0 s	25,0°C	75,0°C	267,98 mΩ	
6S2 - 6S5	2,24170 A	659,73 mV	294,30 mΩ	0,02%	27,0 s	25,0°C	75,0°C	$350,90~\text{m}\Omega$	
6S3 - 6S4	2,21322 A	161,42 mV	72,935 mΩ	0,06%	24,0 s	25,0°C	75,0°C	86,961 mΩ	
6S3 - 6S5	2,29419 A	329,86 mV	143,78 mΩ	0,06%	32,0 s	25,0°C	75,0°C	171,43 mΩ	
6S3 - 6S6	2,28427 A	234,85 mV	102,82 mΩ	0,07%	43,0 s	25,0°C	75,0°C	122,59 mΩ	

Fonte: Elaboração própria.

Analisando os resultados obtidos nos testes, observa-se que o desvio é considerado estável por não ter atingido 0,1%, sendo o máximo medido foi de

0,08%. Assim, os TC's foram aprovados por esse ensaio, não identificando a existência de abertura ou defeitos nos enrolamentos.

4.4 Resultado do Ensaio de Saturação

O resultado analisado é do ensaio de saturação, realizado conforme o item 3.2.4. Com intuito de não danificar o equipamento, configurou a tensão e corrente de teste máxima permitida para o ensaio. Os Quadros 4.40, 4.41, 4.42, 4.43, 4.44 e 4.45 mostram a tensão e a corrente medidas durante o teste, em cada enrolamento dos TC's, expressadas graficamente nos Gráficos 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17 e 4.18. Os Quadros 4.49, 4.50 4 4.51 especificam a tensão e a corrente joelho de cada enrolamento dos TC's, tendo como base a norma IEC 60044-1.

Quadro 4.40 – Dados de medição de saturação dos enrolamentos 1, 2 e 3 do TC nº 2014.8432.06/19.

Enrolamento 1		Enrola	amento 2	Enrolamento 3	
V	I	V	I	V	I
123.49 V	3.2047 A	123.50 V	3.0706 A	509.47 V	2.5671 A
123.19 V	3.0272 A	123.73 V	2.8558 A	506.59 V	2.3538 A
123.37 V	2.7191 A	123.01 V	2.5400 A	503.59 V	2.0607 A
121.59 V	2.3672 A	121.80 V	2.1927 A	501.26 V	1.7521 A
121.68 V	2.0095 A	121.42 V	1.8481 A	498.50 V	1.4546 A
120.35 V	1.6651 A	120.82 V	1.5190 A	495.69 V	1.1781 A
120.18 V	1.3412 A	119.62 V	1.2113 A	491.92 V	926.34 mA
119.51 V	1.0423 A	119.31 V	928.12 mA	487.44 V	702.50 mA
118.44 V	769.67 mA	118.73 V	671.33 mA	482.34 V	509.27 mA
117.70 V	527.50 mA	118.05 V	443.73 mA	476.15 V	351.09 mA
117.00 V	318.29 mA	116.98 V	250.37 mA	468.04 V	233.27 mA
116.08 V	152.15 mA	115.89 V	105.39 mA	457.06 V	156.44 mA
114.09 V	59.268 mA	113.16 V	43.248 mA	443.54 V	111.36 mA
110.14 V	31.794 mA	109.03 V	25.674 mA	428.21 V	85.070 mA
105.86 V	20.501 mA	104.74 V	17.211 mA	412.00 V	68.398 mA
101.47 V	14.021 mA	100.38 V	12.162 mA	395.29 V	56.837 mA
97.05 V	10.235 mA	95.96 V	9.2130 mA	378.31 V	48.516 mA
92.59 V	8.0210 mA	91.52 V	7.4230 mA	361.08 V	42.503 mA
88.11 V	6.7540 mA	87.08 V	6.3930 mA	343.72 V	38.112 mA
83.61 V	5.9740 mA	82.64 V	5.7500 mA	326.31 V	34.738 mA
79.10 V	5.4500 mA	78.18 V	5.3150 mA	308.78 V	32.154 mA
74.59 V	5.0280 mA	73.72 V	4.9490 mA	291.17 V	29.988 mA
70.10 V	4.6800 mA	69.28 V	4.6460 mA	273.54 V	28.051 mA
65.59 V	4.3760 mA	64.80 V	4.3610 mA	255.90 V	26.346 mA
61.08 V	4.0990 mA	60.35 V	4.0820 mA	238.24 V	24.851 mA
56.56 V	3.8410 mA	55.89 V	3.8150 mA	220.84 V	23.391 mA
52.05 V	3.5950 mA	51.45 V	3.5840 mA	202.84	21.797 mA
47.54 V	3.3540 mA	46.98 V	3.3510 mA	185.13 V	20.238 mA
43.03 V	3.1170 mA	42.52 V	3.1260 mA	167.38 V	18.729 ma
38.52 V	2.8810 mA	38.06 V	2.8960 mA	149.61 V	17.219 mA
34.01 V	2.6390 mA	33.60 V	2.6550 mA	131.89 V	15.687 mA
29.48 V	2.3850 mA	29.13 V	2.4060 mA	114.17 V	14.121 mA
24.96 V	2.1240 mA	24.68 V	2.1430 mA	96.38 V	12.495 mA
20.44 V	1.8450 mA	20.22 V	1.8680 mA	78.61 V	10.792 mA
15.94 V	1.5370 mA	15.76 V	1.5510 mA	60.83 V	8.9630 mA
11.42 V	1.2010 mA	11.29 V	1.2020 mA	43.07 V	6.9490 mA
6.92 V	822.00 µA	6.84 V	813.00 µA	25.09 V	4.6830 mA
2.41 V	362.00 µA	2.41 V	352.00 µA	7.32 V	1.9200 mA
1.02 V	193.00 µA	1.03 V	187.00 µA	-	-

Quadro 4.41 – Dados de medição de saturação dos enrolamentos 4, 5 e 6 do TC nº 2014.8432.06/19.

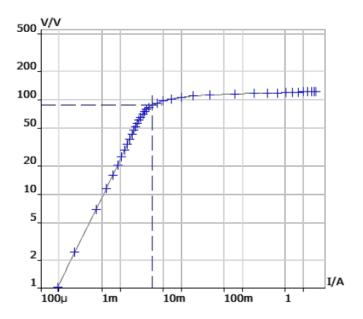
Enrolamento 4		Enrol	amento 5	Enrola	Enrolamento 6	
V	1	V	I	V	I	
503.25 V	2.5731 A	497.11 V	2.6003 A	494.70 V	2.6517 A	
501.02 V	2.3682 A	495.22 V	2.3924 A	493.03 V	2.4444 A	
497.23 V	2.0742 A	493.20 V	2.1051 A	490.80 V	2.1568 A	
495.23 V	1.7618 A	491.07 V	1.8004 A	488.44 V	1.8518 A	
492.51 V	1.4598 A	488.06 V	1.5050 A	485.49 V	1.5559 A	
489.55 V	1.1786 A	484.92 V	1.2296 A	482.13 V	1.2793 A	
485.55 V	922.69 mA	481.20 V	0.97916 A	478.16 V	1.0267 A	
481.59 V	695.58 mA	476.56 V	757.15 mA	473.37 V	801.78 mA	
476.54 V	499.80 mA	471.09 V	567.09 mA	467.92 V	607.30 mA	
470.33 V	339.47 mA	464.20 V	412.14 mA	461.25 V	446.43 mA	
462.12 V	219.83 mA	455.30 V	292.58 mA	452.74 V	321.76 mA	
451.31 V	141.59 mA	444.50 V	206.21 mA	442.24 V	232.17 mA	
438.02 V	95.566 mA	432.13 V	147.57 mA	429.70 V	172.16 mA	
422.84 V	69.634 mA	418.25 V	109.58 mA	415.54 V	132.72 mA	
406.53 V	55.045 mA	403.10 V	85.513 mA	400.40 V	106.32 mA	
389.58 V	46.320 mA	387.29 V	70.539 mA	384.52 V	87.752 mA	
372.34 V	40.637 mA	370.91 V	61.070 mA	368.32 V	74.388 mA	
354.84 V	36.659 mA	354.16 V	54.732 mA	351.83 V	64.558 mA	
337.23 V	33.673 mA	337.28 V	50.162 mA	335.14 V	57.247 mA	
319.55 V	31.348 mA	320.26 V	46.661 mA	318.28 V	51.645 mA	
301.77 V	29.382 mA	303.09 V	43.800 mA	301.30 V	47.285 mA	
284.02 V	27.613 mA	285.87 V	41.170 mA	284.25 V	43.724 mA	
266.20 V	25.948 mA	268.65 V	38.803 mA	267.09 V	40.607 mA	
248.40 V	24.379 mA	251.34 V	36.632 mA	249.91 V	37.976 mA	
230.57 V	22.987 mA	233.98 V	34.583 mA	232.69 V	35.612 mA	
212.70 V	21.522 mA	216.63 V	32.625 mA	215.47 V	33.326 mA	
194.81 V	20.020 mA	199.27 V	30.564 mA	198.19 V	31.126 mA	
176.91 V	18.557 mA	181.87 V	28.551 mA	180.87 V	28.992 mA	
158.99 V	17.110 mA	164.43 V	26.571 mA	163.56 V	26.879 mA	
141.05 V	15.685 mA	147.03 V	24.566 mA	146.25 V	24.814 mA	
123.12 V	14.241 mA	129.58 V	22.517 mA	128.89 V	22.691 mA	
105.23 V	12.738 mA	112.17 V	20.375 mA	111.57 V	20.512 mA	
87.32 V	11.154 mA	94.71 V	18.077 mA	94.20 V	18.216 mA	
69.39 V	9.4520 mA	77.24 V	15.628 mA	76.85 V	15.759 mA	
51.48 V	7.5920 mA	59.76 V	12.959 mA	59.46 V	13.135 mA	
33.56 V	5.5150 mA	42.31 V	10.002 mA	42.10 V	10.264 mA	
15.65 V	3.1290 mA	24.88 V	6.6560 mA	24.75 V	7.0050 mA	
-	-	7.21 V	2.5700 mA	7.16 V	2.9190 mA	

Quadro 4.42 – Dados de medição de saturação dos enrolamentos 1, 2 e 3 do TC nº 2014.8432.06/20.

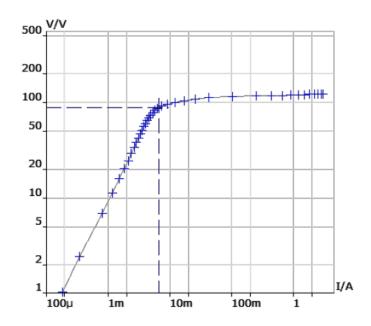
Enrolamento 1		Enrolamento 2		Enrolamento 3	
V	I	V	I	V	I
123,39 V	3,3883 A	123,66 V	3,3810 A	500,86 V	2,5556 A
123,06 V	3,2064 A	123,49 V	3,1989 A	497,28 V	2,3349 A
123,27 V	2,8879 A	123,68 V	2,8808 A	495,17 V	2,0305 A
121,58 V	2,5235 A	121,89 V	2,5174 A	491,91 V	1,7120 A
121,49 V	2,1526 A	121,92 V	2,1468 A	489,14 V	1,4059 A
120,03 V	1,7951 A	120,49 V	1,7891 A	486,20 V	1,1222 A
120,04 V	1,4599 A	120,44 V	1,4535 A	482,23 V	865,13 mA
119,21 V	1,1499 A	119,67 V	1,1420 A	477,95 V	637,83 mA
118,08 V	866,42 mA	118,51 V	858,02 mA	472,49 V	444,36 mA
117,34 V	610,53 mA	117,76 V	601,60 mA	465,87 V	288,43 mA
116,74 V	386,67 mA	117,14 V	377,98 mA	457,38 V	176,77 mA
115,84 V	201,74 mA	116,26 V	194,29 mA	445,82 V	109,06 mA
114,62 V	77,862 mA	114,92 V	73,390 mA	431,07 V	74,457 mA
110,96 V	36,754 mA	111,17 V	35,495 mA	414,77 V	57,174 mA
106,66 V	23,158 mA	106,86 V	22,541 mA	397,63 V	47,453 mA
102,25 V	16,027 mA	102,42 V	15,581 mA	380,00 V	41,411 mA
97,78 V	11,885 mA	97,94 V	11,525 mA	362,11 V	37,503 mA
93,28 V	9,1480 mA	93,46 V	8,9330 mA	344,13 V	34,375 mA
88,79 V	7,2160 mA	88,93 V	7,2360 mA	326,03 V	31,858 mA
84,26 V	6,2480 mA	84,41 V	6,1960 mA	307,85 V	29,923 mA
79,72 V	5,5210 mA	79,85 V	5,5130 mA	289,72 V	28,155 mA
75,18 V	5,0530 mA	75,31 V	5,0450 mA	271,45 V	26,562 mA
70,64 V	4,6990 mA	70,76 V	4,6900 mA	253,25 V	24,898 mA
66,08 V	4,3880 mA	66,22 V	4,3740 mA	234,96 V	23,512 mA
61,53 V	4,1030 mA	61,67 V	4,0930 mA	216,67 V	22,114 mA
56,99 V	3,8440 mA	57,12 V	3,8560 mA	198,40 V	20,604 mA
52,45 V	3,6110 mA	52,56 V	3,6380 mA	180,10 V	19,096 mA
47,90 V	3,3900 mA	48,02 V	3,4270 mA	161,78 V	17,619 mA
43,37 V	3,1570 mA	43,46 V	3,1900 mA	143,43 V	16,100 mA
38,81 V	2,9100 mA	38,91 V	2,9170 mA	125,10 V	14,575 mA
34,27 V	2,6570 mA	34,34 V	2,6420 mA	106,77 V	13,015 mA
29,71 V	2,4000 mA	29,78 V	2,3730 mA	88,41 V	11,360 mA
25,16 V	2,1290 mA	25,21 V	2,1100 mA	70,07 V	9,6000 mA
20,61 V	1,8490 mA	20,65 V	1,8410 mA	51,70 V	7,6890 mA
16,06 V	1,5490 mA	16,10 V	1,5480 mA	33,36 V	5,5500 mA
11,52 V	1,2200 mA	11,54 V	1,2120 mA	15,03	3,0730 mA
6,99 V	832,00 μA	6,99 V	820,00 µA	-	-
2,43 V	376,00 μA	2,43 V	360,00 µA	-	-
1,03 V	185,00 µA	1,05 V	169,00 µA	-	-

Quadro 4.43 – Dados de medição de saturação dos enrolamentos 4, 5 e 6 do TC nº 2014.8432.06/20.

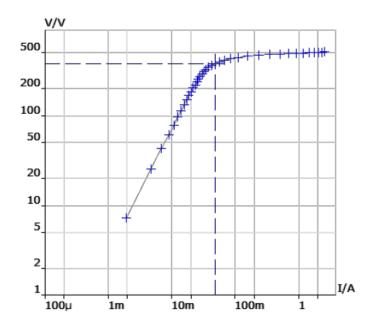
Enrolamento 4		Enrolamento 5		Enrolamento 6	
V	I	V	I	V	I
509,83 V	2,5652 A	510,08 V	2,5822 A	506,86 V	2,6466 A
505,51 V	2,3196 A	507,13 V	2,3664 A	503,09 V	2,4236 A
504,12 V	1,9944 A	505,01 V	2,0581 A	501,27 V	2,1136 A
500,23 V	1,6591 A	502,62 V	1,7326 A	498,13 V	1,7862 A
497,22 V	1,3405 A	499,67 V	1,4197 A	495,34 V	1,4706 A
493,71 V	1,0475 A	496,46 V	1,1303 A	492,46 V	1,1769 A
489,37 V	785,35 mA	492,10 V	869,84 mA	488,70 V	911,15 mA
484,32 V	557,57 mA	487,22 V	643,03 mA	484,59 V	677,00 mA
478,04 V	368,24 mA	480,85 V	453,27 mA	479,18 V	478,45 mA
470,51 V	223,71 mA	472,68 V	304,41 mA	472,48 V	321,12 mA
460,15 V	129,47 mA	462,33 V	197,78 mA	463,17 V	209,81 mA
445,91 V	79,295 mA	449,80 V	128,64 mA	450,70 V	140,96 mA
429,43 V	56,056 mA	434,95 V	88,825 mA	436,07 V	101,31 mA
411,44 V	45,503 mA	418,64 V	68,031 mA	419,95 V	78,451 mA
392,79 V	39,978 mA	401,15 V	57,242 mA	402,90 V	65,044 mA
373,82 V	36,561 mA	383,02 V	51,092 mA	385,33 V	56,712 mA
354,68 V	34,157 mA	364,52 V	47,050 mA	367,34 V	51,267 mA
335,54 V	32,097 mA	345,89 V	43,895 mA	349,16 V	47,375 mA
316,32 V	30,226 mA	327,18 V	41,446 mA	330,88 V	44,237 mA
297,06 V	28,605 mA	308,43 V	39,157 mA	312,45 V	41,582 mA
277,80 V	26,990 mA	289,64 V	37,087 mA	294,01 V	39,366 mA
258,53 V	25,453 mA	270,83 V	35,093 mA	275,56 V	37,186 mA
239,23 V	24,006 mA	251,96 V	32,966 mA	257,03 V	35,027 mA
219,91 V	22,631 mA	233,11 V	31,072 mA	238,53 V	33,073 mA
200,52 V	21,144 mA	214,24 V	29,133 mA	219,97 V	31,101 mA
181,19 V	19,676 mA	195,32 V	27,179 mA	201,37 V	29,081 mA
161,81 V	18,170 mA	176,44 V	25,105 mA	182,80 V	27,056 mA
142,43 V	16,657 mA	157,47 V	23,074 mA	164,19 V	25,072 mA
123,06 V	15,082 mA	138,54 V	21,094 mA	145,55 V	23,068 mA
103,67 V	13,426 mA	119,64 V	18,999 mA	126,95 V	20,961 mA
84,26 V	11,616 mA	100,66 V	16,737 mA	108,34 V	18,758 mA
64,87 V	9,6230 mA	81,72 V	14,352 mA	89,70 V	16,357 mA
45,49 V	7,3740 mA	62,77 V	11,756 mA	71,09 V	13,735 mA
26,12 V	4,8150 mA	43,81 V	8,9320 mA	52,46 V	10,868 mA
6,56 V	1,7040 mA	24,88 V	5,8020 mA	33,83 V	7,6860 mA
-	-	5,74 V	2,0120 mA	15,25 V	4,0730 mA

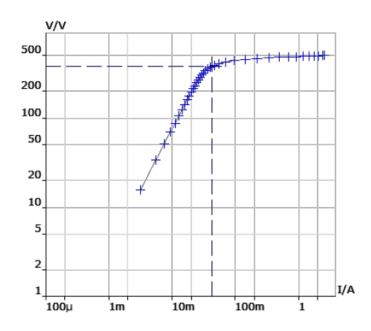

Quadro 4.44 – Dados de medição de saturação dos enrolamentos 1, 2 e 3 do TC nº 2014.8432.06/22.

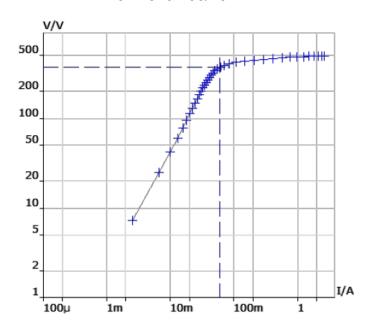
Enrolamento 1		Enrolamento 2		Enrolamento 3	
V (V)	I (A)	V (V)	I (A)	V (V)	I (A)
124,41	33.114	124,72	33.812	505,83	26.250
123,86	31.274	124,39	31.985	505,38	24.124
122,34	28.107	122,6	28.795	502,26	21.176
122,42	24.500	122,75	25.143	499,59	18.058
120,76	20.863	121,1	21.432	497,34	15.042
120,79	17.358	121,13	17.866	493,94	12.232
119,79	14.065	119,93	14.527	490,47	0,96708
118,84	11.006	119,44	11.431	486,08	738,52m
118,5	822,15m	118,95	860,15m	480,71	540,01m
117,88	571,53m	118,22	604,53m	474,47	375,28m
117,1	354,40m	117,44	381,37m	466,63	249,27m
115,82	177,62m	116,22	197,03m	456,43	165,61m
114,36	66,548m	114,87	74,642m	443,46	115,63m
110,67	32,915m	111,35	35,059m	428,42	86,964m
106,44	20,902m	107,08	21,768m	412,42	69,148m
102,04	14,541m	102,66	14,721m	395,74	57,069m
97,57	10,602m	98,17	11,001m	378,75	48,550m
93,08	8,2940m	93,66	8,4860m	361,6	42,468m
88,58	6,8340m	89,12	6,9230m	344,24	38,059m
84,04	5,9320m	84,58	5,8000m	326,78	34,663m
79,5	5,3740m	80,02	5,2420m	309,2	32,103m
74,98	4,9620m	75,47	4,8550m	291,59	29,978m
70,44	4,6370m	70,89	4,5480m	273,94	28,071m
65,89	4,3620m	66,33	4,2630m	256,27	26,351m
61,36	4,1270m	61,77	3,9960m	238,55	24,840m
56,82	3,9210m	57,21	3,7510m	220,84	23,412m
52,31V	3,7330m	52,64	3,5460m	203,12	21,891m
47,79	3,5020m	48,08	3,3400m	185,4	20,340m
43,26	3,2500m	43,52	3,1220m	167,64	18,883m
38,73	2,9740m	38,95	2,8850m	149,87	17,274m
34,19	2,6980m	34,38	2,6350m	132,08	15,708m
29,64	2,4410m	29,8	2,3820m	114,33	14,142m
25,1	2,1760m	25,24	2,1300m	96,51	12,513m
20,56	1,9020m	20,69	1,8680m	78,73	10,765m
16,02	1,6030m	16,12	1,5770m	60,92	8,9260m
11,47	1,2660m	11,56	1,2430m	43,12	6,9330m
6,95	869,00µ	6,98	851,00µ	25,3	4,6950m
2,44	395,00µ	2,45	383,00µ	7,3	1,9410m
1,04	193,00µ	1,03	189,00µ	-	-

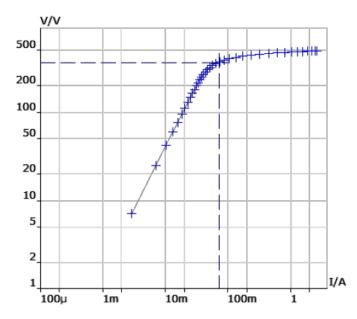

Quadro 4.45 – Dados de medição de saturação dos enrolamentos 4, 5 e 6 do TC nº 2014.8432.06/22.

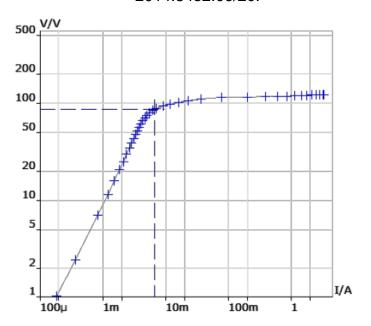
Enrolamento 4		Enrolamento 5		Enrolamento 6	
V (V)	I (A)	V (V)	I (A)	V (V)	I (A)
501,43	26.450	502,87	26.715	495,21	26.340
500,89	24.275	502,4	24.474	494,57	24.266
498,29	21.252	499,28	21.346	491,99	21.354
495,6	18.058	496,46	18.049	489,59	18.258
493,14	14.966	493,99	14.869	487,09	15.255
489,81	12.084	490,7	11.922	483,9	12.463
486,08	947,12m	487,15	925,61m	480,45	0,99159
4,81,50	714,57m	482,58	691,16m	476,17	765,84m
475,69	514,82m	477,14	491,88m	470,83	570,86m
468,86	350,74m	470,28	333,31m	464,32	411,00m
460,41	225,95m	461,15	219,54m	456,06	288,87m
449,74	141,72m	449,22	147,48m	445,64	203,73m
436,65	92,281m	434,96	104,99m	433,17	148,95m
421,33	65,834m	419,08	80,352m	419,02	115,04m
404,72	51,910m	402,21	66,174m	403,62	93,365m
387,4	44,020m	384,65	57,599m	387,57	78,444m
369,81	39,094m	366,78	51,977m	371,14	67,725m
351,94	35,642m	348,68	47,910m	354,46	59,728m
333,99	32,949m	330,4	44,743m	337,58	53,594m
315,91	30,842m	312,09	42,022m	320,59	48,867m
297,8	29,147m	293,68	39,614m	303,47	45,091m
279,66	27,585m	275,19	37,392m	286,24	41,878m
261,54	26,007m	256,77	35,249m	268,95	39,136m
243,35	24,549m	238,27	33,228m	251,67	36,136m
225,2	23,169m	219,7	31,270m	234,34	34,522m
206,99	21,675m	201,18	29,313m	216,96	32,423m
188,8	20,124m	182,63	27,299m	199,57	30,330m
170,58	18,567m	164	25,280m	182,14	28,276m
152,33	16,985m	145,39	23,231m	164,69	26,266m
134,09	15,445m	126,8	21,118m	147,2	24,216m
115,83	13,992m	108,17	18,901m	129,74	22,151m
97,69	12,319m	89,58	16,519m	112,29	20,036m
79,27	10,593m	70,98	13,927m	94,81	17,771m
61,01	8,7580m	52,39	11,086m	77,33	15,361m
42,72	6,7650m	33,81	7,9270m	59,84	12,762m
24,47	4,5160m	15,21	4,3190m	42,36	9,9180m
5,98	1,6640m	-	-	24,9	6,7070m
-	-	-	-	7,16	2,7680m

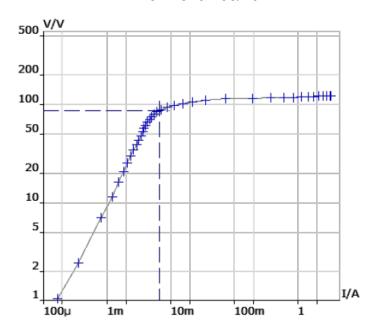

Gráfico 4.1 – Curva de saturação do enrolamento 1 do TC nº 2014.8432.06/19.

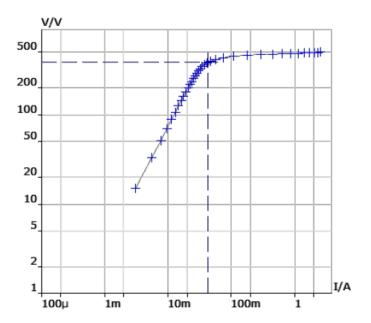

Gráfico 4.2 – Curva de saturação do enrolamento 2 do TC nº 2014.8432.06/19.

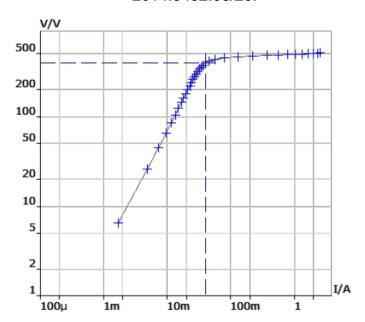

Gráfico 4.3 – Curva de saturação do enrolamento 3 do TC nº 2014.8432.06/19.

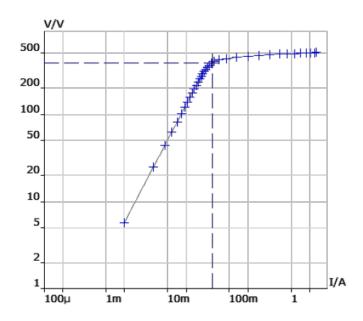

Gráfico 4.4 – Curva de saturação do enrolamento 4 do TC nº 2014.8432.06/19.

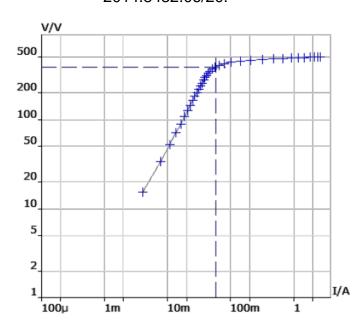

Gráfico 4.5 – Curva de saturação do enrolamento 5do TC nº 2014.8432.06/19.

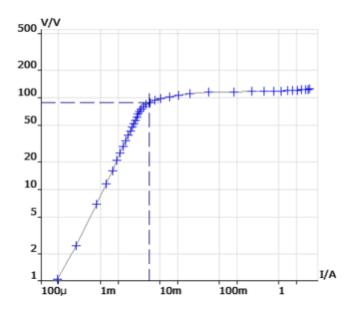

Gráfico 4.6 – Curva de saturação do enrolamento 6 do TC nº 2014.8432.06/19.

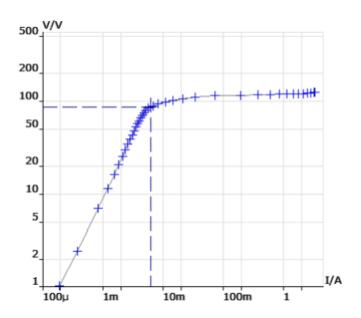

Gráfico 4.7 – Curva de saturação do enrolamento 1 do TC nº 2014.8432.06/20.

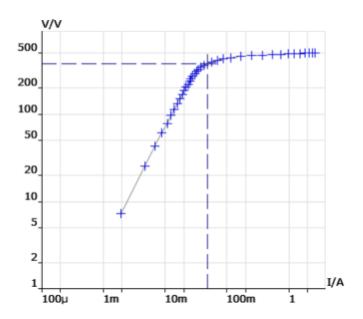

Gráfico 4.8 – Curva de saturação do enrolamento 2 do TC nº 2014.8432.06/20.

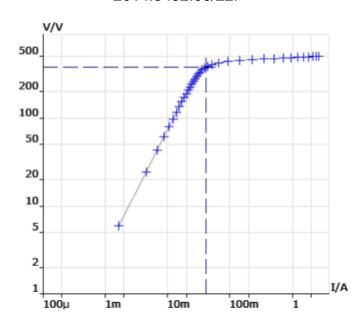

Gráfico 4.9 – Curva de saturação do enrolamento 3 do TC nº 2014.8432.06/20.

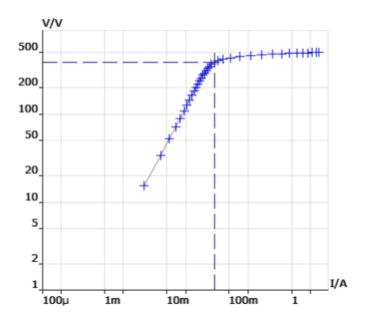

Gráfico 4.10 – Curva de saturação do enrolamento 4 do TC nº 2014.8432.06/20.


Gráfico 4.11 – Curva de saturação do enrolamento 5 do TC nº 2014.8432.06/20.


Gráfico 4.12 – Curva de saturação do enrolamento 6 do TC nº 2014.8432.06/20.


Gráfico 4.13 – Curva de saturação do enrolamento 1 do TC nº 2014.8432.06/22.


Gráfico 4.14 – Curva de saturação do enrolamento 2 do TC nº 2014.8432.06/22.


Gráfico 4.15 – Curva de saturação do enrolamento 3 do TC nº 2014.8432.06/22.

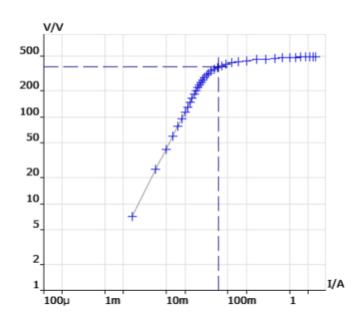

Gráfico 4.16 – Curva de saturação do enrolamento 4 do TC nº 2014.8432.06/22.

Gráfico 4.17 – Curva do enrolamento 5 do TC nº 2014.8432.06/22.

Gráfico 4.18 – Curva de saturação do enrolamento 6 do TC nº 2014.8432.06/22.

Quadro 4.46 – Dados do ponto do joelho da curva de saturação dos enrolamentos do TC nº 2014.8432.06/19.

	Enr. 1	Enr. 2	Enr. 3	Enr. 4	Enr. 5	Enr. 6
V joelho	88,03 V	88,47 V	379,34 V	379,33 V	369,83 V	365,49 V
l joelho	6,7390mA	6,7050mA	48,996mA	42,884mA	60,651mA	72,633mA

Quadro 4.47 – Dados do ponto do joelho da curva de saturação do TC nº 2014.8432.06/20.

	Enr. 1	Enr. 2	Enr. 3	Enr. 4	Enr. 5	Enr. 6
V joelho	86,08 V	87,00 V	382,94 V	393,45 V	389,39 V	387,20 V
l joelho	6,6280mA	6,7790mA	42,382mA	40,164mA	53,204mA	57,564mA

Fonte: Elaboração própria.

Quadro 4.48 – Dados do ponto do joelho da curva de saturação do TC nº 2014.8432.06/22.

	Enr. 1	Enr. 2	Enr. 3	Enr. 4	Enr. 5	Enr. 6
V joelho	87,65 V	87,07 V	377,62 V	380,07 V	385 V	374,68 V
I joelho	6,6410mA	6,3990mA	48,135mA	41,923mA	57,761mA	69,944mA

Fonte: Elaboração própria.

Com base nos resultados obtidos, determina as características de excitação do núcleo de proteção dos TC's, identificando as tensões joelho e corrente joelho, representando os valores de excitação dos enrolamentos secundários do equipamento.

4.5 Resultado do Ensaio de Resistência de Isolação CC

O resultado analisado foi baseado no ensaio de isolamento CC, relatado no item 3.2.2. O instrumento de medição MIC 5005 possui uma configuração que sinaliza a cada 5 segundos, facilitando a anotação das resistências medidas que é feito manualmente. A medição foi realizada em cada 15 segundos durante 1 minuto, conforme indicado nos Quadros 4.49, 4.50 e 4.51 que representam os resultados da isolação dos respectivos TC nº 2014.8432.06/19, nº 2014.8432.06/20 e nº

2014.8432.06/22. As Tabelas mencionam a tensão aplicada no teste, as conexões dos cabos de medição e a medição da resistência do TC referente a contagem do tempo.

Quadro 4.49 – Dados de medição do ensaio de isolamento CC do TC nº 2014.8432.06/19.

Tensão	Cone	xões	Contagem do Tempo					
Aplicada	Line	Earth	15 seg.	30 seg.	45 seg.	60 seg.		
5000 V	Alta	Baixa CC	136 GΩ	262 GΩ	418 GΩ	493 GΩ		
5000 V	Alta	Terra	374 GΩ	557 GΩ	542 GΩ	818 GΩ		
500 V	Baixa CC	Terra	3,90 GΩ	5,37 GΩ	6,58 GΩ	8,03 GΩ		
500 V	1S CC	2S CC	20,6 GΩ	30,5 GΩ	39,7 GΩ	50,0 GΩ		
500 V	1S CC	3S CC	18,7 GΩ	29,4 GΩ	39,2 GΩ	58,6 GΩ		
500 V	1S CC	4S CC	21,4 GΩ	34,2 GΩ	47,1 GΩ	58,2 GΩ		
500 V	1S CC	5S CC	23,2 GΩ	37,7 GΩ	52,5 GΩ	65,0 GΩ		
500 V	1S CC	6S CC	23,8 GΩ	38,8 GΩ	54,5 GΩ	69,2 GΩ		
500 V	2S CC	3S CC	19,4 GΩ	30,8 GΩ	41,6 GΩ	54,9 GΩ		
500 V	2S CC	4S CC	18,1 GΩ	31,3 GΩ	43,2 GΩ	56,6 GΩ		
500 V	2S CC	5S CC	24,9 GΩ	41,5 GΩ	59,3 GΩ	74,4 GΩ		
500 V	2S CC	6S CC	22,0 GΩ	37,6 GΩ	52,8 GΩ	69,0 GΩ		
500 V	3S CC	4S CC	17,2 GΩ	28,3 GΩ	40,1 GΩ	50,2 GΩ		
500 V	3S CC	5S CC	20,5 GΩ	35,2 GΩ	49,7 GΩ	61,5 GΩ		
500 V	3S CC	6S CC	22,3 GΩ	38,1 GΩ	53,2 GΩ	69,2 GΩ		
500 V	4S CC	5S CC	18,9 GΩ	31,3 GΩ	44,3 GΩ	55,5 GΩ		
500 V	4S CC	6S CC	17,4 GΩ	28,6 GΩ	38,8 GΩ	49,0 GΩ		
500 V	5S CC	6S CC	18,2 GΩ	30,5 GΩ	43,5 GΩ	54,5 GΩ		

Quadro 4.50 – Dados de medição do ensaio de isolamento CC do TC nº 2014.8432.06/20.

Tensão	Cone	xões	Contagem do Tempo				
Aplicada	Line	Earth	15 seg.	30 seg.	45 seg.	60 seg.	
5000 V	Alta	Baixa CC	134 GΩ	403 GΩ	784 GΩ	1,2 ΤΩ	
5000 V	Alta	Terra	1,29 ΤΩ	1,79 ΤΩ	2,2 ΤΩ	2,4 ΤΩ	
500 V	Baixa CC	Terra	3,61 GΩ	5,34 GΩ	6,75 GΩ	8,07 GΩ	
500 V	1S CC	2S CC	19,6 GΩ	30,2 GΩ	40,8 GΩ	51,9 GΩ	
500 V	1S CC	3S CC	21,8 GΩ	36,3 GΩ	51,5 GΩ	63,7 GΩ	
500 V	1S CC	4S CC	26,6 GΩ	43,0 GΩ	59,9 GΩ	73,3 GΩ	
500 V	1S CC	5S CC	24,6 GΩ	41,0 GΩ	58,8 GΩ	73,8 GΩ	
500 V	1S CC	6S CC	29,0 GΩ	49,2 GΩ	72,0 GΩ	91,1 GΩ	
500 V	2S CC	3S CC	17,9 GΩ	28,2 GΩ	38,8 GΩ	47,2 GΩ	
500 V	2S CC	4S CC	18,2 GΩ	30,0 GΩ	42,4 GΩ	62,1 GΩ	
500 V	2S CC	5S CC	24,6 GΩ	42,3 GΩ	57,2 GΩ	72,2 GΩ	
500 V	2S CC	6S CC	22,7 GΩ	38,8 GΩ	56,4 GΩ	72,1 GΩ	
500 V	3S CC	4S CC	17,6 GΩ	32,93 GΩ	42,8 GΩ	53,1 GΩ	
500 V	3S CC	5S CC	20,3 GΩ	34,6 GΩ	47,7 GΩ	62,0 GΩ	
500 V	3S CC	6S CC	26,3 GΩ	45,5 GΩ	62,5 GΩ	82,0 GΩ	
500 V	4S CC	5S CC	18,8 GΩ	31,0 GΩ	42,5 GΩ	58,0 GΩ	
500 V	4S CC	6S CC	15,9 GΩ	25,6 GΩ	35,1 GΩ	45,4 GΩ	
500 V	5S CC	6S CC	17,9 GΩ	29,9 GΩ	41,8 GΩ	54,9 GΩ	

Quadro 4.51 – Dados de medição do ensaio de isolamento CC do TC nº 2014.8432.06/22.

Tensão Conex		xões	(Contagem do Tempo			
Aplicada	Line	Earth	15 seg.	30 seg.	45 seg.	60 seg.	
5000 V	Alta	Baixa CC	125 GΩ	433 GΩ	778 GΩ	1,11 ΤΩ	
5000 V	Alta	Terra	1,34 ΤΩ	2,04 ΤΩ	2,80 ΤΩ	3,30 ΤΩ	
500 V	Baixa CC	Terra	3,48 GΩ	5,27 GΩ	6,79 GΩ	7,98 GΩ	
500 V	1S CC	2S CC	19,6 GΩ	29,7 GΩ	40,2 GΩ	51,0 GΩ	
500 V	1S CC	3S CC	23,6 GΩ	39,3 GΩ	53,9 GΩ	65,5 GΩ	
500 V	1S CC	4S CC	25,6 GΩ	42,8 GΩ	59,9 GΩ	71,2 GΩ	
500 V	1S CC	5S CC	28,0 GΩ	46,8 GΩ	65,0 GΩ	79,1 GΩ	
500 V	1S CC	6S CC	30,9 GΩ	52,1 GΩ	74,6 GΩ	92,0 GΩ	
500 V	2S CC	3S CC	19,7 GΩ	32,4 GΩ	45,0 GΩ	56,7 GΩ	
500 V	2S CC	4S CC	18,5 GΩ	31,6 GΩ	44,1 GΩ	57,1 GΩ	
500 V	2S CC	5S CC	25,7 GΩ	44,5 GΩ	63,3 GΩ	78,1 GΩ	
500 V	2S CC	6S CC	22,9 GΩ	40,9 GΩ	59,6 GΩ	74,4 GΩ	
500 V	3S CC	4S CC	18,6 GΩ	31,7 GΩ	43,1 GΩ	56,4 GΩ	
500 V	3S CC	5S CC	22,1 GΩ	39,1 GΩ	55,3 GΩ	67,6 GΩ	
500 V	3S CC	6S CC	22,3 GΩ	41,5 GΩ	60,7 GΩ	78,4 GΩ	
500 V	4S CC	5S CC	18,1 GΩ	30,3 GΩ	43,2 GΩ	54,9 GΩ	
500 V	4S CC	6S CC	17,7 GΩ	30,7 GΩ	42,4 GΩ	55,2 GΩ	
500 V	5S CC	6S CC	19,6 GΩ	33,9 GΩ	48,5 GΩ	60,4 GΩ	

É importante analisar nesse ensaio se a medição das resistência foram maiores que $1M\Omega$, conforme analisado a menor resistência medida foi de $3,48G\Omega$ no TC nº 2014.8432.06/22. Percebe-se ao final desta análise que os TC's estão aptos para serem instalados, por não possuir desgaste na coluna de porcelana, não prejudicando no isolamento no equipamento.

5 CONCLUSÃO

O sistema elétrico brasileiro é organizado por um SIN, garantindo mais segurança ao sistema. Bem como, é necessária a modernização dos equipamentos, com intuito de um perfeito funcionamento dos mesmos. Sendo imprescindível a realização de ensaios antes da instalação dos equipamentos e a realização de manutenção durante a operação, diminuindo os riscos de falhas.

A proposta do trabalho em questão foi certificar as condições operacionais de três transformadores de corrente, analisando se estão em condições necessárias para serem instalados na linha de transmissão de 138kV, com finalidade de garantir a confiabilidade do sistema elétrico.

Este trabalho expõe, inicialmente, o conteúdo teórico necessário para um melhor entendimento no transformador de corrente de alta tensão. Com o intuito de informar as principais características do equipamento, tendo como base a norma da ABNT NBR 6856 (2015).

Posteriormente, foram detalhados os ensaios realizados nos TC's, dando uma breve explicação sobre o ensaio e especificando os seus procedimentos, com auxílio de registro de figuras. Além de mencionar sobre os TC's analisados e os instrumentos de medição utilizado.

Foram realizados cinco ensaios em três TC's do fabricante. Para tal, foram utilizados os seguintes instrumentos de medição CPC 100 e MIC 5005, assim, os ensaios realizados nos equipamentos foram de resistência de isolação CA e CC, de relação de transformação, de resistência ôhmica e de saturação. Com intuito de analisar qualidade do isolamento, a relação entre espiras dos enrolamentos primário e secundário, a polaridade e identificar as características de excitação do núcleo de proteção do TC.

Por conseguinte, foram avaliadas as condições operacionais do TC. Nas quais, obtiveram aprovação para a instalação, por possuir as condições adequadas de funcionamento. Sendo elas, o fator de potência, o desvio da relação de transformação e o desvio de resistência ôhmica não ultrapassaram do limite exigido por norma, a capacitância possui valores constantes, a polaridade dos enrolamentos

deram subtrativa, foi identificado o ponto joelho da curva de saturação do secundário do TC e as resistências medidas deram acima do limite exigido por norma.

Logo, os objetivos propostos neste trabalho foram alcançados, permitindo avaliar as condições operacionais do transformador de corrente de alta tensão, sendo aprovado para instalação na linha de transmissão de 138kV.

5.1 Trabalhos Futuros

Neste item, apresenta-se algumas sugestões de desenvolvimento do trabalho com o intuito de aperfeiçoar a avaliação do equipamento, sendo elas:

- Aprofundar os estudos sobre os requisitos das normas internacionais associadas.
- Elaborar uma folha de registro de ensaio, com objetivo de nortear os ensaios necessários nos TC's a ser avaliada.
- Avaliar um TC com falha e realizar comparações com um TC em condições normais.
- Avaliar um TC com falha e após solucionar a falha, realizar os mesmos ensaios e fazer a comparação entre eles.

REFERÊNCIAIS

ABNT. NBR 6856 – Transformador de Corrente, 2015.

BANDEIRA, M. I. C. Automação do Ensaio de Saturação em Transformadores de Corrente Utilizado em Sistemas de Transmissão de Energia Elétrica. Florianópolis, 2004.

BRITO, L. C. G. Avaliação dos Erros dos Transformadores de Corrente em Medições de Sincrofasores e em suas Aplicações. Rio de Janeiro, 2011.

DARIO FUCHS, R. Transmissão de Energia Elétrica, 2015.

FITZGERALD, A. E. Máquinas Elétricas, 2008.

FRONTIN, S. O. Equipamentos de Alta Tensão – Prospecção e Hierarquização de Inovações Tecnológicas. Brasília, 2013.

FURNAS. Construção de Subestações – Montagem Eletromecânica, 2014.

HOJO, T. & Maezono, P. Proteção de Sistemas Elétricos: Transformadores para Instrumentos, 2012.

IEC 60044-1. Instruments Trnasformers – Parte 1: Current transformers. 2003.

IEC 60044-6. Instruments Transformers – Part 6: Requirements for Protective Current Transformers for Transient Performance. 1992.

IEC 61557-2. Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 2: Insulation resistance. 2007.

IEEE. Guide for Field Testing of Relaying Current Transformers – IEEE C57.13.1-2006.

LEITE, S. E. Ensaios de Comissionamento de Transformador – Uma Proposta de Padronização de Procedimento. Rio de Janeiro, 2017.

MAMEDE FILHO, J. Manual de Equipamentos Elétricos, 2013.

MEDEIROS FILHO, S. Medição de Energia Elétrica. S.A. Recife, 1997.

NASCIMENTO, C. M. Análise de Ensaio de Fator de Potência em Transformadores de Corrente com Variação de Frequência Utilizando o Instrumento de Teste CPC-100. Tucuruí, 2015.

OMICRON. CP TD1 – Manual de Referência, 2015.

OMICRON. CPC 100 - Manual do Usuário, 2015.

ONS. Modernização de Instalações – Submódulo 21.10, 2016. Disponível: http://ons.org.br/paginas/sobre-o-ons/procedimentos-de-rede/vigentes Acesso em: 08 Ago 2018.

ONS. Plano de Modernização de Instalações – PMI 2011-2014, 2012. Disponível: http://ons.org.br/ Acesso em: 10 Ago 2018.

SONEL. Manual de Uso: Medidores de Resistência de Isolamento – MIC 5010 e MIC 5005, 2018.

SPPEZAPRIA, F. B. R. Métodos de Ensaio Aplicados na Manutenção de Transformadores de Corrente de Alta Tensão. Paraíba, 2017.

UMANS, S. D. Máquinas Elétricas, 2014.