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ABSTRACT

Efficient Simulation and Performance Stabilization for
Time-Varying Single-Server Queues

Ni Ma

This thesis develops techniques to evaluate and to improve the performance of single-server service

systems with time-varying arrivals. The performance measures considered are the time-varying

expected length of the queue and the expected customer waiting time. Time varying arrival rates

are considered because they often occur in service systems. For example, arrival rates often vary

significantly over the hours of each day and over the days of each week. Stochastic textbook methods

do not apply to models with time-varying arrival rates. Hence new techniques are needed to provide

high quality of service when stationary steady-state analysis is not appropriate. In contrast to the

extensive recent literature on many-server queues with time-varying arrival rates, we focus on single-

server queues with time-varying arrival rates. Single-server queues arise in real applications where

there is no flexibility in the number of service facilities (servers). Different analysis techniques are

required for single-server queues, because the two kinds of models exhibit very different performance.

Many-server models are more tractable because methods for highly tractable infinite-server models

can be applied. In contrast, single-server models are more complicated because it takes a long time

to respond to a build up of workload when there is only one server.

The thesis is divided into two parts: simulation algorithms for performance evaluation and

service-rate controls for performance stabilization. The first part of the thesis develops algorithms

to efficiently simulate the single-server time-varying queue. For the generality considered, no ex-

plicit mathematical formulas are available for calculating performance measures, so simulation

experiments are needed to calculate and evaluate system performance. Efficient algorithms for

both standard simulation and rare-event simulation are developed.

The second part of the thesis develops service-rate controls to stabilize performance in the time-

varying single-server queue. The performance stabilization problem aims to minimize fluctuations



in mean waiting times for customers coming at different times even though the arrival rate is

time-varying. A new service rate control is developed, where the service rate at each time is a

function of the arrival rate function. We show that a specific service rate control can be found to

stabilize performance. In turn, that service rate control can be used to provide guidance for real

applications on optimal changes in staffing, processing speed or machine power status over time.

Both the simulation experiments to evaluate performance of alternative service-rate controls and

the simulation search algorithm to find the best parameters for a damped time-lag service-rate

control are based on efficient performance evaluation algorithms in the first part of the thesis.

In Chapter Two, we present an efficient algorithm to simulate a general non-Poisson non-

stationary point process. The general point process can be represented as a time transformation

of a rate-one base process and by exploiting a table of the inverse cumulative arrival rate function

outside of simulation, we can efficiently convert the simulated rate-one process into the simulated

general point process. The simulation experiments can be conducted in linear time subject to small

error bounds. Then we can apply this efficient algorithm to generate the arrival process, the service

process and thus to calculate performance measures for the Gt/Gt/1 queues, which are single-server

queues with time-varying arrival rates and service rates. Service models are constructed for this

purpose where time-varying service rates are specified separately from the rate-one service require-

ment process, and service times are determined by equating service requirements with integrals of

service rates over a time period equal to the service time.

In Chapter Three, we develop rare-event simulation algorithms in periodic GIt/GI/1 queues and

further in GIt/GIt/1 queues to estimate probabilities of rare but important events as a sanity check

of the system, for example, estimating the probability that the waiting time is very long. Importance

sampling, specifically exponential tilting, is required to estimate rare-event probabilities because in

standard simulation, the number of experiments may blow up to achieve a targeted relative error

and for each experiment, it may take a very long time to determine that the rare event does not

happen. To extend the rare-event simulation algorithm to periodic queues, we derive a convenient

expression for the periodic steady-state virtual waiting time. We apply this expression to establish

bounds between the periodic workload and the steady-state workload in stationary queues, so that

we can prove that the exponential tilting algorithm with the same parameter efficient in stationary

queues is efficient in the periodic setting as well, which has a bounded relative error. We apply



this algorithm to compute the periodic steady-state distribution of reflected periodic Brownian

motion with support of a heavy-traffic limit theorem and to calculate the periodic steady-state

distribution and moments of the virtual waiting time. This algorithm’s advantage in calculating

these distributions and moments is that it can directly estimate them at a specific position of the

cycle without simulating the whole queueing process until steady state is reached for the whole

cycle.

In Chapter Four, we conduct simulation experiments to validate performance of four service-rate

controls: the rate-matching control, which is directly proportional to the arrival rate, two square-

root controls related to the square root staffing formula and the square-root control based on the

mean stationary waiting time. Simulations show that the rate-matching control stabilizes the queue

length distribution but not the virtual waiting time. This is consistent with established theoretical

results, which follow from the observation that with rate-matching control, the queueing process

becomes a time transformation of the stationary queueing process with constant arrival rates and

service rates. Simulation results also show that the two square-root controls analogous to the server

staffing formula are not effective in stabilizing performance. On the other hand, the alternative

square-root service rate control based on the mean stationary waiting time approximately stabilizes

the virtual waiting time when the cycle is long so that the arrival rate changes slowly enough.

In Chapter Five, since we are mostly interested in stabilizing waiting times in more common

scenarios when the traffic intensity is not close to one or when the arrival rate does not change slowly,

we develop a damped time-lag service-rate control that performs fairly well for this purpose. This

control is a modification of the rate-matching control involving a time lag and a damping factor.

To find the best parameters for this control, we search over reasonable intervals for the most time-

stable performance measures, which are computed by the extended rare-event simulation algorithm

in GIt/GIt/1 queue. We conduct simulation experiments to validate that this control is effective for

stabilizing the expected steady-state virtual waiting time (and its distribution to a large extent).

We also establish a heavy-traffic limit with periodicity in the fluid scale to provide theoretical

support for this control. We also show that there is a time-varying Little’s law in heavy-traffic,

which implies that this control cannot stabilize the queue length and the waiting time at the same

time.
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Chapter 1

Introduction

Waiting lines or queues often appear wherever resources are needed to provide services. In response,

queueing theory has been developed to improve operational efficiency. Queueing theory has many

applications. For example, transportation systems like railway stations and traffic systems that

optimize vehicle flow; service systems like banks and hospitals that serve customers; computing

systems like computers and more complex cloud platforms that process computing jobs; market

dynamics in finance where order arrivals and executions are modeled to predict trading volumes

and prices.

In these applications, the arrival rates are mostly not constant, but varying over time. For

example, Figure 1.1 taken from Koopman (1972) plots the average hourly number of airplane

arrivals to J.F.K (Terminal A in the plot) and LaGuardia (Terminal B in the plot) airports, which

displays obvious daily patterns. Data were gathered in 1968 during one month’s operations. While

the stationary queueing models studied in stochastic textbooks provide fundamental methodology

to analyze performance of general queues, the time-varying (TV) arrival rates in real applications

call for models to directly consider this TV property of the systems.

This thesis is a contribution to queueing theory as in the referenced books, such as Asmussen

(2003), and focuses on TV single-server queues. Figure 1.2 illustrates a queueing system with a

service facility consisting of a single server and a waiting room. In the multi-server queue case,

there is more than one server in the service facility. Customers arrive at the system with an arrival

rate function denoted as λ(t), wait in the queue if the server is busy, get served in the service facility

when previous customers are all gone and leave the system when the service is done. In the TV
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Figure 1.1: Average hourly number of airplane arrivals to J.F.K (Terminal A in the plot) and

LaGuardia (Terminal B in the plot) airports.

setting, the function λ(t) is not a constant. The principal system performance measures are the

virtual waiting time W (t) to capture the waiting time for potential arrivals at each time and the

queue length process Q(t). Single-server queues are basic components of more complex queueing

networks and exhibit longer waiting times compared to multi-server queues. They are important

to model queueing systems with limited service facilities like airplanes landing at an airport with

a single runway (Koopman (1972)), trucks bringing cranberries to one cranberry-processing plant

(Porteus (1989, 1993a,b)) and computing jobs sent to a single server (Chang (1970)).

Arrivals DeparturesWaiting Queue Server

Figure 1.2: Elements of a single-server queueing system with a waiting room and a service facility.
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There is also a wide range of different techniques to study the dynamics of TV queues, which

evolve as different subjects develop more advanced approaches: ordinary differential equations

(ODE) approach based on continuous-time Markov chains (CTMC) for TV Markovian models to

numerically solve the performance measures, as in Koopman (1972), Kolesar et al. (1975), Rothkopf

and Oren (1979), Taaffe and Ong (1987), Ong and Taaffe (1989); steady-state analysis of the

stochastic waiting time and queue length processes, as in Harrison and Lemoine (1977), Heyman

and Whitt (1984), Lemoine (1981, 1989), Rolski (1981, 1989a,b); heavy traffic (HT) asymptotic

models and their approximation models, as in Newell (1968a,b,c), Massey (1985), Mandelbaum

and Massey (1995) and more recently in Whitt (2014, 2016a); Monte Carlo simulation to gen-

erate non-stationary processes, which applies to simulating TV queues to estimate distributions

of performance measures, as in Lewis and Shedler (1979), Gerhardt and Nelson (2009) for thin-

ning approach to non-homogenous Poisson processes, in Çinlar (1975), Chen and Schmeiser (1992),

Nicol and Leemis (2014), Chen and Schmeiser (2015, 2017) for inversion approach and in Liu et al.

(2018) for non-stationary non-Poisson processes; robust optimization as a relatively new approach

to approximate the TV stochastic model by a more tractable optimization problem, as in Bertsimas

et al. (2011), Ben-Tal et al. (2009), Beyer and Sendhoff (2007), Whitt and You (2018). See section

1.2.1 for a more extensive literature review on alternative methods to study TV queues.

In addition to the classic steady-state analysis, HT asymptotic analysis and standard Monte

Carlo simulation, we make use of another important methodology in queueing theory, rare-event

simulation, to study TV queues in this thesis. We extend the classic rare-event simulation algorithm

for stationary queues to the TV setting, which not only estimates very small tail probabilities at

different times, but also calculates distributions and moments of TV performance measures and

HT limit distributions of TV queues. We show that rare-event simulation algorithms are actually

very efficient in generating unbiased estimates of performance measures in complex TV queues.

This thesis makes contributions to both of the two areas:

(i) rare-event simulation in queues and

(ii) time-varying single-server queues .

We will motivate each of the topics separately below.
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1.1 Rare-Event Simulation in Queues

Rare-event simulation algorithms in queues aim to efficiently estimate the probability of certain rare

but important events in queueing models. For example, we may want to estimate the probability

that patient waiting times are extremely long in the Emergency Room to check the robustness of

its operations. An exceptionally long waiting time is highly undesirable for both the patients and

the medical staff and should be avoided. For another example, the manager of a finite waiting

room service system may be interested in the probability that the waiting queue is longer than the

buffer can hold to decide its buffer length. This probability would be the customer-loss probability

for the system. In both of these situations, the goal is to assure that these probabilities are very

small. Since general numerical techniques to calculate these probabilities for queueing models often

are unavailable, simulation methods are an attractive effective alternative.

It is well known that standard simulation may not be feasible to estimate these small proba-

bilities; see Heidelberger (1995). To illustrate the problem with standard simulation, consider a

random variable X with probability density function (pdf) f(x) and assume we want to estimate

the probability p that X is in the rare-event set A. With standard simulation, we generate n i.i.d.

samples X1, X2, ..., Xn and form an unbiased estimator for p:

p̂n =
1

n

n∑
i=1

I{Xi∈A}, (1.1)

where IA is the indicator function of the set A; i.e., IA is the random variable that assumes the

value 1 on A and the value 0 on its complement. The expectation and variance of p̂n are as below:

E[p̂n] = p, V ar[p̂n] =
p(1− p)

n
. (1.2)

The relative error of an estimator p̂ is calculated as:

re(p̂) =
√
V ar(p̂)/p̂, (1.3)

therefore the relative error of p̂n follows:

re(p̂n) =

√
p(1− p)

n
/p̂n ≈

√
1

pn
. (1.4)

If we want to achieve an accuracy of 0.01 relative error, then we can calculate the sample size needed:

n = 1/(0.012p), a sample size inversely proportional to the level of the rare-event probability p. For
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example, if p = 10−k, then we require a sample size as large as 10k+4, which becomes infeasible as k

grows and the rare-event probability approaches 0. In contrast, rare-event simulation can develop

methods that don’t require an unbounded sample size as k grows to infinity.

An effective technique to address this estimation problem is importance sampling, which has

been discussed, for example, in Hammersley and Handscomb (1964), Asmussen and Glynn (2007).

It is a variance reduction technique that can be applied to construct an unbiased estimator that

does not yield unbounded relative error as the rare event gets rarer. We now explain in the context

of the previous simple example. In that setting we can write p as p = Ef [I{X∈A}], where X has

pdf f(x). Consider another pdf function g(x) and p can also be expressed as the expectation of

a function of X with pdf g(x), which is achieved by dividing and multiplying g(x) within the

integrand:

p = Ef [I{X∈A}] =

∫
I{x∈A}f(x)dx (1.5)

=

∫
I{x∈A}

f(x)

g(x)
g(x)dx

= Eg[I{X∈A}L(X)].

The ratio of the two density functions is called the likelihood ratio:

L(x) =
f(x)

g(x)
. (1.6)

The importance sampling density function g(x) must satisfy the condition that g(x) > 0 for all

x where f(x) > 0 to make the above transformation valid. The importance sampling estimation

scheme is to generate n i.i.d. samples from pdf g(x) and then to calculate the estimator

p̂n(g) =
1

n

n∑
i=1

I{Xi∈A}L(Xi). (1.7)

Equation (1.5) shows that the new estimator is also unbiased and the choice of the importance

sampling distribution should aim to minimize the variance of the estimator. The second moment

of the estimator I{X∈A}L(X) equals:

Eg[(I{X∈A}L(X))2] =

∫
I{x∈A}(

f(x)

g(x)
)2g(x)dx

=

∫
I{x∈A}

f(x)

g(x)
f(x)dx

= Ef [I{X∈A}L(X)].
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Therefore we want to make f(x)/g(x) small on the rare-event set A or g(x) large on A, which means

that under the importance sampling distribution, the event A happens much more frequently.

For example, consider p(b) = P (W > b), where W is the steady-state waiting time. Suppose

p(b) ∼ c · h(b) as b → ∞ (h(b) → 0). If the importance sampling distribution satisfies that

Eg[(I{X∈A}L(X))2] ∼ d · h(b), then we have bounded relative error as b goes to infinity: re(p̂(b)) =√
(d− c2)/N <∞ as b→∞.

Importance sampling can be applied to more general cases than to a single random variable

with a pdf function. The trick in the transformation equation (1.5) applies to other cases as well.

Also the rare event A can be defined more generally, for example, in terms of stopping times of

stochastic processes like discrete-time or continuous-time Markov chains, semi-Markov processes or

more general stochastic processes; see for example Whitt (1980). Let τ be the stopping time for a

sequence of random variables {Xn, n ≥ 0}, P be the original probability measure and P ′ be the

importance sampling probability measure, H be an indicator function of X’s. Then we have

EP [H(X0, ..., Xτ )] = EP ′ [H(X0, ..., Xτ )]× L(X0, ..., Xτ ), (1.8)

where the likelihood ratio has the following equation if all X’s are independent:

L(X0, ..., Xτ ) =
τ∏
i=1

p(Xi)

p′(Xi)
. (1.9)

There have been studies on importance sampling applied to estimating the rare-event probability

of very large waiting times or queue lengths in single-server queues (which we review in the following

paragraph), multi-server queues (e.g. Sadowsky (1991)) and queueing networks(e.g. Devetsikiotis

and Townsend (1992a, 1993, 1992b)). The importance sampling results for single-server queues

are closely related to the large deviations approach; see for example Bucklew (1990). This thesis

focuses on waiting times in single-server queues using the exponential tilting method. In contrast to

previous papers that concentrate on stationary queues, this thesis studies the rare-event simulation

algorithms in the TV setting.

In order to apply rare-event simulation for the TV GIt/GIt/1 queue, we apply previous rare-

event simulation methods for the stationary GI/GI/1 queue. Hence we next review the standard

approach there. The importance sampling algorithm in stationary single-server GI/GI/1 queues

is based on the random walk expression for the waiting time sequence following the Lindley’s
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recursion. It exploits the equivalence between the waiting times and the maximum of a random

walk. Let Vn be service times, ρ−1Un be inter-arrival times. The waiting time distribution for the

nth customer is

Wn = max
0≤k≤n

(S̃k)
d
= max

0≤k≤n
(Sk), (1.10)

where S̃k = Xn + ...+Xn−k+1 and Sk = X1 + ...+Xk. The steady-state waiting time distribution

follows:

W = max
k≥0

Sk, (1.11)

which is the maximum of a negative-drifted random walk as ρ < 1. We note that the rare-event

probability can be expressed as

P (W > b) = P (max
k≥0

Sk > b) = P (τSb <∞) (1.12)

for a large b, where τSb is the first time the random walk S hits b, which is called the hitting time

of the random walk S at level b. The problem with standard simulation to estimate P (τSb <∞) in

this case is that (1) the sample size n would blow up and (2) it takes a long time to determine that

the rare event will not happen for one experiment.

The exponential tilting approach can transform the random walk into one with a positive

drift as developed in Asmussen (1985, 2003). Let F be the distribution function of X and assume

existence of its moment generating function M(θ) = E(eθX). Define the tilted distribution function

dFθ(x) = [eθx/M(θ)]dF (x) and the likelihood ratio for X1,..., Xn equals

Ln(θ) =
M(θ)n

eθ(X1+...+Xn)
= M(θ)ne−θSn . (1.13)

Let θ∗ be the asymptotically optimal θ, which exists such that M(θ∗) = 1. Because M(0) = 1,

M ′(0) < 0, M(θ) is convex and continuous, at θ∗, M ′(θ∗) = Eθ∗ [X] > 0, so that the random walk

becomes positively drifted and τ <∞ with probability 1. In the exponential tilting simulation, we

generate X from Fθ∗ and estimate the probability by

P (W > b) = P (τSb <∞) = Eθ∗ [exp(−θ∗SτSb )] = e−θ
∗bEθ∗(exp(−θ∗(SτSb − b))). (1.14)

More insights on the asymptotically optimal parameter θ∗ are discussed in Asmussen (1982), Anan-

tharam (1988).
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In the TV setting, there are two problems with the basis for the rare-event algorithm. The first

problem is how to define the steady-state waiting time in a TV queue, and since the reverse-time

random walk and the forward-time random walk in 1.10 no longer have the same distribution due

to the TV arrival rates, the second problem is that the equality in distribution no longer holds. As

for the exponential tilting algorithm itself, one problem is to find the asymptotically optimal θ∗ and

prove that the relative error is bounded under θ∗. Another problem is to formulate the estimator

involving the likelihood ratio. This thesis solves these problems to extend the algorithm to both

GIt/GI/1 and GIt/GIt/1 queues. Most importantly, we make use of this algorithm to study the

dynamics of the queueing models and compute important distributions for the queueing system.

To illustrate the efficiency of our developed rare-event simulation algorithm in TV queues, we

present simulation results for estimating P (W0 > b) in the Mt/M/1 model with an arrival rate

function λ(t) = 1 + 0.2× sin(γt) and a fixed service rate µ = 1.25 in Table 1.1 below. We can see

that with the same number of experiments, the relative error is approximately independent of b

for each γ, ranging from about 0.0029 for γ = 10 to about 0.0055 for γ = 0.1, so the algorithm is

efficient as b gets larger and the estimated probability gets smaller (from the level of 0.01 to the

level of 10−9). See Chapter 3 for details and for more simulation results.

Table 1.1: Estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the Mt/M/1 model with sinusoidal arrival-

rate function λ(t) = 1 + 0.2× sin(γt) as a function of γ and b for: ρ = 0.8, µ = 1.25, y = 0 based on

5000 replications.

b p̂ exp(−θ∗b) A0(b) s.e. 95% CI (lb) (ub) r.e.

γ = 10 10 0.0654 0.0821 0.797 1.87E-04 0.0651 0.0658 0.00286

20 0.00537 0.00674 0.797 1.55E-05 0.00534 0.00540 0.00289

40 3.61E-05 4.54E-05 0.795 1.05E-07 3.59E-05 3.63E-05 0.00290

80 1.64E-09 2.06E-09 0.796 4.82E-12 1.63E-09 1.65E-09 0.00294

γ = 1 10 0.0628 0.0821 0.765 1.87E-04 0.0624 0.0632 0.00298

20 0.00516 0.00674 0.766 1.51E-05 0.00513 0.00519 0.00292

40 3.49E-05 4.54E-05 0.769 1.00E-07 3.47E-05 3.51E-05 0.00287

80 1.58E-09 2.06E-09 0.767 4.65E-12 1.57E-09 1.59E-09 0.00294

γ = 0.1 10 0.0413 0.0821 0.503 2.33E-04 0.0409 0.0418 0.00565

20 0.00360 0.00674 0.535 1.98E-05 0.00356 0.00364 0.00550

40 2.50E-05 4.54E-05 0.551 1.37E-07 2.47E-05 2.53E-05 0.00548

80 1.12E-09 2.06E-09 0.545 6.20E-12 1.11E-09 1.14E-09 0.00552
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1.1.1 Literature Review

Early studies on importance sampling, the basis for rare-event simulation include Hammersley and

Handscomb (1964), Glynn and Iglehart (1989). For GI/GI/1 single-server queues, Asmussen (1985,

2003), Siegmund (1976), Lehtonen and Nyrhinen (1992) develop the exponential tilting approach

and show that θ∗ is the unique asymptotically optimal value within some class of distributions.

Further insight about the θ∗ can be found in Asmussen (1982), Anantharam (1988). The large

deviations theory as the basis for efficient rare-event simulation has been studied in Cottrell et al.

(1983), Donsker and Varadhan (1975a,b), Sadowsky and Bucklew (1990), Bucklew (1990), Siegmund

(1976), Glasserman and Kou (1995), Glasserman and Wang (1997). Our thesis develops rare-event

simulation algorithms for single-server queues but in the TV setting.

There is also work for the multi-server queues including the early paper Sadowsky (1991) and

more recent papers including Blanchet and Lam (2014). On rare event simulation in queueing

networks, Parekh and Walrand (1989) develops powerful heuristics for simulation overflows in

Jackson networks and other works include Tsoucas (1989), Frater and Anderson (1989), Glasserman

and Kou (1993, 1995), Frater et al. (1991), Anantharam et al. (1990), Weiss (1986).

The above literature mostly focuses on light-tailed input, while there have been efforts to de-

velop rare-event simulation techniques for systems with heavy-tailed input including the initial

work Asmussen et al. (2000) and more developments Dupuis and Wang (2004), Dupuis et al.

(2006), Rojas-Nandayapa and Asmussen (2007), Blanchet and Glynn (2008). The development of

state-dependent importance sampling estimators for heavy-tailed systems has been discussed in

Bassamboo et al. (2006), Blanchet and Glynn (2008), Blanchet and Liu (2008), Blanchet et al.

(2007). This thesis assumes light-tailed input and aims to understand the performance measures

of a single-server TV queue using the rare-event simulation.

1.2 Time-Varying Single-Server Queues

There are essentially three approaches to apply the stationary models in stochastic textbooks

to the TV systems; see Whitt (2018) and references therein. First we can use the pointwise-

stationary approximation (PSA) when the arrival rate changes slowly compared to the service

times. PSA assumes that performance of the queue at time t can be approximated by performance
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of a stationary queue with parameters taking effect at time t, which is a reasonable assumption

when the arrival rate changes slowly enough. Second if PSA is not valid, we can use an appropriate

worst case arrival rate to achieve high Quality-of-Service for customers at all times. High Quality-

of-Service for customers can be quantified, for example, as low waiting time tail probabilities or low

expected delay. Lastly we may use the long-run average arrival rate when we do not require high

Quality-of-Service at all times. In this case, we ignore the local fluctuations and only consider the

long-run average input. However, new TV models are needed to achieve high Quality-of-Service for

more common cases.

The non-homogeneous Poisson process (NHPP) would be a natural model for the arrival process

with a TV arrival rate, which is a reasonable approximation when independent decisions are made

by many customers, who come to the queueing system with small probabilities. The supporting

Poisson superposition theorem is discussed in stochastic books, for example, section 9.8 of Whitt

(2002) and section 11.2 of Daley and Vere-Jones (2008). However there are applications where

the arrival process is more variable (over-dispersion) or less variable (under-dispersion) than the

Poisson process. For example, there may be forced separation between successive arrivals of the

airplanes to the airport, which leads to under-dispersion in the arrival process. For another example,

the queries about the latest stock prices to a computer server may display over-dispersion than a

Poisson process, because there is uncertainty about the arrival rate stemming from the market news.

Queries are likely to occur in clusters when there is big financial news coming out. In this thesis,

we go beyond Markovian models to capture the non-Poisson input arising in real applications.

To understand the impact of TV arrival rates on performance measures, consider an example

of a deterministic fluid model for a TV single-server queue, so that we can ignore the stochasticity

and concentrate fully on the TV behavior of the queue. We consider a constant service rate µ. As

shown in 1.3, the arrival rate λ(t) increases from 0 at t0 to the level of the service rate µ at t1,

keeps increasing to its peak value at t2, drops to the service rate level at t3, continues decreasing

to 0 and at t4, the queue first empties; see Example 1.1 in Whitt (2018). From t0 to t1, the service

rate is larger than the arrival rate, so no workload accumulates in the system. Starting from t1, the

arrival rate exceeds service rate and the queue starts to accumulate. At t2, the arrival rate reaches

its maximum value with the queue growing the fastest at this time. At t3, the arrival rate drops to

be equal to µ and the workload in queue reaches its maximum, which decreases as the arrival rate
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becomes larger than µ. The queue finally empties at t4 when the extra service capacity finishes

processing all workload in queue.

To derive the waiting time at time t, we need to look back prior to t, and since the extra service

capacity is wasted, the furthest time in the past we need to consider is the one that maximizes the

difference between the cumulative arrival rate and the cumulative service rate. Both integrals are

taken by going reverse-time from t. For stationary models, the arrival and service rates are both

constant over time, so going forward-time and reverse-time yield the same results (in the stochastic

case, both give the same distributions), but for non-stationary models, we have to stick to the

reverse-time direction. Another insight from this example is the time lag phenomenon between the

time some arrival rate value takes effect and the time it impacts congestion. As shown in 1.3, the

peak arrival rate occurs at t2, while the maximum queue happens later at t3; the arrival rate drops

to µ at t3, and the queue empties later at t4. Changes in the arrival rate reveal their effects on the

queue later in time because of the possible remaining workload in front of the new arrivals.

Peak Rate

Maximum Queue

Wait Starts
𝜇

𝑡# 𝑡$	 𝑡&	 𝑡'	 𝑡( 𝘵

𝜆 𝑡

Queue Empties

Figure 1.3: The arrival rate function λ(t) in an example of a deterministic TV single-server queue

with a constant service rate µ.

In TV queues, we no longer have stationary waiting times for customers and it makes more

sense to consider the virtual waiting time or workload process as a function of time to capture the

waiting time for potential arrivals at each time. The steady-state virtual waiting times are TV

as well. The intuition of the reverse-time construction of the queue congestion forms the basis of

a convenient representation of workload process in TV queues. The original representation was

proposed by Lemoine (1981) for periodic Mt/G/1 queues with a Markovian arrival process. We

extend the representation to Gt/G/1 queue in Chapter 3 to provide basis for rare-event algorithms
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in GIt/GI/1 queues, as in equation 3.1. In Chapter 5, we further extend the representation to

Gt/Gt/1 queues based on which rare-event algorithms are also developed for GIt/GIt/1 queues

(virtual waiting time and workload processes become different in this model), as in equation 5.23.

We go beyond exponential distributions and Markovian models in all the chapters of this thesis,

and we can see, for example in the importance sampling estimator in Chapter 3 and Chapter 5,

that some additional terms are needed to capture the characteristics of a general non-Markovian

model; see equations 3.25, 3.28, 5.24 and Appendix A.3.6.

Customers will experience fluctuations in queue congestion due to the TV arrival rates, and

service rate controls can be used to stabilize performance in service systems where there is no

flexibility in the number of servers; see Whitt (2015). For the airplane landing example, the

number of runways is fixed, but it may be possible to change the rate of airplane landings by

controlling the required separation distance between airplanes. For the TSA inspection example,

the number of security lines is fixed, but it may be possible to increase the inspection rate by

relaxing inspection requirement. Note that we study an idealized case of what happens in these

service operations: we consider a single server whose service rate is fully subject to control. Our

study can help understand what are the desirable service-rate controls and what are the potential

benefits of controlling service-rates.

We present simulation results in 1.4 for a TV single-server queue with a specific periodic arrival

rate function λ(t) = 0.8×(1+0.2 sin(0.1t)), exponential inter-arrival times and service requirements.

The cycle length of the arrival rate function is 62.8. Figure 1.4 plots the expected steady-state

virtual waiting time under different service rate functions for one cycle. Due to the time-lag

property of the TV system, with a constant service rate, the virtual waiting time process peaks

after the arrival rate peak as shown as the blue line. The rate-matching service rate is directly

proportional to the arrival rate as defined in equation 4.1 and thus fails to adjust for the time lag.

The red line plots the virtual waiting time under the rate-matching control, which is not stabilized

(though more stabilized than with a constant service rate); see Chapter 4. Multiple alternative

service rate controls are discussed in Chapter 4. We develop a damped time-lag service-rate control

in Chapter 5 that stabilizes the expected waiting time fairly well, though not perfectly, as shown

by the yellow line. The time lag intuition is taken into consideration in the formulation of this new

control as defined in equation 5.4, which is the rate-matching control modified by a time lag and a
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damping factor.
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Figure 1.4: This figure plots the expected steady-state virtual waiting time process as a function of

time in a cycle for a TV single-server queue. The arrival rate function is λ(t) = 0.8×(1+0.2 sin(0.1t))

and the arrival process is Markovian. The blue line shows the waiting time when the service rate

is a constant µ = 1, the red line shows the waiting time with the rate-matching service-rate control

and the yellow line shows the waiting time with the damped time-lag service-rate control. Dashed

black lines show confidence intervals, which are quite narrow.

To connect the TV model to the well studied stationary models, we can use the time-transformation

composition construction for general non-Possion arrival and service processes, which was proposed

by Massey and Whitt (1994), Gerhardt and Nelson (2009) and Nelson and Gerhardt (2011); see

Chapter 2 for details. To simulate such a general non-stationary non-Poisson point process (NNPP),

we can make use of this construction and convert generated stationary processes to non-stationary

processes, which can be efficiently done by algorithms developed in Chapter 2 even though the

cumulative arrival rate function is not directly invertible. By making use of this construction, TV

model with the rate-matching control can be regarded as a time-transformation of the station-

ary model, so that the queue length process has a stationary steady-state and thus a stabilized

distribution; see theorems 4.2.1 and 4.2.2.



CHAPTER 1. INTRODUCTION 14

1.2.1 Literature Review

On the structural results for the steady-state processes for TV single-server queues, Harrison and

Lemoine (1977), Heyman and Whitt (1984), Lemoine (1981, 1989), Rolski (1981, 1989a,b) mainly

establish limiting theorems for the virtual and actual waiting time processes in Mt/G/1 queues with

periodic Poisson arrivals. We base our analysis on the extension of the representation for periodic

steady-state workload processes in Lemoine (1981) and go beyond to consider general non-Poisson

input.

On the numerical algorithms for calculating performance measures in TV queues, the ODE

approach based on CTMC to the Mt/Mt/st queues has become the accepted approach: Koopman

(1972), Kolesar et al. (1975), Rothkopf and Oren (1979), Taaffe and Ong (1987), Ong and Taaffe

(1989) mainly study the ODE approach and closure approximations for ODE equations to reduce

their size. The single-server setting can be regarded as a special case of the multi-server system.

A useful approximation for stochastic TV models is the deterministic fluid model and Edie (1954),

Oliver and Samuel (1962), May and Keller (1967), Newell (1982), Porteus (1989, 1993a,b) discuss

the single-server TV fluid model. Robust optimization approach was proposed more recently in

Bertsimas et al. (2011), Ben-Tal et al. (2009), Beyer and Sendhoff (2007) and Whitt and You

(2018) develops TV robust queueing techniques to derive tractable optimization approximations to

the mean steady-state workload in TV single-server queues.

On the asymptotic HT methods and their approximations, Newell (1968a,b,c), Massey (1985),

Mandelbaum and Massey (1995) study diffusion approximations through HT limits for TV single-

server queues and obtain direct HT approximations for the Mt/Mt/1 queues. More recently, Whitt

(2014) introduces a new HT scaling to expose the TV behavior for Gt/GI/1 queue length processes

and Whitt (2016a) provides a new perspective on more possibilities for the scaling. We base our

HT analysis on these scalings and study HT limits for workload and virtual waiting time processes

in Gt/G/1 and Gt/Gt/1 queues.

On the Monte Carlo simulation techniques to generate arrival processes for the queues, Lewis

and Shedler (1979), Gerhardt and Nelson (2009) discuss the thinning method and Çinlar (1975),

Chen and Schmeiser (1992), Nicol and Leemis (2014), Chen and Schmeiser (2015, 2017) discuss

the inversion approach to to generate a NHPP from a stationary Poisson process. He et al. (2016)

generates NNPP arrival processes by inversion from the base renewal process, where the inversion
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is done by searching the x-axis for a given y value. We develop a more efficient algorithm to

simulate a general NNPP arrival process and generate each arrival in O(1) time, which is achieved

by tabling the piecewise-constant approximate inverse function outside of simulation; see Chapter

2 and Ma and Whitt (2015a). A new paper Liu et al. (2018) proposes a combined inversion-and-

thinning approach for simulating NNPPs, which applies thinning to the generated NNPPs with

a piecewise-constant approximate arrival rate function. This approach generates the NNPP with

the exact arrival rate function without error by adding the thinning step, while our approach is

more efficient in running time but subject to a small error bound; see Theorem 2.3.1. We apply

our algorithm to simulating TV queues to estimate performance measures, where a large number

of i.i.d. experiments are conducted with a large number of arrivals generated for each experiment

(say 40, 000 experiments with 16, 000 arrivals each), so a high time-efficiency is required.

While we study the stabilization problem in single-server queues proposed by Whitt (2015), there

has been substantial literature on the server staffing problem in multi-server systems; for example,

Liu and Whitt (2012b), Defraeye and van Nieuwenhuyse (2013), Yom-Tov and Mandelbaum (2014),

He et al. (2016). The service rate controls analogous to the square-root staffing formula do not

perform well in single-server queues and new controls are needed to achieve good performance; see

Chapter 4 and 5 for details. The service-rate control problem allocates capacity to a single queue at

different times, which is similar to the capacity allocation problem studied in Kleinrock (1964), Wein

(1989) for open Jackson networks. Since performance measures are generally not mathematically

computable, simulation experiments are needed to evaluate performance of different service-rate

controls (or server-staffing formulas for multi-server queues). We develop efficient algorithms to

simulate a general NNPP arrival process, which we show can be applied to simulate general non-

stationary non-Markovian queues including Gt/Gt/1 queues; also see He et al. (2016), Li et al.

(2016), Whitt and Zhao (2017) for applications of the algorithm.

1.3 Main Contributions

This thesis makes the following key contributions:

1. We develop new methods to simulate general NNPPs exploiting the inverse tabling method

(§2.3). We use this new algorithm to directly generate general arrival processes in non-
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stationary non-Markovian queueing models. As for generating the service processes, we con-

struct the service models specifying deterministic service rates separately from stochastic

service requirement processes and still make use of the new algorithm (§2.4).

2. We base our analysis of single-server TV queues on the Lemoine representation of steady-

state workload process for periodic Mt/G/1 queues. We extend the expression first to Gt/G/1

queues and then to Gt/Gt/1 queues to study the TV behavior of steady-state virtual waiting

times (§3.2, §5.5). We extend the classic rare-event simulation algorithm for GI/GI/1 queues

to GIt/GI/1 and further to GIt/GIt/1 queues. This is achieved by extending the Lemoine

representation and establishing bounds between the periodic workload and the stationary

workload with the average arrival rate, so that the relative error for estimators of P (Wy > b)

can be proved to be uniformly bounded in b (§3.4, §5.5). Based on the extended rare-event

simulation algorithm, an efficient algorithm is developed to calculate the periodic steady-

state distribution and moments of the virtual waiting time Wy at time yC within a cycle of

length C in periodic single-server queues GIt/GI/1 and GIt/GIt/1. We use this algorithm to

understand the dynamics of the waiting time and workload processes as the arrival function

changes (§3.4.5).

3. We develop the HT limit with periodicity for the workload process in Gt/G/1 queues and

also for workload and virtual waiting time processes in Gt/Gt/1 queues making use of two

scalings (§3.6, §5.6 - §5.8). With the aid of the heavy-traffic limit theorem, the developed rare-

event algorithm also applies to compute the periodic steady-state distribution of (i) reflected

periodic Brownian motion by considering appropriately scaled GIt/GI/1 models and (ii) a

large class of general Gt/G/1 queues by approximating by GIt/GI/1 models with the same

heavy-traffic limit (§3.6).

4. We study the stabilization problem in single-server queues by formulating alternative service

rate controls (§4.2). We evaluate the performance of four controls: the rate-matching control,

which is directly proportional to the arrival rate, stabilizes the queue length distribution;

the two controls analogous to the multi-server staffing formula are not effective in stabilizing

performance measures; the other control based on the mean stationary waiting time stabilizes

the expected virtual waiting time when the arrival rate changes slowly (§4.4).
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5. We formulate a new damped time-lag control that stabilizes the virtual waiting time fairly

well even if the arrival rate does not change slowly (§5.1.4). This new control is based on a

simulation search algorithm we develop (§5.5). The HT limits provide insights into the service-

rate controls. The state space collapse in our theorem shows that there is a TV Little’s law

in heavy-traffic, implying that the queue length and waiting time cannot be simultaneously

stabilized in this limit with the damped time-lag control ( §5.6).

6. We conduct extensive simulation experiments to show the accuracy and efficiency of both our

standard simulation and our rare-event simulation algorithms for both GIt/GI/1 queues and

GIt/GIt/1 queues and to evaluate the performance of alternative service-rate controls (§3.5,

§4.4, §5.9).

1.4 Outline

This thesis consists of two parts: performance evaluation and performance stabilization. Part I

studies simulation techniques to evaluate performance of a TV single-server queue, which provides

the basis for studies on improving performance in the same queueing system in Part II. It includes

Chapter 2 and 3. In Chapter 2, which is based on section 2 of Ma and Whitt (2015b) and Ma and

Whitt (2015a), an efficient algorithm to simulate a general NNPP is proposed and this algorithm

can be applied to simulate a non-stationary non-Markovian queueing system, for example, a TV

single-server model with TV service-rates. In Chapter 3, we develop the rare-event simulation

algorithm in TV single-server queues to estimate the tail probabilities and moments of the steady-

state virtual waiting time, and the moments of reflected periodic Brownian motion as the limiting

distribution of the steady-state workload process in TV queues; this is based on Ma and Whitt

(2018b).

Part II works on the performance stabilization problem in TV single-server queues, which is

achieved by service-rate controls as a function of the arrival rates. This part makes use of the

simulation tools in Part I to find optimal parameters for service-rate controls and evaluate their

performance. Chapter 4 is based on Ma and Whitt (2015b). It studies the rate-matching control,

two square-root controls analogous to the server-staffing formula and a PSA-based control. The

rate-matching control can perfectly stabilize the queue length process and the PSA-based control
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can stabilize the expected waiting time when PSA is appropriate. Chapter 5, based on Ma and

Whitt (2018a), develops a damped time-lag control, which requires the simulation search algorithm

based on Chapter 3 to find the optimal damping and time-lag parameters. This control performs

fairly well in stabilizing the waiting time distribution when PSA is not appropriate.
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Part I

Performance Evaluation for

Time-Varying Single-Server Queues
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Chapter 2

Efficient Simulation of Time-Varying

Queues

Efficient simulation algorithms are developed to evaluate the performance, e.g. expected waiting

time, expected queue length, in a queue with time-varying arrival rates, service in order of arrival

and unlimited waiting space. Both Markovian and non-Markovian models are considered. Cus-

tomer service requirements are specified separately from the service rate, which is time-varying as

well. New versions of the inverse method exploiting tables constructed outside the simulation are

developed to efficiently simulate a general non-Poisson non-stationary point processes for queueing

approximations, which can be applied to generate both the arrival times and service times. This

chapter is based on Ma and Whitt (2015b) and Ma and Whitt (2015a).

2.1 Introduction

In this chapter we study efficient simulation to evaluate performance in a single-server queue with

unlimited waiting space, service provided in order of arrival, time-varying arrival rate and indepen-

dent and identically distributed (i.i.d.) service requirements specified separately from the service

rate actually provided. This simulation approach will be applied to the performance stabilization

problem later in Chapter 4.

Specifically, we consider a class of general Gt/Gt/1 single-server queues with unlimited waiting

space, service in order of arrival, a time-varying arrival rate, and a time-varying service rate. Our
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methods apply to general arrival rate functions, but as in previous work we use stylized sinusoidal

arrival rate functions with a range of parameters. We consider arrival processes that are time-

transformed stationary renewal processes, with the specified arrival rate function. We assume

that the service requirements are i.i.d. random variables with a general distribution, specified

independently of the service rate control. The general GI arrival and service processes allow

different levels of stochastic variability to go with the predictable deterministic variability of the

time-varying rates.

We develop new methods to simulate these non-stationary non-Markovian queueing models. As

in §7 of Massey and Whitt (1994), Gerhardt and Nelson (2009) and He et al. (2016), we represent

the arrival process as the composition of a rate-1 stationary point process and the deterministic

cumulative arrival rate function. For this study we use renewal processes for the base rate-1 process,

but the method is more general. We efficiently generate both the service times and the arrival times

by exploiting tabled inverse functions, as can be done in generating non-uniform random numbers;

see §11.2 and §III.2 of Devroye (1986) and §3.8 of L’Ecuyer (2012).

The remainder of this chapter is organized as follows. In §2.2 we define the Gt/Gt/1 model

and then we discuss the simulation methodology for generating the non-stationary non-Markovian

models. We describe in detail the construction for non-stationary non-Poisson processes, the inverse

function tabling algorithm in §2.3 and the service time model in §2.4, after which the simulation is

elementary.

2.2 The Gt/Gt/1 Model

We construct the arrival and service processes by using deterministic time-transformations of gen-

eral rate-1 processes. We first consider the arrival counting process A, where A(t) counts the

number of arrivals occurring in the time interval [0, t]. We define A using a cumulative arrival rate

function

Λ(t) =

∫ t

0
λ(s) ds, t ≥ 0, where 0 < λL ≤ λ(t) ≤ λU <∞, (2.1)

and a general rate-1 counting process N with unit jumps. We define A by the composition

A(t) ≡ N(Λ(t)), t ≥ 0. (2.2)



CHAPTER 2. EFFICIENT SIMULATION OF TIME-VARYING QUEUES 22

Given that E[N(t)] = t, t ≥ 0 (the rate-1 property), A defined by (2.2) has the specified rate:

E[A(t)] = E[N(Λ(t))] = Λ(t). The deterministic function Λ(t) specifies the predictable variability,

while all the unpredictable stochastic variability is specified by the base counting process N . This

construction is without loss of generality, because given any A with unit jumps and E[A(t)] = Λ(t),

we can let N = A(Λ−1(t)), t ≥ 0, where Λ−1 is the inverse of Λ, which is well defined. Hence, (2.2)

holds with E[N(t)] = t, t ≥ 0.

We now turn to the service process. Paralleling our model of the arrival process, we assume

that the service requirements are generated by a counting process Ns with unit jumps, which is

independent of N . We define the evolution of the queueing model, given the arrival process A, the

service requirement process Ns and the time-varying service-rate control µ(t), by jointly defining

the number in system Q(t) and the departure counting process D(t). In particular, we require that

these processes satisfy the two equations

Q(t) = A(t)−D(t) and D(t) ≡ Ns(

∫ t

0
µ(s)1{Q(s)>0} ds), t ≥ 0, (2.3)

The representation (2.3) can be justified by applying mathematical induction to the successive

event changes in Q(t); see §2.1 of Pang et al. (2007). Note that the process D has the service rate

µ(t) whenever the system is not empty: E[D(t)] =
∫ t

0 µ(s)1{Q(s)>0} ds, t ≥ 0.

In this chapter we consider the special case of the model above in which the service requirements

Sk are i.i.d random variables with a general cdf G having mean 1 and finite second moment. If

the mean were not actually 1 initially, we could rescale both these service requirements and the

service-rate control to make it so, so that is without loss of generality. The associated rate-1

counting process is the equilibrium version of the renewal counting process, which differs from the

ordinary renewal counting process only by having the first interval having the stationary-excess cdf

Ge(t) =
∫ t

0 [1 − G(s)] ds, t ≥ 0, instead of the cdf G of all other intervals. The same holds for the

arrival process. We will generate N using i.i.d. random variables with mean 1; then the associated

rate-1 process is the equilibrium renewal process.

Often an exceptional first interval is not too important, and can be considered part of the initial

conditions, along with starting the queueing system empty. We then can generate both the arrival

process and the service process using ordinary renewal processes with mean-1 inter-renewal times.

Then the arrival rate is asymptotically correct as t→∞.
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To simulate the model, we first generate the successive arrival times and then the successive

service times. It is then straightforward to construct the associated queueing processes. We next

describe an efficient simulation algorithm for general non-Poisson non-stationary point processes

which can be directly applied to generate the arrival process. After that, we explain the steps for

generating service times.

2.3 Efficient Simulation

In simulation experiments to evaluate queueing performance, it has been accepted practice to use

stylized arrival rate functions that capture essential features of arrival rate functions that can be

estimated from data. In particular, it has been standard to use the sinusoidal arrival rate function

λ(t) ≡ λ(t; λ̄, β, γ) ≡ λ̄(1 + β sin (γt)) for 0 < β < 1 and γ > 0, (2.4)

where λ̄ is the average arrival rate (the spatial scale), β is the relative amplitude and γ is the time

scaling factor, determining the associated cycle length C = 2π/γ.

Our main idea for simulating non-Poisson non-stationary arrival processes is to exploit the

inverse method, as often used in generating non-uniform random numbers; see §II.2 and §III.2 of

Devroye (1986) and §3.8 of L’Ecuyer (2012). The inverse method can be used for NHPP’s, but it

is even more appealing here because it allows us to efficiently simulate a large class of non-Poisson

non-stationary arrival processes, not just one.

Since the arrival times of A and N , denoted by Ak and Nk respectively, are related by

Ak = Λ−1(Nk), k ≥ 1, (2.5)

the first step in this approach to construct a large class of non-Poisson non-stationary arrival

process models is by using the inverse Λ−1 of the cumulative arrival rate function Λ provided that

an efficient algorithm is available for generating the rate-one process N . The cumulative arrival

rate function Λ for the sinusoidal arrival rate function in (2.4) is

Λ(t) ≡
∫ t

0
λ(s) ds = λ̄[t+ (β/γ)(1− cos (γt))], t ≥ 0. (2.6)

The associated inverse function Λ−1 is well defined for (2.6) and any arrival rate function for which

0 < λL ≤ λ(t) ≤ λU <∞ for all 0 ≤ t ≤ C <∞; (2.7)
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e.g., we could apply basic properties of inverse functions, as in §13.6 of Whitt (2002).

Since the inverse function Λ−1 is often unavailable explicitly, we construct a suitably accurate

approximation of it and apply it by table lookup. In §2.3.1 we explain how the possibility of re-

use provides remarkable efficiency; in §2.3.2 we develop an algorithm to efficiently construct the

approximate inverse function with specified accuracy; and in §2.3.3 we discuss additional application

issues.

2.3.1 Efficiency Through Re-Use

The main advantage of the inverse function approach is the possibility of re-use. Since the inverse

function satisfies a fixed point equation, an alternative way to calculate the inverse is to solve the

fixed point equation for each arrival time, perhaps by search, exploiting the monotonicity. That is

done in Chen and Schmeiser (1992). However, that search has to be performed at each arrival time.

The search has the advantage that there should usually be many fewer arrivals in a fixed interval

[0, C] than arguments in a tabled inverse function, but the inverse function has the advantage that

it can be constructed once outside the simulation and re-used. Moreover, the calculation from the

table can be very fast, because it is possible to proceed forward through the table only once.

2.3.1.1 One Cycle for Periodic Arrival Rate Functions

The algorithm can be accelerated if the arrival rate function is periodic, because it suffices to

calculate the inverse only for a single cycle. For example, with the sinusoidal arrival rate function

in (2.4), Λ(2kπ/γ) = λ̄2kπ/γ for all integers k ≥ 0, so that Λ−1(2kλ̄π/γ) = 2kπ/γ for all integers

k ≥ 0. Hence, it suffices to construct the inverse for 0 ≤ t < 2π/γ. Overall, we get

Λ−1((2kλ̄π/γ) + t) = (2kπ/γ) + Λ−1(t), 0 ≤ t ≤ 2λ̄π/γ, (2.8)

so that it suffices to calculate Λ−1 on the interval [0, 2λ̄π/γ].

2.3.1.2 Different Scaling of Time and Space

We also can use one constructed inverse function Λ−1 to obtain inverse functions for scaled versions

of the original function Λ. This commonly occurs with sinusoidal arrival rate functions λ(t; λ̄, β, γ)
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in (2.4). We are often interested in different spatial and temporal scale parameters λ̄ and γ. Since

Λ(t; λ̄, β, γ) = λ̄Λ(γt; 1, β, 1)/γ, (2.9)

we can apply Lemma 13.6.6 of Whitt (2002) to express the inverse as

Λ−1(t; λ̄, β, γ) = Λ−1(γt/λ̄; 1, β, 1)/γ. (2.10)

Hence, we can use the constructed inverse function Λ−1(t; 1, β, 1) for Λ(t; 1, β, 1) to construct the

inverse function Λ−1(t; λ̄, β, γ) for Λ(t; λ̄, β, γ); i.e., we can reduce the three parameters to just one.

2.3.1.3 Multiple Non-Poisson Non-Stationary Arrival Process Models

In order to evaluate performance approximations and system controls such as staffing algorithms,

we need to consider a variety of models to ensure that the methods are successful for a large class of

models. It is thus significant that a constructed inverse function Λ−1 can be re-used with different

rate-1 stochastic counting processes N . For any rate-1 counting process N that we can simulate, we

can generate the corresponding non-stationary arrival process with the same arrival rate function

λ simply by applying the tabled inverse function to the arrival times of that rate-1 process, as in

(5.11). Methods for simulating stationary counting processes are well established.

2.3.1.4 Multiple Replications to Obtain Accurate Performance Estimates

The tabled inverse function can be re-used in each replication when many replications are performed

to obtain accurate performance estimates. For example, we might use 104 or more i.i.d. replications.

2.3.2 The Inverse Function

By (5.11), if we can simulate the arrival times Nk of the designated rate-1 process, then to simulate

the desired arrival times Ak of the non-stationary point process A, it only remains to compute

Λ−1(Nk) for each k. This is straightforward if the inverse function is available explicitly. If we

use data to estimate the cumulative arrival rate function, then we can fit a convenient invertible

function Λ. Indeed, there seems to be no reason not to use an invertible function. For example,

it could be a piecewise-linear function as in Gerhardt and Nelson (2009), Leemis (1991), Massey

et al. (1996), Nelson and Gerhardt (2011).
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However, starting with an explicit non-invertible function Λ, as in (2.6), we want to efficiently

construct an approximation of Λ−1 that is (i) easy to implement, (ii) fast in its implication and

has (iii) suitably small specified accuracy. We could act just as if we had data, and fit a convenient

invertible function, but then it remains to substantiate that the three goals have been met. To

achieve these three goals, we contend that a good approach is to construct a piecewise-constant

approximation. Of course, this construction can yield multiple points when that is not possible

in the counting process A, but that is easily eliminated if it is deemed important; see §2.3.3.4.

At some extra work, we could convert the piecewise-constant approximation to a piecewise-linear

approximation, paralleling §Leemis (1991). For all these modifications, our error bound still applies.

For the queueing applications, this last refinement step should usually not be necessary.

We assume that a cumulative arrival rate function Λ associated with an arrival rate function

λ satisfying (5.1) is given over a finite interval [0, C]. By (5.1), there exists a function r such that

Λ−1(t) =
∫ t

0 r(s) ds, 0 ≤ t ≤ Λ(C), and

0 < 1/λU ≤ r(t) ≤ 1/λL <∞, 0 ≤ t ≤ Λ(C). (2.11)

Our goal is to efficiently construct an approximation J to the inverse function Λ−1 mapping the

interval [0,Λ(C)] into [0, C] with specified accuracy

‖J − Λ−1‖ ≡ sup
0≤t≤Λ(C)

{|J(t)− Λ−1(t)|} ≤ ε (2.12)

for some suitably small target ε > 0. This is a natural way to quantify the error, because ε specified

the maximum error in the arrival times.

Our general strategy is to partition the two intervals [0, C] and [0,Λ(C)] into nx and ny evenly

spaced subintervals of width δx and δy, respectively, and then define J at iδy to be an appropriate

jδx, for each i, 0 ≤ i ≤ ny. We extend J to [0,Λ(C)] by making J a right-continuous step function,

assuming these constant values specified at iδy.

Key parameters for our algorithm are

ω ≡ ωΛ ≡
λU
λL

, δx =
ε

1 + ω
and δy = λUδx =

λU ε

1 + ω
, (2.13)

where λL and λU are the lower and upper bounds on the arrival rate function λ given in (5.1) and

ε the desired error bound in (2.12). Thus ω is the slope ratio with 1 ≤ ω <∞, while δy and δx are

spacings used to achieve the target error bound ε in (2.12).
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To construct J , we first calculate Λ(m) for each of the nx + 1 points x′ in [0, C] by letting

a(j) ≡ Λ(jδx), 0 ≤ j ≤ nx. (2.14)

Then we approximate the Λ−1(y′) value of each of the ny + 1 points y′ in [0,Λ(C)] by a suitable

point within the nx points in [0, C], i.e.,

b(i) ≡ inf {j ≥ 0 : a(j) ≥ iδy}, 0 ≤ i ≤ ny. (2.15)

Then J(iδy) = b(i)δx for all i, 0 ≤ i ≤ ny. The simple vector representations in (2.14) and (2.15)

are the basis for the implementation efficiency.

Algorithm 1 Constructing the approximation J of the inverse function Λ−1 for given time C,

function Λ : [0, C]→ [0,Λ(C)] and error bound ε

1: Set ω ← λU/λL, δx ← ε/(1 + ω), δy ← λU ε/(1 + ω), nx ← C(1 + ω)/ε, ny ← Λ(C)/δy // (five

constant parameters)

2: Set x′ ← (0 : δx : C), y′ ← (0 : δy : Λ(C)) //(two equally spaced vectors of length nx + 1 and

ny + 1)

3: Set a← Λ(x), b← [] //(two new vectors of length nx + 1 and ny + 1 with b zero vector)

4: Set i← 1, j ← 1 //(initialize for nx + ny operations)

5: While j < nx + 1 && i < ny + 1 do

6: If y(i) > a(j) Then

7: j ← j + 1

8: Else

9: b(i)← j, i← i+ 1

10: End if

11: End While

12: //(For 0 ≤ i ≤ ny, J(iδy) = b(i)δx; J extended to [0,Λ(C)] by right-continuity.)

We can finally get the value of J at any time y′ in [0,Λ(C)] by

J(y′) = J(by′/δycδy), 0 ≤ y′ ≤ Λ(C), (2.16)

where by′c is the floor function, yielding the greatest integer less than or equal to y. However, this

extension is not used directly because we start by changing Nk to bNk/δycδy, so we only use J
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defined on the finite subset {iδy : 0 ≤ i ≤ ny}. The function J is constructed to be one-to-one on

the finite subset {iδy : 0 ≤ i ≤ ny}.

Theorem 2.3.1. (error bound and computational complexity) Algorithm 1 above constructs a non-

decreasing function J on [0,Λ(C)] approximating Λ−1 with the error upper bound ε prescribed in

(2.12) using of order O(nx + ny) = O(2C(1 + ω)/ε) storage (two vectors each of size nx and ny)

with computational complexity of order O(nx + ny) = O(2C(1 + ω)/ε).

Proof For any δy > 0 and δx > 0, a bound on the error in J is

‖J − Λ−1‖ ≡ sup
0≤t≤Λ(C)

|J(t)− Λ−1(t)| = sup
0≤i≤ny

sup
t∈[iδy ,(i+1)δy)

|J(iδy)− Λ−1(t)|

= sup
0≤i≤ny

sup
t∈[iδy ,(i+1)δy)

|b(i)δx − Λ−1(iδy) + Λ−1(iδy)− Λ−1(t)|

≤ sup
0≤i≤ny

(|b(i)δx − Λ−1(iδy)|+ |Λ−1(iδy)− Λ−1((i+ 1)δy)|)

≤ δx + δy/λL, (2.17)

where the fourth line follows because the point Λ−1(iδy) lies in the interval (b(i)δx, b(i+ 1)δx].

Next observe that the function J will be one-to-one (have distinct values) on the set {iδy : 0 ≤

i ≤ ny} if δy ≥ λUδx. Now we choose δy such that

δy = λUδx. (2.18)

Then J is one-to-one on {iδy : 0 ≤ i ≤ ny} and, by (2.17) and (2.18),

‖J − Λ−1‖ ≤ δx + δy/λL ≤
ε

1 + ω
+

ωε

1 + ω
= ε. (2.19)

Turning to the computational complexity, we see that four vectors need to be stored: x′, y′,

a and b, which is of total length 2(nx + ny + 2). To construct the table of J , the while loop in

algorithm 1 searches for b(i) for each 0 ≤ i ≤ ny, which checks each of the (nx + ny) points only

once and takes time O(nx + ny). Finally, by (2.13) again,

nx + ny =
C

δx
+

Λ(C)

δy
=
C(1 + ω)

ε
+

Λ(C)(1 + ω)

λU ε
≤ 2C(1 + ω)

ε
. (2.20)
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2.3.3 Application Issues

2.3.3.1 Generating the Arrival Times

Given Algorithm 1, the algorithm to construct the actual arrival times Ak = Λ−1(Nk) given all the

rate-1 arrival times Nk can be very simple. If we apply the floor function and the inverse function

in Algorithm 1 in a single vector operation to all components of the vector of rate-1 arrival times,

then the code can be expressed in a single line.

Algorithm 2 constructing the vector A ≡ {Ak} of arrival times in [0, C] given Algorithm 1

specified in terms of the triple (δy, δx, b) depending on the error bound ε in (2.12) and the associated

nondecreasing vector of nonnegative rate-1 arrival times N ≡ {Nk : 1 ≤ k ≤ n} with Nn ≤ Λ(C)

1: Set A← b(bN/δyc)δx // (vector application of the floor function and Algorithm 1 term by term)

In the single line of Algorithm 2 we have used (2.16) and line 12 of Algorithm 1, i.e.,

J(bt/δycδy) = b(bt/δyc)δx or J(iδy) = b(i)δx, 0 ≤ i ≤ ny. (2.21)

This is important for implementation efficiency, because we make only one pass through the table

to generate all the arrival times Ak.

2.3.3.2 Partitioning Into Subintervals

For difficult arrival rate functions, it might be preferable to modify the representation of the inverse

function, e.g., moving closer to a piecewise-linear approximation. In particular, if the slope ratio ω

in (2.13) is large, then it may be easy to accelerate the algorithm by dividing the original interval

[0, C] into subintervals. A simple example is a piecewise linear function with two pieces, one having

a flat slope and the other having a steep slope, so that the ratio ω might be very large. If we divide

the interval into the two parts where Λ is linear, then ω is reduced to 1 on one subinterval. Given

that we divide [0, C] into the two intervals [0, C1] and [C1, C], we can calculate Λ−1 separately on

the two intervals [0,Λ(C1)] and [Λ(C1),Λ(C)].

2.3.3.3 Choosing the Error Bound

It is natural to ask how the error bound ε should be chosen in practice. We think it should

usually be possible to choose ε relatively small compared to an expected interarrival time of A,
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which has a time-varying value exceeding 1/λU for λU in (5.1). However, for queueing applications

that might be smaller than necessary, because the relevant time scale in a queueing system is

typically of order equal to a mean service time, which depends on the units used to measure time.

Suppose, without loss of generality, we choose the time units so that the mean service time is 1.

Then we think it usually should suffice to let ε be small compared to the maximum of these, e.g.,

ε ≈ max {1, 1/λU}/100.

To illustrate, consider an example of a moderately large call center in which the mean service

time is about 5 minutes, while the arrival rate is 600 per hour or 1/6 per second, as in §3.1 of Kim

and Whitt (2014), which makes λU = 600/12 = 50 in units of mean service times. In this context, it

directly seems reasonable to let ε be one second. The rough guideline above yields ε = 300/100 = 3

seconds.

Assuming that time is measured in mean service times and λU ≥ 1 in that scale, the computa-

tional complexity from Theorem 2.3.1 becomes 2C(1 + ω)× 102. In the call center example, if we

let C = 24× 12 = 288 corresponding to one 24-hour day measured in units of 5 minute-calls, then

the computational complexity of the algorithm to calculate the inverse function is 57, 600(1 + ω).

2.3.3.4 Breaking Ties: Ensuring an Orderly Point Process

We have constructed the approximate inverse function J to be one-to-one in the finite subset

{iδy : 0 ≤ i ≤ ny}. However, that does not present multiple points in A, because all points from

the rate-1 process N in the interval [iδy, (i+ 1)δy) are mapped into the same point b(i)δx, for each

i, 0 ≤ i ≤ ny − 1.

First, we can easily identify multiple points by looking for the zeros in the vector ∆A, where

∆Ak ≡ Ak−Ak−1. Then we can easily remove them if we want. Suppose that Ak−1 < Ak = Ak+j <

Ak+j+1 for some k ≥ 1 and j ≥ 1. Then replace Ak+i by Ak + iε/(j + 1), 1 ≤ i ≤ j. We could

further randomize by using Ak + (i+Uk+i)ε/(j + 1)+, 1 ≤ i ≤ j, where {Uk : k ≥ 1} is a sequence

of i.i.d. uniform random variables on [0, 1]. However, these adjustments should not be required for

queueing applications if we are satisfied with the “measurement error” of ε, as discussed in §2.3.3.3.
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2.3.3.5 Selecting the Rate-One Stochastic Process N

In applications, a key remaining problem is actually identifying an appropriate non-Poisson nonsta-

tionary arrival process. Assuming that ample data are available to estimate the cumulative arrival

rate function, the question about choosing A is roughly equivalent to the question about choosing

the rate-1 process N for given cumulative arrival rate function Λ.

As discussed in Massey and Whitt (1994), He et al. (2016), it is natural to specify the functional

central limit theorem behavior of N , by the asymptotic index of dispersion for the arrival process

A, i.e., we use measurements of A to estimate

c2
a ≡ lim

t→∞

V ar(A(t))

E[A(t)]
= lim

t→∞

V ar(N(t))

E[N(t)]
. (2.22)

It is then easy to choose stationary renewal processes N with this c2
a Whitt (1982). However,

while this should yield an appropriate c2
a, this does not nearly specify the processes N and A fully.

However, heavy-traffic limit theorems indicate that this may be sufficient; see §4 of He et al. (2016).

2.3.3.6 Random-Rate Arrival Processes

As discussed in Whitt (1999), Kim et al. (2015) and references therein, it may be desirable to

represent the arrival rate over each day as random. For example, the model of the arrival process

on one day of length T might be

A(t) = N(XΛ(t)), 0 ≤ t ≤ T, (2.23)

where N is a rate-1 stochastic processes, perhaps Poisson, while Λ is a deterministic cumulative

arrival rate function and X is a positive random variable. The overall cumulative arrival rate of A

is

E[A(t)] = E[N(XΛ(t))] = E[X]Λ(t), 0 ≤ t ≤ T. (2.24)

With this structure, we can exploit the scaling properties in §2.3.1.2 to accelerate simulations.

In particular, the representation (2.24) can be viewed as a variant of our model in which the

cumulative arrival rate function is the random function ΛX(t) ≡ XΛ(t). Fortunately, the inverse

of ΛX can be expressed directly in terms of the inverse Λ−1 and the random variable X by

Λ−1
X (t) = Λ−1(t/X), 0 ≤ t ≤ XΛ(T ) (2.25)
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For any single realization of the random variable X above, we can simulate the stochastic process

A in the manner described in previous sections. However, to assess the system performance, we

would need to consider the values of X over successive days, but these random variables Xk over

successive days k are likely to be dependent with distributions depending on the day of the week

and the week of the year. Nevertheless, the inverse in (4.10) can be efficiently calculated for each

of these these days using the single inverse function Λ−1. However, by sampling sufficiently many

days, we may capture the impact of this random variable X.

2.4 Generating the Service Times

We use a similar inverse function method to generate the service times, but the method is more

complicated, because to apply (2.3) we need to keep track of when the server is busy. Thus, we

start by developing a recursion.

Let Bk, Dk, Vk and Wk be the times that arrival k who arrives at Ak begins service, departs,

spends in service and waits before starting service, respectively. Then we have the basic recursion:

Bk = max {Dk−1, Ak}, Dk = Bk + Vk and Wk = Bk − Ak, where the arrival times Ak have been

generated already. Given that the system starts empty, we can initialize the recursion with D0 = 0

and B1 = A1, so that the only variable not formulated in the recursion is the service time Vk.

Since the service requirement Sk is completed by the server busy working from time Bk to time

Bk + Vk, the service time Vk satisfies the equation

Sk =

∫ Bk+Vk

Bk

µ(s) ds, k ≥ 1. (2.26)

We can solve for service times explicitly by

Vk = M−1(Sk +M(Bk))−Bk, where M(t) ≡
∫ t

0
µ(s) ds (2.27)

and M−1 is the inverse of M , which is well defined providing that 0 < µL ≤ µ(t) ≤ µU < ∞,

paralleling (2.1), which we assume to be the case.

Again we work to reduce the computational burden. Just as for the arrival rate function Λ,

we see that the function M is typically periodic, so that we only need to compute M−1 over a

single cycle. We avoid performing the integration in the direct definition of M and approximate

the function M by the piecewise constant function M(x′(i)) =
∫ x′(i)

0 µ(s) ds ≈
∑i

j=1 µ(x′(j))τ ,
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implemented with the recursion M(x′(i + 1)) = M(x′(i)) + µ(x′(i + 1))τ for suitably small τ ,

starting with M(x′(0)) = 0. To obtain the M−1 value for each customer, we table the inverse

function much as we did for Λ−1.

2.5 Conclusions

In this chapter we have developed an efficient algorithm for simulating the model of a time-varying

single-server queue with a time-varying service-rate and we have described the efficient algorithm

for simulating a general non-Poisson non-stationary point processes.

The model is a single-server queue with service in order of arrival, unlimited waiting space

and a time-varying arrival rate function. The simulation algorithm applies to arbitrary arrival rate

functions, but as examples we used the sinusoidal periodic arrival rate function in (2.4) with average

arrival rate λ̄, relative amplitude β and time-scaling factors γ. The service requirements were i.i.d.

random variables specified separately from the time-varying service-rate. The arrival processes were

mostly nonhomogeneous Poisson processes, but the method applies to very general arrival processes

that can be represented as a deterministic time transformation of a stationary point process as in

(2.2). Experiments can be conducted for stationary processes constructed from renewal processes

with non-exponential as well as exponential distributions. This allows representing different levels

of stochastic variability.

Conducting the simulations for these non-stationary queues turned out to be quite challeng-

ing. An important component of the efficient simulation was constructing a table of the inverse

cumulative arrival rate function when it is not explicitly available and exploiting table lookup to

calculate the arrival times and service times. The use of tables for a periodic arrival rate function

is appealing because the table for one cycle can be used for other cycles and for scaled versions of

the original arrival rate function, as shown in §2.3. Later in Chapter 4 we will use this simulation

algorithm to conduct simulation experiments for the performance stabilization problem.
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Chapter 3

Rare-Event Simulation for Periodic

Queues

In this chapter, an efficient algorithm is developed to calculate the periodic steady-state distribu-

tion and moments of the virtual waiting time in a single-server queue with a periodic arrival-rate

function. The virtual waiting time at time t is the waiting time of a potential arrival at that time.

We use Wy to denote the steady-state virtual waiting time at time yC within a cycle of length C,

0 < y < 1. The algorithm applies exactly to the GIt/GI/1 model, where the arrival process is a

time-transformation of a renewal process, with the first inter-arrival time of the renewal process

having the exceptional equilibrium distribution. A new representation of Wy shown in this chapter

makes it possible to apply a modification of the classic rare-event simulation for the stationary

GI/GI/1 model exploiting importance sampling with an exponential change of measure. We es-

tablish bounds between the periodic workload and the stationary workload with the average arrival

rate that enable us to prove that the relative error in estimates of P (Wy > b) using the extended

rare-event simulation algorithm is uniformly bounded in b as b goes to infinity. With the aid of

a recent heavy-traffic limit theorem, Theorem 3.2 of Whitt (2014), the algorithm also applies to

compute the periodic steady-state distribution of (i) reflected periodic Brownian motion (RPBM)

by considering appropriately scaled GIt/GI/1 models and (ii) a large class of general Gt/G/1

queues by approximating by GIt/GI/1 models with the same heavy-traffic limit. As is shown in

the theorem, the heavy-traffic limits of both the steady-state queue length and the steady-state
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virtual waiting time follow the RPBM distribution, whose explicit expressions are not available.

Our work contributes by efficiently calculating its steady-state distribution. Simulation examples

demonstrate the accuracy and efficiency of the algorithm for estimating both tail probabilities and

moments of Wy in GIt/GI/1 queues, and steady-state distributions of RPBM. This chapter is an

edited version of Ma and Whitt (2018b).

3.1 Introduction

For the steady-state performance of the stationary GI/GI/1 single-server queue with unlimited

waiting room and service in order of arrival, we have effective algorithms, e.g., Abate et al. (1993),

Asmussen (2003). We also have exact formulas in special cases and useful general approximation

formulas in heavy traffic, e.g., Asmussen (2003), Whitt (2002). For the periodic steady-state per-

formance of associated single-server queues, having periodic arrival-rate functions, there is much

less available. There is supporting theory in Harrison and Lemoine (1977), Lemoine (1981, 1989),

Rolski (1981, 1989a). On the algorithm side, there is a recent contribution on perfect sampling in

Xiong et al. (2015). Of particular note is the paper on the periodic Mt/GI/1 queue by Asmussen

and Rolski (1994) that provides a theoretical basis for a rare-event simulation algorithm (although

no algorithm is discussed there); also see §VII.6 of Asmussen and Albrecher (2010) and Morales

(2004). The goal there was to calculate ruin probabilities, but those are known to be equivalent to

waiting-time and workload tail probabilities. A heavy-traffic limit for the periodic Gt/G/1 queue

was also established recently by Whitt (2014), which shows that the basic processes can be ap-

proximated by reflected periodic Brownian motion (RPBM), but so far there are no algorithms or

simple formulas for RPBM.

In this chapter, we provide an effective algorithm to calculate the periodic steady-state distribu-

tion and moments of the remaining workload Wy at time yC within a cycle of length C, 0 ≤ y < 1,

in a single-server queue with a periodic arrival-rate function. The algorithm applies exactly to

the Mt/GI/1 model, where the arrival process is a nonhomogeneous Poisson process (NHPP), and

any GIt/GI/1 model, where the arrival process is a time-transformation of an equilibrium renewal

process. A new representation of Wy (in (3.1) below) makes it possible to apply a modification

of the classic rare-event simulation for the stationary GI/GI/1 model exploiting importance sam-
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pling using an exponential change of measure, as in Ch. XIII of Asmussen (2003) and Ch. VI of

Asmussen and Glynn (2007). We show that the algorithm is effective for estimating the mean and

variance as well as small tail probabilities of the periodic steady-state workload.

The main example is the periodic Mt/GI/1 queue, but our results go well beyond the periodic

Mt/GI/1 queue. By also treating the more general GIt/GI/1 queue, we are able to apply the

algorithm to compute the steady-state distribution of the limiting RPBM in Whitt (2014). To

cover the full range of parameters of the RPBM, we need the generalization to GIt/GI/1. (In

particular, this enables us to calculate the periodic steady-state distribution of the limiting RPBM

for the GIt/GI/1 model in (3.48) and (3.52) for any variability parameter cx.) As we will explain in

§3.6.4, the algorithm for the GIt/GI/1 model can serve as a basis for an approximation algorithm

for more general Gt/G/1 models, but we do not report simulation results for that extension here.

We report results from extensive simulation experiments for GIt/GI/1 models to demonstrate

the effectiveness of the algorithm. Both the convergence to RPBM and the effectiveness of the

algorithm for RPBM are demonstrated by displaying the results for a range of traffic intensities ρ

approaching 1. This unity in the numerical results requires the nonstandard heavy-traffic scaling

in Whitt (2014), which we review in §3.6. (In particular, the deterministic arrival-rate function is

scaled as well as space and time; see (3.38).) The unity in the numerical results provided by the

heavy-traffic scaling is in the same spirit as the scaling in the numerical results in Abate and Whitt

(1998), Choudhury et al. (1997).

3.1.1 Using Bounds to Connect to Stationary Methods

We are able to apply the familiar rare-event simulation for the GI/GI/1 model to the periodic

GIt/GI/1 model because we can make strong connections between the given periodic GIt/GI/1

model and the associated GI/GI/1 model with the constant average arrival rate. In fact, this

connection is largely achieved directly by construction, because we represent the periodic arrival

counting process A as a deterministic time transformation of an underlying rate-1 counting process

N by (2.1) and (2.2). This is a common representation when N is a rate-1 Poisson process; then A

is an NHPP. For the Gt/G/1 model, N is understood to be a rate-1 stationary point process. Hence,

for the GIt/GI/1 model, N is an equilibrium renewal process with time between renewals having

mean 1, which is a renewal process except the first inter-renewal time having the equilibrium



CHAPTER 3. RARE-EVENT SIMULATION FOR PERIODIC QUEUES 37

distribution. The representation in (2.2) also has been used for processes N more general than

NHPP’s by Massey and Whitt (1994), Gerhardt and Nelson (2009), Nelson and Gerhardt (2011),

He et al. (2016), Ma and Whitt (2015a), Whitt (2015) and Li et al. (2016).

Given that we use representation (2.2), we show that it is possible to uniformly bound the

difference between the cumulative arrival-rate function Λ and the associated linear cumulative

arrival-rate function λ̄e of the stationary model, where λ̄ is the average arrival rate and e is the

identity function, e(t) ≡ t, t ≥ 0. Consequently, we are able to bound the difference between the

steady-state workloads W in the stationary G/G/1 model and Wy in the periodic Gt/G/1 model.

3.1.2 A Convenient Representation

We exploit the arrival process construction in (2.2) to obtain a convenient representation of the

stationary workload Wy in terms of the underlying stationary process N ≡ {N(t) : t ≥ 0} in (2.2)

and the associated sequence of service times V ≡ {Vk : k ≥ 1} via

Wy
d
= sup

s≥0

{N(s)∑
k=1

Vk − Λ̃−1
y (s)

}
, 0 ≤ y < 1, (3.1)

where

Λ̃y(t) ≡ Λ(yC)− Λ(yC − t), t ≥ 0, (3.2)

is the reverse-time cumulative arrival-rate function starting at time yC within the periodic cycle

[0, C], 0 ≤ y < 1, and Λ̃−1
y is its inverse function, which is well defined because Λ̃y(t) is continuous

and strictly increasing. Representation (3.1) is convenient because all stochastic dependence is

captured by the first term within the supremum, while all deterministic time dependence is captured

by the second term.

From the representation in (3.1), it is evident that from each sample path of the underlying

stochastic process (N,V ), we can generate a realization of Wy in (3.1) for any y in [0, 1) by just

changing the deterministic function Λ̃−1
y . Moreover, from the rare-event construction in §3.4, we

can simultaneously obtain an estimate of P (Wy > b) for all b in the bounded interval [0, b0] with

the same time complexity as for applying the estimation for the single value b0. Thus, we can

essentially obtain estimates for all performance parameter pairs (y, b) ∈ [0, 1)× [0, b0] in the process

of doing the estimation for only one pair. This efficiency is very useful to conduct simulation studies

to expose the way that P (Wy > b) and the other performance measures depend on (y, b).
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3.1.3 Stylized Sinusoidal Examples

We illustrate the rare-event simulation by showing simulation results for GIt/GI/1 queues with

sinusoidal arrival-rate function (2.4) where β, 0 < β < 1, is the relative amplitude and the cycle

length is C = 2π/γ. We let the mean service time be µ−1 = 1, so that the average arrival rate

is the traffic intensity, i.e., λ̄ = ρ. With this scaling, we see that there is the fundamental model

parameter triple (ρ, β, γ) or, equivalently, (ρ, β, C). The associated cumulative arrival-rate function

is (2.6) and the associated reverse-time cumulative arrival-rate function defined in (3.2) is

Λ̃y(t) = ρ (t+ (β/γ) (cos (γ(yC − t))− cos (γyC))) , t ≥ 0. (3.3)

We only consider the case ρ < 1, under which a proper steady-state exists under regularity

conditions (which we do not discuss here). Behavior differs for short cycles and long cycles. There

are two important cases for the relative amplitude: (i) 0 < β < ρ−1 − 1 and (ii) ρ−1 − 1 ≤ β ≤ 1.

In the first case, we have ρ(t) < 1 for all t, where ρ(t) ≡ λ(t) is the instantaneous traffic intensity,

but in the second case we have intervals with ρ(t) ≥ 1, where significant congestion can build up.

If there is a long cycle as well, the system may be better understood from fluid and diffusion limits,

as in Choudhury et al. (1997). (Tables 3.8 and 3.9 illustrate the significant performance difference

for the mean E[Wy].)

3.1.4 Organization of the Chapter

We start in §3.2 by reviewing the reverse-time representation of the workload process, which leads to

representation (3.1). In §3.3 we establish the bounds and associated asymptotic and approximations

connecting the periodic model to the associated stationary model with the average arrival rate. In

§3.4 we develop the simulation algorithm for the GIt/GI/1 model and establish theoretical results

on its efficiency. We also discuss the computational complexity and running times. In §3.5 we

present simulation examples. In §3.6 we review and extend the heavy-traffic FCLT in Theorem

3.2 of Whitt (2014), which explains the scaling that unifies our numerical results in the simulation

experiments. in §3.6.4 we discuss the approximation for general periodic Gt/G/1 models. In §3.7

we draw conclusions. Additional material is presented in the supplement Appendix A, including

approximations for the important asymptotic decay rate and more simulation examples.
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3.2 Reverse-Time Representation of the Workload Process

We consider the standard single-server queue with unlimited waiting space where customers are

served in order of arrival. Let {(∆Ak, Vk)} be a sequence of ordered pairs of interarrival times

and service times and {Ak} be the arrival times. (in §3.2 and in §3.3 we do not need to impose

any GI conditions.) Let an arrival counting process be defined on the positive half line by A(t) ≡

max {k ≥ 1 : Ak ≤ t} for t ≥ A1 and A(t) ≡ 0 for 0 ≤ t < A1, and let the total input of work over

the interval [0, t] be the random sum

Y (t) ≡
A(t)∑
k=1

Vk, t ≥ 0. (3.4)

Then we can apply the reflection map to the net input process Y (t)− t to represent the workload

(the remaining work in service time) at time t, starting empty at time 0, as

W (t) = Y (t)− t− inf {Y (s)− s : 0 ≤ s ≤ t} = sup {Y (t)− Y (s)− (t− s) : 0 ≤ s ≤ t}, t ≥ 0.

We now convert this standard representation to a simple supremum by using a reverse-time

construction, as in Loynes (1962) and Chapter 6 in Sigman (1995). This is achieved by letting the

interarrival times and service times be ordered in reverse time going backwards from time 0. Then

Ã(t) counts the number of arrivals and Ỹ (t) is the total input over the interval [−t, 0] for t ≥ 0.

With this reverse-time construction (interpretation), we can write

W (t) = sup {Ỹ (s)− s : 0 ≤ s ≤ t}, t ≥ 0, (3.5)

and we have W (t) increasing to W (∞) ≡ W with probability 1 (w.p.1) as t ↑ ∞. In a stable

stationary setting, under regularity conditions, we have P (W <∞) = 1; see §6.3 of Sigman (1995).

We now consider the periodic arrival-rate function λ(t) with cycle length C, average arrival rate

λ̄ = ρ < 1 and bounds 0 < λL ≤ λ(t) ≤ λU < ∞ for 0 ≤ t ≤ C. As in (2.2), we can construct

the arrival process A by transforming a general rate-1 stationary process N by the cumulative

arrival-rate function. We let the service times Vk be a general stationary sequence with E[Vk] = 1.

We now exploit (3.5) in our more specific periodic Gt/G/1 context. The workload at time yC
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in the system starting empty at time yC − t can be represented as

Wy(t) = sup
0≤s≤t

{Ỹy(s)− s}

d
= sup

0≤s≤t

{N(Λ̃y(s))∑
k=1

Vk − s
}

= sup
0≤s≤Λ̃y(t)

{N(s)∑
k=1

Vk − Λ̃−1
y (s)

}
, (3.6)

where Ỹy is the reverse-time total input of work starting at time yC within the cycle of length C,

Λ(t) is the cumulative arrival-rate function in (2.2), Λ̃y(t) is the reverse-time cumulative arrival-

rate function in (3.2) and Λ̃−1
y is its inverse function. The second line equality in distribution

holds when N is a stationary point process, which is a point process with stationary increments

and a constant rate. In the GIt/GI/1 setting, N is an equilibrium renewal process and thus this

regularity condition is satisfied. Let {Uk, k ≥ 1} be interarrival times for the base process N . Note

that in this specific setting, Vk’s are i.i.d. with distribution V , but U1 has equilibrium distribution

Ue, which may be different from the i.i.d. distributions of Uk, k ≥ 2 in (3.6). Just as W (t) ↑ W

w.p.1 as t→∞, so Wy(t) ↑Wy w.p.1 as t→∞, for Wy in (3.1).

Even though (3.6) is valid for all t, we think of the system starting empty at times −kC, for

k ≥ 0, so that we let yC− t = −kC or, equivalently, we stipulate that t = C(k+ y), 0 ≤ y < 1, and

consider successive values of k and let k →∞ to get (3.1). That makes (3.6) valid to describe the

distribution of W (C(k + y)) for all k ≥ 0. We think that (3.6) and (3.1) are new representations,

but they can be related to various special cases in the literature.

3.3 Bounds and Approximations

We first bound the periodic system above and below by modifications of the corresponding station-

ary system with an arrival process that has the average arrival rate. Then we establish limits and

introduce approximations. In doing so, we extend results in Asmussen and Rolski (1994).
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3.3.1 Basic Bounds

We now compare the periodic steady-state workload Wy in (3.1) and the associated stationary

workload W defined as in (3.1) with ρ−1s replacing Λ̃−1
y (s):

W
d
= sup

s≥0

{N(s)∑
k=1

Vk − ρ−1s
}
, (3.7)

Note that in both (3.1) and (3.7), N is understood to be a stationary point process. In particular, for

the GIt/GI/1 model, N is an equilibrium renewal process with the first inter-renewal time having

the equilibrum distribution, therefore W is the stationary workload in the associated GI/GI/1

model, which may differ from the stationary waiting time in the same model. We now show that

we can bound Wy above and below by a constant difference from the stationary workload W by

rewriting (3.1) as

Wy = sup
s≥0

{N(s)∑
k=1

Vk − ρ−1s− (Λ̃−1
y (s)− ρ−1s)

}
. (3.8)

From (3.8), we immediately obtain the following lemma.

Lemma 3.3.1. (upper and lower bounds on Wy) For Wy in (3.1) and W in (3.7),

W−y ≡W − ζ−y ≤Wy ≤W − ζ+
y ≡W+

y (3.9)

where

ζ−y ≡ sup
0≤s≤ρC

{Λ̃−1
y (s)− ρ−1s} ≥ 0 and ζ+

y ≡ inf
0≤s≤ρC

{Λ̃−1
y (s)− ρ−1s} ≤ 0. (3.10)

Note that the supremum and infimum in (3.10) are over the interval [0, ρC]. Because the

average arrival rate is ρ, Λ̃y(C) = Λ(C) = ρC and thus Λ̃−1
y (ρC) = C. Given that Λ is continuous

and strictly increasing, we can use properties of the inverse function as in §13.6 of Whitt (2002)

to determine an alternative representation of the bounds in terms of the reverse-time cumulative

arrival-rate function Λ̃y. We emphasize that these bounds depend on y.

Lemma 3.3.2. (alternative representation of the bounds) The constants ζ−y and ζ+
y can also be

expressed as

ζ−y = −ρ−1 inf
0≤s≤C

{Λ̃y(s)− ρs} ≥ 0 and ζ+
y = −ρ−1 sup

0≤s≤C
{Λ̃y(s)− ρs} ≤ 0. (3.11)
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Proof. We use basic properties of inverse functions, as in §13.6 of Whitt (2002). First, note that,

for any homeomorphism φ on the interval [0, C],

sup
0≤s≤C

{φ(s)− s} = sup
0≤s≤C

{φ(φ−1(s))− φ−1(s)} = sup
0≤s≤C

{s− φ−1(s)} = − inf
0≤s≤C

{φ−1(s)− s}.

(3.12)

To treat ζ−y in (3.10), we apply (3.12) to Λ̃−1
y after rescaling time to get

sup
0≤s≤ρC

{Λ̃−1
y (s)− ρ−1s} = sup

0≤u≤C
{Λ̃−1

y (ρu)− u} = − inf
0≤u≤C

{ρ−1Λ̃y(u)− u}

= −ρ−1 inf
0≤s≤C

{Λ̃y(s)− ρs}. (3.13)

In (3.13), the first equality is by making the change of variables u = ρ−1s; the second equality is

by (3.12) plus Lemma 13.6.6 of Whitt (2002), i.e., (Λ̃−1
y ◦ ρe)−1 = (ρ−1e ◦ Λ̃y) = ρ−1Λ̃y; the third

equality is obtained by multiplying and dividing by ρ.

We now combine the one-sided extrema into an expression for the absolute value.

Corollary 3.3.1. (single bound) As a consequence,

|Wy −W | ≤ ζy ≡ max {ζ−y ,−ζ+
y }

= ρ−1‖Λ̃y − ρe‖C ≡ ρ−1 sup
0≤s≤C

{|Λ̃y(s)− ρs|} <∞. (3.14)

Corollary 3.3.2. (bounds in the sinusoidal case) For the sinusoidal case in (2.4), the bounds can

be expressed explicitly as

ζ−y =
β(cos (γCy) + 1)

γ
and ζ+

y =
β(cos (γCy)− 1)

γ
. (3.15)

Proof. By (3.3),

Λ̃y(t)− ρt = (ρβ/γ) (cos (γ(Cy − t))− cos (γCy)) , t ≥ 0, (3.16)

from which (3.15) follows by choosing t to make cos (γ(Cy − t)) = ±1.

3.3.2 Tail Asymptotics

For many models, it is possible to obtain an approximation for the tail probability of W of the

form

P (W > b) ≈ Ae−θ∗b, b ≥ 0, (3.17)
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based on the limit

lim
b→∞

eθ
∗bP (W > b) = A. (3.18)

For the GI/GI/1 model, the limit (3.18) is discussed in §XIII.5 of Asmussen (2003), where the

random variable Xk ≡ Vk − ρUk is required to have a nonlattice distribution. However, the limit

(3.18) also has been established for much more general models, allowing dependence among the

interarrival times and service times; see Abate et al. (1994), Choudhury et al. (1996) and references

therein. If indeed, the limit (3.18) holds for W , then we easily get corresponding bounds for Wy.

We remark that logarithmic asymptotics from Glynn and Whitt (1994) supports the weaker

approximation

P (Wy > b) ≈ P (W > b) ≈ e−θ∗b, b ≥ 0. (3.19)

The following corollary draws implications from the limit (3.17), from the bounds we have

established, assuming that the limit (3.17) is valid.

Corollary 3.3.3. (tail-limit bounds) If eθ
∗bP (W > b)→ A as b→∞ for some θ∗ > 0, then

lim sup
b→∞

eθ
∗bP (Wy > b) ≤ lim

b→∞
eθ
∗bP (W > b+ ζ+

y ) = A+
y ≡ Ae−ζ

+
y θ
∗

and

lim inf
b→∞

eθ
∗bP (Wy > b) ≥ lim

b→∞
eθ
∗bP (W > b+ ζ−y ) = A−y ≡ Ae−ζ

−
y θ
∗
. (3.20)

as b→∞. If eθ
∗bP (Wy > b)→ Ay as b→∞, then

A−y ≤ Ay ≤ A+
y and A−y ≤ A ≤ A+

y . (3.21)

For the GI/GI/1 model, we have the Cramer-Lundberg inequality for W in Theorem XIII.5.1

of Asmussen (2003), yielding P (W > b) ≤ e−θ∗b for all b.

Corollary 3.3.4. (periodic Cramer-Lundberg bound) For the periodic GIt/GI/1 model,

P (Wy > b) ≤ e−θ∗(b+ζ
+
y ) for all b > 0.

3.4 Simulation Methodology

We now apply the representation in (3.1) and the bounds in §3.3 to obtain an effective rare-event

simulation method for the periodic GIt/GI/1 queueing model. Our approach is to first generate
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exponentially tilted interarrival times and service times until a process involving them hits a given

level b and then to calculate an estimate of tail probability using these generated values for each

simulation replication. Hence, the algorithm is primarily deterministic calculations. We obtain

estimates of statistical precision by performing a large number of independent replications.

3.4.1 Exponential Tilting for the GI/GI/1 Model

We apply the familiar rare-event simulation method for the stationary GI/GI/1 model using im-

portance sampling with an exponential change of measure, as in §XIII of Asmussen (2003) and

§§V and VI of Asmussen and Glynn (2007). For the discrete-time waiting times in the GI/GI/1

model based on {(ρ−1Uk, Vk)}, where {Uk} and {Vk} are independent sequences of i.i.d. nonneg-

ative mean-1 random variables, the key random variables are Xk(ρ) ≡ Vk − ρ−1Uk. We assume

that Uk, Vk and thus Xk(ρ) have finite moment generating functions (mgf’s) mU (θ), mV (θ), and

mX(θ) ≡ mX(ρ)(θ), e.g., mV (θ) ≡ E[eθVk ], and probability density functions (pdf’s) fU , fV and

fX ≡ fX(ρ). As usual, we define the exponential tilting pdf fX,θ(x) = eθxfX(x)/mX(θ) and for

our simulation use the “optimal value” θ∗ such that mX(θ∗) = 1. That optimal tilting parameter

coincides with the asymptotic decay rate θ∗ in Corollary 3.3.3.

There are several simplifications that facilitate implementation. First, as in Example XIII.1.4 of

Asmussen (2003), we can construct the tilted pdf fX,θ(x) by constructing associated tilted pdf’s of

fU and fV , in particular, because Xk(ρ) ≡ Vk − ρ−1Uk, it suffices to let fV,θ(x) = eθxfV (x)/mV (θ)

and

f−U/ρ,θ(x) =
eθxf−U/ρ(x)

m−U/ρ(θ)
or

e−θy/ρρfU (y)

mU (−θ/ρ)
(3.22)

with the second expression obtained after making a change of variables, so thatmX(θ) = mV (θ)mU (−θ/ρ).

We thus obtain the i.i.d. tilted random variables with pdf fX,θ∗(x) by simulating independent se-

quences of i.i.d. random variables with the pdf’s fV,θ∗(x) and f−U/ρ,θ∗(x).

Second, for all our examples, we consider common distributions that produce twisted pdf’s

having the same form as the original pdf’s; it is only necessary to change the parameters. In

particular, this property holds for the M , H2, Ek and M+D distributions that we propose to exploit

in §3.6.4. In particular, if V is a rate-µ exponential (M) random variable with pdf fV (x) = µe−µx,

then fV,θ(x) is again an exponential random variable with parameter µ− θ, where we are required

to have µ > θ > 0. Moreover, for the M/M/1 queue with arrival rate λ and service rate µ, the
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associated optimal tilted parameters are λθ∗ = µ and µθ∗ = λ; i.e., the optimal tilting just switches

the arrival and service rates; see Example XIII.1.5 of Asmussen (2003).

If V has an H2 distribution with pdf fV (x) = pµ1e
−µ1x+(1−p)µ2e

−µ2x, having parameter triple

(p, µ1, µ2), then fV,θ(x) again has an H2 distribution, but with a new parameter triple (pθ, µ1,θ, µ2,θ),

where µj,θ = µj − θ and pθ = [pµ1/(µ1 − θ)/{[pµ1/(µ1 − θ)] + [(1− p)µ2/(µ2 − θ)]}. We remark

that the twisted H2 pdf does not inherit the balanced-means property of the original H2 pdf and

has a different squared coefficient of variation (scv, variance divided by the square of the mean),

but still c2 > 1.

We now turn to the pdf’s with scv c2 < 1. First, a twisted Ek distribution is again Ek.

More generally (because Ek is a special gamma distribution), if V has a gamma pdf fV (x;α, µ) =

µαxα−1e−µx/Γ(α), then fV,θ(x) has a gamma pdf with parameter pair (αθ, µθ) = (α, µ − θ); see

§V.1.b of Asmussen and Glynn (2007). Finally, if V is an M +D distribution with parameter pair

(d, µ), then the twisted distribution is an M +D distribution with parameter pair (d, µ− θ).

As a consequence, we can generate the tilted random variables in the standard way given

underlying uniform random variables; e.g., we can apply the function h(x) = − log (1− x)/µ to

a vector of uniform random variables to obtain the corresponding vector of exponential random

variable with mean 1/µ. For each H2 random variable we can use two uniforms, one to select

the exponential component and the other to generate the appropriate exponential; i.e., a random

variable X with the H2 distribution having parameter triple (p, µ1, µ2) can be expressed in terms

of the pair of i.i.d. uniforms (Z1, Z2) as

X = −((1/µ1)1{Z1≤p} + (1/µ2)1{Z1>p}) log (Z2), (3.23)

where 1A is the indicator variable with 1A = 1 on the event A.

3.4.2 Waiting Time in GI/GI/1 Model

Let W ∗ denote the steady-state discrete-time waiting time, which coincides with the steady-state

continuous-time workload W in the GI/GI/1 model for Poisson arrivals, but not otherwise. The

heavy-traffic limits coincide, as can be seen from Theorem 9.3.4 of Whitt (2002).

The standard simulation for rare-event probability of large waiting times in the GI/GI/1 model

is achieved by performing the change of measure using the tilted interarrival times and service times,
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as indicated in §3.4.1, where the tilting parameter θ∗ coincides with the asymptotic decay rate in

§3.3.2, as described in Ch. XIII of Asmussen (2003) and §VI.2a of Asmussen and Glynn (2007).

To implement the simulation, we generate the random variables Uk and Vk from their tilted

distributions with θ∗. We estimate the tail probability of stationary waiting time P (W ∗ > b)

by its representation as P (τSb < ∞), where τSb is the first hitting time of Sn at level b, with

Sn ≡
∑n

k=1Xk(ρ). The tail probability can be expressed in terms of the stopped sum SτSb
using

the underlying probability measure Pθ∗ . Note that SτSb
= b+Y (b), where Y (b) is the overshoot of b

by {Sn}, all under Pθ∗ . Under the new probability measure Pθ∗ , Sn hits b with probability 1, so we

only need to estimate the likelihood ratio. Thus the tail probability of the GI/GI/1 steady-state

waiting time W ∗ can be expressed as

P (W ∗ > b) = P (τSb <∞) = Eθ∗ [I{τSb <∞}LτSb (θ∗)] = Eθ∗ [LτSb
(θ∗)]

= Eθ∗ [mX(θ∗)τ
S
b e
−θ∗S

τS
b ] = Eθ∗ [e

−θ∗S
τS
b ] = e−θ

∗bEθ∗ [e
−θ∗YS(b)], (3.24)

where LτSb
(θ∗) is the likelihood ratio of {Xk(ρ)}1≤k≤τSb with respect to Pθ∗ . The second moment of

this estimator is Eθ∗ [LτSb
(θ∗)2] = Eθ∗ [e

−2θ∗S
τS
b ]. Theorem XIII.7.1 of Asmussen (2003) shows that

the rare-event estimator of P (W > b) has relative error that is uniformly bounded in b as b→∞.

(The proof of Theorem XIII.7.1 relies on Theorems XIII.5.1-3; the pdf assumption implies that X

has a nonlattice distribution.)

3.4.3 Workload in GI/GI/1 Model

We are interested in the rare-event probability of large stationary workload W as in (3.7), where

arrival process N is an equilibrium renewal process, because this is the process that we used to

develop bounds of Wy in section 3.3. The classical exponential tilting method applies to simulating

the rare-event probability of stationary waiting time W ∗ as reviewed in §3.4.2. The stationary

waiting time is as in (3.7) with N being the renewal process without the exceptional first inter-

renewal time. To apply this exponential tilting method to stationary workload W , we need to make

a slight modification of the algorithm above.

Now the equilibrium renewal process N has the exceptional first interarrival time and a constant

rate ρ. We still use the usual partial sum process Sn ≡
∑n

k=1(Vk − ρ−1Uk), where Vk are still i.i.d

with distribution V , but U1 has the equilibrium distribution of Ue and Uk, k ≥ 2 are i.i.d with distri-
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bution U . We do the same tilting for all Xk(ρ)’s still using Pθ∗ , with dPθ∗(x) = [eθ
∗x/mX(θ∗)]dP (x).

Note that θ∗ is solved from mXk(θ∗) = 1, where k ≥ 2 and when k = 1, this equation may not

hold. Now the likelihood ratio becomes

LτSb
(θ∗) = mX1(θ∗)×mX2(θ∗)× ...×mX

τS
b

(θ∗)/(e
θ(X1+X2+...+X

τS
b

)
)

= mX1(θ∗)e
−θS

τS
b ,

where the second line follows because mXk(θ∗) = 1, k ≥ 2.

Therefore we need to add a constant multiplier mX1(θ∗) to equation (3.24):

P (W > b) = P (τSb <∞)

= Eθ∗ [LτSb
(θ∗)]

= Eθ∗ [mX1(θ∗)mX(θ∗)τ
S
b −1e

−θ∗S
τS
b ]

= Eθ∗ [mX1(θ∗)e
−θ∗S

τS
b ]

= mX1(θ∗)e−θ
∗bEθ∗ [e

−θ∗YS(b)]. (3.25)

Note that (3.25) is also different from (3.24) in that the first X1(ρ) in the partial sum SτSb
may

have a different distribution from {Xk(ρ), k ≥ 2}. The exact form of mX1(θ∗) is as below

mX1(θ∗) = E{exp{θ∗V − θ∗ρ−1Ue}}

= E{exp{−θ∗ρ−1Ue}}/E{exp{−θ∗ρ−1U}}.

where the second line still follows frommXk(θ∗) = 1 and thus E{exp{θ∗V }} = 1/E{exp{−θ∗ρ−1U}}.

Given that the estimator in (3.24) has bounded relative error as b goes to infinity, the estimator

in (3.25) has bounded relative error as b goes to infinity as well. This is because when b is large,

the first X1 does not influence the distribution of the overshoot YS(b) and thus YS(b) has the same

distribution under Pθ∗ in both estimators.

Table 3.1 shows simulation estimates for the workload tail probabilities P (W > b) and the

associated waiting-time tail probabilities P (W ∗ > b) using the algorithms in §3.4.3 and §3.4.2

respectively. In both cases, we refer to the estimates as P (W > b) ≡ p̂ = Ae−θ
∗b, where θ∗ is

common to both. We use a very small ρ = 0.1 here so that workload and waiting time probabilities

are very different. These numerical results match the exact values of p̂ and A calculated from

Theorem X.5.1 of Asmussen (2003).
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Table 3.1: Comparison of the steady-state workload and waiting-time tail probabilities for b =

4, 20 in the stationary H2/M/1 queue with ρ = 0.1. The exact values are calculated from Theorem

X.5.1 of Asmussen (2003).

workload waiting time workload waiting time

ρ 0.1 0.1 0.1 0.1

θ∗ 0.8690 0.8690 0.8690 0.8690

exact A 0.1 0.1310 0.1 0.1310

exact p 0.003093 0.004050 2.83E-09 3.70E-09

b 4 4 20 20

p̂ 0.003104 0.004055 2.84E-09 3.69E-09

e−θ
∗b 0.0309 0.0309 2.83E-08 2.83E-08

A 0.1004 0.1311 0.1004 0.1305

s.e. 2.73E-05 3.55E-05 2.49E-11 3.25E-11

%95 CI lb 0.003050 0.003985 2.79E-09 3.63E-09

%95 CI ub 0.003157 0.004125 2.89E-09 3.76E-09

r.e. 0.008788 0.008765 0.008771 0.008792

3.4.4 Applying the Bounds to the Periodic Case

From (3.1), we see that any positive b must be hit for the first time at an arrival time. Thus, we

have the alternative discrete-time representation

Wy = sup
n≥0

{ n∑
k=1

Vk − Λ̃−1
y (N−1(n))

}
= sup

n≥0

{ n∑
k=1

Vk − Λ̃−1
y (

n∑
k=1

Uk)
}
, (3.26)

where Uk is the kth interarrival time in the equilibrium renewal process N , i.e. U1 assumes the

equilibrium distribution Ue while {Uk, k ≥ 2} are i.i.d. with distribution U .

For the periodic GIt/GI/1 model with λ̄ = ρ, we can apply a variant of the exponential change

of measure for the waiting times in the GI/GI/1 model in §3.4.1 above. We use the underlying

measure Pθ∗ determined for GI/GI/1. we use the usual partial sum process Sn ≡
∑n

k=1Xk(ρ) for

GI/GI/1 and the associated process

Rn ≡
n∑
k=1

Vk − Λ̃−1
y (

n∑
k=1

Uk). (3.27)

We estimate the tail probability P (Wy > b) by its representation as P (τRb < ∞), where τRb is the

first hitting time of Rn at level b. Under the new probability measure, Rn hits b with probability 1,

so we only need to estimate the likelihood ratio. We still twist Xk(ρ) = Vk−ρ−1Uk in the same way,
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which is equivalent to twisting Vk and ρ−1Uk separately, as discussed in §3.4.1. Then the likelihood

ratio for {Xk(ρ) : 1 ≤ k ≤ n} is the same as before, i.e., Ln(θ) = mX1(θ)mX(θ)(n−1)e−Sn . As a

consequence, we obtain the representation

P (Wy > b) = P (τRb <∞) = Eθ∗ [LτRb
(θ∗)]

= Eθ∗ [mX1(θ∗)mX(θ∗)(τRb −1)e
−θ∗S

τR
b ] = mX1(θ∗)Eθ∗ [e

−θ∗S
τR
b ]. (3.28)

Still note that the first X1(ρ) in the partial sum SτRb
has a different distribution from {Xk, k ≥ 2}.

At first glance, (3.28) does not look so useful, because the random sum SτRb
involves the hitting

time τRb for {Rn} instead of {Sn}, but we can shift the focus to RτRb
because we can bound the

difference between SτRb
and RτRb

.

Lemma 3.4.1. (bound on difference of random sums) Under the assumptions above,

|SτRb −RτRb | ≤ ζy ≡ max {|ζ+
y |, ζ−y }, (3.29)

where ζ+
y and ζ−y are the one-sided bounds in (3.10) and (3.11). In addition, τSb−ζ ≤ τRb ≤ τSb+ζ .

Proof. The bound in (3.29) follows immediately from (3.10) and (3.11), because

|Rn − Sn| = |
( n∑
k=1

Vk − Λ̃−1
y

n∑
k=1

Uk

)
−
( n∑
k=1

Vk −
n∑
k=1

ρ−1Uk

)
| ≤ ζy ≡ max {|ζ+

y |, ζ−y } (3.30)

for all n ≥ 1, where ζ+
y and ζ−y are the one-sided bounds in (3.10) and (3.11).

Lemma 3.4.1 allows us to focus on RτRb
, where τRb is the hitting time for {Rn}. To do so, we

impose an additional regularity condition. The regularity condition requires the excess service-time

distribution in probability measure Pθ∗ be bounded above in stochastic order by a proper cdf, i.e.,

Pθ∗(V > t+ x|V > t) ≡ Pθ∗(V > t+ x)

Pθ∗(V > t)
≤ Gc(x) for all t ≥ 0, (3.31)

where Gc(x) ≡ 1−G(x)→ 0 as x→∞. For example, it suffices for the service time to be bounded.

It also suffices for the service-time distribution to have an exponential tail, which holds if there is

a constant η > 0 such that

eηxPθ∗(V > x)→ L, 0 < L <∞ as x→∞. (3.32)

If (3.32) holds, then
eη(t+x)Pθ∗(V > t+ x)

eηtPθ∗(V > t)
→ 1 as t→∞, (3.33)
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so that (3.31) holds asymptotically with Gc(x) ≡ e−ηx. It holds over any bounded interval because

the ratio is continuous and bounded, given (3.32). Of course, condition (3.31) would not hold if

xpPθ∗(V > x)→ L as x→∞ for 0 < L <∞ and p > 0.

Theorem 3.4.1. (bounded relative error) The rare-event simulation algorithm for the tail proba-

bility P (Wy > b) in the periodic GIt/GI/1 queue is unbiased and, if the service-time distribution

satisfies condition (3.31), then the rare-event simulation algorithm produces relative error that is

uniformly bounded in b, just as for the stationary GI/GI/1 model, provided that the conditions for

the rare-event simulation in the GI/GI/1 model are imposed so that the estimates are unbiased

with bounded relative error.

Proof. The unbiasedness follows from (3.28). Lemma 3.4.1 allows us to focus on RτRb
. The

remaining result parallels Theorem XIII.7.1 in Asmussen (2003) for the GI/GI/1 model, which

draws on Theorems XIII.5.1-3. Just as SτSb
= b + YS(b), where YS(b) is the overshoot of b upon

first passage to b in the random walk {Sn}, so is RτRb
= b+ YR(b), where YR(b) is the overshoot of

b upon first passage to b in the sequence {Rn}. The results for the stationary case are based on the

well developed theory for that overshoot, which depend on the random walk structure. In contrast,

less is known for {Rn}. However, we do see from (3.26) that the overshoot can be regarded as an

excess-distribution of the last service time. Thus, under the extra condition (3.31), we can again

apply the proof in Asmussen (2003), using

e−kθ
∗b ≥ Eθ∗ [e

−kθ∗R
τR
b ] ≥ e−kθ∗bEθ∗ [e−kθ

∗YR(b)] ≥ ce−kθ∗b

for 0 < c < 1, where c = E[e−kθ
∗Z ], P (Z > x) = Gc(x), x ≥ 0, and k is a positive integer.

3.4.5 The Mean and Variance

We now show how tail-integral representations of the mean and higher moments on p. 150 of Feller

(1971) can be exploited to obtain corresponding simulations of these related quantities using our

rare-event simulation algorithm. Recall that, for any nonnegative random variable X, the mean

can be expressed as

E[X] =

∫ ∞
0

P (X > t) dt, (3.34)
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while the corresponding representation of the pth moment for any p > 1 is

E[Xp] =

∫ ∞
0

ptp−1P (X > t) dt. (3.35)

To obtain a finite algorithm, it is natural to approximate the integrals for the mean and the

second moment by finite sums plus a tail approximation, i.e.,

E[Wy] ≈
n∑
k=0

(P (Wy > kδ)δ) +
P (Wy > nδ)

θ∗

E[W 2
y ] ≈

n∑
k=0

(2P (Wy > kδ)kδ) + 2P (Wy > nδ)(
nδ

θ∗
+

1

(θ∗)2
). (3.36)

In each case, the second term is based on applying the tail integral formula over [nδ,∞) with the

approximation

P (Wy > nδ + x) ≈ P (Wy > nδ)e−θ
∗x (3.37)

and integrating.

To understand how to choose the discretization parameter δ in (3.36), suppose that P (W >

t) = ae−θ
∗t. In that case, the infinite sum for the mean can be expressed as

∞∑
k=0

aδe−θ
∗kδ =

a

θ∗

(
1 + θ∗

δ

2
+O(δ2)

)
as δ ↓ 0,

so that the relative error for the mean is θ∗(δ/2) +O(δ2). Similarly, the corresponding calculation

for the second moment indicates an asymptotic relative error proportional to θ∗δ. The subsequent

truncation approximations involving n imposes no additional error, provided that the tail is ex-

ponential, which is likely to hold in view of §3.3.2. Thus, the truncation is good provided that

approximation (3.37) is good, which can be checked with the algorithm.

In closing, we remark that because θ∗(ρ) tends to be of order 1−ρ as ρ ↑ 1, as explained in §A.2.2

of Appendix A, we can maintain fixed relative error in the discretization if we let δ be inversely

proportional to 1 − ρ or θ∗(ρ) as ρ ↑ 1. That can be useful because otherwise the computational

complexity increases as ρ increases, as we show in the next sections. We illustrate letting δ increase

with increasing ρ in Table 3.10.

3.4.6 The Algorithm

This exponential tilting algorithm to estimate tail probabilities P (Wy > b) in the GIt/GI/1 queue

is based on equation (3.28) with the following steps. (We elaborate on Steps 4 and 5 in refapp.)
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Without loss of generality, we assume service rate is µ = 1 and thus λ̄ = ρ.

Step 1. Before we conduct the simulation, we first construct a table of the inverse cumu-

lative arrival-rate function ρΛ̃−1
y , i.e., the inverse of the reverse-time cumulative arrival-rate

function Λ̃y in (3.2) scaled by ρ, for any time yC in the cycle to be considered. For that purpose,

we use Algorithm 1 developed in Chapter 2. That algorithm constructs an approximation Jy to

the inverse function ρΛ̃−1
y for one cycle from the interval [0, C] to the interval [0, C]. This table is

the same for a fixed y no matter what value ρ takes, which will be used for efficiently calculating

Λ̃−1
y later. The computational complexity has shown to be of order O(C/ε), where C is the length

of a cycle of the periodic arrival-rate function and ε is an allowed error tolerance.

Step 2. Again, before we conduct the simulation, we determine the required number of

partial sums needed in each replication, which we denote by ns. Note that we need this step

because Matlab is much faster in vector operations than in loops. However, if another software is

used to implement this algorithm, we can skip this step and generate exponentially twisted service

times and interarrival times one by one in a loop until the hitting time τRb is reached. Given the

largest b under consideration, we estimate the expected number by ms ≡ b/Eθ∗ [Vk − ρ−1Uk] by

approximating the sum by Brownian motion which is asymptotically correct as b gets large, e.g.

by §5.7.5 of Whitt (2002). If we use a Brownian motion approximation for the random walk, then

we can get the approximate mean and variance by applying Theorems 5.7.13 and 5.7.9 of Whitt

(2002). For the canonical Brownian motion in Theorem 5.7.13, the variance of the first passage time

is equal to the mean, but in general the ratio of the variance to the mean is proportional to the scv

c2
X ≡ V ar(X)/E[X]2. Hence, we use ns = max{C,Lms}, where C is a minimum number like 100

and L is a safety-factor multiplier to account for the stochastic variability, which might be taken

to be simply 10, but could be constructed more carefully. The largest value of b will depend on the

case. If we want to treat multiple cases at once for simulation efficiency, we need to determine the

largest required value of ns. If ms is large, then it is natural to use ns = ms + 5
√
c2
Xms instead of

ns = 10ms, because then 5
√
c2
Xms is about 5 standard deviations, which should be sufficient, and

beneficial if 5
√
c2
Xms << (L− 1)ms.
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Step 3. As the first part of the actual stochastic simulation, for each replication we now generate

the required random vectors of tilted interarrival times and service times; For each

replication, generate Ṽ ≡ (V1, ..., Vn) and ρ−1Ũ ≡ (ρ−1U1, ..., ρ
−1Un) where n = ns from step 2

above, Vk are i.i.d. random variables from F θ
∗

V , the exponentially tilted distribution of Vk with

parameter θ∗ and ρ−1Uk i.i.d. from F−θ
∗

ρ−1U
, the exponentially tilted distribution of ρ−1Uk with

parameter −θ∗. The distributions of Vk and Uk under the tilted probability measure Pθ∗ were

discussed in §3.4.1.

Step 4. Using vector operations, we calculate the associated vectors of partial sums and

transformed partial sums. Use Algorithm 2 in Chapter 2 to calculate the time-transformed

arrival times.

Step 5. Use (3.28) to calculate the tail probability P(Wy > b). If ns is not large enough to

reach hitting times τRb , we repeat Step 3 to generate additional vectors of Ṽ and ρ−1Ũ and repeat

Step 4 to calculate additional partial sums and transformed partial sums. We treat the cases of

the tail probability for a single value of b differently from multiple values of b, as required when

we estimate moments. For multiple values of b, we use one loop to find all stopping times at each

element of the vector b.

Step 6. We run the algorithm for N i.i.d. replications. Estimate P (Wy > b), EWy

and EW 2
y by the sample averages over the N replications. We estimate the associated confidence

intervals in the usual way, using the Gaussian distribution if N is large enough and the Student-t

distribution otherwise.

In conclusion, we point out that there is flexibility in the order of the steps specified above.

We can re-use random variables if we generate the random vectors in an early step. We can avoid

storage problems if we perform calculations for each replication separately. As usual, there is a

tradeoff in storage requirements and computation efficiency.

3.4.7 Computational Complexity and Running Times

We implemented the algorithm using matlab on a desktop computer. All examples were for the

sinusoidal arrival-rate function λ in (2.4) with associated reverse-time cumulative arrival-rate func-
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tion Λ̃y in (3.3). Because we used matlab, it was important to use vector calculations in step 3 to

avoid loops.

We now specify the computational complexity of the algorithm above. Given the inverse

function table for Λ̃−1
y computed in advance using the algorithm in Chapter 2, the remaining

algorithm has an approximate linear computational complexity of O(b/Eθ∗ [Vk−ρ−1Uk]), Specifically

for the Mt/M/1 model, the computational complexity is O(bρ/(1−ρ)), being directly proportional

to b and inversely proportional to 1 − ρ. This can be made precise as b ↑ ∞ or as ρ ↑ 1, and

presumably in some joint limit as b/(1−ρ) ↑, but we do not do that here. For b large or for ρ large,

we can perform asymptotics to make the following approximations valid.

The hitting time τb of the random walk Sn as defined in (3.27) has expectation E(τb) =

b/(Eθ∗(Vk − ρ−1Uk)) by approximating Sn by a Brownian motion, for b that is very large com-

pared to the step size of the random walk. Now consider the hitting time τb of Rn as defined in

(3.27). Since the average arrival rate λ̄ = ρ, the expected value of this hitting time is approximately

the same as that for Sn.

When both Vk and ρ−1Uk are exponential random variables with rates 1 and ρ respectively,

under the new measure θ∗, they are still exponential with rates ρ and 1 respectively. Thus

b/Eθ∗(Vk − ρ−1Uk) = b/(1/ρ− 1) = bρ/(1− ρ).

It can be advantageous to estimate the tail probabilities P (Wy > b) for multiple values of b

simultaneously. This can be done for each b by keeping track of the passage times for them while

considering the largest value of b. This is very useful when we want to plot the cdf or its probability

density function (pdf), or when we want to calculate the mean.

We now describe our experiments with running times on a desktop computer. Before con-

ducting the simulation, we did step 1, constructing the table of the inverse function ρΛ̃−1
y in one

cycle, which takes computational time of O(C/ε) = O(1/γε) by Theorem 3.6.1, where C is the

cycle length of the arrival rate function, γ is the parameter in the sinusoidal arrival-rate function

and ε is the error bound we choose for the inverse function table. The longest cycle we consider

has γ = 0.00025 (for (3.39) with ρ = 0.99), or C = 25, 120. For ε = 10−4, it took 0.08 seconds to

form the table needed for a single value of y.

In each replication, we can quickly determine the required length of the random variable vector,

generate the vectors of random variables and calculate the partial sums, which are steps 2 to 4. The
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most time is required for step 5, searching for the stopping time for one b, or for all stopping times for

a long vector of b. When we do the search for one b, the computational time isO(b/(Eθ∗ [Vk−ρ−1Uk]),

which is the approximate expected stopping time. When we do this for a long vector of b, we use

a big loop which takes time linear in the maximum stopping time and the length of vector b, i.e.,

O(max(b)/(Eθ∗ [Vk − ρ−1Uk] + nb), where nb is the length of vector b. Specifically, for the Mt/M/1

queue, the computational times are O(bρ/(1 − ρ) and O(max(b)ρ/(1 − ρ) + nb) respectively. For

example, in Mt/M/1 queue, when ρ = 0.8, we choose max(b) = log(1000)/θ∗ = log(1000)/(1− ρ),

δ = 0.0002/(1−ρ), then maximum stopping time O(max(b)ρ/(1−ρ)) is negligible compared to the

length of the vector b. The first part of time increases as ρ increases while the second part does not

depend on ρ as both the largest b and δ are inversely proportional to (1 − ρ). In this case, when

we did 40, 000 replications, the run time was 127 seconds on the desktop to find all stopping times,

whereas it took about 10 seconds to find one stopping time for the largest b.

3.5 Simulation Examples

We now give examples to illustrate the new simulation algorithm. All our examples are for the

sinusoidal arrival-rate function in (2.4) with parameter triple (λ̄, β, γ). More results appear in the

online supplement.

3.5.1 Tail Probabilities

We start by illustrating the efficiency of the rare-event simulation estimator of the tail probability

P (Wy > b), which gets exponentially small as b increases, and thus is prohibitively hard to estimate

accurately by direct simulation. Table 3.2 shows that the relative errors of simulation estimates

of P (Wy > b) for the Mt/M/1 model in several cases are approximately independent of b. That

property is held in all models considered.

In particular, Table 3.2 shows estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b and the components

Ay and e−θ
∗b for the special case y = 0.0 based on 5000 i.i.d. replications. Table 3.2 also shows

estimates of the standard error (s.e.) of p̂, the upper and lower bounds of the 95% confidence interval

(CI), and the relative error (r.e.), which is the s.e. divided by the estimate of the mean. For Table

3.2, we used the arrival-rate function (2.4) with λ̄ = 1, and E[V1] = 0.8, so that ρ = 0.8. We let
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β = 0.2 and consider three values of γ: 10, 1 and 0.1, making cycle lengths of 0.628, 6.28 and 62.8.

The rapid fluctuation with γ = 10 makes the arrival process very similar to a homogeneous Poisson

process, because the cumulative arrival-rate function approaches a linear function; see Theorem

VIII.4.10 in Jacod and Shiryaev (1987), Problem 1 on p. 360 of Ethier and Kurtz (1986) and

Whitt (2016b). We also simulated the M/M/1 model with β = 0 to verify simulation correctness.

Table 3.2 shows that the algorithm is effective for estimating P (W0 > b), because the relative

error is approximately independent of b for each γ, ranging from about 0.0029 for γ = 10 to about

0.0055 for γ = 0.1.

Table 3.2: Estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the Mt/M/1 model with sinusoidal arrival-

rate function in (2.4) as a function of γ and b for: ρ = 0.8, λ̄ = 1, µ = 1.25 and β = 0.2 based on

5000 replications.

b p̂ exp(−θ∗b) A0(b) s.e. 95% CI (lb) (ub) r.e.

γ = 10 10 0.0654 0.0821 0.797 1.87E-04 0.0651 0.0658 0.00286

20 0.00537 0.00674 0.797 1.55E-05 0.00534 0.00540 0.00289

40 3.61E-05 4.54E-05 0.795 1.05E-07 3.59E-05 3.63E-05 0.00290

80 1.64E-09 2.06E-09 0.796 4.82E-12 1.63E-09 1.65E-09 0.00294

γ = 1 10 0.0628 0.0821 0.765 1.87E-04 0.0624 0.0632 0.00298

20 0.00516 0.00674 0.766 1.51E-05 0.00513 0.00519 0.00292

40 3.49E-05 4.54E-05 0.769 1.00E-07 3.47E-05 3.51E-05 0.00287

80 1.58E-09 2.06E-09 0.767 4.65E-12 1.57E-09 1.59E-09 0.00294

γ = 0.1 10 0.0413 0.0821 0.503 2.33E-04 0.0409 0.0418 0.00565

20 0.00360 0.00674 0.535 1.98E-05 0.00356 0.00364 0.00550

40 2.50E-05 4.54E-05 0.551 1.37E-07 2.47E-05 2.53E-05 0.00548

80 1.12E-09 2.06E-09 0.545 6.20E-12 1.11E-09 1.14E-09 0.00552

3.5.2 Heavy-Traffic Scaling

We produce unified numerical results by exploiting heavy-traffic scaling. In particular, we scale

the arrival rate function so that the performance measures have heavy-traffic limits as ρ ↑ 1, which

we explain in §3.6. In the special case of (2.4), we consider an arrival-rate function scaled by the

overall traffic intensity ρ, specifically,

λρ(t) = ρ+ (1− ρ)ρβ sin (γ(1− ρ)2t), t ≥ 0, (3.38)
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so that the cycle length in model ρ is Cρ = C∗(1− ρ)−2 = 2π/(γ(1− ρ)2). Before scaling, the cycle

length is C∗ = 2π/γ.

When we consider the periodic steady-state workload, we include spatial scaling by 1−ρ Hence,

to have asymptotically convergent models, we should choose parameter four-tuples (λ̄ρ, βρ, γρ, bρ)

indexed by ρ, where

(λ̄ρ, βρ, γρ, bρ) = (ρ, (1− ρ)β, (1− ρ)2γ, (1− ρ)−1b), (3.39)

where (β, γ, b) is a feasible base triple of positive constants with β < 1. (We must constrain βρ ≤ 1

so that λρ(t) ≥ 0 for all t.) Hence, we have the ρ-dependent constraint ρb = (1− ρ)β ≤ 1. There is

no problem if β ≤ 1, but we may want to consider β > 1. In that case, βρ is only well defined for

ρ ≥ 1− (1/β). For example, if β = 5.0, then we require that ρ ≥ 0.8.

Example 3.5.1. (Using Mt/M/1 to estimate the performance of RPBM)

To illustrate how we can apply simulations of the Mt/M/1 model with increasing traffic inten-

sities, let the base parameter triple be (β, γ, b) = (1.0, 2.5, 4.0). Then the parameter 4-tuple for

ρ = 0.8 is

(λ̄ρ, βρ, γρ, bρ) = (0.8, (1− 0.8)β, (1− 0.8)2γ, (1− 0.8)−1b) = (0.8, 0.2, 0.1, 20.0). (3.40)

The associated parameter 4-tuple for ρ = 0.9 is (0.90, 0.10, 0.025, 40.00).

Let W be the steady-state workload in the stationary M/M/1 model with the same scaling, which

has an exponential distribution except for an atom 1−ρ at the origin. Table 3.3 shows estimates of

the ratio P (Wy > bρ)/P (W > bρ) for 5 different values of 1− ρ, where we successively divide 1− ρ

by 2, and 8 different values of the position y within the cycle in the Mt/M/1 model with sinusoidal

arrival-rate function in (3.38) with the parameter 4-tuple in (3.39) using the base parameter triple

(β, γ, b) = (1.0, 2.5, 4.0). (The paramter 4-tuples for ρ = 0.8 and ρ = 0.9 are shown above.)

Table 3.3 shows that, for each fixed y, all estimates as a function of ρ serve as reasonable practical

approximations for the others as well as for the RPBM limit developed in §3.6. The convergence

in Table 3.3 is summarized by showing the average difference, average absolute difference and root

mean square error (rmse) of the entry with the corresponding estimate for ρ = 0.99 in the final

column, taken over 40 evenly spaced values of y in the interval [0, 1).
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Table 3.3: Comparison of the ratios P (Wy > bρ)/P (W > bρ), where W is for the stationary

model, for 5 different values of 1− ρ and 8 different values of the position y within the cycle in the

Mt/M/1 model with sinusoidal arrival-rate function in (3.38) with the parameter 4-tuple in (3.39)

using the base parameter triple (β, γ, b) = (1.0, 2.5, 4.0).

y 1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01

0.000 0.96364 0.96523 0.96424 0.96357 0.96344

0.125 0.97619 0.97686 0.97504 0.97493 0.97482

0.250 1.00456 1.00450 1.00255 1.00251 1.00305

0.375 1.03278 1.03264 1.03035 1.03152 1.03152

0.500 1.04565 1.04470 1.04278 1.04346 1.04405

0.625 1.03213 1.03096 1.03230 1.03150 1.03204

0.750 1.00225 1.00404 1.00425 1.00277 1.00241

0.875 0.97371 0.97696 0.97629 0.97457 0.97545

avg diff 0.00037 0.00112 0.00015 -0.00019

avg. abs. dif 0.00099 0.00121 0.00081 0.00039

rmse 0.00116 0.00134 0.00096 0.00049

3.5.3 Hyperexponential Examples

We now present results from simulation experiments with nonexponential service times and inter-

arrival times in the base process N . In particular, we work with hyprexponential (H2) examples.

Tables 3.4, 3.5 and 3.6 show estimates of P (Wy > b) for the Mt/M/1, Mt/H2/1 and (H2)t/M/1

models, respectively. All three tables show results for y = 0.0 and y = 0.5 as a function of 1 − ρ

with base parameter triple (β, γ, b) = (1, 2.5, 4) in (3.39) based on 40, 000 replications. The mean

service time is fixed at µ−1 = 1, so that λ̄ = ρ in all cases. The scv of the H2 cdf is always c2 = 2.

The scaling in (3.39) is performed as a function of ρ in order to produce nearly stable results in

each row.

We start by showing the estimate of the tail probability p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b, and then

we show the corresponding estimates for the components e−θ
∗b and Ay ≡ eθ

∗bp̂, which is followed

by the lower and upper bounds in (3.20) of Corollary 3.3.3. We finally show the s.e., the associated

95% CI bounds (lb and ub), and the r.e. In all cases the relative error is less than 0.0015 or 0.15%.

For the two cases y = 0.0 and y = 0.5, we also display estimates of scaled tail probabilities,

P (Wy > b)/P (W > b), where P (W > b) is the corresponding estimate for the stationary model.

We do this because we seek estimates that are more stable as functions of 1− ρ, and thus support
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approximations for the limiting RPBM tail probability, which is the scaled limit as ρ ↑ 1. In

Tables 3.5 and 3.6 for the Mt/H2/1 and (H2)t/M/1 models we also show the alternative ratios

P (Wy > b)/ρ; we do not show that for Mt/M/1 in Table 3.4 because the ratios are proportional,

given that P (W > b) = ρe−θ
∗b for M/M/1 and θ∗(ρ) = 1− ρ. Tables 3.5 and 3.6 show that greater

stability is achieved with the ratio P (Wy > b)/(W > b).

Table 3.4: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model for y = 0.0

and y = 0.5 as a function of 1 − ρ with base parameter triple (β, γ, b) = (1, 2.5, 4) in (3.39) based

on 40, 000 replications.

1− ρ 0.16 0.08 0.04 0.02 0.01

p̂ for y = 0.0 0.011053 0.012192 0.012814 0.013122 0.013263

e−θ
∗b 0.0183 0.0183 0.0183 0.0183 0.0183

Ay 0.604 0.666 0.700 0.716 0.724

A−y LB in (3.20) 0.377 0.413 0.431 0.440 0.445

A+
y UB in (3.20) 0.840 0.920 0.960 0.980 0.990

s.e. 1.75E-05 1.69E-05 1.71E-05 1.73E-05 1.74E-05

95% CI (lb) 0.01102 0.01216 0.01278 0.01309 0.01323

(ub) 0.01109 0.01223 0.01285 0.01316 0.01330

r.e. 0.001582 0.001387 0.001333 0.001319 0.001313

P (Wy > b)/P (W > b) 0.71845 0.72356 0.72879 0.73103 0.73144

diff w.r.t. last column 0.01298 0.00788 0.00264 0.00041 0.00000

abs diff 0.01298 0.00788 0.00264 0.00041 0.00000

p̂ for y = 0.5 0.025888 0.028396 0.029551 0.030110 0.030430

e−θ
∗b 0.0183 0.0183 0.0183 0.0183 0.0183

Ay 1.413 1.550 1.613 1.644 1.661

A−y LB in (3.20) 0.840 0.920 0.960 0.980 0.990

A+
y UB in (3.20) 1.869 2.047 2.137 2.181 2.203

s.e. 3.87E-05 3.74E-05 3.80E-05 3.86E-05 3.89E-05

95% CI (lb) 0.02581 0.02832 0.02948 0.03003 0.03035

(ub) 0.02596 0.02847 0.02963 0.03019 0.03051

r.e. 0.001496 0.001318 0.001286 0.001281 0.001279

P (Wy > b)/P (W > b) 1.68266 1.68517 1.68068 1.67751 1.67821

diff w.r.t. last column -0.00445 -0.00696 -0.00247 0.00071 0.00000

abs diff 0.00445 0.00696 0.00247 0.00071 0.00000

Tables 3.4, 3.5 and 3.6 strongly support the heavy-traffic limit in Theorem 3.6.1, establishing

convergence to RPBM as ρ ↑ 1. The stability of the scaled quantities is especially clear through

the ratios P (Wy > b)/P (W > b). For the ratios at the bottom of the tables, we also show the
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Table 3.5: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model for y = 0.0

and y = 0.5 as a function of 1 − ρ with base parameter triple (β, γ, b) = (1, 2.5, 4) in (3.39) based

on 40, 000 replications.

1− ρ 0.16 0.08 0.04 0.02 0.01

θ∗(ρ) 0.101 0.0519 0.0263 0.0132 0.00664

p̂ for y = 0.0 0.050594 0.052946 0.054024 0.054544 0.054904

e−θ
∗b 0.0807 0.0747 0.0720 0.0707 0.0701

Ay 0.627 0.708 0.750 0.771 0.783

A−y LB in (3.20) 0.477 0.532 0.560 0.573 0.580

A+
y UB in (3.20) 0.789 0.894 0.947 0.974 0.987

s.e. 7.49E-05 5.64E-05 5.13E-05 5.03E-05 5.01E-05

95% CI (lb) 0.05045 0.05284 0.05392 0.05445 0.05481

(ub) 0.05074 0.05306 0.05412 0.05464 0.05500

r.e. 0.001480 0.001065 0.000950 0.000923 0.000913

P (Wy > b)/P (W > b) 0.79534 0.79246 0.79200 0.79200 0.79377

diff w.r.t. last column -0.00158 0.00131 0.00177 0.00177 0.00000

abs diff 0.00158 0.00131 0.00177 0.00177 0.00000

Ay/ρ 0.74662 0.76999 0.78125 0.78680 0.79107

diff w.r.t. last column 0.04445 0.02108 0.00982 0.00427 0.00000

abs diff 0.04445 0.02108 0.00982 0.00427 0.00000

p̂ for y = 0.5 0.086646 0.092721 0.095707 0.096711 0.097186

e−θ
∗b 0.0807 0.0747 0.0720 0.0707 0.0701

Ay 1.074 1.241 1.329 1.367 1.386

A−y LB in (3.20) 0.789 0.894 0.947 0.974 0.987

A+
y UB in (3.20) 1.305 1.502 1.603 1.654 1.679

s.e. 1.25E-04 9.42E-05 8.49E-05 8.28E-05 8.28E-05

95% CI (lb) 0.08640 0.09254 0.09554 0.09655 0.09702

(ub) 0.08689 0.09291 0.09587 0.09687 0.09735

r.e. 0.001442 0.001016 0.000887 0.000856 0.000852

P (Wy > b)/P (W > b) 1.36208 1.38777 1.40307 1.40428 1.40505

diff w.r.t. last column 0.04297 0.01728 0.00198 0.00077 0.00000

abs diff 0.04297 0.01728 0.00198 0.00077 0.00000

Ay/ρ 1.27865 1.34842 1.38403 1.39507 1.40028

diff w.r.t. last column 0.12163 0.05186 0.01625 0.00521 0.00000

abs diff 0.12163 0.05186 0.01625 0.00521 0.00000

difference and absolute difference of the value with value in the final column of the table.

A close examination of Tables 3.5 and 3.6 show that there is a consistent sign in the differences in

the second-to-last row, being positive for the Mt/H2/1 in Table 3.5 and negative for the (H2)t/M/1
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Table 3.6: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the (H2)t/M/1 model for y = 0.0

and y = 0.5 as a function of 1 − ρ with base parameter triple (β, γ, b) = (1, 2.5, 4) in (3.39) based

on 40, 000 replications.

1− ρ 0.16 0.08 0.04 0.02 0.01

θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669

p̂ for y = 0 0.038876 0.046701 0.050799 0.053020 0.053985

e−θ
∗b 0.0593 0.0645 0.0670 0.0682 0.0689

Ay 0.655 0.724 0.758 0.777 0.784

Ay LB 0.477 0.532 0.559 0.573 0.580

Ay UB 0.840 0.920 0.960 0.980 0.990

s.e. 4.36E-05 4.56E-05 4.73E-05 4.88E-05 4.95E-05

95% CI (lb) 0.03879 0.04661 0.05071 0.05292 0.05389

(ub) 0.03896 0.04679 0.05089 0.05312 0.05408

r.e. 0.001123 0.000976 0.000932 0.000920 0.000917

P (Ay > b)/P (A > b) 0.78051 0.78763 0.78988 0.79280 0.79187

diff 0.01136 0.00424 0.00199 -0.00093 0.00000

abs diff 0.01136 0.00424 0.00199 0.00093 0.00000

Ay/ρ 0.78015 0.78747 0.78988 0.79279 0.79186

diff 0.01171 0.00439 0.00198 -0.00094 0.00000

abs diff 0.01171 0.00439 0.00198 0.00094 0.00000

p̂ for y = 0.5 0.071241 0.084111 0.090923 0.094201 0.096045

e−θ
∗b 0.0593 0.0645 0.0670 0.0682 0.0689

Ay 1.201 1.305 1.357 1.380 1.395

Ay LB 0.840 0.920 0.960 0.980 0.990

Ay UB 1.477 1.592 1.648 1.677 1.691

s.e. 7.61E-05 7.71E-05 7.93E-05 8.13E-05 8.21E-05

95% CI (lb) 0.07109 0.08396 0.09077 0.09404 0.09588

(ub) 0.07139 0.08426 0.09108 0.09436 0.09621

r.e. 0.001068 0.000917 0.000873 0.000863 0.000855

P (Wy > b)/P (W > b) 1.43030 1.41856 1.41378 1.40857 1.40881

diff -0.02149 -0.00975 -0.00497 0.00024 0.00000

abs diff 0.02149 0.00975 0.00497 0.00024 0.00000

Ay/ρ 1.42963 1.41826 1.41378 1.40856 1.40878

diff -0.02085 -0.00948 -0.00500 0.00023 0.00000

abs diff 0.02085 0.00948 0.00500 0.00023 0.00000

model Table 3.6. These consistent signs in Tables 3.5 and 3.6 suggest that the two cases Mt/H2/1

and (H2)t/M/1 serve as one-sided bounds on RPBM. We provide strong theoretical support for this

idea in Theorem A.2.1 and Corollary A.2.1 of Appendix A. Those results show that the one-sided
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bounds apply exactly to the asymptotic decay rates θ∗, which is the dominant part of the actual

tail probability. For the cases considered in Table 3.6, it is natural to wonder if the refinement of

the rare-event algorithm for the first non-exponential interarrival time makes much difference. We

show that it does not for these cases with higher ρ in §A.3.6 of Appendix A.

Tables 3.4, 3.5 and 3.6 show that the bounds A−y and A+
y in (3.20) are not too close, and thus

not good approximations for the actual Ay. Experiments show that the average of the two bounds

is not a consistently good approximation for Ay either.

Simulation results over a wide range of y show that P (Wy > b) consistently increases from a

minimum at y = 0 to a maximum at y = 0.5 and then decreases to back to the minimum at y = 1,

with the values for y = 1/4 and y = 3/4 being approximately equal to P (W > b). It remains to

establish theoretical supporting results.
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3.5.4 Estimating the Moments of Wy

We now apply the extension of the algorithm in §3.4.5 to estimate the first two moments of Wy,

reporting the estimated mean and standard deviation. In Table 3.7 we first show preliminary

results for the stationary M/M/1 model, so that we can judge the algorithm against known exact

Table 3.7: Estimated mean E[W ] and standard deviation SD(W ) as a function of 1 − ρ for five

cases of the stationary M/M/1 queue: µ = 1, λ̄ = ρ

1− ρ 0.16 0.08 0.04 0.02 0.01

ns in (3.36) 40,000 40,000 40,000 40,000 40,000

δ in (3.36) 0.001 0.001 0.001 0.001 0.001

largest b 41 86 173 345 691

P (W > 0) 0.8396 0.9201 0.9601 0.9799 0.9900

exact 0.8400 0.9200 0.9600 0.9800 0.9900

s.e. of P (W > 0) 6.86E-04 3.71E-04 1.93E-04 9.73E-05 4.98E-05

%95 CI of P (W > 0) [0.8383, 0.8410] [0.919, 0.921] [0.9598, 0.9605] [0.9797, 0.9801] [0.9899, 0.9901]

E[W ] 5.249 11.499 23.999 49.000 99.000

exact 5.250 11.500 24.000 49.000 99.000

s.e. of E[W ] 1.59E-03 1.27E-03 9.51E-04 6.93E-04 4.94E-04

%95 CI of E[W ] [5.246, 5.252] [11.497, 11.502] [23.997, 24.001] [48.999, 49.001] [98.999, 99.001]

E[W |W > 0] 6.251 12.497 24.995 50.003 100.005

%95 CI of E[W |W > 0] [6.238,6.265] [12.485, 12.510] [24.983, 25.007] [49.992, 50.014] [99.994, 100.015]

E[W 2] 65.624 287.494 1199.982 4899.957 19,800.03

exact 65.625 287.500 1200.000 4900.000 19,800.00

s.e. of E[W 2] 1.50E-02 2.33E-02 3.40E-02 4.92E-02 7.04E-02

%95 CI of E[W 2] [65.60, 65.65] [287.45, 287.54] [1199.9, 1200.1] [4899.9, 4900.1] [19,799.9, 19,800.2]

SD[W ] 6.170 12.460 24.981 49.990 99.995

exact 6.1695 12.450 24.980 49.990 99.995

P (W > 0)/ρ 0.9995 1.0002 1.0001 0.9999 1.0000

exact 1.0000 1.0000 1.0000 1.0000 1.0000

(1− ρ)E[W ] 0.8398 0.9200 0.9600 0.9800 0.9900

(1− ρ)SD[W ] 0.9873 0.9968 0.9992 0.9998 0.9999

(1− ρ)E[W ]/ρ 0.9998 0.9999 0.9999 1.0000 1.0000

(1− ρ)SD[W ]/ρ 0.8293 0.9171 0.9593 0.9798 0.9899

(1− ρ)E[W |W > 0] 1.0002 0.9998 0.9998 1.0001 1.0000

(1− ρ)SD[W |W > 0] 1.0002 1.0000 1.0000 1.0000 1.0000

results. For ease of comparison, we show the corresponding known exact values for P (W > 0),

E[W ], E[W 2] and SD(W ). The first section of Table 3.7 with three rows shows the algorithm

parameters. The final seven rows of Table 3.7 are included to show alternatives ways of scaling
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aimed at achieving stable values across all values of 1 − ρ. In this case, knowing that W has an

exponential distribution except for an atom of mass 1− ρ at the origin, we are not surprised to see

that the final two rows provide the best scaling. We will use those rows in the following tables for

time-varying arrival-rate functions.

Tables 3.8 and 3.9 show corresponding estimates of the time varying mean E[Wy] and standard

deviation SD(Wy) for the special case of y = 0.5 for associated Mt/M/1 model with arrival-rate

function in (2.4) for base parameter pairs (β, γ) = (1, 2.5) and (β, γ) = (4, 2.5) using the scaling

convention in (3.39). Both have cycle length 2π/γ, which equals 6.28/0.1 = 62.8 for ρ = 0.8. The

higher relative amplitude in Table 3.9 leads to much larger mean values at y = 0.5, which tends to

produce the largest values in the cycle. As can be seen from the online supplement, much lower

values occur for y = 0, which tends to produce the least values.

Table 3.8: Estimated mean E[Wy] and standard deviation SD(Wy) as a function of 1− ρ for five

cases of the Mt/M/1 queue at y = 0.5: µ = 1, λ̄ = ρ and base parameter pair (β, γ) = (1, 2.5)

1− ρ 0.16 0.08 0.04 0.02 0.01

ns in (3.36) 40,000 40,000 40,000 40,000 40,000

δ in (3.36) 0.001 0.001 0.001 0.001 0.001

largest b 41 86 173 345 691

P (Wy > 0) 0.8801 0.9411 0.9714 0.9851 0.9930

s.e. of P (Wy > 0) 9.85E-04 6.54E-04 4.51E-04 2.92E-04 2.19E-04

%95 CI of P (Wy > 0) [0.8782, 0.8820] [0.9399, 0.9424] [0.9705, 0.9723] [0.9845, 0.9856] [0.9926, 0.9934]

E[Wy ] 6.839 14.927 31.194 63.667 128.411

std of E[Wy ] 6.42E-03 1.20E-02 2.36E-02 4.69E-02 9.30E-02

%95 CI of E[Wy ] [6.827, 6.852] [14.903, 14.950] [31.147, 31.240] [63.575, 63.759] [128.228, 128.593]

E[Wy |Wy > 0] 7.771 15.860 32.113 64.632 129.315

%95 CI of E[Wy |Wy > 0] [7.740, 7.803] [15.814, 15.907] [32.036, 32.189] [64.501, 64.763] [129.075, 129.554]

E[W 2
y ] 97.057 427.685 1795.344 7344.665 29,673.77

std of E[W 2
y ] 7.81E-02 0.302 1.207 4.829 19.314

%95 CI of E[W 2
y ] [96.90, 97.21] [427.09, 428.28] [1793.0, 1797.7] [7335.2, 7354.13] [29,636, 29,712]

SD[Wy ] 7.091 14.314 28.676 57.369 114.824

P (Wy > 0)/ρ 1.0478 1.0230 1.0119 1.0052 1.0030

(1− ρ)E[Wy |Wy > 0] 1.2434 1.2688 1.2845 1.2926 1.2931

(1− ρ)SD[Wy |Wy > 0] 1.1301 1.1395 1.1433 1.1452 1.1472

Finally, Table 3.10 shows estimates of the time varying mean E[Wy] and standard deviation

SD(Wy) for the special case of y = 0.5 for associated (H2)t/M/1 model with arrival-rate function
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Table 3.9: Estimated mean E[Wy] and standard deviation SD(Wy) as a function of 1− ρ for five

cases of the Mt/M/1 queue at y = 0.5: µ = 1, λ̄ = ρ and base parameter pair (β, γ) = (4, 2.5)

having larger relative amplitude

1− ρ 0.16 0.08 0.04 0.02 0.01

ns in (3.36) 40,000 40,000 40,000 40,000 40,000

δ in (3.36) 0.001 0.001 0.001 0.001 0.001

largest b 41 86 173 345 691

P (Wy > 0) 0.9728 0.9883 0.9967 0.9965 0.9993

s.e. of P (Wy > 0) 3.61E-03 2.69E-03 2.05E-03 1.16E-03 8.52E-04

%95 CI of P (Wy > 0) [0.9657, 0.9799] [0.9831, 0.9936] [0.9927, 1.0000] [0.9943, 0.9988] [0.9976, 1.0000]

E[Wy ] 15.148 33.583 70.677 145.183 294.222

std of E[Wy ] 5.58E-02 1.13E-01 2.27E-01 4.59E-01 9.15E-01

%95 CI E[Wy ] [15.04, 15.26] [33.36, 33.81] [70.23, 71.12] [144.3, 146.1] [292.4, 296.0]

E[Wy |Wy > 0] 15.572 33.980 70.909 145.690 294.437

%95 CI of E[Wy |Wy > 0] [15.35, 15.80] [33.58, 34.39] [70.2, 71.6] [144.5, 147.0] [292.4, 296.7]

E[W 2
y ] 331.868 1528.127 6547.951 27,092.17 110,239.9

std of E[W 2
y ] 1.023 4.263 17.227 69.632 0.785

%95 CI of E[W 2
y ] [329.9, 333.9] [1519.8, 1536.5] [6514, 6582] [26,955, 27,228] [109,691, 110,787]

SD[Wy ] 10.119 20.007 39.405 77.551 153.861

P (Wy > 0)/ρ 1.1581 1.0743 1.0383 1.0169 1.0094

(1− ρ)E[Wy |Wy > 0] 2.4915 2.7184 2.8364 2.9138 2.9444

(1− ρ)SD[Wy |Wy > 0] 1.5892 1.5830 1.5704 1.5442 1.5371

in (2.4) for base parameter pairs (β, γ) = (1, 2.5), but here we let δ increase as 1 − ρ decreases.

Table 3.10 shows that the precision remains good for all ρ. (For the cases considered in Table 3.10,

the refinement of the rare-event algorithm for the first non-exponential interarrival time does not

make too much difference, but it matters more than for Table 3.6, as we show in §A.3.6 of Appendix

A.)

3.6 The Supporting Heavy-Traffic FCLT

To explain the unified numerical results in §3.5, we now review and extend the heavy-traffic (HT)

functional central limit theorem (FCLT) for periodic Gt/G/1 queues in Theorem 3.2 of Whitt

(2014). An extension of the HT FCLT in Whitt (2014) is needed because that HT FCLT is stated

for the scaled arrival process and the scaled queue-length process, but not the scaled workload

process that we consider here. A similar argument applies to the workload process, jointly with
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Table 3.10: Estimated mean E[Wy] and standard deviation SD(Wy) as a function of 1−ρ for five

cases of the (H2)t/M/1 queue at y = 0.5: µ = 1, λ̄ = ρ and base parameter pair (β, γ) = (1, 2.5).

1− ρ 0.16 0.08 0.04 0.02 0.01

θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669

ns 40,000 40,000 40,000 40,000 40,000

δ 0.001 0.002 0.004 0.008 0.016

largest b 41 86 173 345 691

P (Wy > 0) 0.8721 0.9382 0.9691 0.9853 0.9923

s.e. of P (Wy > 0) 7.36E-04 4.81E-04 3.18E-04 2.34E-04 1.51E-04

%95 CI of P (Wy > 0) [0.8707, 0.8736] [0.9373, 0.9391] [0.9685, 0.9697] [0.9848, 0.9857] [0.9920, 0.9926]

E[Wy ] 9.125 20.501 43.720 88.613 179.456

std of E[Wy ] 5.56E-03 1.05E-02 2.07E-02 4.07E-02 8.18E-02

%95 CI of E[Wy ] [9.114, 9.135] [20.480, 20.521] [43.162, 43.243] [88.533, 88.693] [179.296, 179.616]

E[Wy |Wy > 0] 10.462 21.851 45.114 89.937 180.845

%95 CI of E[Wy |Wy > 0] [10.432, 10.492] [21.807, 21.895] [44.510, 44.651] [89.814, 90.060] [180.630, 181.061]

E[W 2
y ] 175.380 814.768 3489.720 14,425.330 58,633.918

std of E[W 2
y ] 8.65E-02 0.350 1.424 5.703 23.026

%95 CI of E[W 2
y ] [175.21, 175.55] [814.08, 815.46] [3,486.93, 3,492.51] [14,414, 14,436] [58,588, 58,679]

SD[Wy ] 9.598 19.862 40.289 81.074 162.571

P (Wy > 0)/ρ 1.0383 1.0198 1.0095 1.0054 1.0023

(1− ρ)E[Wy ] 1.4599 1.6401 1.7488 1.7723 1.7946

(1− ρ)SD[Wy ] 1.5357 1.5889 1.6116 1.6215 1.6257

(1− ρ)E[Wy ]/ρ 1.7380 1.7827 1.8216 1.8084 1.8127

(1− ρ)SD[Wy ]/ρ 1.2900 1.4618 1.5471 1.5891 1.6095

(1− ρ)E[Wy |Wy > 0] 1.6739 1.7481 1.8045 1.7987 1.8085

(1− ρ)SD[Wy |Wy > 0] 1.5316 1.5818 1.5828 1.6189 1.6243

the other processes, but it is more natural to apply Theorem 9.3.4 of Whitt (2002) than Iglehart

and Whitt (1970b), because the workload process is defined there in §9.2 essentially the same way

as the workload is defined in §3.2.

The innovative part of Whitt (2014) is the new HT scaling in (3.38) to capture the impact

of the periodicity in an interesting and revealing way, as demonstrated by the tables in §3.5. As

shown in Whitt (2014), the periodicity has no impact on the heavy-traffic limit if this additional

scaling is not included. (That elementary observation was made earlier by Falin (1989); the main

contribution of Whitt (2014) is the new scaling.)
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3.6.1 The Heavy-Traffic FCLT

We assume that the rate-1 arrival and service processes N and V specified in §3.2 are independent

and each satisfies a FCLT. To state the result, let N̂n and Ŝvn be the scaled processes defined by

N̂n(t) ≡ n−1/2[N(nt)− nt] and Ŝvn(t) ≡ n−1/2[

bntc∑
i=1

Vk − nt], t ≥ 0, (3.41)

with ≡ denoting equality in distribution and bxc denoting the greatest integer less than or equal

to x. We assume that

N̂n ⇒ caBa and Ŝvn ⇒ csBs in D as n→∞, (3.42)

where D is the usual function space of right-continuous real-valued functions on [0,∞) with left

limits and⇒ denotes convergence in distribution, as in Whitt (2002), while Ba and Bs are indepen-

dent standard (mean 0, variance 1) Brownian motion processes (BM’s). The assumed independence

implies joint convergence in (3.42) by Theorem 11.4.4 of Whitt (2002).

We emphasize that GI assumptions are not needed, but that is an important special case. If

the service times Vk are i.i.d. mean-1 random variables with variance = scv c2
s, then the limit in

(3.42) holds with service variability parameter cs. Similarly, if the base arrival process is a renewal

process or an equilibrium renewal process with times between renewals having mean 1 and variance

= scv c2
a, then the limit in (3.42) holds with arrival variability parameter ca. (See Nieuwenhuis

(1989) for theoretical support in the case of an equilibrium renewal process.)

Theorem 9.3.4 of Whitt (2002) refers to the conditions of Theorem 9.3.3, which requires a joint

FCLT for the partial sums of the arrival and service processes, notably (3.9) on p. 295. That

convergence follows from the FCLT’s we assumed for N and V in (3.42) above. In particular, the

assumed FCLT for N implies the associated FCLT for the partial sums of the interarrival times by

Theorem 7.3.2 and Corollary 7.3.1 of Whitt (2002).

We create a model for each ρ, 0 < ρ < 1, by defining the arrival-rate function

λρ(t) ≡ ρ+ (1− ρ)λd((1− ρ)2t), t ≥ 0, (3.43)

where λd is a periodic function with period C∗ satisfying

λ̄d ≡
1

C∗

∫ C∗

0
λd(s) ds ≡ 0. (3.44)



CHAPTER 3. RARE-EVENT SIMULATION FOR PERIODIC QUEUES 68

As a regularity condition, we also require that the function λd be an element of D. As a consequence

of (3.43) and (3.44), the average arrival rate is λ̄ρ = ρ, 0 < ρ < 1. Hence, (3.38) is a special case of

(3.43); see §3.6.3 below.

We can also work with cumulative functions and let the cumulative arrival-rate function in

model ρ be

Λρ(t) ≡ ρt+ (1− ρ)−1Λd((1− ρ)2t), t ≥ 0, (3.45)

where

Λd(t) ≡
∫ t

0
λd(s) ds, (3.46)

for λd again being the periodic function in (3.44). From (3.45)-(3.46), we see that the associated

arrival-rate function obtained by differentiation in (3.45) is (3.43).

The time scaling in (3.43) and (3.45) implies that the period in model ρ with arrival-rate function

λρ(t) in (3.43) is Cρ = C∗(1− ρ)−2, where C∗ is the period of λd(t) in (3.44). Thus the period cρ

in model ρ is growing with ρ.

Now let Aρ(t) ≡ N(Λρ(t)) be the arrival process, using the cumulative arrival-rate function Λρ

in (3.45) in place of Λ in (2.2). Let Qρ(t) and Wρ(t) be the associated queue length process and

workload process in the Gt/G/1 model with arrival process Aρ(t) in (3.43) and service times from

the fixed service process V , constructed as in §9.2 of Whitt (2002). Then let associated scaled

arrival, queue length and workload processes be defined by

Âρ(t) ≡ (1− ρ)[Aρ((1− ρ)−2t)− (1− ρ)−2t], (3.47)

Q̂ρ(t) ≡ (1− ρ)Qρ((1− ρ)−2t) and Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t), t ≥ 0.

The scaled processes in (5.40) and the HT limit all have cycle length C∗.

The following heavy-traffic FCLT states that Âρ converges to periodic Brownian motion (PBM),

while Q̂ρ and Ŵρ converge to a common reflected periodic Brownian motion (RPBM). To explain,

let e be the identity function with e(t) = t, t ≥ 0. By a PBM, we mean a process cB + Λ − e ≡

{cB(t) + Λd(t)− t : t ≥ 0}, where B is a BM and Λd is of the form (3.46), so that the process has

periodic deterministic drift λd(t)− 1. Let ψ be the usual one-dimensional reflection map as on pp.

87, 290 and 439 of Whitt (2002). Given that cB + Λ− e is a PBM, ψ(cB + Λ− e) is a RPBM. To

state the HT FCLT, let Dk be the k-fold product space of D with itself and let
d
= denote equality

in distribution.
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Theorem 3.6.1. (heavy-traffic limit extending Whitt (2014)) If, in addition to the definitions and

assumptions in (5.26)-(5.40) above, the system starts empty at time 0, then

(Âρ, Q̂ρ, Ŵρ)⇒ (Xa, Z, Z) in D3 as ρ ↑ 1, (3.48)

where

Xa ≡ caBa + Λd − e, X ≡ Xa − csBs and Z ≡ ψ(X), (3.49)

with Ba and Bs being independent BM’s, Λd in (3.46) and ca and cs being the variability parameters

in (3.42), so that X
d
= cxB, where cx ≡

√
c2
a + c2

s and B is a BM.

The joint limit for (Âρ, Q̂ρ) is established in Theorem 3.2 of Whitt (2014), which in turn follows

quite directly from Iglehart and Whitt (1970b). (We remark that there is a typographical error in

the translation term on the first line of (13) in the proof of Theorem 3.2 of Whitt (2014); it should

be −(1− ρ)−2t as in equation (11) there instead of −(1− ρ)−2ρt.) To treat the workload, we apply

Theorem 9.3.4 of Whitt (2002), which implies that the limit for Ŵρ is the same as for the limit for

Q̂ρ.

Unfortunately, the periodic feature makes the RPBM complicated, so that it remains to derive

explicit expressions for its transient and periodic steady-state distributions. The present chapter

contributes by developing an effective algorithm to calculate the periodic steady-state distribution.

3.6.2 Approximations for the Steady-State Workload

Our algorithm for the periodic steady-state distribution of RPBM calculates the periodic steady-

state distribution of the scaled workload process in a GIt/GI/1 queue for suitably large ρ and

uses Theorem 3.6.1 for justification. While that approach is intuitively reasonable, there are steps

that remain to be justified. Proper justification requires an additional limit interchange argument,

which has been done in some contexts, e.g., see Budhiraja and Lee (2009), but here is left for a

topic of future research.

Hence, we assume that those steps are justified. In particular, we assume that the workload

process and the limiting RPBM have proper periodic steady-state distributions for each ρ and that

there is convergence in distribution of the scaled periodic steady state workload to the periodic
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steady state of RPBM as ρ ↑ 1. In particular, in addition to the limit Ŵρ ⇒ Z in D as ρ ↑ 1

established in Theorem 3.6.1, we assume that

Wρ((k + y)cρ)⇒Wρ,y(∞) in R as k →∞, (3.50)

where P (Wρ,y(∞) <∞) = 1 for all ρ and y, 0 < ρ < 1 and 0 ≤ y < 1, or, equivalently,

Ŵρ((k + y)C∗)⇒ Ŵρ,y(∞) in R as k →∞, (3.51)

where P (Ŵρ,y(∞) <∞) = 1 for all ρ and y, 0 < ρ < 1 and 0 ≤ y < 1, and

Z((k + y)C∗)⇒ Zy(∞) in R as k →∞, (3.52)

where P (Zy(∞) < ∞) = 1 for all y, 0 ≤ y < 1. With these assumptions, our algorithm applies to

RPBM using the approximation

P (Zy(∞) > x) ≈ P (Ŵρ,y(∞) > x) (3.53)

where ρ is chosen to be suitably large.

3.6.3 Application to the Sinusoidal Arrival-Rate Function

For the sinusoidal example in (2.4), we let

λd(t) ≡ λ̄β sin (γt), t ≥ 0, (3.54)

for λd(t) in (3.44), so that the cycle length is C∗ = 2π/γ. With (3.54) and λ̄ ≡ ρ, (3.43) becomes

(3.38), so that the cycle length in model ρ is cρ = C∗(1−ρ)−2 = 2π/(γ(1−ρ)2). When we consider

the periodic steady-state workload, the time scaling is gone but we still have the spatial scaling.

When the traffic intensity is ρ, we multiply by 1− ρ; i.e., we have

Ŵρ,y(∞) = (1− ρ)Wρ,y(∞). (3.55)

Hence, to have asymptotically convergent models, we should choose parameter four-tuples (λ̄ρ, βρ, γρ, bρ)

indexed by ρ as indicated in (3.39).



CHAPTER 3. RARE-EVENT SIMULATION FOR PERIODIC QUEUES 71

3.6.4 Approximations for the Gt/G/1 Model

To apply the heavy-traffic FCLT to generate approximations for the performance of the periodic

steady-state workload in a general periodic Gt/G/1 model (without i.i.d. assumptions), we assume

that the assumptions in §3.6.1 are satisfied so that Theorem 3.6.1 is valid. We then approximate

the model by a GIt/GI/1 model which has the same HT FCLT limit process. In other words,

we approximate the underlying rate-1 arrival counting process N by a renewal process with i.i.d.

mean-1 times between renewals having scv c2
a, where ca is the arrival process variability parameter

in the assumed FCLT (3.42). Similarly, we approximate the sequence of mean-1 service times {Vk}

by a sequence of mean-1 i.i.d. random variables with a scv equal to c2
s, where cs is the service

variability parameter in the assumed FCLT (3.42). Both approximations are exact for GI.

To construct the specific GI arrival and service processes, we follow the approximation scheme

in §3 of Whitt (1982). We apply the same method for the interarrival times Uk of N as we do to the

service times Vk, so we only discuss the service times. If c2
s ≈ 1, then we use a mean-1 exponential

(M) distribution; if c2
s > 1, then we use a mean-1 hyperexponential (H2) distribution with pdf

fV (x) = p1µ1e
−µ1x + p2µ2e

−µ2x, with p1 + p2 = 1, having parameter triple (p1, µ1, µ2). To reduce

the parameters to two (the mean and scv), we assume balanced means, i.e., p1/µ1 = p2/µ2, as in

(3.7) of Whitt (1982). If c2
s < 1 and if c2

s ≈ 1/k for some integer k, then we use a mean-1 Erlang

(Ek) distribution (sum of k i.i.d. exponential variables), otherwise if c2
s < 1, then we use the D+M

distribution, i.e., a sum of a deterministic constant (D) and an exponential (M) distribution with

rate µ, which has pdf fV (x) = µe−µ(x−d), x ≥ d, as in (3.11) and (3.12) of Whitt (1982).

3.7 Conclusions

We have developed a new algorithm to calculate the distribution of the periodic steady-state re-

maining workload Wy, at time yC within a periodic cycle of length C, 0 ≤ y < 1, in a general

GIt/GI/1 single-server queue with periodic arrival-rate function. The key model assumption is

the representation in (2.2) of the arrival process as a time-transformation of a rate-1 process. The

algorithm is based on the new representation of Wy in (3.1) derived in §3.1.1 and §3.2. In §3.4 we de-

veloped an algorithm for computing the exact tail probabilities P (Wy > b) in the GIt/GI/1 model

based on the established rare-event simulation algorithm for the associated stationary GI/GI/1
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model. That connection is supported by the close relation between the two models, established in

§3.3.

We also have shown that the algorithm can be applied together with the heavy-traffic FCLT in

Whitt (2014) reviewed in §3.6 to also calculate the periodic steady-state distribution and moments

of reflected periodic Brownian motion (RPBM). In addition, the algorithm can be applied to ap-

proximate the tail probabilities in the more general Gt/G/1 model by choosing special parameters

(the squared coefficients of variation (scv) of interrenewal times) in the GIt/GI/1 model to insure

that the two systems obey the same heavy-traffic FCLT.

We have verified the effectiveness of the algorithm for GIt/GI/1 queues and RPBM by con-

ducted extensive simulation experiments for the GIt/GI/1 model with sinusoidal arrival rate in

§3.1.3 and a range of traffic intensities. Some of these are reported in §3.5 and in the supple-

ment Appendix A. It remains to investigate the algorithm for Gt/G/1 queues more general than

GIt/GI/1.
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Chapter 4

The Service-Rate Control Problem

Simulation is used to evaluate the performance of alternative service-rate controls designed to stabi-

lize performance in a queue with time-varying arrival rates, service in order of arrival and unlimited

waiting space. Both Markovian and non-Markovian models are considered. The simulation exper-

iments show that a rate-matching service-rate control successfully stabilizes the expected queue

length, but not the expected waiting time, while a new square-root service-rate control, based on

assuming that a pointwise-stationary approximation is appropriate, approximately stabilizes the

expected waiting time when the arrival rate changes slowly compared to the expected service time.

We also show results for two square-root service-rate controls related to the many-server square-

root staffing formula, which are not effective for the single-server setting. This chapter is based on

Ma and Whitt (2015b) with reference to Whitt (2015).

4.1 Introduction

In this chapter we study alternative service-rate controls to stabilize performance in a single-server

queue with time-varying arrival rate and independent and identically distributed (i.i.d.) service

requirements specified separately from the service rate actually provided. Our study parallels Liu

and Whitt (2012b), He et al. (2016) and earlier papers cited there that develop time-varying staffing

levels (number of servers) to stabilize performance in multi-server queues with flexible staffing.

The present problem of service-rate control is important for systems with only a few servers or

with inflexible staffing. In many applications, even though the available service resources are fixed,
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it is possible to change the processing rate. Two important examples are airplane landings and

airport security lines. For the airplane landing example, the number of runways is fixed, but it may

be possible to change the rate of airplane landings by controlling the required separation distance

between airplanes. Similarly, for the TSA inspection example, the number of security lines is fixed,

but it may be possible to increase the inspection rate by relaxing inspection requirement. In these

settings the possible service rates that can be achieved may be limited, but to gain insight into

the potential benefits of controlling the service rate, we study the idealized case of a single server

where the service rate is fully subject to control.

We conduct simulation experiments to study the performance of the service-rate controls to

stabilize performance in these systems. We consider four different service-rate controls: a rate-

matching control that makes the service rate proportional to the arrival rate and three square-root

service-rate controls. The first square-root service-rate control is a natural analog of the offered-load

square-root-staffing formula used for many-server queues, where the offered load is the expected

number of busy servers in an associated infinite-server system with the same arrival rate and a

service-time distribution. Since the service-time distribution is unavailable in advance, we use

the service-requirement distribution. The second square-root service-rate control is a variant of

the first, in which the arrival rate is used in place of the offered load. The third square-root

service-rate control is obtained by solving a quadratic equation, based on a steady-state heavy-

traffic approximation assuming that a pointwise-stationary approximation (PSA) is appropriate;

see Green et al. (2007).

We show that the rate-matching control stabilizes the expected queue length, but not the

expected waiting time, consistent with theoretical results established in Whitt (2015). We show

that the expected waiting time tends to be inversely proportional to the arrival rate. We show that

the first two square-root service-rate controls that are analogs of the square-root staffing formula

for multiple server queues stabilize the mean waiting times to some extent, but not fully. We show

that the final square-root control based on the PSA is effective for long cycles, where the PSA is

effective, but not more generally.

The remainder of this chapter is organized as follows. In §4.2 we define the different service-rate

controls with reference to theorems in Whitt (2015); in §4.3 we describe the simulation experiments

we conduct using the algorithms in Chapter 2; in §4.4 we show some of the simulation results
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verifying the performance of various service-rate controls; and in §4.5 we draw conclusions.

4.2 The Service-Rate Controls

In this section, we specify the different service-rate controls that we consider and show theoretical

results developed in Whitt (2015). We use the same model for Gt/Gt/1 queue as in §2.2 and the

same service-time model as in §2.4..

4.2.1 The Rate-Matching Control

The first service-rate control is the rate-matching control

µ(t) ≡ λ(t)/ρ, t ≥ 0, (4.1)

where ρ is the desired traffic intensity. Clearly, the instantaneous traffic intensity is ρ(t) ≡ λ(t)/µ(t)

is constant.

Theorem 4.2.1 and Theorem 4.2.2 from Whitt (2015) show that with the rate-matching service-

rate control, the queue-length process Q(t) is a time transformation of the stationary model and

thus the steady-state queue-length distribution is stabilized. We let Q1(t) be the queue-length

process with constant arrival rate 1 and constant service rate 1
ρ , which together with the stationary

departure process D1(t) is defined as below:

Q1(t) ≡ A1(t)−D1(t), t ≥ 0, (4.2)

D1(t) ≡ Ns(

∫ t

0
µ1(s)1{Q1(s)>0} ds) = Ns(

∫ t

0
ρ−11{Q1(s)>0} ds), t ≥ 0, (4.3)

where A1 ≡ Na and D1(t) is the total number of departures in the interval [0, t].

The resulting Theorem 4.2.1 follows from the time-transformation construction of the arrival

process and service process in (2.2) and (2.3), which leads to the stabilization of steady-state

queue-length distribution result in Theorem 4.2.2.

Theorem 4.2.1. (Theorem 3.1 from Whitt (2015): time transformation of a stationary model)

For (A,D,Q) with the rate-matching service-rate control and the stationary single-server model

(A1, D1, Q1) defined above,

(A(t), D(t), Q(t)) = (A1(Λ(t)), D1(Λ(t)), Q1(Λ(t))), t ≥ 0. (4.4)
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Theorem 4.2.2. (Theorem 4.2 from Whitt (2015): stabilizing the queue-length distribution and

the steady-state delay probability) Let Q1(t) be the queue length process when λ(t) = 1, t ≥ 0. If

Q1(t)⇒ Q1(∞) as t→∞, where P (Q1(∞) <∞) = 1, then also

Q(t)⇒ Q1(∞) in R as t→∞, (4.5)

and

P (W (t) > 0) = P (Q(t) ≥ 1)→ ρ as t→∞. (4.6)

As for the virtual waiting time process, Theorem 4.2.3 gives an expression for W (t) involving

the stationary waiting time process W1(t) and thus Theorem 4.2.4 presents a heavy-traffic limit for

the steady-state virtual waiting time process, which is not stable, being asymptotically inversely

proportional to the arrival-rate function.

Theorem 4.2.3. (Theorem 5.1 from Whitt (2015): constructing the virtual waiting time) The

virtual waiting time W (t) can be represented as

W (t) = Λ−1
t (W1(Λ(t)), t ≥ 0, (4.7)

where W1(t) is the waiting time at time t in the associated stationary G/G/1 model and Λ−1
t is the

inverse of

Λt(v) = Λ(t+ v)− Λ(t), v ≥ 0 and t ≥ 0, (4.8)

which is strictly increasing and continuous. If W1(t) has its stationary distribution W ∗1 , then

W (t)
d
= Λ−1

t (W ∗1 ).

We now refer to the scaled arrival rate function λ̄n(t) and scaled cumulative arrival rate function

Λ̄n(t) in (5.17) of Whitt (2015)using the usual heavy-traffic scaling. The scaled queueing processes

are defined as follows. Let

Q̂1,n(t) ≡ n−1/2Q1,n(nt), t ≥ 0, (4.9)

so that Q̂n(t) = Q̂1,n(Λ̄n(nt)), t ≥ 0 by Theorem 4.2.1. Let Wn(t) be the virtual waiting time at

time t in model n and define the associated scaled processes

Ŵn(t) ≡ n−1/2Wn(nt), t ≥ 0. (4.10)

Let Dk be the k-fold product space of D with itself with the usual product topology. Let R(t; a, b)

be reflected Brownian motion (RBM) with drift −a and diffusion coefficient b.
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Theorem 4.2.4. (Theorem 5.2 from Whitt (2015): heavy-traffic limit for the time-varying waiting

time) Let the system start empty. Under the scaling assumptions above,

(Q̂n, Ŵn)⇒ (Q̂, Ŵ ) in D2 as n→∞, (4.11)

where

Ŵ (t) ≡ Q̂(t)/λf (t) and Q̂(t) ≡ R(Λf (t);−1, c2
a + c2

s), t ≥ 0. (4.12)

with λf in (2.4). As a consequence, for each T > 0,

sup
0≤t≤T

{Ŵn(t)− (Q̂n(t)/λf (t))|} ⇒ 0 as n→∞ (4.13)

and, for each x ≥ 0,

P (Q̂n(t) > x)→ e−2x/(c2a+c2s) and P (λf (t)Ŵn(t) > x)→ e−2x/(c2a+c2s) (4.14)

as first n→∞ and then t→∞.

The simulation experiments show that the rate-matching control indeed stabilizes the expected

queue length (in fact, the entire queue-length distribution), but not the expected waiting time.

Simulation results also show that the heavy-traffic approximation resulting from Theorem 4.2.4

works very well as long as the cycle length is not too short (If the cycle length is too short, the

queueing process converges to the stationary queue, where the periodicity is lost). The waiting time

heavy-traffic approximation equals the heavy-traffic approximation for expected stationary waiting

time divided by the arrival rate:

E[W (t)] ≈ E[W (∞)]

λ(t)
≈ ρ2(c2

a + c2
s)

2(1− ρ)λ(t)
, (4.15)

4.2.2 Two Square-Root Controls

We consider two variants of the classical square-root staffing rule for multi-server queues, which

lets the time-varying number of servers (staffing) be

s(t) ≡ m(t) + νs
√
m(t), t ≥ 0, (4.16)

where νs is a constant and the m(t) is the offered load, which is the expected number of busy servers

in the infinite-server system with the same arrival process and service times. The first square-root

control is the direct analog

µ(t) ≡ m(t) + νm
√
m(t), t ≥ 0, (4.17)
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where both m(t) and νm need to be modified. Since we have time-varying service rates, it is unclear

what service times should be used in the infinite-server model. We use the service-requirement

distribution directly. For the sinusoidal arrival rate function in (2.4), explicit formulas for m(t) is

given in Eick et al. (1993); for exponential service times, m(t) = 1 + (β/(1 + γ2) (sinγt− γcosγt).

The second variant of (4.16) is (4.17) with λ(t) instead of m(t), i.e.,

µ(t) ≡ λ(t) + νλ
√
λ(t), t ≥ 0, (4.18)

Simulations experiments show that these service-rate controls adapted from the multi-server staffing

formula stabilize the performance to some extent but are not truly effective for the single-server

system.

4.2.3 The PSA-Based Square-Root Control

To obtain a service-rate control that is effective for stabilizing the mean waiting time, we start

by assuming that the PSA approximation is appropriate. PSA assumes that performance of the

queue at time t can be approximated by a stationary queue with parameters taking effect at time

t. Specifically, the waiting time and queue length of the time-varying queue at time t can be

approximated by a stationary queue with constant arrival rate λ(t) and constant service rate µ(t).

We can thus use a time-varying heavy-traffic approximation for the stationary queue at each

time t

E[W (t)] ≈ ρ(t)v/µ(t)(1− ρ(t)) = λ(t)v/(µ(t)2 − µ(t)λ(t)), t ≥ 0, (4.19)

where v is a variability parameter, e.g., v = c2
a + c2

s; see §5.1 of Whitt (1983). (For M/GI/1, this is

the exact steady-state formula.) To stabilize, we set E[W (t)] = w and obtain a quadratic equation

for µ(t), yielding

µ(t) ≡ λ(t) + (λ(t)/2)
(√

(λ(t) + νPSA)/λ(t)− 1
)
, t ≥ 0. (4.20)

Simulation experiments verify that this control stabilizes the expected waiting time when the pe-

riodic cycles are not too short (when PSA is appropriate), but not when the cycles are short.

We have seen that the rate-matching control stabilizes the queue-length process but not the

waiting time process, while PSA-based square-root control approximately stabilizes the expected

waiting time in heavy traffic with PSA assumption but not the queue-length process. Therefore
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two questions naturally occur. The first is whether it is possible to stabilize both the queue-length

process and the waiting time process. Theorem 4.2.5 shows any control that stabilizes the waiting

time distribution cannot also stabilize the mean number waiting in queue, which proof is based on

the time-varying version of Little’s Law.

Theorem 4.2.5. (Theorem 7.1 from Whitt (2015): impossibility of stabilizing both) Consider a

Gt/Gt/1 system starting empty in the distant past. Suppose that a service-rate control makes

P (W (t) > x) independent of t for all x ≥ 0. Then the only arrival rate functions for which the

mean number waiting in queue E[(Q(t)−1)+] is constant, independent of t, are the constant arrival

rate functions.

The second question is whether we can develop other controls that can stabilize waiting time in

common situations without PSA assumption or not in heavy traffic. We develop a damped time-lag

service-rate control in Chapter 5 which performs fairly well in stabilizing virtual waiting time.

4.3 The Experiments

4.3.1 Estimating Performance Measures

We mainly evaluate two performance measures for each service-rate control, the expected number

of customers in the system, E[Q(t)], and the expected virtual waiting time E[W (t)]. The virtual

waiting time at time t is defined as the waiting time of a potential or hypothetical arrival (a virtual

arrival) at time t, where the waiting time is the time from arrival until starting service.

For each simulation replication, we generate the arrival process and service process using the

efficient simulation algorithm developed in Chapter 2. We consider a fixed time interval [0, T ] and

calculate the performance measures at time points k∆t, 1 ≤ k ≤ 1000, where ∆t = T/1000. We

use T = 2 × 104 for γ = 0.001 and T= 2 × 103 for the other values of γ. We use the longer time

interval for very small γ because we want to see the performance over at least several cycles (which

each are of length 2π/γ). On the other hand, we cannot only fix the number of cycles, because we

need enough absolute time to remove the impact of the initial transient.

To calculate these two performance measures, we first derive values of the cumulative arrival

function A(t) and the cumulative departure function D(t) at time points j∆t, 1 ≤ j ≤ 1000 from

customers’ arrival times Ak and departure times Dk. Then we compute Q(t) = A(t) − D(t) and
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W (t) = (WA(t) + VA(t) − (t − AA(t)))
+ at those time points, where the virtual waiting time W (t)

actually depends on information after time t, because the service time VA(t) may depend on future

service-rate function. But this future effect has been properly accounted for, because the service

times have already been generated, according to §2.4.

We generate 10,000 independent replications to estimate mean values of performance measures

and to construct their confidence intervals at each of those time points. This sample size is large

enough to produce reliable estimation. We estimate the mean values E[Q(t)] and E[W (t)] by taking

the average over all replications and construct 95% confidence intervals for these mean values. Since

we have a very large sample sizes, z-statistics are essentially the same as the natural t-statistics.

4.3.2 The Study Cases

4.3.2.1 The Rate Functions

We use the sinusoidal arrival rate function in (2.4) with parameters β = 0.2 and γ = 10j for

−3 ≤ j ≤ 2 to cover a range of different cycle lengths 2π/γ. The service rate controls are then as

specified in §4.2. For the infinite-server offered load m(t) with this sinusoidal arrival rate function,

formulas are given in Eick et al. (1993).

4.3.2.2 Interval Distributions for the Base Renewal Processes

We use renewal processes with i.i.d. interval times having mean 1 for the base processes N and Ns

used to construct the arrival and service process. We use the squared coefficient of variation (scv,

variance divided by the square of the mean), c2
a and c2

s, to characterize the variability. We consider

three different distributions: exponential (c2 = 1), hyperexponential (mixture of two exponentials,

H2, c2 > 1) and Erlang (sums of two i.i.d. exponentials, E2, c2 = 0.5) to represent a range of

variability. The H2 distribution has mean 1 and scv c2 = 4, assuming balanced means p1λ
−1
1 =

p2λ
−1
2 as in Whitt (1982); it has density h(x) = p1λ1e

−λ1x + p2λ2e
−λ2x, where p1 = (5 +

√
15)/10,

p2 = 1 − p1 and λi = 2pi, i = 1, 2. The simulation experiments consider various combinations

of these distributions for the arrival and service processes. Some results are for the Markovian

Mt/Mt/1 model, while others are for the non-Markovian GIt/GIt/1 systems.
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4.4 Simulation Results

In this section, we display simulation results to show the performance of the different service-rate

controls.

4.4.1 The Rate-Matching Control

Figures 4.1 and 4.2 show the performance of the rate-matching control for the Markovian Mt/Mt/1

system. Figure 4.1 shows the time-varying means E[Q(t)] and E[W (t)] for three values of γ: 0.001,
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Figure 4.1: Estimated E[Q(t)] for the rate-matching control in the Mt/Mt/1 system with different

γ: 0.001 (left), 0.1 (middle) and 10 (right).

0.1 and 10.0. In each case we show the performance over three cycles of length 2π/γ, for which the

total length is inversely proportional to γ. We show the 95% confidence interval for E[Q(t)] as well

as the estimate itself. Figure 4.1 shows that E[Q(t)] is stabilized in all cases, but E[W (t)] is not.

Both means are stabilized for γ = 10.0 because the cycles are very short, making the arrival process

nearly the same as a homogeneous Poisson process (implied by Theorem 1 of Whitt (1984)).

Figure 4.2 compares the estimated E[W (t)] to the heavy-traffic approximation in 4.15. Figure

4.2 shows that this heavy-traffic approximation works well provided that γ is not too large (the

cycles are not too short). A small time-shift error appears at γ = 0.1 and significant deviation

appears for γ ≥ 1. (Above we observed that the rapidly fluctuating arrival rate for the very short

cyles makes the model nearly the same as if the arrival rate were constant, equal to its average.)

Figures 4.3 and 4.4 present performance results for E[Q(t)] and E[W (t)], respectively, using

the rate-matching control applied to three non-Markovian GIt/GIt/1 systems and three values of
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Figure 4.2: Comparison of estimated E[W (t)] to its heavy traffic approximation in (4.15) under

the rate-matching control in Mt/Mt/1 system with different values of γ: 0.001 (top left), 0.01 (top

right), 0.1 (bottom left) and 1 (bottom right).

γ. (We use (H2/E2) to specify that N is a H2 renewal process, while Ns is an E2 renewal process,

and similarly for other cases.) As in stationary models, the performance tends to be proportional

to the total variabilty c2
a + c2

s. Otherwise, the story is essentially the same as for the Mt/Mt/1

model.

4.4.2 Two Square-Root Controls

Figures 4.5 and 4.6 presents performance results of the square-root controls related to the many-

server staffing formula applied to the Markovian Mt/Mt/1 model with different values of γ. The
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Figure 4.3: Estimated E[Q(t)] for the rate-matching control in three different Gt/Gt/1 models,

(H2/H2), (H2/E2) and (E2/E2), and three different values of γ: 0.001 (left), 0.1 (middle) and 10

(right).
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Figure 4.4: Estimated E[W (t)] for the rate-matching control in three different Gt/Gt/1 models,

(H2/H2), (H2/E2) and (E2/E2), and three different values of γ: 0.001 (left), 0.1 (middle) and 10

(right)

.

first variant in (4.17) is shown in Figure 4.5, while the second variant in (4.18) is shown in Figure

4.6. When γ gets larger, m(t) is more different from λ(t) and performance is more different for

these two controls.

These figures show that neither of these controls is consistently effective. When γ is very small,

the offered load m(t) is very close to the arrival rate λ(t), explaining why the two left-most plots

are very similar.



CHAPTER 4. THE SERVICE-RATE CONTROL PROBLEM 85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

time in units of 104

γ = 0.001, β = 0.2, ξ = 0.2

 

 

arrival rate
mean number
mean wait

1800 1850 1900 1950 2000
0

1

2

3

4

5

6

time

γ = 0.1, β = 0.2, ξ = 0.2

 

 

arrival rate
mean number
mean wait

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
0

1

2

3

4

5

6

time

γ = 1, β = 0.2, ξ = 0.2

 

 

arrival rate
mean number
mean wait

Figure 4.5: Estimated means E[Q(t)] and E[W (t)] for the square-root control in (4.17) for the

Mt/Mt/1 system with different values of γ: 0.001 (left), 0.1 (middle) and 1 (right).
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Figure 4.6: Estimated means E[Q(t)] and E[W (t)] for the square-root control in (4.18) for the

Mt/Mt/1 system with different values of γ: 0.001 (left), 0.1 (middle) and 1 (right).
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4.4.3 The PSA Square-Root Control

Figure 4.7 shows the results of the PSA square-root service-rate control in (4.20) applied to the

Mt/Mt/1 system, while Figure 4.8 shows its application to corresponding (H2/H2), (H2/E2), and

(E2/E2), GIt/GIt/1 systems. When γ = 0.001, so that the cycles are long and arrival rates change

very slowly compared to service times, we see that E(W (t)) is stabilized, as intended (while E(Q(t))

is not). When γ = 0.1, so that the cycles are much shorter and PSA is no longer appropriate,

E(W (t)) becomes periodic.
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Figure 4.7: Estimated E[Q(t)] and E[W (t)] for the PSA square-root control in (4.20) in the

Mt/Mt/1 model for two values of γ: 0.001 (left) and 0.1 (right).

4.5 Conclusions

In this chapter we conducted simulation experiments evaluating the performance of alternative

service-rate controls for single-server queues with time-varying arrival rates. This service-rate

control problem arises when there is few number of servers or inflexible staffing. Our time-varying

single-server model is an idealized setting of real applications and our results provide guidance on

changing staffing/ service-rate/ service on/off for real applications.

In this chapter we have used the efficient simulation algorithm for Gt/Gt/1 queue developed in

Chapter 2 to conduct simulation experiments to evaluate the performance of four candidate service-

rate controls. The model is a single-server queue with service in order of arrival, unlimited waiting

space and a time-varying arrival rate function. The service-rate controls apply to arbitrary arrival
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Figure 4.8: Estimated E(W (t)) (left column) and E(Q(t)) (right column) for the PSA square-root

control in (4.20) in three Gt/Gt/1 models, (H2/H2), (H2/E2) and (E2/E2), for two values of γ:

0.001 (top) and 0.1 (bottom).

rate functions, but for these experiments we used the sinusoidal periodic arrival rate function in

(2.4) with average arrival rate 1, relative amplitude β = 0.2 and various time-scaling factors γ. The

service requirements were i.i.d. random variables specified separately from the service-rate control.

The arrival processes were mostly non-homogeneous Poisson processes, but the method applies

to very general arrival processes that can be represented as a deterministic time transformation

of a stationary point process. Experiments were conducted for stationary processes constructed

from renewal processes with non-exponential as well as exponential distributions. This allows

representing different levels of stochastic variability.
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The simulation experiments confirmed theoretical results in Theorem 4.2.2 and Theorem 4.2.4

showing that the rate-matching control in (4.1) stabilizes the expected queue length E[Q(t)] after an

initial transient period, but not the expected waiting time, and that the heavy-traffic approximation

for mean waiting time in (4.15) performs fairly well. Simulation results also showed that the PSA-

based square-root service-rate control in (4.20) stabilizes the mean waiting time when the arrival

rate function changes slowly (for long cycles relative to the mean service time) so that PSA is

effective. The simulation experiments also presented that the other two service-rate controls in

(4.17) and (4.18) that are modifications of the classical square-root staffing formula for many-

server queues in (4.16) are not so effective in the present context. From Theorem 4.2.5, we see that

it is impossible for any service-rate control to stabilize both the waiting time distribution and the

mean number waiting time in queue. Since most of the time we are more interested in stabilizeing

the mean waiting time, we will develop a damped time-lag service-rate control in Chapter 5 that

performs fairly well in stabilizing waiting time when PSA is not appropriate,
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Chapter 5

Damped Time-Lag Service-Rate

Control

We consider a single-server queue with unlimited waiting space, the FCFS discipline, a periodic

arrival-rate function and i.i.d. service requirements, where the service-rate function is subject to

control. We previously showed in Chapter 4 that a rate-matching control, where the service rate

is made proportional to the arrival rate, stabilizes the queue length process, but not the (virtual)

waiting time process. In order to minimize the maximum expected waiting time (and stabilize the

expected waiting time), we now consider a modification of the service-rate control involving two

parameters: a time lag and a damping factors. We develop an efficient simulation search algorithm

to find the best time lag and damping factor. That simulation algorithm is an extension of our rare-

event simulation algorithm for the GIt/GI/1 queue (in Chapter 3) to the GIt/GIt/1 queue, allowing

the time-varying service rate. To gain insight into these controls, we establish a heavy-traffic limit

with periodicity in the fluid scale. That produces a diffusion control problem for the stabilization,

which we solve numerically by the simulation search in the scaled family of systems with ρ ↑ 1.

The state space collapse in that theorem shows that there is a time-varying Little’s law in heavy-

traffic, implying that the queue length and waiting time cannot be simultaneously stabilized in this

limit. We conduct simulation experiments showing that the new control is effective for stabilizing

the expected waiting time for a wide range of model parameters, but we also show that it cannot

stabilize the expected waiting time perfectly. This chapter is an edited version of Ma and Whitt
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(2018a).

5.1 Introduction

5.1.1 A Nonstationary Stochastic Design Problem

In this chapter, we address an open problem in Chapter 4, which considered the problem of stabi-

lizing performance over time, i.e., making a specified time-dependent performance measure a target

constant function, in a single-server queue with unlimited waiting space, the first-come first-served

(FCFS) discipline and a time-varying arrival-rate function. The stabilization is to be achieved with

a deterministic service-rate function, under the assumption that the customer service requirements

are specified independently of the service-rate control. This is a stochastic design problem instead

of a real-time stochastic control problem; i.e., the service-rate control is to be determined in ad-

vance, assuming full knowledge of the model, but without knowledge of the system state (e.g., the

value of the stochastic queue length process) that will actually prevail at any time.

As explained in Chapter 4, variants of this service rate control are performed in response to time-

varying demand, in many service operations, such as hospital surgery rooms and airport inspection

lines, but little is known about the ideal timing and extent of service rate changes. Service-rate

controls for single-server queues are also of current interest within more complex systems, such

as in energy-efficient data centers in cloud computing Kwon and Gautam (2016) and in business

process management Suriadi et al. (2017).

In Chapter 4 it was shown that a rate-matching control, where the service rate is made pro-

portional to the arrival rate, stabilizes the queue length process, but not the (virtual) waiting time

process. In this chapter we develop an algorithm to approximately stabilize the expected waiting

time at a target level. It uses a modification of the service-rate control involving two parameters:

a time lag and a damping factor.

5.1.2 Related Literature

There is a large literature on similar stochastic design problems involving setting staffing levels (the

number of servers) in a multi-server queue to stabilize performance in face of time-varying demand,

e.g., Defraeye and van Nieuwenhuyse (2013), Feldman et al. (2008), He et al. (2016), Jennings
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et al. (1996), Liu (2018), Liu and Whitt (2012b), Pender and Massey (2017), Stolletz (2008), Whitt

(2018). For a single-server queue, the direct analog would be turning on and off the server, which

is a restrictive extreme version of the service-rate control we consider.

The dynamic control problem of turning on and off the server in specified system states has

received considerable attention in the stationary setting, starting with Yadin and Naor (1963),

Heyman (1968). Similar dynamic control problems for single-server queues including service-rate

controls have been analyzed as Markov decision processes in Adusumilli and Hasenbein (2010),

George and Harrison (2001) and references therein. We emphasize that our design problem is

different; our service-rate control is for a nonstationary model and must be set in advance, without

knowledge of the system state. In many cases, our new problem is more realistic, because arrival

rates are often strongly time-varying and can be reasonably well estimated in advance, while changes

to the service rate may be difficult to implement without advance planning. Of course, in general

both problems are important.

Given the extensive research on the staffing design problem for many-server queues, it is natural

to consider variants of the successful staffing algorithms, but it is now well known that the behavior

of many-server queues tends to be dramatically different from single-server queues. That difference

can be seen by comparing the many-server fluid models in Liu and Whitt (2012a) to the single-

server fluid models in Chen and Mandelbaum (1991), as discussed on p. 836 of Liu and Whitt

(2011). A simple fluid model supporting the rate-matching control in Chapter 4 is supported by

our heavy-traffic weak law of large numbers in Theorem 5.6.1, see Corollary 5.6.1, but we are

working to go beyond that.

Hence, it should not be surprising that service-rate controls using variants of the established

many-server staffing algorithms are no longer effective for single-server queues. For example, a

natural analog of the square-root staffing function from Jennings et al. (1996) was considered as a

candidate service-rate control in (4.18), but was found to be ineffective, as illustrated by Figure 4.6.

Also variants of the iterated staffing algorithm (ISA) in Feldman et al. (2008) and Defraeye and

van Nieuwenhuyse (2013) were found to be ineffective, evidently because the controls have impact

over greater time intervals (are less “local”) with single-server systems.

As indicated in Whitt (2015), controlling the service rate to meet time-varying demand is anal-

ogous to Kleinrock’s classic service-capacity-allocation problem in a stationary Markovian Jackson
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network Kleinrock (1964); we allocate service capacity over time instead over space (different queues

within the network).

5.1.3 The Rate-Matching Control

Given that the service requirements are specified independently, the actual service times resulting

from a time-varying control are relatively complicated, but a construction is given in §2.4. In

Chapter 4, several controls were considered, but most attention was given to the rate-matching

control, which chooses the service rate to be proportional to the arrival rate; i.e., for a given target

traffic intensity ρ, the service-rate function is (4.1). In Chapter 4, Theorem 4.2.2 shows that the

rate-matching control stabilizes the queue-length process; Theorem 4.2.3 gives an expression for

the waiting-time with the rate-matching control, while Theorems 4.2.4 establishes heavy-traffic

limits showing that the queue-length is asymptotically stable, but the waiting time is not, being

asymptotically inversely proportional to the arrival-rate function.

5.1.4 The Open Problem

The open problem from Chapter 4 is developing a service-rate control that can stabilize the expected

waiting time. (We only discuss the continuous-time virtual waiting time process in this chapter,

which is the waiting time of a potential or hypothetical customer if it were to arrive at that time,

and so omit “virtual.”) Toward that end, we now study a modification of the rate-matching control.

Without loss of generality, we write the periodic arrival-rate function as

λ(t) ≡ ρ(1 + s(t)), t ≥ 0, (5.1)

where 0 < ρ < 1 and s is a periodic function with period C satisfying

s̄ ≡ 1

C

∫ C

0
s(u) du ≡ 0. (5.2)

As a regularity condition, we require that

sL ≤ s(t) ≤ sU for all t with − 1 ≤ sL ≤ 0 ≤ sU <∞. (5.3)

Most of our numerical examples will be for a sinusoidal function, where s(t) = β sin(γt) for s(t)

in (5.1), so that we have (2.4), where β is the relative amplitude, with 0 ≤ β ≤ 1 and the period
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is C = 2π/γ. But the damped time-lag control developed in this chapter is not limited to the

sinusoidal case. The simulation optimization algorithm illustrated later in section 5.5.4 applies

to more general arrival rate functions and section 5.9.1.2 shows the performance of the damped

time-lag control for a piecewise-linear single-peak arrival rate function.

In the periodic setting of (5.1)-(5.3), we consider the rate-matching control in (4.1) modified by

a time lag η and damping factor ξ; in particular,

µ(t) ≡ 1 + ξs(t− η), t ≥ 0, (5.4)

for 0 < ξ ≤ 1 and η > 0. Thus, the average arrival rate and service rate are λ̄ = ρ and µ̄ = 1,

so that the long-run traffic intensity is ρ̄ ≡ λ̄/µ̄ = ρ. However, the instantaneous traffic intensity

ρ(t) ≡ λ(t)/µ(t) can satisfy ρ(t) > 1 for some t in each periodic cycle, e.g., if ρ(1 + β) > 1− β or,

equivalently, if β > (1− ρ)/(1 + ρ) in the setting of (2.4) and (5.4).

5.1.5 Formulation of Optimal Control Problems

Because it is directly of interest, and because we want to allow for imperfect stabilization, we

formulate our control problem as minimizing the maximum expected waiting time over a periodic

cycle [0, C]. We formulate the main optimization problem as a min-max problem, i.e.,

w∗ ≡ min
µ(t)∈M(1)

max
0≤y≤1

{E[Wy]}, (5.5)

where E[Wy] is the expected (periodic) steady-state (virtual) waiting time starting at time yC

within a cycle of length C, 0 ≤ y < C, and M(m) is the set of all periodic service-rate functions

with average rate m, which we take to be m ≡ 1.

Given that the average arrival rate is ρ < 1, the obvious reference case is the mean waiting time

E[W ] in the associated stationary model, which for the M/GI/1 model is

E[W ] =
ρ(1 + c2

s)

2(1− ρ)
(5.6)

and thus E[W ] = ρ/(1− ρ) in the M/M/1 model. However, in general E[W ] is not a lower bound

for the average of the periodic steady-state mean E[Wy] over a cycle; see Remark 5.2.1 and Example

5.2.1.

We have not yet solved this general optimization problem in (5.5). Here are open problems,

applying to the Markovian Mt/Mt/1 model and generalizations:
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1. For the general periodic problem, what is the solution (value of w∗ and set of optimal service-

rate functions µ∗(t) as a function of the model)?

2. For the sinusoidal special case in (2.4), what is the solution?

3. To what extent do the optimal solutions stabilize the expected waiting time E[Wy] over time?

In particular, is it possible to stabilize E[Wy] perfectly?

Remark 5.1.1. (stabilizing the full waiting time distribution) Theorems 4.2.2 shows that the rate-

matching control stabilizes the delay probability P (Wy > 0), while Corollary 5.1 of Whitt (2015)

shows that the rate-matching control cannot stabilize the mean waiting time. Theorem 4.2.4

establishes a heavy-traffic limit (with periodicity in the stronger fluid scale in §5.6 here) that shows

that it is not possible to stabilize the queue length and waiting time processes simultaneously.

Thus, we conclude that it is not possible to stabilize the full waiting time distribution. Hence, the

open problems above are only for the mean. In this chapter we primarily focus on the mean, but

we also show that it stabilizes the entire distribution to some extent in §5.9.1.

In this chapter, we only consider the restricted set of controls in (5.4). Now our goal is

w∗(η, ξ) ≡ min
η,ξ

max
0≤y≤1

{E[Wy]}. (5.7)

For practical purposes, this two-parameter control is appealing for its simplicity. We also find that

it is quite effective, even though it cannot stabilize E[Wy] perfectly.

We also consider the associated stabilization control, where (5.7) is replaced by

w∗stab(η, ξ) ≡ min
η,ξ
{ max

0≤y≤1
{E[Wy]} − min

0≤y≤1
{E[Wy]}}. (5.8)

In our sinusoidal examples, where there is strong symmetry, we find that the solutions to (5.7)

and (5.8) are the same (but we have no proof), but neither stabilizes perfectly. For more general

periodic arrival rate functions, we detect differences.

5.1.6 Organization of the Chapter

This chapter involves some challenging technical methods. Hence, we present the more accessible

results first. We start in §5.2 by presenting two simulation examples to illustrate the effectiveness
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of our new algorithm. Then in §5.3 we introduce the two technical tools we will apply: (i) an

extension of the rare-event simulation algorithm for the GIt/GI/1 model from Chapter 3 to the

GIt/GIt/1 model with a general service-rate control and (ii) heavy-traffic limits involving scaling

of the underlying deterministic periodic arrival-rate function.

We start in earnest in §5.4. We elaborate on the model and key processes representing the work-

load and the waiting time in §5.4. Theorem 5.4.1 shows that the rate-matching control stabilizes

the workload process as well as the queue length process. We discuss the extension of the rare-event

simulation algorithm from Chapter 3to our setting and its application to perform simulation search

in §5.5. In both §5.4 and §5.5 we will be brief because we can draw upon Chapter 4 and Chapter 3.

We establish our main heavy-traffic limits with the periodicity in the stronger fluid scaling (see

(5.11)) in §5.6. We present the proof of the main heavy-traffic limit, Theorem 5.6.2, in §5.7. We

establish heavy-traffic limits with the periodicity in the weaker diffusion scaling (see (5.12)) in §5.8.

We give simulation examples in §5.9. In §5.9.1 we present simulation results using the fluid

scaling in §5.6; in §5.9.2 we present simulation results using the diffusion scaling in §5.8. We draw

conclusions in §5.10.

5.2 Simulation Examples

To illustrate the effectiveness of our new algorithm, we show results for two simulation examples. We

consider the Markovian Mt/Mt/1 model with the sinusoidal arrival rate function in (5.1)-(5.3) and

(2.4). The first example has model parameters (ρ, β, γ) = (0.8, 0.2, 0.1), so that the average arrival

rate is ρ̄ = 0.8, the average service time is 1 and the cycle length is C = 2π/γ = 62.8. Figure

5.1 (left) shows the expected steady-state waiting time E[Wy] together with the corresponding

expected workload E[Ly] and the product λ(y)E[Wy], all for 0 ≤ y < 1. The second example on

the right differs only by increasing ρ from 0.8 to 0.95. Figure 5.1 also shows the upper and lower

95% confidence-interval bounds for E[Ly] and E[Wy] with black dashed lines, but these can only

be seen by zooming in.

Figure 5.1 shows that the expected waiting time E[Wy] is well stabilized at a value somewhat

higher than the expected steady-state waiting time for the stationary M/M/1 model, which is

ρ/(1 − ρ) (4 on the left and 19 on the right). The maximum deviation (maximum - minimum)
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Figure 5.1: Estimates of the periodic steady-state values of E[Wy] (blue solid line), E[Ly] (red

dashed line) and λ(y)E[Wy] (green dotted line) for the optimal control (η∗, ξ∗) for the sinusoidal

example with parameter triples (ρ, β, γ) = (0.8, 0.2, 0.1) (left) and (0.95, 0.2, 0.1) (right), so that the

cycle length is C = 2π/γ = 62.8. The optimal controls are (5.84, 0.84) for ρ = 0.8 and (15.1, 2.13)

for ρ = 0.95.

over a cycle is 0.0335 is for ρ = 0.8 and 0.4653 for ρ = 0.95. Thus the maximum relative errors

are about 0.8% for ρ = 0.8 and 2.2% for ρ = 0.95, clearly adequate for practical applications.

Nevertheless, careful simulations and statistical analysis allow us to conclude that it is impossible

to stabilize the expected waiting time perfectly with this control. To see the contrasting view with

the rate-matching control for this same model, see 4.1. (See Chapter 4 for more examples.)

It is natural to wonder if there is any order in the optimal controls found for ρ = 0.8 and

ρ = 0.95 in Figure 5.1. The dependence on ρ is revealed by the main heavy-traffic limit theorem,

Theorem 5.6.2.

Remark 5.2.1. (the cost of periodicity) The difference between the stable average waiting time

in Figure 5.1 and the value ρ/(1 − ρ) for the stationary model (4 on the left and 19 on the right)

might be called “the average cost of periodicity,” but we point out that the overall average waiting

time with a service-rate control could be much less than in the stationary model. The classical

results for the periodic Mt/GI/1 queue in Rolski (1981, 1989a) so not apply because, in general,

the service times are neither independent of the arrival process nor i.i.d.; See Example 5.2.1.
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Example 5.2.1. (small expected waiting times with periodicity) To illustrate a nonstationary model

with a low average expected waiting time, consider the Mt/Mt/1 model with the two-level arrival-

rate function with period C:

λ(t) ≡ ρb1[(C/2)−δ,(C/2)+δ)(t), 0 ≤ t < C and bδ = C, (5.9)

where δ < C/2 and 1A is the indicator function of the set A, i.e., 1A(t) = 1 if t ∈ A and 0 otherwise.

Let the service-rate function be as in (5.4) with η = 2δ and ξ = 1. Then the number of arrivals in

the interval [(C/2) − δ, (C/2) + δ) has a Poisson distribution with mean ρC, while the number of

potential departures in the interval [(C/2) + δ, (C/2) + 3δ) has a Poisson distribution with mean

C. Thus, for ρ < 1 and C = bδ suitably large, the net input over the interval [(C/2)− δ, (C/2) + δ)

is approximately Gaussian with mean −(1 − ρ)bδ and variance (1 + ρ)bδ, which is unlikely to be

positive. By choosing δ suitably small and bδ suitably large, subject to specified ρ, we can make

the maximum steady-state expected waiting time, and thus the average, approach 0. One way to

explain this phenomenon is to observe that the interarrival times and service times will be highly

correlated.

Remark 5.2.2. (the single-parameter alternative) It is natural to wonder if we could use only the

single control parameter η, fixing ξ = 1. If we let ξ = 1 and optimize over η in the setting of Figure

5.1, then for ρ = 0.8 (ρ = 0.95) we get η∗ = 5.93 (η∗ = 28.3)and a maximum deviation of 0.4109

(3.034), which yields about 10% (14%) relative error instead of 0.8% (2.2%). Hence, we use the

two control parameters.

5.3 The Key Technical Tools

In this section we discuss the two technical tools that we use.

5.3.1 A Simulation Search Algorithm

Our primary tool for finding good (η, ξ) controls is a simulation search algorithm. For that purpose,

we extend the rare-event simulation algorithm for the time-varying workload process in the periodic

GIt/GI/1 model in Chapter 3 to the GIt/GIt/1 model, where the service rate is time-varying as

well. (The notation GIt means that the process is a deterministic time transformation of a renewal
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process; see §5.4.) The workload L(t) represents the amount of work in service time in the system

at time t, while the waiting time can be represented as the first-passage time

W (t) = inf {u ≥ 0 :

∫ t+u

t
µ(s) ds = L(t)}. (5.10)

The waiting time W (t) coincides with the workload L(t) when µ(t) = 1 for all t, but not otherwise.

As in Chapter 3, the rare-event simulation algorithm calculates the periodic steady-state work-

load Ly and waiting time Wy, starting at time yC within a cycle of length C, 0 ≤ y < 1. We

employ a search over the parameters (η, ξ), as discussed in §5.5, in order to solve the optimization

problems (5.7) and (5.8). The search part is relatively elementary because we have only two control

parameters. For background on simulation optimization, see Fu (2015), Jian and Henderson (2015)

and the references there.

The computational complexity for one control vector (η, ξ) is essentially the same as in Chapter

3. In particular, the program running time tends to be proportional to the number of replications

and number of y values, which for the case ρ = 0.8 in Figure 5.1 were taken to be 40,000 and 40,

respectively. That required about 100 minutes on a desktop computer. As indicated in §3.4.7, the

running time tends to be of order (1− ρ)−1, so that the cases with high traffic intensity are more

challenging. The simulation search is performed in stages, with fewer y values and replications in

the early stages, but the full long run at the end to confirm performance.

5.3.2 Heavy-Traffic Limits

To better understand how the control parameters and performance depend on the model parame-

ters, we establish heavy-traffic (HT) limits, which involve considering a family of models indexed

by ρ and letting ρ ↑ 1, drawing on our previous work in Whitt (2014, 2015) and in Chapter 3. That

previous work shows that the scaling is very important, because there are several possibilities. We

use the conventional HT scaling of time by (1 − ρ)−2 (usually denoted by n) and space by 1 − ρ

(usually denoted by 1/
√
n), as in Chapters 5 and 9 of Whitt (2002), but if we do so without also

scaling the arrival-rate function, then the HT limit is easily seen to be the same as if the periodicity

were replaced by the constant long-run average, as shown by Falin Falin (1989).

To obtain insight into the periodic dynamics, it is thus important to also scale the arrival-rate

function, which is initially specified in (5.1) with (5.2) and (5.3). However, the papers Whitt (2014)
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and Whitt (2015) actually use two different HT scalings of the arrival-rate function. Our main HT

scaling in §5.6 follows Whitt (2015) and has periodicity in the fluid scale, i.e.,

λρ(t) ≡ ρ(1 + s((1− ρ)2t)), t ≥ 0, (5.11)

but in §5.8 we also consider the scaling from Whitt (2014) and §3.6, which has the periodicity in

diffusion scale, i.e.,

λρ(t) ≡ ρ(1 + (1− ρ)s((1− ρ)2t)), t ≥ 0. (5.12)

The extent of the periodicity is stronger in (5.11) than in (5.12), because of the extra factor

(1 − ρ) before s in (5.12). The workload and the waiting time have the same HT limit with the

diffusion-scale scaling in (5.12), but different limits with the fluid-scale scaling in (5.11). To capture

the clear differences shown in Figure 5.1, we obviously want the stronger fluid scaling in (5.11).

The HT functional central limit theorem (FCLT) in Theorem 5.6.2 for the scaling in (5.11) in §5.6

helps interpret Figure 5.1.

It is important to note that if we have constant service rate with this scaling, then the waiting

times explode as ρ ↑ 1, because the instantaneous traffic intensity ρ(t) ≡ λ(t) > 1 over intervals

growing as ρ ↑ 1; this case is analyzed in Choudhury et al. (1997).

We also establish a HT functional weak law of large numbers (FWLLN) in Theorem 5.6.1, which

yields a deterministic fluid approximation. However, it is not very useful, because it shows that

our proposed control with ξ = 1 stabilizes the waiting time perfectly for all η as ρ ↑ 1 (But it helps

to see that nothing bad happens.)

5.4 The Model

In this section we specify the general model, defining the arrival process in §5.4.1 and the basic

queueing stochastic processes in §5.4.2. We specialize to the periodic Gt/Gt/1 model in §5.4.3. We

show that the workload is stabilized by the rate-matching control in (4.1), extending the results for

the queue-length process in Whitt (2015).

5.4.1 The Arrival Process

We represent the periodic arrival counting process A as a deterministic time transformation of an

underlying rate-1 counting process N with associated sequence of interarrival times {Uk : k ≥ 1}
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by (2.1) and (2.2). This is a common representation when N is a rate-1 Poisson process; then

A is a nonhomogeneous Poisson process (NHPP). For the Gt/Gt/1 model, N is understood to be

a rate-1 stationary point process. Hence, for the GIt/GIt/1 model, N is an equilibrium renewal

process with time between renewals having mean 1, for which the first inter-renewal time U1 has

the equilibrium distribution. The representation in (2.2) has been used frequently for processes N

more general than NHPP’s, an early source being by Massey and Whitt (1994).

For the sinusoidal arrival-rate function in (2.4), the associated cumulative arrival-rate function

is (2.6).

We only consider the case ρ < 1, under which a proper steady-state exists under regularity

conditions (which we do not discuss here). Behavior differs for short cycles and long cycles. For

the case of a constant service rate, there are two important cases for the relative amplitude: (i)

0 < β < ρ−1 − 1 and (ii) ρ−1 − 1 ≤ β ≤ 1. In the first case, we have ρ(t) < 1 for all t, where

ρ(t) ≡ λ(t) is the instantaneous traffic intensity, but in the second case we have intervals with

ρ(t) ≥ 1, where significant congestion can build up. If there is a long cycle as well, the system may

be better understood from fluid and diffusion limits, as in Choudhury et al. (1997). However, that

difficulty can be avoided by a service-rate control.

5.4.2 The General Gt/Gt/1 Model

We consider a modification of the standard single-server queue with unlimited waiting space where

customers are served in order of arrival. Let {Vk} be the sequence of service requirements. As

in §2.2, we separately define the rate at which service is performed from the service requirement.

Given the arrival counting process A(t) defined in §5.4.1, let the total input of work over the interval

[0, t] be the random sum as in (3.4).

Let service be performed at time t at rate µ(t) whenever there is work to perform. Paralleling

the cumulative arrival rate Λ(t) defined in (2.1), let the cumulative available service rate be

M(t) ≡
∫ t

0
µ(s) ds, t ≥ 0. (5.13)

Let the net-input process of work be X(t) ≡ Y (t)−M(t), t ≥ 0. Then we can apply the reflection

map to the net input process X(t) to represent the workload (the remaining work in service time)
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at time t, starting empty at time 0, as

L(t) = X(t)− inf {X(s) : 0 ≤ s ≤ t} = sup {X(t)−X(s) : 0 ≤ s ≤ t}, t ≥ 0.

In this setting it is elementary that the continuous-time (virtual) waiting time (before starting

service) at time t, which we denote by W (t), can be related to L(t).

Lemma 5.4.1. (waiting time representation) The waiting time at time t can be represented as

W (t) = M−1
t (L(t)), t ≥ 0, (5.14)

where M−1
t is the inverse of Mt(u) ≡M(t+ u)−M(t) for M(t) in (5.13).

Proof By definition,

W (t) = inf {u ≥ 0 :

∫ t+u

t
µ(s) ds = L(t)}

= inf {u ≥ 0 : M(t+ u)−M(t) = L(t)} = M−1
t (L(t)), (5.15)

for Mt(u) above, as claimed in (5.14).

5.4.3 The Periodic Gt/Gt/1 Model

As in Chapter 3, we consider the periodic steady state of the periodic Gt/Gt/1 model with arrival-

rate function in (5.1). For that purpose, we exploit the arrival process construction in (2.2) in

terms of the stationary processes N ≡ {N(t) : t ≥ 0} and V ≡ {Vk : k ≥ 1}. Let the associated

service-rate function µ(t) also be periodic with cycle length C, with average service rate be µ̄ = 1,

and bounds 0 < µL ≤ µ(t) ≤ µU <∞, for 0 ≤ t ≤ C.

As in Chapter 3 and earlier in Loynes (1962) and Chapter 6 in Sigman (1995), we now convert

the standard representation of the workload process in §5.4 to a simple supremum by using a

reverse-time construction. To do so, we extend the stationary processes {N(t)} and {Vk} to the

entire real line. We regard the periodic arrival-rate and service-rate as defined on the entire real line

as well, with the functions fixed by their position within the periodic cycle at time 0. With those

conditions, the reverse-time construction is achieved by letting the interarrival times and service

times be ordered in reverse time going backwards from time 0. Then Ã(t) counts the number of

arrivals in [−t, 0], Ỹ (t) is the total input in [−t, 0] and X̃(t) is the net input in [−t, 0], for t ≥ 0.
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To exploit the reverse-time representation, let Λ̃y(t) as in (3.2) be the reverse-time cumulative

arrival-rate function starting at time yC within the periodic cycle [0, C], 0 ≤ y < 1, and Λ̃−1
y is its

inverse function, which is well defined because Λ̃y(t) is continuous and strictly increasing.

As an analog of (3.2) for the cumulative service rate, let

M̃y(t) ≡M(yC)−M(yC − t), t ≥ 0, (5.16)

We let the service requirements Vk come from a general stationary sequence with E[Vk] = 1.

With this reverse-time representation, the workload at time yC in the system starting empty

at time yC − t can be represented as

Ly(t) = sup
0≤s≤t

{X̃y(s)}

d
= sup

0≤s≤t

{N(Λ̃y(s))∑
k=1

Vk − M̃y(s)
}

= sup
0≤s≤Λ̃y(t)

{N(s)∑
k=1

Vk − M̃y(Λ̃
−1
y (s))

}
, (5.17)

where X̃y is the reverse-time net input of work starting at time yC within the cycle of length C.

The other quantities in (5.17) are the reverse-time cumulative arrival-rate function Λ̃y(t) in (3.2)

with inverse Λ̃−1
y (t) and the reverse-time cumulative service-rate function M̃y in (5.16) with inverse

M̃−1
y .

The equality in distribution in (5.17) holds because N is a stationary point process, which is a

point process with stationary increments and a constant rate.

As t→∞, Ly(t) ↑ Ly(∞) ≡ Ly w.p.1 as t→∞, for

Ly
d
= sup

s≥0

{N(s)∑
k=1

Vk − M̃y(Λ̃
−1
y (s))

}
, 0 ≤ y < 1. (5.18)

Even though (5.17) is valid for all t, we think of the system starting empty at times −kC, for k ≥ 1,

so that we let yC − t = −kC or, equivalently, we stipulate that t = C(k + y), 0 ≤ y < C, and

consider successive values of k and let k → ∞ to get (5.18). That makes (5.17) valid to describe

the distribution of L(C(k + y)) for all k ≥ 1.

We now observe that the time transformation in (5.17) shows that the periodic Gt/Gt/1 model

is actually equivalent to a G/Gt/1 model with a stationary arrival process and a new cumulative

service rate function M̃y(Λ̃
−1
y (t)).
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Corollary 5.4.1. (conversion of Gt/Gt/1 to an equivalent Gt/G/1) In addition to representing the

periodic steady-state workload Ly in a periodic Gt/Gt/1 model as a periodic steady-state workload

in a periodic G/Gt/1 model, which has a stationary stochastic input and a deterministic service

rate, as shown in (5.18) above, we can represent it as a periodic steady-state workload in a periodic

Gt/G/1 model, which has a periodic stochastic input and a constant service rate, via

Ly = sup
{N(Λ̃y(M̃−1

y (s)))∑
k=1

Vk − s : s ≥ 0
}
. (5.19)

Corollary 5.4.2. (the associated periodic steady-state waiting time) The periodic steady-state wait-

ing time associated with the periodic steady-state workload in (5.18) is

Wy = M̃−1
y (Ly), 0 ≤ y < 1. (5.20)

Proof Apply the reasoning of Lemma 5.4.1.

In Whitt (2015) we showed that the rate-matching service-rate control in (4.1) stabilizes the

queue-length process. Now we establish the corresponding result for the workload.

Theorem 5.4.1. (stabilizing the periodic workload) If the rate-matching control in (4.1) is used,

then Ly
d
= L for Ly in (5.18), where L is the steady-state workload in the associated (stable)

stationary G/G/1 model, i.e.,

L
d
= sup

s≥0

{N(s)∑
k=1

Vk − ρ−1s
}
, (5.21)

which is independent of y.

Proof With the rate matching control, we have M(t) = CΛ(t) and M̃y(t) = CΛ̃y(t), t ≥ 0. As a

consequence, M̃y(Λ̃
−1
y (t)) = Ct, t ≥ 0, so that

Ly
d
= sup

s≥0

{N(s)∑
k=1

Vk − M̃y(Λ̃
−1
y (s))

}
d
= sup

s≥0

{N(s)∑
k=1

Vk − Cs
}

d
= L. (5.22)
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5.5 The Simulation Search Algorithm

The rare-event simulation algorithm from Chapter 3 exploits the classic rare-event simulation al-

gorithm for the GI/GI/1 queue, exploiting importance sampling using an exponential change of

measure, as in Ch. XIII of Asmussen (2003) and Ch. VI of Asmussen and Glynn (2007). Hence

our simulation algorithm applies to the GIt/GIt/1 queue. It was shown in Chapter 3 that the

algorithm is effective for estimating the mean as well as small tail probabilities. (Also see Chapter

2.)

5.5.1 The GIt/GIt/1 Model

In the GIt/GIt/1 setting, the underlying rate-1 process N is an equilibrium renewal process, which

means that U1 has the stationary-excess or equilibrium distribution Ue, which may be different

from the i.i.d. distributions of Uk, k ≥ 2. Also in the GIt/GIt/1 setting, the service times Vk’s are

i.i.d. with distribution V , and are independent of the arrival process.

The simulation algorithm exploits the discrete-time representation of the workload Ly in (5.18)

and the waiting time Wy, i.e.,

Ly
d
= sup

s≥0

{N(s)∑
k=1

Vk − M̃y(Λ̃
−1
y (s))

}
d
= sup

n≥0

{ n∑
k=1

Vk − M̃y(Λ̃
−1
y (

n∑
k=1

Uk))
}
,

Wy
d
= M−1

y (Ly), 0 ≤ y < 1. (5.23)

where My is the same as Mt, which is the forward integral of the service rate starting from position

y within a cycle.

We exploit the rare-event simulation algorithm in Chapter 3, which is based on an exponential

change of measure. In that setting, we use the underlying measure Pθ∗ determined for GI/GI/1

queue. We again use the same notations Xk(ρ) = Vk−ρ−1Uk and partial sum process Sn ≡
∑n

k=1Xk

for GI/GI/1 and define the new associated process

Qn ≡
n∑
k=1

Vk − M̃y(Λ̃
−1
y (

n∑
k=1

Uk)),

which is the process inside the supremum function. To avoid duplication of notation, we let the

likelihood function here be denoted by Ψ instead of L. Then the estimator of the rare-event
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probability for Wy can be derived as below:

P (Wy > b) = P (M−1
y (Ly) > b) = P (Ly > My(b))

= P (τQMy(b) <∞) = Eθ∗ [ΨτQ
My(b)

(θ∗)]

= Eθ∗ [mX1(θ∗)mX(θ∗)
(τQ
My(b)

−1)
exp(−θ∗S

τQ
My(b)

)]

= mX1(θ∗)Eθ∗ [exp(θ∗S
τQ
My(b)

)], (5.24)

where τQMy(b) is the stopping time of process Qn at level My(b), Ψ
τQ
My(b)

(θ∗) is the exponentially

tilted likelihood ratio for process Qn at n = τQMy(b), mX(θ∗) is the moment generating function of

X at θ∗. The first X1(ρ) in the partial sum S
τQ
My(b)

has a different distribution from {Xk, k ≥ 2}.

5.5.2 The Extended Algorithm

Here is a summary of the extended algorithm to estimate the tail probabilities in the GIt/GIt/1

queue with average service rate 1 and average arrival rate ρ:

1. Construct a table of the inverse cumulative arrival-rate function ρΛ̃−1
y (same as for GIt/GI/1).

2. Determine the required length of partial sums (ns) needed in each application (same as for

GIt/GI/1).

3. For each replication, we generate the required vectors of exponentially tilted interarrival times

ρ−1Ũ and service times Ṽ from F−θ
∗

ρ−1U
and F θ

∗
V respectively (same as for GIt/GI/1).

4. Calculate the associated vectors of Sn and Qn and find out the stopping time τQMy(b), which

is the hitting time of Qn at level My(b). This step is different from for GIt/GI/1 in that first

we need to calculate My(b) as the hitting level instead of b and second we calculate vector

Qn different from Rn in an additional function M̃y in the second term.

5. Use the above estimator to calculate the tail probability P (Wy > b) for each replication (same

as for GIt/GI/1).

6. Run N i.i.d. replications and calculate the mean of the estimated values of P (Wy > b) (same

as for GIt/GI/1).
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5.5.3 Explicit Representations for the Sinusoidal Case

Here we summarize the expressions for all the basic deterministic rate functions in our sinusoidal

examples, extending (2.4), (5.4) and (2.6):

Λ̃y(t) = ρ(t+
β

γ
(cos(γ(t− yC))− cos(γyC)))

M(t) = t− ξ β
γ

(cos(γ(t− η))− cos(γη))

My(t) = t− ξ β
γ

(cos(γ(t+ yC − η))− cos(γ(yC − η)))

M̃y(t) = t+ ξ
β

γ
(cos(γ(t+ η − yC))− cos(γ(η − yC))). (5.25)

5.5.4 The Search Algorithm

We use an elementary iterative search algorithm, fixing an initial value of η at the mean for the

steady-state model, ρ/(1 − ρ), and searching first over ξ and then over each variable iteratively

until we get negligible improvement. That simple approach is substantiated by estimating the

structure of the objective function. Figure 5.2 illustrates by showing the maximum waiting time

max0≤y≤C {E[Wy]} in the setting of Figure 5.1 (left). Figure 5.2 shows estimates of the maximum

waiting time max0≤y≤C {E[Wy]} as a function of (η, ξ) in [0, 20]× [0, 5] (left) [3, 9]× [0.6, 1.0] (right)

in that setting. Figure 5.2 shows that the function is not convex as a function of η, but suggests

that it is unimodal with a unique global minimum, supporting our simple procedure. The plots for

the maximum deviation max0≤y≤C {E[Wy]} −max0≤y≤C {E[Wy]} are similar.

We perform the search with fewer points y and replications in the initial stages, and then

confirm with more points, 40 values of y and 40, 000 replications, which yields excellent statistical

precision, as can be seen from the narrow confidence interval bands in Figure 5.1.

5.6 Supporting Heavy-Traffic Limits

In this section we obtain a heavy-traffic (HT) functional weak law of large numbers (FWLLN) and a

HT functional central limit theorem (FCLT) for the periodic Gt/Gt/1 model with a general service-

rate control of the form in (5.4). The HT FCLT produces a limit depending on an asymptotic time

lag η̂ and damping factor ξ̂, which arise from HT limits; see condition (5.52) in Theorem 5.6.2
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Figure 5.2: Three-dimensional plots of estimates of the maximum waiting time

max0≤y≤C {E[Wy]} for (η, ξ) in [0, 20]× [0, 5] (left) [3, 9]× [0.6, 1.0] (right).

and the conclusion in (5.44). Thus we reduce the optimization problems over the parameter pairs

(ηρ, ξρ) in (5.7) and (5.8), asymptotically as ρ ↑ 1, to diffusion control problems with the parameter

pairs (η̂, ξ̂).

5.6.1 The Underlying Rate-One Processes

As in much of the HT literature, we start by introducing basic rate-1 stochastic processes, but

here we consider service requirements instead of service times. We assume that the rate-1 arrival

and service-requirements processes N and V specified in §5.4 are independent and each satisfies a

FCLT. To state the result, let N̂a
n and Ŝvn be the scaled processes defined by

N̂a
n(t) ≡ n−1/2[N(nt)− nt] and Ŝvn(t) ≡ n−1/2[

bntc∑
i=1

Vk − nt], t ≥ 0, (5.26)

with ≡ denoting equality in distribution and bxc denoting the greatest integer less than or equal

to x. We assume that

N̂a
n ⇒ caBa and Ŝvn ⇒ csBs in D as n→∞, (5.27)

where D is the usual function space of right-continuous real-valued functions on [0,∞) with left

limits and⇒ denotes convergence in distribution, as in Whitt (2002), while Ba and Bs are indepen-
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dent standard (mean 0, variance 1) Brownian motion processes (BM’s). The assumed independence

implies joint convergence in (5.27) by Theorem 11.4.4 of Whitt (2002).

We emphasize that GI assumptions are not needed, but that is an important special case. If

the service times Vk are i.i.d. mean-1 random variables with variance, also the squared coefficient of

variation (scv), c2
s, then the limit in (5.27) holds with service variability parameter cs. Similarly, if

the base arrival process is a renewal process or an equilibrium renewal process with times between

renewals having mean 1 and variance (and scv) c2
a, then the limit in (5.27) holds with arrival vari-

ability parameter ca. (See Nieuwenhuis (1989) for theoretical support in the case of an equilibrium

renewal process.)

For the queueing HT FCLT, we will apply Theorem 9.3.4 of Whitt (2002), which refers to the

conditions of Theorem 9.3.3. Those conditions require a joint FCLT for the partial sums of the

arrival and service processes, notably (3.9) on p. 295. That convergence follows from the FCLT’s

we assumed for N̂a
n and Ŝvn in (5.27) above. In particular, the assumed FCLT for Na

n implies the

associated FCLT for the partial sums of the interarrival times by Theorem 7.3.2 and Corollary 7.3.1

of Whitt (2002).

5.6.2 A Family of Models

As a basis for the HT FCLT, we create a model for each ρ, 0 < ρ < 1. We do so by defining the

arrival-rate and service-rate functions.

5.6.2.1 The Arrival-Rate and Service-Rate Functions.

Let the arrival-rate function in model ρ be as in (5.11) in the setting of (5.1)-(5.3). As a further

regularity condition, we also require that the function s be an element of the function space D, as

in Whitt (2002). Then the associated cumulative arrival-rate function in model ρ be

Λρ(t) ≡ ρ(t+ (1− ρ)−2S((1− ρ)2t), t ≥ 0, (5.28)

where

S(t) ≡
∫ t

0
s(u) du, (5.29)

for s again being the periodic function in (5.1)-(5.3). From (5.28)-(5.29), we see that the associated

arrival-rate function obtained by differentiation in (5.28) is indeed λρ(t) in (5.11).
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The time scaling in (5.11) and (5.28) implies that the period in model ρ with arrival-rate function

λρ(t) in (5.11) is Cρ = C(1− ρ)−2, where C is the period of s(t) in (5.1)-(5.3). Thus the period Cρ

in model ρ is growing with ρ. This scaling follows Lemma 5.1 and Theorem 5.2 of Whitt (2015),

with n there replaced by (1− ρ)−2. In particular, the scaling here is in fluid or FWLLN scale, and

thus is different from the diffusion or FCLT scaling in Theorem 3.2 of Whitt (2014) and Theorem

3.6.1.

Let Aρ(t) ≡ N(Λρ(t)) be the arrival process in model ρ, which is obtained by using the cumu-

lative arrival-rate function Λρ in (5.28) in place of Λ in (2.2). Given that definition, we see that

the cumulative arrival rate is indeed

E[Aρ(t)] = E[N(Λρ(t))] = Λρ(t), t ≥ 0. (5.30)

We now define associated scaled time-varying service-rate functions. These are the rate-matching

service-rate functions in Chapter 4 modified by a time lag and a damping factor. In particular,

µρ(t) ≡ 1 + ξρs((1− ρ)2(t− ηρ)) and

Mρ(t) ≡
∫ t

0
µρ(u) du = t

+(1− ρ)−2ξρS((1− ρ)2(t− ηρ)), t ≥ 0, (5.31)

where s is the periodic function with period C in (5.2), while ηρ is the ρ-dependent time lag and

ξρ is the ρ-dependent damping factor. From (5.31) and (5.2), we see that the average service rate

is µ̄ρ = 1 for all ρ. As a consequence, the average traffic intensity is λ̄ρ/µ̄ρ = ρ for all ρ, while the

instantaneous traffic intensity at time t is λρ(t)/µρ(t), t ≥ 0, which is a more complicated periodic

function, again with period C.

5.6.2.2 The Associated Queueing Processes

Having defined the family of arrival processes Aρ(t) and deterministic service-rate functions Mρ(t)

above, we define the other queueing processes Yρ(t), Xρ(t), Lρ(t) and Wρ(t) as in §5.4.2. Let the

completed-work process be defined by

C ′ρ(t) ≡ Yρ(t)− Lρ(t), t ≥ 0. (5.32)

We now can apply Lemma 5.4.1 in §5.4 to express the waiting time process as

Wρ(t) ≡ inf {u ≥ 0 : Mρ(t+ u)−Mρ(t) ≥ Lρ(t)}, t ≥ 0. (5.33)
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The (virtual) waiting time Wρ(t) represents the time that a hypothetical arrival at time t would

have to wait before starting service.

As in (2.3), we can define the queue-length process (number in system) and the departure

process in model ρ jointly. We can also express the departure process in terms of the workload

process instead of the queue-length process by

Dρ(t) ≡ Ns

(∫ t

0
µρ(s)1{Lρ(s)>0} ds

)
, t ≥ 0, (5.34)

but we do not focus on the departure and queue-length processes here.

5.6.3 The Scaled Queueing Processes

We start with the FWLLN-scaled processes. First let the scaled deterministic rate functions be

Λ̄ρ(t) ≡ (1− ρ)2Λρ((1− ρ)−2t) and M̄ρ(t) ≡ (1− ρ)2Mρ((1− ρ)−2t), t ≥ 0, (5.35)

for Λρ(t) in (5.28) and Mρ(t) in (5.31). We immediately see that

Λ̄ρ → Λf in D as ρ ↑ 1, (5.36)

where

Λf (t) ≡ t+ S(t), t ≥ 0, (5.37)

for S(t) in (5.29).

Let the FWLLN-scaled arrival arrival stochastic process be defined by

Āρ(t) ≡ (1− ρ)2Aρ((1− ρ)−2t), (5.38)

Let the input, net-input, workload, completed-work and waiting-time components of the FWLLN-

scaled the vector (Āρ, Ȳρ, X̄ρ, L̄ρ, C̄
′
ρ, W̄ρ) be defined in the same way.

Then let the associated FCLT-scaled deterministic rate functions be defined by

Λ̂ρ(t) ≡ (1− ρ)[Λρ((1− ρ)−2t)− (1− ρ)−2Λf (t)],

M̂ρ(t) ≡ (1− ρ)[Mρ((1− ρ)−2t)− (1− ρ)−2Λf (t)] (5.39)
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for Λf in (5.37). Let the associated FCLT-scaled stochastic processes be defined by

Âρ(t) ≡ (1− ρ)[Aρ((1− ρ)−2t)− (1− ρ)−2Λf (t)],

Ŷρ(t) ≡ (1− ρ)[Yρ((1− ρ)−2t)− (1− ρ)−2Λf (t)],

X̂ρ(t) ≡ (1− ρ)Xρ((1− ρ)−2t),

L̂ρ(t) ≡ (1− ρ)Lρ((1− ρ)−2t),

Ĉ ′ρ(t) ≡ (1− ρ)[C ′ρ((1− ρ)−2t)− (1− ρ)−2Λf (t)],

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t), t ≥ 0. (5.40)

5.6.4 The HT FWLLN

We start with the HT FWLLN. The limit provides a deterministic fluid approximation. However,

simple fluid approximations evidently are too crude to provide much help. Corollary 5.6.1 below

shows that the rate-matching control stabilizes both the workload and the waiting time for the

fluid approximation.

Let Dk be the k-fold product space of D with itself, let ⇒ denote convergence in distribution

and let x ◦ y be the composition function defined by (x ◦ y)(t) ≡ x(y(t)). Let a∧ b ≡ min {a, b} and

let ψ : D → D be the standard one-dimensional reflection map as in §13.5 of Whitt (2002), i.e.,

ψ(x)(t) ≡ x(t)− (inf {x(s) : 0 ≤ s ≤ t} ∧ 0), t ≥ 0. (5.41)

Theorem 5.6.1. (HT FWLLN) Under the definitions and assumptions in §5.6 above, if ξρ → ξ

and ηρ → η as ρ ↑ 1, and the system starts empty at time 0, then

M̄ρ →Mf in D, where Mf (t) ≡ t+ ξS(t− η) (5.42)

and

(Āρ, Ȳρ, X̄ρ, L̄ρ, C̄
′
ρ, W̄ρ)⇒ (Ā, Ȳ , X̄, L̄, C̄ ′, W̄ ) in D6 as ρ ↑ 1 (5.43)

for (Āρ, Ȳρ, X̄ρ, L̄ρ, C̄
′
ρ, W̄ρ) defined in (5.38), where

Ā(t) ≡ Ȳ (t) ≡ Λf (t), X̄(t) ≡ S(t)− ξS(t− η), t ≥ η,

L̄(t) ≡ sup
0≤s≤C

{X(t)−X(t− s)}, t ≥ C + η,

C̄ ′(t) ≡ Ȳ (t)− L̄(t), and

W̄ (t) ≡ inf {u ≥ 0 : Mf (t+ u)−Mf (t) ≥ L̄(t)}, t ≥ 0. (5.44)
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for Λf (t) in (5.37) with S(t) in (5.29), Mf (t) in (5.42) and ψ being the reflection map in (5.41).

Proof We successively apply the continuous mapping theorem (CMT) using the functions in §12.7

and §13.2-13.6 of Whitt (2002). First, observe that (5.42) is a minor modification of (5.36). Let

N̄a
ρ and S̄ρ denote N̄a

n and S̄vn, respectively, where, paralleling (5.26), we let N̄a
n(t) ≡ n−1N(nt)

and S̄vn ≡ n−1Svbntc, t ≥ 0, and then let n = (1 − ρ)−2. Then observe that Āρ = N̄a
ρ ◦ Λ̄ρ and

Ȳρ = S̄ρ ◦ Āρ, so that we can apply the CMT with the composition map. The limit for X̄ρ follows

from the CMT with addition and then the limit for L̄ρ follows from the CMT with the reflection

map in (5.41). To establish the limit for the scaled waiting time W̄ρ(t) in D we apply the CMT

with the inverse function. Finally, the limit for C̄ρ again follows from the CMT with addition.

We obtain stronger results in special cases:

Corollary 5.6.1. (FWLLN for the rate-matching service rate control) In addition to the conditions

of Theorem 5.6.1, if η = 0 and ξ = 1, then Mf (t) = Λf (t), t ≥ 0, and then X̄(t) = L̄(t) = W̄ (t) = 0

for all t ≥ 0, while C̄ = Ȳ = Ā = Λf .

Remark 5.6.1. (stabilization achieved by many fluid models) It is evident that the conclusion of

Corollary 5.6.1 holds for any single-server fluid model with arrival rate λ(t) and service rate µ(t)

provided that µ(t) ≥ λ(t) for all t. The (η, ξ) controls are intended to address the time-varying

arrival rate in the more general stochastic setting.

As a modification of Corollary 5.6.1, we can have all customers wait exactly η if we provide no

service until time η.

Corollary 5.6.2. (stabilizing the waiting time at any positive value) In addition to the conditions

of Theorem 5.6.1, if ξ = 1 and Mf (t) = 0, 0 ≤ t < η, then Mf (t) = Λf (t − η), t ≥ η, for a fixed

time lag η > 0, so that

L̄(t) = X̄(t) ≡ X̄η(t) = Λf (t)− Λf (t− η) =

∫ t

t−η
λf (s) ds > 0 (5.45)

and

W̄ (t) = η for all t ≥ η. (5.46)

Corollary 5.6.3. (sinusoidal with damped time lag) In addition to the conditions of Theorem 5.6.1,

suppose that

s(t) ≡ β sin (γt), t ≥ 0, (5.47)
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for positive constants β and γ with β < 1, so that s(t) is periodic with period C ≡ Cγ = 2π/γ.

Then

S(t) = (β/γ)(1− cos (γt)), t ≥ η, (5.48)

so that

L̄(t) = (β/γ)([ξ cos (γ(t− η))− cos (γt)]

+ sup
0≤s≤C

{cos (γ(t− s))− ξ cos (γ(t− η − s))}

= (β/γ)([ξ cos (γ(t− η))− cos (γt)]

+ sup
0≤s≤C

{cos (γs)− ξ cos (γ(s− η))}), t ≥ c+ η. (5.49)

For the special case ξ = 1, W̄ (t) = η. If in addition, and η < π/γ, the supremum in (5.49) is

attained at s∗ = (π/2γ)− (η/2), so that

L̄(t) = (
β

γ
)([cos (γ(t− η))− cos (γt)] + [cos ((π/2)− (γη/2))− cos ((π/2) + (γη/2))]) (5.50)

for t ≥ C + η. As η ↓ 0,

L̄(t)/η → 1 + β sin (γt) = 1 + s(t). (5.51)

Remark 5.6.2. (the impact of high or low frequency) Corollary 5.6.3 shows the impact of high or

low frequency. First, it is well known that high frequency has negligible impact, because perfor-

mance tends to be determined by the behavior of the cumulative arrival rate function Λ(t) in (2.2)

rather than the rate function λ(t). From (5.48) and (5.49), we see that S(t)→ 0 and L̄(t)→ 0 as

γ →∞. On the other hand, for any fixed t, s(t)→ 0 as γ → 0.

5.6.5 The HT FCLT

We now state our main HT result: the HT FCLT with periodicity in fluid scale, as in (5.11). We

present the proof in §5.7 after discussing consequences here.

Theorem 5.6.2. (HT FCLT) In addition to the definitions and assumptions in §5.6 above, in-

cluding the scaled arrival-rate function in (5.11), assume that the periodic function s(t) in (5.2) is

continuous and

(1− ρ)ηρ → η̂ and
ξρ − 1

1− ρ
→ ξ̂ as ρ ↑ 1, (5.52)
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where 0 ≤ η̂ < ∞ and 0 ≤ ξ̂ < ∞. Then there is a limit for the scaled cumulative service-rate

functions M̂ρ in (5.31) and (5.39); i.e.,

M̂ρ(t) ≡ (1− ρ)[Mρ((1− ρ)−2t)− (1− ρ)−2(t+ S(t))]

→ M̂(t) ≡ −s(t)η̂ + S(t)ξ̂ in D as ρ ↑ 1 (5.53)

for s(t) in (5.2) and S(t) in (5.29). If, in addition, the system starts empty at time 0, then

(Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉ
′
ρ)⇒ (Â, Ŷ , X̂, L̂, Ŵ , Ĉ ′) in D5 as ρ ↑ 1 (5.54)

for (Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉ
′
ρ) defined in (5.40), where

Â(t) ≡ (caBa − e) ◦ Λf (t), Ŷ (t) ≡ (cxB − e) ◦ Λf (t), Ĉ ′(t) ≡ Ŷ (t)− L̂(t),

X̂(t) ≡ Ŷ (t)− M̂(t) = Ŷ (t) + s(t)η̂ − S(t)ξ̂

= (cxB ◦ Λf )(t)− Λf (t) + s(t)η̂ − S(t)ξ̂,

L̂(t) ≡ ψ(X̂)(t) and Ŵ (t) ≡ L̂(t)/µf (t), t ≥ 0. (5.55)

with cx ≡
√
c2
a + c2

s, B a BM, ψ the reflection map in (5.41) and µf (t) ≡ λf (t) ≡ 1 + s(t), t ≥ 0,

the limiting arrival-rate function, the dervative of Λf in (5.37).

We now draw attention to some important consequences. First, Theorem 5.6.2 establishes a

HT time-varying (TV) Little’s law (LL), paralleling the many-server heavy-traffic (MSHT) TV LL

in Sun and Whitt (2018) and exposed for the rate-matching control in Theorem 4.2.4. This is a

time-varying version of the familiar state-space collapse, which goes back to the early HT papers,

e.g., Whitt (1971). We remark that the relation is different from the time-varying LL discussed in

Bertsimas and Mourtzinou (1997), Fralix and Riano (2010) and Sigman and Whitt (2018), Whitt

and Zhang (2018).

Corollary 5.6.4. (HT time-varying Little’s law) Under the conditions of Theorem 5.6.2, the limit

processes are related by

L̂(t) = λf (t)Ŵ (t), t ≥ 0, w.p.1. (5.56)

We now consider an alternative deterministic limit to the HT FWLLN in Theorem 5.6.1. Now

we assume that the FCLT holds with the variability parameter set equal to 0. For this purpose, we

assume that s(t) is differentiable and let ṡ(t) be its derivative.
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Corollary 5.6.5. (the case of no variability) If cx = 0 and s(t) is differentiable in addition to the

conditions of Theorem 5.6.2, then

X̂(t) = −t+ s(t)η̂ − S(t)(ξ̂ + 1), t ≥ 0, (5.57)

so that L̂(t) = Ŵ (t) = 0 for all t ≥ 0 if and only if

dX̂(t)

dt
= −1 + η̂ṡ(t)− (ξ̂ + 1)s(t) ≤ 0, t ≥ 0. (5.58)

In the sinusoidal case with s(t) ≡ β sin γt in (2.4),

dX̂(t)

dt
= −1 + η̂βγ cos γt− (ξ̂ + 1)β sin γt, t ≥ 0. (5.59)

For β = 1 and γ → 0,
dX̂(t)

dt
→ −1− (ξ̂ + 1)β sin γt, t ≥ 0, (5.60)

which is strictly positive over subintervals if ξ̂ > 0.

For the nondegenerate sinusoidal arrival rate function, the derivative in (5.58) of Corollary 5.6.5

implies it is not always possible to stabilize the limiting time-varying diffusion process Ŵ with ξ̂ > 0

in Theorem 5.6.2. We conjecture that it is never possible to stabilize it perfectly.

We now establish conditions for the optimality of an (η̂∗, ξ̂∗) control for the limiting diffusion

control problem for either formulation (5.7) or (5.8). Our proof will exploit uniform integrability

(UI); see p. 31 of Billingsley (1999).

Corollary 5.6.6. (optimality for the limiting diffusion process) Consider the special case of the

GIt/GIt/1 model with E[U2+ε
k ] < ∞ and E[V 2+ε

k ] < ∞ for some ε > 0. If (η∗ρ, ξ
∗
ρ) → (η̂∗, ξ̂∗) as

ρ → 1, where (η∗ρ, η
∗
ρ) is the optimal control for problem (5.7) or (5.8), then the limiting control

(η̂∗, ξ̂∗) is optimal for the corresponding diffusion control problem.

Proof We let (η̃, ξ̃) be any alternative control for the limiting diffusioon process. Then let (η̃ρ, ξ̃ρ)

be an associated control for model ρ, 0 < ρ < 1, where η̃ρ ≡ η̃/(1− ρ) and η̃ρ ≡ 1 + (1− ρ)ξ̃. Then,

by this construction, condition (5.52) holds for the family (η̃ρ, ξ̃ρ). We next want to show that the

convergence in distribution can be extended to convergence of the means for all t, which requires

uniform integrability uniformly in t; see p. 31 of Billingsley (1999). We use the bounds on the

second moments to show that it holds.
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Toward that end, we exploit the upper bounds for the workload process in the Gt/Gt/1 model in

terms of the associated workload process in the stationary G/G/1 model from §3.3. These bounds

extend directly to the Gt/Gt/1 model by virtue of Corollary 5.4.1. These bounds show that the

mean workload is bounded above uniformly in y over the interval [0, C]. These bounds also apply

to the waiting time process because W (t) ≤ L(t)/µL, where µL > 0 is a lower bound on the service

rate, which follows from (5.3) and (5.4). For the stationary GI/GI/1 model, finite second moments

imply the existence of the first moments of the waiting time and uniform integrability needed for

convergence; see p. 31 of Billingsley (1999) and §X.2 and X.7 of Asmussen (2003).

Finally, we observe that our optimal policy (η∗ρ, ξ
∗
ρ) has expected value greater than or equal

to the alternative policy (η̃ρ, ξ̃ρ) for all ρ, while both converge as ρ → 1. Hence, the limit of the

optimal policies, (η̂∗, ξ̂∗) must be at least as good as (η̃, ξ̃).

We apply Corollary 5.6.6 to support our numerical calculations by observing that (η∗ρ, ξ
∗
ρ) when

scaled as in (5.52) converges to a limit. We thus deduce that the limit must be the optimal policy

for the diffusion. However, this numerical evidence is not a mathematical proof. Moreover, while

the numerical evidence is good, it is not exceptionally good, especially for ξ∗ρ as can be seen from

Table 5.1 in §5.9.1 below.

5.7 Proof of Theorem 5.6.2

To establish (5.53), apply (5.31) and (5.39) to obtain

M̂ρ(t) ≡ (1− ρ)[Mρ((1− ρ)−2t)− (1− ρ)−2(t+ S(t))]

= (1− ρ)−1[ξρS(t− (1− ρ)2ηρ)− S(t)]

= (1− ρ)−1[ξρS(t− (1− ρ)2ηρ)− ξρS(t)] + (1− ρ)−1[ξρS(t)− S(t)]

→ −η̂s(t) + ξ̂S(t) in D as ρ ↑ 1, (5.61)

where on the third line we have subtracted and added the term ξρS(t) and on the last line we have

differentiated using

(1− ρ)2ηρ/(1− ρ) = (1− ρ)ηρ → η̂ as ρ ↑ 1

by assumption (5.52). We used the assumed continuity of s to have S be continuously differentiable,

so that the derivative of S(t) holds uniformly in t over bounded intervals.
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We next establish (5.54). First, the limit for Âρ is given in Lemma 5.1 of Whitt (2015), but we

need to make an adjustment because the arrival rate in model ρ is chosen to be ρ here as opposed

to 1 before. From (5.28), (5.36) and (5.39), we see that

Λ̄ρ(t) = ρΛf (t)→ Λf (t) in D as ρ→ 1

Λ̂ρ(t) = (1− ρ)−1ρΛf (t)− (1− ρ)−1Λf (t) = −Λf (t) (5.62)

for all ρ, where Λf (t) is defined in (5.37). Then the limit for Âρ follows from the standard argument

for random sums. The key is to observe that

Âρ = N̂ρ ◦ Λ̄ρ + Λ̂ρ, (5.63)

where N̂ρ is defined to be N̂n in (5.26) for n = (1−ρ)−2. So we can start with the joint convergence(
N̂ρ, Λ̄ρ, Λ̂ρ

)
⇒ (caBa,Λf ,−Λf ) in D3 as ρ→ 1, (5.64)

We then apply convergence preservation with the map g(x, y, z) = x ◦ y + z (composition plus

addition) as in §13.3 of Whitt (2002) to get Âρ ⇒ caBa ◦ Λf − Λf = (caBa − e) ◦ Λf in D.

Similarly, given that N̄ρ ≡ (1− ρ)2N((1− ρ)−2t)⇒ e and Āρ ≡ (1− ρ)2A((1− ρ)−2t),

Āρ = (1− ρ)2N(Λρ((1− ρ)−2t)) = (1− ρ)2N((1− ρ)−2ρΛf (t))

= N̄ρ(ρΛf (t))⇒ Λf in D as ρ→ 1. (5.65)

A variant of the random-sum argument holds for Ŷρ too. In particular, we start with the joint

convergence (
Ŝρ, Āρ, Âρ

)
⇒ (csBs,Λf , caBa ◦ Λf − Λf ) in D3 as ρ→ 1, (5.66)

The joint convergence holds by virtue of Theorems 11.4.4 and 11.4.5 of Whitt (2002). We then

apply convergence preservation with the map g(x, y, z) = x ◦ y + z (composition plus addition) as

in §13.3 of Whitt (2002) to get

Ŷρ = Ŝρ ◦ Āρ + Âρ ⇒ csBs ◦ Λf + caBa ◦ Λf − Λf

d
= cxB ◦ Λf − Λf in D as ρ→ 1. (5.67)

Then the limits for X̂ρ and L̂ρ follow from the continuous mapping theorem with the standard

reflection map reasoning, e.g., as in Chapter 9 of Whitt (2002), even though the service rate

function is now more general.



CHAPTER 5. DAMPED TIME-LAG SERVICE-RATE CONTROL 118

However, the waiting time requires a new treatment. The limit follows from the definition of the

scaled service-rate control in (5.31) and the first-passage-time representation of the waiting time in

(5.33). The structure and result are similar to the Puhalskii Puhalskii (1994) theorem and related

results in §13.7 of Whitt (2002), but they evidently do not apply directly.

We will apply Taylor’s theorem to a perturbation of S in (5.29). The essential idea is that

(1− ρ)−1[S(t+ (1− ρ)u)− S(t)]→ s(t)u as ρ→ 1 (5.68)

uniformly in t and u over bounded intervals. Just as in (5.61), we use the assumed continuity of s

to have S be continuously differentiable, so that the derivative of S(t) holds uniformly in t and u

over bounded intervals.

For the specific application, let

S̃ρ(t, u) ≡ (1− ρ)−1ξρ[S(t+ (1− ρ)u− (1− ρ)2ηρ)− S(t− (1− ρ)2ηρ)] (5.69)

and

ζρ(t, u) ≡ S̃ρ(t, u)− s(t)u. (5.70)

By combining (5.68) and the two limits in condition (5.52), we see that ζρ(t, u) is asymptotically

negligible as ρ → 1 uniformly in t and u over bounded intervals. We will use this at the critical

final step in the following representation.

To start, let M̃ρ(t, u) ≡Mρ((1− ρ)−2t+ u). Then, from (5.40) and (5.33),

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t)

= (1− ρ) inf {u ≥ 0 : M̃ρ(t, u)− M̃ρ(t, 0)) ≥ Lρ((1− ρ)−2t)}

= inf {u ≥ 0 : M̃ρ(t, (1− ρ)−1u)− M̃ρ(t, 0) ≥ Lρ((1− ρ)−2t)}

= inf {u ≥ 0 : (1− ρ)[M̃ρ(t, (1− ρ)−1u)− M̃ρ(t, 0)] ≥ L̂ρ(t)}

= inf {u ≥ 0 : u+ S̃ρ(t, u) ≥ L̂ρ(t)}

= inf {u ≥ 0 : u+ s(t)u+ ζρ(t, u) ≥ L̂ρ(t)}

= inf {u ≥ 0 : uλf (t) + ζρ(t, u) ≥ L̂ρ(t)}, t ≥ 0, (5.71)

where λf (t) = t+ s(t) by (5.37) and we apply Taylor’s theorem with (5.69) and (5.70) in line 6 to

obtain that ζρ(t, u) is asymptotically negligible as ρ→ 1 uniformly over both t and u over bounded

subintervals.
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For the final step, to simplify, we make the entire argument deterministic by using the Skorohod

representation theorem, as in Theorem 3.2.2 of Whitt (2002), to replace the stochastic convergence

L̂ρ ⇒ L̂ in D by associated convergence w.p.1. Then we see from line 6 of (5.71) that in the

infinimum it suffices to consider u only just beyond L̂(t)/λf (t), which for t in a bounded interval is

bounded for each sample path, because λf (t) has been assumed to be bounded below, while L̂(t)

is bounded above, for t in a bounded interval. Thus, we can write

L̂ρ(t)−Kζ↑ρ(t)

λf (t)
≤ Ŵρ(t) ≤

L̂ρ(t) +Kζ↑ρ(t)

λf (t)
(5.72)

for t and u over specified bounded intervals, K an appropriate positive constant and

ζ↑ρ(t) ≡ sup
0≤u≤ū

|ζρ(t, u)|

for an appropriate ū. Given that L̂ρ ⇒ L̂ and ζ↑ρ → 0 in D, we can use the standard sandwiching

argument (uniformly over bounded time intervals) to obtain convergence Ŵρ(t) ⇒ L̂(t)/λf (t) ≡

Ŵ (t) in D, which completes the proof.

5.8 A HT FCLT with Periodicity

In this section we establish a HT FCLT with periodicity holding in the weaker diffusion scale instead

of in the fluid scale, as was done in §5.6. The scaling here follows Whitt (2014) and §3.6 instead

of Whitt (2015). In this scaling the HT limits of the waiting time coincides with the HT limit for

the workload process, and so does not capture the differences we see in the simulations in previous

sections.

5.8.1 An Alternative Family of Models

We start with the same basic rate-1 processes in §5.6.1. We then create a model for each ρ,

0 < ρ < 1, now using (5.12) instead of (5.11). That yields the family of cumulative arrival rate

functions

Λρ(t) ≡ ρ(t+ (1− ρ)−1S((1− ρ)2t)), t ≥ 0, (5.73)

for S in (5.29). Differentiating in (5.73) yields the arrival-rate function in (5.12). Just as before,

the time scaling in (5.12) and (5.73) implies that the period in model ρ with arrival-rate function



CHAPTER 5. DAMPED TIME-LAG SERVICE-RATE CONTROL 120

λρ(t) in (5.12) is Cρ = C(1− ρ)−2, where C is the period of s in (5.1)-(5.3). Thus the period Cρ in

model ρ is growing with ρ.

5.8.2 An Associated Family of Service-Rate Controls

Just as in §5.6.2.1, we define associated service-rate controls. Closely paralleling (5.12) and (5.73),

we define associated scaled time-varying service-rate functions using the control parameters ηρ and

ξρ, i.e., for all t ≥ 0,

µρ(t) ≡ 1 + (1− ρ)ξρs(t− ηρ) and

Mρ(t) ≡
∫ t

0
µρ(s) ds = t+ (1− ρ)−1ξρS((1− ρ)2(t− ηρ)). (5.74)

Just as in (5.73), differentiation of Mρ(t) in (5.74) shows that it is consistent with µρ(t). As a

consequence of (5.74), the average service rate is µ̄ρ = 1, 0 < ρ < 1.

5.8.3 The Scaled Queueing Processes

We use the same processes introduced in §5.4, but new scaling. Let the scaled arrival-rate and

service-rate functions be defined for t ≥ 0 by

Λ̂ρ(t) ≡ (1− ρ)[Λρ((1− ρ)−2t)− (1− ρ)−2t]

= ρS(t)− t

M̂ρ(t) ≡ (1− ρ)[Mρ((1− ρ)−2t)− (1− ρ)−2t]

= ξρS(t− (1− ρ)2ηρ). (5.75)

Clearly, Λ̂ρ(t)→ S(t)− t as ρ→ 1 uniformly over bounded intervals of t. The key is what happens

to M̂ρ(t). From (5.75), we get

Lemma 5.8.1. (HT limit of M̂ρ(t)) If ξρ → 1 and (1 − ρ)2ηρ → 0, then M̂ρ(t) → S(t) uniformly

over bounded intervals of t.
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Then let associated scaled stochastic processes be defined by

Âρ(t) ≡ (1− ρ)[Aρ((1− ρ)−2t)− (1− ρ)−2t],

Ŷρ(t) ≡ (1− ρ)[Yρ((1− ρ)−2t)− (1− ρ)−2t],

X̂ρ(t) ≡ (1− ρ)Xρ((1− ρ)−2t),

L̂ρ(t) ≡ (1− ρ)Lρ((1− ρ)−2t), Ĉ ′ρ ≡ Ŷρ − L̂ρ,

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t), t ≥ 0. (5.76)

Note that the translation terms in Λ̂ρ and M̂ρ in (5.75) are different from the translation terms

in (5.35), while the translation terms in Âρ and Ŷρ in (5.76) are different from the translation terms

in (5.40). Thus, the statement of the heavy-traffic limit below is different (and weaker).

5.8.4 The HT FCLT with Periodicity

Just as in §5.6, the following heavy-traffic FCLT states that Âρ and Ŷρ converge to periodic Brow-

nian motions (PBM’s). However, unlike §5.6, X̂ρ converges to an ordinary Brownian motion (BM),

L̂ρ and Ŵρ converge to the same ordinary reflected Brownian motion (RBM), while Ĉ ′ρ has a com-

plicated limit. We thus show that L̂ρ and Ŵρ are asymptotically stable and Markov. Note that the

scaling condition on (ηρ, ξρ) here are implied by condition (5.52) in Theorem 5.6.2, but as noted

above the conclusion is different and weaker, because of the different translation terms.

Theorem 5.8.1. (heavy-traffic limit extending Theorem 3.2 of Whitt (2014) and 3.6.1) If, in

addition to the definitions and assumptions in (5.73)-(5.76) above, (1 − ρ)2ηρ → 0 and ξρ → 1 as

ρ→ 1 and the system starts empty at time 0, then

(Λ̂ρ, M̂ρ, Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉ
′
ρ)⇒ (Λ̂, M̂ , Â, Ŷ , X̂, L̂, Ŵ , Ĉ ′) (5.77)

in D8 as ρ→ 1 for (Λ̂ρ, M̂ρ) defined in (5.75) and (Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉ
′
ρ) defined in (5.76), where

Λ̂ ≡ S − e, Â ≡ caBa + S − e, M̂ ≡ S,

Ŷ ≡ Â+ csBs, X̂ ≡ Ŷ − S d
= cxB − e,

L̂ ≡ ψ(X̂), Ŵ ≡ ψ(X̂) and Ĉ ′ ≡ Ŷ − L̂, (5.78)

with Ba and Bs being independent BM’s, S in (5.29), ca and cs being the variability parameters in

(5.27), cx ≡
√
c2
a + c2

s and B is a BM.
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Proof We will be brief because most of the argument is essentially the same as in Whitt (2014)

and Chapter 3. First, the limit for Âρ is given in Theorem 3.2 of Whitt (2014). Then the limit for

Ŷρ follows from Theorem 9.3.4 of Whitt (2002), as noted in the proof of 3.6.1. (See C(t) in (9.2.4)

and Cn in (9.3.4) and Theorem 9.3.4 of Whitt (2002).) Then the limits for X̂ρ and L̂ρ follow from

the standard reflection mapping argument as in even though the service rate function is now more

general. Again, the waiting time requires a new treatment. The limit follows from the first-passage-

time representation in (5.33). In particular, paralleling (5.71), letting M̃ρ(t, u) ≡Mρ((1−ρ)−2t+u),

we have

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t)

= (1− ρ) inf {u ≥ 0 : M̃ρ(t, u)− M̃ρ(t, 0) ≥ Lρ((1− ρ)−2t)}

= inf {u ≥ 0 : M̃ρ(t, (1− ρ)−1u)− M̃ρ(t, 0) ≥ Lρ((1− ρ)−2t)}

= inf {u ≥ 0 : (1− ρ)[M̃ρ(t, (1− ρ)−1u)− M̃ρ(t, 0)] ≥ L̂ρ(t)}

= inf {u ≥ 0 : u+ ζρ(t, u) ≥ L̂ρ(t)}, (5.79)

for t ≥ 0, where

ζ(t, u) ≡ ξρ
[
S(t+ (1− ρ)u− (1− ρ)2ηρ)− S(t− (1− ρ)2ηρ)

]
, (5.80)

which is asympotically negligible as ρ→ 1 uniformly in compact intervals, given the conditions on

ηρ and ξρ. As technical support for the last step, note that

S(t+ ε)− S(t) ≤ sU ε for all ε > 0, (5.81)

for sU in (5.3). Also add and subtract ξρS(t) and treat the two terms separately, i.e.,

ξρS(t+ (1− ρ)u− (1− ρ)2ηρ)− S(t) = ξρS(t)− S(t)

+ξρS(t+ (1− ρ)u− (1− ρ)2ηρ)− ξρS(t).

Hence, we can apply the continuous mapping theorem for the inverse in §13.6 of Whitt (2002) to

get Ŵρ ⇒ L̂ in D as ρ→ 1, jointly with the other limits.
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5.9 Simulation Examples

5.9.1 In the Setting of §5.6

In this section we report results of simulation experiments to evaluate the new optimal (η∗ρ, ξ
∗
ρ)

controls as a function of ρ for models scaled according to Theorem 5.6.2, specifically by (5.11),

(5.28) and (5.31), so that we can see the systematic behavior.

5.9.1.1 Sinusoidal Examples

We start with sinusoidal examples and then consider non-sinusoidal examples. Table 5.1 shows

results for four values of the traffic intensity ρ with ρ ↑ 1 for the sinusoidal model in (5.1)-(5.4)

with HT scaling in (5.11) with parameters (ρ, βρ, γρ) = (ρ, 0.2, 2.5(1− ρ)2). For this case, we found

that the solutions to optimization problems (5.7) and (5.8) are identical, to within our statistical

precision. Hence, our solutions are for both problems.

Table 5.1 shows the estimated optimal controls η∗ρ and ξ∗ρ in each case, plus scaled versions

consistent with condition (5.52). Table 5.1 shows that the relative error is roughly independent

of ρ, being less than 1% in each case. Table 5.1 also shows that the limit η̂∗ ≈ 1.45 is rapidly

approached by (1−ρ)η∗ρ/ρ, while the limit ξ̂∗ ≈ 1.8 is roughly approached by (ξ∗ρ−1)/(1−ρ), both

of which are consistent with condition (5.52). The results support Theorem 5.6.2, but unfortunately

the rate of convergence in the control parameters is not fast. Evidently the optimal damping control

ξ∗ρ is more problematic.

For the model in Table 5.1, Figure 5.3 shows the expected periodic steady-state virtual waiting

time (solid blue line), the expected steady-state workload (the dashed red line) and arrival rate

multiplied by the mean waiting time (the dotted green line) for ρ = 0.8 (left) and ρ = 0.95 (right).

As in Figure 5.1, the 95% confidence interval bands are included, but they can only be seen by

zooming in.

We also considered alternative values of the relative amplitude β. Table 5.2 shows the solutions

to the minimum-deviation optimization problem in (5.8) for the sinusoidal model in Table 5.1

except β has been increased to β = 0.8 from 0.2. Table 5.2 shows that the relative error is roughly

independent of ρ, but the relative error has increased to about 10% from about 1% in Table 5.1.

Unlike in Figure 5.3, it is evident that the (η∗ρ, ξ
∗
ρ) control does not stabilize the expected waiting
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Table 5.1: The (identical) solutions to the minimax and minimum-deviation optimization prob-

lems in (5.7) and (5.8) for the sinusoidal model in (5.1)-(5.4) with HT scaling in (5.11) with

parameters (ρ, βρ, γρ) = (ρ, 0.2, 2.5(1− ρ)2). The mean waiting times are reported with and with-

out space scaling.

ρ 0.8 0.9 0.95 0.975

βρ ≡ β 0.2 0.2 0.2 0.2

γρ 0.1 0.025 0.00625 0.0015625

η∗ρ 5.80 12.94 27.7 56.6

η̂∗ρ ≡ (1− ρ)η∗ρ/ρ 1.45 1.44 1.46 1.45

ξ∗ρ 0.842 0.889 0.931 0.960

ξ̂∗ρ ≡ (1− ξ∗ρ)/(1− ρ) 0.79 1.11 1.38 1.60

maxE[Wy] 4.03 9.10 19.29 39.61

(1− ρ) maxE[Wy]/ρ 1.008 1.011 1.015 1.016

maxE[Wy]−minE[Wy] 0.032 0.091 0.143 0.364

avg E[Wy] 4.02 9.07 19.21 39.47

(1− ρ)avg E[Wy]/ρ 1.005 1.007 1.011 1.012

relative error 0.8% 1.0% 0.7% 0.9%

time perfectly, either for fixed ρ or asymptotically as ρ→ 1.

From cases with 0.2 ≤ β ≤ 0.9 and 0.8 ≤ ρ ≤ 0.975, we conclude that η̂∗ρ ≡ (1 − ρ)ηρ/ρ and

ξ̂∗ρ ≡ (1 − ξρ)/(1 − ρ) are nondecreasing in ρ, while η̂∗ρ (ξ̂∗ρ) is nondecreasing (nonincreasing) in β.

The relative error tends to be independent of ρ but is increasing in β. The relative error for β = 0.5

was about 4%, while the relative error for β = 0.9 was about 22%. The difficulty as β ↑ 1 can

be partially understood by the rate-matching control, where E[Wy] ≈ c/λf (t) by Theorem 4.2.4,

where c is the stable value, which has minimum and maximum values c/(1 + β) and c/(1 − β),

which deviate greatly as β ↑ 1. (The constant c is the stable value of the expected queue length.)

Tables 5.1 and 5.2 also show that the limiting optimal controls (η̂∗, ξ̂∗) as well as the relative error

depend on β.

Unlike the rate-matching control in Chapter 4, which stabilizes the entire queue-length distri-
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Figure 5.3: Plots over one cycle for the example in Table 5.1. The first row shows the expected

periodic steady-state virtual waiting time (solid blue line), the expected steady-state workload (the

dashed red line) and arrival rate multiplied by the mean waiting time (the dotted green line) for

ρ = 0.8 (left) and ρ = 0.95 (right) in the base case (β, γ) = (0.2, 2.5). The second row shows arrival

rate divided by ρ and service rate for ρ = 0.8 (left) and ρ = 0.95 in the same base case. The

optimal control parameters are (η∗ρ, ξ
∗
ρ) = (5.80, 0.84) for ρ = 0.8 and (27.7, 0.93) for ρ = 0.95. The

maximum minus minimum of E[Wy] over a cycle equals 0.0321 for ρ = 0.8 and 0.1425 for ρ = 0.95.
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bution, the optimal modified (η, ξ) control neither stabilizes the mean perfectly nor does it stabilize

the entire waiting-time distribution. However, it appears to do a reasonable job of both. Figures

5.4, 5.5 and 5.6 illustrate by showing plots of the time-varying (i) standard deviation SD[Wy], (ii)
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Table 5.2: The solutions to the minimum-deviation optimization problem in (5.8) for the sinu-

soidal model in Table 5.1 except β has been increased to β = 0.8 from 0.2. The reported average

mean waiting times are reported with and without space scaling.

ρ 0.8 0.9 0.95 0.975

βρ ≡ β 0.8 0.8 0.8 0.8

γρ 0.1 0.025 0.00625 0.0015625

η∗ρ 6.08 15.4 33.6 70.3

η̂∗ρ ≡ (1− ρ)/ρη∗ρ 1.52 1.71 1.77 1.80

ξ∗ρ 0.874 0.893 0.929 0.960

ξ̂∗ρ ≡ (1− ξ∗ρ)/(1− ρ) 0.63 1.07 1.42 1.60

maxE[Wy]−minE[Wy] 0.54 1.32 2.28 4.55

avg E[Wy] 4.33 10.68 23.97 51.76

(1− ρ)avg E[Wy]/ρ 1.08 1.19 1.14 1.26

relative error 12.5% 12.4% 9.5% 8.8%

the delay probability P (Wy > 0) and (iii) the full complementary cdf (ccdf) {P (Wy > x) : x ≥ 0}

for the two cases in Figure 5.3, i.e., for ρ = 0.8 (left) and ρ = 0.95 (right).

Very roughly, Figures 5.3, 5.4, 5.5 and 5.6 are consistent with the time-varying waiting-time

distribution being exponential as in the M/M/1 stationary model. We should not be surprised that

the results look similar for ρ = 0.8 and ρ = 0.95 because they are scaled to be part of the family of

systems satisfying the heavy-traffic limit. To consider a very different case, Figure 5.7 shows plots

of the estimated waiting-time ccdf (left) and pdf (right) for ρ = 0.95 in Figure 5.1, which is not

scaled. Without the scaling, the cycles are relatively short. Figure 5.7, especially the pdf, shows

much more varied behavior in this difficult short-cycle setting.

We now show two candidate modifications of the control used in Figure 5.1. First, Figure 5.8

shows the analog of Figure 5.1, where we fix ξ = 1 and only use the single control parameter η.

As we remarked in Remark 5.2.2 in §5.2, if we let ξ = 1 and optimize over η, then for ρ = 0.8 we

get η∗ρ = 5.93 and a maximum deviation of 0.4109, which yields about 10% relative error instead

of less than 1%. For ρ = 0.95, η∗ρ = 28.3, the maximum deviation is 3.034 and the relative error is
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Figure 5.4: Plots over one cycle for the example in Table 5.1. Estimates of the periodic steady-

state standard deviation SD[Wy] for ρ = 0.8 (left) and ρ = 0.95 (right), shown in red solid line.

Also displayed are the fluid arrival rate λf = 1 + s(t) (blue dashed line) and fluid service rate

µf = 1 + ξ∗ρs(t− η∗ρ) (blue dotted line).
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Figure 5.5: Plots over one cycle for the example in Table 5.1. Estimates of the periodic steady-

state probability of delay P (Wy > 0) for ρ = 0.8 (left) and ρ = 0.95 (right), shown in red solid

line. Also displayed are the fluid arrival rate λf = 1 + s(t) (blue dashed line) and fluid service rate

µf = 1 + ξ∗ρs(t− η∗ρ) (blue dotted line).
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Figure 5.6: Plots over one cycle for the example in Table 5.1. Estimates of the periodic steady-

state ccdf P (Wy > x) for four values of y: 0, 1/4, 1/2, 3/4 for ρ = 0.8 (left) and ρ = 0.95 (right).
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Figure 5.7: Plots over one cycle for the example in Figure 5.1 with ρ = 0.95 but without the

heavy-traffic scaling. Estimates of the ccdf (left) and pdf (right) for four values of y: 0, 1/4, 1/2, 3/4.

about 14%.

Second, Figure 5.9 shows the consequences of a direct HT approximation in the setting of Figure

5.1, obtained by letting η̂∗ ≈ 1.45, ηρ ≈ 1.45/(1 − ρ), ξ̂∗ ≈ 1.80 and ξρ ≈ 1 − 1.8(1 − ρ), based

on Table 5.1. For ρ = 0.8, (η∗ρ, ξ
∗
ρ) = (7.25, 0.64) and the maximum deviation is 0.6005, yielding

about 15% relative error. For ρ = 0.95, (η∗ρ, ξ
∗
ρ) = (29.0, 0.91) and the maximum deviation is 0.9220
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Figure 5.8: Estimates of the expected waiting time E[Wy] for the one-parameter η control with

ξ ≡ 1, for the sinusoidal example in Figure 5.1 with parameter triple (ρ, β, γ) = (0.8, 0.2, 0.1) and

ρ = 0.8 (left) and ρ = 0.95 (right). For ρ = 0.8, η∗ρ = 5.93 the maximum deviation is 0.4109 and

the relative error is about 10%; for ρ = 0.95, η∗ρ = 28.3, the maximum deviation is 3.034 and the

relative error is about 14%.

yielding about 5% relative error. Unlike in Figure 5.8, we see that the direct HT approximation

improves as ρ increases, but the direct two-parameter optimal control is better.

Finally, Figure 5.10 plots two deterministic functions associated with the diffusion limit for the

case β = 0.2, γ = 2.5, η̂ = 1.45 and ξ̂ = −1.8. On the left appears M̂(t) = −η̂s(t) + ξ̂S(t) =

−1.5β sin(γt)− 1.5(β/γ)(1− cos(γt)) together with s(t) = β sin(γt) and S(t) = (β/γ)(1− cos(γt)).

On the right appears the diffusion limit for the net input X̂(t) = −t−M(t) when cx = 0. The plot

on the right is consistent with condition (5.59) for no workload or waiting when cx = 0 in Corollary

5.6.5.
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Figure 5.9: Estimates of the expected waiting time E[Wy] (solid red line) with the heavy-traffic

control exploiting the estimated limiting controls η̂∗ ≈ 1.45 and ξ̂∗ = 1.8, so that η∗ρ ≈ 1.45/(1− ρ)

and ξ∗ρ ≈ 1 − 1.8(1 − ρ). The plots are for the sinusoidal example in Figure 5.1 with parameter

triple (ρ, β, γ) = (0.8, 0.2, 0.1) and ρ = 0.8 (left) and ρ = 0.95 (right). Also displayed are E[Ly],

λfE[Wy] and 95% confidence interval bands, which require zooming in to see.

5.9.1.2 Non-Sinusoidal Examples

We now turn to non-sinusoidal examples. We consider the piecewise-linear single-peak periodic

arrival-rate function:

λf (y) = 1− β +
2β

pC
y, 0 ≤ y < pC and

λf (y) = 1 + (
1 + p

1− p
)β − 2β

C(1− p)
y, pC ≤ y < C, (5.82)

where p ∈ [0, 1). This arrival-rate function increases linearly from 1 − β to 1 + β on [0, pC] and

decreases linearly from 1 + β to 1 − β on [pC,C]. The periodic arrival rate function with traffic

intensity ρ within one cycle is then ρλf (y).

Table 5.3 reports the optimal η and ξ for p = 1/2 (symmetric) and 1/3 (asymmetric) for ρ = 0.8,

β = 0.5 and cycle length C = 60. We consider the two objective functions: the maximum expected

waiting time and the maximum expected waiting time deviation. Then the following Figures 5.11

and 5.12 plot the expected waiting time under the optimal control for the cases p = 1/2 and

p = 1/3. Table 5.3 shows a clear difference in the objective functions in the asymmetric case, but



CHAPTER 5. DAMPED TIME-LAG SERVICE-RATE CONTROL 131

0 0.5 1 1.5 2 2.5 3

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 5.10: Deterministic functions associated with the diffusion limit for the case β = 0.2,

γ = 2.5, η̂ = 1.45 and ξ̂ = −1.8.. On the left appears M̂(t) = −η̂s(t) + ξ̂S(t) = −1.5β sin(γt) −

1.5(β/γ)(1 − cos(γt)) together with s(t) = β sin(γt) and S(t) = (β/γ)(1 − cos(γt)). On the right

appears the diffusion limit for the net input X̂(t) = −t−M(t) when cx = 0, showing that condition

condition (5.59) holds.

not in the symmetric case.
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Table 5.3: The optimal η and ξ for ρ = 0.8, β = 0.5, cycle length C = 60.

p 1/2 1/2 1/3 1/3

objective (5.7) (5.8) (5.7) (5.8)

ρ 0.8 0.8 0.8 0.8

C 60 60 60 60

ηρ 5.9 5.9 5.8 5.8

1−ρ
ρ ηρ 1.48 1.48 1.45 1.45

ξρ 0.86 0.86 0.84 0.87

1−ξρ
(1−ρ) 0.7 0.7 0.8 0.65

maxE[Wy] 4.1787 4.1787 4.2160 4.2175

maxE[Wy]−minE[Wy] 0.3081 0.3081 0.4200 0.3468

avg E[Wy] 4.08 4.08 4.08 4.09

relative error 7.6% 7.6% 10.3% 8.5%
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Figure 5.11: For ρ = 0.8, p = 1/2, β = 0.5, this figure plots the expected waiting time under

optimal control that minimizes the maximum E[Wy].
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Figure 5.12: For ρ = 0.8, p = 1/3, β = 0.5, this figure plots the expected waiting time under

optimal control that minimizes the maximum E[Wy].
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Just as for the sinusoidal examples (compare Tables 5.1 and 5.2), stabilizing the mean waiting

time becomes more difficult as β increases toward the upper limit 1. The most difficult case is

β = 1, where the arrival-rate function is 0 at the end points 0 and C. Table 5.4 shows the severe

performance degradation in this case. Insight into the difficult cases with zero or near-zero λf (t)
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can be gained from the time-varying Little’s law in Corollary 5.6.4 and steps (5.71) and (5.72) in

the proof of Theorem 5.6.2.

Table 5.4: The optimal η and ξ for ρ = 0.8, β = 1, cycle length C = 60.

p 1/2 1/2 1/3 1/3

objective (5.7) (5.8) (5.7) (5.8)

ρ 0.8 0.8 0.8 0.8

C 60 60 60 60

ηρ 5.9 5.9 6.3 6.3

1−ρ
ρ ηρ 1.48 1.48 1.58 1.58

ξρ 0.89 0.92 0.84 0.88

1−ξρ
(1−ρ) 0.55 0.4 0.8 0.6

maxE[Wy] 4.8087 4.8812 4.7656 4.9072

max(E[Wy])−min(E[Wy]) 1.3715 1.2726 1.8288 1.7775

avg E[Wy] 4.32 4.38 4.35 4.40

relative error 31.7% 29.0% 42.0% 40.4%
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5.9.2 In the Alternative Scaling of §5.8

We now consider four simulation examples in the alternative heavy-traffic scaling in §5.8. This is

the same heavy-traffic scaling as in §3.6. We consider the base case of β = 1, γ = 2.5, and use

(λ̄ρ, βρ, γρ, bρ) = (ρ, (1− ρ)β, (1− ρ)2γ, (1− ρ)−1b).

Specifically, we consider cases with ρ = 0.84, 0.92, 0.96, 0.98. Here we use the lags ηρ = 5.25, 11.5, 24, 49

calculated by ρ/(1− ρ), the scaler ξρ = ρ. (These are consistent with Theorem 5.8.1.)

Figures 5.13-5.14 show the expected periodic steady-state waiting time (the solid blue line) and

the expected steady-state workload (the dashed red line). Figures 5.13 and 5.14 show that the

stabilization is not achieved well for the lower traffic intensities, but the stabilization improves for

both curves as ρ increases. Both processes get quite well stabilized at ρ = 0.98, consistent with

Theorem 5.8.1.

Figure 5.13: the expected periodic steady-state virtual waiting time (the blue line) and the

expected steady-state workload (the red line) for ρ = 0.84, β = 0.16, γ = 0.064, ηρ = 5.25,

ξρ = 0.84, yielding a maximum deviation 0.0699 (left) and ρ = 0.92, β = 0.08, γ = 0.016, ηρ = 11.5,

ξρ = 0.92, yielding a maximum deviation 0.0408 (right).
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Figure 5.14: the expected periodic steady-state virtual waiting time (the blue line) and the

expected steady-state workload (the red line) for ρ = 0.96, β = 0.04, γ = 0.004, ηρ = 24, ξρ = 0.96,,

yielding a maximum deviation 0.0228 (left) and ρ = 0.98, β = 0.02, γ = 0.001, ηρ = 49, ξρ = 0.98,

yielding a maximum deviation 0.0070 (right).
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5.10 Conclusions

In this chapter we extended the rare-event simulation algorithm for the periodic GIt/GI/1 model

in Chapter 3 to the periodic GIt/GIt/1 model and applied the new algorithm to study methods

to stabilize the expected (virtual) waiting time over time. We studied the modification in (5.4) of

the rate-matching service-rate control in (4.1) to include a time lag η and a damping factor ξ. We

developed and applied a simulation search algorithm to find optimal pairs of control parameters

(η, ξ) for the control problems in (5.7) and (5.8). Thus, we obtained a practical solution to the

open problem in Chapter 4 of developing an effective way to stabilize the expected waiting time in

the periodic single-server model.

We also established supporting heavy-traffic limits for the general periodic Gt/Gt/1 model

and showed that the control problems in (5.7) and (5.8) converge to associated diffusion control

parameters with appropriate scaling. The scaling involves the conventional heavy-traffic scaling

associated in which ρ ↑ 1, so that time is scaled by (1− ρ)−2 while space is scaled by 1− ρ, but in

addition to gain insight into the time-varying behavior, we identify and study three different scalings

of the arrival rate function.
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As observed by Falin (1989), if the arrival-rate function is left unscaled, then the heavy-traffic

limit is the same as if the periodicity were not present at all. A major conclusion is that important

insight into the time-varying performance can be gained by scaling the arrival-rate function as well.

Moreover, as illustrated by §5.6 and §5.8, there are two different natural scalings: First, there is the

stronger scaling in the fluid scale in §5.6 as in Whitt (2015) and, second, there is the weaker scaling

in the diffusion scale in §5.8 as in Whitt (2014) and §3.6. In the weaker scaling, the rate-matching

control from Chapter 4 stabilizes both the queue length and the waiting time, but in the stronger

fluid scaling we see significant differences, consistent with the simulation results in Figure 5.1. This

insightful scaling in the fluid scale also yields a limiting diffusion control problem.

We conducted extensive simulation algorithms showing that the new (η, ξ) control is effective

in stabilizing the expected waiting time. However, unlike the rate-matching control for the queue

length process in Chapter 4, the new modified rate-matching control does not stabilize the expected

waiting time perfectly, either for fixed ρ or in the heavy-traffic limit. However, Figures 5.1 and 5.3

shows that it stabilizes it remarkably well, while Figures 5.4, 5.5 and 5.6 show that it stabilizes the

full waiting time distribution quite well too. We have shown the performance of the new control

for mostly sinusoidal, but also piecewise-linear single-peak arrival rate functions, and it remains

to run simulation experiments to see the performance for arrival rate functions with two or more

peaks. More complicated methods may be needed in case the new control is not effective.

It is interesting to consider the performance impact of time-varying arrivals. In §5.1 we observed

that the difference between the stable average waiting time in Figure 5.1 and the value ρ/(1 − ρ)

for the stationary model (4 on the left and 19 on the right) might be called “the average cost

of periodicity,” but Example 5.2.1 showed that the overall average expected waiting time with a

service-rate control could be much less than in the stationary model. It remains to investigate more

carefully.

Indeed, there remain many opportunities for future research, including the open problems men-

tioned in §5.1.5. It also remains to directly solve the diffusion control problems with objectives

(5.7) and (5.8) resulting from Theorem 5.6.2. And there are other methods worth carefully study-

ing, such as modifications of the iterated staffing alrgorithm (ISA) from Feldman et al. (2008) for

single-server models.

Another future research topic is to generalize our results to a system with a fixed small number
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of servers (more than one servers). The HT limits extend to this case as illustrated in Iglehart and

Whitt (1970a,b), so the HT TV Little’s Law established in theorem 5.6.2 is still valid. But it is

worth careful studying how to find the optimal damped time-lag control and how it performs for

this case.

Finally, we mention that the methods in this chapter generalize and can be applied to other

problems. First, the rare-event simulation algorithm in §5.5 applies to any GIt/GIt/1 model with

other service-rate controls. Second, the heavy-traffic limits in §5.6 and §5.8 evidently extend to

general Gt/Gt/1 models with other service-rate controls. More generally, simulation of converging

stochastic processes is a promising way to numerically solve complex diffusion control problems.
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Appendix A

Supplement to Chapter Three

A.1 Introduction

This is a supplement to Chapter 3 of the main thesis. In §A.2 we elaborate on §3.3 of the main

thesis. First, we further discuss the tail asymptotics and the asymptotic decay rate needed in the

simulation. At the end, we present a couple of additional bounds and approximations. In §A.3 we

report results of additional simulation experiments applying the algorithm developed in the main

thesis.

A.2 More Results on the Asymptotics

In this section we continue the discussion of the tail asymptotics in §3.3.2 of the main thesis. We

start in §A.2.1 by conjecturing the asymptotic form of the periodic steady-state distribution of

RPBM. Then in §A.2.2 we review an asymptotic expansion from Abate and Whitt (1994), which

yields an approximation for the asymptotic decay rate needed in the simulation. In §A.2.4 we

compare the approximate values of the asymptotic decay rate to exact values. Finally, in §A.2.4

we derive the exact form of the asymptotic decay rate for hyperexponential models.

A.2.1 Tail Asymptotics for RPBM

It remains to establish tail asymptotics for the periodic steady-state distribution of RPBM. How-

ever, we can see the form that tail asymptotics should take from the heavy-traffic scaling and the
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tail asymptotics established for the Gt/G/1 model in §3.3.2 of the main thesis.

Let Zy(∞; cx) be the periodic steady-state distribution of RPBM with variability parameter cx

as in Theorem 3.6.1 of the main thesis. From Corollary 3.3.3, we are led to conjecture that

eθ
∗bP (Zy(∞; cx) > b)→ Ay as b→∞, (A.1)

for some constant Ay and

θ∗ = lim
ρ↑1

θ∗ρ/(1− ρ), (A.2)

where θ∗ρ is the associated asymptotic decay rate for a family of Gt/G/1 models converging to

RPBM. We remark that there is a limit-interchange problem for the tail probability asymptotics,

closely paralleling the limit-interchange problem associated with the heavy-traffic limit discussed

in §3.6 of the main thesis.

Moreover, the asymptotic decay rate of the steady-state distribution of RPBM should coincide

with that of RBM, which directly has an exponential steady-state distribution, i.e., P (Z(∞; cx) >

b) = e−2b/c2x . In the next section we provide support for (A.2). Our numerical results show how to

compute the tail probability P (Zy(∞; cx) > b) assuming that these limits are valid.

A.2.2 Asymptotic Expansions for the Asymptotic Decay Rate

We can develop useful approximations for the asymptotic decay rate needed in the simulation and

we can provide support for (A.2) making the connection to RPBM in §A.2.1 by applying asymptotic

expansions established for the GI/GI/1 model (and more general multichannel queueing models)

in Abate and Whitt (1994); corresponding asymptotic expansions for MAP/GI/1 queues were

established in Choudhury and Whitt (1994). From (4) and (18) of Abate and Whitt (1994), we

get the following result. As in the main thesis, we fix the service process and introduce the traffic

intensity ρ by scaling time in a rate-1 arrival process. That produces a well-defined model as a

function of the traffic intensity, where we only change the arrival rate, which we denote by the

subscript ρ, as in the main thesis.

Theorem A.2.1. (asymptotic expansion from Abate and Whitt (1994)) For the GI/GI/1 model,

and thus also the periodic GIt/GI/1 model,

θ∗ρ =
2(1− ρ)

c2
a + c2

s

+ Cθ(1− ρ)2 +O((1− ρ3)) as ρ ↑ 1, (A.3)
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where Cθ depends on the first three moments of the mean-1 interarrival time Uk and service time

Vk, but not ρ, via

Cθ ≡ Cθ(c2
a, da; c

2
s, ds) ≡

(
8(ds − da)
(c2
a + c2

s)
3
− 2(c2

a − c2
s)

(c2
a + c2

s)
2

)
, (A.4)

with ds ≡ (E[V 3
k ]− 3c2

s(c
2
s + 1)− 1)/6. and similarly for da using the interarrival time.

In §A.2.1, we have suggested that we can calculate the RPBM periodic steady-state tail prob-

abilities P (Zy(∞; cx) > b) by calculating associated tail probabilities P (Wy > b) for GIt/GI/1

queues. Now we show that we may be able to choose two different GIt/GI/1 queues that will

bound the desired RPBM tail probabilities above and below, and thus bound the error. The fol-

lowing result only applies to the rates, but it explains what we have seen in numerical examples;

see Table A.2 below and the ratios P (Wy > b)/P (W > b) in Tables 3.5 and 3.6 in the main thesis.

Corollary A.2.1. (switching interarrival-time and service-time distributions) If we switch the

interarrival-time and service-time distributions without altering their mean values, and thus switch

the pairs (c2
a, da) and (c2

s, ds), then Cθ in (A.4) is unchanged except for its sign, which is reversed.

Thus, the one-term asymptotic approximation for θ∗(ρ) is bounded above and below by these special

two-term approximations.

A.2.3 Approximations for the Asymptotic Decay Rate

In §A.2.4 we discuss the exact values for the asymptotic decay rates in the special parametric cases

in §3.3.2 of the main thesis. For Mt/M/1, θ∗ ≡ θ∗ρ = 1−ρ. For both Mt/H2/1 and (H2)t/M/1, θ∗ is

obtained as the solution of quadratic equations. Taylor series approximations produce asymptotic

expansions that are consistent with (A.3).

Table A.2 compares the 1-term and 2-term approximations for the asymptotic decay rate θ∗ρ

from the asymptotic expansion in (A.3) with the exact values for the Mt/H2/1 and (H2)t/M/1

models, where the H2 distribution has c2 = 2.0 and balanced means. The scaled value θ∗ρ/(1−ρ) is

shown for 6 values of 1− ρ. The asymptotic decay rate for RBM and RPBM are obtained directly

from the first term. Table A.2 shows that the 2-term approximation can serve as an explicit formula

for θ∗ρ provided that ρ is not too small.

Assuming appropriate limit interchanges are valid, the asymptotic decay rate for RPBM is the

same as for RBM, and that common value can be obtained directly from the first term in (A.3).
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Assuming that limits for the steady-state quantities follow from the process limits in the HT FCLT

in Theorem 3.6.1 of the main thesis, (1−ρ)Wρ,y ⇒ Zy(∞; c2), where Zy(∞; c2) has the steady-state

distribution of RPBM. Assuming that the decay rates converge, we should have

θ∗ = lim
ρ↑1

θ∗ρ/(1− ρ) = 2/(c2
a + c2

s) (A.5)

from (A.3). For ordinary RBM, this is immediate because RBM has an exponential steady-state

distribution. Since the asymptotic decay rate of (1 − ρ)Wρ,y and (1 − ρ)Wρ agrees for all ρ, the

same will be true for the limits, provided that the limit interchange is valid.

Table A.1: A comparison of the 1-term and 2-term approximations for the asymptotic decay rate

θ∗ρ from the asymptotic expansion in (A.3) with the exact values for the Mt/H2/1 and (H2)t/M/1

models, where the H2 distribution has c2 = 2.0 and balanced means: The scaled value θ∗ρ/(1 − ρ)

is shown for 6 values of 1− ρ.

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01 1− ρ = 0.005

Mt/H2/1 queue

exact 0.62934 0.64843 0.65766 0.66219 0.66444 0.66555

first term 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667

first two terms 0.63111 0.64889 0.65778 0.66222 0.66444 0.66556

(H2)t/M/1 queue

exact 0.70619 0.68542 0.67580 0.67117 0.66890 0.66778

first term 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667

first two terms 0.70222 0.68444 0.67556 0.67111 0.66889 0.66778

A.2.4 Exact Values for the Asymptotic Decay Rate

We now give the exact values for the asymptotic decay rates in the special parametric cases con-

sidered in §3.3.2 and §3.4.1 of the main thesis. First, for Mt/M/1, θ∗ ≡ θ∗ρ = 1 − ρ. For both

Mt/H2/1 and (H2)t/M/1, θ∗ is obtained as the solution of quadratic equations. The other cases

are: (M +D)t/M/1, Mt/M +D/1 and (M +D)t/(M +D)/1. The final one is important to treat

cases with c2
a + c2

s < 1. The first two cover 1 < c2
a + c2

s < 2. We may also want others such as

(H2)t/H2/1.

Table A.2 compares the 1-term and 2-term approximations for the asymptotic decay rate θ∗ρ

from the asymptotic expansion with the exact values for the Mt/H2/1 and (H2)t/M/1 models,
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where the H2 distribution has c2 = 2.0 and balanced means. The scaled value θ∗ρ/(1− ρ) is shown

for 6 values of 1 − ρ. the asymptotic decay rate for RBM and RPBM are obtained directly from

the first term. Table A.2 shows that the 2-term approximation can serve as an explicit formula for

θ∗ρ provided that ρ is not too small.

Table A.2: A comparison of the 1-term and 2-term approximations for the asymptotic decay rate

θ∗ρ from the asymptotic expansion in (A.3) with the exact values for the Mt/H2/1 and (H2)t/M/1

models, where the H2 distribution has c2 = 2.0 and balanced means: The scaled value θ∗ρ/(1 − ρ)

is shown for 6 values of 1− ρ.

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01 1− ρ = 0.005

Mt/H2/1 queue

θ∗

exact 0.10069 0.05187 0.02631 0.01324 0.006644 0.003328

first term 0.10667 0.05333 0.02667 0.01333 0.006667 0.003333

first two terms 0.10098 0.05191 0.02631 0.01324 0.006644 0.003328

(H2)t/M/1 queue

θ∗

exact 0.11299 0.05483 0.02703 0.01342 0.006689 0.003339

first term 0.10667 0.05333 0.02667 0.01333 0.006667 0.003333

first two terms 0.11236 0.05476 0.02702 0.01342 0.006689 0.003339

Mt/H2/1 queue

θ∗/(1− ρ)

exact 0.62934 0.64843 0.65766 0.66219 0.66444 0.66555

first term 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667

first two terms 0.63111 0.64889 0.65778 0.66222 0.66444 0.66556

(H2)t/M/1 queue

θ∗/(1− ρ)

exact 0.70619 0.68542 0.67580 0.67117 0.66890 0.66778

first term 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667

first two terms 0.70222 0.68444 0.67556 0.67111 0.66889 0.66778

We now discuss the exact values for asymptotic decay rates in the special parametric cases in

§3.3.2 of the main thesis. In the GIt/GI/1 model, let λ be the average arrival rate and µ be the

service rate, then the optimal θ∗ is the same as for the GI/GI/1 model with rate-λ i.i.d. inter-arrival

times Uk and rate-µ i.i.d. service times Vk. First, for Mt/M/1, θ∗ = µ− λ and θ∗ ≡ θ∗ρ = 1− ρ as

a function of ρ if we let µ = 1.

For both the Mt/H2/1 and (H2)t/M/1 models, θ∗ is obtained as the solution of quadratic
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equations. In theMt/H2/1 model, let Vk has density h(x) = p1µ1e
−µ1x+p2µ2e

−µ2x, where (p1/µ1)+

(p2/µ2) = 1/µ. We solve

E[eθ
∗V ]E[e−θ

∗U ] = 1

for θ∗, so that

E[eθ
∗V ]E[e−θ

∗U ] = (p1µ1/(µ1 − θ∗) + p2µ2/(µ2 − θ∗))(λ/(λ+ θ∗)) = 1.

This reduces to the quadratic equation

(θ∗)2 + (λ− µ1 − µ2)θ∗ + (µ1µ2 − p2µ1λ− p1µ2λ) = 0

or

(θ∗)2 + (λ− µ1 − µ2)θ∗ + (1− ρ)µ1µ2 = 0.

Hence,

θ∗ = [(µ1 + µ2 − λ)±
√
λ2 − 2(µ1 + µ2)λ+ µ2

1 + µ2
2 + (4ρ− 2)µ1µ2]/2,

where we choose the value that is appropriate, i.e., satisfying µ1 − θ∗ > 0, µ2 − θ∗ > 0, λ+ θ∗ > 0.

Similarly for the (H2)t/M/1 model, let Uk has density g(x) = p1λ1e
−λ1x + p2λ2e

−λ2x, with

(p1/λ1) + (p2/λ2) = 1/λ. Thus, we solve

E[eθ
∗V ]E[e−θ

∗U ] = (µ/(µ− θ∗))(p1λ1/(λ1 + θ∗) + p2λ2/(λ2 + θ∗)) = 1,

which reduces to

(θ∗)2 + (λ1 + λ2 − µ)θ∗ + (λ1λ2 − p2λ1µ− p1λ2µ) = 0

or

(θ∗)2 + (λ1 + λ2 − µ)θ∗ + λ1λ2(1− 1/ρ) = 0

which has solution

θ∗ = [−(λ1 + λ2 − µ)±
√
µ2 − 2(λ1 + λ2)µ+ λ2

1 + λ2
2 + (4/ρ− 2)λ1λ2]/2,

where we choose the value that is appropriate.

We now briefly discuss other cases, namely, (M +D)t/M/1, Mt/M +D/1 and (M +D)t/(M +

D)/1. The final one is important to treat cases with c2
a+c2

s < 1. The first two cover 1 < c2
a+c2

s < 2.

In all of these cases, we need to solve transcendental equations to get θ∗, which is done numerically
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using Newton’s or bisection method. For example, in (M +D)t/M/1 queue, let Uk have parameter

pair (d, λ′) such that
eλ
′d

λ′
=

1

λ

. We solve

E[eθ
∗V ]E[e−θ

∗U ] =
µ

µ− θ∗
e−θ

∗d λ′

λ′ + θ∗
= 1,

or

(θ∗)2 − (µ− λ′)θ∗ + µλ′(e−θ
∗d − 1) = 0.

We obtain the following proposition when we compare the exact values of θ∗ with the aymptotic

expansion in (A.3).

Proposition A.2.1. The exact values of θ∗ for Mt/H2/1 and (H2)t/M/1 models are consistent

with the two-term asymptotic expansion in (A.3).

Proof. We only do this proof for Mt/H2/1 model here; the proof for (H2)t/M/1 model is similar.

For the Mt/H2/1 model, the interarrival time is exponential with c2
a = 1 and E[U3

k ] = 6, then the

first term in (A.3) becomes 2(1− ρ)/(1 + c2
2). From (A.4), the coefficient of the second term is

C =
−4(E[V 3

k ]− 3c2
s(c

2
s + 1)− E[U3

k ] + 3c2
a(c

2
a + 1))− 6((c2

s)
2 − (c2

a)
2)

3(c2
a + c2

s)
3

=
−4E[V 3

k ] + 6(c2
s)

2 + 12c2
s + 6

3(1 + c2
s)

3
(A.6)

Without loss of generality, we let µ = 1 and thus λ = ρ. For Mt/H2/1 queue,

θ∗ = [(µ1 + µ2 − ρ)−
√
ρ2 − 2(µ1 + µ2)ρ+ µ2

1 + µ2
2 + (4ρ− 2)µ1µ2]/2 (A.7)

We use a change of variable with x = 1− ρ and substitute ρ with 1− x in (A.7):

θ∗ =
1

2
(µ1 + µ2 − 1 + x)− 1

2

√
x2 + (2(µ1 + µ2)− 2− 4µ1µ2)x+ (µ1 + µ2 − 1)2

≡ 1

2
(µ1 + µ2 − 1 + x)− 1

2
f(x)

=
1

2
(µ1 + µ2 − 1 + x)− 1

2
(f(0) + f ′(0)x+

1

2
f ′′(0)x2 +O(x3)), (A.8)

where we define the function f(x) and do taylor series expansion to get the first two terms of f(x).
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First, we look at the constant term of θ∗ in (A.8), it equals

1

2
(µ1 + µ2 − 1− f(0)) =

1

2
(µ1 + µ2 − 1− |µ1 + µ2 − 1|) = 0.

Because (p1/µ1)+(p2/µ2) = 1, we have (p1/µ1) < 1 and (p2/µ2) < 1. Hence, µ1 +µ2 > p1 +p2 = 1

and |µ1 + µ2 − 1| = µ1 + µ2 − 1. This is consistent with (A.3) which has no constant term.

Second, we consider the first-order term in the Taylor expansion of θ∗ in (A.8). It equals

1

2
(1− f ′(0)) =

1

2
(1− 1

2
f(x)−

1
2 (2x+ 2(µ1 + µ2)− 2− 4µ1µ2)|x=0)

=
1

2
(1− (µ1 + µ2)− 1− 2µ1µ2

µ1 + µ2 − 1
)

=
µ1µ2

µ1 + µ2 − 1

=
µ2

1µ
2
2

(µ1 + µ2 − 1)µ1µ2

=
µ2

1µ
2
2

(µ1 + µ2 − 1)(p1µ2 + p2µ1)

=
µ2

1µ
2
2

p1µ2
2 + p2µ2

1

=
2

1 + c2
s

,

where p1µ2 + p2µ1 = µ1µ2 and p1µ
2
2 + p2µ

2
1 = ((c2

s + 1)/2)µ2
1µ

2
2 follow from the first two moments

of Vk. Hence, we see that this first-order coefficient is consistent with the first term in (A.3).

Finally, we examine the second-order term in the expansion of θ∗, which equals

−1

4
f ′′(0) = −1

4
(−1

4
f(x)−

3
2 (2x+ 2(µ1 + µ2)− 2− 4µ1µ2)2 +

1

2
f(x)−

1
2 2)|x=0

=
((µ1 + µ2)− 1− 2µ1µ2)2

4(µ1 + µ2 − 1)3
− 1

4(µ1 + µ2 − 1)

=
µ2

1µ
2
2 − µ1µ2(µ1 + µ2 − 1)

(µ1 + µ2 − 1)3

=
(p1µ2 + p2µ1)2 − (p1µ

2
2 + p2µ

2
1)

(µ1 + µ2 − 1)3
,

where we used µ1µ2(µ1 +µ2− 1) = p1µ
2
2 + p2µ

2
1 that is derived in the last paragraph. We have also

derived previously that
µ1µ2

µ1 + µ2 − 1
=

2

1 + c2
s
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. Hence, by substituting c2
s in (A.6), we can write Cθ as

Cθ =
−24p1/µ

3
1 − 24p2/µ

3
2 + 6(2(µ1+µ2−1)

µ1µ2
− 1)2 + 12(2(µ1+µ2−1)

µ1µ2
− 1) + 6

24 (µ1+µ2−1)3

µ31µ
3
2

=
−p1µ

3
2 − p2µ

3
1 + (µ1 + µ2 − 1)2µ1µ2

(µ1 + µ2 − 1)3

=
−p1µ

3
2 − p2µ

3
1 + (p1µ

2
2 + p2µ

2
1)(µ1 + µ2 − 1)

(µ1 + µ2 − 1)3

=
(p1µ1µ

2
2 + p2µ

2
1µ2)− (p1µ

2
2 + p2µ

2
1)

(µ1 + µ2 − 1)3

=
(p1µ2 + p2µ1)2 − (p1µ

2
2 + p2µ

2
1)

(µ1 + µ2 − 1)3
.

Therefore, we conclude that this second-order term coefficient in the exact θ∗ is consistent with

that in (A.3).

As noted in Corollary A.2.1, the two-term approximations for θ∗ in the Mt/H2/1 and (H2)t/M/1

models approach the one-term approximation in (A.3) from opposite sides.

Table A.2 compares the 1-term and 2-term approximations for the asymptotic decay rate θ∗ρ

from the asymptotic expansion in (A.3) with the exact values for the Mt/H2/1 and (H2)t/M/1

models, where the H2 distribution has c2 = 2.0 and balanced means. The scaled value θ∗ρ/(1−ρ) is

shown for 6 values of 1− ρ. the asymptotic decay rate for RBM and RPBM are obtained directly

from the first term. Table A.2 shows that the 2-term approximation can serve as an explicit formula

for θ∗ρ provided that ρ is not too small.

In this specific case, the asymptotic expansion (A.3) for θ∗ have the following expressions for

Mt/H2/1 and (H2)t/M/1 models respectively:

Mt/H2/1 : θ∗ρ =
2

3
(1− ρ)− 2

9
(1− ρ)2 +O(1− ρ)3;

(H2)t/M/1 : θ∗ρ =
2

3
(1− ρ) +

2

9
(1− ρ)2 +O(1− ρ)3.

A.2.5 More Bounds

To obtain further bounds, consider the common case in which λ(t) ≥ λ̄, 0 ≤ t ≤ pC while λ(t) ≤ λ̄,

pC ≤ t ≤ C, for some p, 0 < p < 1. Then Λ̃C(t) = Λ(C) − Λ(C − t) ≤ λ̄t, 0 ≤ t ≤ C, while

Λ̃pC(t) = Λ(pC) − Λ(pC − t) ≥ λ̄t, 0 ≤ t ≤ C. As a consequence, Λ̃−1
C (t) ≥ λ̄t, 0 ≤ t ≤ C, while
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Λ̃−1
pC(t) ≤ λ̄t, 0 ≤ t ≤ C. Thus,

W0 = WC ≤W ≤WpC . (A.9)

It is natural to seek conditions under which P (Wy > b) is increasing in y from a minimum at y = 0

to a maximum at y = pC and then is decreasing back to the minimum at y = C.

A.2.6 Heuristic Approximations

Given Lemmas 3.3.1 and 3.3.2 and Corollary 3.3.4 of the main thesis, we propose the approximation

Wy ≈W − ωy, (A.10)

where

ωy ≡
−1

ρC

∫ C

0
(Λ̃y(s)− ρs) ds. (A.11)

For the sinusoidal case, from Corollary 2 of the main thesis, we obtain

ωy =
β cos (γy)

γ
=
ζ+
y + ζ−y

2
. (A.12)

Unfortunately, we find that this approximation is not consistently accurate, but it does help us

understand roughly how Wy depends on the parameters. In our examples, this approximation

consistently underestimates the exact values. Intuitively, that makes sense because we expect the

extrema to be larger than the time average.

A.3 Simulation Results

For all experiments we use the sinusoidal arrival-rate function (2.4), where β, 0 < β < 1, is the

relative amplitude and the cycle length is C = 2π/γ.

In §A.3.1 (Tables A.3-A.16) and §A.3.2 (Tables A.17-A.28) we report results on experiments

to estimate the tail probabilities P (Wy > b) in the Markovian Mt/M/1 model. In §A.3.3 (Tables

A.29-A.38) and §A.3.4 (Tables A.39-A.49), respectively, we report results on experiments to esti-

mate the tail probabilities P (Wy > b) in the (H2)t/M/1 and Mt/H2/1 models. For non-exponential

distributions, we use the H2 distribution (hyperexponential, mixture of two exponential distribu-

tions), with with probability density function (pdf) f(x) = p1µ1e
−µ1x+p2µ2e

−µ2x, with p1+p2 = 1,
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having parameter triple (p1, µ1, µ2). To reduce the parameters to two (the mean and scv), we as-

sume balanced means, i.e., p1/µ1 = p2/µ2, as in (3.7) of Whitt (1982). In all examples, we let the

squared coefficient of variation (scv, variance divided by the mean) be c2 = 2.0.

In §A.3.5 we report additional results on experiments to estimate the mean E[Wy] and standard

deviation SD[Wy] using §3.4.5 of the main thesis. Tables A.50-A.52 report results for the Mt/M/1

model, while Tables A.53 and A.54 report results for the (H2)t/M/1 and Mt/H2/1 models, respec-

tively.

In §A.3.6 we display analogs of Tables 3.6 and 3.10 in the main thesis reporting estimates of

tail probabilities for the (H2)t/M/1 model, which requires the adjustment involving mX1(θ∗) in

(3.28) of the main thesis. That adjustment is required because the first interarrival time has the

equilibrium lifetime distribution associated with the H2 interarrival-time distribution (which is a

different H2 distribution). Tables A.55 and A.56 show the closely related values when that factor

is omitted. These tables are closely related because the steady-state workload and waiting time

coincide in the heavy-traffic limit. Table 3.1 in the main thesis shows that the steady-state workload

and waiting time in the stationary H2/M/1 model are quite different for the low traffic intensity

of ρ = 0.1.
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A.3.1 Tail Probabilities for the Mt/M/1 Periodic Queue with λ̄ = 1

Tables A.3-A.16 display simulation estimates of P (Wy > b) for the Mt/M/1 model, scaled to have

λ̄ = 1 and µ = 1/ρ. in subsequent tables, the scaling was changed to have λ̄ = ρ and µ = 1, as in

the main thesis. An approximation for Ay is shown; it is discussed in §A.2.6.

Tables A.3-A.7 show estimates for 12 values of b ranging from 5 to 90 to show that the simulation

accuracy tends to be independent of b, as intended for rare-event simulation. To check the simulation

algorithm and for a basis of comparison, Table A.3 shows simulation results for the M/M/1 queue,

where the exact results are known. Then Tables A.4-A.7 show the estimates for 3 different values of

γ in (2.4) (γ = 10, γ = 1.0, and γ = 0.1) and 4 different cases of y. Here the cycle length is chosen

to be C = 2π/γ, so the four values of y are 0C, 0.25C = π/2γ, 0.50C = π/γ and 0.75C = 3π/2γ.

All these examples have ρ = 0.8 and β = 0.2. We regard this as our base model, and regard γ = 1.0

and 0.1 as our base examples illustrating shorter and longer cycles, respectively.

There are 8 columns. The first column gives n, the number of replications. The second column

gives the tail probability estimate p̂ ≡ P (Wy > b) ≡ Aye−θ∗b and then the third and fourth

columns give the components exp(−θ∗b) and A ≡ Ay. The fifth column gives the standard error

(s.e.), while the sixth and seventh columns give the lower bound (lb) and upper bound (ub) of the

associated 95% confidence interval (CI). The final eight column gives the relative error (r.e.), which

is the estimated s.e divided by the estimated value itself.

Tables A.8-A.16 show the estimates as a function of y for 40 values of y within the cycle in 9

different cases. As noted above, in all these cases λ̄ = 1 and µ = 1/ρ. Tables A.8-A.10 consider

three values of the pair (γ, b) for fixed (ρ, β) = (0.8, 0.2), in particular, (γ, b) = (10, 20), (γ, b) =

(0.1, 50) and (γ, b) = (0.01, 300). Tables A.11 and A.12 consider three values of the pair (γ, b)

for fixed (ρ, β) = (0.9, 0.2), in particular, (γ, b) = (1, 20) and (γ, b) = (0.1, 50). Tables A.13-A.15

consider three values of the pair (γ, b) for fixed (ρ, β) = (0.8, 0.5), in particular, (γ, b) = (10, 20),

(γ, b) = (1.0, 20) and (γ, b) = (0.1, 100). Finally, Table A.16 shows estimates as a function of y for

40 values of y within a small subinterval in the center of the cycle, in an attempt to verify that the

maximum occurs in the middle of the cycle, i.e, at y = 0.5. Table A.16 has the parameter 4-tuple

(γ, βρ, b) = (0.1, 0.2, 0.8, 20).

Tables A.3-A.16 display simulation estimates of P (Wy > b) for the Mt/M/1 model, scaled to

have λ̄ = 1 and µ = 1/ρ. in subsequent tables, the scaling was changed to have λ̄ = ρ and µ = 1,
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as in the main thesis.

Table A.3: Estimates of p̂ ≡ P (W > b) ≡ Ae−θ
∗b in the M/M/1 model with ρ = 0.8, λ̄ = 1, µ =

1.25 based on n = 5000 replications.

β = 0 b n p̂ exp(−θ∗b) A s.e. 95% CI (lb) (ub) r.e.

5 5000 0.229 0.287 0.799 6.60E-04 0.228 0.230 0.00289

10 5000 0.0656 0.0821 0.799 1.90E-04 0.0652 0.0660 0.00289

15 5000 0.0187 0.0235 0.797 5.48E-05 0.0186 0.0188 0.00293

20 5000 0.00541 0.00674 0.803 1.52E-05 0.00538 0.00544 0.00280

25 5000 1.54E-03 1.93E-03 0.797 4.51E-06 0.00153 0.00155 0.00293

30 5000 4.43E-04 5.53E-04 0.800 1.29E-06 0.000440 0.000445 0.00290

40 5000 3.64E-05 4.54E-05 0.802 1.05E-07 3.62E-05 3.66E-05 0.00288

50 5000 2.98E-06 3.73E-06 0.800 8.51E-09 2.97E-06 3.00E-06 0.00285

60 5000 2.45E-07 3.06E-07 0.800 6.97E-10 2.43E-07 2.46E-07 0.00285

70 5000 2.01E-08 2.51E-08 0.802 5.75E-11 2.00E-08 2.02E-08 0.00286

80 5000 1.65E-09 2.06E-09 0.798 4.73E-12 1.64E-09 1.65E-09 0.00287

90 5000 1.35E-10 1.69E-10 0.795 4.04E-13 1.34E-10 1.35E-10 0.00300
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Table A.4: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model for y = 0.0

as a function of γ and b based on n = 5, 000 replications: ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

b n p̂ exp(−θ∗b) A s.e. 95% CI (lb) (ub) r.e.

γ = 10 5 5000 0.228 0.287 0.797 6.55E-04 0.227 0.230 0.00287

10 5000 0.0654 0.0821 0.797 1.87E-04 0.0651 0.0658 0.00286

15 5000 0.0188 0.0235 0.799 5.32E-05 0.0187 0.0189 0.00283

20 5000 0.00537 0.00674 0.797 1.55E-05 0.00534 0.00540 0.00289

25 5000 1.53E-03 1.93E-03 0.795 4.37E-06 0.00153 0.00154 0.00285

30 5000 4.40E-04 5.53E-04 0.795 1.28E-06 4.37E-04 4.42E-04 0.00290

40 5000 3.61E-05 4.54E-05 0.795 1.05E-07 3.59E-05 3.63E-05 0.00290

50 5000 2.97E-06 3.73E-06 0.796 8.59E-09 2.95E-06 2.99E-06 0.00289

60 5000 2.44E-07 3.06E-07 0.798 7.02E-10 2.43E-07 2.45E-07 0.00288

70 5000 2.01E-08 2.51E-08 0.799 5.67E-11 1.99E-08 2.02E-08 0.00283

80 5000 1.64E-09 2.06E-09 0.796 4.82E-12 1.63E-09 1.65E-09 0.00294

90 5000 1.35E-10 1.69E-10 0.797 3.88E-13 1.34E-10 1.36E-10 0.00288

γ = 1 5 5000 0.219 0.287 0.764 6.38E-04 0.218 0.220 0.00292

10 5000 0.0628 0.0821 0.765 1.87E-04 0.0624 0.0632 0.00298

15 5000 0.0179 0.0235 0.762 5.19E-05 0.0178 0.0180 0.00290

20 5000 0.00516 0.00674 0.766 1.51E-05 0.00513 0.00519 0.00292

25 5000 1.48E-03 1.93E-03 0.764 4.29E-06 0.00147 0.00148 0.00291

30 5000 4.25E-04 5.53E-04 0.769 1.20E-06 4.23E-04 4.27E-04 0.00283

40 5000 3.49E-05 4.54E-05 0.769 1.00E-07 3.47E-05 3.51E-05 0.00287

50 5000 2.85E-06 3.73E-06 0.764 8.40E-09 2.83E-06 2.86E-06 0.00295

60 5000 2.34E-07 3.06E-07 0.766 6.85E-10 2.33E-07 2.36E-07 0.00292

70 5000 1.92E-08 2.51E-08 0.763 5.61E-11 1.90E-08 1.93E-08 0.00293

80 5000 1.58E-09 2.06E-09 0.767 4.65E-12 1.57E-09 1.59E-09 0.00294

90 5000 1.29E-10 1.69E-10 0.764 3.86E-13 1.28E-10 1.30E-10 0.00299

γ = 0.1 5 5000 0.161 0.287 0.563 8.88E-04 0.160 0.163 0.00550

10 5000 0.0413 0.0821 0.503 2.33E-04 0.0409 0.0418 0.00565

15 5000 0.0122 0.0235 0.520 6.77E-05 0.0121 0.0124 0.00554

20 5000 0.00360 0.00674 0.535 1.98E-05 0.00356 0.00364 0.00550

25 5000 1.06E-03 1.93E-03 0.551 5.72E-06 0.00105 0.00107 0.00538

30 5000 3.04E-04 5.53E-04 0.550 1.66E-06 3.01E-04 3.08E-04 0.00546

40 5000 2.50E-05 4.54E-05 0.551 1.37E-07 2.47E-05 2.53E-05 0.00548

50 5000 2.04E-06 3.73E-06 0.547 1.10E-08 2.02E-06 2.06E-06 0.00538

60 5000 1.67E-07 3.06E-07 0.546 9.25E-10 1.65E-07 1.69E-07 0.00553

70 5000 1.37E-08 2.51E-08 0.544 7.59E-11 1.35E-08 1.38E-08 0.00556

80 5000 1.12E-09 2.06E-09 0.545 6.20E-12 1.11E-09 1.14E-09 0.00552

90 5000 9.21E-11 1.69E-10 0.544 5.01E-13 9.11E-11 9.31E-11 0.00544
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Table A.5: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the Mt/M/1 model for y = π/2γ

as a function of γ and b based on n = 5, 000 replications: ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

b n p̂ exp(−θ∗b) A s.e. 95% CI (lb) (ub) r.e.

γ = 10 5 5000 0.229 0.287 0.801 6.61E-04 0.228 0.231 0.00288

10 5000 0.0659 0.0821 0.803 1.88E-04 0.0655 0.0663 0.00285

15 5000 0.0187 0.0235 0.797 5.57E-05 0.0186 0.0188 0.00297

20 5000 0.00538 0.00674 0.799 1.59E-05 0.00535 0.00541 0.00296

25 5000 1.55E-03 1.93E-03 0.801 4.45E-06 0.00154 0.00156 0.00288

30 5000 4.42E-04 5.53E-04 0.800 1.28E-06 4.40E-04 4.45E-04 0.00288

40 5000 3.64E-05 4.54E-05 0.802 1.05E-07 3.62E-05 3.66E-05 0.00288

50 5000 3.00E-06 3.73E-06 0.806 8.51E-09 2.99E-06 3.02E-06 0.00283

60 5000 2.44E-07 3.06E-07 0.797 7.13E-10 2.43E-07 2.45E-07 0.00292

70 5000 2.02E-08 2.51E-08 0.805 5.76E-11 2.01E-08 2.03E-08 0.00285

80 5000 1.64E-09 2.06E-09 0.798 4.81E-12 1.64E-09 1.65E-09 0.00293

90 5000 1.35E-10 1.69E-10 0.799 3.84E-13 1.34E-10 1.36E-10 0.00284

γ = 1 5 5000 0.230 0.287 0.804 6.81E-04 0.229 0.232 0.00295

10 5000 0.0659 0.0821 0.803 1.92E-04 0.0655 0.0663 0.00292

15 5000 0.0188 0.0235 0.801 5.67E-05 0.0187 0.0189 0.00301

20 5000 0.00540 0.00674 0.801 1.58E-05 0.00536 0.00543 0.00294

25 5000 1.54E-03 1.93E-03 0.799 4.59E-06 0.00153 0.00155 0.00298

30 5000 4.45E-04 5.53E-04 0.805 1.28E-06 4.43E-04 4.48E-04 0.00287

40 5000 3.63E-05 4.54E-05 0.800 1.07E-07 3.61E-05 3.65E-05 0.00294

50 5000 2.97E-06 3.73E-06 0.798 8.98E-09 2.96E-06 2.99E-06 0.00302

60 5000 2.46E-07 3.06E-07 0.803 7.18E-10 2.44E-07 2.47E-07 0.00292

70 5000 2.02E-08 2.51E-08 0.804 5.90E-11 2.01E-08 2.03E-08 0.00293

80 5000 1.66E-09 2.06E-09 0.806 4.74E-12 1.65E-09 1.67E-09 0.00285

90 5000 1.36E-10 1.69E-10 0.804 4.00E-13 1.35E-10 1.37E-10 0.00294

γ = 0.1 5 5000 0.293 0.287 1.024 1.24E-03 0.291 0.296 0.00421

10 5000 0.0828 0.0821 1.008 4.06E-04 0.0820 0.0836 0.00491

15 5000 0.0217 0.0235 0.924 1.20E-04 0.0215 0.0220 0.00553

20 5000 0.00600 0.00674 0.891 3.37E-05 0.00594 0.00607 0.00561

25 5000 1.71E-03 1.93E-03 0.887 9.53E-06 0.00169 0.00173 0.00556

30 5000 4.95E-04 5.53E-04 0.895 2.76E-06 4.90E-04 5.00E-04 0.00558

40 5000 4.13E-05 4.54E-05 0.910 2.23E-07 4.09E-05 4.18E-05 0.00539

50 5000 3.37E-06 3.73E-06 0.904 1.86E-08 3.33E-06 3.40E-06 0.00551

60 5000 2.73E-07 3.06E-07 0.893 1.51E-09 2.70E-07 2.76E-07 0.00554

70 5000 2.27E-08 2.51E-08 0.902 1.25E-10 2.24E-08 2.29E-08 0.00551

80 5000 1.85E-09 2.06E-09 0.896 1.01E-11 1.83E-09 1.87E-09 0.00547

90 5000 1.52E-10 1.69E-10 0.900 8.36E-13 1.51E-10 1.54E-10 0.00549
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Table A.6: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the Mt/M/1 model for y = π/γ

as a function of γ and b based on n = 5, 000 replications: ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

b n p̂ exp(−θ∗b) A s.e. 95% CI (lb) (ub) r.e.

γ = 10 5 5000 0.232 0.287 0.808 6.64E-04 0.230 0.233 0.00286

10 5000 0.0657 0.0821 0.800 1.93E-04 0.0653 0.0661 0.00294

15 5000 0.0190 0.0235 0.807 5.39E-05 0.0189 0.0191 0.00284

20 5000 0.00546 0.00674 0.810 1.53E-05 0.00543 0.00549 0.00281

25 5000 1.55E-03 1.93E-03 0.804 4.49E-06 0.00154 0.00156 0.00289

30 5000 4.46E-04 5.53E-04 0.807 1.28E-06 4.44E-04 4.49E-04 0.00286

40 5000 3.64E-05 4.54E-05 0.802 1.06E-07 3.62E-05 3.66E-05 0.00291

50 5000 3.00E-06 3.73E-06 0.804 8.59E-09 2.98E-06 3.01E-06 0.00286

60 5000 2.46E-07 3.06E-07 0.803 7.21E-10 2.44E-07 2.47E-07 0.00294

70 5000 2.02E-08 2.51E-08 0.804 5.76E-11 2.01E-08 2.03E-08 0.00285

80 5000 1.65E-09 2.06E-09 0.803 4.79E-12 1.65E-09 1.66E-09 0.00289

90 5000 1.36E-10 1.69E-10 0.805 3.88E-13 1.35E-10 1.37E-10 0.00285

γ = 1 5 5000 0.242 0.287 0.846 6.96E-04 0.241 0.244 0.00287

10 5000 0.0691 0.0821 0.842 2.05E-04 0.0687 0.0695 0.00297

15 5000 0.0198 0.0235 0.841 5.89E-05 0.0197 0.0199 0.00298

20 5000 0.00570 0.00674 0.846 1.65E-05 0.00567 0.00573 0.00290

25 5000 1.62E-03 1.93E-03 0.840 4.80E-06 0.00161 0.00163 0.00296

30 5000 4.68E-04 5.53E-04 0.847 1.36E-06 4.66E-04 4.71E-04 0.00289

40 5000 3.81E-05 4.54E-05 0.840 1.15E-07 3.79E-05 3.83E-05 0.00303

50 5000 3.14E-06 3.73E-06 0.843 9.16E-09 3.12E-06 3.16E-06 0.00292

60 5000 2.59E-07 3.06E-07 0.847 7.62E-10 2.58E-07 2.61E-07 0.00294

70 5000 2.13E-08 2.51E-08 0.849 6.11E-11 2.12E-08 2.14E-08 0.00287

80 5000 1.74E-09 2.06E-09 0.842 5.18E-12 1.73E-09 1.75E-09 0.00298

90 5000 1.42E-10 1.69E-10 0.839 4.25E-13 1.41E-10 1.43E-10 0.00300

γ = 0.1 5 5000 0.342 0.287 1.195 1.99E-03 0.338 0.346 0.00581

10 5000 0.1181 0.0821 1.438 6.32E-04 0.1168 0.1193 0.00535

15 5000 0.0366 0.0235 1.554 1.86E-04 0.0362 0.0369 0.00508

20 5000 0.01038 0.00674 1.541 5.42E-05 0.01027 0.01049 0.00522

25 5000 2.93E-03 1.93E-03 1.516 1.57E-05 0.00289 0.00296 0.00536

30 5000 8.22E-04 5.53E-04 1.485 4.51E-06 8.13E-04 8.30E-04 0.00549

40 5000 6.67E-05 4.54E-05 1.470 3.68E-07 6.60E-05 6.75E-05 0.00552

50 5000 5.49E-06 3.73E-06 1.473 3.01E-08 5.43E-06 5.55E-06 0.00548

60 5000 4.58E-07 3.06E-07 1.499 2.52E-09 4.54E-07 4.63E-07 0.00549

70 5000 3.75E-08 2.51E-08 1.495 2.06E-10 3.71E-08 3.79E-08 0.00549

80 5000 3.07E-09 2.06E-09 1.490 1.69E-11 3.04E-09 3.10E-09 0.00552

90 5000 2.49E-10 1.69E-10 1.474 1.38E-12 2.47E-10 2.52E-10 0.00554
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Table A.7: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the Mt/M/1 model for y = 3π/2γ

as a function of γ and b based on n = 5, 000 replications: ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

b n p̂ exp(−θ∗b) A s.e. 95% CI (lb) (ub) r.e.

γ = 10 5 5000 0.229 0.287 0.798 6.66E-04 0.227 0.230 0.00291

10 5000 0.0657 0.0821 0.801 1.89E-04 0.0654 0.0661 0.00287

15 5000 0.0187 0.0235 0.794 5.49E-05 0.0186 0.0188 0.00294

20 5000 0.00541 0.00674 0.803 1.54E-05 0.00538 0.00544 0.00284

25 5000 1.55E-03 1.93E-03 0.801 4.43E-06 0.00154 0.00155 0.00286

30 5000 4.43E-04 5.53E-04 0.801 1.28E-06 4.40E-04 4.45E-04 0.00290

40 5000 3.63E-05 4.54E-05 0.800 1.05E-07 3.61E-05 3.65E-05 0.00289

50 5000 2.98E-06 3.73E-06 0.798 8.62E-09 2.96E-06 2.99E-06 0.00290

60 5000 2.46E-07 3.06E-07 0.803 6.95E-10 2.44E-07 2.47E-07 0.00283

70 5000 2.01E-08 2.51E-08 0.799 5.81E-11 2.00E-08 2.02E-08 0.00289

80 5000 1.66E-09 2.06E-09 0.803 4.74E-12 1.65E-09 1.67E-09 0.00286

90 5000 1.36E-10 1.69E-10 0.802 3.93E-13 1.35E-10 1.37E-10 0.00290

γ = 1 5 5000 0.231 0.287 0.807 6.63E-04 0.230 0.232 0.00287

10 5000 0.0659 0.0821 0.803 1.92E-04 0.0655 0.0663 0.00291

15 5000 0.0189 0.0235 0.803 5.53E-05 0.0188 0.0190 0.00293

20 5000 0.00539 0.00674 0.800 1.58E-05 0.00536 0.00542 0.00294

25 5000 1.55E-03 1.93E-03 0.801 4.60E-06 0.00154 0.00155 0.00298

30 5000 4.44E-04 5.53E-04 0.803 1.29E-06 4.42E-04 4.47E-04 0.00290

40 5000 3.66E-05 4.54E-05 0.807 1.06E-07 3.64E-05 3.68E-05 0.00290

50 5000 2.98E-06 3.73E-06 0.798 8.82E-09 2.96E-06 2.99E-06 0.00296

60 5000 2.45E-07 3.06E-07 0.800 7.21E-10 2.43E-07 2.46E-07 0.00294

70 5000 2.01E-08 2.51E-08 0.802 5.91E-11 2.00E-08 2.03E-08 0.00293

80 5000 1.66E-09 2.06E-09 0.803 4.90E-12 1.65E-09 1.67E-09 0.00296

90 5000 1.36E-10 1.69E-10 0.805 4.00E-13 1.35E-10 1.37E-10 0.00293

γ = 0.1 5 5000 0.201 0.287 0.701 1.14E-03 0.199 0.203 0.00568

10 5000 0.0658 0.0821 0.801 3.83E-04 0.0650 0.0665 0.00581

15 5000 0.0205 0.0235 0.872 1.15E-04 0.0203 0.0207 0.00562

20 5000 0.00612 0.00674 0.908 3.30E-05 0.00605 0.00618 0.00540

25 5000 1.77E-03 1.93E-03 0.918 9.62E-06 0.00175 0.00179 0.00543

30 5000 5.01E-04 5.53E-04 0.906 2.72E-06 4.96E-04 5.06E-04 0.00543

40 5000 4.10E-05 4.54E-05 0.903 2.27E-07 4.06E-05 4.14E-05 0.00555

50 5000 3.33E-06 3.73E-06 0.893 1.84E-08 3.29E-06 3.37E-06 0.00552

60 5000 2.76E-07 3.06E-07 0.901 1.51E-09 2.73E-07 2.79E-07 0.00549

70 5000 2.28E-08 2.51E-08 0.908 1.24E-10 2.26E-08 2.30E-08 0.00544

80 5000 1.87E-09 2.06E-09 0.905 1.02E-11 1.84E-09 1.89E-09 0.00549

90 5000 1.52E-10 1.69E-10 0.898 8.37E-13 1.50E-10 1.54E-10 0.00551
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Table A.8: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the Mt/M/1 model as a function

of y based on n = 5, 000 replications: γ = 10, b = 20, ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

γ = 10 position n p̂ exp(−θ∗b) Ay Ay approx s.e. 95% CI (lb) (ub) r.e.

0.000 10000 0.0053699 0.00674 0.797 0.796 1.08E-05 0.0053487 0.0053911 0.00202

0.025 10000 0.0053537 0.00674 0.795 0.796 1.09E-05 0.0053323 0.0053751 0.00204

0.050 10000 0.0053577 0.00674 0.795 0.796 1.11E-05 0.0053359 0.0053795 0.00208

0.075 10000 0.0053619 0.00674 0.796 0.796 1.10E-05 0.0053403 0.0053835 0.00206

0.100 10000 0.0053614 0.00674 0.796 0.797 1.09E-05 0.0053400 0.0053829 0.00204

0.125 10000 0.0053859 0.00674 0.799 0.797 1.09E-05 0.0053646 0.0054073 0.00202

0.150 10000 0.0053805 0.00674 0.799 0.798 1.09E-05 0.0053590 0.0054019 0.00203

0.175 10000 0.0053653 0.00674 0.796 0.798 1.09E-05 0.0053439 0.0053867 0.00204

0.200 10000 0.0053969 0.00674 0.801 0.799 1.09E-05 0.0053755 0.0054183 0.00202

0.225 10000 0.0053956 0.00674 0.801 0.799 1.10E-05 0.0053740 0.0054172 0.00204

0.250 10000 0.0053814 0.00674 0.799 0.800 1.10E-05 0.0053598 0.0054029 0.00204

0.275 10000 0.0053804 0.00674 0.799 0.801 1.10E-05 0.0053588 0.0054020 0.00205

0.300 10000 0.0053728 0.00674 0.797 0.801 1.11E-05 0.0053510 0.0053945 0.00207

0.325 10000 0.0053793 0.00674 0.798 0.802 1.12E-05 0.0053574 0.0054012 0.00208

0.350 10000 0.0054018 0.00674 0.802 0.802 1.12E-05 0.0053799 0.0054238 0.00207

0.375 10000 0.0053946 0.00674 0.801 0.803 1.12E-05 0.0053727 0.0054165 0.00207

0.400 10000 0.0054297 0.00674 0.806 0.803 1.10E-05 0.0054081 0.0054514 0.00203

0.425 10000 0.0054067 0.00674 0.802 0.804 1.10E-05 0.0053851 0.0054283 0.00204

0.450 10000 0.0054257 0.00674 0.805 0.804 1.11E-05 0.0054040 0.0054474 0.00204

0.475 10000 0.0054453 0.00674 0.808 0.804 1.09E-05 0.0054238 0.0054667 0.00201

0.500 10000 0.0054138 0.00674 0.803 0.804 1.11E-05 0.0053920 0.0054356 0.00206

0.525 10000 0.0054315 0.00674 0.806 0.804 1.10E-05 0.0054099 0.0054532 0.00203

0.550 10000 0.0054065 0.00674 0.802 0.804 1.12E-05 0.0053846 0.0054284 0.00206

0.575 10000 0.0054207 0.00674 0.805 0.804 1.11E-05 0.0053990 0.0054425 0.00205

0.600 10000 0.0054270 0.00674 0.805 0.803 1.09E-05 0.0054057 0.0054484 0.00201

0.625 10000 0.0054153 0.00674 0.804 0.803 1.09E-05 0.0053938 0.0054367 0.00202

0.650 10000 0.0054065 0.00674 0.802 0.802 1.10E-05 0.0053849 0.0054281 0.00204

0.675 10000 0.0054121 0.00674 0.803 0.802 1.09E-05 0.0053908 0.0054334 0.00201

0.700 10000 0.0054175 0.00674 0.804 0.801 1.10E-05 0.0053960 0.0054390 0.00202

0.725 10000 0.0053797 0.00674 0.798 0.801 1.11E-05 0.0053580 0.0054014 0.00206

0.750 10000 0.0053901 0.00674 0.800 0.800 1.10E-05 0.0053686 0.0054116 0.00203

0.775 10000 0.0053580 0.00674 0.795 0.799 1.11E-05 0.0053361 0.0053798 0.00208

0.800 10000 0.0053783 0.00674 0.798 0.799 1.10E-05 0.0053568 0.0053998 0.00204

0.825 10000 0.0053843 0.00674 0.799 0.798 1.08E-05 0.0053630 0.0054056 0.00201

0.850 10000 0.0053946 0.00674 0.801 0.798 1.09E-05 0.0053733 0.0054160 0.00202

0.875 10000 0.0053783 0.00674 0.798 0.797 1.09E-05 0.0053569 0.0053997 0.00203

0.900 10000 0.0053758 0.00674 0.798 0.797 1.10E-05 0.0053543 0.0053974 0.00205

0.925 10000 0.0053714 0.00674 0.797 0.796 1.08E-05 0.0053502 0.0053926 0.00201

0.950 10000 0.0053435 0.00674 0.793 0.796 1.10E-05 0.0053220 0.0053651 0.00206

0.975 10000 0.0053681 0.00674 0.797 0.796 1.09E-05 0.0053468 0.0053895 0.00203
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Table A.9: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the Mt/M/1 model as a function

of y based on n = 5, 000 replications: γ = 0.1, b = 50, ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

γ = 0.1 position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 10000 2.04E-06 3.73E-06 0.548 0.485 0.294 0.800 7.95E-09 2.03E-06 2.06E-06 0.00389

0.025 10000 2.05E-06 3.73E-06 0.551 0.488 0.296 0.805 7.94E-09 2.04E-06 2.07E-06 0.00387

0.050 10000 2.09E-06 3.73E-06 0.560 0.497 0.302 0.820 8.08E-09 2.07E-06 2.10E-06 0.00387

0.075 10000 2.15E-06 3.73E-06 0.577 0.512 0.311 0.845 8.34E-09 2.13E-06 2.17E-06 0.00388

0.100 10000 2.24E-06 3.73E-06 0.602 0.534 0.324 0.880 8.68E-09 2.22E-06 2.26E-06 0.00387

0.125 10000 2.37E-06 3.73E-06 0.635 0.562 0.341 0.926 9.21E-09 2.35E-06 2.38E-06 0.00389

0.150 10000 2.50E-06 3.73E-06 0.671 0.596 0.362 0.983 9.70E-09 2.48E-06 2.52E-06 0.00388

0.175 10000 2.68E-06 3.73E-06 0.719 0.638 0.387 1.051 1.05E-08 2.66E-06 2.70E-06 0.00392

0.200 10000 2.87E-06 3.73E-06 0.770 0.685 0.416 1.130 1.12E-08 2.85E-06 2.89E-06 0.00392

0.225 10000 3.10E-06 3.73E-06 0.832 0.740 0.449 1.220 1.20E-08 3.08E-06 3.12E-06 0.00387

0.250 10000 3.36E-06 3.73E-06 0.902 0.800 0.485 1.319 1.31E-08 3.33E-06 3.39E-06 0.00390

0.275 10000 3.63E-06 3.73E-06 0.974 0.865 0.525 1.426 1.42E-08 3.60E-06 3.66E-06 0.00390

0.300 10000 3.90E-06 3.73E-06 1.045 0.934 0.566 1.539 1.51E-08 3.87E-06 3.93E-06 0.00389

0.325 10000 4.19E-06 3.73E-06 1.126 1.004 0.609 1.655 1.63E-08 4.16E-06 4.23E-06 0.00389

0.350 10000 4.50E-06 3.73E-06 1.208 1.073 0.651 1.770 1.76E-08 4.47E-06 4.54E-06 0.00391

0.375 10000 4.80E-06 3.73E-06 1.289 1.139 0.691 1.878 1.84E-08 4.77E-06 4.84E-06 0.00383

0.400 10000 5.04E-06 3.73E-06 1.352 1.199 0.727 1.977 1.96E-08 5.00E-06 5.08E-06 0.00389

0.425 10000 5.27E-06 3.73E-06 1.413 1.249 0.758 2.059 2.03E-08 5.23E-06 5.31E-06 0.00386

0.450 10000 5.39E-06 3.73E-06 1.446 1.287 0.781 2.122 2.09E-08 5.35E-06 5.43E-06 0.00388

0.475 10000 5.54E-06 3.73E-06 1.487 1.311 0.795 2.161 2.14E-08 5.50E-06 5.58E-06 0.00387

0.500 10000 5.54E-06 3.73E-06 1.488 1.319 0.800 2.175 2.15E-08 5.50E-06 5.59E-06 0.00388

0.525 10000 5.51E-06 3.73E-06 1.479 1.311 0.795 2.161 2.14E-08 5.47E-06 5.55E-06 0.00388

0.550 10000 5.46E-06 3.73E-06 1.466 1.287 0.781 2.122 2.11E-08 5.42E-06 5.50E-06 0.00386

0.575 10000 5.22E-06 3.73E-06 1.401 1.249 0.758 2.059 2.04E-08 5.18E-06 5.26E-06 0.00390

0.600 10000 5.04E-06 3.73E-06 1.353 1.199 0.727 1.977 1.95E-08 5.00E-06 5.08E-06 0.00387

0.625 10000 4.77E-06 3.73E-06 1.281 1.139 0.691 1.878 1.87E-08 4.74E-06 4.81E-06 0.00391

0.650 10000 4.55E-06 3.73E-06 1.221 1.073 0.651 1.770 1.75E-08 4.52E-06 4.58E-06 0.00386

0.675 10000 4.23E-06 3.73E-06 1.134 1.004 0.609 1.655 1.64E-08 4.19E-06 4.26E-06 0.00388

0.700 10000 3.91E-06 3.73E-06 1.049 0.934 0.566 1.539 1.52E-08 3.88E-06 3.94E-06 0.00389

0.725 10000 3.63E-06 3.73E-06 0.975 0.865 0.525 1.426 1.40E-08 3.61E-06 3.66E-06 0.00385

0.750 10000 3.35E-06 3.73E-06 0.899 0.800 0.485 1.319 1.30E-08 3.33E-06 3.38E-06 0.00387

0.775 10000 3.09E-06 3.73E-06 0.829 0.740 0.449 1.220 1.21E-08 3.07E-06 3.11E-06 0.00390

0.800 10000 2.86E-06 3.73E-06 0.768 0.685 0.416 1.130 1.12E-08 2.84E-06 2.88E-06 0.00392

0.825 10000 2.68E-06 3.73E-06 0.719 0.638 0.387 1.051 1.04E-08 2.66E-06 2.70E-06 0.00388

0.850 10000 2.49E-06 3.73E-06 0.669 0.596 0.362 0.983 9.65E-09 2.47E-06 2.51E-06 0.00387

0.875 10000 2.35E-06 3.73E-06 0.630 0.562 0.341 0.926 9.06E-09 2.33E-06 2.37E-06 0.00386

0.900 10000 2.24E-06 3.73E-06 0.602 0.534 0.324 0.880 8.72E-09 2.23E-06 2.26E-06 0.00389

0.925 10000 2.16E-06 3.73E-06 0.578 0.512 0.311 0.845 8.38E-09 2.14E-06 2.17E-06 0.00389

0.950 10000 2.08E-06 3.73E-06 0.557 0.497 0.302 0.820 8.08E-09 2.06E-06 2.09E-06 0.00389

0.975 10000 2.04E-06 3.73E-06 0.548 0.488 0.296 0.805 7.99E-09 2.03E-06 2.06E-06 0.00391
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Table A.10: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on n = 5, 000 replications: γ = 0.01, b = 300, ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

γ = 0.01 position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 10000 4.71E-34 2.68E-33 0.176 0.005 0.00004 0.800 7.10E-36 4.57E-34 4.85E-34 0.0151

0.025 10000 5.02E-34 2.68E-33 0.187 0.006 0.00004 0.851 7.56E-36 4.87E-34 5.17E-34 0.0151

0.050 10000 5.78E-34 2.68E-33 0.216 0.007 0.00005 1.022 8.95E-36 5.60E-34 5.95E-34 0.0155

0.075 10000 7.64E-34 2.68E-33 0.285 0.009 0.00006 1.380 1.19E-35 7.41E-34 7.88E-34 0.0155

0.100 10000 1.07E-33 2.68E-33 0.401 0.014 0.00009 2.079 1.75E-35 1.04E-33 1.11E-33 0.0163

0.125 10000 1.72E-33 2.68E-33 0.642 0.023 0.00016 3.460 2.88E-35 1.66E-33 1.78E-33 0.0167

0.150 10000 2.86E-33 2.68E-33 1.066 0.042 0.00029 6.284 4.98E-35 2.76E-33 2.95E-33 0.0175

0.175 10000 5.36E-33 2.68E-33 2.003 0.083 0.00056 12.267 9.71E-35 5.17E-33 5.56E-33 0.0181

0.200 10000 1.07E-32 2.68E-33 3.994 0.171 0.00115 25.324 1.98E-34 1.03E-32 1.11E-32 0.0185

0.225 10000 2.30E-32 2.68E-33 8.587 0.366 0.00247 54.309 4.24E-34 2.22E-32 2.38E-32 0.0184

0.250 10000 4.95E-32 2.68E-33 18.490 0.800 0.00539 118.731 9.29E-34 4.77E-32 5.13E-32 0.0188

0.275 10000 1.12E-31 2.68E-33 41.970 1.749 0.01178 259.571 2.08E-33 1.08E-31 1.16E-31 0.0185

0.300 10000 2.60E-31 2.68E-33 96.956 3.751 0.02527 556.653 4.65E-33 2.51E-31 2.69E-31 0.0179

0.325 10000 5.72E-31 2.68E-33 213.720 7.743 0.05217 1149.186 9.85E-33 5.53E-31 5.92E-31 0.0172

0.350 10000 1.21E-30 2.68E-33 453.072 15.116 0.10185 2243.478 1.98E-32 1.17E-30 1.25E-30 0.0163

0.375 10000 2.35E-30 2.68E-33 875.663 27.451 0.18496 4074.040 3.72E-32 2.27E-30 2.42E-30 0.0158

0.400 10000 4.22E-30 2.68E-33 1574.049 45.693 0.30788 6781.417 6.33E-32 4.09E-30 4.34E-30 0.0150

0.425 10000 6.54E-30 2.68E-33 2440.946 68.847 0.46389 10217.825 9.60E-32 6.35E-30 6.73E-30 0.0147

0.450 10000 9.11E-30 2.68E-33 3399.220 92.957 0.62634 13796.070 1.30E-31 8.85E-30 9.36E-30 0.0143

0.475 10000 1.13E-29 2.68E-33 4227.878 111.642 0.75224 16569.156 1.58E-31 1.10E-29 1.16E-29 0.0139

0.500 10000 1.21E-29 2.68E-33 4505.760 118.731 0.80000 17621.173 1.67E-31 1.17E-29 1.24E-29 0.0138

0.525 10000 1.13E-29 2.68E-33 4211.232 111.642 0.75224 16569.156 1.56E-31 1.10E-29 1.16E-29 0.0138

0.550 10000 9.29E-30 2.68E-33 3469.383 92.957 0.62634 13796.070 1.29E-31 9.04E-30 9.55E-30 0.0138

0.575 10000 6.88E-30 2.68E-33 2567.108 68.847 0.46389 10217.825 9.59E-32 6.69E-30 7.06E-30 0.0139

0.600 10000 4.67E-30 2.68E-33 1744.227 45.693 0.30788 6781.417 6.36E-32 4.55E-30 4.80E-30 0.0136

0.625 10000 2.74E-30 2.68E-33 1023.988 27.451 0.18496 4074.040 3.78E-32 2.67E-30 2.82E-30 0.0138

0.650 10000 1.48E-30 2.68E-33 553.534 15.116 0.10185 2243.478 2.07E-32 1.44E-30 1.52E-30 0.0140

0.675 10000 7.60E-31 2.68E-33 283.764 7.743 0.05217 1149.186 1.07E-32 7.39E-31 7.81E-31 0.0140

0.700 10000 3.72E-31 2.68E-33 138.823 3.751 0.02527 556.653 5.19E-33 3.62E-31 3.82E-31 0.0140

0.725 10000 1.78E-31 2.68E-33 66.314 1.749 0.01178 259.571 2.44E-33 1.73E-31 1.82E-31 0.0137

0.750 10000 7.88E-32 2.68E-33 29.402 0.800 0.00539 118.731 1.10E-33 7.66E-32 8.09E-32 0.0140

0.775 10000 3.58E-32 2.68E-33 13.368 0.366 0.00247 54.309 4.98E-34 3.48E-32 3.68E-32 0.0139

0.800 10000 1.61E-32 2.68E-33 6.025 0.171 0.00115 25.324 2.32E-34 1.57E-32 1.66E-32 0.0144

0.825 10000 7.97E-33 2.68E-33 2.977 0.083 0.00056 12.267 1.13E-34 7.75E-33 8.19E-33 0.0142

0.850 10000 3.99E-33 2.68E-33 1.488 0.042 0.00029 6.284 5.76E-35 3.87E-33 4.10E-33 0.0144

0.875 10000 2.20E-33 2.68E-33 0.820 0.023 0.00016 3.460 3.14E-35 2.14E-33 2.26E-33 0.0143

0.900 10000 1.30E-33 2.68E-33 0.487 0.014 0.00009 2.079 1.89E-35 1.27E-33 1.34E-33 0.0145

0.925 10000 8.79E-34 2.68E-33 0.328 0.009 0.00006 1.380 1.26E-35 8.54E-34 9.04E-34 0.0143

0.950 10000 6.41E-34 2.68E-33 0.239 0.007 0.00005 1.022 9.26E-36 6.23E-34 6.59E-34 0.0145

0.975 10000 5.19E-34 2.68E-33 0.194 0.006 0.00004 0.851 7.67E-36 5.04E-34 5.34E-34 0.0148
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Table A.11: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on n = 5, 000 replications: γ = 1, b = 20, ρ = 0.9, λ̄ = 1, µ = 1.11, β = 0.2

γ = 1 position n p̂ exp(−θ∗b) Ay Ay approx AyUB AyLB s.e. 95% CI (lb) (ub) r.e.

0.000 10000 0.0954 0.108 0.881 0.880 0.861 0.900 9.60E-05 0.0953 0.0956 0.00101

0.025 10000 0.0956 0.108 0.883 0.880 0.861 0.900 9.63E-05 0.0954 0.0958 0.00101

0.050 10000 0.0957 0.108 0.883 0.881 0.862 0.901 9.73E-05 0.0955 0.0959 0.00102

0.075 10000 0.0956 0.108 0.883 0.882 0.863 0.902 9.72E-05 0.0955 0.0958 0.00102

0.100 10000 0.0961 0.108 0.887 0.884 0.865 0.904 9.68E-05 0.0959 0.0963 0.00101

0.125 10000 0.0961 0.108 0.886 0.886 0.866 0.906 9.82E-05 0.0959 0.0963 0.00102

0.150 10000 0.0963 0.108 0.889 0.888 0.869 0.908 9.80E-05 0.0961 0.0965 0.00102

0.175 10000 0.0968 0.108 0.893 0.891 0.871 0.911 9.79E-05 0.0966 0.0970 0.00101

0.200 10000 0.0970 0.108 0.895 0.894 0.874 0.914 9.86E-05 0.0968 0.0972 0.00102

0.225 10000 0.0973 0.108 0.898 0.897 0.877 0.917 9.84E-05 0.0972 0.0975 0.00101

0.250 10000 0.0976 0.108 0.901 0.900 0.880 0.920 9.81E-05 0.0974 0.0978 0.00100

0.275 10000 0.0980 0.108 0.904 0.903 0.883 0.923 1.00E-04 0.0978 0.0982 0.00102

0.300 10000 0.0984 0.108 0.908 0.906 0.886 0.927 9.93E-05 0.0982 0.0986 0.00101

0.325 10000 0.0985 0.108 0.909 0.909 0.889 0.930 1.01E-04 0.0983 0.0987 0.00103

0.350 10000 0.0992 0.108 0.915 0.912 0.892 0.932 1.00E-04 0.0990 0.0994 0.00101

0.375 10000 0.0993 0.108 0.916 0.914 0.894 0.935 9.93E-05 0.0991 0.0994 0.00100

0.400 10000 0.0994 0.108 0.917 0.916 0.896 0.937 1.02E-04 0.0992 0.0996 0.00102

0.425 10000 0.0997 0.108 0.920 0.918 0.898 0.939 1.02E-04 0.0995 0.0999 0.00102

0.450 10000 0.0997 0.108 0.920 0.919 0.899 0.940 1.02E-04 0.0995 0.0999 0.00102

0.475 10000 0.0998 0.108 0.921 0.920 0.900 0.941 1.01E-04 0.0996 0.1000 0.00102

0.500 10000 0.0998 0.108 0.921 0.920 0.900 0.941 1.02E-04 0.0996 0.1000 0.00102

0.525 10000 0.0997 0.108 0.920 0.920 0.900 0.941 1.02E-04 0.0995 0.0999 0.00102

0.550 10000 0.0998 0.108 0.921 0.919 0.899 0.940 1.02E-04 0.0996 0.1000 0.00102

0.575 10000 0.0997 0.108 0.920 0.918 0.898 0.939 1.01E-04 0.0995 0.0998 0.00101

0.600 10000 0.0993 0.108 0.917 0.916 0.896 0.937 1.01E-04 0.0991 0.0995 0.00101

0.625 10000 0.0993 0.108 0.916 0.914 0.894 0.935 1.02E-04 0.0991 0.0995 0.00103

0.650 10000 0.0987 0.108 0.911 0.912 0.892 0.932 1.03E-04 0.0985 0.0989 0.00104

0.675 10000 0.0988 0.108 0.912 0.909 0.889 0.930 9.90E-05 0.0986 0.0990 0.00100

0.700 10000 0.0984 0.108 0.908 0.906 0.886 0.927 9.98E-05 0.0982 0.0986 0.00101

0.725 10000 0.0979 0.108 0.904 0.903 0.883 0.923 1.00E-04 0.0978 0.0981 0.00102

0.750 10000 0.0978 0.108 0.902 0.900 0.880 0.920 9.81E-05 0.0976 0.0980 0.00100

0.775 10000 0.0974 0.108 0.899 0.897 0.877 0.917 9.85E-05 0.0972 0.0976 0.00101

0.800 10000 0.0972 0.108 0.897 0.894 0.874 0.914 9.73E-05 0.0970 0.0973 0.00100

0.825 10000 0.0964 0.108 0.890 0.891 0.871 0.911 1.02E-04 0.0962 0.0966 0.00106

0.850 10000 0.0963 0.108 0.889 0.888 0.869 0.908 9.84E-05 0.0961 0.0965 0.00102

0.875 10000 0.0961 0.108 0.887 0.886 0.866 0.906 9.93E-05 0.0960 0.0963 0.00103

0.900 10000 0.0963 0.108 0.888 0.884 0.865 0.904 9.43E-05 0.0961 0.0964 0.00098

0.925 10000 0.0958 0.108 0.884 0.882 0.863 0.902 9.82E-05 0.0956 0.0960 0.00103

0.950 10000 0.0956 0.108 0.882 0.881 0.862 0.901 9.70E-05 0.0954 0.0958 0.00101

0.975 10000 0.0957 0.108 0.883 0.880 0.861 0.900 9.63E-05 0.0955 0.0959 0.00101
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Table A.12: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on n = 5, 000 replications: γ = 0.1, b = 50, ρ = 0.9, λ̄ = 1, µ = 1.11, β = 0.2

γ = 0.1 position n p̂ exp(−θ∗b) Ay Ay approx AyUB AyLB s.e. 95% CI (lb) (ub) r.e.

0.000 10000 0.00292 0.00387 0.757 0.721 0.577 0.900 5.22E-06 0.00291 0.00293 0.00178

0.025 10000 0.00293 0.00387 0.759 0.723 0.579 0.902 5.23E-06 0.00292 0.00294 0.00178

0.050 10000 0.00296 0.00387 0.766 0.729 0.583 0.910 5.32E-06 0.00295 0.00297 0.00180

0.075 10000 0.00300 0.00387 0.776 0.738 0.591 0.922 5.32E-06 0.00299 0.00301 0.00177

0.100 10000 0.00306 0.00387 0.792 0.752 0.602 0.939 5.42E-06 0.00305 0.00307 0.00177

0.125 10000 0.00312 0.00387 0.808 0.769 0.616 0.961 5.56E-06 0.00311 0.00314 0.00178

0.150 10000 0.00321 0.00387 0.829 0.790 0.632 0.986 5.75E-06 0.00319 0.00322 0.00179

0.175 10000 0.00331 0.00387 0.857 0.814 0.652 1.016 5.86E-06 0.00330 0.00332 0.00177

0.200 10000 0.00342 0.00387 0.884 0.840 0.673 1.049 6.07E-06 0.00340 0.00343 0.00178

0.225 10000 0.00353 0.00387 0.914 0.869 0.696 1.086 6.30E-06 0.00352 0.00355 0.00178

0.250 10000 0.00365 0.00387 0.944 0.900 0.721 1.124 6.55E-06 0.00364 0.00366 0.00180

0.275 10000 0.00378 0.00387 0.978 0.932 0.746 1.164 6.74E-06 0.00377 0.00379 0.00178

0.300 10000 0.00392 0.00387 1.014 0.964 0.772 1.204 7.02E-06 0.00391 0.00394 0.00179

0.325 10000 0.00404 0.00387 1.045 0.996 0.797 1.243 7.20E-06 0.00403 0.00405 0.00178

0.350 10000 0.00417 0.00387 1.078 1.026 0.821 1.281 7.45E-06 0.00415 0.00418 0.00179

0.375 10000 0.00428 0.00387 1.108 1.053 0.843 1.315 7.71E-06 0.00427 0.00430 0.00180

0.400 10000 0.00438 0.00387 1.132 1.077 0.863 1.345 7.86E-06 0.00436 0.00439 0.00180

0.425 10000 0.00445 0.00387 1.152 1.097 0.878 1.370 7.89E-06 0.00444 0.00447 0.00177

0.450 10000 0.00452 0.00387 1.168 1.112 0.890 1.388 8.10E-06 0.00450 0.00453 0.00179

0.475 10000 0.00454 0.00387 1.174 1.121 0.898 1.400 8.11E-06 0.00452 0.00455 0.00179

0.500 10000 0.00456 0.00387 1.179 1.124 0.900 1.404 8.24E-06 0.00454 0.00457 0.00181

0.525 10000 0.00455 0.00387 1.177 1.121 0.898 1.400 8.09E-06 0.00453 0.00457 0.00178

0.550 10000 0.00452 0.00387 1.170 1.112 0.890 1.388 8.01E-06 0.00451 0.00454 0.00177

0.575 10000 0.00446 0.00387 1.153 1.097 0.878 1.370 7.94E-06 0.00444 0.00447 0.00178

0.600 10000 0.00437 0.00387 1.131 1.077 0.863 1.345 7.79E-06 0.00436 0.00439 0.00178

0.625 10000 0.00427 0.00387 1.106 1.053 0.843 1.315 7.65E-06 0.00426 0.00429 0.00179

0.650 10000 0.00416 0.00387 1.077 1.026 0.821 1.281 7.43E-06 0.00415 0.00418 0.00179

0.675 10000 0.00405 0.00387 1.047 0.996 0.797 1.243 7.16E-06 0.00403 0.00406 0.00177

0.700 10000 0.00391 0.00387 1.013 0.964 0.772 1.204 7.05E-06 0.00390 0.00393 0.00180

0.725 10000 0.00378 0.00387 0.977 0.932 0.746 1.164 6.78E-06 0.00376 0.00379 0.00179

0.750 10000 0.00366 0.00387 0.946 0.900 0.721 1.124 6.51E-06 0.00365 0.00367 0.00178

0.775 10000 0.00353 0.00387 0.914 0.869 0.696 1.086 6.27E-06 0.00352 0.00355 0.00177

0.800 10000 0.00341 0.00387 0.882 0.840 0.673 1.049 6.16E-06 0.00340 0.00342 0.00181

0.825 10000 0.00329 0.00387 0.850 0.814 0.652 1.016 5.94E-06 0.00328 0.00330 0.00181

0.850 10000 0.00320 0.00387 0.829 0.790 0.632 0.986 5.75E-06 0.00319 0.00321 0.00180

0.875 10000 0.00312 0.00387 0.806 0.769 0.616 0.961 5.52E-06 0.00311 0.00313 0.00177

0.900 10000 0.00305 0.00387 0.789 0.752 0.602 0.939 5.43E-06 0.00304 0.00306 0.00178

0.925 10000 0.00300 0.00387 0.776 0.738 0.591 0.922 5.33E-06 0.00299 0.00301 0.00178

0.950 10000 0.00295 0.00387 0.764 0.729 0.583 0.910 5.28E-06 0.00294 0.00296 0.00179

0.975 10000 0.00294 0.00387 0.760 0.723 0.579 0.902 5.23E-06 0.00293 0.00295 0.00178
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Table A.13: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on n = 5, 000 replications: γ = 10, b = 20, ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.5

γ = 10 position n p̂ exp(−θ∗b) A Ay approx s.e. 95% CI (lb) (ub) r.e.

0.000 10000 0.005312 0.00674 0.788 0.790 1.10E-05 0.005290 0.005333 0.00206

0.025 10000 0.005315 0.00674 0.789 0.790 1.09E-05 0.005294 0.005337 0.00204

0.050 10000 0.005323 0.00674 0.790 0.791 1.08E-05 0.005302 0.005345 0.00203

0.075 10000 0.005347 0.00674 0.794 0.791 1.08E-05 0.005326 0.005369 0.00202

0.100 10000 0.005318 0.00674 0.789 0.792 1.10E-05 0.005297 0.005340 0.00208

0.125 10000 0.005334 0.00674 0.792 0.793 1.10E-05 0.005312 0.005355 0.00206

0.150 10000 0.005356 0.00674 0.795 0.794 1.10E-05 0.005334 0.005377 0.00205

0.175 10000 0.005373 0.00674 0.797 0.795 1.09E-05 0.005351 0.005394 0.00203

0.200 10000 0.005383 0.00674 0.799 0.797 1.09E-05 0.005362 0.005405 0.00203

0.225 10000 0.005387 0.00674 0.799 0.798 1.10E-05 0.005365 0.005408 0.00205

0.250 10000 0.005409 0.00674 0.803 0.800 1.09E-05 0.005388 0.005430 0.00201

0.275 10000 0.005417 0.00674 0.804 0.802 1.11E-05 0.005396 0.005439 0.00204

0.300 10000 0.005408 0.00674 0.803 0.803 1.10E-05 0.005386 0.005429 0.00204

0.325 10000 0.005427 0.00674 0.805 0.805 1.09E-05 0.005405 0.005448 0.00200

0.350 10000 0.005432 0.00674 0.806 0.806 1.10E-05 0.005410 0.005453 0.00202

0.375 10000 0.005449 0.00674 0.809 0.807 1.12E-05 0.005427 0.005471 0.00205

0.400 10000 0.005437 0.00674 0.807 0.808 1.12E-05 0.005415 0.005459 0.00206

0.425 10000 0.005467 0.00674 0.811 0.809 1.10E-05 0.005445 0.005489 0.00202

0.450 10000 0.005453 0.00674 0.809 0.810 1.12E-05 0.005431 0.005475 0.00206

0.475 10000 0.005462 0.00674 0.811 0.810 1.11E-05 0.005440 0.005484 0.00204

0.500 10000 0.005451 0.00674 0.809 0.810 1.11E-05 0.005429 0.005472 0.00203

0.525 10000 0.005440 0.00674 0.807 0.810 1.11E-05 0.005418 0.005462 0.00205

0.550 10000 0.005443 0.00674 0.808 0.810 1.13E-05 0.005421 0.005465 0.00208

0.575 10000 0.005475 0.00674 0.813 0.809 1.09E-05 0.005454 0.005497 0.00200

0.600 10000 0.005445 0.00674 0.808 0.808 1.12E-05 0.005423 0.005467 0.00205

0.625 10000 0.005434 0.00674 0.806 0.807 1.12E-05 0.005412 0.005456 0.00206

0.650 10000 0.005440 0.00674 0.807 0.806 1.10E-05 0.005418 0.005462 0.00203

0.675 10000 0.005424 0.00674 0.805 0.805 1.12E-05 0.005402 0.005446 0.00206

0.700 10000 0.005400 0.00674 0.801 0.803 1.12E-05 0.005378 0.005422 0.00207

0.725 10000 0.005408 0.00674 0.803 0.802 1.11E-05 0.005386 0.005430 0.00205

0.750 10000 0.005375 0.00674 0.798 0.800 1.11E-05 0.005353 0.005397 0.00207

0.775 10000 0.005374 0.00674 0.798 0.798 1.10E-05 0.005352 0.005396 0.00205

0.800 10000 0.005404 0.00674 0.802 0.797 1.08E-05 0.005383 0.005426 0.00200

0.825 10000 0.005361 0.00674 0.796 0.795 1.09E-05 0.005340 0.005383 0.00203

0.850 10000 0.005351 0.00674 0.794 0.794 1.10E-05 0.005329 0.005372 0.00205

0.875 10000 0.005358 0.00674 0.795 0.793 1.08E-05 0.005337 0.005380 0.00201

0.900 10000 0.005349 0.00674 0.794 0.792 1.08E-05 0.005328 0.005371 0.00202

0.925 10000 0.005346 0.00674 0.793 0.791 1.08E-05 0.005325 0.005367 0.00203

0.950 10000 0.005323 0.00674 0.790 0.791 1.08E-05 0.005302 0.005344 0.00203

0.975 10000 0.005319 0.00674 0.789 0.790 1.10E-05 0.005297 0.005340 0.00206
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Table A.14: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on n = 5, 000 replications: γ = 1, b = 20, ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.5

γ = 1 position n p̂ exp(−θ∗b) A Ay approx AyUB AyLB s.e. 95% CI (lb) (ub) r.e.

0.000 10000 0.00486 0.00674 0.721 0.706 0.623 0.800 1.07E-05 0.00484 0.00488 0.00219

0.025 10000 0.00485 0.00674 0.720 0.707 0.624 0.801 1.09E-05 0.00483 0.00487 0.00224

0.050 10000 0.00490 0.00674 0.727 0.710 0.627 0.805 1.08E-05 0.00488 0.00492 0.00220

0.075 10000 0.00492 0.00674 0.731 0.716 0.632 0.811 1.09E-05 0.00490 0.00495 0.00221

0.100 10000 0.00497 0.00674 0.738 0.723 0.638 0.819 1.11E-05 0.00495 0.00500 0.00222

0.125 10000 0.00505 0.00674 0.750 0.732 0.646 0.830 1.11E-05 0.00503 0.00507 0.00220

0.150 10000 0.00512 0.00674 0.759 0.743 0.656 0.842 1.15E-05 0.00509 0.00514 0.00224

0.175 10000 0.00521 0.00674 0.773 0.756 0.667 0.857 1.16E-05 0.00518 0.00523 0.00223

0.200 10000 0.00528 0.00674 0.784 0.770 0.679 0.872 1.17E-05 0.00526 0.00531 0.00222

0.225 10000 0.00540 0.00674 0.801 0.785 0.692 0.889 1.19E-05 0.00537 0.00542 0.00221

0.250 10000 0.00550 0.00674 0.816 0.800 0.706 0.907 1.22E-05 0.00547 0.00552 0.00221

0.275 10000 0.00563 0.00674 0.835 0.816 0.720 0.924 1.25E-05 0.00560 0.00565 0.00222

0.300 10000 0.00576 0.00674 0.854 0.832 0.734 0.942 1.25E-05 0.00573 0.00578 0.00218

0.325 10000 0.00583 0.00674 0.865 0.847 0.747 0.959 1.28E-05 0.00580 0.00585 0.00220

0.350 10000 0.00593 0.00674 0.880 0.861 0.760 0.976 1.29E-05 0.00590 0.00595 0.00218

0.375 10000 0.00601 0.00674 0.892 0.874 0.771 0.990 1.34E-05 0.00598 0.00603 0.00222

0.400 10000 0.00605 0.00674 0.898 0.885 0.781 1.003 1.36E-05 0.00602 0.00608 0.00225

0.425 10000 0.00617 0.00674 0.916 0.894 0.789 1.013 1.35E-05 0.00615 0.00620 0.00219

0.450 10000 0.00618 0.00674 0.917 0.901 0.795 1.021 1.40E-05 0.00615 0.00621 0.00226

0.475 10000 0.00624 0.00674 0.926 0.905 0.799 1.026 1.37E-05 0.00621 0.00626 0.00220

0.500 10000 0.00621 0.00674 0.922 0.907 0.800 1.027 1.38E-05 0.00619 0.00624 0.00222

0.525 10000 0.00624 0.00674 0.927 0.905 0.799 1.026 1.37E-05 0.00622 0.00627 0.00219

0.550 10000 0.00620 0.00674 0.920 0.901 0.795 1.021 1.38E-05 0.00617 0.00623 0.00222

0.575 10000 0.00615 0.00674 0.912 0.894 0.789 1.013 1.39E-05 0.00612 0.00618 0.00225

0.600 10000 0.00609 0.00674 0.904 0.885 0.781 1.003 1.35E-05 0.00606 0.00611 0.00222

0.625 10000 0.00600 0.00674 0.890 0.874 0.771 0.990 1.35E-05 0.00597 0.00602 0.00224

0.650 10000 0.00593 0.00674 0.881 0.861 0.760 0.976 1.31E-05 0.00591 0.00596 0.00220

0.675 10000 0.00582 0.00674 0.864 0.847 0.747 0.959 1.30E-05 0.00579 0.00585 0.00223

0.700 10000 0.00571 0.00674 0.847 0.832 0.734 0.942 1.27E-05 0.00568 0.00573 0.00223

0.725 10000 0.00562 0.00674 0.834 0.816 0.720 0.924 1.25E-05 0.00559 0.00564 0.00222

0.750 10000 0.00551 0.00674 0.818 0.800 0.706 0.907 1.23E-05 0.00548 0.00553 0.00223

0.775 10000 0.00541 0.00674 0.804 0.785 0.692 0.889 1.19E-05 0.00539 0.00544 0.00220

0.800 10000 0.00527 0.00674 0.782 0.770 0.679 0.872 1.18E-05 0.00525 0.00529 0.00224

0.825 10000 0.00520 0.00674 0.772 0.756 0.667 0.857 1.16E-05 0.00518 0.00523 0.00223

0.850 10000 0.00510 0.00674 0.757 0.743 0.656 0.842 1.14E-05 0.00508 0.00513 0.00223

0.875 10000 0.00505 0.00674 0.749 0.732 0.646 0.830 1.12E-05 0.00503 0.00507 0.00222

0.900 10000 0.00497 0.00674 0.738 0.723 0.638 0.819 1.09E-05 0.00495 0.00500 0.00219

0.925 10000 0.00493 0.00674 0.732 0.716 0.632 0.811 1.10E-05 0.00491 0.00495 0.00223

0.950 10000 0.00487 0.00674 0.723 0.710 0.627 0.805 1.09E-05 0.00485 0.00489 0.00224

0.975 10000 0.00488 0.00674 0.724 0.707 0.624 0.801 1.08E-05 0.00485749 0.004899702 0.00221
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Table A.15: Summary of simulation results for a fixed b and differing y in a cycle: γ = 0.1, b =

100, ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.5

γ = 0.1 position n p̂ exp(−θ∗b) A Ay approx AyUB AyLB s.e. 95% CI (lb) (ub) r.e.

0.000 10000 5.89E-12 1.39E-11 0.424 0.229 0.066 0.800 3.74E-14 5.82E-12 5.96E-12 0.00635

0.025 10000 5.99E-12 1.39E-11 0.431 0.233 0.067 0.812 3.75E-14 5.92E-12 6.06E-12 0.00627

0.050 10000 6.26E-12 1.39E-11 0.451 0.244 0.070 0.850 3.93E-14 6.18E-12 6.34E-12 0.00628

0.075 10000 6.71E-12 1.39E-11 0.483 0.263 0.075 0.917 4.24E-14 6.63E-12 6.80E-12 0.00632

0.100 10000 7.44E-12 1.39E-11 0.536 0.291 0.083 1.016 4.72E-14 7.35E-12 7.53E-12 0.00634

0.125 10000 8.50E-12 1.39E-11 0.612 0.331 0.095 1.154 5.34E-14 8.39E-12 8.60E-12 0.00629

0.150 10000 9.87E-12 1.39E-11 0.711 0.384 0.110 1.339 6.20E-14 9.75E-12 9.99E-12 0.00628

0.175 10000 1.16E-11 1.39E-11 0.832 0.454 0.130 1.583 7.29E-14 1.14E-11 1.17E-11 0.00631

0.200 10000 1.39E-11 1.39E-11 1.004 0.544 0.156 1.898 8.76E-14 1.38E-11 1.41E-11 0.00628

0.225 10000 1.69E-11 1.39E-11 1.217 0.658 0.188 2.296 1.06E-13 1.67E-11 1.71E-11 0.00628

0.250 10000 2.05E-11 1.39E-11 1.474 0.800 0.229 2.792 1.29E-13 2.02E-11 2.07E-11 0.00628

0.275 10000 2.49E-11 1.39E-11 1.796 0.973 0.279 3.395 1.59E-13 2.46E-11 2.52E-11 0.00636

0.300 10000 3.04E-11 1.39E-11 2.185 1.177 0.337 4.109 1.91E-13 3.00E-11 3.07E-11 0.00630

0.325 10000 3.61E-11 1.39E-11 2.599 1.411 0.404 4.925 2.27E-13 3.56E-11 3.65E-11 0.00630

0.350 10000 4.33E-11 1.39E-11 3.117 1.668 0.478 5.822 2.72E-13 4.28E-11 4.38E-11 0.00628

0.375 10000 4.96E-11 1.39E-11 3.568 1.936 0.555 6.758 3.12E-13 4.89E-11 5.02E-11 0.00629

0.400 10000 5.61E-11 1.39E-11 4.040 2.199 0.630 7.676 3.56E-13 5.54E-11 5.68E-11 0.00634

0.425 10000 6.24E-11 1.39E-11 4.492 2.437 0.698 8.505 3.94E-13 6.16E-11 6.32E-11 0.00631

0.450 10000 6.78E-11 1.39E-11 4.879 2.627 0.753 9.168 4.27E-13 6.69E-11 6.86E-11 0.00630

0.475 10000 7.05E-11 1.39E-11 5.076 2.750 0.788 9.597 4.43E-13 6.96E-11 7.14E-11 0.00629

0.500 10000 7.11E-11 1.39E-11 5.122 2.792 0.800 9.746 4.49E-13 7.02E-11 7.20E-11 0.00631

0.525 10000 7.05E-11 1.39E-11 5.076 2.750 0.788 9.597 4.46E-13 6.96E-11 7.14E-11 0.00633

0.550 10000 6.80E-11 1.39E-11 4.895 2.627 0.753 9.168 4.26E-13 6.72E-11 6.88E-11 0.00627

0.575 10000 6.24E-11 1.39E-11 4.492 2.437 0.698 8.505 3.96E-13 6.16E-11 6.32E-11 0.00635

0.600 10000 5.59E-11 1.39E-11 4.022 2.199 0.630 7.676 3.54E-13 5.52E-11 5.66E-11 0.00633

0.625 10000 4.98E-11 1.39E-11 3.588 1.936 0.555 6.758 3.15E-13 4.92E-11 5.04E-11 0.00631

0.650 10000 4.27E-11 1.39E-11 3.078 1.668 0.478 5.822 2.70E-13 4.22E-11 4.33E-11 0.00631

0.675 10000 3.64E-11 1.39E-11 2.624 1.411 0.404 4.925 2.29E-13 3.60E-11 3.69E-11 0.00629

0.700 10000 3.03E-11 1.39E-11 2.180 1.177 0.337 4.109 1.91E-13 2.99E-11 3.06E-11 0.00630

0.725 10000 2.47E-11 1.39E-11 1.782 0.973 0.279 3.395 1.58E-13 2.44E-11 2.51E-11 0.00638

0.750 10000 2.05E-11 1.39E-11 1.476 0.800 0.229 2.792 1.30E-13 2.02E-11 2.08E-11 0.00635

0.775 10000 1.69E-11 1.39E-11 1.218 0.658 0.188 2.296 1.05E-13 1.67E-11 1.71E-11 0.00623

0.800 10000 1.39E-11 1.39E-11 1.000 0.544 0.156 1.898 8.80E-14 1.37E-11 1.41E-11 0.00634

0.825 10000 1.16E-11 1.39E-11 0.835 0.454 0.130 1.583 7.35E-14 1.15E-11 1.17E-11 0.00633

0.850 10000 9.80E-12 1.39E-11 0.706 0.384 0.110 1.339 6.25E-14 9.68E-12 9.93E-12 0.00638

0.875 10000 8.56E-12 1.39E-11 0.617 0.331 0.095 1.154 5.39E-14 8.46E-12 8.67E-12 0.00630

0.900 10000 7.43E-12 1.39E-11 0.535 0.291 0.083 1.016 4.68E-14 7.34E-12 7.52E-12 0.00630

0.925 10000 6.77E-12 1.39E-11 0.487 0.263 0.075 0.917 4.24E-14 6.68E-12 6.85E-12 0.00626

0.950 10000 6.18E-12 1.39E-11 0.445 0.244 0.070 0.850 3.96E-14 6.10E-12 6.25E-12 0.00641

0.975 10000 6.03E-12 1.39E-11 0.434 0.233 0.067 0.812 3.80E-14 5.96E-12 6.11E-12 0.00629
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Table A.16: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y, for y in the small interval [0.45, 0.55] based on n = 5, 000 replications: γ = 0.1, b =

20, ρ = 0.8, λ̄ = 1, µ = 1.25, β = 0.2

γ = 0.1 position n p̂ exp(−θ∗b) Ay s.e. 95% CI (lb) (ub) r.e.

0.4500 10000 0.0102042 0.00674 1.514 3.81E-05 0.0101296 0.0102789 0.00373

0.4525 10000 0.0102480 0.00674 1.521 3.85E-05 0.0101726 0.0103234 0.00375

0.4550 10000 0.0102694 0.00674 1.524 3.83E-05 0.0101944 0.0103445 0.00373

0.4575 10000 0.0102476 0.00674 1.521 3.84E-05 0.0101723 0.0103229 0.00375

0.4600 10000 0.0103224 0.00674 1.532 3.86E-05 0.0102467 0.0103981 0.00374

0.4625 10000 0.0101856 0.00674 1.512 3.85E-05 0.0101101 0.0102611 0.00378

0.4650 10000 0.0103051 0.00674 1.529 3.87E-05 0.0102292 0.0103810 0.00376

0.4675 10000 0.0102580 0.00674 1.522 3.84E-05 0.0101826 0.0103333 0.00375

0.4700 10000 0.0103188 0.00674 1.531 3.83E-05 0.0102438 0.0103938 0.00371

0.4725 10000 0.0103469 0.00674 1.536 3.87E-05 0.0102711 0.0104227 0.00374

0.4750 10000 0.0102930 0.00674 1.528 3.83E-05 0.0102179 0.0103681 0.00372

0.4775 10000 0.0103730 0.00674 1.539 3.90E-05 0.0102966 0.0104495 0.00376

0.4800 10000 0.0103778 0.00674 1.540 3.82E-05 0.0103029 0.0104528 0.00369

0.4825 10000 0.0103410 0.00674 1.535 3.88E-05 0.0102649 0.0104172 0.00376

0.4850 10000 0.0103687 0.00674 1.539 3.88E-05 0.0102926 0.0104448 0.00374

0.4875 10000 0.0104335 0.00674 1.548 3.88E-05 0.0103574 0.0105097 0.00372

0.4900 10000 0.0103590 0.00674 1.537 3.86E-05 0.0102833 0.0104346 0.00373

0.4925 10000 0.0103960 0.00674 1.543 3.89E-05 0.0103197 0.0104723 0.00374

0.4950 10000 0.0103041 0.00674 1.529 3.87E-05 0.0102282 0.0103800 0.00376

0.4975 10000 0.0104239 0.00674 1.547 3.92E-05 0.0103472 0.0105007 0.00376

0.5000 10000 0.0104064 0.00674 1.544 3.89E-05 0.0103300 0.0104827 0.00374

0.5025 10000 0.0103887 0.00674 1.542 3.88E-05 0.0103125 0.0104648 0.00374

0.5050 10000 0.0104046 0.00674 1.544 3.90E-05 0.0103281 0.0104811 0.00375

0.5075 10000 0.0103907 0.00674 1.542 3.89E-05 0.0103144 0.0104670 0.00375

0.5100 10000 0.0103596 0.00674 1.538 3.88E-05 0.0102835 0.0104357 0.00375

0.5125 10000 0.0103260 0.00674 1.533 3.83E-05 0.0102509 0.0104010 0.00371

0.5150 10000 0.0104469 0.00674 1.550 3.87E-05 0.0103711 0.0105226 0.00370

0.5175 10000 0.0103561 0.00674 1.537 3.85E-05 0.0102806 0.0104316 0.00372

0.5200 10000 0.0104290 0.00674 1.548 3.86E-05 0.0103534 0.0105047 0.00370

0.5225 10000 0.0103480 0.00674 1.536 3.84E-05 0.0102727 0.0104232 0.00371

0.5250 10000 0.0103970 0.00674 1.543 3.84E-05 0.0103218 0.0104723 0.00369

0.5275 10000 0.0102753 0.00674 1.525 3.83E-05 0.0102004 0.0103503 0.00372

0.5300 10000 0.0102461 0.00674 1.521 3.86E-05 0.0101706 0.0103217 0.00376

0.5325 10000 0.0102789 0.00674 1.526 3.82E-05 0.0102039 0.0103538 0.00372

0.5350 10000 0.0102817 0.00674 1.526 3.82E-05 0.0102067 0.0103566 0.00372

0.5375 10000 0.0102432 0.00674 1.520 3.80E-05 0.0101688 0.0103176 0.00371

0.5400 10000 0.0102212 0.00674 1.517 3.81E-05 0.0101465 0.0102958 0.00373

0.5425 10000 0.0102356 0.00674 1.519 3.78E-05 0.0101615 0.0103097 0.00369

0.5450 10000 0.0102132 0.00674 1.516 3.81E-05 0.0101386 0.0102878 0.00373

0.5475 10000 0.0101162 0.00674 1.501 3.77E-05 0.0100424 0.0101901 0.00372

0.5500 10000 0.0101235 0.00674 1.502 3.78E-05 0.0100495 0.0101976 0.00373
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A.3.2 Tail Probabilities for the Mt/M/1 Periodic Queue with µ = 1

Table A.17 displays simulation results for what we regard as our base case, having parameter 4-

tuple ρ, β, γ, b) = (0.8, 0.2, 0.1, 20), which corresponds to the general framework in (3.39) of the

main thesis, i.e.,

(λ̄ρ, βρ, γρ, bρ) = (ρ, (1− ρ)β, (1− ρ)2γ, (1− ρ)−1b), (A.13)

where (β, γ, b) is a feasible base triple of positive constants with β < 1 when the base triple is

(β, γ, b) = (1, 2.5, 4.0) as in (3.40) of the main thesis. The bounds for Ay are discussed in Corollary

4 of the main thesis, while the approximation is discussed at the end here in §A.2.6.

Tables A.18-A.25 give results for the framework in (3.39) for the base triple (β, γ, b) = (1, 25, 4.0).

The results for different ρ ranging from ρ = 0.84 to ρ = 0.99 are summarized in Tables A.26, A.27

and A.28. These summaries strongly supports the heavy-traffic scaling in (3.39).



APPENDIX A. SUPPLEMENT TO CHAPTER THREE 178

Table A.17: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 0.1, b = 20, ρ = 0.8, λ̄ = 0.8, µ = 1, β = 0.2

γ = 1 position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 1.05E-02 1.83E-02 0.571 0.536 0.359 0.800 5.00E-05 1.04E-02 1.06E-02 4.78E-03

0.025 5000 1.05E-02 1.83E-02 0.572 0.539 0.361 0.804 5.06E-05 1.04E-02 1.06E-02 4.83E-03

0.050 5000 1.06E-02 1.83E-02 0.580 0.547 0.367 0.816 5.08E-05 1.05E-02 1.07E-02 4.79E-03

0.075 5000 1.09E-02 1.83E-02 0.593 0.560 0.375 0.836 5.27E-05 1.08E-02 1.10E-02 4.85E-03

0.100 5000 1.13E-02 1.83E-02 0.616 0.579 0.388 0.864 5.47E-05 1.12E-02 1.14E-02 4.85E-03

0.125 5000 1.17E-02 1.83E-02 0.639 0.603 0.404 0.899 5.62E-05 1.16E-02 1.18E-02 4.80E-03

0.150 5000 1.24E-02 1.83E-02 0.678 0.632 0.424 0.943 5.99E-05 1.23E-02 1.25E-02 4.82E-03

0.175 5000 1.30E-02 1.83E-02 0.711 0.667 0.447 0.995 6.29E-05 1.29E-02 1.31E-02 4.83E-03

0.200 5000 1.40E-02 1.83E-02 0.762 0.707 0.474 1.055 6.79E-05 1.38E-02 1.41E-02 4.87E-03

0.225 5000 1.48E-02 1.83E-02 0.806 0.751 0.504 1.121 7.21E-05 1.46E-02 1.49E-02 4.88E-03

0.250 5000 1.60E-02 1.83E-02 0.873 0.800 0.536 1.193 7.67E-05 1.58E-02 1.61E-02 4.79E-03

0.275 5000 1.72E-02 1.83E-02 0.938 0.852 0.571 1.271 8.32E-05 1.70E-02 1.73E-02 4.84E-03

0.300 5000 1.83E-02 1.83E-02 1.001 0.905 0.607 1.350 8.74E-05 1.82E-02 1.85E-02 4.77E-03

0.325 5000 1.95E-02 1.83E-02 1.067 0.959 0.643 1.431 9.28E-05 1.94E-02 1.97E-02 4.75E-03

0.350 5000 2.10E-02 1.83E-02 1.146 1.012 0.678 1.510 9.69E-05 2.08E-02 2.12E-02 4.62E-03

0.375 5000 2.17E-02 1.83E-02 1.184 1.062 0.712 1.584 1.01E-04 2.15E-02 2.19E-02 4.68E-03

0.400 5000 2.27E-02 1.83E-02 1.238 1.106 0.741 1.649 1.05E-04 2.25E-02 2.29E-02 4.65E-03

0.425 5000 2.35E-02 1.83E-02 1.285 1.143 0.766 1.704 1.10E-04 2.33E-02 2.38E-02 4.66E-03

0.450 5000 2.42E-02 1.83E-02 1.323 1.170 0.784 1.746 1.12E-04 2.40E-02 2.45E-02 4.61E-03

0.475 5000 2.45E-02 1.83E-02 1.337 1.188 0.796 1.772 1.13E-04 2.43E-02 2.47E-02 4.61E-03

0.500 5000 2.47E-02 1.83E-02 1.350 1.193 0.800 1.780 1.13E-04 2.45E-02 2.49E-02 4.56E-03

0.525 5000 2.43E-02 1.83E-02 1.326 1.188 0.796 1.772 1.12E-04 2.41E-02 2.45E-02 4.62E-03

0.550 5000 2.40E-02 1.83E-02 1.309 1.170 0.784 1.746 1.10E-04 2.38E-02 2.42E-02 4.58E-03

0.575 5000 2.34E-02 1.83E-02 1.278 1.143 0.766 1.704 1.08E-04 2.32E-02 2.36E-02 4.63E-03

0.600 5000 2.26E-02 1.83E-02 1.234 1.106 0.741 1.649 1.04E-04 2.24E-02 2.28E-02 4.61E-03

0.625 5000 2.15E-02 1.83E-02 1.174 1.062 0.712 1.584 1.01E-04 2.13E-02 2.17E-02 4.68E-03

0.650 5000 2.04E-02 1.83E-02 1.116 1.012 0.678 1.510 9.51E-05 2.02E-02 2.06E-02 4.66E-03

0.675 5000 1.94E-02 1.83E-02 1.061 0.959 0.643 1.431 8.93E-05 1.93E-02 1.96E-02 4.60E-03

0.700 5000 1.81E-02 1.83E-02 0.988 0.905 0.607 1.350 8.47E-05 1.79E-02 1.83E-02 4.68E-03

0.725 5000 1.71E-02 1.83E-02 0.934 0.852 0.571 1.271 8.01E-05 1.69E-02 1.73E-02 4.68E-03

0.750 5000 1.60E-02 1.83E-02 0.873 0.800 0.536 1.193 7.54E-05 1.58E-02 1.61E-02 4.72E-03

0.775 5000 1.50E-02 1.83E-02 0.817 0.751 0.504 1.121 7.14E-05 1.48E-02 1.51E-02 4.77E-03

0.800 5000 1.40E-02 1.83E-02 0.764 0.707 0.474 1.055 6.71E-05 1.39E-02 1.41E-02 4.79E-03

0.825 5000 1.31E-02 1.83E-02 0.718 0.667 0.447 0.995 6.22E-05 1.30E-02 1.33E-02 4.73E-03

0.850 5000 1.25E-02 1.83E-02 0.683 0.632 0.424 0.943 6.00E-05 1.24E-02 1.26E-02 4.80E-03

0.875 5000 1.19E-02 1.83E-02 0.652 0.603 0.404 0.899 5.69E-05 1.18E-02 1.21E-02 4.77E-03

0.900 5000 1.15E-02 1.83E-02 0.625 0.579 0.388 0.864 5.48E-05 1.13E-02 1.16E-02 4.79E-03

0.925 5000 1.10E-02 1.83E-02 0.601 0.560 0.375 0.836 5.31E-05 1.09E-02 1.11E-02 4.82E-03

0.950 5000 1.07E-02 1.83E-02 0.586 0.547 0.367 0.816 5.17E-05 1.06E-02 1.08E-02 4.81E-03

0.975 5000 1.05E-02 1.83E-02 0.575 0.539 0.361 0.804 5.11E-05 1.04E-02 1.06E-02 4.86E-03
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Table A.18: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 1, b = 20, ρ = 0.8, λ̄ = 0.8, µ = 1, β = 0.2

γ = 1 position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.014162 0.0183 0.773 0.769 0.738 0.800 4.07E-05 0.01408 0.01424 0.00288

0.025 5000 0.014104 0.0183 0.770 0.769 0.739 0.800 4.12E-05 0.01402 0.01419 0.00292

0.050 5000 0.014038 0.0183 0.766 0.770 0.740 0.802 4.22E-05 0.01396 0.01412 0.00301

0.075 5000 0.014227 0.0183 0.777 0.772 0.742 0.803 4.04E-05 0.01415 0.01431 0.00284

0.100 5000 0.014197 0.0183 0.775 0.775 0.744 0.806 4.11E-05 0.01412 0.01428 0.00289

0.125 5000 0.014289 0.0183 0.780 0.778 0.747 0.809 4.11E-05 0.01421 0.01437 0.00287

0.150 5000 0.014311 0.0183 0.781 0.781 0.751 0.813 4.21E-05 0.01423 0.01439 0.00294

0.175 5000 0.014465 0.0183 0.790 0.786 0.755 0.818 4.18E-05 0.01438 0.01455 0.00289

0.200 5000 0.014520 0.0183 0.793 0.790 0.759 0.822 4.21E-05 0.01444 0.01460 0.00290

0.225 5000 0.014620 0.0183 0.798 0.795 0.764 0.827 4.24E-05 0.01454 0.01470 0.00290

0.250 5000 0.014725 0.0183 0.804 0.800 0.769 0.833 4.22E-05 0.01464 0.01481 0.00286

0.275 5000 0.014810 0.0183 0.809 0.805 0.773 0.838 4.28E-05 0.01473 0.01489 0.00289

0.300 5000 0.014879 0.0183 0.812 0.810 0.778 0.843 4.36E-05 0.01479 0.01496 0.00293

0.325 5000 0.014961 0.0183 0.817 0.815 0.783 0.848 4.35E-05 0.01488 0.01505 0.00291

0.350 5000 0.015099 0.0183 0.824 0.819 0.787 0.852 4.36E-05 0.01501 0.01518 0.00289

0.375 5000 0.015093 0.0183 0.824 0.823 0.791 0.857 4.43E-05 0.01501 0.01518 0.00293

0.400 5000 0.015156 0.0183 0.827 0.826 0.794 0.860 4.44E-05 0.01507 0.01524 0.00293

0.425 5000 0.015162 0.0183 0.828 0.829 0.797 0.863 4.45E-05 0.01508 0.01525 0.00293

0.450 5000 0.015274 0.0183 0.834 0.831 0.798 0.865 4.46E-05 0.01519 0.01536 0.00292

0.475 5000 0.015280 0.0183 0.834 0.832 0.800 0.866 4.39E-05 0.01519 0.01537 0.00287

0.500 5000 0.015332 0.0183 0.837 0.833 0.800 0.867 4.43E-05 0.01524 0.01542 0.00289

0.525 5000 0.015291 0.0183 0.835 0.832 0.800 0.866 4.48E-05 0.01520 0.01538 0.00293

0.550 5000 0.015307 0.0183 0.836 0.831 0.798 0.865 4.42E-05 0.01522 0.01539 0.00289

0.575 5000 0.015218 0.0183 0.831 0.829 0.797 0.863 4.41E-05 0.01513 0.01530 0.00290

0.600 5000 0.015178 0.0183 0.829 0.826 0.794 0.860 4.32E-05 0.01509 0.01526 0.00284

0.625 5000 0.015175 0.0183 0.829 0.823 0.791 0.857 4.30E-05 0.01509 0.01526 0.00283

0.650 5000 0.015123 0.0183 0.826 0.819 0.787 0.852 4.30E-05 0.01504 0.01521 0.00284

0.675 5000 0.015090 0.0183 0.824 0.815 0.783 0.848 4.29E-05 0.01501 0.01517 0.00284

0.700 5000 0.014905 0.0183 0.814 0.810 0.778 0.843 4.28E-05 0.01482 0.01499 0.00287

0.725 5000 0.014770 0.0183 0.806 0.805 0.773 0.838 4.31E-05 0.01469 0.01485 0.00292

0.750 5000 0.014647 0.0183 0.800 0.800 0.769 0.833 4.30E-05 0.01456 0.01473 0.00294

0.775 5000 0.014614 0.0183 0.798 0.795 0.764 0.827 4.26E-05 0.01453 0.01470 0.00291

0.800 5000 0.014500 0.0183 0.792 0.790 0.759 0.822 4.29E-05 0.01442 0.01458 0.00296

0.825 5000 0.014415 0.0183 0.787 0.786 0.755 0.818 4.23E-05 0.01433 0.01450 0.00294

0.850 5000 0.014291 0.0183 0.780 0.781 0.751 0.813 4.29E-05 0.01421 0.01437 0.00300

0.875 5000 0.014214 0.0183 0.776 0.778 0.747 0.809 4.17E-05 0.01413 0.01430 0.00294

0.900 5000 0.014238 0.0183 0.777 0.775 0.744 0.806 4.12E-05 0.01416 0.01432 0.00289

0.925 5000 0.014138 0.0183 0.772 0.772 0.742 0.803 4.16E-05 0.01406 0.01422 0.00294

0.950 5000 0.014165 0.0183 0.773 0.770 0.740 0.802 4.06E-05 0.01409 0.01424 0.00287

0.975 5000 0.014140 0.0183 0.772 0.769 0.739 0.800 4.11E-05 0.01406 0.01422 0.00291
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Table A.19: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 0.25, b = 40, ρ = 0.9, λ̄ = 0.9, µ = 1, β = 0.1

γ = 0.25 position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.015877 0.0183 0.867 0.865 0.831 0.900 2.36E-05 0.01583 0.01592 0.00148

0.025 5000 0.015880 0.0183 0.867 0.865 0.831 0.900 2.33E-05 0.01583 0.01593 0.00147

0.050 5000 0.015923 0.0183 0.869 0.866 0.832 0.902 2.32E-05 0.01588 0.01597 0.00146

0.075 5000 0.015942 0.0183 0.870 0.868 0.834 0.904 2.36E-05 0.01590 0.01599 0.00148

0.100 5000 0.015996 0.0183 0.873 0.871 0.837 0.907 2.41E-05 0.01595 0.01604 0.00150

0.125 5000 0.016072 0.0183 0.878 0.875 0.841 0.911 2.30E-05 0.01603 0.01612 0.00143

0.150 5000 0.016184 0.0183 0.884 0.879 0.845 0.915 2.35E-05 0.01614 0.01623 0.00145

0.175 5000 0.016232 0.0183 0.886 0.884 0.849 0.920 2.38E-05 0.01618 0.01628 0.00147

0.200 5000 0.016293 0.0183 0.890 0.889 0.854 0.925 2.45E-05 0.01625 0.01634 0.00150

0.225 5000 0.016422 0.0183 0.897 0.894 0.859 0.931 2.43E-05 0.01637 0.01647 0.00148

0.250 5000 0.016556 0.0183 0.904 0.900 0.865 0.937 2.36E-05 0.01651 0.01660 0.00142

0.275 5000 0.016641 0.0183 0.909 0.906 0.870 0.943 2.43E-05 0.01659 0.01669 0.00146

0.300 5000 0.016743 0.0183 0.914 0.911 0.875 0.948 2.45E-05 0.01669 0.01679 0.00147

0.325 5000 0.016778 0.0183 0.916 0.916 0.881 0.954 2.49E-05 0.01673 0.01683 0.00149

0.350 5000 0.016989 0.0183 0.928 0.921 0.885 0.959 2.48E-05 0.01694 0.01704 0.00146

0.375 5000 0.017009 0.0183 0.929 0.926 0.890 0.964 2.50E-05 0.01696 0.01706 0.00147

0.400 5000 0.017058 0.0183 0.931 0.930 0.893 0.968 2.52E-05 0.01701 0.01711 0.00148

0.425 5000 0.017128 0.0183 0.935 0.933 0.896 0.971 2.55E-05 0.01708 0.01718 0.00149

0.450 5000 0.017153 0.0183 0.937 0.935 0.898 0.973 2.50E-05 0.01710 0.01720 0.00146

0.475 5000 0.017128 0.0183 0.935 0.936 0.900 0.974 2.60E-05 0.01708 0.01718 0.00152

0.500 5000 0.017247 0.0183 0.942 0.937 0.900 0.975 2.46E-05 0.01720 0.01730 0.00143

0.525 5000 0.017189 0.0183 0.938 0.936 0.900 0.974 2.52E-05 0.01714 0.01724 0.00147

0.550 5000 0.017176 0.0183 0.938 0.935 0.898 0.973 2.53E-05 0.01713 0.01723 0.00147

0.575 5000 0.017126 0.0183 0.935 0.933 0.896 0.971 2.56E-05 0.01708 0.01718 0.00150

0.600 5000 0.017047 0.0183 0.931 0.930 0.893 0.968 2.51E-05 0.01700 0.01710 0.00147

0.625 5000 0.016999 0.0183 0.928 0.926 0.890 0.964 2.56E-05 0.01695 0.01705 0.00150

0.650 5000 0.016917 0.0183 0.924 0.921 0.885 0.959 2.54E-05 0.01687 0.01697 0.00150

0.675 5000 0.016858 0.0183 0.920 0.916 0.881 0.954 2.44E-05 0.01681 0.01691 0.00144

0.700 5000 0.016752 0.0183 0.915 0.911 0.875 0.948 2.46E-05 0.01670 0.01680 0.00147

0.725 5000 0.016642 0.0183 0.909 0.906 0.870 0.943 2.45E-05 0.01659 0.01669 0.00147

0.750 5000 0.016563 0.0183 0.904 0.900 0.865 0.937 2.39E-05 0.01652 0.01661 0.00145

0.775 5000 0.016440 0.0183 0.898 0.894 0.859 0.931 2.37E-05 0.01639 0.01649 0.00144

0.800 5000 0.016280 0.0183 0.889 0.889 0.854 0.925 2.50E-05 0.01623 0.01633 0.00154

0.825 5000 0.016219 0.0183 0.886 0.884 0.849 0.920 2.40E-05 0.01617 0.01627 0.00148

0.850 5000 0.016130 0.0183 0.881 0.879 0.845 0.915 2.42E-05 0.01608 0.01618 0.00150

0.875 5000 0.016051 0.0183 0.876 0.875 0.841 0.911 2.43E-05 0.01600 0.01610 0.00151

0.900 5000 0.015954 0.0183 0.871 0.871 0.837 0.907 2.44E-05 0.01591 0.01600 0.00153

0.925 5000 0.015943 0.0183 0.870 0.868 0.834 0.904 2.40E-05 0.01590 0.01599 0.00150

0.950 5000 0.015877 0.0183 0.867 0.866 0.832 0.902 2.38E-05 0.01583 0.01592 0.00150

0.975 5000 0.015857 0.0183 0.866 0.865 0.831 0.900 2.37E-05 0.01581 0.01590 0.00149
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Table A.20: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 1
16 , b = 80, ρ = 0.95, λ̄ = 0.95, µ = 1, β = 0.05

γ = 1
16

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.01676 0.0183 0.915 0.913 0.877 0.950 1.35E-05 0.01674 0.01679 8.03E-04

0.025 5000 0.01678 0.0183 0.916 0.913 0.877 0.950 1.36E-05 0.01675 0.01680 8.13E-04

0.050 5000 0.01681 0.0183 0.918 0.915 0.879 0.952 1.36E-05 0.01678 0.01684 8.06E-04

0.075 5000 0.01685 0.0183 0.920 0.917 0.881 0.954 1.37E-05 0.01682 0.01687 8.12E-04

0.100 5000 0.01689 0.0183 0.922 0.920 0.884 0.957 1.40E-05 0.01686 0.01692 8.31E-04

0.125 5000 0.01697 0.0183 0.926 0.924 0.887 0.961 1.37E-05 0.01694 0.01700 8.07E-04

0.150 5000 0.01701 0.0183 0.929 0.928 0.892 0.966 1.42E-05 0.01698 0.01704 8.32E-04

0.175 5000 0.01713 0.0183 0.935 0.933 0.896 0.971 1.41E-05 0.01710 0.01716 8.22E-04

0.200 5000 0.01725 0.0183 0.942 0.938 0.902 0.977 1.40E-05 0.01722 0.01727 8.09E-04

0.225 5000 0.01732 0.0183 0.946 0.944 0.907 0.983 1.40E-05 0.01730 0.01735 8.09E-04

0.250 5000 0.01744 0.0183 0.952 0.950 0.913 0.989 1.42E-05 0.01741 0.01747 8.14E-04

0.275 5000 0.01754 0.0183 0.958 0.956 0.918 0.995 1.44E-05 0.01752 0.01757 8.19E-04

0.300 5000 0.01769 0.0183 0.966 0.962 0.924 1.001 1.42E-05 0.01766 0.01771 8.03E-04

0.325 5000 0.01778 0.0183 0.971 0.967 0.929 1.007 1.44E-05 0.01775 0.01781 8.12E-04

0.350 5000 0.01787 0.0183 0.976 0.973 0.934 1.012 1.46E-05 0.01784 0.01790 8.18E-04

0.375 5000 0.01794 0.0183 0.980 0.977 0.939 1.017 1.47E-05 0.01791 0.01797 8.20E-04

0.400 5000 0.01801 0.0183 0.983 0.981 0.943 1.021 1.46E-05 0.01798 0.01804 8.11E-04

0.425 5000 0.01809 0.0183 0.988 0.984 0.946 1.025 1.48E-05 0.01806 0.01812 8.20E-04

0.450 5000 0.01813 0.0183 0.990 0.987 0.948 1.027 1.48E-05 0.01810 0.01816 8.16E-04

0.475 5000 0.01817 0.0183 0.992 0.988 0.950 1.029 1.46E-05 0.01814 0.01820 8.06E-04

0.500 5000 0.01815 0.0183 0.991 0.989 0.950 1.029 1.50E-05 0.01812 0.01817 8.26E-04

0.525 5000 0.01817 0.0183 0.992 0.988 0.950 1.029 1.46E-05 0.01814 0.01819 8.05E-04

0.550 5000 0.01813 0.0183 0.990 0.987 0.948 1.027 1.48E-05 0.01810 0.01816 8.14E-04

0.575 5000 0.01811 0.0183 0.989 0.984 0.946 1.025 1.44E-05 0.01808 0.01814 7.94E-04

0.600 5000 0.01804 0.0183 0.985 0.981 0.943 1.021 1.44E-05 0.01801 0.01806 8.00E-04

0.625 5000 0.01796 0.0183 0.980 0.977 0.939 1.017 1.49E-05 0.01793 0.01798 8.33E-04

0.650 5000 0.01786 0.0183 0.975 0.973 0.934 1.012 1.44E-05 0.01783 0.01788 8.08E-04

0.675 5000 0.01775 0.0183 0.969 0.967 0.929 1.007 1.47E-05 0.01772 0.01778 8.26E-04

0.700 5000 0.01767 0.0183 0.965 0.962 0.924 1.001 1.43E-05 0.01764 0.01769 8.09E-04

0.725 5000 0.01757 0.0183 0.959 0.956 0.918 0.995 1.40E-05 0.01754 0.01759 8.00E-04

0.750 5000 0.01743 0.0183 0.952 0.950 0.913 0.989 1.45E-05 0.01740 0.01746 8.34E-04

0.775 5000 0.01734 0.0183 0.947 0.944 0.907 0.983 1.42E-05 0.01731 0.01737 8.20E-04

0.800 5000 0.01724 0.0183 0.941 0.938 0.902 0.977 1.41E-05 0.01721 0.01726 8.20E-04

0.825 5000 0.01713 0.0183 0.935 0.933 0.896 0.971 1.37E-05 0.01710 0.01715 8.00E-04

0.850 5000 0.01705 0.0183 0.931 0.928 0.892 0.966 1.37E-05 0.01702 0.01708 8.06E-04

0.875 5000 0.01697 0.0183 0.926 0.924 0.887 0.961 1.37E-05 0.01694 0.01699 8.08E-04

0.900 5000 0.01689 0.0183 0.922 0.920 0.884 0.957 1.39E-05 0.01686 0.01692 8.21E-04

0.925 5000 0.01685 0.0183 0.920 0.917 0.881 0.954 1.40E-05 0.01682 0.01688 8.32E-04

0.950 5000 0.01678 0.0183 0.916 0.915 0.879 0.952 1.36E-05 0.01675 0.01681 8.11E-04

0.975 5000 0.01676 0.0183 0.915 0.913 0.877 0.950 1.37E-05 0.01674 0.01679 8.18E-04
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Table A.21: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 0.64, b = 25, ρ = 0.84, λ̄ = 0.84, µ = 1, β = 0.16

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.014826 0.0183 0.809 0.807 0.775 0.840 3.46E-05 0.01476 0.01489 0.00233

0.025 5000 0.014831 0.0183 0.810 0.807 0.776 0.840 3.47E-05 0.01476 0.01490 0.00234

0.050 5000 0.014861 0.0183 0.811 0.809 0.777 0.842 3.46E-05 0.01479 0.01493 0.00233

0.075 5000 0.014898 0.0183 0.813 0.811 0.779 0.844 3.48E-05 0.01483 0.01497 0.00233

0.100 5000 0.014968 0.0183 0.817 0.813 0.781 0.846 3.48E-05 0.01490 0.01504 0.00233

0.125 5000 0.015019 0.0183 0.820 0.817 0.785 0.850 3.50E-05 0.01495 0.01509 0.00233

0.150 5000 0.015084 0.0183 0.824 0.820 0.788 0.854 3.52E-05 0.01502 0.01515 0.00234

0.175 5000 0.015164 0.0183 0.828 0.825 0.793 0.859 3.54E-05 0.01509 0.01523 0.00234

0.200 5000 0.015243 0.0183 0.832 0.830 0.797 0.864 3.55E-05 0.01517 0.01531 0.00233

0.225 5000 0.015338 0.0183 0.837 0.835 0.802 0.869 3.57E-05 0.01527 0.01541 0.00233

0.250 5000 0.015455 0.0183 0.844 0.840 0.807 0.874 3.59E-05 0.01538 0.01553 0.00232

0.275 5000 0.015555 0.0183 0.849 0.845 0.812 0.880 3.62E-05 0.01548 0.01563 0.00232

0.300 5000 0.015650 0.0183 0.854 0.850 0.817 0.885 3.63E-05 0.01558 0.01572 0.00232

0.325 5000 0.015733 0.0183 0.859 0.855 0.822 0.890 3.65E-05 0.01566 0.01580 0.00232

0.350 5000 0.015816 0.0183 0.863 0.860 0.826 0.895 3.68E-05 0.01574 0.01589 0.00232

0.375 5000 0.015889 0.0183 0.868 0.864 0.830 0.899 3.70E-05 0.01582 0.01596 0.00233

0.400 5000 0.015947 0.0183 0.871 0.868 0.834 0.903 3.71E-05 0.01587 0.01602 0.00233

0.425 5000 0.016011 0.0183 0.874 0.870 0.836 0.906 3.70E-05 0.01594 0.01608 0.00231

0.450 5000 0.016053 0.0183 0.876 0.873 0.838 0.908 3.71E-05 0.01598 0.01613 0.00231

0.475 5000 0.016065 0.0183 0.877 0.874 0.840 0.910 3.73E-05 0.01599 0.01614 0.00232

0.500 5000 0.016088 0.0183 0.878 0.874 0.840 0.910 3.73E-05 0.01601 0.01616 0.00232

0.525 5000 0.016074 0.0183 0.878 0.874 0.840 0.910 3.73E-05 0.01600 0.01615 0.00232

0.550 5000 0.016037 0.0183 0.876 0.873 0.838 0.908 3.73E-05 0.01596 0.01611 0.00233

0.575 5000 0.016004 0.0183 0.874 0.870 0.836 0.906 3.71E-05 0.01593 0.01608 0.00232

0.600 5000 0.015944 0.0183 0.871 0.868 0.834 0.903 3.70E-05 0.01587 0.01602 0.00232

0.625 5000 0.015879 0.0183 0.867 0.864 0.830 0.899 3.68E-05 0.01581 0.01595 0.00232

0.650 5000 0.015802 0.0183 0.863 0.860 0.826 0.895 3.65E-05 0.01573 0.01587 0.00231

0.675 5000 0.015720 0.0183 0.858 0.855 0.822 0.890 3.63E-05 0.01565 0.01579 0.00231

0.700 5000 0.015624 0.0183 0.853 0.850 0.817 0.885 3.60E-05 0.01555 0.01569 0.00230

0.725 5000 0.015530 0.0183 0.848 0.845 0.812 0.880 3.57E-05 0.01546 0.01560 0.00230

0.750 5000 0.015420 0.0183 0.842 0.840 0.807 0.874 3.57E-05 0.01535 0.01549 0.00232

0.775 5000 0.015316 0.0183 0.836 0.835 0.802 0.869 3.56E-05 0.01525 0.01539 0.00233

0.800 5000 0.015214 0.0183 0.831 0.830 0.797 0.864 3.56E-05 0.01514 0.01528 0.00234

0.825 5000 0.015126 0.0183 0.826 0.825 0.793 0.859 3.53E-05 0.01506 0.01520 0.00234

0.850 5000 0.015050 0.0183 0.822 0.820 0.788 0.854 3.51E-05 0.01498 0.01512 0.00233

0.875 5000 0.014981 0.0183 0.818 0.817 0.785 0.850 3.49E-05 0.01491 0.01505 0.00233

0.900 5000 0.014927 0.0183 0.815 0.813 0.781 0.846 3.46E-05 0.01486 0.01499 0.00232

0.925 5000 0.014869 0.0183 0.812 0.811 0.779 0.844 3.46E-05 0.01480 0.01494 0.00233

0.950 5000 0.014835 0.0183 0.810 0.809 0.777 0.842 3.46E-05 0.01477 0.01490 0.00233

0.975 5000 0.014820 0.0183 0.809 0.807 0.776 0.840 3.46E-05 0.01475 0.01489 0.00233
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Table A.22: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 0.16, b = 50, ρ = 0.92, λ̄ = 0.92, µ = 1, β = 0.08

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.016264 0.0183 0.888 0.884 0.849 0.920 1.95E-05 0.01623 0.01630 0.00120

0.025 5000 0.016268 0.0183 0.888 0.884 0.850 0.920 1.96E-05 0.01623 0.01631 0.00120

0.050 5000 0.016297 0.0183 0.890 0.886 0.851 0.922 1.97E-05 0.01626 0.01634 0.00121

0.075 5000 0.016327 0.0183 0.891 0.888 0.853 0.924 1.97E-05 0.01629 0.01637 0.00121

0.100 5000 0.016389 0.0183 0.895 0.891 0.856 0.927 1.97E-05 0.01635 0.01643 0.00120

0.125 5000 0.016460 0.0183 0.899 0.894 0.859 0.931 1.98E-05 0.01642 0.01650 0.00120

0.150 5000 0.016532 0.0183 0.903 0.899 0.863 0.935 1.98E-05 0.01649 0.01657 0.00120

0.175 5000 0.016615 0.0183 0.907 0.903 0.868 0.940 1.98E-05 0.01658 0.01665 0.00119

0.200 5000 0.016718 0.0183 0.913 0.909 0.873 0.946 2.00E-05 0.01668 0.01676 0.00119

0.225 5000 0.016825 0.0183 0.919 0.914 0.878 0.952 2.01E-05 0.01679 0.01686 0.00119

0.250 5000 0.016926 0.0183 0.924 0.920 0.884 0.958 2.02E-05 0.01689 0.01697 0.00119

0.275 5000 0.017021 0.0183 0.929 0.926 0.889 0.964 2.03E-05 0.01698 0.01706 0.00119

0.300 5000 0.017132 0.0183 0.935 0.931 0.895 0.969 2.03E-05 0.01709 0.01717 0.00118

0.325 5000 0.017229 0.0183 0.941 0.937 0.900 0.975 2.04E-05 0.01719 0.01727 0.00118

0.350 5000 0.017318 0.0183 0.946 0.942 0.905 0.980 2.06E-05 0.01728 0.01736 0.00119

0.375 5000 0.017400 0.0183 0.950 0.946 0.909 0.985 2.09E-05 0.01736 0.01744 0.00120

0.400 5000 0.017465 0.0183 0.954 0.950 0.913 0.989 2.09E-05 0.01742 0.01751 0.00120

0.425 5000 0.017529 0.0183 0.957 0.953 0.916 0.992 2.09E-05 0.01749 0.01757 0.00119

0.450 5000 0.017573 0.0183 0.959 0.956 0.918 0.995 2.10E-05 0.01753 0.01761 0.00120

0.475 5000 0.017604 0.0183 0.961 0.957 0.920 0.996 2.11E-05 0.01756 0.01765 0.00120

0.500 5000 0.017604 0.0183 0.961 0.958 0.920 0.997 2.10E-05 0.01756 0.01764 0.00119

0.525 5000 0.017595 0.0183 0.961 0.957 0.920 0.996 2.10E-05 0.01755 0.01764 0.00119

0.550 5000 0.017559 0.0183 0.959 0.956 0.918 0.995 2.10E-05 0.01752 0.01760 0.00119

0.575 5000 0.017512 0.0183 0.956 0.953 0.916 0.992 2.09E-05 0.01747 0.01755 0.00119

0.600 5000 0.017445 0.0183 0.952 0.950 0.913 0.989 2.07E-05 0.01740 0.01749 0.00119

0.625 5000 0.017372 0.0183 0.948 0.946 0.909 0.985 2.06E-05 0.01733 0.01741 0.00119

0.650 5000 0.017298 0.0183 0.944 0.942 0.905 0.980 2.05E-05 0.01726 0.01734 0.00119

0.675 5000 0.017212 0.0183 0.940 0.937 0.900 0.975 2.05E-05 0.01717 0.01725 0.00119

0.700 5000 0.017114 0.0183 0.934 0.931 0.895 0.969 2.04E-05 0.01707 0.01715 0.00119

0.725 5000 0.017014 0.0183 0.929 0.926 0.889 0.964 2.03E-05 0.01697 0.01705 0.00119

0.750 5000 0.016918 0.0183 0.924 0.920 0.884 0.958 2.01E-05 0.01688 0.01696 0.00119

0.775 5000 0.016822 0.0183 0.918 0.914 0.878 0.952 1.98E-05 0.01678 0.01686 0.00118

0.800 5000 0.016727 0.0183 0.913 0.909 0.873 0.946 1.97E-05 0.01669 0.01677 0.00118

0.825 5000 0.016626 0.0183 0.908 0.903 0.868 0.940 1.97E-05 0.01659 0.01666 0.00118

0.850 5000 0.016535 0.0183 0.903 0.899 0.863 0.935 1.95E-05 0.01650 0.01657 0.00118

0.875 5000 0.016462 0.0183 0.899 0.894 0.859 0.931 1.95E-05 0.01642 0.01650 0.00119

0.900 5000 0.016390 0.0183 0.895 0.891 0.856 0.927 1.96E-05 0.01635 0.01643 0.00119

0.925 5000 0.016332 0.0183 0.892 0.888 0.853 0.924 1.95E-05 0.01629 0.01637 0.00120

0.950 5000 0.016291 0.0183 0.889 0.886 0.851 0.922 1.95E-05 0.01625 0.01633 0.00120

0.975 5000 0.016271 0.0183 0.888 0.884 0.850 0.920 1.95E-05 0.01623 0.01631 0.00120
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Table A.23: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 0.04, b = 100, ρ = 0.96, λ̄ = 0.96, µ = 1, β = 0.04

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.01695 0.0183 0.926 0.922 0.886 0.960 1.18E-05 0.01693 0.01698 6.96E-04

0.025 5000 0.01696 0.0183 0.926 0.923 0.887 0.960 1.18E-05 0.01693 0.01698 6.98E-04

0.050 5000 0.01698 0.0183 0.927 0.924 0.888 0.962 1.19E-05 0.01695 0.01700 7.02E-04

0.075 5000 0.01702 0.0183 0.929 0.926 0.890 0.964 1.19E-05 0.01699 0.01704 6.97E-04

0.100 5000 0.01707 0.0183 0.932 0.929 0.893 0.967 1.20E-05 0.01705 0.01710 7.00E-04

0.125 5000 0.01714 0.0183 0.936 0.933 0.897 0.971 1.19E-05 0.01712 0.01717 6.97E-04

0.150 5000 0.01722 0.0183 0.940 0.938 0.901 0.976 1.21E-05 0.01719 0.01724 7.01E-04

0.175 5000 0.01731 0.0183 0.945 0.943 0.906 0.981 1.21E-05 0.01729 0.01733 7.00E-04

0.200 5000 0.01741 0.0183 0.951 0.948 0.911 0.987 1.22E-05 0.01739 0.01743 6.99E-04

0.225 5000 0.01752 0.0183 0.956 0.954 0.917 0.993 1.23E-05 0.01749 0.01754 7.04E-04

0.250 5000 0.01763 0.0183 0.962 0.960 0.922 0.999 1.22E-05 0.01760 0.01765 6.94E-04

0.275 5000 0.01774 0.0183 0.968 0.966 0.928 1.005 1.24E-05 0.01771 0.01776 6.98E-04

0.300 5000 0.01784 0.0183 0.974 0.972 0.934 1.012 1.26E-05 0.01782 0.01787 7.05E-04

0.325 5000 0.01794 0.0183 0.979 0.978 0.939 1.017 1.27E-05 0.01791 0.01796 7.07E-04

0.350 5000 0.01804 0.0183 0.985 0.983 0.944 1.023 1.28E-05 0.01801 0.01806 7.08E-04

0.375 5000 0.01812 0.0183 0.989 0.988 0.949 1.028 1.27E-05 0.01809 0.01814 7.02E-04

0.400 5000 0.01820 0.0183 0.993 0.992 0.953 1.032 1.27E-05 0.01817 0.01822 6.99E-04

0.425 5000 0.01826 0.0183 0.997 0.995 0.956 1.035 1.27E-05 0.01824 0.01829 6.95E-04

0.450 5000 0.01830 0.0183 0.999 0.997 0.958 1.038 1.29E-05 0.01827 0.01833 7.03E-04

0.475 5000 0.01833 0.0183 1.001 0.999 0.960 1.039 1.30E-05 0.01830 0.01835 7.07E-04

0.500 5000 0.01834 0.0183 1.001 0.999 0.960 1.040 1.30E-05 0.01831 0.01836 7.09E-04

0.525 5000 0.01834 0.0183 1.001 0.999 0.960 1.039 1.29E-05 0.01831 0.01836 7.06E-04

0.550 5000 0.01832 0.0183 1.000 0.997 0.958 1.038 1.28E-05 0.01829 0.01834 7.00E-04

0.575 5000 0.01828 0.0183 0.998 0.995 0.956 1.035 1.27E-05 0.01825 0.01830 6.93E-04

0.600 5000 0.01822 0.0183 0.995 0.992 0.953 1.032 1.27E-05 0.01819 0.01824 6.95E-04

0.625 5000 0.01815 0.0183 0.991 0.988 0.949 1.028 1.26E-05 0.01813 0.01818 6.95E-04

0.650 5000 0.01807 0.0183 0.986 0.983 0.944 1.023 1.25E-05 0.01804 0.01809 6.92E-04

0.675 5000 0.01797 0.0183 0.981 0.978 0.939 1.017 1.24E-05 0.01795 0.01799 6.89E-04

0.700 5000 0.01788 0.0183 0.976 0.972 0.934 1.012 1.23E-05 0.01785 0.01790 6.87E-04

0.725 5000 0.01777 0.0183 0.970 0.966 0.928 1.005 1.22E-05 0.01774 0.01779 6.89E-04

0.750 5000 0.01766 0.0183 0.964 0.960 0.922 0.999 1.22E-05 0.01763 0.01768 6.94E-04

0.775 5000 0.01755 0.0183 0.958 0.954 0.917 0.993 1.22E-05 0.01752 0.01757 6.93E-04

0.800 5000 0.01744 0.0183 0.952 0.948 0.911 0.987 1.22E-05 0.01741 0.01746 6.97E-04

0.825 5000 0.01734 0.0183 0.947 0.943 0.906 0.981 1.20E-05 0.01731 0.01736 6.92E-04

0.850 5000 0.01724 0.0183 0.941 0.938 0.901 0.976 1.20E-05 0.01722 0.01727 6.98E-04

0.875 5000 0.01717 0.0183 0.937 0.933 0.897 0.971 1.19E-05 0.01714 0.01719 6.93E-04

0.900 5000 0.01710 0.0183 0.933 0.929 0.893 0.967 1.18E-05 0.01707 0.01712 6.90E-04

0.925 5000 0.01704 0.0183 0.930 0.926 0.890 0.964 1.18E-05 0.01701 0.01706 6.93E-04

0.950 5000 0.01699 0.0183 0.928 0.924 0.888 0.962 1.18E-05 0.01697 0.01701 6.96E-04

0.975 5000 0.01696 0.0183 0.926 0.923 0.887 0.960 1.18E-05 0.01694 0.01699 6.98E-04
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Table A.24: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 0.01, b = 200, ρ = 0.98, λ̄ = 0.98, µ = 1, β = 0.02

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.017295 0.0183 0.944 0.942 0.905 0.980 8.47E-06 0.01728 0.01731 4.90E-04

0.025 5000 0.017303 0.0183 0.945 0.942 0.905 0.980 8.47E-06 0.01729 0.01732 4.89E-04

0.050 5000 0.017327 0.0183 0.946 0.943 0.906 0.982 8.51E-06 0.01731 0.01734 4.91E-04

0.075 5000 0.017370 0.0183 0.948 0.946 0.909 0.984 8.51E-06 0.01735 0.01739 4.90E-04

0.100 5000 0.017426 0.0183 0.951 0.949 0.912 0.988 8.52E-06 0.01741 0.01744 4.89E-04

0.125 5000 0.017499 0.0183 0.955 0.953 0.915 0.992 8.50E-06 0.01748 0.01752 4.86E-04

0.150 5000 0.017588 0.0183 0.960 0.957 0.920 0.996 8.52E-06 0.01757 0.01761 4.85E-04

0.175 5000 0.017676 0.0183 0.965 0.962 0.925 1.002 8.64E-06 0.01766 0.01769 4.89E-04

0.200 5000 0.017778 0.0183 0.971 0.968 0.930 1.007 8.72E-06 0.01776 0.01779 4.90E-04

0.225 5000 0.017885 0.0183 0.976 0.974 0.936 1.014 8.79E-06 0.01787 0.01790 4.91E-04

0.250 5000 0.017994 0.0183 0.982 0.980 0.942 1.020 8.85E-06 0.01798 0.01801 4.92E-04

0.275 5000 0.018114 0.0183 0.989 0.986 0.947 1.026 8.85E-06 0.01810 0.01813 4.89E-04

0.300 5000 0.018221 0.0183 0.995 0.992 0.953 1.033 8.95E-06 0.01820 0.01824 4.91E-04

0.325 5000 0.018322 0.0183 1.000 0.998 0.959 1.039 8.99E-06 0.01830 0.01834 4.91E-04

0.350 5000 0.018420 0.0183 1.006 1.003 0.964 1.044 9.05E-06 0.01840 0.01844 4.91E-04

0.375 5000 0.018515 0.0183 1.011 1.008 0.969 1.049 9.09E-06 0.01850 0.01853 4.91E-04

0.400 5000 0.018592 0.0183 1.015 1.012 0.973 1.054 9.05E-06 0.01857 0.01861 4.87E-04

0.425 5000 0.018647 0.0183 1.018 1.016 0.976 1.057 9.06E-06 0.01863 0.01866 4.86E-04

0.450 5000 0.018691 0.0183 1.021 1.018 0.978 1.060 9.09E-06 0.01867 0.01871 4.86E-04

0.475 5000 0.018717 0.0183 1.022 1.019 0.980 1.061 9.20E-06 0.01870 0.01873 4.92E-04

0.500 5000 0.018729 0.0183 1.023 1.020 0.980 1.062 9.20E-06 0.01871 0.01875 4.91E-04

0.525 5000 0.018720 0.0183 1.022 1.019 0.980 1.061 9.15E-06 0.01870 0.01874 4.89E-04

0.550 5000 0.018688 0.0183 1.020 1.018 0.978 1.060 9.13E-06 0.01867 0.01871 4.89E-04

0.575 5000 0.018647 0.0183 1.018 1.016 0.976 1.057 9.14E-06 0.01863 0.01866 4.90E-04

0.600 5000 0.018589 0.0183 1.015 1.012 0.973 1.054 9.17E-06 0.01857 0.01861 4.93E-04

0.625 5000 0.018515 0.0183 1.011 1.008 0.969 1.049 9.13E-06 0.01850 0.01853 4.93E-04

0.650 5000 0.018432 0.0183 1.006 1.003 0.964 1.044 9.05E-06 0.01841 0.01845 4.91E-04

0.675 5000 0.018331 0.0183 1.001 0.998 0.959 1.039 8.94E-06 0.01831 0.01835 4.88E-04

0.700 5000 0.018222 0.0183 0.995 0.992 0.953 1.033 8.81E-06 0.01821 0.01824 4.83E-04

0.725 5000 0.018117 0.0183 0.989 0.986 0.947 1.026 8.71E-06 0.01810 0.01813 4.81E-04

0.750 5000 0.017999 0.0183 0.983 0.980 0.942 1.020 8.61E-06 0.01798 0.01802 4.78E-04

0.775 5000 0.017891 0.0183 0.977 0.974 0.936 1.014 8.65E-06 0.01787 0.01791 4.84E-04

0.800 5000 0.017786 0.0183 0.971 0.968 0.930 1.007 8.62E-06 0.01777 0.01780 4.84E-04

0.825 5000 0.017674 0.0183 0.965 0.962 0.925 1.002 8.62E-06 0.01766 0.01769 4.88E-04

0.850 5000 0.017581 0.0183 0.960 0.957 0.920 0.996 8.59E-06 0.01756 0.01760 4.89E-04

0.875 5000 0.017493 0.0183 0.955 0.953 0.915 0.992 8.62E-06 0.01748 0.01751 4.93E-04

0.900 5000 0.017422 0.0183 0.951 0.949 0.912 0.988 8.60E-06 0.01741 0.01744 4.94E-04

0.925 5000 0.017366 0.0183 0.948 0.946 0.909 0.984 8.56E-06 0.01735 0.01738 4.93E-04

0.950 5000 0.017327 0.0183 0.946 0.943 0.906 0.982 8.48E-06 0.01731 0.01734 4.89E-04

0.975 5000 0.017299 0.0183 0.944 0.942 0.905 0.980 8.50E-06 0.01728 0.01732 4.91E-04
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Table A.25: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/M/1 model as a

function of y based on 5, 000 replications: γ = 0.0025, b = 400, ρ = 0.99, λ̄ = 0.99, µ = 1, β = 0.01

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.017470 0.0183 0.954 0.951 0.914 0.990 7.39E-06 0.01746 0.01748 4.23E-04

0.025 5000 0.017482 0.0183 0.954 0.952 0.914 0.990 7.30E-06 0.01747 0.01750 4.18E-04

0.050 5000 0.017506 0.0183 0.956 0.953 0.916 0.992 7.47E-06 0.01749 0.01752 4.27E-04

0.075 5000 0.017559 0.0183 0.959 0.955 0.918 0.994 7.48E-06 0.01754 0.01757 4.26E-04

0.100 5000 0.017617 0.0183 0.962 0.958 0.921 0.998 7.31E-06 0.01760 0.01763 4.15E-04

0.125 5000 0.017676 0.0183 0.965 0.962 0.925 1.002 7.45E-06 0.01766 0.01769 4.21E-04

0.150 5000 0.017760 0.0183 0.970 0.967 0.929 1.006 7.53E-06 0.01775 0.01777 4.24E-04

0.175 5000 0.017868 0.0183 0.976 0.972 0.934 1.012 7.56E-06 0.01785 0.01788 4.23E-04

0.200 5000 0.017955 0.0183 0.980 0.978 0.939 1.018 7.59E-06 0.01794 0.01797 4.23E-04

0.225 5000 0.018087 0.0183 0.987 0.984 0.945 1.024 7.68E-06 0.01807 0.01810 4.25E-04

0.250 5000 0.018188 0.0183 0.993 0.990 0.951 1.030 7.68E-06 0.01817 0.01820 4.22E-04

0.275 5000 0.018299 0.0183 0.999 0.996 0.957 1.037 7.64E-06 0.01828 0.01831 4.18E-04

0.300 5000 0.018407 0.0183 1.005 1.002 0.963 1.043 7.83E-06 0.01839 0.01842 4.25E-04

0.325 5000 0.018526 0.0183 1.011 1.008 0.969 1.049 7.78E-06 0.01851 0.01854 4.20E-04

0.350 5000 0.018632 0.0183 1.017 1.014 0.974 1.055 7.86E-06 0.01862 0.01865 4.22E-04

0.375 5000 0.018704 0.0183 1.021 1.018 0.978 1.060 7.89E-06 0.01869 0.01872 4.22E-04

0.400 5000 0.018775 0.0183 1.025 1.023 0.982 1.064 7.90E-06 0.01876 0.01879 4.21E-04

0.425 5000 0.018842 0.0183 1.029 1.026 0.986 1.068 7.97E-06 0.01883 0.01886 4.23E-04

0.450 5000 0.018875 0.0183 1.031 1.028 0.988 1.070 7.90E-06 0.01886 0.01889 4.19E-04

0.475 5000 0.018911 0.0183 1.033 1.030 0.990 1.072 8.03E-06 0.01890 0.01893 4.25E-04

0.500 5000 0.018931 0.0183 1.034 1.030 0.990 1.072 7.97E-06 0.01892 0.01895 4.21E-04

0.525 5000 0.018921 0.0183 1.033 1.030 0.990 1.072 8.04E-06 0.01891 0.01894 4.25E-04

0.550 5000 0.018884 0.0183 1.031 1.028 0.988 1.070 7.91E-06 0.01887 0.01890 4.19E-04

0.575 5000 0.018839 0.0183 1.029 1.026 0.986 1.068 7.99E-06 0.01882 0.01885 4.24E-04

0.600 5000 0.018780 0.0183 1.025 1.023 0.982 1.064 7.93E-06 0.01876 0.01880 4.22E-04

0.625 5000 0.018713 0.0183 1.022 1.018 0.978 1.060 7.80E-06 0.01870 0.01873 4.17E-04

0.650 5000 0.018621 0.0183 1.017 1.014 0.974 1.055 7.79E-06 0.01861 0.01864 4.19E-04

0.675 5000 0.018513 0.0183 1.011 1.008 0.969 1.049 7.85E-06 0.01850 0.01853 4.24E-04

0.700 5000 0.018408 0.0183 1.005 1.002 0.963 1.043 7.71E-06 0.01839 0.01842 4.19E-04

0.725 5000 0.018294 0.0183 0.999 0.996 0.957 1.037 7.73E-06 0.01828 0.01831 4.23E-04

0.750 5000 0.018176 0.0183 0.992 0.990 0.951 1.030 7.71E-06 0.01816 0.01819 4.24E-04

0.775 5000 0.018061 0.0183 0.986 0.984 0.945 1.024 7.60E-06 0.01805 0.01808 4.21E-04

0.800 5000 0.017962 0.0183 0.981 0.978 0.939 1.018 7.55E-06 0.01795 0.01798 4.20E-04

0.825 5000 0.017862 0.0183 0.975 0.972 0.934 1.012 7.60E-06 0.01785 0.01788 4.25E-04

0.850 5000 0.017768 0.0183 0.970 0.967 0.929 1.006 7.52E-06 0.01775 0.01778 4.23E-04

0.875 5000 0.017687 0.0183 0.966 0.962 0.925 1.002 7.45E-06 0.01767 0.01770 4.21E-04

0.900 5000 0.017608 0.0183 0.961 0.958 0.921 0.998 7.38E-06 0.01759 0.01762 4.19E-04

0.925 5000 0.017547 0.0183 0.958 0.955 0.918 0.994 7.42E-06 0.01753 0.01756 4.23E-04

0.950 5000 0.017499 0.0183 0.955 0.953 0.916 0.992 7.43E-06 0.01748 0.01751 4.25E-04

0.975 5000 0.017482 0.0183 0.954 0.952 0.914 0.990 7.40E-06 0.01747 0.01750 4.23E-04
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Table A.26: Comparison of ratio P (Wy > b)/P (W > b) = Ay/ρ for different ρ’s with base

parameter (β, γ, b) = (1, 25, 4) using the scaling in (3.39) of the main thesis

position ρ = 0.84 ρ = 0.92 ρ = 0.96 ρ = 0.98 ρ = 0.99

0.000 0.96364 0.96523 0.96424 0.96357 0.96344

0.025 0.96397 0.96543 0.96436 0.96398 0.96412

0.050 0.96596 0.96718 0.96545 0.96531 0.96545

0.075 0.96832 0.96896 0.96778 0.96771 0.96839

0.100 0.97289 0.97264 0.97102 0.97086 0.97156

0.125 0.97619 0.97686 0.97504 0.97493 0.97482

0.150 0.98044 0.98109 0.97919 0.97989 0.97945

0.175 0.98562 0.98605 0.98442 0.98475 0.98539

0.200 0.99074 0.99215 0.99018 0.99043 0.99019

0.225 0.99693 0.99851 0.99614 0.99642 0.99747

0.250 1.00456 1.00450 1.00255 1.00251 1.00305

0.275 1.01102 1.01015 1.00875 1.00918 1.00918

0.300 1.01721 1.01669 1.01482 1.01513 1.01514

0.325 1.02258 1.02247 1.02006 1.02079 1.02171

0.350 1.02797 1.02776 1.02572 1.02622 1.02757

0.375 1.03278 1.03264 1.03035 1.03152 1.03152

0.400 1.03650 1.03649 1.03484 1.03582 1.03546

0.425 1.04065 1.04030 1.03871 1.03886 1.03911

0.450 1.04342 1.04286 1.04079 1.04134 1.04094

0.475 1.04420 1.04475 1.04237 1.04276 1.04294

0.500 1.04565 1.04470 1.04278 1.04346 1.04405

0.525 1.04475 1.04420 1.04296 1.04291 1.04351

0.550 1.04236 1.04204 1.04183 1.04118 1.04142

0.575 1.04021 1.03925 1.03955 1.03886 1.03895

0.600 1.03634 1.03532 1.03597 1.03564 1.03569

0.625 1.03213 1.03096 1.03230 1.03150 1.03204

0.650 1.02712 1.02655 1.02745 1.02690 1.02695

0.675 1.02178 1.02146 1.02203 1.02124 1.02099

0.700 1.01554 1.01565 1.01682 1.01521 1.01517

0.725 1.00944 1.00971 1.01054 1.00935 1.00888

0.750 1.00225 1.00404 1.00425 1.00277 1.00241

0.775 0.99551 0.99831 0.99785 0.99674 0.99604

0.800 0.98888 0.99266 0.99178 0.99088 0.99059

0.825 0.98318 0.98671 0.98604 0.98464 0.98509

0.850 0.97825 0.98128 0.98059 0.97950 0.97991

0.875 0.97371 0.97696 0.97629 0.97457 0.97545

0.900 0.97022 0.97270 0.97228 0.97063 0.97108

0.925 0.96647 0.96926 0.96887 0.96748 0.96772

0.950 0.96422 0.96681 0.96626 0.96531 0.96507

0.975 0.96328 0.96564 0.96472 0.96377 0.96414

avg diff w.r.t. last column 0.00037 0.00112 0.00015 -0.00019 0.00000

avg. abs. diff w.r.t. last column 0.00099 0.00121 0.00081 0.00039 0.00000

rmse w.r.t. last column 0.00116 0.00134 0.00096 0.00049 0.00000



APPENDIX A. SUPPLEMENT TO CHAPTER THREE 188

Table A.27: Summary of simulation results for Mt/M/1 queue at y = 0 as a function of 1 − ρ

with base parameter (β, γ, b) = (1, 25, 4) using the scaling in (3.39) of the main thesis:

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01 1− ρ = 0.005 1− ρ = 0.0025

n 5000 5000 5000 5000 5000 5000 5000

p̂ 0.014834 0.016239 0.016941 0.017298 0.017462 0.017566 0.017596

e−θ
∗b 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183

Ay 0.810 0.887 0.925 0.944 0.953 0.959 0.961

Ay approxi 0.807 0.884 0.922 0.942 0.951 0.956 0.958

Ay LB 0.775 0.849 0.886 0.905 0.914 0.919 0.921

Ay UB 0.840 0.920 0.960 0.980 0.990 0.995 0.998

s.e. 3.42E-05 1.99E-05 1.16E-05 8.35E-06 7.38E-06 7.09E-06 7.02E-06

95% CI (lb) 0.01477 0.01620 0.01692 0.01728 0.01745 0.01755 0.01758

(ub) 0.01490 0.01628 0.01696 0.01731 0.01748 0.01758 0.01761

r.e. 0.002303 0.001222 0.000685 0.000483 0.000422 0.000403 0.000399

P (Wy > b)/P (W > b)

ratio 0.96419 0.96375 0.96349 0.96370 0.96301 0.96386 0.96312

diff -0.00107 -0.00062 -0.00037 -0.00058 0.00011 -0.00074 0.00000

abs diff 0.00107 0.00062 0.00037 0.00058 0.00011 0.00074 0.00000
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Table A.28: Summary of simulation results for Mt/M/1 queue at y = 0 and at y = 0.5 as a

function of 1 − ρ with base parameter (β, γ, b) = (1, 2.5, 4) using the scaling in (3.39) of the main

thesis

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01

n 40000 40000 40000 40000 40000

y = 0

p̂ 0.011053 0.012192 0.012814 0.013122 0.013263

e−θ
∗b 0.0183 0.0183 0.0183 0.0183 0.0183

Ay 0.604 0.666 0.700 0.716 0.724

Ay approxi 0.563 0.617 0.644 0.657 0.664

Ay LB 0.377 0.413 0.431 0.440 0.445

Ay UB 0.840 0.920 0.960 0.980 0.990

s.e. 1.75E-05 1.69E-05 1.71E-05 1.73E-05 1.74E-05

95% CI (lb) 0.01102 0.01216 0.01278 0.01309 0.01323

(ub) 0.01109 0.01223 0.01285 0.01316 0.01330

r.e. 0.001582 0.001387 0.001333 0.001319 0.001313

P (Wy > b)/P (W > b)

ratio 0.71845 0.72356 0.72879 0.73103 0.73144

diff w.r.t. last column 0.01298 0.00788 0.00264 0.00041 0.00000

abs diff 0.01298 0.00788 0.00264 0.00041 0.00000

y = 0.5

p̂ 0.025888 0.028396 0.029551 0.030110 0.030430

e−θ
∗b 0.0183 0.0183 0.0183 0.0183 0.0183

Ay 1.413 1.550 1.613 1.644 1.661

Ay approxi 1.253 1.372 1.432 1.462 1.477

Ay LB 0.840 0.920 0.960 0.980 0.990

Ay UB 1.869 2.047 2.137 2.181 2.203

s.e. 3.87E-05 3.74E-05 3.80E-05 3.86E-05 3.89E-05

95% CI (lb) 0.02581 0.02832 0.02948 0.03003 0.03035

(ub) 0.02596 0.02847 0.02963 0.03019 0.03051

r.e. 0.001496 0.001318 0.001286 0.001281 0.001279

P (Wy > b)/P (W > b)

ratio 1.68266 1.68517 1.68068 1.67751 1.67821

diff w.r.t. last column -0.00445 -0.00696 -0.00247 0.00071 0.00000

abs diff 0.00445 0.00696 0.00247 0.00071 0.00000
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A.3.3 Tail Probabilities for the (H2)t/M/1 Periodic Queue

Tables A.29-A.38 present results for the (H2)t/M/1 model paralleling the results for the Mt/M/1

model in Tables A.18-A.28.
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Table A.29: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the (H2)t/M/1 model as a

function of y based on 5, 000 replications: γ = 1, b = 20, ρ = 0.8, λ̄ = 0.8, µ = 1, β = 0.2, θ∗ = 0.173

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.025326 0.0317 0.799 0.966 0.933 1.000 6.42E-05 0.02520 0.02545 0.00254

0.025 5000 0.025266 0.0317 0.797 0.966 0.934 1.000 6.35E-05 0.02514 0.02539 0.00251

0.050 5000 0.025358 0.0317 0.800 0.968 0.935 1.002 6.40E-05 0.02523 0.02548 0.00252

0.075 5000 0.025503 0.0317 0.805 0.970 0.937 1.004 6.39E-05 0.02538 0.02563 0.00251

0.100 5000 0.025516 0.0317 0.805 0.972 0.939 1.007 6.45E-05 0.02539 0.02564 0.00253

0.125 5000 0.025714 0.0317 0.811 0.976 0.943 1.010 6.39E-05 0.02559 0.02584 0.00248

0.150 5000 0.025790 0.0317 0.814 0.980 0.947 1.014 6.43E-05 0.02566 0.02592 0.00249

0.175 5000 0.025819 0.0317 0.815 0.984 0.951 1.019 6.43E-05 0.02569 0.02595 0.00249

0.200 5000 0.026039 0.0317 0.822 0.989 0.956 1.024 6.38E-05 0.02591 0.02616 0.00245

0.225 5000 0.026254 0.0317 0.828 0.995 0.961 1.030 6.54E-05 0.02613 0.02638 0.00249

0.250 5000 0.026343 0.0317 0.831 1.000 0.966 1.035 6.56E-05 0.02621 0.02647 0.00249

0.275 5000 0.026580 0.0317 0.839 1.005 0.971 1.041 6.42E-05 0.02645 0.02671 0.00241

0.300 5000 0.026623 0.0317 0.840 1.011 0.976 1.046 6.57E-05 0.02649 0.02675 0.00247

0.325 5000 0.026778 0.0317 0.845 1.016 0.981 1.051 6.71E-05 0.02665 0.02691 0.00251

0.350 5000 0.026745 0.0317 0.844 1.020 0.986 1.056 6.79E-05 0.02661 0.02688 0.00254

0.375 5000 0.026965 0.0317 0.851 1.025 0.990 1.061 6.68E-05 0.02683 0.02710 0.00248

0.400 5000 0.027035 0.0317 0.853 1.028 0.993 1.064 6.72E-05 0.02690 0.02717 0.00248

0.425 5000 0.027097 0.0317 0.855 1.031 0.996 1.067 6.84E-05 0.02696 0.02723 0.00253

0.450 5000 0.027116 0.0317 0.856 1.033 0.998 1.070 6.71E-05 0.02698 0.02725 0.00247

0.475 5000 0.027069 0.0317 0.854 1.035 1.000 1.071 6.82E-05 0.02694 0.02720 0.00252

0.500 5000 0.027280 0.0317 0.861 1.035 1.000 1.071 6.79E-05 0.02715 0.02741 0.00249

0.525 5000 0.027020 0.0317 0.853 1.035 1.000 1.071 6.96E-05 0.02688 0.02716 0.00257

0.550 5000 0.027095 0.0317 0.855 1.033 0.998 1.070 6.87E-05 0.02696 0.02723 0.00253

0.575 5000 0.026990 0.0317 0.852 1.031 0.996 1.067 6.80E-05 0.02686 0.02712 0.00252

0.600 5000 0.027078 0.0317 0.854 1.028 0.993 1.064 6.78E-05 0.02695 0.02721 0.00250

0.625 5000 0.026855 0.0317 0.847 1.025 0.990 1.061 6.82E-05 0.02672 0.02699 0.00254

0.650 5000 0.026811 0.0317 0.846 1.020 0.986 1.056 6.78E-05 0.02668 0.02694 0.00253

0.675 5000 0.026697 0.0317 0.842 1.016 0.981 1.051 6.72E-05 0.02657 0.02683 0.00252

0.700 5000 0.026616 0.0317 0.840 1.011 0.976 1.046 6.48E-05 0.02649 0.02674 0.00243

0.725 5000 0.026456 0.0317 0.835 1.005 0.971 1.041 6.62E-05 0.02633 0.02659 0.00250

0.750 5000 0.026376 0.0317 0.832 1.000 0.966 1.035 6.46E-05 0.02625 0.02650 0.00245

0.775 5000 0.026222 0.0317 0.827 0.995 0.961 1.030 6.41E-05 0.02610 0.02635 0.00245

0.800 5000 0.025962 0.0317 0.819 0.989 0.956 1.024 6.52E-05 0.02583 0.02609 0.00251

0.825 5000 0.025856 0.0317 0.816 0.984 0.951 1.019 6.53E-05 0.02573 0.02598 0.00252

0.850 5000 0.025724 0.0317 0.812 0.980 0.947 1.014 6.53E-05 0.02560 0.02585 0.00254

0.875 5000 0.025635 0.0317 0.809 0.976 0.943 1.010 6.60E-05 0.02551 0.02576 0.00257

0.900 5000 0.025539 0.0317 0.806 0.972 0.939 1.007 6.43E-05 0.02541 0.02566 0.00252

0.925 5000 0.025462 0.0317 0.803 0.970 0.937 1.004 6.30E-05 0.02534 0.02559 0.00247

0.950 5000 0.025424 0.0317 0.802 0.968 0.935 1.002 6.36E-05 0.02530 0.02555 0.00250

0.975 5000 0.025442 0.0317 0.803 0.966 0.934 1.000 6.29E-05 0.02532 0.02557 0.00247
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Table A.30: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the (H2)t/M/1 model as a

function of y based on 5, 000 replications: γ = 0.25, b = 40, ρ = 0.9, λ̄ = 0.9, µ = 1, β = 0.1, θ∗ =

0.0761

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.042734 0.0477 0.897 0.970 0.941 1.000 4.96E-05 0.04264 0.04283 0.00116

0.025 5000 0.042861 0.0477 0.899 0.970 0.941 1.000 4.79E-05 0.04277 0.04295 0.00112

0.050 5000 0.042816 0.0477 0.898 0.971 0.942 1.001 4.75E-05 0.04272 0.04291 0.00111

0.075 5000 0.042915 0.0477 0.901 0.973 0.944 1.003 4.85E-05 0.04282 0.04301 0.00113

0.100 5000 0.043023 0.0477 0.903 0.976 0.946 1.006 4.79E-05 0.04293 0.04312 0.00111

0.125 5000 0.043116 0.0477 0.905 0.979 0.949 1.009 4.93E-05 0.04302 0.04321 0.00114

0.150 5000 0.043219 0.0477 0.907 0.982 0.953 1.013 4.94E-05 0.04312 0.04332 0.00114

0.175 5000 0.043533 0.0477 0.914 0.986 0.957 1.017 4.85E-05 0.04344 0.04363 0.00111

0.200 5000 0.043765 0.0477 0.918 0.991 0.961 1.021 4.93E-05 0.04367 0.04386 0.00113

0.225 5000 0.043885 0.0477 0.921 0.995 0.965 1.026 4.90E-05 0.04379 0.04398 0.00112

0.250 5000 0.044134 0.0477 0.926 1.000 0.970 1.031 4.91E-05 0.04404 0.04423 0.00111

0.275 5000 0.044318 0.0477 0.930 1.005 0.975 1.036 4.99E-05 0.04422 0.04442 0.00113

0.300 5000 0.044483 0.0477 0.933 1.009 0.979 1.041 4.99E-05 0.04439 0.04458 0.00112

0.325 5000 0.044729 0.0477 0.939 1.014 0.984 1.045 4.97E-05 0.04463 0.04483 0.00111

0.350 5000 0.044932 0.0477 0.943 1.018 0.988 1.050 5.00E-05 0.04483 0.04503 0.00111

0.375 5000 0.045040 0.0477 0.945 1.022 0.991 1.053 4.98E-05 0.04494 0.04514 0.00110

0.400 5000 0.045175 0.0477 0.948 1.025 0.994 1.057 5.12E-05 0.04507 0.04528 0.00113

0.425 5000 0.045244 0.0477 0.949 1.027 0.997 1.059 5.07E-05 0.04514 0.04534 0.00112

0.450 5000 0.045360 0.0477 0.952 1.029 0.999 1.061 5.19E-05 0.04526 0.04546 0.00114

0.475 5000 0.045519 0.0477 0.955 1.031 1.000 1.062 5.07E-05 0.04542 0.04562 0.00111

0.500 5000 0.045536 0.0477 0.956 1.031 1.000 1.063 5.00E-05 0.04544 0.04563 0.00110

0.525 5000 0.045435 0.0477 0.953 1.031 1.000 1.062 5.13E-05 0.04533 0.04554 0.00113

0.550 5000 0.045563 0.0477 0.956 1.029 0.999 1.061 4.95E-05 0.04547 0.04566 0.00109

0.575 5000 0.045329 0.0477 0.951 1.027 0.997 1.059 5.08E-05 0.04523 0.04543 0.00112

0.600 5000 0.045185 0.0477 0.948 1.025 0.994 1.057 5.07E-05 0.04509 0.04528 0.00112

0.625 5000 0.045032 0.0477 0.945 1.022 0.991 1.053 5.11E-05 0.04493 0.04513 0.00113

0.650 5000 0.044887 0.0477 0.942 1.018 0.988 1.050 5.12E-05 0.04479 0.04499 0.00114

0.675 5000 0.044731 0.0477 0.939 1.014 0.984 1.045 4.90E-05 0.04463 0.04483 0.00110

0.700 5000 0.044457 0.0477 0.933 1.009 0.979 1.041 5.14E-05 0.04436 0.04456 0.00116

0.725 5000 0.044321 0.0477 0.930 1.005 0.975 1.036 4.92E-05 0.04422 0.04442 0.00111

0.750 5000 0.044170 0.0477 0.927 1.000 0.970 1.031 4.93E-05 0.04407 0.04427 0.00112

0.775 5000 0.043813 0.0477 0.919 0.995 0.965 1.026 5.05E-05 0.04371 0.04391 0.00115

0.800 5000 0.043666 0.0477 0.916 0.991 0.961 1.021 4.94E-05 0.04357 0.04376 0.00113

0.825 5000 0.043504 0.0477 0.913 0.986 0.957 1.017 4.80E-05 0.04341 0.04360 0.00110

0.850 5000 0.043330 0.0477 0.909 0.982 0.953 1.013 4.91E-05 0.04323 0.04343 0.00113

0.875 5000 0.043244 0.0477 0.907 0.979 0.949 1.009 4.73E-05 0.04315 0.04334 0.00109

0.900 5000 0.043098 0.0477 0.904 0.976 0.946 1.006 4.82E-05 0.04300 0.04319 0.00112

0.925 5000 0.042836 0.0477 0.899 0.973 0.944 1.003 4.91E-05 0.04274 0.04293 0.00115

0.950 5000 0.042714 0.0477 0.896 0.971 0.942 1.001 4.87E-05 0.04262 0.04281 0.00114

0.975 5000 0.042777 0.0477 0.898 0.970 0.941 1.000 4.81E-05 0.04268 0.04287 0.00112
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Table A.31: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the (H2)t/M/1 model as a

function of y based on 5, 000 replications: γ = 1
16 , b = 80, ρ = 0.95, λ̄ = 0.95, µ = 1, β = 0.05, θ∗ =

0.0356

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.054303 0.0578 0.939 0.972 0.945 1.000 3.13E-05 0.05424 0.05436 5.77E-04

0.025 5000 0.054300 0.0578 0.939 0.972 0.945 1.000 3.15E-05 0.05424 0.05436 5.81E-04

0.050 5000 0.054360 0.0578 0.940 0.973 0.946 1.001 3.12E-05 0.05430 0.05442 5.74E-04

0.075 5000 0.054519 0.0578 0.943 0.975 0.948 1.003 3.09E-05 0.05446 0.05458 5.66E-04

0.100 5000 0.054550 0.0578 0.943 0.977 0.950 1.005 3.18E-05 0.05449 0.05461 5.83E-04

0.125 5000 0.054786 0.0578 0.947 0.980 0.953 1.008 3.16E-05 0.05472 0.05485 5.76E-04

0.150 5000 0.054931 0.0578 0.950 0.983 0.956 1.012 3.16E-05 0.05487 0.05499 5.76E-04

0.175 5000 0.055150 0.0578 0.954 0.987 0.959 1.016 3.15E-05 0.05509 0.05521 5.71E-04

0.200 5000 0.055383 0.0578 0.958 0.991 0.963 1.020 3.21E-05 0.05532 0.05545 5.79E-04

0.225 5000 0.055608 0.0578 0.961 0.996 0.968 1.024 3.18E-05 0.05555 0.05567 5.72E-04

0.250 5000 0.055865 0.0578 0.966 1.000 0.972 1.029 3.24E-05 0.05580 0.05593 5.80E-04

0.275 5000 0.056159 0.0578 0.971 1.004 0.976 1.034 3.27E-05 0.05610 0.05622 5.82E-04

0.300 5000 0.056380 0.0578 0.975 1.009 0.980 1.038 3.23E-05 0.05632 0.05644 5.73E-04

0.325 5000 0.056566 0.0578 0.978 1.013 0.985 1.042 3.30E-05 0.05650 0.05663 5.83E-04

0.350 5000 0.056841 0.0578 0.983 1.017 0.988 1.046 3.26E-05 0.05678 0.05691 5.74E-04

0.375 5000 0.056992 0.0578 0.985 1.020 0.992 1.050 3.39E-05 0.05693 0.05706 5.95E-04

0.400 5000 0.057139 0.0578 0.988 1.023 0.995 1.053 3.27E-05 0.05708 0.05720 5.72E-04

0.425 5000 0.057324 0.0578 0.991 1.026 0.997 1.055 3.36E-05 0.05726 0.05739 5.86E-04

0.450 5000 0.057391 0.0578 0.992 1.027 0.999 1.057 3.35E-05 0.05733 0.05746 5.83E-04

0.475 5000 0.057464 0.0578 0.994 1.029 1.000 1.058 3.32E-05 0.05740 0.05753 5.77E-04

0.500 5000 0.057466 0.0578 0.994 1.029 1.000 1.059 3.29E-05 0.05740 0.05753 5.73E-04

0.525 5000 0.057460 0.0578 0.993 1.029 1.000 1.058 3.34E-05 0.05739 0.05753 5.82E-04

0.550 5000 0.057412 0.0578 0.993 1.027 0.999 1.057 3.32E-05 0.05735 0.05748 5.79E-04

0.575 5000 0.057343 0.0578 0.991 1.026 0.997 1.055 3.30E-05 0.05728 0.05741 5.75E-04

0.600 5000 0.057165 0.0578 0.988 1.023 0.995 1.053 3.33E-05 0.05710 0.05723 5.83E-04

0.625 5000 0.057041 0.0578 0.986 1.020 0.992 1.050 3.35E-05 0.05697 0.05711 5.87E-04

0.650 5000 0.056788 0.0578 0.982 1.017 0.988 1.046 3.20E-05 0.05673 0.05685 5.63E-04

0.675 5000 0.056650 0.0578 0.979 1.013 0.985 1.042 3.20E-05 0.05659 0.05671 5.65E-04

0.700 5000 0.056391 0.0578 0.975 1.009 0.980 1.038 3.29E-05 0.05633 0.05646 5.84E-04

0.725 5000 0.056128 0.0578 0.970 1.004 0.976 1.034 3.23E-05 0.05606 0.05619 5.76E-04

0.750 5000 0.055929 0.0578 0.967 1.000 0.972 1.029 3.15E-05 0.05587 0.05599 5.62E-04

0.775 5000 0.055577 0.0578 0.961 0.996 0.968 1.024 3.30E-05 0.05551 0.05564 5.94E-04

0.800 5000 0.055409 0.0578 0.958 0.991 0.963 1.020 3.15E-05 0.05535 0.05547 5.68E-04

0.825 5000 0.055163 0.0578 0.954 0.987 0.959 1.016 3.18E-05 0.05510 0.05523 5.76E-04

0.850 5000 0.054896 0.0578 0.949 0.983 0.956 1.012 3.20E-05 0.05483 0.05496 5.84E-04

0.875 5000 0.054714 0.0578 0.946 0.980 0.953 1.008 3.15E-05 0.05465 0.05478 5.76E-04

0.900 5000 0.054613 0.0578 0.944 0.977 0.950 1.005 3.16E-05 0.05455 0.05467 5.79E-04

0.925 5000 0.054457 0.0578 0.942 0.975 0.948 1.003 3.25E-05 0.05439 0.05452 5.96E-04

0.950 5000 0.054428 0.0578 0.941 0.973 0.946 1.001 3.22E-05 0.05437 0.05449 5.91E-04

0.975 5000 0.054358 0.0578 0.940 0.972 0.945 1.000 3.12E-05 0.05430 0.05442 5.75E-04
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Table A.32: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the (H2)t/M/1 model as a

function of y based on 5, 000 replications: γ = 0.64, b = 25, ρ = 0.84, λ̄ = 0.84, µ = 1, β = 0.16, θ∗ =

0.131

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.031500 0.0374 0.842 0.842 0.815 0.870 5.96E-05 0.03138 0.03162 0.00189

0.025 5000 0.031531 0.0374 0.843 0.843 0.815 0.871 6.05E-05 0.03141 0.03165 0.00192

0.050 5000 0.031537 0.0374 0.843 0.844 0.816 0.872 6.04E-05 0.03142 0.03166 0.00192

0.075 5000 0.031558 0.0374 0.844 0.845 0.818 0.873 5.96E-05 0.03144 0.03167 0.00189

0.100 5000 0.031603 0.0374 0.845 0.848 0.820 0.876 5.99E-05 0.03149 0.03172 0.00190

0.125 5000 0.031834 0.0374 0.851 0.850 0.823 0.879 6.01E-05 0.03172 0.03195 0.00189

0.150 5000 0.031906 0.0374 0.853 0.854 0.826 0.882 6.11E-05 0.03179 0.03203 0.00191

0.175 5000 0.032097 0.0374 0.858 0.857 0.830 0.886 6.08E-05 0.03198 0.03222 0.00189

0.200 5000 0.032215 0.0374 0.862 0.862 0.834 0.890 6.17E-05 0.03209 0.03234 0.00192

0.225 5000 0.032294 0.0374 0.864 0.866 0.838 0.895 6.19E-05 0.03217 0.03242 0.00192

0.250 5000 0.032581 0.0374 0.871 0.870 0.842 0.899 6.10E-05 0.03246 0.03270 0.00187

0.275 5000 0.032785 0.0374 0.877 0.875 0.847 0.904 6.30E-05 0.03266 0.03291 0.00192

0.300 5000 0.032967 0.0374 0.882 0.879 0.851 0.909 6.17E-05 0.03285 0.03309 0.00187

0.325 5000 0.033044 0.0374 0.884 0.883 0.855 0.913 6.23E-05 0.03292 0.03317 0.00189

0.350 5000 0.033178 0.0374 0.887 0.887 0.859 0.917 6.31E-05 0.03305 0.03330 0.00190

0.375 5000 0.033343 0.0374 0.892 0.891 0.862 0.921 6.36E-05 0.03322 0.03347 0.00191

0.400 5000 0.033383 0.0374 0.893 0.894 0.865 0.924 6.31E-05 0.03326 0.03351 0.00189

0.425 5000 0.033410 0.0374 0.894 0.896 0.867 0.926 6.42E-05 0.03328 0.03354 0.00192

0.450 5000 0.033533 0.0374 0.897 0.898 0.869 0.928 6.36E-05 0.03341 0.03366 0.00190

0.475 5000 0.033599 0.0374 0.899 0.899 0.870 0.929 6.42E-05 0.03347 0.03372 0.00191

0.500 5000 0.033561 0.0374 0.898 0.899 0.870 0.929 6.35E-05 0.03344 0.03369 0.00189

0.525 5000 0.033613 0.0374 0.899 0.899 0.870 0.929 6.43E-05 0.03349 0.03374 0.00191

0.550 5000 0.033546 0.0374 0.897 0.898 0.869 0.928 6.49E-05 0.03342 0.03367 0.00193

0.575 5000 0.033541 0.0374 0.897 0.896 0.867 0.926 6.26E-05 0.03342 0.03366 0.00187

0.600 5000 0.033365 0.0374 0.892 0.894 0.865 0.924 6.31E-05 0.03324 0.03349 0.00189

0.625 5000 0.033284 0.0374 0.890 0.891 0.862 0.921 6.47E-05 0.03316 0.03341 0.00194

0.650 5000 0.033196 0.0374 0.888 0.887 0.859 0.917 6.38E-05 0.03307 0.03332 0.00192

0.675 5000 0.033028 0.0374 0.883 0.883 0.855 0.913 6.36E-05 0.03290 0.03315 0.00193

0.700 5000 0.032913 0.0374 0.880 0.879 0.851 0.909 6.09E-05 0.03279 0.03303 0.00185

0.725 5000 0.032711 0.0374 0.875 0.875 0.847 0.904 6.35E-05 0.03259 0.03284 0.00194

0.750 5000 0.032600 0.0374 0.872 0.870 0.842 0.899 6.05E-05 0.03248 0.03272 0.00186

0.775 5000 0.032468 0.0374 0.868 0.866 0.838 0.895 6.07E-05 0.03235 0.03259 0.00187

0.800 5000 0.032151 0.0374 0.860 0.862 0.834 0.890 6.25E-05 0.03203 0.03227 0.00194

0.825 5000 0.032071 0.0374 0.858 0.857 0.830 0.886 6.10E-05 0.03195 0.03219 0.00190

0.850 5000 0.031876 0.0374 0.852 0.854 0.826 0.882 6.17E-05 0.03175 0.03200 0.00193

0.875 5000 0.031610 0.0374 0.845 0.850 0.823 0.879 6.17E-05 0.03149 0.03173 0.00195

0.900 5000 0.031681 0.0374 0.847 0.848 0.820 0.876 5.95E-05 0.03156 0.03180 0.00188

0.925 5000 0.031634 0.0374 0.846 0.845 0.818 0.873 5.98E-05 0.03152 0.03175 0.00189

0.950 5000 0.031516 0.0374 0.843 0.844 0.816 0.872 6.01E-05 0.03140 0.03163 0.00191

0.975 5000 0.031469 0.0374 0.842 0.843 0.815 0.871 5.99E-05 0.03135 0.03159 0.00190
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Table A.33: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the (H2)t/M/1 model as a

function of y based on 5, 000 replications: γ = 0.16, b = 50, ρ = 0.92, λ̄ = 0.92, µ = 1, β = 0.08, θ∗ =

0.0593

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.047148 0.0515 0.915 0.913 0.887 0.941 4.20E-05 0.04707 0.04723 8.92E-04

0.025 5000 0.047196 0.0515 0.916 0.914 0.887 0.941 4.21E-05 0.04711 0.04728 8.91E-04

0.050 5000 0.047178 0.0515 0.915 0.915 0.888 0.942 4.21E-05 0.04710 0.04726 8.92E-04

0.075 5000 0.047238 0.0515 0.916 0.916 0.890 0.944 4.29E-05 0.04715 0.04732 9.07E-04

0.100 5000 0.047472 0.0515 0.921 0.919 0.892 0.946 9.77E-05 0.04728 0.04766 2.06E-03

0.125 5000 0.047550 0.0515 0.922 0.921 0.894 0.949 4.30E-05 0.04747 0.04763 9.04E-04

0.150 5000 0.047720 0.0515 0.926 0.925 0.898 0.952 4.24E-05 0.04764 0.04780 8.89E-04

0.175 5000 0.048040 0.0515 0.932 0.928 0.901 0.956 8.37E-05 0.04788 0.04820 1.74E-03

0.200 5000 0.048026 0.0515 0.932 0.932 0.905 0.960 4.39E-05 0.04794 0.04811 9.15E-04

0.225 5000 0.048282 0.0515 0.937 0.936 0.909 0.965 4.40E-05 0.04820 0.04837 9.11E-04

0.250 5000 0.048515 0.0515 0.941 0.941 0.913 0.969 4.47E-05 0.04843 0.04860 9.21E-04

0.275 5000 0.048691 0.0515 0.945 0.945 0.918 0.974 4.48E-05 0.04860 0.04878 9.20E-04

0.300 5000 0.048982 0.0515 0.950 0.950 0.922 0.978 4.54E-05 0.04889 0.04907 9.28E-04

0.325 5000 0.049243 0.0515 0.955 0.954 0.926 0.982 4.34E-05 0.04916 0.04933 8.81E-04

0.350 5000 0.049461 0.0515 0.960 0.957 0.929 0.986 4.57E-05 0.04937 0.04955 9.24E-04

0.375 5000 0.049662 0.0515 0.963 0.961 0.933 0.990 4.31E-05 0.04958 0.04975 8.68E-04

0.400 5000 0.049779 0.0515 0.966 0.964 0.936 0.993 4.39E-05 0.04969 0.04987 8.83E-04

0.425 5000 0.050002 0.0515 0.970 0.966 0.938 0.995 7.26E-05 0.04986 0.05014 1.45E-03

0.450 5000 0.049994 0.0515 0.970 0.968 0.939 0.997 4.41E-05 0.04991 0.05008 8.82E-04

0.475 5000 0.049949 0.0515 0.969 0.969 0.941 0.998 4.50E-05 0.04986 0.05004 9.01E-04

0.500 5000 0.050020 0.0515 0.970 0.969 0.941 0.998 4.44E-05 0.04993 0.05011 8.88E-04

0.525 5000 0.050090 0.0515 0.972 0.969 0.941 0.998 4.49E-05 0.05000 0.05018 8.97E-04

0.550 5000 0.050077 0.0515 0.971 0.968 0.939 0.997 4.31E-05 0.04999 0.05016 8.60E-04

0.575 5000 0.049931 0.0515 0.969 0.966 0.938 0.995 4.36E-05 0.04985 0.05002 8.72E-04

0.600 5000 0.049756 0.0515 0.965 0.964 0.936 0.993 4.45E-05 0.04967 0.04984 8.95E-04

0.625 5000 0.049611 0.0515 0.962 0.961 0.933 0.990 4.33E-05 0.04953 0.04970 8.72E-04

0.650 5000 0.049456 0.0515 0.959 0.957 0.929 0.986 4.43E-05 0.04937 0.04954 8.96E-04

0.675 5000 0.049202 0.0515 0.954 0.954 0.926 0.982 4.41E-05 0.04912 0.04929 8.95E-04

0.700 5000 0.048966 0.0515 0.950 0.950 0.922 0.978 4.47E-05 0.04888 0.04905 9.12E-04

0.725 5000 0.048780 0.0515 0.946 0.945 0.918 0.974 4.40E-05 0.04869 0.04887 9.02E-04

0.750 5000 0.048635 0.0515 0.944 0.941 0.913 0.969 4.28E-05 0.04855 0.04872 8.80E-04

0.775 5000 0.048339 0.0515 0.938 0.936 0.909 0.965 4.29E-05 0.04826 0.04842 8.88E-04

0.800 5000 0.048207 0.0515 0.935 0.932 0.905 0.960 4.21E-05 0.04812 0.04829 8.72E-04

0.825 5000 0.047963 0.0515 0.930 0.928 0.901 0.956 4.17E-05 0.04788 0.04804 8.69E-04

0.850 5000 0.047699 0.0515 0.925 0.925 0.898 0.952 4.32E-05 0.04761 0.04778 9.05E-04

0.875 5000 0.047584 0.0515 0.923 0.921 0.894 0.949 4.17E-05 0.04750 0.04767 8.77E-04

0.900 5000 0.047438 0.0515 0.920 0.919 0.892 0.946 4.14E-05 0.04736 0.04752 8.73E-04

0.925 5000 0.047343 0.0515 0.918 0.916 0.890 0.944 4.15E-05 0.04726 0.04742 8.76E-04

0.950 5000 0.047215 0.0515 0.916 0.915 0.888 0.942 4.18E-05 0.04713 0.04730 8.86E-04

0.975 5000 0.047194 0.0515 0.916 0.914 0.887 0.941 4.18E-05 0.04711 0.04728 8.87E-04



APPENDIX A. SUPPLEMENT TO CHAPTER THREE 196

Table A.34: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the (H2)t/M/1 model as

a function of y based on 5, 000 replications: γ = 0.01, b = 200, ρ = 0.98, λ̄ = 0.98, µ = 1, β =

0.02, θ∗ = 0.0137

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.062152 0.0647 0.961 0.973 0.947 1.000 2.09E-05 0.06211 0.06219 3.36E-04

0.025 5000 0.062156 0.0647 0.961 0.973 0.947 1.000 2.05E-05 0.06212 0.06220 3.30E-04

0.050 5000 0.062226 0.0647 0.962 0.974 0.948 1.001 2.09E-05 0.06218 0.06227 3.37E-04

0.075 5000 0.062304 0.0647 0.964 0.976 0.950 1.003 2.14E-05 0.06226 0.06235 3.43E-04

0.100 5000 0.062430 0.0647 0.966 0.978 0.952 1.005 2.10E-05 0.06239 0.06247 3.36E-04

0.125 5000 0.062626 0.0647 0.969 0.981 0.954 1.008 2.08E-05 0.06258 0.06267 3.32E-04

0.150 5000 0.062851 0.0647 0.972 0.984 0.957 1.011 2.08E-05 0.06281 0.06289 3.30E-04

0.175 5000 0.063082 0.0647 0.976 0.988 0.961 1.015 2.11E-05 0.06304 0.06312 3.34E-04

0.200 5000 0.063343 0.0647 0.980 0.992 0.965 1.019 2.11E-05 0.06330 0.06338 3.32E-04

0.225 5000 0.063591 0.0647 0.984 0.996 0.969 1.023 2.11E-05 0.06355 0.06363 3.32E-04

0.250 5000 0.063883 0.0647 0.988 1.000 0.973 1.028 2.14E-05 0.06384 0.06393 3.35E-04

0.275 5000 0.064143 0.0647 0.992 1.004 0.977 1.032 2.14E-05 0.06410 0.06418 3.34E-04

0.300 5000 0.064370 0.0647 0.996 1.008 0.981 1.037 2.15E-05 0.06433 0.06441 3.35E-04

0.325 5000 0.064690 0.0647 1.001 1.013 0.985 1.041 2.17E-05 0.06465 0.06473 3.35E-04

0.350 5000 0.064920 0.0647 1.004 1.016 0.989 1.044 2.18E-05 0.06488 0.06496 3.36E-04

0.375 5000 0.065129 0.0647 1.007 1.020 0.992 1.048 2.16E-05 0.06509 0.06517 3.32E-04

0.400 5000 0.065284 0.0647 1.010 1.022 0.995 1.051 2.21E-05 0.06524 0.06533 3.38E-04

0.425 5000 0.065469 0.0647 1.013 1.025 0.997 1.053 2.17E-05 0.06543 0.06551 3.31E-04

0.450 5000 0.065561 0.0647 1.014 1.026 0.999 1.055 2.19E-05 0.06552 0.06560 3.34E-04

0.475 5000 0.065605 0.0647 1.015 1.027 1.000 1.056 2.17E-05 0.06556 0.06565 3.31E-04

0.500 5000 0.065625 0.0647 1.015 1.028 1.000 1.056 2.18E-05 0.06558 0.06567 3.32E-04

0.525 5000 0.065597 0.0647 1.015 1.027 1.000 1.056 2.25E-05 0.06555 0.06564 3.42E-04

0.550 5000 0.065522 0.0647 1.013 1.026 0.999 1.055 2.17E-05 0.06548 0.06556 3.31E-04

0.575 5000 0.065497 0.0647 1.013 1.025 0.997 1.053 2.19E-05 0.06545 0.06554 3.35E-04

0.600 5000 0.065314 0.0647 1.010 1.022 0.995 1.051 2.23E-05 0.06527 0.06536 3.41E-04

0.625 5000 0.065144 0.0647 1.008 1.020 0.992 1.048 2.18E-05 0.06510 0.06519 3.35E-04

0.650 5000 0.064897 0.0647 1.004 1.016 0.989 1.044 2.20E-05 0.06485 0.06494 3.39E-04

0.675 5000 0.064678 0.0647 1.000 1.013 0.985 1.041 2.17E-05 0.06464 0.06472 3.36E-04

0.700 5000 0.064436 0.0647 0.997 1.008 0.981 1.037 2.13E-05 0.06439 0.06448 3.30E-04

0.725 5000 0.064149 0.0647 0.992 1.004 0.977 1.032 2.15E-05 0.06411 0.06419 3.36E-04

0.750 5000 0.063882 0.0647 0.988 1.000 0.973 1.028 2.12E-05 0.06384 0.06392 3.32E-04

0.775 5000 0.063605 0.0647 0.984 0.996 0.969 1.023 2.16E-05 0.06356 0.06365 3.39E-04

0.800 5000 0.063313 0.0647 0.979 0.992 0.965 1.019 2.10E-05 0.06327 0.06335 3.32E-04

0.825 5000 0.063053 0.0647 0.975 0.988 0.961 1.015 2.08E-05 0.06301 0.06309 3.30E-04

0.850 5000 0.062886 0.0647 0.973 0.984 0.957 1.011 2.09E-05 0.06285 0.06293 3.32E-04

0.875 5000 0.062639 0.0647 0.969 0.981 0.954 1.008 2.05E-05 0.06260 0.06268 3.27E-04

0.900 5000 0.062504 0.0647 0.967 0.978 0.952 1.005 2.07E-05 0.06246 0.06254 3.30E-04

0.925 5000 0.062342 0.0647 0.964 0.976 0.950 1.003 2.10E-05 0.06230 0.06238 3.36E-04

0.950 5000 0.062243 0.0647 0.963 0.974 0.948 1.001 2.05E-05 0.06220 0.06228 3.29E-04

0.975 5000 0.062175 0.0647 0.962 0.973 0.947 1.000 2.02E-05 0.06214 0.06221 3.25E-04
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Table A.35: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the (H2)t/M/1 model as a

function of y based on 5, 000 replications: γ = 0.0025, b = 400, ρ = 0.99, λ̄ = 0.99, µ = 1, β =

0.01, θ∗ = 0.00676

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.064912 0.0670 0.968 0.973 0.947 1.000 1.88E-05 0.06488 0.06495 2.90E-04

0.025 5000 0.064916 0.0670 0.968 0.974 0.948 1.000 1.86E-05 0.06488 0.06495 2.86E-04

0.050 5000 0.064997 0.0670 0.970 0.975 0.949 1.001 1.86E-05 0.06496 0.06503 2.87E-04

0.075 5000 0.065107 0.0670 0.971 0.976 0.950 1.003 1.86E-05 0.06507 0.06514 2.86E-04

0.100 5000 0.065259 0.0670 0.973 0.978 0.952 1.005 1.86E-05 0.06522 0.06529 2.85E-04

0.125 5000 0.065414 0.0670 0.976 0.981 0.955 1.008 1.85E-05 0.06538 0.06545 2.83E-04

0.150 5000 0.065616 0.0670 0.979 0.984 0.958 1.011 1.88E-05 0.06558 0.06565 2.86E-04

0.175 5000 0.065908 0.0670 0.983 0.988 0.961 1.015 1.88E-05 0.06587 0.06594 2.85E-04

0.200 5000 0.066145 0.0670 0.987 0.992 0.965 1.019 1.89E-05 0.06611 0.06618 2.86E-04

0.225 5000 0.066400 0.0670 0.990 0.996 0.969 1.023 1.91E-05 0.06636 0.06644 2.88E-04

0.250 5000 0.066691 0.0670 0.995 1.000 0.973 1.027 1.89E-05 0.06665 0.06673 2.83E-04

0.275 5000 0.067005 0.0670 0.999 1.004 0.977 1.032 1.93E-05 0.06697 0.06704 2.88E-04

0.300 5000 0.067244 0.0670 1.003 1.008 0.981 1.036 1.91E-05 0.06721 0.06728 2.84E-04

0.325 5000 0.067532 0.0670 1.007 1.012 0.985 1.040 1.94E-05 0.06749 0.06757 2.87E-04

0.350 5000 0.067757 0.0670 1.011 1.016 0.989 1.044 1.93E-05 0.06772 0.06780 2.86E-04

0.375 5000 0.067990 0.0670 1.014 1.019 0.992 1.047 1.95E-05 0.06795 0.06803 2.86E-04

0.400 5000 0.068184 0.0670 1.017 1.022 0.995 1.050 1.93E-05 0.06815 0.06822 2.84E-04

0.425 5000 0.068312 0.0670 1.019 1.024 0.997 1.052 1.96E-05 0.06827 0.06835 2.86E-04

0.450 5000 0.068399 0.0670 1.020 1.026 0.999 1.054 1.95E-05 0.06836 0.06844 2.86E-04

0.475 5000 0.068526 0.0670 1.022 1.027 1.000 1.055 1.96E-05 0.06849 0.06856 2.86E-04

0.500 5000 0.068541 0.0670 1.022 1.027 1.000 1.056 1.96E-05 0.06850 0.06858 2.86E-04

0.525 5000 0.068500 0.0670 1.022 1.027 1.000 1.055 1.96E-05 0.06846 0.06854 2.86E-04

0.550 5000 0.068422 0.0670 1.021 1.026 0.999 1.054 1.95E-05 0.06838 0.06846 2.85E-04

0.575 5000 0.068339 0.0670 1.019 1.024 0.997 1.052 1.94E-05 0.06830 0.06838 2.84E-04

0.600 5000 0.068154 0.0670 1.017 1.022 0.995 1.050 1.95E-05 0.06812 0.06819 2.86E-04

0.625 5000 0.068002 0.0670 1.014 1.019 0.992 1.047 1.95E-05 0.06796 0.06804 2.87E-04

0.650 5000 0.067769 0.0670 1.011 1.016 0.989 1.044 1.93E-05 0.06773 0.06781 2.85E-04

0.675 5000 0.067519 0.0670 1.007 1.012 0.985 1.040 1.91E-05 0.06748 0.06756 2.83E-04

0.700 5000 0.067221 0.0670 1.003 1.008 0.981 1.036 1.94E-05 0.06718 0.06726 2.88E-04

0.725 5000 0.066975 0.0670 0.999 1.004 0.977 1.032 1.92E-05 0.06694 0.06701 2.86E-04

0.750 5000 0.066729 0.0670 0.995 1.000 0.973 1.027 1.92E-05 0.06669 0.06677 2.88E-04

0.775 5000 0.066409 0.0670 0.991 0.996 0.969 1.023 1.89E-05 0.06637 0.06645 2.84E-04

0.800 5000 0.066165 0.0670 0.987 0.992 0.965 1.019 1.86E-05 0.06613 0.06620 2.81E-04

0.825 5000 0.065873 0.0670 0.983 0.988 0.961 1.015 1.89E-05 0.06584 0.06591 2.87E-04

0.850 5000 0.065640 0.0670 0.979 0.984 0.958 1.011 1.87E-05 0.06560 0.06568 2.85E-04

0.875 5000 0.065434 0.0670 0.976 0.981 0.955 1.008 1.85E-05 0.06540 0.06547 2.83E-04

0.900 5000 0.065241 0.0670 0.973 0.978 0.952 1.005 1.85E-05 0.06521 0.06528 2.83E-04

0.925 5000 0.065099 0.0670 0.971 0.976 0.950 1.003 1.86E-05 0.06506 0.06514 2.85E-04

0.950 5000 0.064994 0.0670 0.969 0.975 0.949 1.001 1.87E-05 0.06496 0.06503 2.87E-04

0.975 5000 0.064916 0.0670 0.968 0.974 0.948 1.000 1.84E-05 0.06488 0.06495 2.84E-04
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Table A.36: Comparison of ratio P (Wy > b)/ρ in the (H2)t/M/1 queue as a function of ρ with

base parameter (β, γ, b) = (1, 25, 4) using the scaling in (3.39) of the main thesis.

position ρ = 0.8 ρ = 0.9 ρ = 0.95 ρ = 0.98 ρ = 0.99

0.000 0.99885 0.99642 0.98833 0.98093 0.97804

0.025 0.99648 0.99938 0.98828 0.98099 0.97809

0.050 1.00011 0.99832 0.98936 0.98209 0.97932

0.075 1.00585 1.00064 0.99226 0.98332 0.98096

0.100 1.00635 1.00316 0.99283 0.98532 0.98325

0.125 1.01416 1.00532 0.99712 0.98840 0.98560

0.150 1.01717 1.00772 0.99975 0.99195 0.98864

0.175 1.01831 1.01505 1.00374 0.99561 0.99304

0.200 1.02699 1.02045 1.00798 0.99972 0.99660

0.225 1.03546 1.02326 1.01207 1.00363 1.00044

0.250 1.03895 1.02906 1.01676 1.00825 1.00483

0.275 1.04831 1.03335 1.02211 1.01234 1.00956

0.300 1.05001 1.03720 1.02614 1.01593 1.01317

0.325 1.05613 1.04294 1.02952 1.02099 1.01750

0.350 1.05483 1.04767 1.03452 1.02461 1.02090

0.375 1.06350 1.05019 1.03727 1.02791 1.02441

0.400 1.06624 1.05333 1.03995 1.03035 1.02733

0.425 1.06871 1.05493 1.04330 1.03327 1.02927

0.450 1.06943 1.05766 1.04453 1.03473 1.03056

0.475 1.06759 1.06136 1.04585 1.03542 1.03248

0.500 1.07590 1.06174 1.04589 1.03574 1.03270

0.525 1.06565 1.05938 1.04578 1.03530 1.03209

0.550 1.06860 1.06238 1.04491 1.03412 1.03092

0.575 1.06446 1.05693 1.04366 1.03372 1.02966

0.600 1.06795 1.05356 1.04041 1.03083 1.02688

0.625 1.05916 1.05001 1.03815 1.02815 1.02458

0.650 1.05741 1.04661 1.03355 1.02425 1.02107

0.675 1.05293 1.04298 1.03105 1.02080 1.01731

0.700 1.04973 1.03660 1.02633 1.01698 1.01282

0.725 1.04343 1.03342 1.02154 1.01245 1.00912

0.750 1.04025 1.02989 1.01792 1.00823 1.00540

0.775 1.03420 1.02157 1.01150 1.00387 1.00059

0.800 1.02393 1.01814 1.00845 0.99925 0.99691

0.825 1.01977 1.01437 1.00398 0.99515 0.99251

0.850 1.01453 1.01032 0.99913 0.99251 0.98901

0.875 1.01105 1.00830 0.99581 0.98861 0.98590

0.900 1.00724 1.00491 0.99396 0.98648 0.98299

0.925 1.00420 0.99879 0.99113 0.98393 0.98085

0.950 1.00273 0.99595 0.99061 0.98237 0.97926

0.975 1.00342 0.99743 0.98932 0.98129 0.97809

avg diff w.r.t. last column 0.03168 0.02345 0.01205 0.00318 0.00000

avg. abs. diff w.r.t. last column 0.03168 0.02345 0.01205 0.00318 0.00000

rmse w.r.t. last column 0.03234 0.02369 0.01213 0.00322 0.00000
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Table A.37: Summary of simulation results for the (H2)t/M/1 queue at y = 0 as a function of

1− ρ with base parameter (β, γ, b) = (1, 25, 4) using the scaling in (3.39) of the main thesis.

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01 1− ρ = 0.005

θ∗ 0.113 0.0548 0.0270 0.0134 0.00669 0.00334

n 5000 5000 5000 5000 5000 5000

p̂ 0.051165 0.059299 0.063514 0.065607 0.066689 0.067212

e−θ
∗b 0.0593 0.0645 0.0670 0.0682 0.0689 0.0692

Ay 0.862 0.920 0.948 0.961 0.968 0.972

Ay approxi 0.861 0.919 0.947 0.960 0.967 0.970

Ay LB 0.837 0.895 0.922 0.935 0.942 0.945

Ay UB 0.885 0.945 0.973 0.987 0.993 0.997

s.e. 8.57E-05 5.04E-05 2.97E-05 2.15E-05 1.89E-05 1.82E-05

95% CI (lb) 0.05100 0.05920 0.06346 0.06557 0.06665 0.06718

(ub) 0.05133 0.05940 0.06357 0.06565 0.06673 0.06725

r.e. 0.001675 0.000849 0.000467 0.000327 0.000284 0.000271

P (Wy > b)/P (W > b)

ratio 0.97418 0.97338 0.97468 0.97445 0.97493 0.97491

diff w.r.t. last column 0.00074 0.00153 0.00023 0.00046 -0.00002 0.00000

abs diff w.r.t. last column 0.00074 0.00153 0.00023 0.00046 0.00002 0.00000

Ay/ρ

ratio 1.02676 0.99988 0.98758 0.98100 0.97819 0.97652

diff w.r.t. last column -0.05024 -0.02336 -0.01106 -0.00448 -0.00167 0.00000

abs diff w.r.t. last column 0.05024 0.02336 0.01106 0.00448 0.00167 0.00000
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Table A.38: Summary of simulation results for the (H2)t/M/1 queue at y = 0 and y = 0.5 as a

function of 1 − ρ with base parameter (β, γ, b) = (1, 2.5, 4) using the scaling in (3.39) of the main

thesis.

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01

theta∗ 0.113 0.0548 0.0270 0.0134 0.00669

n 40000 40000 40000 40000 40000

y = 0

p̂ 0.041099 0.047976 0.051467 0.053499 0.054240

e−θ
∗b 0.0593 0.0645 0.0670 0.0682 0.0689

Ay 0.693 0.744 0.768 0.784 0.788

Ay approxi 0.669 0.718 0.743 0.754 0.760

Ay LB 0.504 0.546 0.567 0.577 0.582

Ay UB 0.887 0.945 0.973 0.987 0.993

s.e. 4.62E-05 4.68E-05 4.82E-05 1.72E-04 4.96E-05

95% CI (lb) 0.04101 0.04788 0.05137 0.05316 0.05414

(ub) 0.04119 0.04807 0.05156 0.05384 0.05434

r.e. 0.001125 0.000975 0.000936 0.003208 0.000914

P (Wy > b)/P (W > b)

ratio 0.78064 0.78762 0.78945 0.79463 0.79294

diff 0.01230 0.00532 0.00349 -0.00169 0.00000

abs diff 0.01230 0.00532 0.00349 0.00169 0.00000

Ay/ρ

ratio 0.82476 0.80897 0.80027 0.79995 0.79559

diff -0.02916 -0.01337 -0.00467 -0.00436 0.00000

abs diff 0.02916 0.01337 0.00467 0.00436 0.00000

y = 0.5

p̂ 0.075260 0.086414 0.092196 0.095157 0.096491

e−θ
∗b 0.0593 0.0645 0.0670 0.0682 0.0689

Ay 1.269 1.341 1.376 1.394 1.401

Ay approxi 1.177 1.243 1.275 1.290 1.298

Ay LB 0.887 0.945 0.973 0.987 0.993

Ay UB 1.561 1.635 1.671 1.688 1.696

s.e. 8.03E-05 7.92E-05 8.02E-05 1.83E-04 8.25E-05

95% CI (lb) 0.07510 0.08626 0.09204 0.09480 0.09633

(ub) 0.07542 0.08657 0.09235 0.09552 0.09665

r.e. 0.001067 0.000916 0.000870 0.001921 0.000855

P (Wy > b)/P (W > b)

ratio 1.42950 1.41863 1.41419 1.41339 1.41060

diff -0.01891 -0.00803 -0.00360 -0.00279 0.00000

abs diff 0.01891 0.00803 0.00360 0.00279 0.00000

Ay/ρ

ratio 1.51029 1.45708 1.43357 1.42285 1.41532

diff -0.09497 -0.04176 -0.01825 -0.00753 0.00000

abs diff 0.09497 0.04176 0.01825 0.00753 0.00000
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A.3.4 Tail Probabilities for the Mt/H2/1 Periodic Queue

Tables A.39-A.49 present results for the Mt/H2/1 model paralleling the results for the Mt/M/1

model in Tables A.18-A.28 and the results for the (H2)t/M/1 model in Tables A.29-A.38.
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Table A.39: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 1, b = 20, ρ = 0.8, λ̄ = 0.8, µ = 1, β = 0.2, θ∗ = 0.124

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.061043 0.0839 0.728 0.976 0.952 1.000 2.46E-04 0.06056 0.06153 0.00403

0.025 5000 0.060935 0.0839 0.726 0.976 0.952 1.000 2.50E-04 0.06045 0.06142 0.00410

0.050 5000 0.060934 0.0839 0.726 0.977 0.953 1.001 2.47E-04 0.06045 0.06142 0.00406

0.075 5000 0.060531 0.0839 0.721 0.978 0.954 1.003 2.53E-04 0.06004 0.06103 0.00417

0.100 5000 0.061014 0.0839 0.727 0.980 0.956 1.005 2.50E-04 0.06052 0.06150 0.00410

0.125 5000 0.061186 0.0839 0.729 0.983 0.959 1.007 2.50E-04 0.06070 0.06168 0.00409

0.150 5000 0.061205 0.0839 0.729 0.986 0.961 1.010 2.56E-04 0.06070 0.06171 0.00418

0.175 5000 0.061299 0.0839 0.731 0.989 0.965 1.014 2.59E-04 0.06079 0.06181 0.00422

0.200 5000 0.062072 0.0839 0.740 0.992 0.968 1.017 2.50E-04 0.06158 0.06256 0.00402

0.225 5000 0.062331 0.0839 0.743 0.996 0.972 1.021 2.52E-04 0.06184 0.06283 0.00404

0.250 5000 0.062644 0.0839 0.747 1.000 0.976 1.025 2.50E-04 0.06215 0.06313 0.00399

0.275 5000 0.062369 0.0839 0.743 1.004 0.979 1.029 2.59E-04 0.06186 0.06288 0.00415

0.300 5000 0.063145 0.0839 0.753 1.008 0.983 1.033 2.57E-04 0.06264 0.06365 0.00407

0.325 5000 0.063175 0.0839 0.753 1.011 0.987 1.037 2.61E-04 0.06266 0.06369 0.00413

0.350 5000 0.063013 0.0839 0.751 1.015 0.990 1.040 2.61E-04 0.06250 0.06352 0.00414

0.375 5000 0.063367 0.0839 0.755 1.018 0.993 1.043 2.63E-04 0.06285 0.06388 0.00414

0.400 5000 0.063504 0.0839 0.757 1.020 0.995 1.046 2.64E-04 0.06299 0.06402 0.00415

0.425 5000 0.063472 0.0839 0.756 1.022 0.997 1.048 2.66E-04 0.06295 0.06399 0.00419

0.450 5000 0.063690 0.0839 0.759 1.024 0.999 1.050 2.65E-04 0.06317 0.06421 0.00415

0.475 5000 0.063951 0.0839 0.762 1.025 1.000 1.050 2.59E-04 0.06344 0.06446 0.00404

0.500 5000 0.063853 0.0839 0.761 1.025 1.000 1.051 2.65E-04 0.06333 0.06437 0.00415

0.525 5000 0.064030 0.0839 0.763 1.025 1.000 1.050 2.59E-04 0.06352 0.06454 0.00404

0.550 5000 0.063536 0.0839 0.757 1.024 0.999 1.050 2.63E-04 0.06302 0.06405 0.00415

0.575 5000 0.063183 0.0839 0.753 1.022 0.997 1.048 2.65E-04 0.06266 0.06370 0.00419

0.600 5000 0.063351 0.0839 0.755 1.020 0.995 1.046 2.68E-04 0.06283 0.06388 0.00423

0.625 5000 0.062683 0.0839 0.747 1.018 0.993 1.043 2.64E-04 0.06216 0.06320 0.00422

0.650 5000 0.063185 0.0839 0.753 1.015 0.990 1.040 2.57E-04 0.06268 0.06369 0.00407

0.675 5000 0.063070 0.0839 0.752 1.011 0.987 1.037 2.61E-04 0.06256 0.06358 0.00414

0.700 5000 0.062820 0.0839 0.749 1.008 0.983 1.033 2.59E-04 0.06231 0.06333 0.00412

0.725 5000 0.062393 0.0839 0.744 1.004 0.979 1.029 2.55E-04 0.06189 0.06289 0.00409

0.750 5000 0.062807 0.0839 0.749 1.000 0.976 1.025 2.52E-04 0.06231 0.06330 0.00401

0.775 5000 0.061698 0.0839 0.735 0.996 0.972 1.021 2.58E-04 0.06119 0.06220 0.00418

0.800 5000 0.061308 0.0839 0.731 0.992 0.968 1.017 2.57E-04 0.06080 0.06181 0.00419

0.825 5000 0.061566 0.0839 0.734 0.989 0.965 1.014 2.56E-04 0.06106 0.06207 0.00416

0.850 5000 0.060905 0.0839 0.726 0.986 0.961 1.010 2.57E-04 0.06040 0.06141 0.00423

0.875 5000 0.061046 0.0839 0.728 0.983 0.959 1.007 2.52E-04 0.06055 0.06154 0.00412

0.900 5000 0.060828 0.0839 0.725 0.980 0.956 1.005 2.51E-04 0.06034 0.06132 0.00412

0.925 5000 0.060998 0.0839 0.727 0.978 0.954 1.003 2.48E-04 0.06051 0.06148 0.00407

0.950 5000 0.060592 0.0839 0.722 0.977 0.953 1.001 2.51E-04 0.06010 0.06108 0.00414

0.975 5000 0.061300 0.0839 0.731 0.976 0.952 1.000 2.50E-04 0.06081 0.06179 0.00407
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Table A.40: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 0.25, b = 40, ρ = 0.9, λ̄ = 0.9, µ = 1, β = 0.1, θ∗ =

0.0644

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.064535 0.0762 0.847 0.975 0.950 1.000 1.34E-04 0.06427 0.06480 0.00208

0.025 5000 0.064520 0.0762 0.847 0.975 0.950 1.000 1.32E-04 0.06426 0.06478 0.00204

0.050 5000 0.064459 0.0762 0.846 0.976 0.951 1.001 1.35E-04 0.06419 0.06472 0.00210

0.075 5000 0.064732 0.0762 0.850 0.977 0.952 1.003 1.35E-04 0.06447 0.06500 0.00208

0.100 5000 0.064849 0.0762 0.851 0.979 0.954 1.005 1.35E-04 0.06458 0.06511 0.00209

0.125 5000 0.064980 0.0762 0.853 0.982 0.957 1.008 1.39E-04 0.06471 0.06525 0.00214

0.150 5000 0.065339 0.0762 0.858 0.985 0.960 1.011 1.35E-04 0.06507 0.06560 0.00207

0.175 5000 0.065442 0.0762 0.859 0.988 0.963 1.014 1.37E-04 0.06517 0.06571 0.00210

0.200 5000 0.065886 0.0762 0.865 0.992 0.967 1.018 1.34E-04 0.06562 0.06615 0.00203

0.225 5000 0.065748 0.0762 0.863 0.996 0.971 1.022 1.39E-04 0.06548 0.06602 0.00212

0.250 5000 0.066450 0.0762 0.873 1.000 0.975 1.026 1.38E-04 0.06618 0.06672 0.00207

0.275 5000 0.066500 0.0762 0.873 1.004 0.979 1.030 1.40E-04 0.06622 0.06677 0.00211

0.300 5000 0.066845 0.0762 0.878 1.008 0.982 1.034 1.40E-04 0.06657 0.06712 0.00210

0.325 5000 0.066998 0.0762 0.880 1.012 0.986 1.038 1.37E-04 0.06673 0.06727 0.00205

0.350 5000 0.067298 0.0762 0.884 1.015 0.989 1.042 1.40E-04 0.06702 0.06757 0.00208

0.375 5000 0.067413 0.0762 0.885 1.018 0.992 1.045 1.40E-04 0.06714 0.06769 0.00207

0.400 5000 0.067933 0.0762 0.892 1.021 0.995 1.048 1.37E-04 0.06766 0.06820 0.00201

0.425 5000 0.067857 0.0762 0.891 1.023 0.997 1.050 1.40E-04 0.06758 0.06813 0.00207

0.450 5000 0.067828 0.0762 0.891 1.025 0.999 1.052 1.39E-04 0.06756 0.06810 0.00205

0.475 5000 0.067711 0.0762 0.889 1.026 1.000 1.053 1.43E-04 0.06743 0.06799 0.00211

0.500 5000 0.068304 0.0762 0.897 1.026 1.000 1.053 1.38E-04 0.06803 0.06857 0.00202

0.525 5000 0.068189 0.0762 0.895 1.026 1.000 1.053 1.39E-04 0.06792 0.06846 0.00204

0.550 5000 0.067899 0.0762 0.892 1.025 0.999 1.052 1.39E-04 0.06763 0.06817 0.00205

0.575 5000 0.067971 0.0762 0.892 1.023 0.997 1.050 1.42E-04 0.06769 0.06825 0.00209

0.600 5000 0.067537 0.0762 0.887 1.021 0.995 1.048 1.43E-04 0.06726 0.06782 0.00212

0.625 5000 0.067407 0.0762 0.885 1.018 0.992 1.045 1.39E-04 0.06713 0.06768 0.00207

0.650 5000 0.067242 0.0762 0.883 1.015 0.989 1.042 1.38E-04 0.06697 0.06751 0.00205

0.675 5000 0.067221 0.0762 0.883 1.012 0.986 1.038 1.37E-04 0.06695 0.06749 0.00203

0.700 5000 0.066949 0.0762 0.879 1.008 0.982 1.034 1.38E-04 0.06668 0.06722 0.00206

0.725 5000 0.066561 0.0762 0.874 1.004 0.979 1.030 1.40E-04 0.06629 0.06684 0.00210

0.750 5000 0.066419 0.0762 0.872 1.000 0.975 1.026 1.38E-04 0.06615 0.06669 0.00207

0.775 5000 0.065957 0.0762 0.866 0.996 0.971 1.022 1.39E-04 0.06569 0.06623 0.00210

0.800 5000 0.065570 0.0762 0.861 0.992 0.967 1.018 1.36E-04 0.06530 0.06584 0.00208

0.825 5000 0.065372 0.0762 0.858 0.988 0.963 1.014 1.38E-04 0.06510 0.06564 0.00211

0.850 5000 0.065319 0.0762 0.858 0.985 0.960 1.011 1.35E-04 0.06505 0.06558 0.00207

0.875 5000 0.065107 0.0762 0.855 0.982 0.957 1.008 1.34E-04 0.06484 0.06537 0.00206

0.900 5000 0.064955 0.0762 0.853 0.979 0.954 1.005 1.35E-04 0.06469 0.06522 0.00208

0.925 5000 0.064617 0.0762 0.848 0.977 0.952 1.003 1.36E-04 0.06435 0.06488 0.00211

0.950 5000 0.064682 0.0762 0.849 0.976 0.951 1.001 1.34E-04 0.06442 0.06495 0.00208

0.975 5000 0.064639 0.0762 0.849 0.975 0.950 1.000 1.35E-04 0.06437 0.06490 0.00209
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Table A.41: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 1
16 , b = 80, ρ = 0.95, λ̄ = 0.95, µ = 1, β = 0.05, θ∗ =

0.0328

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.066280 0.0727 0.912 0.974 0.949 1.000 7.09E-05 0.06614 0.06642 0.00107

0.025 5000 0.066204 0.0727 0.911 0.974 0.949 1.000 7.10E-05 0.06607 0.06634 0.00107

0.050 5000 0.066377 0.0727 0.913 0.975 0.950 1.001 7.10E-05 0.06624 0.06652 0.00107

0.075 5000 0.066435 0.0727 0.914 0.977 0.952 1.003 6.96E-05 0.06630 0.06657 0.00105

0.100 5000 0.066556 0.0727 0.916 0.979 0.954 1.005 7.14E-05 0.06642 0.06670 0.00107

0.125 5000 0.066726 0.0727 0.918 0.982 0.956 1.008 7.11E-05 0.06659 0.06687 0.00106

0.150 5000 0.067002 0.0727 0.922 0.985 0.959 1.011 7.22E-05 0.06686 0.06714 0.00108

0.175 5000 0.067169 0.0727 0.924 0.988 0.963 1.014 7.11E-05 0.06703 0.06731 0.00106

0.200 5000 0.067501 0.0727 0.929 0.992 0.966 1.018 7.24E-05 0.06736 0.06764 0.00107

0.225 5000 0.067670 0.0727 0.931 0.996 0.970 1.022 7.21E-05 0.06753 0.06781 0.00107

0.250 5000 0.068039 0.0727 0.936 1.000 0.974 1.027 7.11E-05 0.06790 0.06818 0.00105

0.275 5000 0.068288 0.0727 0.939 1.004 0.978 1.031 7.34E-05 0.06814 0.06843 0.00107

0.300 5000 0.068467 0.0727 0.942 1.008 0.982 1.035 7.39E-05 0.06832 0.06861 0.00108

0.325 5000 0.068874 0.0727 0.947 1.012 0.986 1.039 7.23E-05 0.06873 0.06902 0.00105

0.350 5000 0.069024 0.0727 0.950 1.016 0.989 1.043 7.61E-05 0.06888 0.06917 0.00110

0.375 5000 0.069298 0.0727 0.953 1.019 0.992 1.046 7.50E-05 0.06915 0.06945 0.00108

0.400 5000 0.069309 0.0727 0.953 1.021 0.995 1.049 7.57E-05 0.06916 0.06946 0.00109

0.425 5000 0.069602 0.0727 0.957 1.024 0.997 1.051 7.45E-05 0.06946 0.06975 0.00107

0.450 5000 0.069535 0.0727 0.957 1.025 0.999 1.052 7.69E-05 0.06938 0.06969 0.00111

0.475 5000 0.069728 0.0727 0.959 1.026 1.000 1.053 7.48E-05 0.06958 0.06987 0.00107

0.500 5000 0.069779 0.0727 0.960 1.027 1.000 1.054 7.44E-05 0.06963 0.06992 0.00107

0.525 5000 0.069683 0.0727 0.959 1.026 1.000 1.053 7.60E-05 0.06953 0.06983 0.00109

0.550 5000 0.069647 0.0727 0.958 1.025 0.999 1.052 7.77E-05 0.06950 0.06980 0.00112

0.575 5000 0.069576 0.0727 0.957 1.024 0.997 1.051 7.56E-05 0.06943 0.06972 0.00109

0.600 5000 0.069369 0.0727 0.954 1.021 0.995 1.049 7.52E-05 0.06922 0.06952 0.00108

0.625 5000 0.069258 0.0727 0.953 1.019 0.992 1.046 7.44E-05 0.06911 0.06940 0.00107

0.650 5000 0.069145 0.0727 0.951 1.016 0.989 1.043 7.24E-05 0.06900 0.06929 0.00105

0.675 5000 0.068683 0.0727 0.945 1.012 0.986 1.039 7.49E-05 0.06854 0.06883 0.00109

0.700 5000 0.068628 0.0727 0.944 1.008 0.982 1.035 7.22E-05 0.06849 0.06877 0.00105

0.725 5000 0.068246 0.0727 0.939 1.004 0.978 1.031 7.47E-05 0.06810 0.06839 0.00109

0.750 5000 0.067919 0.0727 0.934 1.000 0.974 1.027 7.29E-05 0.06778 0.06806 0.00107

0.775 5000 0.067731 0.0727 0.932 0.996 0.970 1.022 7.39E-05 0.06759 0.06788 0.00109

0.800 5000 0.067406 0.0727 0.927 0.992 0.966 1.018 7.36E-05 0.06726 0.06755 0.00109

0.825 5000 0.067147 0.0727 0.924 0.988 0.963 1.014 7.26E-05 0.06700 0.06729 0.00108

0.850 5000 0.066820 0.0727 0.919 0.985 0.959 1.011 7.29E-05 0.06668 0.06696 0.00109

0.875 5000 0.066765 0.0727 0.918 0.982 0.956 1.008 7.14E-05 0.06662 0.06690 0.00107

0.900 5000 0.066668 0.0727 0.917 0.979 0.954 1.005 7.14E-05 0.06653 0.06681 0.00107

0.925 5000 0.066418 0.0727 0.914 0.977 0.952 1.003 7.21E-05 0.06628 0.06656 0.00109

0.950 5000 0.066375 0.0727 0.913 0.975 0.950 1.001 7.11E-05 0.06624 0.06651 0.00107

0.975 5000 0.066309 0.0727 0.912 0.974 0.949 1.000 7.06E-05 0.06617 0.06645 0.00106
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Table A.42: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 0.64, b = 25, ρ = 0.84, λ̄ = 0.84, µ = 1, β = 0.16, θ∗ =

0.101

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.062304 0.0807 0.772 0.771 0.752 0.791 2.07E-04 0.06190 0.06271 0.00332

0.025 5000 0.062294 0.0807 0.772 0.771 0.752 0.791 2.07E-04 0.06189 0.06270 0.00333

0.050 5000 0.062341 0.0807 0.773 0.772 0.753 0.792 2.08E-04 0.06193 0.06275 0.00333

0.075 5000 0.062355 0.0807 0.773 0.773 0.754 0.793 2.08E-04 0.06195 0.06276 0.00333

0.100 5000 0.062523 0.0807 0.775 0.775 0.756 0.795 2.08E-04 0.06212 0.06293 0.00333

0.125 5000 0.062689 0.0807 0.777 0.777 0.758 0.797 2.08E-04 0.06228 0.06310 0.00332

0.150 5000 0.062893 0.0807 0.780 0.779 0.760 0.799 2.09E-04 0.06248 0.06330 0.00332

0.175 5000 0.063137 0.0807 0.783 0.782 0.762 0.802 2.09E-04 0.06273 0.06355 0.00332

0.200 5000 0.063326 0.0807 0.785 0.785 0.765 0.805 2.10E-04 0.06291 0.06374 0.00332

0.225 5000 0.063531 0.0807 0.788 0.788 0.768 0.808 2.11E-04 0.06312 0.06394 0.00332

0.250 5000 0.063743 0.0807 0.790 0.791 0.771 0.811 2.12E-04 0.06333 0.06416 0.00333

0.275 5000 0.063997 0.0807 0.793 0.794 0.774 0.814 2.13E-04 0.06358 0.06441 0.00333

0.300 5000 0.064233 0.0807 0.796 0.797 0.777 0.817 2.14E-04 0.06381 0.06465 0.00333

0.325 5000 0.064497 0.0807 0.800 0.800 0.780 0.820 2.14E-04 0.06408 0.06492 0.00332

0.350 5000 0.064751 0.0807 0.803 0.803 0.783 0.823 2.14E-04 0.06433 0.06517 0.00331

0.375 5000 0.064921 0.0807 0.805 0.805 0.785 0.826 2.15E-04 0.06450 0.06534 0.00331

0.400 5000 0.065042 0.0807 0.806 0.807 0.787 0.828 2.16E-04 0.06462 0.06546 0.00332

0.425 5000 0.065179 0.0807 0.808 0.809 0.789 0.829 2.16E-04 0.06476 0.06560 0.00331

0.450 5000 0.065249 0.0807 0.809 0.810 0.790 0.831 2.16E-04 0.06482 0.06567 0.00332

0.475 5000 0.065345 0.0807 0.810 0.811 0.791 0.831 2.17E-04 0.06492 0.06577 0.00332

0.500 5000 0.065349 0.0807 0.810 0.811 0.791 0.832 2.17E-04 0.06492 0.06577 0.00332

0.525 5000 0.065313 0.0807 0.810 0.811 0.791 0.831 2.17E-04 0.06489 0.06574 0.00333

0.550 5000 0.065244 0.0807 0.809 0.810 0.790 0.831 2.17E-04 0.06482 0.06567 0.00333

0.575 5000 0.065193 0.0807 0.808 0.809 0.789 0.829 2.17E-04 0.06477 0.06562 0.00332

0.600 5000 0.065069 0.0807 0.807 0.807 0.787 0.828 2.16E-04 0.06465 0.06549 0.00332

0.625 5000 0.064912 0.0807 0.805 0.805 0.785 0.826 2.16E-04 0.06449 0.06534 0.00333

0.650 5000 0.064713 0.0807 0.802 0.803 0.783 0.823 2.16E-04 0.06429 0.06514 0.00333

0.675 5000 0.064523 0.0807 0.800 0.800 0.780 0.820 2.15E-04 0.06410 0.06494 0.00333

0.700 5000 0.064290 0.0807 0.797 0.797 0.777 0.817 2.14E-04 0.06387 0.06471 0.00333

0.725 5000 0.064135 0.0807 0.795 0.794 0.774 0.814 2.13E-04 0.06372 0.06455 0.00332

0.750 5000 0.063932 0.0807 0.792 0.791 0.771 0.811 2.12E-04 0.06352 0.06435 0.00332

0.775 5000 0.063708 0.0807 0.790 0.788 0.768 0.808 2.11E-04 0.06330 0.06412 0.00331

0.800 5000 0.063435 0.0807 0.786 0.785 0.765 0.805 2.10E-04 0.06302 0.06385 0.00331

0.825 5000 0.063174 0.0807 0.783 0.782 0.762 0.802 2.09E-04 0.06276 0.06358 0.00331

0.850 5000 0.062899 0.0807 0.780 0.779 0.760 0.799 2.09E-04 0.06249 0.06331 0.00332

0.875 5000 0.062675 0.0807 0.777 0.777 0.758 0.797 2.08E-04 0.06227 0.06308 0.00332

0.900 5000 0.062508 0.0807 0.775 0.775 0.756 0.795 2.08E-04 0.06210 0.06292 0.00333

0.925 5000 0.062427 0.0807 0.774 0.773 0.754 0.793 2.08E-04 0.06202 0.06283 0.00332

0.950 5000 0.062330 0.0807 0.773 0.772 0.753 0.792 2.07E-04 0.06192 0.06274 0.00333

0.975 5000 0.062298 0.0807 0.772 0.771 0.752 0.791 2.07E-04 0.06189 0.06270 0.00332
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Table A.43: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 0.16, b = 50, ρ = 0.92, λ̄ = 0.92, µ = 1, β = 0.08, θ∗ =

0.0519

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.065304 0.0747 0.874 0.873 0.851 0.896 1.07E-04 0.06509 0.06551 0.00164

0.025 5000 0.065295 0.0747 0.874 0.873 0.851 0.896 1.07E-04 0.06508 0.06551 0.00165

0.050 5000 0.065349 0.0747 0.874 0.874 0.852 0.897 1.08E-04 0.06514 0.06556 0.00165

0.075 5000 0.065448 0.0747 0.876 0.875 0.853 0.898 1.08E-04 0.06524 0.06566 0.00165

0.100 5000 0.065563 0.0747 0.877 0.877 0.855 0.900 1.08E-04 0.06535 0.06577 0.00164

0.125 5000 0.065746 0.0747 0.880 0.880 0.857 0.903 1.08E-04 0.06553 0.06596 0.00164

0.150 5000 0.065973 0.0747 0.883 0.882 0.860 0.905 1.08E-04 0.06576 0.06618 0.00163

0.175 5000 0.066185 0.0747 0.886 0.885 0.863 0.909 1.08E-04 0.06597 0.06640 0.00164

0.200 5000 0.066471 0.0747 0.889 0.889 0.866 0.912 1.09E-04 0.06626 0.06668 0.00164

0.225 5000 0.066755 0.0747 0.893 0.892 0.869 0.916 1.09E-04 0.06654 0.06697 0.00163

0.250 5000 0.067060 0.0747 0.897 0.896 0.873 0.919 1.09E-04 0.06685 0.06727 0.00163

0.275 5000 0.067334 0.0747 0.901 0.899 0.876 0.923 1.10E-04 0.06712 0.06755 0.00163

0.300 5000 0.067595 0.0747 0.904 0.903 0.880 0.927 1.11E-04 0.06738 0.06781 0.00164

0.325 5000 0.067848 0.0747 0.908 0.906 0.883 0.930 1.11E-04 0.06763 0.06807 0.00164

0.350 5000 0.068096 0.0747 0.911 0.910 0.886 0.934 1.11E-04 0.06788 0.06831 0.00163

0.375 5000 0.068321 0.0747 0.914 0.912 0.889 0.936 1.11E-04 0.06810 0.06854 0.00163

0.400 5000 0.068484 0.0747 0.916 0.915 0.891 0.939 1.12E-04 0.06826 0.06870 0.00163

0.425 5000 0.068620 0.0747 0.918 0.917 0.893 0.941 1.12E-04 0.06840 0.06884 0.00163

0.450 5000 0.068664 0.0747 0.919 0.918 0.895 0.942 1.12E-04 0.06844 0.06888 0.00164

0.475 5000 0.068750 0.0747 0.920 0.919 0.896 0.943 1.12E-04 0.06853 0.06897 0.00164

0.500 5000 0.068803 0.0747 0.921 0.919 0.896 0.944 1.12E-04 0.06858 0.06902 0.00163

0.525 5000 0.068795 0.0747 0.920 0.919 0.896 0.943 1.12E-04 0.06858 0.06901 0.00163

0.550 5000 0.068749 0.0747 0.920 0.918 0.895 0.942 1.12E-04 0.06853 0.06897 0.00163

0.575 5000 0.068648 0.0747 0.918 0.917 0.893 0.941 1.12E-04 0.06843 0.06887 0.00163

0.600 5000 0.068517 0.0747 0.917 0.915 0.891 0.939 1.12E-04 0.06830 0.06874 0.00163

0.625 5000 0.068336 0.0747 0.914 0.912 0.889 0.936 1.11E-04 0.06812 0.06855 0.00163

0.650 5000 0.068135 0.0747 0.912 0.910 0.886 0.934 1.11E-04 0.06792 0.06835 0.00163

0.675 5000 0.067861 0.0747 0.908 0.906 0.883 0.930 1.11E-04 0.06764 0.06808 0.00163

0.700 5000 0.067609 0.0747 0.905 0.903 0.880 0.927 1.10E-04 0.06739 0.06783 0.00163

0.725 5000 0.067362 0.0747 0.901 0.899 0.876 0.923 1.10E-04 0.06715 0.06758 0.00163

0.750 5000 0.067105 0.0747 0.898 0.896 0.873 0.919 1.10E-04 0.06689 0.06732 0.00163

0.775 5000 0.066853 0.0747 0.894 0.892 0.869 0.916 1.09E-04 0.06664 0.06707 0.00163

0.800 5000 0.066597 0.0747 0.891 0.889 0.866 0.912 1.09E-04 0.06638 0.06681 0.00163

0.825 5000 0.066355 0.0747 0.888 0.885 0.863 0.909 1.08E-04 0.06614 0.06657 0.00163

0.850 5000 0.066106 0.0747 0.884 0.882 0.860 0.905 1.08E-04 0.06589 0.06632 0.00164

0.875 5000 0.065883 0.0747 0.881 0.880 0.857 0.903 1.08E-04 0.06567 0.06609 0.00164

0.900 5000 0.065680 0.0747 0.879 0.877 0.855 0.900 1.08E-04 0.06547 0.06589 0.00164

0.925 5000 0.065529 0.0747 0.877 0.875 0.853 0.898 1.07E-04 0.06532 0.06574 0.00164

0.950 5000 0.065427 0.0747 0.875 0.874 0.852 0.897 1.07E-04 0.06522 0.06564 0.00164

0.975 5000 0.065332 0.0747 0.874 0.873 0.851 0.896 1.07E-04 0.06512 0.06554 0.00164
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Table A.44: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 0.04, b = 100, ρ = 0.96, λ̄ = 0.96, µ = 1, β =

0.04, θ∗ = 0.0263

position n p̂ exp(−θ∗b) Ay Ay approx Ay LB Ay UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.066528 0.0720 0.924 0.923 0.899 0.947 5.86E-05 0.06641 0.06664 8.80E-04

0.025 5000 0.066579 0.0720 0.924 0.923 0.899 0.947 5.86E-05 0.06646 0.06669 8.79E-04

0.050 5000 0.066657 0.0720 0.925 0.924 0.900 0.948 5.86E-05 0.06654 0.06677 8.79E-04

0.075 5000 0.066735 0.0720 0.926 0.925 0.901 0.950 5.91E-05 0.06662 0.06685 8.86E-04

0.100 5000 0.066889 0.0720 0.929 0.927 0.903 0.952 5.90E-05 0.06677 0.06700 8.82E-04

0.125 5000 0.067072 0.0720 0.931 0.930 0.906 0.954 5.89E-05 0.06696 0.06719 8.79E-04

0.150 5000 0.067302 0.0720 0.934 0.933 0.908 0.957 5.89E-05 0.06719 0.06742 8.76E-04

0.175 5000 0.067528 0.0720 0.937 0.936 0.912 0.961 5.88E-05 0.06741 0.06764 8.71E-04

0.200 5000 0.067773 0.0720 0.941 0.939 0.915 0.964 5.92E-05 0.06766 0.06789 8.73E-04

0.225 5000 0.068063 0.0720 0.945 0.943 0.919 0.968 5.96E-05 0.06795 0.06818 8.76E-04

0.250 5000 0.068348 0.0720 0.949 0.947 0.923 0.972 5.97E-05 0.06823 0.06846 8.73E-04

0.275 5000 0.068644 0.0720 0.953 0.951 0.926 0.976 5.97E-05 0.06853 0.06876 8.70E-04

0.300 5000 0.068937 0.0720 0.957 0.955 0.930 0.980 6.00E-05 0.06882 0.06906 8.70E-04

0.325 5000 0.069186 0.0720 0.960 0.958 0.934 0.984 6.02E-05 0.06907 0.06930 8.70E-04

0.350 5000 0.069408 0.0720 0.964 0.962 0.937 0.988 6.04E-05 0.06929 0.06953 8.70E-04

0.375 5000 0.069613 0.0720 0.966 0.965 0.940 0.991 6.06E-05 0.06949 0.06973 8.71E-04

0.400 5000 0.069791 0.0720 0.969 0.967 0.942 0.993 6.11E-05 0.06967 0.06991 8.75E-04

0.425 5000 0.069939 0.0720 0.971 0.970 0.944 0.995 6.15E-05 0.06982 0.07006 8.79E-04

0.450 5000 0.070041 0.0720 0.972 0.971 0.946 0.997 6.17E-05 0.06992 0.07016 8.80E-04

0.475 5000 0.070110 0.0720 0.973 0.972 0.947 0.998 6.18E-05 0.06999 0.07023 8.82E-04

0.500 5000 0.070128 0.0720 0.974 0.972 0.947 0.998 6.20E-05 0.07001 0.07025 8.85E-04

0.525 5000 0.070100 0.0720 0.973 0.972 0.947 0.998 6.19E-05 0.06998 0.07022 8.82E-04

0.550 5000 0.070048 0.0720 0.972 0.971 0.946 0.997 6.19E-05 0.06993 0.07017 8.84E-04

0.575 5000 0.069921 0.0720 0.971 0.970 0.944 0.995 6.19E-05 0.06980 0.07004 8.86E-04

0.600 5000 0.069775 0.0720 0.969 0.967 0.942 0.993 6.19E-05 0.06965 0.06990 8.87E-04

0.625 5000 0.069596 0.0720 0.966 0.965 0.940 0.991 6.14E-05 0.06948 0.06972 8.82E-04

0.650 5000 0.069396 0.0720 0.963 0.962 0.937 0.988 6.11E-05 0.06928 0.06952 8.81E-04

0.675 5000 0.069136 0.0720 0.960 0.958 0.934 0.984 6.09E-05 0.06902 0.06926 8.80E-04

0.700 5000 0.068862 0.0720 0.956 0.955 0.930 0.980 6.05E-05 0.06874 0.06898 8.78E-04

0.725 5000 0.068604 0.0720 0.952 0.951 0.926 0.976 5.98E-05 0.06849 0.06872 8.72E-04

0.750 5000 0.068341 0.0720 0.949 0.947 0.923 0.972 5.98E-05 0.06822 0.06846 8.75E-04

0.775 5000 0.068085 0.0720 0.945 0.943 0.919 0.968 5.95E-05 0.06797 0.06820 8.74E-04

0.800 5000 0.067825 0.0720 0.942 0.939 0.915 0.964 5.95E-05 0.06771 0.06794 8.78E-04

0.825 5000 0.067534 0.0720 0.938 0.936 0.912 0.961 5.94E-05 0.06742 0.06765 8.80E-04

0.850 5000 0.067285 0.0720 0.934 0.933 0.908 0.957 5.89E-05 0.06717 0.06740 8.75E-04

0.875 5000 0.067081 0.0720 0.931 0.930 0.906 0.954 5.89E-05 0.06697 0.06720 8.78E-04

0.900 5000 0.066872 0.0720 0.928 0.927 0.903 0.952 5.89E-05 0.06676 0.06699 8.81E-04

0.925 5000 0.066735 0.0720 0.926 0.925 0.901 0.950 5.86E-05 0.06662 0.06685 8.78E-04

0.950 5000 0.066627 0.0720 0.925 0.924 0.900 0.948 5.85E-05 0.06651 0.06674 8.78E-04

0.975 5000 0.066558 0.0720 0.924 0.923 0.899 0.947 5.88E-05 0.06644 0.06667 8.84E-04
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Table A.45: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 0.01, b = 200, ρ = 0.98, λ̄ = 0.98, µ = 1, β =

0.02, θ∗ = 0.0132

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.067202 0.0707 0.950 0.974 0.948 1.000 3.33E-05 0.06714 0.06727 4.95E-04

0.025 5000 0.067195 0.0707 0.950 0.974 0.949 1.000 3.30E-05 0.06713 0.06726 4.91E-04

0.050 5000 0.067252 0.0707 0.951 0.975 0.950 1.001 3.35E-05 0.06719 0.06732 4.98E-04

0.075 5000 0.067346 0.0707 0.952 0.977 0.951 1.003 3.39E-05 0.06728 0.06741 5.04E-04

0.100 5000 0.067486 0.0707 0.954 0.979 0.953 1.005 3.39E-05 0.06742 0.06755 5.02E-04

0.125 5000 0.067691 0.0707 0.957 0.981 0.956 1.008 3.41E-05 0.06762 0.06776 5.04E-04

0.150 5000 0.067868 0.0707 0.959 0.985 0.959 1.011 3.40E-05 0.06780 0.06794 5.01E-04

0.175 5000 0.068178 0.0707 0.964 0.988 0.962 1.015 3.35E-05 0.06811 0.06824 4.92E-04

0.200 5000 0.068420 0.0707 0.967 0.992 0.966 1.018 3.40E-05 0.06835 0.06849 4.96E-04

0.225 5000 0.068639 0.0707 0.970 0.996 0.970 1.023 3.46E-05 0.06857 0.06871 5.04E-04

0.250 5000 0.068940 0.0707 0.975 1.000 0.974 1.027 3.42E-05 0.06887 0.06901 4.96E-04

0.275 5000 0.069295 0.0707 0.980 1.004 0.978 1.031 3.42E-05 0.06923 0.06936 4.94E-04

0.300 5000 0.069531 0.0707 0.983 1.008 0.982 1.035 3.45E-05 0.06946 0.06960 4.97E-04

0.325 5000 0.069780 0.0707 0.986 1.012 0.986 1.039 3.48E-05 0.06971 0.06985 4.99E-04

0.350 5000 0.069954 0.0707 0.989 1.016 0.989 1.043 3.57E-05 0.06988 0.07002 5.10E-04

0.375 5000 0.070282 0.0707 0.994 1.019 0.992 1.046 3.38E-05 0.07022 0.07035 4.81E-04

0.400 5000 0.070463 0.0707 0.996 1.022 0.995 1.049 3.51E-05 0.07039 0.07053 4.98E-04

0.425 5000 0.070639 0.0707 0.999 1.024 0.997 1.051 3.44E-05 0.07057 0.07071 4.87E-04

0.450 5000 0.070742 0.0707 1.000 1.026 0.999 1.053 3.43E-05 0.07068 0.07081 4.85E-04

0.475 5000 0.070811 0.0707 1.001 1.027 1.000 1.054 3.48E-05 0.07074 0.07088 4.91E-04

0.500 5000 0.070867 0.0707 1.002 1.027 1.000 1.054 3.46E-05 0.07080 0.07093 4.88E-04

0.525 5000 0.070781 0.0707 1.001 1.027 1.000 1.054 3.54E-05 0.07071 0.07085 5.00E-04

0.550 5000 0.070717 0.0707 1.000 1.026 0.999 1.053 3.55E-05 0.07065 0.07079 5.02E-04

0.575 5000 0.070637 0.0707 0.999 1.024 0.997 1.051 3.60E-05 0.07057 0.07071 5.09E-04

0.600 5000 0.070510 0.0707 0.997 1.022 0.995 1.049 3.47E-05 0.07044 0.07058 4.92E-04

0.625 5000 0.070218 0.0707 0.993 1.019 0.992 1.046 3.51E-05 0.07015 0.07029 5.00E-04

0.650 5000 0.070101 0.0707 0.991 1.016 0.989 1.043 3.44E-05 0.07003 0.07017 4.90E-04

0.675 5000 0.069818 0.0707 0.987 1.012 0.986 1.039 3.40E-05 0.06975 0.06988 4.87E-04

0.700 5000 0.069552 0.0707 0.983 1.008 0.982 1.035 3.40E-05 0.06949 0.06962 4.89E-04

0.725 5000 0.069181 0.0707 0.978 1.004 0.978 1.031 3.47E-05 0.06911 0.06925 5.02E-04

0.750 5000 0.068975 0.0707 0.975 1.000 0.974 1.027 3.45E-05 0.06891 0.06904 5.00E-04

0.775 5000 0.068746 0.0707 0.972 0.996 0.970 1.023 3.38E-05 0.06868 0.06881 4.92E-04

0.800 5000 0.068349 0.0707 0.966 0.992 0.966 1.018 3.44E-05 0.06828 0.06842 5.03E-04

0.825 5000 0.068149 0.0707 0.963 0.988 0.962 1.015 3.31E-05 0.06808 0.06821 4.86E-04

0.850 5000 0.067861 0.0707 0.959 0.985 0.959 1.011 3.41E-05 0.06779 0.06793 5.02E-04

0.875 5000 0.067708 0.0707 0.957 0.981 0.956 1.008 3.37E-05 0.06764 0.06777 4.98E-04

0.900 5000 0.067490 0.0707 0.954 0.979 0.953 1.005 3.31E-05 0.06742 0.06755 4.91E-04

0.925 5000 0.067377 0.0707 0.952 0.977 0.951 1.003 3.38E-05 0.06731 0.06744 5.02E-04

0.950 5000 0.067222 0.0707 0.950 0.975 0.950 1.001 3.39E-05 0.06716 0.06729 5.04E-04

0.975 5000 0.067210 0.0707 0.950 0.974 0.949 1.000 3.31E-05 0.06715 0.06727 4.92E-04
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Table A.46: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye
−θ∗b in the Mt/H2/1 model as a

function of y based on 5, 000 replications: γ = 0.0025, b = 400, ρ = 0.99, λ̄ = 0.99, µ = 1, β =

0.01, θ∗ = 0.00664

position n p̂ exp(−θ∗b) Ay Ay/A approx Ay/A LB Ay/A UB s.e. 95% CI (lb) (ub) r.e.

0.000 5000 0.067433 0.0701 0.962 0.974 0.948 1.000 2.31E-05 0.06739 0.06748 3.43E-04

0.025 5000 0.067502 0.0701 0.963 0.974 0.949 1.000 2.24E-05 0.06746 0.06755 3.32E-04

0.050 5000 0.067568 0.0701 0.964 0.975 0.949 1.001 2.27E-05 0.06752 0.06761 3.36E-04

0.075 5000 0.067632 0.0701 0.965 0.977 0.951 1.003 2.31E-05 0.06759 0.06768 3.42E-04

0.100 5000 0.067785 0.0701 0.967 0.979 0.953 1.005 2.30E-05 0.06774 0.06783 3.39E-04

0.125 5000 0.068011 0.0701 0.970 0.981 0.956 1.008 2.27E-05 0.06797 0.06806 3.34E-04

0.150 5000 0.068171 0.0701 0.972 0.984 0.959 1.011 2.32E-05 0.06813 0.06822 3.41E-04

0.175 5000 0.068453 0.0701 0.976 0.988 0.962 1.015 2.32E-05 0.06841 0.06850 3.39E-04

0.200 5000 0.068726 0.0701 0.980 0.992 0.966 1.019 2.33E-05 0.06868 0.06877 3.40E-04

0.225 5000 0.069005 0.0701 0.984 0.996 0.970 1.023 2.32E-05 0.06896 0.06905 3.37E-04

0.250 5000 0.069337 0.0701 0.989 1.000 0.974 1.027 2.31E-05 0.06929 0.06938 3.33E-04

0.275 5000 0.069615 0.0701 0.993 1.004 0.978 1.031 2.35E-05 0.06957 0.06966 3.37E-04

0.300 5000 0.069855 0.0701 0.996 1.008 0.982 1.035 2.36E-05 0.06981 0.06990 3.38E-04

0.325 5000 0.070150 0.0701 1.001 1.012 0.986 1.039 2.34E-05 0.07010 0.07020 3.34E-04

0.350 5000 0.070378 0.0701 1.004 1.016 0.989 1.043 2.38E-05 0.07033 0.07043 3.39E-04

0.375 5000 0.070605 0.0701 1.007 1.019 0.992 1.046 2.40E-05 0.07056 0.07065 3.40E-04

0.400 5000 0.070764 0.0701 1.009 1.022 0.995 1.049 2.39E-05 0.07072 0.07081 3.38E-04

0.425 5000 0.070956 0.0701 1.012 1.024 0.997 1.052 2.33E-05 0.07091 0.07100 3.29E-04

0.450 5000 0.071038 0.0701 1.013 1.026 0.999 1.053 2.38E-05 0.07099 0.07108 3.36E-04

0.475 5000 0.071140 0.0701 1.015 1.027 1.000 1.054 2.39E-05 0.07109 0.07119 3.36E-04

0.500 5000 0.071167 0.0701 1.015 1.027 1.000 1.055 2.43E-05 0.07112 0.07121 3.41E-04

0.525 5000 0.071103 0.0701 1.014 1.027 1.000 1.054 2.43E-05 0.07106 0.07115 3.42E-04

0.550 5000 0.071106 0.0701 1.014 1.026 0.999 1.053 2.42E-05 0.07106 0.07115 3.40E-04

0.575 5000 0.070928 0.0701 1.012 1.024 0.997 1.052 2.39E-05 0.07088 0.07097 3.38E-04

0.600 5000 0.070775 0.0701 1.010 1.022 0.995 1.049 2.44E-05 0.07073 0.07082 3.45E-04

0.625 5000 0.070609 0.0701 1.007 1.019 0.992 1.046 2.36E-05 0.07056 0.07066 3.34E-04

0.650 5000 0.070368 0.0701 1.004 1.016 0.989 1.043 2.37E-05 0.07032 0.07041 3.36E-04

0.675 5000 0.070112 0.0701 1.000 1.012 0.986 1.039 2.39E-05 0.07007 0.07016 3.41E-04

0.700 5000 0.069854 0.0701 0.996 1.008 0.982 1.035 2.36E-05 0.06981 0.06990 3.38E-04

0.725 5000 0.069574 0.0701 0.992 1.004 0.978 1.031 2.32E-05 0.06953 0.06962 3.33E-04

0.750 5000 0.069314 0.0701 0.989 1.000 0.974 1.027 2.34E-05 0.06927 0.06936 3.37E-04

0.775 5000 0.069002 0.0701 0.984 0.996 0.970 1.023 2.32E-05 0.06896 0.06905 3.36E-04

0.800 5000 0.068719 0.0701 0.980 0.992 0.966 1.019 2.31E-05 0.06867 0.06876 3.36E-04

0.825 5000 0.068468 0.0701 0.977 0.988 0.962 1.015 2.29E-05 0.06842 0.06851 3.35E-04

0.850 5000 0.068245 0.0701 0.973 0.984 0.959 1.011 2.32E-05 0.06820 0.06829 3.40E-04

0.875 5000 0.067991 0.0701 0.970 0.981 0.956 1.008 2.28E-05 0.06795 0.06804 3.35E-04

0.900 5000 0.067803 0.0701 0.967 0.979 0.953 1.005 2.33E-05 0.06776 0.06785 3.43E-04

0.925 5000 0.067694 0.0701 0.966 0.977 0.951 1.003 2.22E-05 0.06765 0.06774 3.27E-04

0.950 5000 0.067575 0.0701 0.964 0.975 0.949 1.001 2.23E-05 0.06753 0.06762 3.30E-04

0.975 5000 0.067501 0.0701 0.963 0.974 0.949 1.000 2.33E-05 0.06746 0.06755 3.45E-04
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Table A.47: Comparison of ratio P (Wy > b)/ρ as a function of ρ in Mt/H2/1 queue with base

parameter (β, γ, b) = (1, 25, 4) using the scaling in (3.39) of the main thesis.

position ρ = 0.8 ρ = 0.9 ρ = 0.95 ρ = 0.98 ρ = 0.99

0.000 0.90943 0.94152 0.95975 0.96940 0.97159

0.025 0.90782 0.94131 0.95866 0.96930 0.97258

0.050 0.90781 0.94042 0.96116 0.97012 0.97353

0.075 0.90180 0.94440 0.96200 0.97147 0.97445

0.100 0.90900 0.94611 0.96375 0.97349 0.97667

0.125 0.91156 0.94802 0.96621 0.97645 0.97992

0.150 0.91184 0.95325 0.97021 0.97901 0.98223

0.175 0.91325 0.95476 0.97262 0.98348 0.98629

0.200 0.92476 0.96123 0.97744 0.98696 0.99022

0.225 0.92863 0.95922 0.97988 0.99013 0.99423

0.250 0.93328 0.96945 0.98522 0.99447 0.99903

0.275 0.92918 0.97018 0.98883 0.99960 1.00303

0.300 0.94075 0.97523 0.99142 1.00300 1.00649

0.325 0.94119 0.97746 0.99731 1.00659 1.01073

0.350 0.93878 0.98184 0.99949 1.00910 1.01403

0.375 0.94405 0.98350 1.00346 1.01383 1.01730

0.400 0.94610 0.99109 1.00361 1.01644 1.01958

0.425 0.94562 0.98998 1.00786 1.01898 1.02235

0.450 0.94886 0.98957 1.00688 1.02047 1.02353

0.475 0.95275 0.98786 1.00967 1.02146 1.02500

0.500 0.95129 0.99651 1.01042 1.02227 1.02538

0.525 0.95393 0.99483 1.00902 1.02103 1.02447

0.550 0.94658 0.99060 1.00851 1.02011 1.02451

0.575 0.94131 0.99165 1.00748 1.01895 1.02194

0.600 0.94382 0.98532 1.00448 1.01711 1.01974

0.625 0.93386 0.98342 1.00288 1.01291 1.01735

0.650 0.94133 0.98102 1.00125 1.01122 1.01388

0.675 0.93963 0.98072 0.99455 1.00713 1.01019

0.700 0.93590 0.97674 0.99375 1.00330 1.00647

0.725 0.92954 0.97109 0.98823 0.99795 1.00244

0.750 0.93571 0.96901 0.98348 0.99497 0.99869

0.775 0.91919 0.96227 0.98076 0.99167 0.99420

0.800 0.91338 0.95662 0.97606 0.98594 0.99012

0.825 0.91722 0.95373 0.97230 0.98306 0.98650

0.850 0.90737 0.95296 0.96758 0.97891 0.98328

0.875 0.90948 0.94987 0.96677 0.97670 0.97963

0.900 0.90623 0.94765 0.96537 0.97355 0.97691

0.925 0.90875 0.94272 0.96176 0.97193 0.97535

0.950 0.90272 0.94366 0.96113 0.96969 0.97363

0.975 0.91325 0.94305 0.96017 0.96952 0.97257

avg diff w.r.t. last column -0.07108 -0.03151 -0.01397 -0.00346 0.00000

avg. abs. diff w.r.t. last column 0.07108 0.03151 0.01397 0.00346 0.00000

rmse w.r.t. last column 0.07126 0.03157 0.01402 0.00351 0.00000
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Table A.48: Summary of simulation results for Mt/H2/1 queue at y = 0 as a function of 1 − ρ

with base parameter (β, γ, b) = (1, 25, 4) using the scaling in (3.39) of the main thesis

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01 1− ρ = 0.005

θ∗ 0.101 0.0519 0.0263 0.0132 0.00664 0.00333

n 5000 5000 5000 5000 5000 5000

p̂ 0.061910 0.065213 0.066492 0.067148 0.067429 0.067641

e−θ
∗b 0.0807 0.0747 0.0720 0.0707 0.0701 0.0698

Ay 0.767 0.873 0.923 0.949 0.962 0.969

Ay approxi 0.766 0.873 0.921 0.948 0.961 0.967

Ay LB 0.747 0.851 0.897 0.923 0.936 0.942

Ay UB 0.786 0.896 0.945 0.973 0.987 0.993

s.e. 2.06E-04 1.09E-04 5.88E-05 3.28E-05 2.27E-05 1.92E-05

95% CI (lb) 0.06151 0.06500 0.06638 0.06708 0.06738 0.06760

(ub) 0.06231 0.06543 0.06661 0.06721 0.06747 0.06768

r.e. 0.003327 0.001665 0.000885 0.000489 0.000337 0.000283

P (Wy > b)/P (W > b)

ratio 0.97659 0.97396 0.97632 0.97526 0.97480 0.97562

diff w.r.t. last column -0.00097 0.00166 -0.00070 0.00036 0.00082 0.00000

abs diff w.r.t. last column 0.00097 0.00166 0.00070 0.00036 0.00082 0.00000

Ay/ρ

ratio 0.91361 0.94838 0.96155 0.96861 0.97153 0.97403

diff w.r.t. last column 0.06042 0.02564 0.01248 0.00541 0.00250 0.00000

abs diff w.r.t. last column 0.06042 0.02564 0.01248 0.00541 0.00250 0.00000
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Table A.49: Summary of simulation results for Mt/H2/1 queue at y = 0 and y = 0.5 as a function

of 1− ρ with base parameter (β, γ, b) = (1, 25, 4) using the scaling in (3.39) of the main thesis

1− ρ = 0.16 1− ρ = 0.08 1− ρ = 0.04 1− ρ = 0.02 1− ρ = 0.01

θ∗ 0.101 0.0519 0.0263 0.0132 0.00664

n 40000 40000 40000 40000 40000

y = 0

p̂ 0.050594 0.052946 0.054024 0.054544 0.054904

e−θ
∗b 0.0807 0.0747 0.0720 0.0707 0.0701

Ay 0.627 0.708 0.750 0.771 0.783

Ay approxi 0.613 0.690 0.728 0.747 0.756

Ay LB 0.477 0.532 0.560 0.573 0.580

Ay UB 0.789 0.894 0.947 0.974 0.987

s.e. 7.49E-05 5.64E-05 5.13E-05 5.03E-05 5.01E-05

95% CI (lb) 0.05045 0.05284 0.05392 0.05445 0.05481

(ub) 0.05074 0.05306 0.05412 0.05464 0.05500

r.e. 0.001480 0.001065 0.000950 0.000923 0.000913

P (Wy > b)/P (W > b)

ratio 0.79534 0.79246 0.79200 0.79200 0.79377

diff w.r.t. last column -0.00158 0.00131 0.00177 0.00177 0.00000

abs diff 0.00158 0.00131 0.00177 0.00177 0.00000

Ay/ρ

ratio 0.74662 0.76999 0.78125 0.78680 0.79107

diff w.r.t. last column 0.04445 0.02108 0.00982 0.00427 0.00000

abs diff 0.04445 0.02108 0.00982 0.00427 0.00000

y = 0.5

p̂ 0.086646 0.092721 0.095707 0.096711 0.097186

e−θ
∗b 0.0807 0.0747 0.0720 0.0707 0.0701

Ay 1.074 1.241 1.329 1.367 1.386

Ay approxi 1.014 1.159 1.232 1.269 1.287

Ay LB 0.789 0.894 0.947 0.974 0.987

Ay UB 1.305 1.502 1.603 1.654 1.679

s.e. 1.25E-04 9.42E-05 8.49E-05 8.28E-05 8.28E-05

95% CI (lb) 0.08640 0.09254 0.09554 0.09655 0.09702

(ub) 0.08689 0.09291 0.09587 0.09687 0.09735

r.e. 0.001442 0.001016 0.000887 0.000856 0.000852

P (Wy > b)/P (W > b)

ratio 1.36208 1.38777 1.40307 1.40428 1.40505

diff w.r.t. last column 0.04297 0.01728 0.00198 0.00077 0.00000

abs diff 0.04297 0.01728 0.00198 0.00077 0.00000

Ay/ρ

ratio 1.27865 1.34842 1.38403 1.39507 1.40028

diff w.r.t. last column 0.12163 0.05186 0.01625 0.00521 0.00000

abs diff 0.12163 0.05186 0.01625 0.00521 0.00000
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A.3.5 Estimates of the Mean and Standard Deviation

In §A.3.5 we report additional results on experiments to estimate the mean E[Wy] and standard

deviation SD[Wy] using §3.4.5 of the main thesis. Tables A.50-A.52 report results for the Mt/M/1

model, while Tables A.53 and A.54 report results for the (H2)t/M/1 and Mt/H2/1 models, respec-

tively. The parameters ns and δ are the parameters for the discrete sum approximations of the

integrals; ns is the number of terms after truncation and δ is the time increment.

Table A.50: Estimated mean and standard deviation of the steady-state waiting time in M/M/1

queue as a function of 1− ρ: µ = 1, λ̄ = ρ

1− ρ 0.16 0.08 0.04 0.02 0.01

n 40,000 40,000 40,000 40,000 40,000

δ 0.001 0.001 0.001 0.001 0.001

b 41 86 173 345 691

P (Wy > 0) 0.8396 0.9201 0.9601 0.9799 0.9900

s.e. of P (Wy > 0) 6.86E-04 3.71E-04 1.93E-04 9.73E-05 4.98E-05

%95 CI of P (Wy > 0) [0.8383, 0.8410] [0.9194, 0.9209] [0.9598, 0.9605] [0.9797, 0.9801] [0.9899, 0.9901]

E[Wy ] 5.249 11.499 23.999 49.000 99.000

s.e. of E[Wy ] 1.59E-03 1.27E-03 9.51E-04 6.93E-04 4.94E-04

%95 CI of E[Wy ] [5.246, 5.252] [11.497, 11.502] [23.997, 24.001] [48.999, 49.001] [98.999, 99.001]

E[Wy |Wy > 0] 6.251 12.497 24.995 50.003 100.005

%95 CI of E[Wy |Wy > 0] [6.238, 6.265] [12.485, 12.510] [24.983, 25.007] [49.992, 50.014] [99.994, 100.015]

E[W 2
y ] 65.624 287.494 1199.982 4899.957 19800.030

s.e. of E[W 2
y ] 1.50E-02 2.33E-02 3.40E-02 4.92E-02 7.04E-02

%95 CI of E[W 2
y ] [65.595, 65.654] [287.449, 287.540] [1199.916, 1200.049] [4899.860, 4900.053] [19799.892, 19800.168]

SD[Wy ] 6.170 12.460 24.981 49.990 99.995

P (Wy > 0)/ρ 0.9995 1.0002 1.0001 0.9999 1.0000

(1− ρ)E[Wy ] 0.8398 0.9200 0.9600 0.9800 0.9900

(1− ρ)SD[Wy ] 0.9873 0.9968 0.9992 0.9998 0.9999

(1− ρ)E[Wy ]/ρ 0.9998 0.9999 0.9999 1.0000 1.0000

(1− ρ)SD[Wy ]/ρ 0.8293 0.9171 0.9593 0.9798 0.9899

(1− ρ)E[Wy |Wy > 0] 1.0002 0.9998 0.9998 1.0001 1.0000

(1− ρ)SD[Wy |Wy > 0] 1.0002 1.0000 1.0000 1.0000 1.0000
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Table A.51: Estimated mean E[Wy] and standard deviation SD[Wy] as a function of 1 − ρ for

five cases of the Mt/M/1 queue at y = 0.0 and y = 0.5: µ = 1, λ̄ = ρ, base parameter pair

(β, γ) = (1, 2.5) using the scaling in (3.39). n = 40, 000 and δ = 0.001 for all ρ’s.

1− ρ 0.16 0.08 0.04 0.02 0.01

b 41 86 173 345 691

y = 0

P (Wy > 0) 0.8028 0.9013 0.9507 0.9751 0.9874

s.e. of P (Wy > 0) 8.22E-04 5.22E-04 3.36E-04 2.23E-04 1.61E-04

%95 CI of P (Wy > 0) [0.8012, 0.8044] [0.9003, 0.9024] [0.9501, 0.9514] [0.9747, 0.9755] [0.9870, 0.9877]

E[Wy ] 4.249 9.416 19.714 40.309 81.624

std of E[Wy ] 3.07E-03 5.93E-03 1.19E-02 2.38E-02 4.72E-02

%95 CI of E[Wy ] [4.243, 4.255] [9.404, 9.427] [19.691, 19.737] [40.262, 40.355] [81.531, 81.716]

E[Wy |Wy > 0] 5.293 10.446 20.736 41.337 82.669

%95 CI of E[Wy |Wy > 0] [5.275, 5.311] [10.422, 10.471] [20.697, 20.775] [41.271, 41.404] [82.549, 82.789]

E[W 2
y ] 48.677 213.860 892.838 3644.475 14740.585

std of E[W 2
y ] 3.50E-02 1.40E-01 5.66E-01 2.279 9.123

%95 CI of E[W 2
y ] [48.608, 48.745] [213.585, 214.135] [891.729, 893.948] [3640.009, 3648.942] [14722.703, 14758.466]

SD[Wy ] 5.534 11.190 22.454 44.941 89.878

P (Wy > 0)/ρ 0.9557 0.9797 0.9903 0.9950 0.9973

(1− ρ)E[Wy ] 0.6798 0.7532 0.7886 0.8062 0.8162

(1− ρ)SD[Wy ] 0.8854 0.8952 0.8982 0.8988 0.8988

(1− ρ)E[Wy ]/ρ 0.8093 0.8187 0.8214 0.8226 0.8245

(1− ρ)SD[Wy ]/ρ 0.7437 0.8236 0.8622 0.8808 0.8898

(1− ρ)E[Wy |Wy > 0] 0.8469 0.8357 0.8294 0.8267 0.8267

(1− ρ)SD[Wy |Wy > 0] 0.9138 0.9056 0.9026 0.9008 0.8997

y = 0.5

P (Wy > 0) 0.8801 0.9411 0.9714 0.9851 0.9930

s.e. of P (Wy > 0) 9.85E-04 6.54E-04 4.51E-04 2.92E-04 2.19E-04

%95 CI of P (Wy > 0) [0.8782, 0.8820] [0.9399, 0.9424] [0.9705, 0.9723] [0.9845, 0.9856] [0.9926, 0.9934]

E[Wy ] 6.839 14.927 31.194 63.667 128.411

std of E[Wy ] 6.42E-03 1.20E-02 2.36E-02 4.69E-02 9.30E-02

%95 CI of E[Wy ] [6.827, 6.852] [14.903, 14.950] [31.147, 31.240] [63.575, 63.759] [128.228, 128.593]

E[Wy |Wy > 0] 7.771 15.860 32.113 64.632 129.315

%95 CI of E[Wy |Wy > 0] [7.740, 7.803] [15.814, 15.907] [32.036, 32.189] [64.501, 64.763] [129.075, 129.554]

E[W 2
y ] 97.057 427.685 1795.344 7344.665 29673.770

std of E[W 2
y ] 7.81E-02 0.302 1.207 4.829 19.314

%95 CI of E[W 2
y ] [96.904, 97.210] [427.092, 428.277] [1792.979, 1797.709] [7335.201, 7354.129] [29635.915, 29711.625]

SD[Wy ] 7.091 14.314 28.676 57.369 114.824

P (Wy > 0)/ρ 1.0478 1.0230 1.0119 1.0052 1.0030

(1− ρ)E[Wy ] 1.0943 1.1941 1.2477 1.2733 1.2841

(1− ρ)SD[Wy ] 1.1345 1.1451 1.1470 1.1474 1.1482

(1− ρ)E[Wy ]/ρ 1.3028 1.2980 1.2997 1.2993 1.2971

(1− ρ)SD[Wy ]/ρ 0.9530 1.0535 1.1011 1.1244 1.1368

(1− ρ)E[Wy |Wy > 0] 1.2434 1.2688 1.2845 1.2926 1.2931

(1− ρ)SD[Wy |Wy > 0] 1.1301 1.1395 1.1433 1.1452 1.1472
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Table A.52: Estimated E[Wy] and SD[Wy] as a function of 1 − ρ for Mt/M/1 queue at y = 0.0

and 0.5: µ = 1, λ̄ = ρ, base parameter pair (β, γ) = (4, 2.5) (with longer cycles than in Table A.51)

using the scaling in (3.39). n = 40, 000 and δ = 0.001 for all ρ’s.

1− ρ 0.16 0.08 0.04 0.02 0.01

b 41 86 173 345 691

y = 0

P (Wy > 0) 0.7346 0.8679 0.9349 0.9665 0.9828

s.e. of P (Wy > 0) 1.28E-03 9.20E-04 6.45E-04 4.75E-04 3.46E-04

%95 CI of P (Wy > 0) [0.7321, 0.7371] [0.8661, 0.8697] [0.9336, 0.9361] [0.9656, 0.9675] [0.9821, 0.9835]

E[Wy ] 3.115 7.091 15.097 31.129 63.073

std of E[Wy ] 5.46E-03 1.10E-02 2.21E-02 4.36E-02 8.71E-02

%95 CI of E[Wy ] [3.104, 3.126] [7.091, 7.134] [15.054, 15.141] [31.043, 31.214] [62.902, 63.243]

E[Wy |Wy > 0] 4.240 8.171 16.149 32.206 64.178

%95 CI E[Wy |Wy > 0] [4.211, 4.269] [8.154, 8.237] [16.081, 16.218] [32.087, 32.326] [63.960, 64.396]

E[W 2
y ] 33.071 147.266 619.769 2547.465 10295.922

std of E[W 2
y ] 5.99E-02 2.50E-01 1.028 4.144 0.733

%95 CI of E[W 2
y ] [32.954, 33.189] [146.775, 147.756] [617.754, 621.784] [2539, 2555] [10263, 10328]

SD[Wy ] 4.834 9.832 19.795 39.730 79.484

P (Wy > 0)/ρ 0.8745 0.9433 0.9738 0.9863 0.9927

(1− ρ)E[Wy ] 0.4984 0.5673 0.6039 0.6226 0.6307

(1− ρ)SD[Wy ] 0.7735 0.7866 0.7918 0.7946 0.7948

(1− ρ)E[Wy ]/ρ 0.5933 0.6166 0.6291 0.6353 0.6371

(1− ρ)SD[Wy ]/ρ 0.6497 0.7237 0.7601 0.7787 0.7869

(1− ρ)E[Wy |Wy > 0] 0.6784 0.6537 0.6460 0.6441 0.6418

(1− ρ)SD[Wy |Wy > 0] 0.8320 0.8116 0.8022 0.7996 0.7973

y = 0.5

P (Wy > 0) 0.9728 0.9883 0.9967 0.9965 0.9993

s.e. of P (Wy > 0) 3.61E-03 2.69E-03 2.05E-03 1.16E-03 8.52E-04

%95 CI of P (Wy > 0) [0.9657, 0.9799] [0.9831, 0.9936] [0.9927, 1.0000] [0.9943, 0.9988] [0.9976, 1.0000]

E[Wy ] 15.148 33.583 70.677 145.183 294.222

std of E[Wy ] 5.58E-02 1.13E-01 2.27E-01 4.59E-01 9.15E-01

%95 CI E[Wy ] [15.039, 15.258] [33.362, 33.805] [70.232, 71.121] [144.284, 146.081] [292.428, 296.016]

E[Wy |Wy > 0] 15.572 33.980 70.909 145.690 294.437

%95 CI of E[Wy |Wy > 0] [15.348, 15.799] [33.576, 34.387] [70.232, 71.643] [144.458, 146.926] [292.428, 296.728]

E[W 2
y ] 331.868 1528.127 6547.951 27092.166 110239.942

std of E[W 2
y ] 1.023 4.263 17.227 69.632 0.785

%95 CI of E[W 2
y ] [329.864, 333.873] [1519.773, 1536.481] [6514.187, 6581.716] [26955, 27228] [109691, 110787]

SD[Wy ] 10.119 20.007 39.405 77.551 153.861

P (Wy > 0)/ρ 1.1581 1.0743 1.0383 1.0169 1.0094

(1− ρ)E[Wy ] 2.4237 2.6867 2.8271 2.9037 2.9422

(1− ρ)SD[Wy ] 1.6190 1.6006 1.5762 1.5510 1.5386

(1− ρ)E[Wy ]/ρ 2.8854 2.9203 2.9449 2.9629 2.9719

(1− ρ)SD[Wy ]/ρ 1.3600 1.4725 1.5132 1.5200 1.5232

(1− ρ)E[Wy |Wy > 0] 2.4915 2.7184 2.8364 2.9138 2.9444

(1− ρ)SD[Wy |Wy > 0] 1.5892 1.5830 1.5704 1.5442 1.5371
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Table A.53: Estimated E[Wy] and SD[Wy] as a function of 1− ρ for (H2)t/M/1 at y = 0.0 and

0.5: µ = 1, λ̄ = ρ, base (β, γ) = (1, 2.5) with scaling in (3.39). n = 40, 000 for all ρ’s.

1− ρ 0.16 0.08 0.04 0.02 0.01

θ∗ 0.113 0.0548 0.0270 0.0134 0.00669

δ 0.001 0.002 0.004 0.008 0.016

b 41 86 173 345 691

y = 0

P (Wy > 0) 0.8617 0.9333 0.9668 0.9837 0.9918

s.e. of P (Wy > 0) 6.16E-04 3.69E-04 2.39E-04 1.50E-04 1.05E-04

%95 CI of P (Wy > 0) [0.8605, 0.8629] [0.9326, 0.9340] [0.9663, 0.9673] [0.9834, 0.9840] [0.9916, 0.9920]

E[Wy ] 6.636 14.715 30.874 63.199 127.735

std of E[Wy ] 3.25E-03 6.41E-03 1.27E-02 2.53E-02 5.05E-02

%95 CI of E[Wy ] [6.629, 6.642] [14.703, 14.728] [30.849, 30.899] [63.149, 63.248] [127.636, 127.834]

E[Wy |Wy > 0] 7.701 15.767 31.934 64.246 128.786

%95 CI of E[Wy |Wy > 0] [7.683, 7.719] [15.742, 15.793] [31.893, 31.976] [64.176, 64.315] [128.659, 128.912]

E[W 2
y ] 110.805 504.944 2148.048 8845.680 35881.950

std of E[W 2
y ] 5.24E-02 2.14E-01 8.74E-01 3.506 14.028

%95 CI of E[W 2
y ] [110.702, 110.908] [504.524, 505.365] [2146.336, 2149.760] [8838.808, 8852.552] [35854.456, 35909.445]

SD[Wy ] 8.171 16.983 34.566 69.654 139.878

P (Wy > 0)/ρ 1.0258 1.0144 1.0071 1.0038 1.0019

(1− ρ)E[Wy ] 1.0617 1.1772 1.2350 1.2640 1.2773

(1− ρ)SD[Wy ] 1.3074 1.3586 1.3827 1.3931 1.3988

(1− ρ)E[Wy ]/ρ 1.2640 1.2796 1.2864 1.2898 1.2903

(1− ρ)SD[Wy ]/ρ 1.0982 1.2499 1.3274 1.3652 1.3848

(1− ρ)E[Wy |Wy > 0] 1.2322 1.2614 1.2774 1.2849 1.2879

(1− ρ)SD[Wy |Wy > 0] 1.3318 1.3681 1.3868 1.3950 1.3997

y = 0.5

P (Wy > 0) 0.9123 0.9576 0.9802 0.9897 0.9950

s.e. of P (Wy > 0) 6.97E-04 4.26E-04 2.89E-04 1.75E-04 1.31E-04

%95 CI of P (Wy > 0) [0.9109, 0.9136] [0.9568, 0.9584] [0.9796, 0.9807] [0.9894, 0.9901] [0.9948, 0.9953]

E[Wy ] 9.615 20.988 43.720 89.079 180.034

std of E[Wy ] 5.76E-03 1.07E-02 2.07E-02 4.07E-02 8.15E-02

%95 CI of E[Wy ] [9.604, 9.626] [20.967, 21.009] [43.679, 43.760] [88.999, 89.159] [179.874, 180.194]

E[Wy |Wy > 0] 10.540 21.917 44.603 90.005 180.934

%95 CI of E[Wy |Wy > 0] [10.512, 10.568] [21.876, 21.958] [44.536, 44.671] [89.893, 90.117] [180.726, 181.141]

E[W 2
y ] 185.574 836.287 3534.258 14511.739 58834.208

std of E[W 2
y ] 9.24E-02 0.362 1.441 5.761 23.019

%95 CI of E[W 2
y ] [185.392, 185.755] [835.578, 836.997] [3531.433, 3537.082] [14500.447, 14523.030] [58789.091, 58879.324]

SD[Wy ] 9.650 19.895 40.285 81.097 162.548

P (Wy > 0)/ρ 1.0860 1.0409 1.0210 1.0099 1.0051

(1− ρ)E[Wy ] 1.5384 1.6790 1.7488 1.7816 1.8003

(1− ρ)SD[Wy ] 1.5440 1.5916 1.6114 1.6219 1.6255

(1− ρ)E[Wy ]/ρ 1.8314 1.8250 1.8216 1.8179 1.8185

(1− ρ)SD[Wy ]/ρ 1.2970 1.4643 1.5469 1.5895 1.6092

(1− ρ)E[Wy |Wy > 0] 1.6864 1.7533 1.7841 1.8001 1.8093

(1− ρ)SD[Wy |Wy > 0] 1.5375 1.5859 1.6081 1.6201 1.6245
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Table A.54: Estimated E[Wy] and SD[Wy] as a function of 1 − ρ for Mt/H2/1 at y = 0.0 and

0.5: µ = 1, λ̄ = ρ, base (β, γ) = (1, 2.5) with scaling in (3.39). n = 40, 000 for all ρ’s.

1− ρ 0.16 0.08 0.04 0.02 0.01

θ∗ 0.101 0.0519 0.0263 0.0132 0.00664

δ 0.001 0.002 0.004 0.008 0.016

b 41 86 173 345 691

y = 0

P (Wy > 0) 0.8071 0.9028 0.9511 0.9762 0.9878

s.e. of P (Wy > 0) 9.33E-04 5.64E-04 3.41E-04 2.03E-04 1.35E-04

%95 CI of P (Wy > 0) [0.8052, 0.8089] [0.9017, 0.9039] [0.9505, 0.9518] [0.9758, 0.9766] [0.9876, 0.9881]

E[Wy ] 6.698 14.779 30.943 63.250 127.753

std of E[Wy ] 4.38E-03 6.75E-03 1.27E-02 2.53E-02 5.05E-02

%95 CI of E[Wy ] [6.689, 6.707] [14.766, 14.792] [30.918, 30.968] [63.201, 63.300] [127.654, 127.852]

E[Wy |Wy > 0] 8.299 16.369 32.532 64.794 129.328

%95 CI of E[Wy |Wy > 0] [8.270, 8.329] [16.335, 16.404] [32.483, 32.581] [64.717, 64.871] [129.193, 129.463]

E[W 2
y ] 126.556 539.343 2217.805 8990.031 36149.733

std of E[W 2
y ] 7.55E-02 2.36E-01 8.95E-01 3.548 14.131

%95 CI of E[W 2
y ] [126.408, 126.704] [538.880, 539.806] [2216.051, 2219.559] [8983.078, 8996.985] [36122.036, 36177.429]

SD[Wy ] 9.038 17.914 35.502 70.636 140.815

P (Wy > 0)/ρ 0.9608 0.9813 0.9908 0.9961 0.9978

(1− ρ)E[Wy ] 1.0717 1.1823 1.2377 1.2650 1.2775

(1− ρ)SD[Wy ] 1.4461 1.4332 1.4201 1.4127 1.4082

(1− ρ)E[Wy ]/ρ 1.2758 1.2851 1.2893 1.2908 1.2904

(1− ρ)SD[Wy ]/ρ 1.2148 1.3185 1.3633 1.3845 1.3941

(1− ρ)E[Wy |Wy > 0] 1.3279 1.3096 1.3013 1.2959 1.2933

(1− ρ)SD[Wy |Wy > 0] 1.5004 1.4520 1.4274 1.4158 1.4096

y = 0.5

P (Wy > 0) 0.8771 0.9399 0.9699 0.9847 0.9924

s.e. of P (Wy > 0) 9.68E-04 5.87E-04 3.76E-04 2.34E-04 1.64E-04

%95 CI of P (Wy > 0) [0.8752, 0.8790] [0.9387, 0.9410] [0.9691, 0.9706] [0.9842, 0.9851] [0.9921, 0.9928]

E[Wy ] 9.558 20.905 43.593 88.977 179.983

std of E[Wy ] 7.53E-03 1.16E-02 2.11E-02 4.12E-02 8.15E-02

%95 CI of E[Wy ] [9.543, 9.573] [20.882, 20.927] [43.552, 43.635] [88.896, 89.058] [179.823, 180.142]

E[Wy |Wy > 0] 10.897 22.241 44.948 90.364 181.352

%95 CI of E[Wy |Wy > 0] [10.857, 10.938] [22.190, 22.293] [44.871, 45.025] [90.240, 90.488] [181.133, 181.572]

E[W 2
y ] 201.796 870.147 3603.439 14652.678 59167.620

std of E[W 2
y ] 1.30E-01 0.397 1.478 5.833 23.190

%95 CI of E[W 2
y ] [201.540, 202.051] [869.368, 870.926] [3600.542, 3606.336] [14641.246, 14664.110] [59122.168, 59213.072]

SD[Wy ] 10.509 20.812 41.268 82.072 163.627

P (Wy > 0)/ρ 1.0442 1.0216 1.0103 1.0047 1.0025

(1− ρ)E[Wy ] 1.5293 1.6724 1.7437 1.7795 1.7998

(1− ρ)SD[Wy ] 1.6815 1.6650 1.6507 1.6414 1.6363

(1− ρ)E[Wy ]/ρ 1.8206 1.8178 1.8164 1.8159 1.8180

(1− ρ)SD[Wy ]/ρ 1.4124 1.5318 1.5847 1.6086 1.6199

(1− ρ)E[Wy |Wy > 0] 1.7435 1.7793 1.7979 1.8073 1.8135

(1− ρ)SD[Wy |Wy > 0] 1.6882 1.6611 1.6469 1.6390 1.6349
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A.3.6 The Impact of the Adjustment in §3.5.3 and §3.5.4

Tables 3.6 and 3.10 of the main thesis for the (H2)t/M/1 model would be different if we ignored the

adjustment for the exceptional first interarrival time in the rare-event algorithm that were intro-

duced in §3.5.3 and §3.5.4 there. We now show the corresponding tables without this refinement.

Consistent with intuition and the fact that the two processes have identical steady-state limits, we

see that the difference disappears as ρ increases. Nevertheless, the difference is noticeable in all

cases.

First, Table A.55 shows analog of the results in Table 3.6 of the main thesis for the (H2)t/M/1

model.

Second, Table A.56 shows results related to Table 3.10 of the main thesis.
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Table A.55: Simulation estimates of p̂ ≡ P (Wy > b) ≡ Aye−θ
∗b in the (H2)t/M/1 model without

the factor mX1(θ∗) in (3.28) of the main thesis for y = 0.0 and y = 0.5 as a function of 1− ρ with

base parameter triple (β, γ, b) = (1, 2.5, 4) in (3.39) based on 40, 000 replications.

1− ρ 0.16 0.08 0.04 0.02 0.01

θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669

p̂ for y = 0.0 0.041099 0.047976 0.051467 0.053499 0.054240

e−θ
∗b 0.0593 0.0645 0.0670 0.0682 0.0689

Ay 0.693 0.744 0.768 0.784 0.788

A−y 0.504 0.546 0.567 0.577 0.582

A+
y 0.887 0.945 0.973 0.987 0.993

s.e. 4.62E-05 4.68E-05 4.82E-05 1.72E-04 4.96E-05

95% CI (lb) 0.04101 0.04788 0.05137 0.05316 0.05414

(ub) 0.04119 0.04807 0.05156 0.05384 0.05434

r.e. 0.001125 0.000975 0.000936 0.003208 0.000914

P (Wy > b)/P (W > b) 0.78064 0.78762 0.78945 0.79463 0.79294

diff 0.01230 0.00532 0.00349 -0.00169 0.00000

abs diff 0.01230 0.00532 0.00349 0.00169 0.00000

Ay/ρ 0.82476 0.80897 0.80027 0.79995 0.79559

diff -0.02916 -0.01337 -0.00467 -0.00436 0.00000

abs diff 0.02916 0.01337 0.00467 0.00436 0.00000

p̂ for y = 0.5 0.075260 0.086414 0.092196 0.095157 0.096491

e−θ
∗b 0.0593 0.0645 0.0670 0.0682 0.0689

Ay 1.269 1.341 1.376 1.394 1.401

A−y LB 0.887 0.945 0.973 0.987 0.993

A+
y UB 1.561 1.635 1.671 1.688 1.696

s.e. 8.03E-05 7.92E-05 8.02E-05 1.83E-04 8.25E-05

95% CI (lb) 0.07510 0.08626 0.09204 0.09480 0.09633

(ub) 0.07542 0.08657 0.09235 0.09552 0.09665

r.e. 0.001067 0.000916 0.000870 0.001921 0.000855

P (Wy > b)/P (W > b) 1.42950 1.41863 1.41419 1.41339 1.41060

diff -0.01891 -0.00803 -0.00360 -0.00279 0.00000

abs diff 0.01891 0.00803 0.00360 0.00279 0.00000

Ay/ρ 1.51029 1.45708 1.43357 1.42285 1.41532

diff -0.09497 -0.04176 -0.01825 -0.00753 0.00000

abs diff 0.09497 0.04176 0.01825 0.00753 0.00000
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Table A.56: Estimated mean E[Wy] and standard deviation SD[Wy] as a function of 1−ρ for five

cases of the (H2)t/M/1 queue without the factor mX1(θ∗) in (3.28) of the main thesis at y = 0.5:

µ = 1, λ̄ = ρ and base parameter pair (β, γ) = (1, 2.5).

1− ρ 0.16 0.08 0.04 0.02 0.01

θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669

n 40,000 40,000 40,000 40,000 40,000

δ 0.001 0.002 0.004 0.008 0.016

largest b 41 86 173 345 691

P (Wy > 0) 0.9123 0.9576 0.9802 0.9897 0.9950

s.e. of P (Wy > 0) 6.97E-04 4.26E-04 2.89E-04 1.75E-04 1.31E-04

%95 CI of P (Wy > 0) [0.9109, 0.9136] [0.9568, 0.9584] [0.9796, 0.9807] [0.9894, 0.9901] [0.9948, 0.9953]

E[Wy ] 9.615 20.988 43.720 89.079 180.034

std of E[Wy ] 5.76E-03 1.07E-02 2.07E-02 4.07E-02 8.15E-02

%95 CI of E[Wy ] [9.604, 9.626] [20.97, 21.01] [43.68, 43.76] [80.00, 89.16] [179.87, 180.19]

E[Wy |Wy > 0] 10.540 21.917 44.603 90.005 180.934

%95 CI of E[Wy |Wy > 0] [10.512, 10.568] [21.876, 21.958] [44.54, 44.67] [89.89, 90.12] [180.73, 181.14]

E[W 2
y ] 185.574 836.287 3534.26 14,511.7 58,834.2

std of E[W 2
y ] 9.24E-02 0.362 1.441 5.761 23.019

%95 CI of E[W 2
y ] [185.39, 185.76] [835.58, 837.00] [3531.4, 3537.1] [14,500, 14,523] [58,789, 58,879]

SD[Wy ] 9.650 19.90 40.29 81.10 162.55

P (Wy > 0)/ρ 1.0860 1.0409 1.0210 1.0099 1.0051

(1− ρ)E[Wy ] 1.5384 1.6790 1.7488 1.7816 1.8003

(1− ρ)SD[Wy ] 1.5440 1.5916 1.6114 1.6219 1.6255

(1− ρ)E[Wy ]/ρ 1.8314 1.8250 1.8216 1.8179 1.8185

(1− ρ)SD[Wy ]/ρ 1.2970 1.4643 1.5469 1.5895 1.6092

(1− ρ)E[Wy |Wy > 0] 1.6864 1.7533 1.7841 1.8001 1.8093

(1− ρ)SD[Wy |Wy > 0] 1.5375 1.5859 1.6081 1.6201 1.6245
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Appendix B

Matlab Code for Simulation

The Matlab code presented in this section is also available in my github repository

github.com/nmresearch/simulation code.

B.1 Chapter 2 Matlab Code

In 2, we developed an efficient simulation algorithm to generate a Gt/Gt/1 queue with a time-

varying arrival rate and a time-varying service rate. We display the Matlab code for this algorithm

below in Listing B.1. In the following code, we first set parameters for the sinusoidal arrival

rate function and for multiple service-rate functions, and then construct the table for the inverse

functions for cumulative arrival rate function and cumulative service rate function, Λ−1 and M−1.

For each independent simulation experiment, we generate arrival times using the outside table, and

generate service times using the recursion and the formula 2.27 in §2.4. Therefore we can calculate

waiting times, arrival times and departure times for each customer and finally compute the virtual

waiting time and queue length at each time point within our considered time horizon. Mean values

across all the simulation experiments are used for value estimation and confidence intervals are also

constructed.

Listing B.1: Efficient simulation for Gt/Gt/1 queue

1 %parameters

2 time =20000;



APPENDIX B. MATLAB CODE FOR SIMULATION 222

3 nogenerate =40000; %number o f i i d v a r i a b l e s we f i r s t generate to

s imulate a r r i v a l s

4 beta =0.2 ;

5 gamma=0.001;

6 rho =0.8 ; %rho f o r ra t e matching c o n t r o l

7 nu1 =0.2; %constant f o r the f i r s t square root s e r v i c e ra t e c o n t r o l

8 nu2=1; %constant f o r PSA−based square root s e r v i c e ra t e c o n t r o l

9 c l =2∗pi /gamma; %length o f a c y c l e

10 dt=c l /1000 ;

11 l=f l o o r ( time /dt ) ; %length o f time frame

12 run =10000;

13 d e l t a =0.95; % con f idence i n t e r v a l

14 defy =10ˆ(−6) ; % accuracy f o r t a b l i n g f u n c t i o n s

15 defx =10ˆ(−7) ; % accuracy f o r t a b l i n g f u n c t i o n s

16

17 %performance measures

18 W1t a{1}= ze ro s ( run , l ) ;

19 W2t a{1}= ze ro s ( run , l ) ;

20 W3t a{1}= ze ro s ( run , l ) ;

21 Q1t a{1}= ze ro s ( run , l ) ;

22 Q2t a{1}= ze ro s ( run , l ) ;

23 Q3t a{1}= ze ro s ( run , l ) ;

24

25 %t a b l e fn . \Lambdaˆ{−1} f o r one c y c l e f o r gene ra t ing a r r i v a l s and f o r

gene ra t ing s e r v i c e t imes under ra t e matching c o n t r o l

26 xarray1 =(0: defx : c l ) ;

27 yarray1=xarray1−beta /gamma∗( cos (gamma∗xarray1 )−1) ;

28 yvec1 =(0: defy : c l ) ;

29 xvec1=ze ro s (1 , l ength ( yvec1 ) ) ;

30 i =1;
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31 j =1;

32 whi le j<l ength ( xarray1 )+1 && i<l ength ( yvec1 )+1

33 y=yvec1 ( i ) ;

34 x=xarray1 ( j ) ;

35 i f y>yarray1 ( j )

36 j=j +1;

37 e l s e

38 xvec1 ( i )=x ;

39 i=i +1;

40 end

41 end

42

43 %t a b l e fn . M and Mˆ{−1} f o r one c y c l e f o r gene ra t ing s e r v i c e t imes

under f i r s t square root c o n t r o l (M( t ) i s the i n t e g r a l o f \mu( s ) )

44 xarray2 =(0: defx : c l ) ;

45 yarray2=nu1∗ s q r t (1+beta ∗ s i n (gamma∗xarray2 ) ) ;

46 yarray2=cumsum( defx ∗yarray2 )+yarray1 ;

47 yvec2 =(0: defy : yarray2 ( end ) ) ;

48 xvec2=ze ro s (1 , l ength ( yvec2 ) ) ;

49 i =1;

50 j =1;

51 whi le j<l ength ( xarray2 )+1 && i<l ength ( yvec2 )+1

52 y=yvec2 ( i ) ;

53 x=xarray2 ( j ) ;

54 i f y>yarray2 ( j )

55 j=j +1;

56 e l s e

57 xvec2 ( i )=x ;

58 i=i +1;

59 end
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60 end

61

62 %t a b l e fn . M and Mˆ{−1} f o r one c y c l e f o r gene ra t ing s e r v i c e t imes

under second square root c o n t r o l

63 xarray3 =(0: defx : c l ) ;

64 lambda3=1+beta ∗ s i n (gamma∗xarray3 ) ;

65 yarray3=lambda3 / 2 .∗ ( s q r t (1+nu2 . / lambda3 ) +1) ;

66 yarray3=cumsum( defx ∗yarray3 ) ;

67 yvec3 =(0: defy : yarray3 ( end ) ) ;

68 xvec3=ze ro s (1 , l ength ( yvec3 ) ) ;

69 i =1;

70 j =1;

71 whi le j<l ength ( xarray3 )+1 && i<l ength ( yvec3 )+1

72 y=yvec3 ( i ) ;

73 x=xarray3 ( j ) ;

74 i f y>yarray3 ( j )

75 j=j +1;

76 e l s e

77 xvec3 ( i )=x ;

78 i=i +1;

79 end

80 end

81

82 %run independent r e p l i c a t i o n s

83 f o r s =1: run

84 %simulate the customer a r r i v a l s A k

85 U1=rand (1 , nogenerate ) ;

86 X=−l og (U1) ; %exponent i a l d i s t r i b u t i o n

87 T=cumsum(X) ;

88 q=f l o o r (T/ c l ) ;



APPENDIX B. MATLAB CODE FOR SIMULATION 225

89 r=T−c l ∗q ;

90 A{1}=xvec1(1+ f l o o r ( r / defy ) )+c l ∗q ;

91 A{1}=A{1}(A{1}<=time ) ; %we only want those a r r i v a l s that occur with in

the time i n t e r v a l we cons id e r

92 num=length (A{1}) ; %number o f a r r i v a l s we cons id e r

93

94 %generate s e r v i c e requi rements S k

95 U2=rand (num, 1 ) ;

96 S=−l og (U2) ; %exponent i a l d i s t r i b u t i o n

97

98 %simulate begin s e r v i c e time B k , departure time D k , s e r v i c e time V k ,

wai t ing time W k

99 D1{1}= ze ro s (1 ,num+1) ;

100 D2{1}= ze ro s (1 ,num+1) ;

101 D3{1}= ze ro s (1 ,num+1) ;

102 B1{1}= ze ro s (1 ,num) ;

103 B2{1}= ze ro s (1 ,num) ;

104 B3{1}= ze ro s (1 ,num) ;

105 V1{1}= ze ro s (1 ,num) ;

106 V2{1}= ze ro s (1 ,num) ;

107 V3{1}= ze ro s (1 ,num) ;

108 W1{1}= ze ro s (1 ,num) ;

109 W2{1}= ze ro s (1 ,num) ;

110 W3{1}= ze ro s (1 ,num) ;

111 f o r i =1:num

112 B1{1}( i )=max(D1{1}( i ) ,A{1}( i ) ) ;

113 B2{1}( i )=max(D2{1}( i ) ,A{1}( i ) ) ;

114 B3{1}( i )=max(D3{1}( i ) ,A{1}( i ) ) ;

115 sum1=rho∗S( i )+B1{1}( i )−beta /gamma∗( cos (gamma∗B1{1}( i ) )−1) ;
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116 V1{1}( i )=xvec1(1+ f l o o r ( rem(sum1 , c l ) / defy ) )+sum1−rem (sum1 , c l )−B1{1}( i ) ;

%ra t e matching c o n t r o l

117 sum2=S( i )+yarray2 (1+ f l o o r ( rem(B2{1}( i ) , c l ) / defx ) )+f l o o r (B2{1}( i ) / c l ) ∗

yarray2 ( end ) ;

118 V2{1}( i )=xvec2(1+ f l o o r ( rem(sum2 , yvec2 ( end ) ) / defy ) )+f l o o r ( sum2/ yvec2 ( end

) ) ∗ c l−B2{1}( i ) ; %f i r s t square root s e r v i c e ra t e c o n t r o l

119 sum3=S( i )+yarray3 (1+ f l o o r ( rem(B3{1}( i ) , c l ) / defx ) )+f l o o r (B3{1}( i ) / c l ) ∗

yarray3 ( end ) ;

120 V3{1}( i )=xvec3(1+ f l o o r ( rem(sum3 , yvec3 ( end ) ) / defy ) )+f l o o r ( sum3/ yvec3 ( end

) ) ∗ c l−B3{1}( i ) ; %second square root s e r v i c e ra t e c o n t r o l

121 D1{1}( i +1)=B1{1}( i )+V1{1}( i ) ;

122 D2{1}( i +1)=B2{1}( i )+V2{1}( i ) ;

123 D3{1}( i +1)=B3{1}( i )+V3{1}( i ) ;

124 W1{1}( i )=B1{1}( i )−A{1}( i ) ;

125 W2{1}( i )=B2{1}( i )−A{1}( i ) ;

126 W3{1}( i )=B3{1}( i )−A{1}( i ) ;

127 end

128

129 %convert to At , Dt , Qt , Wt

130 At{1}=num∗ ones (1 , l ) ;

131 i =1;

132 k=0;

133 whi le k<num

134 i f i ∗dt<A{1}( k+1)

135 At{1}( i )=k ;

136 i=i +1;

137 e l s e

138 k=k+1;

139 end

140 end
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141 D1t{1}=num∗ ones (1 , l ) ;

142 i =1;

143 k=1;

144 whi le i<l+1 && k<num+1

145 i f i ∗dt<D1{1}( k+1)

146 D1t{1}( i )=k−1;

147 i=i +1;

148 e l s e

149 k=k+1;

150 end

151 end

152 D2t{1}=num∗ ones (1 , l ) ;

153 i =1;

154 k=1;

155 whi le i<l+1 && k<num +1

156 i f i ∗dt<D2{1}( k+1)

157 D2t{1}( i )=k−1;

158 i=i +1;

159 e l s e

160 k=k+1;

161 end

162 end

163 D3t{1}=num∗ ones (1 , l ) ;

164 i =1;

165 k=1;

166 whi le i<l+1 && k<num +1

167 i f i ∗dt<D3{1}( k+1)

168 D3t{1}( i )=k−1;

169 i=i +1;

170 e l s e
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171 k=k+1;

172 end

173 end

174 Q1t{1}=At{1}−D1t {1} ;

175 Q2t{1}=At{1}−D2t {1} ;

176 Q3t{1}=At{1}−D3t {1} ;

177 i=f l o o r (A{1} (1) /dt ) ; %time be f o r e the f i r s t a r r i v a l

178 W1t{1}= ze ro s (1 , l ) ;

179 W2t{1}= ze ro s (1 , l ) ;

180 W3t{1}= zero s (1 , l ) ;

181 i=i +1;

182 W1t{1}( i : l )=max(W1{1}(At{1}( i : l ) )+V1{1}(At{1}( i : l ) )−(( i : l ) ∗dt−A{1}(At

{1}( i : l ) ) ) , 0 ) ;

183 W2t{1}( i : l )=max(W2{1}(At{1}( i : l ) )+V2{1}(At{1}( i : l ) )−(( i : l ) ∗dt−A{1}(At

{1}( i : l ) ) ) , 0 ) ;

184 W3t{1}( i : l )=max(W3{1}(At{1}( i : l ) )+V3{1}(At{1}( i : l ) )−(( i : l ) ∗dt−A{1}(At

{1}( i : l ) ) ) , 0 ) ;

185

186 %performance measures

187 W1t a{1}( s , : )=W1t{1} ;

188 Q1t a {1}( s , : )=Q1t {1} ;

189 W2t a{1}( s , : )=W2t{1} ;

190 Q2t a {1}( s , : )=Q2t {1} ;

191 W3t a{1}( s , : )=W3t{1} ;

192 Q3t a {1}( s , : )=Q3t {1} ;

193 end %independent r e p l i c a t i o n loop ends

194

195 %c a l c u l a t e mean and cons t ruc t con f idence i n t e r v a l s from independent

exper iments

196 W1t m{1}=mean( W1t a{1}) ;



APPENDIX B. MATLAB CODE FOR SIMULATION 229

197 Q1t m{1}=mean( Q1t a {1}) ;

198 W2t m{1}=mean( W2t a{1}) ;

199 Q2t m{1}=mean( Q2t a {1}) ;

200 W3t m{1}=mean( W3t a{1}) ;

201 Q3t m{1}=mean( Q3t a {1}) ;

202 d1 m{1}=sum( W1t a{1}>0)/run ;

203 d2 m{1}=sum( W2t a{1}>0)/run ;

204 d3 m{1}=sum( W3t a{1}>0)/run ;

205 W1t hw{1}= t inv (1−(1− d e l t a ) /2 , run−1)∗ std ( W1t a{1}) / s q r t ( run ) ; %ha l f−

width o f the con f idence i n t e r v a l

206 Q1t hw{1}= t inv (1−(1− d e l t a ) /2 , run−1)∗ std ( Q1t a {1}) / s q r t ( run ) ;

207 W2t hw{1}= t inv (1−(1− d e l t a ) /2 , run−1)∗ std ( W2t a{1}) / s q r t ( run ) ;

208 Q2t hw{1}= t inv (1−(1− d e l t a ) /2 , run−1)∗ std ( Q2t a {1}) / s q r t ( run ) ;

209 W3t hw{1}= t inv (1−(1− d e l t a ) /2 , run−1)∗ std ( W3t a{1}) / s q r t ( run ) ;

210 Q3t hw{1}= t inv (1−(1− d e l t a ) /2 , run−1)∗ std ( Q3t a {1}) / s q r t ( run ) ;

211 W1t CIu{1}=W1t m{1}+W1t hw{1} ; %upper bound o f con f idence i n t e r v a l

212 W1t CIl{1}=W1t m{1}−W1t hw{1} ; %lower bound o f con f idence i n t e r v a l

213 Q1t CIu{1}=Q1t m{1}+Q1t hw {1} ;

214 Q1t CIl{1}=Q1t m{1}−Q1t hw {1} ;

215 W2t CIu{1}=W2t m{1}+W2t hw{1} ;

216 W2t CIl{1}=W2t m{1}−W2t hw{1} ;

217 Q2t CIu{1}=Q2t m{1}+Q2t hw {1} ;

218 Q2t CIl{1}=Q2t m{1}−Q2t hw {1} ;

219 W3t CIu{1}=W3t m{1}+W3t hw{1} ;

220 W3t CIl{1}=W3t m{1}−W3t hw{1} ;

221 Q3t CIu{1}=Q3t m{1}+Q3t hw {1} ;

222 Q3t CIl{1}=Q3t m{1}−Q3t hw {1} ;
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B.2 Chapter 3 Matlab Code

In 3, we developed the rare-event simulation algorithm to estimate tail probabilities of steady-state

workload Wy in GIt/GI/1 queues, which can be applied to estimate moments of Wy. In Listing

B.2 below, we show the Matlab code for estimating tail probabilities of Wy at 41 equally spaced

positions within a cycle for GIt/GI/1 queues. We first construct the inverse function Λ̃−1
y for each

position y and then for each y, we generate random variables U and V until the process Rn in

3.27 reaches level b so that we can use formula 3.28 to estimate tail probabilities. In Listing B.3

below, we display the Matlab code for estimating the first and second moments of Wy for GIt/GI/1

queues. We make use of the formula in 3.36 and estimate all the tail probabilities in the equation

in a computing time linear in the length of the vector b.

Listing B.2: Rare event simulation for tail probabilities of Wy in GIt/GI/1 queues

1 %parameters

2 beta =0.2 ;

3 gamma=1;

4 rho =0.8 ;

5 lambda=rho ;

6 mu=1;

7 c l =2∗pi /gamma; %length o f a c y c l e

8 run =5000;

9 b=20;

10 defy =10ˆ(−4) ; % accuracy f o r t a b l i n g f u n c t i o n s

11 defx =10ˆ(−5) ; % accuracy f o r t a b l i n g f u n c t i o n s

12 d e l t a =0.95;

13 pos =(0: c l /40 : c l ) ; %y ’ s in a c y c l e

14 P=ze ro s ( l ength ( pos ) , run ) ;

15 number=f l o o r (10∗b/(1/ lambda−1) ) ;

16 X=−1/lambda∗ l og ( rand ( number , run ) ) ;

17 Y=−l og ( rand ( number , run ) ) ;

18
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19 %f o r each p o s i t i o n y in a c y c l e

20 f o r r =1: l ength ( pos )

21

22 %t a b l e fn . \Lambda yˆ{−1} ( normal ized ) f o r one c y c l e

23 xarray1 =(0: defx : c l ) ;

24 yarray1=xarray1+beta /gamma∗( cos (gamma∗( xarray1−pos ( r ) ) )−cos (gamma∗pos ( r

) ) ) ;

25 yvec1 =(0: defy : c l ) ;

26 xvec1=ze ro s (1 , l ength ( yvec1 ) ) ;

27 i =1;

28 j =1;

29 whi le j<l ength ( xarray1 )+1 && i<l ength ( yvec1 )+1

30 y=yvec1 ( i ) ;

31 x=xarray1 ( j ) ;

32 i f y>yarray1 ( j )

33 j=j +1;

34 e l s e

35 xvec1 ( i )=x ;

36 i=i +1;

37 end

38 end

39

40 f o r s =1: run

41 S1=0;

42 S2=0;

43 S3=0;

44 j =0;

45 whi le S1−S3<b

46 j=j +1;

47 i f j>number
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48 Z=rand (1 , 2 ) ;

49 Z(1)=−1/lambda∗ l og (Z(1 ) ) ;

50 Z(2)=−l og (Z(2 ) ) ;

51 S1=S1+Z(1) ;

52 S2=S2+Z(2) ;

53 e l s e

54 S1=S1+X( j , s ) ;

55 S2=S2+Y( j , s ) ;

56 end

57 S3=xvec1(1+ f l o o r ( rem ( S2 , c l ) / defy ) )+S2−rem ( S2 , c l ) ;

58 end

59 P( r , s )=exp(−(mu−lambda ) ∗( S1−S2 ) ) ;

60 end

61 end

62

63 P mean=mean(P’ ) ;

64 P std=std (P’ ) / s q r t ( run ) ;

65 P hw=norminv(1−(1− d e l t a ) /2) ∗P std ;

66 P re=P std . / P mean ;

67 P approx=exp(−(mu−lambda ) ∗b) ∗ ones (1 , l ength ( pos ) ) ;

68 A=P mean . / P approx ;

69 A approx=rho∗exp(−(mu−lambda ) ∗beta /gamma∗ cos (gamma∗pos ) ) ;

70 A LB=rho∗exp(−(mu−lambda ) ∗beta /gamma∗( cos (gamma∗pos ) +1) ) ;

71 A UB=rho∗exp(−(mu−lambda ) ∗beta /gamma∗( cos (gamma∗pos )−1) ) ;

Listing B.3: Rare event simulation for moments of Wy in GIt/GI/1 queues

1 %parameters

2 beta =0.2 ;

3 gamma=0.1;

4 rho =0.8 ; %rho f o r ra t e matching c o n t r o l
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5 lambda=rho ;

6 mu=1;

7 c l =2∗pi /gamma; %length o f a c y c l e

8 run =40000;

9

10 defy =10ˆ(−4) ; % accuracy f o r t a b l i n g f u n c t i o n s

11 defx =10ˆ(−5) ; % accuracy f o r t a b l i n g f u n c t i o n s

12 Delta =0.95;

13 d e l t a =0.001;

14 b =[0 :35000 ]∗ d e l t a ; %35 rho =0.8 ; 43 rho0 . 8 4 ; 86 rho0 . 9 2 ; 173 rho0 . 9 6 ;

345 rho0 . 9 8 ; 691 rho0 .99

15 pos =(0: c l /40 : c l ) ;

16

17 P p o s i t i v e=ze ro s ( l ength ( pos ) , run ) ;

18 P est imate=ze ro s (2 , l ength (b) ) ;

19 EW=zero s ( l ength ( pos ) , run ) ;

20 EW2=ze ro s ( l ength ( pos ) , run ) ;

21 number=f l o o r (10∗b( end ) /(1/ lambda−1) ) ;

22

23 %t a b l e fn . \Lambda yˆ{−1} ( normal ized ) f o r one c y c l e

24 xarray1 =(0: defx : c l ) ;

25 yarray1=xarray1+beta /gamma∗( cos (gamma∗( xarray1−pos (1 ) ) )−cos (gamma∗pos

(1 ) ) ) ;

26 yarray2=xarray1+beta /gamma∗( cos (gamma∗( xarray1−pos (2 ) ) )−cos (gamma∗pos

(2 ) ) ) ;

27 yvec1 =(0: defy : c l ) ;

28 xvec1=ze ro s (1 , l ength ( yvec1 ) ) ;

29 i =1;

30 j =1;

31 whi le j<l ength ( xarray1 )+1 && i<l ength ( yvec1 )+1
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32 y=yvec1 ( i ) ;

33 x=xarray1 ( j ) ;

34 i f y>yarray1 ( j )

35 j=j +1;

36 e l s e

37 xvec1 ( i )=x ;

38 i=i +1;

39 end

40 end

41

42 xvec2=ze ro s (1 , l ength ( yvec1 ) ) ;

43 i =1;

44 j =1;

45 whi le j<l ength ( xarray1 )+1 && i<l ength ( yvec1 )+1

46 y=yvec1 ( i ) ;

47 x=xarray1 ( j ) ;

48 i f y>yarray2 ( j )

49 j=j +1;

50 e l s e

51 xvec2 ( i )=x ;

52 i=i +1;

53 end

54 end

55

56 f o r s =1: run

57 P=ze ro s ( l ength (b) ,2 ) ;

58 X=−1/lambda∗ l og ( rand ( number , 1 ) ) ;

59 Y=−l og ( rand ( number , 1 ) ) ;

60 S1=cumsum(X) ;

61 S2=cumsum(Y) ;
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62 ind=1+f l o o r ( rem( S2 , c l ) / defy ) ;

63 S3 1=xvec1 ( ind ) ’+S2−rem( S2 , c l ) ;

64 S3 2=xvec2 ( ind ) ’+S2−rem( S2 , c l ) ;

65

66 i =1;

67 j =1;

68 whi le j<l ength (b) +1;

69 i f S1 ( i )−S3 1 ( i )<b( j )

70 i=i +1;

71 e l s e

72 P( j , 1 )=exp(−(mu−lambda ) ∗( S1 ( i )−S2 ( i ) ) ) ;

73 j=j +1;

74 end

75 end

76

77 i =1;

78 j =1;

79 whi le j<l ength (b) +1;

80 i f S1 ( i )−S3 2 ( i )<b( j )

81 i=i +1;

82 e l s e

83 P( j , 2 )=exp(−(mu−lambda ) ∗( S1 ( i )−S2 ( i ) ) ) ;

84 j=j +1;

85 end

86 end

87

88 P est imate=P est imate+P ’ ;

89 P p o s i t i v e ( : , s )=P( 1 , : ) ’ ;

90 EW(1 , s )=sum( d e l t a ∗P( : , 1 ) )+P( length (b) ,1 ) /(mu−lambda ) ;

91 EW(2 , s )=sum( d e l t a ∗P( : , 2 ) )+P( length (b) ,2 ) /(mu−lambda ) ;
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92 EW2(1 , s )=sum(2∗P( : , 1 ) ’ .∗ b∗ d e l t a ) +2∗(b( end ) /(mu−lambda ) +1/(mu−lambda ) ˆ2)

∗P( length (b) ,1 ) ;

93 EW2(2 , s )=sum(2∗P( : , 2 ) ’ .∗ b∗ d e l t a ) +2∗(b( end ) /(mu−lambda ) +1/(mu−lambda ) ˆ2)

∗P( length (b) ,2 ) ;

94 end

95 P est=P est imate /run ;

96 P p o s f i n a l=mean( P pos i t i v e ’ )

97 Ppos std=std ( P pos i t i v e ’ ) / s q r t ( run )

98 Ppos hw=norminv(1−(1−Delta ) /2) ∗Ppos std ;

99 Ppos CI=[ Ppos f ina l−Ppos hw , P p o s f i n a l+Ppos hw ]

100 EW final=mean(EW’ )

101 EW std=std (EW’ ) / s q r t ( run )

102 EW hw=norminv(1−(1−Delta ) /2) ∗EW std ;

103 EW CI=[EW final−EW hw, EW final+EW hw]

104 EW2 final=mean(EW2’ )

105 EW2 std=std (EW2’ ) / s q r t ( run )

106 EW2 hw=norminv(1−(1−Delta ) /2) ∗EW2 std ;

107 EW2 CI=[EW2 final−EW2 hw, EW2 final+EW2 hw]

108 SDW=(EW2 final−EW final . ˆ 2 ) . ˆ 0 . 5

B.3 Chapter 5 Matlab Code

In 5, we extended the rare-event simulation algorithm to estimate tail probabilities and moments

of Wy in GIt/GIt/1 queues. In Listing B.4 below, we show the code for estimating moments of

Wy for GIt/GIt/1 queues. We estimate tail probabilities using formula 5.24 and the algorithm in

§5.5.2 and then calculate moments using equation 3.36.

Listing B.4: Rare event simulation for moments of Wy in GIt/GIt/1 queues

1 %parameters

2 beta =0.2 ;

3 gamma=0.1;
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4 rho =0.8 ; %rho f o r ra t e matching c o n t r o l

5 lambda=rho ;

6 mu=1;

7 c l =2∗pi /gamma; %length o f a c y c l e

8 run =40000;

9 defy =10ˆ(−4) ; % accuracy f o r t a b l i n g f u n c t i o n s

10 defx =10ˆ(−5) ; % accuracy f o r t a b l i n g f u n c t i o n s

11 Delta =0.95;

12 d e l t a =0.001;

13 b =[0 :35000 ]∗ d e l t a ; %35 rho =0.8 ; 43 rho0 . 8 4 ; 86 rho0 . 9 2 ; 173 rho0 . 9 6 ;

345 rho0 . 9 8 ; 691 rho0 .99

14

15 pos =[0 : c l /40 : c l ] ;

16

17 P p o s i t i v e=ze ro s ( l ength ( pos ) , run ) ;

18 EW=zero s ( l ength ( pos ) , run ) ;

19 EW2=ze ro s ( l ength ( pos ) , run ) ;

20 number=f l o o r (10∗b( end ) /(1/ lambda−1) ) ;

21

22

23 %t a b l e fn . \Lambda yˆ{−1} ( normal ized ) f o r one c y c l e

24 xarray1 =(0: defx : c l ) ;

25 yarray=ze ro s ( l ength ( pos ) , l ength ( xarray1 ) ) ;

26 yvec1 =(0: defy : c l ) ;

27 xvec=ze ro s ( l ength ( pos ) , l ength ( yvec1 ) ) ;

28

29 f o r k=1: l ength ( pos )

30 yarray (k , : )=xarray1+beta /gamma∗( cos (gamma∗( xarray1−pos ( k ) ) )−cos (gamma∗

pos ( k ) ) ) ;

31 i =1;
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32 j =1;

33 whi le j<l ength ( xarray1 )+1 && i<l ength ( yvec1 )+1

34 y=yvec1 ( i ) ;

35 x=xarray1 ( j ) ;

36 i f y>yarray (k , j )

37 j=j +1;

38 e l s e

39 xvec (k , i )=x ;

40 i=i +1;

41 end

42 end

43 end

44 c l e a r v a r s yarray

45

46 f o r s =1: run

47 P=ze ro s ( l ength (b) , l ength ( pos ) ) ;

48 X=−1/lambda∗ l og ( rand ( number , 1 ) ) ;

49 Y=−l og ( rand ( number , 1 ) ) ;

50 S1=cumsum(X) ;

51 S2=cumsum(Y) ;

52 ind=1+f l o o r ( rem( S2 , c l ) / defy ) ;

53 S3=ze ro s ( number , l ength ( pos ) ) ;

54

55 f o r k=1: l ength ( pos )

56 t i c

57 S3 ( : , k )=xvec (k , ind ) ’+S2−rem ( S2 , c l ) ;

58 S3 ( : , k )=S3 ( : , k )−beta /gamma∗( cos (gamma∗pos ( k ) )−cos (gamma∗( S3 ( : , k )−pos ( k )

) ) ) ;

59 Mb=b−beta /gamma∗( cos (gamma∗( pos ( k )+b) )−cos (gamma∗pos ( k ) ) ) ;

60 i =1;
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61 j =1;

62 whi le j<l ength (b) +1;

63 i f S1 ( i )−S3 ( i , k )<Mb( j )

64 i=i +1;

65 e l s e

66 P( j , k )=exp(−(mu−lambda ) ∗( S1 ( i )−S2 ( i ) ) ) ;

67 j=j +1;

68 end

69 end

70 EW(k , s )=sum( d e l t a ∗P( : , k ) )+P( length (b) , k ) /(mu−lambda ) ;

71 EW2(k , s )=sum(2∗P( : , k ) ’ .∗ b∗ d e l t a ) +2∗(b( end ) /(mu−lambda ) +1/(mu−lambda ) ˆ2)

∗P( length (b) , k ) ;

72 end

73 P p o s i t i v e ( : , s )=P( 1 , : ) ’ ;

74 end

75

76 P p o s f i n a l=mean( P pos i t i v e ’ )

77 Ppos std=std ( P pos i t i v e ’ ) / s q r t ( run )

78 Ppos hw=norminv(1−(1−Delta ) /2) ∗Ppos std ;

79 Ppos CI=[ Ppos f ina l−Ppos hw , P p o s f i n a l+Ppos hw ]

80 EW final=mean(EW’ )

81 EW std=std (EW’ ) / s q r t ( run )

82 EW hw=norminv(1−(1−Delta ) /2) ∗EW std ;

83 EW CI=[EW final−EW hw, EW final+EW hw]

84 EW2 final=mean(EW2’ )

85 EW2 std=std (EW2’ ) / s q r t ( run )

86 EW2 hw=norminv(1−(1−Delta ) /2) ∗EW2 std ;

87 EW2 CI=[EW2 final−EW2 hw, EW2 final+EW2 hw]

88 SDW=(EW2 final−EW final . ˆ 2 ) . ˆ 0 . 5
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