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ABSTRACT

Unsupervised and Weakly-Supervised Learning of Localized Texture Patterns of

Lung Diseases on Computed Tomography

Jie Yang

Computed tomography (CT) imaging enables in vivo assessment of lung parenchyma

and several lung diseases. CT scans are key in particular for the diagnosis of 1) chronic

obstructive pulmonary disease (COPD), which is the fourth leading cause of death world-

wide, and largely overlaps with pulmonary emphysema; and 2) lung cancer, which is

the first leading cause of cancer-related death, and manifests in its early stage with the

presence of lung nodules.

Most lung CT image analysis methods to-date have relied on supervised learning re-

quiring manually annotated local regions of interest (ROIs), which are slow and labor-

intensive to obtain. Machine learning models requiring less or no manual annotations are

important for a sustainable development of computer-aided diagnosis (CAD) systems.

This thesis focused on exploiting CT scans for lung disease characterization via two

learning strategies: 1) fully unsupervised learning on a very large amount of unannotated

image patches to discover novel lung texture patterns for pulmonary emphysema; and 2)

weakly-supervised learning to generate voxel-level localization of lung nodules from CT

whole-slice labels.

In the first part of this thesis, we proposed an original unsupervised approach to learn

emphysema-specific radiological texture patterns. We have designed dedicated spatial

and texture features and a two-stage learning strategy incorporating clustering and graph



partitioning. Learning was performed on a cohort of 2,922 high-resolution full-lung CT

scans, which included a high prevalence of smokers and COPD subjects. Experiments

lead to discovering 10 highly-reproducible spatially-informed lung texture patterns and 6

quantitative emphysema subtypes (QES). Our discovered QES were associated indepen-

dentlywith distinct risk of symptoms, physiological changes, exacerbations andmortality.

Genome-wide association studies identified loci associated with four subtypes.

Then we designed a deep-learning approach, using unsupervised domain adaptation

with adversarial training, to label the QES on cardiac CT scans, which included approxi-

mately 70% of the lung. Our proposed method accounted for the differences in CT image

qualities, and enabled us to study the progression of QES on a cohort of 17,039 longitudi-

nal cardiac and full-lung CT scans.

Overall, the discovered QES provide novel emphysema sub-phenotyping that may

facilitate future study of emphysema development, understanding the stages of COPD

and the design of personalized therapies.

In the second part of the thesis, we have designed a deep-learning method for lung

nodule detection with weak labels, using classification convolutional neural networks

(CNNs) with skip-connections to generate high-quality discriminative class activation

maps, and a novel candidate screening framework to reduce the number of false posi-

tives. Given that the vast majority of annotated nodules are benign, we further exploited

a data augmentation framework with a generative adversarial network (GAN) to address

the issue of data imbalance for lung cancer prediction. Our weakly-supervised lung nod-

ule detection on 1,000s CT scans achieved competitive performance compared to a fully-

supervised method, while requiring 100 times less annotations. Our data augmentation



framework enabled synthesizing nodules with high fidelity in specified categories, and is

beneficial for predicting nodule malignancy scores and hence improving the accuracy /

reliability of lung cancer screening.
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Chapter 1

Introduction

1.1 Computed Tomography for Lung Imaging

X-ray is electromagnetic radiation that can traverse through relatively thick objects (Klug

and Alexander 1974). Radiography is an imaging technique that uses X-rays to view the

internal structure of a subject. A radiography machine typically consists of an X-ray

generator and sensors, between which the subjects are placed. The X-rays are absorbed

by the tissues while they pass through the subject. Soft tissue (e.g., muscle) absorbs fewer

X-rays than hard tissue (e.g., bone). The varying energy patterns whichwere not absorbed

by the subject are detected by the sensors and a projection image is obtained.

Computed tomography (CT) is a specific radiography imaging procedure that creates

volumetric scans of areas inside the body. In a modern CT scanner, the X-ray generator

and sensors continuously rotate around the subject while the subject slides through the

scanner. Thereafter, a series of 2D CT slices are reconstructed from the projection images.

The 2D slices form a 3D scan and can be visualized in the three orthogonal planes.

The value of a voxel in a CT scan represents the radiodensity of a tissue and is mea-

sured on the Hounsfield unit (HU). In a voxel with a mean attenuation coefficient µ, the
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corresponding HU value is:

HU = 1000× µ− µwater

µwater − µair
(1.1)

where µwater and µair are the attenuation coefficients of water and air. A radiodensity of

distilled water at standard temperature and pressure (STP) is defined as 0 HU while the

air at STP is defined as -1,000 HU (Buzug 2008).

The lungs arewell suited to be imagedwith CT, because they consist of air with density

values close to -1,000 HU, and other tissues with higher density values and thus exhibiting

large intensity contrast. The development of CT imaging provides clinicians with high-

quality information of the lung parenchyma and related pulmonary pathologies. Since

the introduction of the first commercially available systems in the 1980s, CT has enabled

in vivo assessment of lung diseases at the macroscopic level. Modern multidetector-row

CT (MDCT) scanners enable fast imaging (<12 s), so that the entire lungs can be imaged

in a single breath-hold (Hoffman, Simon, and McLennan 2006).

1.2 COPD and Pulmonary Emphysema

Pulmonary emphysema is defined morphologically by the enlargement of airspaces with

destruction of alveolar walls distal to the terminal bronchioles (Mets et al. 2012). Emphy-

sematous lung destruction decreases the elastic recoil force that drives air out of the lung,

causing a reduction in the maximum expiratory flow (Hogg 2004). A mixture of emphy-

sema and small airways disease contributes to chronic airflow limitation, characteristic of

chronic obstructive pulmonary disease (COPD). Emphysema and COPD are, jointly, the

2



fourth leading cause of death in the world in 2017 and are projected to be the third leading

cause of death in 2020. More than 3 million people died of COPD in 2012, accounting for

6% of all deaths globally1.

Amajor contributor to emphysema is the inhalation of particles from smoking or other

sources, causing an inflammatory response in the lungs (Vestbo et al. 2013). A chronic

inflammatory responsemay then induce parenchymal tissue destruction, although the ex-

act mechanism of the process remains unknown. Recent research has associated changes

in microvascular blood flow dynamics with structural and physiological changes leading

to emphysema (Hoffman, Simon, and McLennan 2006). Emphysema can develop without

smoking. At autopsy, pulmonary emphysema occurs in 30% to 50% of cigarette smok-

ers, 8% of cigar smokers and 3% of never-smokers (Auerbach et al. 1972; Leopold and

Gough 1957; Thurlbeck 1963). Genetics have been shown to affect the development of

the disease. Specifically, alpha1-antitrypsin deficiency has been associated with younger

patients (<45 yr) and lower lobe emphysema (McElvaney et al. 2017).

Since the alveolar wall destruction in emphysema is irreversible, the disease cannot

be fully cured. However, the progression of the disease can be slowed down. Also, for

patients with COPD, there are several ways to reduce symptoms. The therapeutic options

include smoking cessation, pharmacological therapy, rehabilitation, oxygen therapy, ven-

tilatory support, and surgical treatments. An example of a surgical treatment is lung vol-

ume reduction surgery, where parts of the lung are resected to reduce hyperinflation. This

operation has been shown to improve survival in some patients with severe upper-lobe

emphysema, but it is not suitable for all types of emphysema (Vestbo et al. 2013).

1http://www.goldcopd.org/
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1.3 Challenges with EmphysemaQuantification and

Subtyping on CT

An early study of eleven patients (Hayhurst et al. 1984) reported that patients with em-

physema on pathology had significantly more low-density values on CT than the group

of patients without emphysema. This finding inspired the development of objective and

reproducible emphysema quantitation on CT.

The most widely used measure for assessing emphysema severity is obtained using

a density measure, called percent emphysema (%emph), also referred to as emphysema

index or percent low attenuation area (%LAA), which quantifies the proportion of voxels

with intensity values below a fixed threshold within the lung region. The %emphmeasure

is currently used commonly in clinical studies (Galbán et al. 2012; Gevenois et al. 1995),

and it has been shown to be able to predict mortality in COPD (Ceresa et al. 2011). How-

ever, there is no consensus on the intensity threshold value that should be used (Mets

et al. 2012), and typical threshold values range from −950 to −910 HU (Hoffman, Simon,

and McLennan 2006).

Emphysema was subtyped into centrilobular and panlobular emphysema by Leopold

and Gough’s on 140 autopsies (Leopold and Gough 1957); a third subtype, paraseptal

emphysema, was reported on only two autopsies (Edge, Simon, and Reid 1966). The three

emphysema subtypes can be visually assessed on lung CT images, using the following

definitions:

1. Centrilobular emphysema (CLE), which is commonly characterized by low-attenuation
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Normal Lung CLE PLE PSE

Figure 1.1: Illustration of the three standard emphysema subtypes on CT. From left to
right: coronal views of a normal lung, a sample lung predominantly affected by centrilob-
ular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema (PSE).
The intensity window is [-1000, -700] HU.

regions surrounded by normal lung attenuation, and located centrally in the sec-

ondary pulmonary lobules (Lynch et al. 2015). Classically, its distribution is pre-

dominantly in the apical regions of the lungs;

2. Panlobular emphysema (PLE), which is commonly characterized by low-attenuation

regions uniformly diffused in the secondary pulmonary lobules (Smith et al. 2014),

and is associated with alpha1-antitrypsin deficiency. Classically, its distribution is

predominantly in the basal regions of the lungs;

3. Paraseptal emphysema (PSE), which is commonly characterized by low-attenuation

regions adjacent to pleura and to intact interlobular septa, typically found in juxta-

pleural lobules adjacent to mediastinal and costal pleura (Lynch et al. 2015). Clas-

sically, its distribution is predominantly in the upper and middle lung zones.

Illustrations of coronal views of a normal lung CT scan, and CT scans predominantly

affected by the three emphysema subtypes are provided in Fig. 1.1.

A previous study (Smith et al. 2014) evaluated emphysema subtypes that were assessed

visually on 321 CT scans by multiple readers. The study found that on patients with any
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type of emphysema, 57% had multiple subtypes present, with CLE and PSE appearing

together most frequently. Compared to controls, patients with CLE and PLE had greater

dyspnea, reduced walk distance, greater hyperinflation and lower diffusing capacity, but

patients with PSEwere similar to controls. CLEwas associated with an extensive smoking

history, but the other two subtypes were not. Only PLE was associated with reduced body

mass index. In addition, 17% of smokers without COPD on spirometry had emphysema.

Given differing risk factors (Dahl et al. 2002; Shapiro 2000), it is likely that the three

standard emphysema subtypes represent different diseases; however, pathologists dis-

agreed on the very existence of them (Anderson et al. 1964) and the large study on em-

physema - of 1,800 autopsies - ignored them completely, largely for practical reasons

(Auerbach et al. 1972). Moreover, radiologists’ interpretation of these subtypes on CT

images is labor-intensive, with substantial intra- and inter-rater variability, even in ex-

pert hands (Barr et al. 2012). Basic emphysema quantification methods (e.g. thresholding

based %emph) provide reproducible measures of emphysema in population study (Hoff-

man et al. 2009), but discards most information in individual scans and provides limited

information on emphysema subtypes.

1.4 Lung Cancer and Pulmonary Nodule

Lung cancer is the leading cause of cancer deathworldwide. It is the secondmost common

cancer in men, after prostate cancer, and in women, after breast cancer (Siegel, Miller, and

Jemal 2016). It is estimated that 222,500 new cases of lung cancerwill be diagnosed in 2017.

With an approximated 155,870 deaths, lung cancer accounts for 1 in 4 mortalities caused

by cancer. The 5-year survival rate of subjects diagnosed with lung cancer is only 18.1%
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Solid Nodules Part-solid Nodules Non-solid Nodules

Figure 1.2: Illustration of the three main categories of lung nodules on CT. From left to
right: four axial patches with solid nodules, part-solid nodules, and non-solid nodules.
The figure is adapted from (Setio et al. 2016).

(Henschke et al. 1999).

The stage of the cancer at diagnosis determines treatment options, and is strongly

correlated to survival rate. Most of the lung cancers are diagnosed at a late stage (57%),

by which they have already metastasized (5-year survival rate is 4.5%) (Siegel, Miller, and

Jemal 2016). The diagnosis is usually only made at a late stage because symptoms, such

as a persistent cough, sputum with blood, chest pain, or recurrent pneumonia, typically

do not occur until the cancer is already several centimeters in size (Ellis and Vandermeer

2011). Only when lung cancers are diagnosed at a localized stage, treatment options are

better, and the 5-year survival rate is 55%. Therefore, to reduce the high mortality rate,

there is a strong need to detect subjects with lung cancer as early as possible.

Early stage lung cancer generally manifests in the form of pulmonary nodules. A

pulmonary nodule is defined as a rounded opacity, well or poorly defined, measuring up

to 3 cm in diameter (Raghu et al. 2011). They can be grouped into three main categories:

1. Solid nodules: nodules with homogeneous soft tissue attenuation;

2. Part-solid nodules: also known as ground-glass nodules, manifest as hazy increased
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attenuation in the lung that does not obliterate the bronchial and vascular margins;

3. Non-solid nodules: consist of both ground-glass regions and a solid core with soft-

tissue attenuation.

Illustrations of the three main categories of lung nodules on CT are provided in Fig.

1.2. Predictors of cancer include larger nodule size, part-solid nodule type, upper lobe

location, spiculated morphology, and presence of emphysema (Horeweg et al. 2014). Au-

tomated detection and prediction systems that locate and classify nodules of various sizes

can assist radiologists in lung cancer diagnosis, and can therefore facilitate early lung

cancer detection and timely surgical intervention (Setio et al. 2016).

1.5 Challenges with Lung Cancer Screening

Lung cancer screening has been approved and is being implemented in the United States.

However, challenges present and discussions remain about the cost-effectiveness of lung

cancer screening. Three major challenges were identified.

The first challenge is the need to screen many high-risk individuals. Using the rec-

ommended screening criteria, it is estimated that 8.6 million Americans are potentially

eligible for screening (Siegel, Miller, and Jemal 2016). In addition, the interpretation of

lung CT screening scans is tedious, error-prone, and can take up to 10 minutes per scan

(Rubin et al. 2005). Therefore, national lung cancer screening can lead to a substantial

increase in reading efforts for radiologists.

The second challenge is the high rate of false positives. In the the large National Lung

Screening Trial (NLST) (National Lung Screening Trial Research Team 2011), the vast

8



majority of the nodules identified to be potentially cancerous were eventually benign. A

total of 96.4% of positive examinations and 24.2% of all examinations did not result in a

lung cancer diagnosis.

The third challenge is the inter-rater variability among radiologists. In the Lung Image

Database Consortium and Image Database Resource Initiative (LIDC-IDRI) study (Armato

III et al. 2011), four radiologists reviewed 1,018 CT scans and marked nodules larger than

3 mm. It was shown that complete agreement on what should be considered as a nodule

between all four radiologists was only reached on 928 out of 2,669 nodules. Substantial

variability in radiologists’ false positives rate due to difference in interpretations was also

found in a retrospective analysis of the NLST data (Pinsky et al. 2013).

To enable the implementation of a cost-effective lung cancer screening program, an

accurate and robust interpretation of the large volume of CT scans is needed. Tominimize

the number of biopsies, it would be helpful if the lung nodules can be robustly detected

and their malignancy can be predicted from the CT scans.

1.6 Proposed Alternatives

1.6.1 Unsupervised and Weakly-Supervised Machine Learning

Texture analysis on CT has received increasing interest recently (Depeursinge et al. 2014)

for computer-aid diagnosis (CAD) of lung diseases. However, most existing methods

are limited to supervised approaches (Anthimopoulos et al. 2016; Gangeh et al. 2010;

Sørensen, Shaker, and De Bruijne 2010; Xu et al. 2006) relying on manually annotated

regions of interest (ROIs) as ground truth, which are slow and labor-intensive to obtain.

9



In the era of big data, relying on massive ground truth labels to develop machine learn-

ing algorithms will become less practical, as expert time is scarce and expensive and as

scanners continue to evolve significantly. A machine learning model requiring less anno-

tations and suitable for heterogeneous scans is key for a sustainable development of CAD

systems.

In this thesis, we developed unsupervised (without annotation) andweakly-supervised

(with weak annotations, such as binary labels indicating the presence of disease tissue

in a large field of view, rather than voxel-level delineation) methods for lung texture

learning, to enable the usage of a vast amount of unannotated and weakly annotated CT

scans. More specifically, we used unsupervised machine learning and discovered novel

quantitive emphysema subtypes that went beyond the current definition of three stan-

dard emphysema subtypes for better understanding of the disease. And we used weakly-

supervised machine learning for lung nodule detection, to address the high expense and

reading efforts for more cost-effectiveness of lung cancer screening.

1.6.2 Spatial Information for Lung Texture Learning

Preliminary CT-based clinical studies suggest that regional analysis will be instrumental

in advancing the understanding of multiple pulmonary diseases (Murphy et al. 2012).

In the case of pulmonary emphysema, it is suspected that different emphysema sub-

types affect the lungs in preferential anatomical regions. But epidemiological understand-

ing of how many subtypes exist, how they evolve in time and how they vary with spa-

tial localization is still unsolved. Categorization of emphysema on CT images to date

has relied on analysis of local textural patterns, using gray-level intensity-based features
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(Binder et al. 2016; Gangeh et al. 2010; Sørensen, Shaker, and De Bruijne 2010; Xu et al.

2006), without consideration of spatial localization.

In the case of pulmonary nodules, their location has been shown to be a useful pre-

dictor of malignancy (Swensen et al. 1997), in addition to texture-based and shape-based

features. Incorporating radiological predictors for quantitative lung cancer prediction is

an active research field (Liu et al. 2017).

In this work, towards better understanding the importance of disease localization,

we proposed a standardized lung shape spatial mapping, and incorporated the spatial

information for novel lung texture learning and analysis, with specific validations on pul-

monary emphysema and nodules.

1.6.3 Usage of Large-Scale Longitudinal Cardiac CT Datasets for

EmphysemaQuantification

Cardiac CT scans, which are commonly used for the assessment of coronary artery cal-

cium scores to predict cardiac events (Detrano et al. 2008), include approximately 70% of

the lungs. Despite missing apical regions, emphysema quantification on cardiac CT was

shown to have high reproducibility, high correlation with full-lung measures (Hoffman

et al. 2009), and correlate well with risk factors of lung disease and mortality (Oelsner

et al. 2014), in population-based studies.

Large datasets of cardiac CT scans are readily available. The longitudinal cohortMulti-

Ethnic Study of Atherosclerosis (MESA, 2000-2012) (Bild et al. 2002) study contains more

than 20,000 cardiac scans, providing an invaluable opportunity for a large-scale longitu-

dinal evaluation of emphysema quantification and texture learning, as the participants in
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MESA also underwent gold-standard full-lung scanning in the most recent follow-up visit

(Exam 5, 2010-2012).

However, MESA cardiac CT scans involve heterogeneous scanner types, and their

imaging protocols are different from full-lung scans, which can cause variations in the

image intensity distribution and texture appearance, and thus hinder the visual charac-

teristics of texture patterns in emphysema-like lung.

In this work, in addition to exploiting gold-standard full-lung CT scans, we utilized

the large and longitudinal cardiac CT dataset in MESA, and developed robust emphy-

sema segmentation and texture learning methods, accounting for variabilities across im-

age domains and subjects. The proposed work enabled us to study CT image patterns of

emphysema on cardiac scans from different sites, and over 10 years of longitudinal follow-

up data, and would potentially advance the understanding of progression of emphysema

and emphysema subtypes.

1.7 Potential Impact andThesis Outline

The aim of this work is to significantly advance the CT-based lung texture learning meth-

ods by: 1) Exploiting unsupervised and weakly-supervised learning requiring less (or no)

annotations; 2) Incorporating spatial information to study lung disease locations; 3) Ex-

tending lung texture learning to large cardiac CT datasets for longitudinal study. Our

work focused on the understanding and diagnosis of two major types of lung abnormali-

ties: emphysema (associated with COPD) and nodule (associated with lung cancer).

The proposed unsupervised learning method enabled us to discover a set of novel

quantitative emphysema subtypes that were highly-reproducible. Going beyond the cur-
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rent definitions of three standard emphysema subtypes, which provide an imprecise and

non-biologically based disease definition that prevents the development of effective pre-

vention and treatment strategies for COPD, our novel radiological emphysema subtypes

have distinct CT representations and structures, are associated independentlywith unique

patterns of respiratory symptoms and clinical events, have varying physiologic charac-

teristics, and may have non-overlapping genetic associations, hence may facilitate per-

sonalized therapies.

The proposed methods for emphysema quantification and texture learning on cardiac

CT scans accounted for the domain differences in CT imaging protocols and qualities,

and would enable large-scale longitudinal studies over 10 years of follow-up, for better

understanding of the disease progression. To our knowledge, this is the first study on

longitudinal subtyping of emphysema patterns on cardiac CT scans.

The proposed weakly-supervised learning for lung nodule detection achieved com-

petitive performance compared to a fully-supervised method, yet requiring 100 times less

annotations. Based on that, we further proposed novel method to estimate lung cancer

risks with scan-level diagnostic labels, which are easy to acquire in clinical scenarios.

Automated methods that enable estimating early lung cancer risks based on CT images

are important for a more cost-effective lung cancer screening program with less reading

efforts and minimal number of biopsies.

Overall, the proposed work would enable the usage of a vast amount of unannotated

andweakly annotated CT scans. Successful applications would potentially have a tremen-

dous impact in the field, for diseases that affects millions around the world.

Hence, this thesis is organized to present the three main components: 1) Unsuper-
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vised learning to discover novel quantitative emphysema subtype on CT; 2) Extending

emphysema lung texture learning to cardiac CT scans; 3) Weakly-supervised learning for

lung nodule detection and lung cancer prediction.

In Chapter 2, we will overview the CT datasets that are used in this thesis. In Chapter

3, we will present the unsupervised learning framework to discover novel emphysema

subtypes, which incorporates spatial and texture features. We call the discovered pat-

terns the spatially-informed lung texture patterns (sLTPs). The proposed method is first

evaluated on the MESA COPD dataset (Thomashow et al. 2013) for proof-of-concept, and

is then evaluated on a large full-lung CT cohort of COPD and normal controls, SubPopu-

lations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) (Couper et al.

2013). To extend emphysema texture learning to the MESA cardiac CT scans, we will first

present, in Chapter 4, an emphysema segmentation method based on the hidden Markov

measure field (HMMF) model (Häme et al. 2014) to handle scanner and subject variability

in MESA. Then we will present, in Chapter 5, a deep-learning method based on unsu-

pervised domain adaptation (Ganin et al. 2016) to learn domain-invariant features across

full-lung versus cardiac imaging scanners and protocols (the “domains”). In Chapter 6,

we will present a weakly-supervised learning method for lung nodule detection and can-

cer prediction based on convolutional neural networks (CNNs). Finally, Chapter 7 will

provide the summary and discussions, and Chapter 8 will present the publication list and

competition performance related to this thesis.
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Chapter 2

Data and Preprocessing

2.1 Available CT Data

Thiswork includes CT scans (full-lung and/or cardiac CT) and related demographic/clinical

measures from the following cohorts:

1. Multi-ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002), including longitu-

dinal cardiac CT scans at baseline and four follow-up visits, and full-lung CT scans

in the most recent visit;

2. MESA COPD (Thomashow et al. 2013), including cross-sectional full-lung CT scans;

3. SubPopulations and InteRmediate OutcomeMeasures In COPD Study (SPIROMICS)

(Couper et al. 2013) with cross-sectional full-lung CT scans;

4. The Lung ImageDatabase Consortium and ImageDatabase Resource Initiative (LIDC-

IDRI) (Armato III et al. 2011) with cross-sectional full-lung CT scans;

5. Kaggle Data Science Bowl 2017 (DSB2017)1 with cross-sectional full-lung CT scans.

We summarize the image data being used in Table 2.1.

The participants in the studies and the imaging protocols used to acquire the CT scans

are described in the sections below. More detailed information can be found in their liter-

1https://www.kaggle.com/c/data- science-bowl-2017
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Table 2.1: Overview of image data used in this work, including three cohorts for emphy-
sema and COPD study (MESA, MESA COPD and SPIROMICS) and two cohorts for nodule
and lung cancer study (LIDC-IDRI and Kaggle DSB2017).

Study Nppt Nscan Ntype Nyear Lung Disease

MESA† 6,814 31,228‡ cardiac 11 12 Emphysema & COPD

3,131 full-lung 4

MESA COPD 321 317§ full-lung 3 - Emphysema & COPD

SPIROMICS 3,200 3,200 full-lung 9 - Emphysema & COPD

LIDC-IDRI 1,010 1,018 full-lung 17 - Nodule & Lung Cancer

Kaggle DSB2017 2,101 2,101 full-lung n/a - Nodule & Lung Cancer

Nppt = number of participants in the study;

Nscan = number of CT scans;

Ntype = number of scanner types;

Nyear = years of follow-up.

†MESA cardiac CT scans were acquired at visits 1-4 in 2000-08 with axial CT scanners, and at

visit 5 in 2010-2012 with helical CT scanners; full-lung CT scans were acquired at visit 5 in

2010-12 with helical CT scanners.

‡Most subjects had two repeated cardiac scans per visit at visit 1-4, while there is one full-lung

scan and one cardiac scan in visit 5.

§ Four CT scans are discarded due to data corruption or incomplete lung field of view.

atures for study designs respectively. The subsequent chapters describing the performed

studies include additional information that was specific to each experiment.

The CT scans in MESA study, MESA COPD study and SPIROMICS are available in the

Heffner Biomedical Imaging Lab. The CT scans in LIDC-IDRI and Kaggle DSB2017 are

publicly available online.
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2.1.1 MESA

MESA is a prospective cohort study, which recruited 6,814 men and women in 2000-2002

at six US field centers from four racial/ethnic groups, who were aged 45-84 years and

free of clinical cardiovascular disease. All 6,814 of these MESA participants underwent

cardiac CT scanning at enrollment with either electron beam CT (EBT, Imatron C-150

scanners) or multi-detector CT (MDCT, GE LightSpeed or Siemens S4+ Volume Zoom

scanners). Scans were performed under a standardized protocol by designated, MESA-

certified, experienced radiology technologists under the supervision of the reading center

co-investigator. Axial images were reconstructed with an isotropic pixel resolution in the

range [0.44, 0.78] mm, and a slice thickness of 2.5 or 3.0 mm.

The MESA Lung study performed spirometry tests, quantitative lung measures, and

assessed cotinine levels on all MESA cardiac CT scans in addition to acquiring gold-

standard full-lung CTs for 3,200 participants on 64-slice helical scanners in 2010-12, fol-

lowing the MESA-Lung/SPIROMICS full-inspiration protocol (Sieren et al. 2016). Full-

lung images were reconstructed with an in-plane pixel resolution in the range [0.47, 0.92]

mm and a slice thickness of 0.625 or 0.75 mm.

2.1.2 MESA COPD

The MESA COPD study includes 321 subjects who were aged 50-79 years, with 10 or

more pack-year smoking history and who did not have clinical cardiovascular disease,

stage IIIb-V kidney disease, asthma prior to age 45 years, other lung disease, prior lung

resection, cancer, allergy to gadolinium, claustrophobia, metal in the body, pregnancy or
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weight > 300 lbs. Among the 321 subjects, 192 were recruited from the MESA study, and

the rest were recruited from the EMCAP study (Barr et al. 2007), which is a cohort study

of smokers. Full-lung CTs were acquired with Siemens and GE 64-slice scanners, at 120

kVp, 0.5 seconds, with 200 mA for the EMCAP participants, and current (mA) set by body

mass index (BMI) for the MESA participants, following the MESA-Lung/SPIROMICS full-

inspiration protocol (Sieren et al. 2016). Images were reconstructed with an in-plane pixel

resolution within the range [0.58, 0.88] mm, and a slice thickness of 0.625 mm.

2.1.3 SPIROMICS

The SPIROMICS recruited 3,200 participants (2,400 patients with COPD, 600 smokers

without COPD and 200 non-smokers without COPD) aged 40-80 years old in six US field

centers. All participants underwent the CT scan at baseline and one-year follow-up. The

lung CT scanning protocol in SPIROMICS is identical to that in MESA Lung. Images were

reconstructed with an in-plane pixel resolution within the range [0.48, 0.98] mm, and a

slice thickness of 0.625 or 0.75 mm.

2.1.4 LIDC-IDRI

The LIDC-IDRI dataset is a web-accessible international resource for development, train-

ing, and evaluation of CAD methods for lung cancer detection and diagnosis. Seven aca-

demic centers and eight medical imaging companies collaborated to create this resource.

The dataset contains 1018 cases, each of which includes a clinical thoracic CT scan and an

associated record of lung nodule annotation process performed by four experienced tho-

racic radiologists. Four scanner manufacturers and 17 models were represented, and four
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types of convolution kernels were used for image reconstruction. The in-plane pixel res-

olution ranged from 0.46 to 0.98 mm (mean = 0.69 mm), and the slice thicknesses ranged

from 0.45 to 5.0 mm (mean = 1.74 mm).

2.1.5 Kaggle DSB2017

The Kaggle DSB2017 dataset is provided by the public Kaggle Data Science Bowl 2017

international competition for early lung cancer detection, which involves 2,101 patients

who were high-risk of lung cancer. Each patient is associated with a full-lung CT scan

and a pathological diagnosis of with/without early lung cancer. While the CT scans vary

in scanner, acquisition time and image quality, only necessary information such as patient

ID, in-plane pixel resolution ([0.49, 0.98] mm, mean = 0.68 mm) and slice thickness ([0.625,

3.0] mm, mean = 1.71 mm) is provided to encourage the development of CAD methods

that are invariant to acquisition conditions.

2.2 Preprocessing

2.2.1 Lung Mask Segmentation

Along with CT scans in MESA study, MESA COPD study and SPIROMICS study, lung

mask files were generated by the APOLLO® software (VIDA Diagnostics, Iowa). For CT

scans in LIDC-IDRI and Kaggle DSB2017, lung masks were segmented with a classic lung

segmentation method, by:

1. Applying an intensity threshold of -400 HU and locating the largest connected ob-

jects in the resulting binary mask (Hu, Hoffman, and Reinhardt 2001);
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Figure 2.1: Illustration of lung and airway segmentation results on a sample CT scan in
the preprocessing stage. (Left) Coronal view of a sample lung CT intensity image; (Middle)
Coronal view of the segmentation of lung (green) and airway (blue); (Right) 3D view of
the segmentation of lung (green) and airway (blue).

2. Removing trachea and some of the large airways using closed space dilation (Ma-

sutani, Masamune, and Dohi 1996).

The segmentation results of lung and airway are illustrated in Fig. 2.1 for a sample

full-lung CT scan.

2.2.2 Emphysema Segmentation

In the proposed work, emphysema was segmented from the lungs using two approaches:

a traditional thresholding-based approach, and a preliminary segmentation tool based on

the hidden Markov measure field (HMMF) (Häme et al. 2014).

In the thresholding-based segmentation, regions of lung with attenuation < -950 HU

were segmented as emphysema (denoted as %emph−950). This threshold has been previ-

ously validated against autopsy specimens and is commonly used in large clinical studies

(Oelsner et al. 2014; Yang et al. 2016a).

The HMMF segmentation (denoted as %emphHMMF) method is a prior work in the

Heffner Biomedical Imaging Lab. It provides robust emphysema segmentation, which has
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Figure 2.2: Illustration of HMMF-based emphysema segmentation result on a sample
full-lung CT scan in the preprocessing stage. (Left) Coronal view of a sample lung CT
intensity image; (Middle) Coronal view of the intermediate measure field values, in the
range of [0,1], in the HMMF segmentation model; (Right) Coronal view of final HMMF-
based binary segmentation result. This figure is adapted from (Häme et al. 2014).

been demonstrated in heterogeneous full-lung CT scans in (Häme et al. 2014). It enforces

spatial coherence of the labeled emphysematous regions within neighborhood cliques via

Markovian regularization weight, and relies on parametric modeling of intensity distri-

butions within emphysematous and normal lung tissue to adapt to individual and scanner

variability. The HMMF model first optimizes an intermediate Markov measure field out-

put, which estimates the probability of each voxel belonging to the emphysema class, and

then computes the final emphysema segmentation. A Gaussian distribution is used to

characterize the intensity of emphysema class, and a skew-normal distribution is used to

characterize the intensity for normal lung tissue. The intermediate Markov measure field

values and emphysema segmentation result using HMMF are illustrated in Fig. 2.1 for a

sample full-lung CT scan.

In Chapter 4, we will also present a dedicated framework which extends the HMMF-

based model for robust emphysema segmentation on heterogeneous and longitudinal car-

diac CT scans in MESA.
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Chapter 3

Unsupervised Learning of Spatially-Informed Lung Texture

Patterns for Pulmonary Emphysema

3.1 Introduction

Pulmonary emphysema is morphologically defined by the enlargement of airspaces with

destruction of alveolar walls distal to the terminal bronchioles (Aoshiba, Yokohori, and

Nagai 2003). Emphysema overlaps considerably with chronic obstructive pulmonary dis-

ease (COPD), which is currently the 4th leading cause of deathworldwide, and is projected

to be the 3rd leading cause of death in 20201.

Based on small autopsy series, pulmonary emphysema is traditionally subcategorized

into three standard subtypes: centrilobular emphysema (CLE), panlobular emphysema

(PLE) and paraseptal emphysema (PSE). The three standard emphysema subtypes are as-

sociated with different risk factors and clinical manifestations (Dahl et al. 2002), and are

likely to represent different diseases.

However, given that these subtypes were initially defined at autopsy before the avail-

ability of CT scanning, there have been disagreements among pathologists on the very

existence of such pure subtypes (Anderson et al. 1964), and a large emphysema study on

1http://www.goldcopd.org/
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1,800 autopsies (Auerbach et al. 1972) ignored them completely, mainly for practical rea-

sons. Radiologists’ interpretation of these subtypes on CT scans is labor-intensive, with

substantial intra- and inter-rater variability (Smith et al. 2014).

Automated CT-based analysis enables in vivo study of emphysema patterns, and has

received increasing interest recently (Depeursinge et al. 2014; Mets et al. 2012), either via

supervised learning for replicating emphysema subtype labeling as in (Asherov, Diamant,

and Greenspan 2014; Gangeh et al. 2010; Ginsburg et al. 2012; Sørensen, Shaker, and De

Bruijne 2010), or via unsupervised learning for the discovery of new emphysema subtypes

as in (Binder et al. 2016; Häme et al. 2015b; Yang et al. 2016b).

Preliminary CT-based clinical studies suggest that regional analysis will be instrumen-

tal in advancing the understanding of multiple pulmonary diseases (Murphy et al. 2012).

In the case of pulmonary emphysema, it is suspected that different subtypes of emphy-

sema affect the lungs in preferred anatomical region. But physiological understanding

of how many subtypes exist, how they evolve in time and how they vary with spatial

location is still unsolved.

To date, categorization of emphysema onCT images has relied only on analysis of local

textural patterns, using either grey-level co-occurrencematrix (GLCM) features (Ginsburg

et al. 2012), texton features (Gangeh et al. 2010), or local binary pattern (LBP) features

(Sørensen, Shaker, and De Bruijne 2010). All these approaches use intensity information

without consideration of spatial location.

In two previous studies (Häme et al. 2015b; Yang et al. 2016b), we proposed to use local

textural patterns to generate unsupervised lung texture patterns (LTPs) followed by LTP-

grouping based on their spatial co-occurrence in local neighborhoods. Such separate use
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of intensity and spatial information cannot guarantee spatial and textural homogeneity

of the final LTPs. Therefore, we propose to perform discovery of LTPs via unsupervised

clustering of joint spatial and textural information of local patterns on CT. Spatial infor-

mation can be inferred from crude partitioning of the lung with subdivisions of Cartesian

coordinates or by segmenting the lung into zones (e.g. upper, lower) (Smith et al. 2014) or

lobes (Hoffman et al. 2003). However, such approaches have limited spatial precision and

lack relative information such as peripheral versus central positioning, which is important

in defining paraseptal emphysema and subpleural bullae.

In this work, we first propose a new standardized lung shape spatial mapping, called

Poisson distance conformal mapping (PDCM), which enables detailed, precise and stan-

dardized mapping of voxel positions with respect to the lung surfaces. And we exploit

the proposed mapping for the study of emphysema spatial patterns across populations

of CLE-, PLE- and PSE-predominant subjects, without registration being required besides

orientation alignment. Thenwe propose a two-stage unsupervised learning framework to

discover emphysema-specific lung texture patterns, which we call the spatially-informed

LTPs (sLTPs).

For a proof-of-concept, we first exploit the proposed the method using a cohort of

317 full-lung CT scans from the MESA COPD study (Thomashow et al. 2013), and 22

longitudinal CT scans from the EMCAP study (Barr et al. 2007). The discovered sLTPs

are evaluated in terms of their reproducibility, and ability to encode standard emphy-

sema subtypes. Then we apply the unsupervised learning framework to a large cohort,

the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS)

(Couper et al. 2013), which contains CT scans of 2,922 individuals of COPD subjects and
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normal controls. Then we use the discovered patterns to label all CT scans in SPIROMICS

and another large cohort, the MESA Lung Study (Bild et al. 2002), and evaluate the dis-

covered patterns extensively in terms of their associations with respiratory symptoms,

clinical events, physiologic characteristics, and genetic variants.

3.2 Method

3.2.1 Overview

The proposed framework is structured in four main steps to model the spatial and texture

features within emphysema-like lung, and generate the emphysema-specific sLTPs:

1. Generate spatial mapping of the lungmasks: mapping voxels within the lungmasks

into a custom Poisson distance map (PDM) to encode the “peel to core” distance,

and a conformal mapping to distinguish superior versus inferior, anterior versus

posterior and medial versus lateral voxel positions;

2. Encode regions of interest (ROIs) within emphysema-like lung: sampling ROIs from

emphysema segmentation masks, and generating spatial features (based on spatial

mapping) and texture features of each ROI;

3. Discover an initial set of LTPs: clustering training ROIs into a large number of clus-

ters, based on texture features, and then iteratively augment the LTPs with spatial

information via customized regularization and penalty terms;

4. Generate the final set of sLTPs: measure the similarity between LTPs in the initial

set, and then group similar / redundant LTPs and generate the final set of sLTPs via

partitioning the similarity graph.
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Figure 3.1: Illustration of the proposed lung shape spatial mapping. (a) Coronal slice of a
sample CT image (green contour indicates the boundary of lungmask); (b) Corresponding
Poisson distance map (PDM)U3d with values in range [0, 1] that measure the “peel to core”
distance to the lung mask external surface; (c) Modified PDM Umod, for comparable core
locations between subjects; (d) Conformal mapping of the lung PDM to a sphere leading
to a Poisson distance conformal map (PDCM) where pixels are assigned three coordinate
values (r, θ, ϕ) which enable to distinguish superior vs. inferior, anterior vs. posterior
and medial vs. lateral positions, in addition to “peel to core” distance.

We now detail these steps individually in sections below.

3.2.2 Spatial Mapping of the Lung Masks

To generate spatial mapping of the lung masks, we first use the concept of Poisson dis-

tance map (PDM), introduced in (Gorelick et al. 2006), to encode the shape of individual

lung masks V . PDM is commonly used for characterizing the silhouette of an object via

continuous labeling of voxel positions with scalar field values U in the range of [0, 1]. In

our case, the field value U encodes the “peel to core” distance between a given voxel and
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the external lung surface ∂V . This field is computed by solving the following Poisson

equation:

∆U(x, y, z) = −1, for (x, y, z) ∈ V

subject to U(x, y, z) = 0, for (x, y, z) ∈ ∂V

(3.1)

where ∆U = Uxx + Uyy + Uzz .

The solution for U proposed in (Gorelick et al. 2006) is guaranteed to be smooth ac-

cording to (Haidar et al. 2006). It has the advantage of generating distance values that are

sensitive to global shape characteristics, unlike other distance metrics (e.g. Euclidian or

Metropolis distances) which exploit single contour points. PDM can therefore reflect rich

shape properties of the lung.

The core of the PDM is the set of voxels (one or very few) with the largest U value.

The PDM generated from a lung surface generally exhibits nice star-shaped profiles when

viewed in axial cuts, with a unique maxima in the center. On the other hand, core posi-

tions can vary greatly among subjects along superior-inferior axis, due to variable mor-

phologies of the lungs, especially near the heart and at the base. We illustrate an example

in Fig. 3.1 (b) where the PDM generated with Equation (3.1) has core point(s) located very

low within the lung rather than concentrated toward the middle of the longitudinal axis.

We propose the following approach to calibrate lung PDMs targeting high values of U

concentrated near the skeleton of the lung shapes and in the mid-level slices.

We denote Umax(Si) the maximal in-slice value of U , where Si is the axial slice level

with i in ascending order from the apex. We denote SV % the slice level with V % of total

lung volume above. A normalized version (denoted as U2d), of the original PDM (denoted
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as U3d), is then defined, per axial slice Si, as U2d(Si) = U3d(Si)/U
max
3d (Si).

We further modify U by combining U3d and U2d values. First, two axial slice levels Si′u

and Si′d
, corresponding to the most apical and basal slice levels of local maxima in U3d,

are identified as:

i′u = argmax
x

[
Umax
3d (Si) < Umax

3d (Sx),∀ i < x
]

i′d = argmin
x

[
Umax
3d (Si) < Umax

3d (Sx),∀ i > x
] (3.2)

We then define two reference slice levels Siu and Sid as:

Siu = min(S25%, Si′u)

Sid = max(S75%, Si′d
)

(3.3)

The reference levels Siu and Sid are exploited to ensure that the modified core regions

reach at least extremal levels S25% and S75%, with the following modification of the U

values into the modified PDM (denoted as Umod):

Umod(Si) = U2d(Si), ∀ iu ⩽ i ⩽ id

Umod(Si) = U3d(Si)/U
max
3d (Siu), ∀ i < iu

Umod(Si) = U3d(Si)/U
max
3d (Sid), ∀ i > id

(3.4)

We illustrate in Fig. 3.1 (c) an example of Umod which takes similar maximal values

(equal to 1) over a large mid-level extent along the superior-inferior axis and exhibits

decreasing values when moving toward the apex or the base of the lung.

This simple calibration enables us to equip the PDMwith a coordinate system centered
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at a core localized on axial slice level S50% (ensuring a balanced numbers of voxels above

and below), where the core is defined as the point with Umod = 1, and closest to the 2D

center of mass, for the sake of simplicity.

To uniquely encode 3D voxel positions, we define radial values r = 1 − Umod and

add conformal mapping of voxels positions onto a sphere, generating a Poisson distance

conformal map (PDCM). We encode superior versus inferior, anterior versus posterior

and medial versus lateral voxel positioning via latitude and longitude angles (θ, ϕ) with

respect to the PDM core defined above and standard image axis. The generation of the

spatial PDCM mapping is illustrated in Fig. 3.1 (d).

The PDCM spatial mapping will be exploited for sLTP learning. Furthermore, we can

use PDCM to study population-based spatial distributions of pulmonary diseases. In this

chapter, we exploit PDCM to study emphysema spatial location, as reported in Section

3.3.2. Later on in this thesis (Chapter 6 Section 6.3.3), we will also exploit PDCM to study

the spatial location of lung nodules.

3.2.3 Texture and Spatial Features

Prior Emphysema Segmentation and ROI Sampling

Texture and spatial analysis is performed within local ROIs centered on a subset of lung

voxels. Sampling ROIs from emphysema-like lung requires prior emphysema segmen-

tation. In this work, we exploit two training cohorts (MESA COPD and SPIROMICS) of

full-lung CT scans and their associated emphysema masks, which are generated using

both a thresholding-based voxel selection and a hidden Markov measure field (HMMF)

segmentation (Häme et al. 2014).
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For thresholding, voxels with attenuation values below −950 HU are selected. This

threshold has been previously validated against autopsy specimens and is commonly used

in large clinical studies (Hoffman et al. 2014; Yang et al. 2016a). The HMMF segmentation

enforces spatial coherence of the labeled emphysematous regions, and relies on scanner-

specific and subject-specific parametric modeling of intensity distributions within em-

physematous and normal lung tissues to adapt to individual and scanner variability (more

details are in Chapter 4). With the two sets of emphysema masks, percent emphysema

measurements quantify the proportion of emphysematous voxels within the lung region,

and are denoted %emph−950 and %emphHMMF.

We experimented several options for ROI sampling in preliminary implementations

such as keypoint sampling in (Häme et al. 2015b) and regular sampling in (Yang et al.

2016b). In this study, we use the systematic uniform random sampling (SURS) strategy as

suggested in (Puliyakote et al. 2016) for use on lung CT scans. Each individual lung mask

is randomly sampled via dividing the bounding box of each lung into 3D regular stacks,

and then selecting voxels per stack with a random shift of positions. Two parameters are

used for the sampling: β1 is used for the random shift of positions and β2 is used to set the

number of sampled voxels per stack. The SURS sampling ensures even representation of

all lung regions while introducing variability in the position of sampled points with the

random shift parameter β1.

When applying the learning algorithm to the MESA COPD dataset, we select only

ROIs with both percent emphysema measures %emph−950 and %emphHMMF larger than

1% for training to ensure sufficient representation of emphysematous regions (i.e. each

training ROI has a minimal proportion of emphysema but can be a mixture of normal
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and emphysematous tissues). The threshold 1% here is a pre-fixed value, that we consider

to be sufficient to include early emphysema signals. When applying the algorithm to

the SPIROMICS and MESA Lung Study, the ROI selection is based on subject-specific

threshold values computed by a reference equation (Hoffman et al. 2014). More details

are provided in Section 3.4.

Texture Features

We use texton-based texture features to characterize each ROI, which model texture as

the repetition of a few basic primitives (called textons), and were shown to outperform

other texture features in unsupervised lung texture learning in (Yang et al. 2016b).

First, we generate small-sized random patches from the training ROIs. A texton code-

book is constructed by retaining the cluster centers (textons) of intensity values from

those small-sized training patches. The clustering is performed with K-means.

Then, for each ROI, we extract all small-sized patches in a sliding window manner,

and compute their voxel intensity distance to the textons. By projecting all small-sized

patches of a ROI onto the codebook via searching for the closest textons, the texton-based

feature of this ROI is the normalized histogram of texton frequencies.

Spatial Features

To generate spatial features of individual ROIs, we divide the lung masks into lung sub-

regions via discretizing our lung shape spatial mapping. For the sake of simplicity, we

define lung sub-regions by dividing r ∈ [0, 1] into 3 regular intervals to distinguish core

to peel regions, dividing θ ∈ [0, 2π] into 4 regular intervals to distinguish anterior, medial,

posterior and lateral regions, and dividing ϕ ∈ [−π/2, π/2] into 3 regular intervals to
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distinguish inferior, mid-level and superior regions. The spatial feature of each ROI is

a one-hot vector indicating the lung sub-region it belongs to. Ordering of the bins that

represent the sub-regions is done via arbitrary spatial rastering as no assumption needs

to be made on spatial adjacency of adjacent bins.

3.2.4 Initial Augmented LTPs

Our discovery of spatially-informed lung texture patterns (sLTPs) is formulated as an un-

supervised clustering problem. One key factor in unsupervised clustering is the choice

of number of clusters. The algorithm is expected to find quantitative emphysema sub-

types that are finer-grained than the three standard emphysema subtypes. Therefore, the

number of clusters should be large enough to handle the diversity of textures encoun-

tered in the lung volumes (i.e. good intra-cluster homogeneity), and on the other hand,

be small enough to avoid redundancy (i.e. good inter-cluster differences) for better clin-

ical interpretation. A simple one-stage clustering is suboptimal since it requires tuning

or a pre-fixed number of clusters, and may not be able to preserve rare patterns. There-

fore, we propose a two-stage learning strategy, where we first generate an empirically

large number of fine-grained lung texture patterns (LTPs), and then group similar LTPs

to produce the final set of sLTPs, according to a dedicated metric.

LTPs {LTPk} ({·} denotes a set of variables hereafter) are characterized by their spa-

tial and texture feature centroids, which are encoded as histograms, and are enforced for

intra-class similarity and inter-class separation. For a given LTPk, its texture centroid
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Algorithm 1: Generating and Augmenting LTPs

Input : NLTP : Target number of LTPs;

{x, FTx, FSx} : Training ROIs x along with their

texture features FTx and spatial features FSx.

Output: {FTLTPk
, FSLTPk

}k=1,...,NLTP
: LTP texture and spatial feature centroids.

Procedure:

- Cluster training ROIs {x} into NLTP clusters with {FTx}, using K-means.

- Set t = 0, and initialize Λ(0)
LTPk

(k = 1, ..., NLTP ) with the NLTP LTPs.

- For each k, compute FT
(0)
LTPk

, FS
(0)
LTPk

based on Λ
(0)
LTPk

.

while t = 0 or {Λ(t)
LTPk
} ̸= {Λ(t−1)

LTPk
} do

1. t = t+ 1;

2. {Λ(t)
LTPk
} ← {Λ(t)

LTPk
}∗ following Equation (3.6);

3. Compute {FT
(t)
LTPk

, FS
(t)
LTPk
} based on {Λ(t)

LTPk
}.

end

FTLTPk
and spatial centroid FSLTPk

are computed as:

[
FTLTPk

, FSLTPk

]
=

1

|ΛLTPk
|

∑
x∈ΛLTPk

[
FTx, FSx

]
(3.5)

where FTx and FSx are respectively the texture feature and spatial feature of a ROI x,

and ΛLTPk
denotes the set of ROIs that are labeled as LTPk.

An initial set of LTPs is generated by clustering with texture features, and is then

augmented with spatial regularizations via iteratively updating {FTLTPk
, FSLTPk

} and

{ΛLTPk
}. The generation and augmentation of LTPs are summarized in Algorithm 1.

Designing proper distance metrics for histograms plays a crucial role in many com-

puter vision tasks. Two popular choices are the χ2 and the ℓ2 distance metrics. The latter
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equally weights distances of all bins and is favored to compare one-hot vectors, while

the former is a weighted distance and is favored to compare probability distributions. In

our case, texture feature histograms encode distributions over textons, and the χ2 met-

ric is used. On the other hand, spatial features are sparse one-hot vectors for individual

ROIs and we chose the ℓ2 metric to favor spatial centroids being concentrated in specific

lung sub-regions. We therefore propose a mixed χ2-ℓ2 similarity metric to enforce spatial

concentration of LTPs while preserving their intra-class textural homogeneity:

{
Λ

(t)
LTPk

}∗
{λ,W,γ} = argmin

{Λ(t)
LTPk

}

∑
k

∑
x∈Λ(t)

LTPk

(3.6)

χ2
(
FTx, FT

(t−1)
LTPk

)
+ λ ·W ·

∣∣∣∣∣∣FSx − FS
(t−1)
LTPk

∣∣∣∣∣∣2
2
+

γ · 1
[
χ2

(
FTx, FT

(t−1)
LTPk

)
> max

x′∈Λ(t−1)
LTPk

χ2
(
FTx′ , FT

(t−1)
LTPk

)]

where
{
Λ

(t)
LTPk

}∗
{λ,W,γ} denotes the optimal value identifiedwith a set of parameters {λ,W, γ}

at iteration t. The first distance metric χ2(·) measures the χ2 distance between the tex-

tural feature of a ROI x and LTPk. The second distance metric || · ||22 measures the ℓ2

distance between the spatial feature of a ROI x and LTPk. A textural penalty term is then

introduce as the third term, where 1 is the indicator function.

Minimization of Equation (3.6) (step 1 in Algorithm 1) is performed via exhaustive

search over all possible values of {Λ(t)
LTPk
}. Update of LTP centroids (step 2 in Algorithm

1) is performed after relabeling each ROI to the LTP to which it has the smallest weighted

feature distances without turning on the penalty.

Parameter W : This parameter is used to scale contributions between textural distance
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and spatial distance terms so that λ can be tuned within a small range of values. We

defined it as:

W =
SSTT

SSTS

=

∑
x χ

2 (FTx,
∑

x FTx/N)∑
x ||FSx −

∑
x FSx/N ||22

(3.7)

where SSTT and SSTS are respectively the texture and spatial total sum-of-square dis-

tances, computed on the wholeN training ROIs to measure the overall diversity of texture

and spatial features.

Parameter λ: This parameter controls the spatial regularization which will inevitably

decrease textural homogeneity of individual LTPs. The value of λ is set as follows. First we

define SSWT as the initial sum-of-square within-cluster homogeneity of texture features

without spatial regularization:

SSWT =
∑

k

∑
x∈Λ(0)

LTPk

χ2
(
FTx, FT

(0)
LTPk

)
(3.8)

Then we define SSW λ
T as the SSWT measured on augmented LTPs with spatial regular-

ization enforced with λ ∈ [0, 2]. Final value of λ is set to:

λ∗ = argmax
λ

[
∆SSWT (λ) < LT

]
where ∆SSWT (λ) =

SSW λ
T − SSWT

SSWT

% (3.9)

In the context of unsupervised discovery, we hereby spatially regularize the augmented

LTPs via an empirically acceptable textural homogeneity loss with the threshold LT (set

based on data observations, as reported in Section 3.3).

Parameter γ: This parameter weights the textural penalty term which is used for ROI

labeling. We set γ = ∞ to prevent a ROI from being labeled to a spatially preferred but
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texturally dissimilar LTP.

3.2.5 Final Spatially-Informed LTPs (sLTPs)

In this final step, we generate sLTPs by partitioning a weighted undirected graphGwhere

nodes are theNLTP initial augmented LTPs. To define weighted edges between nodes, we

rely on replacement tests. We first defineNLTP subsets of augmented LTPs as {LTPk}k ̸=i

(i.e. withoutLTPi in the subset of LTPs) for i = 1, 2, ..., NLTP . Labeling again all training

ROIs with these subsets, we definedNLTP sets of labeled dataΛLTPi→j
as the ROIs labeled

as LTPj when using {LTPk}k ̸=i. In the replacement tests, a ROI with a textural distance

toLTPk exceeding themaximal within-cluster textural distance ofLTPk is not re-labeled.

Therefore, defining Ni→j = |ΛLTPi→j
|, we guarantee that

∑
k Ni→k/Ni ⩽ 1 for Ni =

|ΛLTPi
|when all augmented LTPs are used for labeling. We define similarity weightsGi,j

as a measure of replacement ratios of LTPi into LTPj and vice versa:

Gi,j =
Ni→j +Nj→i

Ni +Nj

· Ei,j (3.10)

The binary variable Ei,j controls the existence of an edge between LTPi and LTPj . To

prevent weak associations of LTPs that are not easily replaceable, we define this binary

variable as:

Ei,j = 1

(∑
k Ni→k

Ni

> η

)
· 1

(∑
k Nj→k

Nj

> η

)
(3.11)

The threshold parameter η is set to 0.5 focusing on the elimination of LTPs via graph parti-

tioning that are replaceable in at least 50% of the training ROIs. Indeed, graph partitioning

tends to preserve nodes that are not connected, which in our case would correspond to
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LTPs that are not easily replaced by other ones in the labeling task.

We use the Infomap algorithm (Rosvall and Bergstrom 2008) to partition the similarity

graphG. We define the frequency of each node onG as the sum of the similarity weights

of connected nodes divided by twice the total weight in G. Then, each node is encoded

with Huffman coding, where short codewords are assigned to the high-frequency nodes

and long codewords are assigned to the low-frequency ones. Infomap then finds an ef-

ficient description of how information flows on the network. By detecting the partition

that minimizes the description length of the network, Infomap returns a final set of sLTPs

with guaranteed global optimality.

Texture and spatial centroids {FT sLTPk
, FSsLTPk

} of the sLTPs {sLTPk} are then

computed with Equation (3.5) utilizing the ROIs labeled with {LTPk}.

3.2.6 Labeling of CT Scans with sLTPs

In the test stage, scans in the whole dataset are labeled by extracting sample points and

their ROIs {x}. Since it is computationally prohibitive to evaluate the textural and spa-

tial features on every voxels within the lung masks, we only label centers of ROIs that

are densely sampled using again SURS. Sampled ROIs with percent emphysema mea-

surements below the previously defined thresholds will have their center labeled as no-

emphysema class. Remaining sampled centers get a sLTP label, via minimization of the

following cost metric:

χ2(FTx, FT sLTPk
) + λ ·W · ||FSx − FSsLTPk

||22 (3.12)
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Non-sampled voxels are labeled with the sLTP index of the nearest sampled center point

via nearest neighbor search within the lung mask (i.e. using a Voronoi diagram). Labeling

lung scans with the discovered sLTPs generates histograms of sLTPs, which are efficient

lung texture signatures exploited for several tasks, as described in the evaluation sections.

3.2.7 Spatial Density Visualization of sLTPs

To study the spatial distribution of sLTPs, we generate spatial visualization by scatter

plotting of voxels labeled with individual sLTPs in sagittal projections, as follows.

We first randomly sample a initial set of ROIs over each lung via SURS sampling.

Each ROI is associated with its center point coordinates (r, θ, ϕ) in the PDCMs. To avoid

artificial higher densities on the scatter plot in regions close to the core, we adapt the

number of ROIs selected per radial regions. The r values are binned into Nr intervals

with midpoint values r1, ..., rNr to generate isovolumetric sub-volumes of the lung. We

then define the sub-sampling ratio αi = ri/rNr (which approximates the ratio of areas in

the scatter plot) and set the number of ROIs sampled per r bin toNIsoVi
= αi ·NIsoV where

NIsoV is a pre-set number of ROIs sampled in the outermost part of the lung.

All ROI centers in the sub-sampled set are converted to (x, y, z) Cartesian image co-

ordinates and accumulated in a sagittal single plane, by setting x = 0. Final density plots

of sLTPs are shown in projected radial coordinates r′ =
√
y2 + z2 and ϕ′ = atan(z/y).

We color-code each point on the sagittal projection with the following density measure:

Den
(r′,ϕ′)
sLTPk

=
|ΛsLTPk

∩ Λ(r′,ϕ′)|
|ΛsLTPk

|

/∑
i |ΛsLTPi

∩ Λ(r′,ϕ′)|∑
i |ΛsLTPi

|
(3.13)
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where Λ(r′,ϕ′) denotes the set of ROIs at (r′, ϕ′) positions. The numerator (the first term)

in Equation (3.13) measures the probability of sLTPk at projected position (r′, ϕ′), and

the denominator (the second term) measures the observed overall probability of (r′, ϕ′)

to host any sLTPi.

3.3 Experimental Results in MESA COPD Study

3.3.1 Data

Thedata used for evaluation consists of full-lung CT scans of 317 subjects. All subjects had

underwent CT scanning in theMESACOPD study (Smith et al. 2014), between 2009−2011.

In addition, 22 out of the 317 subjects underwent CT scanning in the EMCAP study (Barr

et al. 2007), between 2008−2009.

For the MESA COPD study, all CT scans were acquired at full inspiration with either

a Siemens 64-slice scanner or a GE 64-slice scanner, at 120 kVp, speed 0.5 s, and current

(mA) set according to body mass index following the SPIROMICS protocol (Couper et al.

2013). Images were reconstructed using B35/Standard kernels with axial pixel resolutions

within the range [0.58, 0.88] mm, and 0.625 mm slice thickness.

For the EMCAP study, scans were acquired with a Siemens 16-slice scanner, at 120

kVp, speed 0.5 s, and a current between 169 mA and 253 mA. Images were reconstructed

using the B31f kernel with axial resolutions within the range [0.49, 0.87] mm, and 0.75

mm slice thickness.

Emphysema subtypes and severity have previously been assessed visually in theMESA

COPD study (details available in Smith et al. 2014). The raters included four experienced
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chest radiologists from two academic medical centers. They assessed emphysema sub-

types on CT scans by assigning a percentage of the lung volume affected by CLE, PLE

and PSE respectively. Based on (Smith et al. 2014), N = 205 subjects do not exhibit

emphysema, and are used here as the control set of no emphysema (NE) subjects. The re-

mainingN = 112 subjects exhibit light (N = 53) or mild-to-severe (N = 59) emphysema.

For these subjects, predominant emphysema subtype is defined as the subtype affecting

the greatest proportion of the lungs. In the mild-to-severe cases, there are N = 37 CLE-

predominant,N = 12 PLE-predominant, andN = 10 PSE-predominant subjects. Overall

population prevalence of emphysema in the MESA COPD cohort is 27%, composed of 14%

of CLE-subtype, 9% of PSE-subtype, and 4% PLE-subtype.

3.3.2 Population Evaluation of Emphysema Using PDCM

We first demonstrate the ability of our proposed PDCM lung shape mapping to study the

spatial patterns of emphysema over a population of subjects in Fig. 3.2. For each scan in

MESA COPD study, PDCMs of voxels inside individual lungs are generated, attributing

to each voxel a coordinate (r, θ, ϕ). Voxel intensity values in PDCMs are then averaged

and visualized along two types of projections:

1. Angular projections: intensity values averaged along r for each pair of angular di-

rections (θ, ϕ);

2. Radial projections: intensity values averaged over all angular directions at a subset

of Nr = 60 regular radial positions r1, ..., rNr .
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Figure 3.2: Population evaluation of emphysema spatial distribution in MESA COPD,
using the proposed PDCM spatial mapping. (a) Illustration of PDCM-based intensity pro-
jections on a sample right lung. (b) Average intensity (in HU) on PDCM-based angular
and radial projections for MESA-COPD subjects with no emphysema (N=205); (c) Av-
erage relative intensity differences, with respect to (b), on PDCM-based projections for
MESA-COPD subjects with CLE-, PLE- and PSE-predominant emphysema (N= 37, 12 and
10 respectively).

An illustration of these two PDCM intensity projections on a sample lung are visual-

ized in Fig. 3.2 (a).

Population-average PDCMangular and radial intensity projections over subjectswith-

out emphysema (NE) are displayed in Fig. 3.2 (b). The averaged angular projection shows

a clear pattern of lower attenuations (i.e. intensity values) in the anterior versus poste-
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rior region, which agrees with the intensity gradient due to gravity-dependent regional

distribution of blood flow and air (Chabat et al. 2000; West 1963). The averaged radial

projection shows a slight gradient from core to peel regions, which is likely due to the

inclusion of voxels belonging to the mediastinal and costal pleura inside the lung mask.

Population-average PDCM intensity projections over subjects with CLE-, PLE-, and

PSE-predominant emphysema subtypes are visualized in Fig. 3.2 (c). To highlight differ-

ences with respect to the control set, we display relative values after subtraction of the

values from the corresponding NE average projection in Fig. 3.2 (b). Color coding rep-

resents relative intensity differences with more emphysema (more negative attenuation

values) corresponding to the red color.

We can see on the relative angular PDCM intensity projections that regions of normal

attenuation (green to blue) are absent for PLE-predominant subjects, whereas CLE- and

PSE-predominant subjects appear to have emphysema regions (red) concentrated in the

superior lung. The average relative radial PDCM intensity projections on emphysema

subjects show systematic higher attenuation values, with more emphysema in the core

regions for CLE-predominant subjects and more emphysema in the peel regions for PSE-

predominant subjects.

3.3.3 Qualitative Evaluation of Discovered sLTPs

For the discovery of sLTPs, 3/4 of the total scans in MESA COPD study (N=238) were

used for training, using random stratified sampling without replacement, while the other

scans (N=79) were used for testing. We summarize the setting of pre-defined parameters

for the sLTP learning in Table 3.1. In addition, spatial regularization weight λ is set via
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Table 3.1: Parameter setting for sLTP learning.

Parameters Setting
ROI size = 25 mm3, to approximate the size of secondary

pulmonary lobules
β1: random shift ∈ [0, 25] mm
(for ROI sampling)
β2: sample density = 3 samples per stack
(for ROI sampling)
# of textons: = 40, targeting 10 textons per
(for texture feature) standard emphysema subtype and

normal tissue class, according to (Yang et al. 2017)
Texton size 3×3×3 pixels, according to (Yang et al. 2016b)
# of lung sub-regions = 36, according to binning of (r, θ, ϕ)
(for spatial feature) in Section 3.2.3.
NLTP : # of LTPs in
initial set

= 100, as suggested in (Yang et al. 2016b), for sufficient
diversity of the patterns and being able to discover rare
emphysema types

empirical tuning using Equation (3.9). Based on the relative texture homogeneity loss

measure ∆SSWT , we chose LT = 1% which corresponds to λ = 1.52, above which

∆SSWT increases drastically.

A total of 12 sLTPs were discovered using the full training set, and were used to label

both the training and test scans in emphysema-like lung. Each sLTP was detected (i.e.

%sLTPk > 0) in at least 5% of scans both in training and test sets. In Fig. 3.3, we il-

lustrate in (a) the sLTP labeling of two sample CT scans; and in (b) the characteristics of

each sLTP via visual illustrations of labeled patches, average occurrence in MESA COPD

scans, and spatial distribution of their occurrence within the lungs. For the patch illustra-

tions, 9 samples were randomly selected from all available labeled ROIs. For the average

occurrence, we averaged %sLTPk values over scans with %sLTPk > 0. For the spa-
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Figure 3.3: Qualitative illustrations of discovered sLTPs in MESA COPD. (a) Two exam-
ples of lung scans and their sLTP labeled masks; (b) Characteristics of {sLTPk}k=1,..,12,
from top to bottom: texture appearance (visualized on axial cuts from 9 random ROIs);
average %sLTPk on MESA COPD scans presented within training | test | all cases; Spatial
density plots of sLTPk using labeled ROIs (legend: S = superior; I = inferior; P = posterior;
A = anterior positions).
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tial distributions, we generated spatial scatter plots of sLTP locations from labeled ROIs,

following the method described in 3.2.7, with NIsoV = 5, 000, and Nr = 60.

We can observe that patches belonging to an individual sLTP appear to be textually

homogeneous. sLTP 1 and 4 show clear spatial accumulation in superior (apical) regions,

sLTP 3, 5 and 7 in anterior regions, and sLTP 10, 11 and 12 in posterior regions. All sLTPs

returned similar occurrences in training and test sets. Some sLTPs are rare, such as sLTP

12 which covers ∼1% of the lungs when present, but is still found in 24 scans over the

whole MESA COPD cohort.

3.3.4 Reproducibility of sLTPs

Reproducibility of sLTP Labeling versus Training Sets

To test the reproducibility of sLTPs learning, we first compare the set of NsLTP = 12

sLTPs {sLTPk} generated with the full set of training scans, to Nset = 4 sLTPs sets

{sLTP c
k}(c=1,2,3,4) using subsets of training data by randomly eliminating 25% of the train-

ing scans. Reproducibility of sLTPs is evaluated on the ROI labeling task, by computing

the average overlap of labeled test ROIs with the following metric:

Rln =
1

Nset ·NsLTP

Nset∑
c=1

NsLTP∑
k=1

|ΛsLTPk
∩ Λπ(sLTP c

k )
|

|ΛsLTPk
|

(3.14)

where ΛsLTPk
denotes the set of ROIs labeled with sLTPk, and π() denotes the permu-

tation operator on the {sLTP c
k} determined by the Hungarian method (Roth et al. 2002)

for optimal matching between sets {sLTPk} and {sLTP c
k}.

Compared with the NsLTP = 12 sLTPs learned on the full training set, we discovered
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N c
sLTP = 12, 12, 13, and 13 sLTPs on training subsets. We obtain an overall labeling repro-

ducibility measure of Rln = 0.91 which corresponds to a high reproducibility level. We

then further compute the reproducibility measure, denoted as R′
ln, among training sub-

sets. The metric is similar to Equation 3.14, replacing {sLTPk} and {sLTP c
k}with sLTPs

{sLTP c1
k } and {sLTP c2

k } (c1 ̸= c2) learned on different training subsets. We obtain an

overall labeling reproducibility measure of R′
ln = 0.85 (standard deviation = 0.07).

To evaluate the contribution of spatial features in sLTP learning, we further generate

sets of lung texture patterns using only texture features (i.e. using initial LTPs without

spatial augmentation in Section 3.2.4, and setting λ = 0 for replacement test in Section

3.2.5). We discovered 11 patterns using the full training set, and 11, 11, 12 and 12 patterns

on training subsets. The reproducibility measures Rln and R′
ln are 0.84 and 0.78 (standard

deviation = 0.12) respectively, both are lower than the proposed sLTP learning, hence

confirm the benefit of adding spatial features.

Reproducibility of sLTP Labeling versus ROI Sampling

As detailed in Section 3.2.6, sLTP labeling is based on a subset of voxels setting ROI po-

sitions, using SURS-based sampling strategy, which is controlled with the parameter β2

(number of samples per stack). The selected ROIs have an influence on the final outline

of the label map, which is expected to be minor if ROIs are sampled densely enough and

if sLTPs are generic enough.

In this experiment, we test this hypothesis by generating two different sets of ROIs

on test scans using two different random seedings, and measure the reproducibility of

the generated label masks using the {sLTPk} discovered on the full training set, while

46



0
0.2
0.4
0.6
0.8

1

C
oh

en
'

K
ap

pa

1 2 3 4 5 6 7 8 9 10 11 12
sLTP index

0
0.2
0.4
0.6
0.8

1

Sp
ea

rm
an

C
or

re
la

tio
n

1 2 3 4 5 6 7 8 9 10 11 12
sLTP index

0 2 4 6 8 10 12 14 16 18 20

2

0.4

0.5

0.6

0.7

0.8

0.9

1

R
la

RlaDC

RlaCC

(a)

(b)

DC

CC

Figure 3.4: Results of sLTP reproducibility measures in MESA COPD. (a) Reproducibility
measures Rla versus ROI sampling parameter β2; (b) Reproducibility of sLTPs labeling
across scanners (from EMCAP and MESA COPD studies) measured with Cohen’s Kappa
coefficients of sLTPk presence and Spearman correlation coefficients of %sLTPk values
(white = without and black = with intensity histogram mapping).

varying the β2 parameter. We measure labeling reproducibility using the two sets of ROIs

with the following metrics:

• RDC
la (sLTPk, β2) = average of Dice coefficients of sLTP masks over all test scans;

• RCC
la (sLTPk, β2) = Spearman correlation coefficients of %sLTPk values within the

lungs over all test scans.
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We illustrate in Fig. 3.4 (a), the average, max and min values of R∗
la measures over

all {sLTPk}, for β2 ∈ [1, 20]. Both reproducibility measures increase with β2 in an

exponential manner. We obtain an average RDC
la > 0.8 when β2 > 10, corresponding to

sampling less than 0.05% points in each stack. We obtain an average RCC
la > 0.9 when

β2 > 5. Minimum Rla values always occur for sLTP 12, which is the rarest sLTP, as

reported in Section 3.3.3.

Reproducibility of sLTP Labeling versus Scanner Type

The 22 subjects from MESA COPD previously scanned within the EMCAP study, under-

went different generations of CT scanners. This subset of population is relatively normal.

The average time lapse between EMCAP and MESA COPD scans is 14-months. The mean

of %emph−950, calibrated for outside air values, is 0.7% (min < 0.1%, max = 3.9%) in EM-

CAP, and 2.6% (min = 0.3%, max = 9.5%) in MESA COPD, corresponding to an average

increase of %emph−950 equal to 1.9%. Therefore, we use this subset of scans to evaluate

the reproducibility of sLTP labeling versus scanner types.

We used the 12 sLTPs discovered on the full MESA COPD training set. Because of

differences in scanner generations (axial CT in EMCAP versus spiral CT in MESA COPD)

and radiation dose settings, intensity calibration was required, implemented in two steps:

1) equalizing the outside air mean intensity value (according to Häme et al. 2014); 2)

histogram mapping of normal lung parenchyma identified with the HMMF-based em-

physema masks. The sLTPs 2 to 12 were found to be present in both datasets, but sLTPs

{2, 3, 4, 12} occur in less than 6 pairs of scans. We report in Fig. 3.4 (b) the Cohen’s Kappa

coefficients of sLTPk presence for sLTPs 2-12, and the Spearman correlation coefficients
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of %sLTPk for the frequent sLTPs only (sLTPs 5 to 11). The Cohen’s Kappa coefficients

and Spearman correlations are all above 0.8, which confirms robust sLTP presence and

percentage labeling on the 22 subjects scanned on different scanner types in two studies.

3.3.5 sLTPs’ Ability to Encode Standard Emphysema Subtypes

When generating unsupervised lung texture patterns (either sLTPs in this work or earlier

generations of LTPs in previous work), we expect them to be finer-grained than the three

standard emphysema subtypes used in (Smith et al. 2014), while still capable to encode

them, hence linking unsupervised image-based emphysema subtyping with clinical prior

knowledge.
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Figure 3.5: Intraclass correlation (ICC) and 95% confidence interval between standard
emphysema subtype scores predicted from %sLTP versus ground-truth. Differences with
sLTP-based values are marked as ⋆ when significant (p < 0.05).

The LTPs (or sLTPs) can be interpreted as either pure or a mixture of the three stan-

dard subtypes. We hereby evaluate the ability of the generated LTPs (sLTPs) to predict

the overall extent of standard emphysema subtypes. To do this, we generate, for each

scan and per lung, two signature vectors: 1) a LTP signature histogram composed of the
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percentage of non-emphysema class (obtained as in Section 3.2.6) and the percentages of

individual LTP (sLTP) in the emphysema-like lung. This normalized histogram is called

the LTP predictor signature and is of size Npredictor = NLTP + 1; 2) a ground-truth signa-

ture composed of the percentage of non-emphysema and the three standard emphysema

subtypes, as visually evaluated in (Smith et al. 2014). A constrained multivariate regres-

sion model is used on labeled training scans to learn regression coefficients between the

LTP and ground-truth signatures, using the following optimization:

argmin
A
∥XA− Y ∥22 s.t. 0 < Ak,i < 1 and

∑
i
Ak,i = 1 (3.15)

where XNscan×Npredictor is composed of all training LTP signatures in Nscan training scans,

and YNscan×4 contains the ground-truth signatures. ANpredictor×4 is the matrix of regression

coefficients {Ak,i}, which measure the probability of a voxel labeled as a certain predictor

belonging to one of the ground-truth classes, and are therefore constrained to be in the

range of [0, 1]. Optimization of regression was solved using the CVX toolbox 2.

Quality of prediction is measured with the intraclass correlation (ICC) between pre-

dicted and ground-truth exploiting the full MESA COPD dataset. We use a 4-fold cross

validation (3/4 label masks used for training the regression and 1/4 used for testing and

measuring prediction quality). Significance of differences in ICC values was assessed us-

ing Fisher’s r-to-z transformation and a two-tailed test of the resulting z-scores.

In Fig. 3.5, we compare prediction quality with 7 sets of emphysema-specific LTPs

(re)trained on the same set of emphysematous ROIs: 1) the 12 sLTPs learned in this study;

2http://cvxr.com/cvx
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2-3) the initial set of 100 LTPs generated in this study before (denoted as LTP init-T)

and after (denoted as LTP init-TS) spatial augmentation; 4) LTPs generated by one-stage

clustering (denoted as LTP TS) of the proposed texture and spatial features, by setting

NLTP = 12 directly (this is to test the contribution of the proposed two-stage learning

in Section 3.2.4); 5-6) LTPs re-generated using Method A (Häme et al. 2015b), discovered

via graph partitioning of 100 candidates based on local spatial co-occurrence and with

NLTP = 8 as in the original work or 12; 7) LTPs re-generated using Method B (Yang

et al. 2016b), discovered via merging 100 candidates based on texture similarity and local

spatial co-occurrence, and setting NLTP = 12 for the iterative merging.

Fig. 3.5 shows that the two sets of 100 LTP models achieve overall best prediction

accuracy, and that the newly discovered 12 sLTPs have the best performance among the 5

small LTP sets. Difference of ICC values between the sLTPs and the 100 LTP models was

not significant for PLE emphysema subtype.

3.4 Experimental Results in SPIROMICS and MESA

Lung Study

3.4.1 Data

TheSPIROMICS recruited 3,200 cases of COPD and controls (N= 200 non-smokers), 40-80

years of age with≥ 20 pack-years of smoking, in 2010-2015 at 7 major sites and 5 smaller

sites (Couper et al. 2013). Exclusion criteria included other chronic lung diseases except

asthma, body mass index (BMI) > 40 kg/m2, prior lung resection, metal in the chest, and

pregnancy. TheMESA Study is a multicenter, prospective cohort study of whites, African-
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Americans, Hispanics, and Chinese-Americans (Bild et al. 2002). MESA recruited 6,814

men and women 45-84 years of age in 2000-02 from the general population in 6 commu-

nities. Exclusion criteria at baseline were clinical cardiovascular disease, weight over 136

kg, pregnancy, and impediments to long-term follow-up. The MESA Lung Study enrolled

participants sampled from MESA who underwent measurements of endothelial function,

consented to genetic analyses, and completed an examination in 2004-06 (Tamimi, Ser-

darevic, and Hanania 2012).

All participants in SPIROMICS andMESALung Study underwent full-lung chest inspi-

ratory CT on 64-slice or 128-slice helical scanners (120 kVp, 0.625-0.75 mm slice thickness,

0.5 sec. rotation time) in 2009-14 and 2010-12, respectively, following the same highly-

standardized protocol in both studies (Sieren et al. 2016) and on the same CT scanners at

4 sites that were in both studies. In addition, all MESA participants underwent cardiac

CT scans in 2000-02 (Bild et al. 2002), which provided complete imaging of the lower lung

lobe segment (Hoffman et al. 2009).

Spirometry was performed following the American Thoracic Society recommenda-

tions (Miller et al. 2005) on a dry-rolling-seal spirometer in MESA Lung Study and a pneu-

motachograph in SPIROMICS. Predicted values were calculated using reference equations

(Hankinson, Odencrantz, and Fedan 1999). COPD was defined as post-bronchodilator

FEV1-to-FVC ratio less than 0.7 (Vogelmeier et al. 2017). Dyspnea was assessed using

the modified Medical Research Council (mMRC) breathlessness scale (Norman, Sloan,

and Wyrwich 2003), with scores above 0 corresponding to increasing levels of dyspnea-

associated disability. Chronic bronchitis was defined by affirmative responses to ques-

tions about cough and phlegm production for ⩾ 3 months each year for ⩾ 2 consecutive
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years (Kim et al. 2014b). In SPIROMICS, respiratory health status was assessed using the

COPDAssessment Test (CAT) (Jones et al. 2009), and the COPD-specific St. George Respi-

ratory Questionnaire (SGRQ-C), with higher scores indicating greater impairment (Hurst

et al. 2010). The CAT test consists of 8 questions and yields a score from 0 (no impact)

to 40 (very high impact). The SGRQ-C consists of 40 questions and yields a score from

0 (no impairment) and 100 (worst possible health). The minimum clinically important

differences for the CAT and SGRQ-C scores are 2 and 4, respectively (Davey et al. 2015).

For full-lung CT scans in SPIROMICS and MESA Lung Study, we select local emphy-

sema ROIs by first segmenting voxels with attenuation below −950 HU, and then using

the upper limit of normal (ULN) (Hoffman et al. 2014) of %emph−950 to distinguish ROIs

with (%emph−950 > ULN) from without (%emph−950 ⩽ ULN) emphysema regions, to ac-

count for differences in normal population variation in percent emphysema measure. For

longitudinal cardiac CT scans in MESA, we further exploit the HMMF-based emphysema

measure %emphHMMF with adapted ULN values, given the better longitudinal performance

of %emphHMMF as demonstrated in (Yang et al. 2016a, and more details in Chapter 4).

3.4.2 sLTP Learning in SPIROMICS and Data Reduction

We first apply the proposed unsupervised learning algorithm on the full-lung scans from

heavy smokers with COPD and controls in SPIROMICS. A random subset of 1,462 partic-

ipants is initially used for learning the patterns. By applying the unsupervised learning

of texture and spatial features from local ROIs, a set of 10 sLTPs are discovered.

To evaluate the inter-learner reproducibility, we re-learn in another non-overlapping

subset of 1,460 participants in SPIROMICS. Again, 10 sLTPs are discovered. The learn-

53



M
ES

A 
Lu

ng

SP
IR

O
M

IC
S

Al
l S

PI
RO

M
IC

S 
(N

 =
 2

92
2)

!
"

An
te

rio
rSu
pe

rio
r

La
te

ra
l

Co
re

Sp
at

ia
l

Fe
at

ur
e

Te
xt

ur
e

Fe
at

ur
e

Te
xt

on
s

Frequency

sL
TP

 1
-1

0
Q

ES
 1

-6

  

Po
pu

la
tio

n 
Cl

us
te

rin
g

Population-based
sLTP Merging

Lu
ng

 C
T 

Sc
an

Em
ph

ys
em

a 
3D

 R
O

I

He
at

m
ap

of
 %

sL
TP

 la
be

l h
is

to
gr

am
s 

ov
er

 p
op

ul
at

io
ns

 

H
ig

h-
Re

so
lu

tio
n

C
T 

Im
ag

es
Fe

at
ur

e 
Ex

tr
ac

tio
n

U
ns

up
er

vi
se

d 
Le

ar
ni

ng
 o

f s
LT

Ps
10

 s
LT

P 
to

 6
 Q

ES

sL
TP

La
be

lin
g

Tr
ai

ni
ng

 s
et

 1
 (N

 =
 1

46
2)

Tr
ai

ni
ng

 s
et

 2
 (N

 =
 1

46
0)

In
fe

rio
r

Po
st

er
io

r

M
ed

ia
l

# 
1

# 
2

# 
3

# 
10

(b
) S

im
ila

rit
y

G
ra

ph
 P

ar
tit

io
n

(a
) I

ni
tia

l 
cl

us
te

rin
g

Ap
ica

l

Va
nis

hin
g 

Lu
ng

Ob
st

ru
ct

ive
 C

PF
E

Di
ffu

se

Re
st

ric
tiv

e 
CP

FE

Se
nil

e
sL

TP
 

hi
st

og
ra

m

sL
TP

 
hi

st
og

ra
m

Fi
gu

re
3.
6:

Pi
pe

lin
e
fo
r
le
ar
ni
ng

sL
TP

s
in

SP
IR

O
M
IC

S,
an

d
da

ta
re
du

ct
io
n

to
th
e
six

qu
an

tit
at
iv
e
em

ph
ys

em
a
su

bt
yp

es
(Q

ES
)i

n
SP

IR
O
M
IC

S
an

d
M
ES

A
Lu

ng
St
ud

y.
Lo

ca
lR

O
Is

ar
ee

xt
ra
ct
ed

fro
m

em
ph

ys
em

ar
eg

io
ns

in
fu
ll-
lu
ng

sc
an

s.
Te

xt
ur

ea
nd

sp
at
ia
lf
ea

tu
re
s

fro
m

tra
in
in
g
RO

Is
ar
eu

se
d
fo
ru

ns
up

er
vi
se
d
le
ar
ni
ng

of
th
es

pa
tia

ll
un

g
te
xt
ur

ep
att

er
ns

(sL
TP

s).
Th

eu
ns

up
er
vi
se
d
le
ar
ni
ng

in
cl
ud

es
(a
)a

fir
st

st
ag

e
of

RO
Ic

lu
st
er
in
g
ba

se
d
on

sp
at
ia
la

nd
te
xt
ur

e
fe
at
ur

es
an

d
(b
)a

se
co

nd
st
ag

e
of

sim
ila

rit
y
gr

ap
h
pa

rti
tio

ni
ng

of
th
e

le
ar
ne

d
pa

tte
rn

s.
Th

eu
ns

up
er
vi
se
d
le
ar
ni
ng

is
ap

pl
ie
d
to

tw
on

on
-o
ve

rla
pp

in
gs

ub
se
ts

of
sc
an

si
n
SP

IR
O
M
IC

St
oe

va
lu
at
ei

nt
er
-le

ar
ne

r
re
pr

od
uc

ib
ili
ty
,a

nd
th
ef

ul
ls

et
of

SP
IR

O
M
IC

S
CT

sc
an

s.
Th

en
,a

fin
al

se
to

f1
0s

LT
Ps

is
ge

ne
ra
te
d,

w
hi
ch

is
le
ar
ne

d
fro

m
th
ef

ul
ls

et
of

SP
IR

O
M
IC

S
sc
an

s,
an

d
us

ed
to

la
be

la
ll
sc
an

si
n
SP

IR
O
M
IC

S
an

d
M
ES

A
Lu

ng
St
ud

y.
D
at
a
re
du

ct
io
n
is

pe
rfo

rm
ed

on
al
ls

LT
P
la
be

lin
g

hi
st
og

ra
m
s,
an

d
le
ad

st
o
six

qu
an

tit
at
iv
e
em

ph
ys

em
a
su

bt
yp

es
(Q

ES
).

54



ing reproducibility measure at regional level (computed similar to Equation 3.14) is 0.82,

which indicates a high level of reproducibility. Then we label all full-lung CT scans in

SPIROMICS with the two sets of sLTPs and evaluated the Spearman’s correlation coeffi-

cients of the percentage of each sLTP within the lungs for each participant. The corre-

lation coefficients are above 0.95 for all sLTPs, which confirms the reproducibility of the

learning at the individual level.

Then we apply the unsupervised learning to scans from all 2,922 participants that

we have both CT images and ULN values in SPIROMICS, which again yields 10 sLTP

(as visualized in Fig. A.1). These 10 sLTPs are used to label all full-lung CT scans in

SPIROMICS and MESA Lung Study.

There is evidence that some of the sLTPs overlapped by visual inspection of CT imag-

ing. We collaborated with Dr. Yifei Sun3 to investigate possible data reduction. Using the

sLTP histograms from all scans, we examine the individual-level Spearman’s correlations

of %sLTP, and heatmaps of sLTP distributions in both SPIROMICS and MESA Lung (see

details in Appendix A). We observe that some sLTPs have high population correlations (as

shown in Fig. A.2 (a)), suggesting that they may represent the same emphysema subtype

at different levels of severity. We therefore aggregate the following sLTPs: (1, 2), (3, 5, 9),

(4, 6). This reduces the set of ten sLTPs into six final patterns, that we call the quantitative

emphysema subtypes (QES).

Embedding the sLTP histograms in two-dimensions using t-SNE (Maaten and Hinton

2008) on the SPIROMICS and MESA Lung cohorts (as shown in Fig. A.2 (b)), and color-

3Dr. Yifei Sun is with the Department of Biostatistics, Mailman School of Public Health, Columbia
University.
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coding in the projection space the individual subjects by their predominant sLTP / QES,

further confirms that the sLTPs can be aggregated into QES in a similar manner.

The whole pipeline to learn the 10 sLTPs in SPIROMICS and then generate the 6 QES

with data from SPIROMICS and MESA Lung is illustrated in Fig. 3.6.

3.4.3 Quantitative Emphysema Subtypes (QES)

The six QES are shown in Fig. 3.7 in the order of frequency in SPIROMICS.

The first QES, labelled as apical, has a predominantly apical distribution with vascular

changes. The second QES, labelled as diffuse, has a more diffuse distribution with less

parenchymal destruction, apical sparing, and preserved or accentuated vasculature. The

third QES, labelled as senile, is without visually distinct emphysema but has homoge-

neously reduced attenuation. The fourth QES, labelled as restrictive combined pulmonary

fibrosis/emphysema (CPFE), has distinct and discrete small holes at the level of the sec-

ondary pulmonary lobule in apical, posterior and inferior regions resembling centrilob-

ular emphysema with local fibrosis visually suggestive of CPFE. The fifth QES, labelled

as obstructive CPFE, has diffuse, patchy emphysema with intermingled regions of fibro-

sis suggestive of a different type of CPFE. The six QES, labelled as vanishing lung, has a

predominantly apical distribution and visually demonstrates bullous emphysema resem-

bling vanishing lung syndrome (Ladizinski and Sankey 2014) when severe and, when less

severe, prominent lobular septal with reduced parenchyma with few vessels. 3

Histograms of QES per CT scan are generated in the SPIROMICS and MESA Lung

Study. The apical, diffuse, restrictive CPFE and vanishing lung QES are much more preva-

lent among heavy smokers and in COPD.The senile and obstructive CPFE QES are equally
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Figure 3.8: Mean values of %QES in heavy smokers in SPIROMICS (excluding the N=200
normal controls) and in the general population in the MESA Lung Study.

common in heavy smokers with COPD in SPIROMICS and in MESA Lung Study, approx-

imately half of whom had never smoked (as shown in Fig. 3.8).

3.4.4 Association between QES and Symptoms

Collaborating with Dr. R. Graham Barr4, we further investigated the clinical significance

of the QES. Dr. Pallavi P. Balte5 from Dr. Barr’s lab helped us to run multivariable regres-

sion models to examine associations between the %QES and the respiratory symptoms.

Linear regression is used for MRC-Dyspnea, total SGRQ-C score, resting oxygen sat-

uration, post six-minute walk test (6MWT) oxygen saturation, total 6MWT Distance and

exacerbation count; logistic regression is used for the presence of MRC-Chronic bronchi-

tis and wheeze in past 12 months. We adjust for continuous variables age, height and

4Dr. R. Graham Barr is with the Department of Medicine, College of Physicians and Surgeons, and
Department of Epidemiology, Mailman School of Public Health, Columbia University.

5Dr. Pallavi P. Balte is with the Department of Medicine, College of Physicians and Surgeons, Columbia
University.
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weight as linear terms. Categorical variables include sex, race/ethnicity (white, African-

American, Hispanic, and Asian-American), smoking status (never, former, current), pack-

years (0, 0 to 10, 10 to 20, > 20), COPD status (yes or no) and CT scanner manufacturer

(GE or Siemens). Moreover, we adjust for FEV1, percent emphysema, and other QES, to

evaluate the complementarity of the information provided by individual QES6.

All six QES have independent – but varying – associations with respiratory symptoms

and function (as shown in Table 3.2).

In SPIROMICS, the apical QES is associated with greater dyspnea and symptom scores,

desaturation on exertion only, reduced exercise capacity (shorter six-minute walk test

distance) and greater exacerbation risk independent of demographics, body size, smoking

history, lung function and other QES. Alone among QES, it is also associated with symp-

toms of a chronic productive cough. The diffuse QES, by contrast, is not associated with

symptoms independent of lung function and other QES but is characterized by resting hy-

poxemia, which is not appreciably worsened by exercise, and with greater exacerbation

risk. The restrictive CPFE QES is associated with greater dyspnea and symptom scores,

desaturation at rest and exertion, and reduced exercise capacity. The senile QES and ob-

structive CPFE QES are not independently associated with symptoms. The vanishing lung

QES is associated with increased dyspnea and desaturation on exertion only.

Findings for available measures in the MESA Lung Study were similar (Table 3.2).

6All multivariable regression models in this thesis, to study the clinical associations and prognostic
significance of QES, was run by Dr. Pallavi P. Balte.
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3.4.5 Association between QES and Physiology

We then examine physiologic alterations of QES in the MESA Lung Study. Four QES

are associated with obstructive spirometry (reduced FEV1/FVC) consistent with COPD

but the reason varied: the apical and obstructive CPFE QES have the expected larger re-

duction in FEV1 than FVC (Table 3.2) but the diffuse QES and senile QES have reduced

FEV1/FVC due to increased FVC, with a consistent increase in total lung volume (TLV)

on CT, presumably due to increased lung compliance. In contrast, restrictive CPFE QES

are characterized by restrictive spirometry and reduced TLV despite being ‘discovered’

in SPIROMICS, an obstructive lung disease cohort. The vanishing lung QES is not asso-

ciated with obstructive spirometry but demonstrates large increases in all lung volumes

consistent with loss of elastic recoil from lung destruction.

3.4.6 Prognostic Significance of the QES

We first examine exacerbation risk in SPIROMICS, as previously defined (Woodruff et

al. 2016). Apical, diffuse and restrictive CPFE QES are prospectively and independently

associated with exacerbations (Table 3.2).

We then examine risk in a larger sample of MESA participants using cardiac CT scans

acquired by MESA in 2000-02 (see more details in Chapter 4 and Chapter 5). In order to

do this, we develop a deep learning method, based on unsupervised domain adaptation

(Ganin et al. 2016; Kamnitsas et al. 2017) to handle the differences between full-lung and

cardiac CTs. A convolutional neural network (CNN) classifier is trained with adversarial

learning to learn domain-invariant features across imaging scanners and protocols (the
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“domains”), while optimizing coherent labeling of QES on pairs of full-lung and cardiac

CT scans. More details are provided in Chapter 5.

Among 6,660 participants in MESA Lung followed for a median of 13 years, there are

148 incident hospitalizations for CLRD and 74 deaths from CLRD adjudicated as previ-

ously described (Oelsner et al. 2016). All QES except senile and restrictive CPFE predict

incident CLRD hospitalizations independent of demographics, body size, smoking history,

and type of CT scanner. With additional adjustment for other QES (or percent emphy-

sema), apical and diffuse QES independently predict hospitalizations (Table 3.2).

All QES except the senile QES predicted CLRD mortality independently. With ad-

ditional adjustment for all other QES (or percent emphysema), the apical, diffuse and

obstructive CPFE QES independently predicted CLRD deaths (Table 3.2).

3.4.7 Genome-wide Association Analysis

Collaboratingwith Dr. AniManichaikul7, we performed a genome-wide association study

(GWAS)8 of the QES in addition to their component sLTPs in SPIROMICS (N = 2,538)9.

Five significant (p < 10−8) novel gene variants are found on different chromosomes for

7Dr. Ani Manichaikul is with the Center for Public Health Genomics, University of Virginia.
8All GWAS analysis used in this thesis was run by Dr. Ani Manichaikul.
9SPIROMICS participants who consented to genetic analysis were genotyped with the Illumina Om-

niExpress HumanExome BeadChip with SNP level quality control included filter on Hardy-Weinberg
p > 10−4 and removal of duplicated SNPs. Genome-wide imputation was performed using the Michi-
gan Imputation Server with the Haplotype Reference Consortium (HRC) as the reference panel. Genetic
analysis of sLTP and QES traits was performed through pooled analysis of SPIROMICS samples from all
race/ethnic groups using a heterogeneous variance model (Sofer et al. 2018) to account for differences in
trait distributions across race/ethnic groups, with covariate adjustment for age, sex, four PCs of ancestry,
height, weight, CT scanner manufacturer, COPD stratum, current-smoking status and pack-years of smok-
ing. Regression analyses were implemented using SNPTEST v2.5 (Marchini et al. 2007). GWAS results were
filtered on 1) heterozygosity count (HC) > 30 and Hardy-Weinberg p > 10−5 for genotyped SNPs, or 2)
imputation R-squared > 0.5 and effective HC > 30 (where effective HC = HC × imputation R-squared) for
imputed SNPs.
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the most severe sLTP of the apical QES, the restrictive CPFE QES, the obstructive CPFE

QES (two gene variants), and the more severe sLTP of the vanishing lung QES.

Among the five gene variants, the variant identified for the most severe sLTP of the

apical QES is near DRD1 (p = 3.92× 10−8), which encodes dopamine receptor1 (DAR1).

This variant is close to GWAS-significant for the two other sLTPs that constitute the api-

cal QES (p = 6.48 × 10−6 and p = 2.57 × 10−5). DAR1 is present on the pulmonary

vasculature and is implicated in vasoconstriction and intrapulmonary shunting (Bryan et

al. 2012). Dopamine and other DAR1 agonists (including some anti-Parkinsonian drugs)

increase pulmonary artery pressure (PAP) by enhancing hypoxic pulmonary vasocon-

striction (Cheung and Barrington 2001, Hong et al. 2005), an effect that is blocked by

haloperidol and numerous other DAR1 antagonists (Laurie et al. 2012).

3.5 Discussion and Conclusion

In this chapter, we proposed a novel unsupervised learning framework for discovering

lung texture patterns for emphysema on full-lung CT scans, via incorporating spatial and

texture features using an original cost metric, along with data-driven parameter tuning,

and Infomap graph partitioning. Our methodological framework includes the introduc-

tion of a standardized spatial mapping of the lung shape utilizing Poisson distance map

and conformal mapping to uniquely encode 3D voxel positions and enable comparison

of CT scans without registration being required besides orientation alignment. Our lung

shape spatial mapping PDCM enabled straightforward population-wide study of emphy-

sema spatial patterns. By visualizing relative angular PDCM intensity projections on

CLE-, PLE- and PSE-predominant subjects in MESA COPD, we observed that regions of

63



normal attenuation were absent for PLE-predominant subjects, which agrees with the

definition of PLE (diffused emphysema subtype). CLE- and PSE-predominant subjects

appeared to have emphysema regions concentrated in the superior part. This agrees with

the observation made in (Smith et al. 2014) on the same dataset that CLE and PSE severity

was greater in upper versus lower lung zones, whereas severity of PLE did not vary by

lung zone. By visualizing relative radial PDCM intensity projections, we observed that

emphysema subjects showed systematic higher attenuation values than subjects without

emphysema, as expected. CLE-predominant subjects appeared to have more emphysema

in the core part, whereas PSE-predominant subjects appeared to havemore emphysema in

the peel part. This agrees with the definitions of CLE and PSE. As a standardized tool, the

proposed PDCM spatial mapping is not tied to emphysema pattern, and we will demon-

strate its application to study spatial location of lung nodules, in Chapter 6.

With the proposed method, and using a prefixed percent emphysema threshold 1% to

select emphysema-like lung, we discovered 12 spatially-informed lung texture patterns

(sLTPs) on the MESA COPD cohort. Qualitative visualization showed that the discovered

sLTPs appeared to be textually homogeneous with different spatial prevalence. Since we

jointly enforce spatial prevalence and textural homogeneity, each sLTP can have spatial

“outliers” that are texturally favored. Extensive evaluations showed that the discovered

sLTPs were reproducible with respect to training sets, sampling of ROI for labeling, and

certain scanner changes. The proposed incorporation of spatial and texture features ob-

tained higher learning reproducibility compared to using texture features only, confirm-

ing the benefit of spatial regularization.

Moreover, the sLTPs discovered in MESA COPD study were able to encode the three
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standard emphysema subtypes, and thus link unsupervised discovery with clinical prior

knowledge. Prediction quality was better than previous methods, and close to the opti-

mal level reached with 100 emphysema-specific LTPs. While intra-cluster LTP homogene-

ity increases with the number of LTPs, hence leading to higher prediction performance,

working with 100 LTPs leads to redundancy between subtypes which is detrimental when

studying associations of individual LTPs with clinical measures. One-stage clustering led

to significantly lower prediction power for PLE and PSE subtypes, compared to sLTPs,

which demonstrated the benefit of the proposed two-stage learning.

Thenwe applied the unsupervised learningmethod to the larger cohort of SPIROMICS,

using subject-specific threshold values to account for differences in normal population

variation in percent emphysema. We discovered 10 sLTPs that were highly reproducible

between independent training subsets in SPIROMICS. Population-based heatmaps and

hierarchical clustering of sLTP histograms in SPIROMICS and the MESA Lung Study led

to data reduction from 10 sLTPs to the final set of six quantitative emphysema subtypes

(QES).The six QES were shown to have distinct CT representations and structures, are as-

sociated independently with unique patterns of respiratory symptoms and clinical events,

have varying physiologic characteristics, and may have non-overlapping genetic associ-

ations, hence may facilitate personalized therapies.
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Chapter 4

Robust EmphysemaQuantification on Cardiac CT Scans Using

Hidden Markov Measure Field Model

4.1 Introduction

Pulmonary emphysema is defined by a loss of lung tissue in the absence of fibrosis,

and overlaps considerably with chronic obstructive pulmonary disease (COPD). Full-lung

quantitative computed tomography (CT) imaging is commonly used to measure a con-

tinuous score of the extent of emphysema-like lung tissue, which has been shown to be

reproducible (Mets et al. 2012), and correlates well with respiratory symptoms (Kirby et

al. 2015). Cardiac CT scans, which are commonly used for the assessment of coronary

artery calcium scores to predict cardiac events (Detrano et al. 2008), include about 70% of

the lung volume, and can be obtained with low radiation exposure. Despite missing api-

cal and caudal individual measurements, emphysema quantification on cardiac CT were

shown to have high reproducibility and correlation with full-lung measures (Hoffman et

al. 2009), and correlate well with risk factors of lung disease and mortality (Oelsner et al.

2014) at the population-based level.

With the availability of large scale well characterized cardiac CT databases such as

the Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002), emphysema quantifi-
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cation on cardiac scans has now been actively used in various population-based studies

(Barr et al. 2010). However, currently used methods for emphysema quantification on car-

diac scans rely on measuring the percentage of lung volume (referred to as %emph) with

intensity value below a fixed threshold. Although thresholding-based %emph is com-

monly used in research, it can be very sensitive to factors that lead to variation in image

quality and voxel intensity distributions, including variations between scanner types, re-

construction kernel, radiation dose and slice thickness. Being able to segment emphysema

robustly on cardiac CT scans will enable longitudinal study of emphysema progression,

and is a prerequisite for applying our proposed lung texture learning in Chapter 3 to large

scale cardiac CT datasets.

To study %emph on heterogeneous datasets of full-lung scans, density correction

(Kim et al. 2014a), noise filtering (Schilham et al. 2006) and reconstruction-kernel adap-

tation (Bartel et al. 2011) have been proposed. These approaches consider only a part

of the sources of variation, and their applicability to cardiac scans has not been demon-

strated. The superiority of a segmentation method based on Hidden Markov Measure

Field (HMMF) model was demonstrated in a previous study in our lab (Häme et al. 2014,

2015a) on full-lung scans. In this work, we propose to further adapt the parameterization

of the HMMF segmentation model to cardiac CT scans from 6,814 subjects in the longi-

tudinal MESA Lung Study. Our results compare HMMF-based and thresholding-based

%emph measures for three metrics: 1) intra-cardiac scan reproducibility, 2) longitudinal

correlation of %emphmeasures on “normal” subjects who are never-smokers without res-

piratory symptoms or disease (Hoffman et al. 2014), and 3) emphysema progression on

“normal” and “disease” subjects.
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4.2 Method

In sections below, we first overview the cardiac and full-lung CT data in MESA used in

our evaluation, and then present the HMMF-based emphysema segmentation framework.

4.2.1 Data

The MESA Study consists of 6,814 subjects screened with cardiac CT scans at baseline

(Exam 1, 2000-2002), and with follow-up scans in Exam 2 to 4 (2002-2008). Most subjects

had two repeated cardiac scans per visit (same scanner). Among these subjects, 3,965 were

enrolled in the MESA Lung Study and underwent full-lung scans in Exam 5 (2010-2012).

MESA cardiac scans were collected using either one type of EBT scanner from GE, or

six types of MDCT scanners (cf. Figure 4.1 (c)) from GE or Siemens (Hoffman et al. 2009).

The average slice thickness is 2.82 mm, and isotropic in-plane resolution is in the range

[0.44, 0.78] mm.

Lung segmentation was performed with the APOLLO software (VIDA Diagnostics,

Iowa). Longitudinal correlation of segmented lung volume in incremental cardiac exams

is in the range [0.84, 0.95]. Cardiac CT scans were acquired at full inspiration with cardiac

and respiration gating, while full-lung CT scans were acquired at full inspiration without

cardiac gating.

For this study we selected a random subset of 10,000 pairs of repeated cardiac scans

with one in each pair considered as the “better” scan in terms of inflation or scan quality

(Barr et al. 2010). Out of these 10,000 pairs, 379 pairs were discarded due to corruption in

one scan during image reconstruction or storage, detected via abnormally high values of
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Table 4.1: Year and number ofMESA cardiac and full-lungCT scans evaluated forHMMF-
based emphysema segmentation.

Exam # 1 2 3 4 5

Year start-end 2000-02 2002-04 2004-05 2005-08 2010-12

# of subjects in MESA 6,814 2,955 2,929 1,406 3,965

# of normals evaluated 741 261 307 141 827

Scan type cardiac cardiac cardiac cardiac full-lung

Total # of scans evaluated 6,088 (×2) 1,164 (×2) 1,645 (×2) 724 (×2) 2,984

mean and standard deviation of outside air voxel intensities (cf. Figure 4.1 (c) for ranges

of normal values).

The selected subset involves 6,552 subjects, among which 2,984 subjects had a full-

lung scan in Exam 5, and 827 are “normals”, as detailed in Table 1. We processed a grand

total of 9,621 pairs of repeated cardiac scans, 3,508 pairs of “better” longitudinal cardiac

scans, and 5,134 pairs of “better” cardiac-full-lung scans.

4.2.2 HMMF-based Emphysema Segmentation

The HMMF-based method enforces spatial coherence of the segmentation, and relies on

parametric models of intensity distributions within emphysematous and normal lung tis-

sue that use:

1. A Gaussian distribution NE(θE) for the emphysema class;

2. A skew-normal distribution NN(θN) for normal lung tissue.

Using skew-normal distribution to fit the intensity of normal lung tissue on full-lung

CT scans was originally proposed in (Häme et al. 2014). We found this model to be ap-
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plicable to cardiac scans. Fig. 4.1 (a) gives examples of histogram fitting results for three

cardiac scans from normal subjects.

For a given image I : Ω → R, the HMMF estimates on Ω the continuous-valued

measure field q ∈ [0, 1] bymaximizing the posterior distributionP for q and the associated

parameter vector θ = [θE, θN ] expressed as:

P (q, θ|I) = 1

R
P (I|q, θ)Pq(q)Pθ(θ) (4.1)

where R is a normalization constant. TheMarkov random field (MRF) variable q is a vector

q = [qE, qN ], representing the intermediate labeling of both classes. Emphysema voxels

are selected as {v ∈ Ω|qE(v) > qN(v)}, from which %emphHMMF is computed.

The distribution Pq(q) enforces spatial regularity via Markovian regularization on

neighborhood cliques C and involves a weight parameter λ in the potential of the Gibbs

distribution. The likelihood P(I|q, θ) requires initialization of parameter values for both

classes, which are tuned in this work to handle the heterogeneity of the dataset, as de-

scribed below.

Parameter Tuning for Cardiac CT Scans

Likelihood Parameters

The parameters of intensity distributions are θE = [µE, σE], θN = [µN , σN , αN ]where

µ denotes the mean, σ the standard deviation and α the skewness of respective classes.

Normal tissue class: The standard deviation σN and the skew αN are assumed to be

sensitive to scanner-specific image differences. They are tuned separately for each scanner

type by averaging on the subpopulation of normal subjects, after fitting their intensity
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Figure 4.1: Illustration of the proposed HMMF-based framework for emphysema seg-
mentation on cardiac CT scans. (a) Illustration of fitting lung-field intensity with
skew-normal distribution on three cardiac scans. (b) Population average of mB(λ) for
%emphHMMF measured from normal subjects on four baseline cardiac scanners (SB) ver-
sus λ values. The optimal λB value is chosen such that mB(λB) = 2%, for each scanner
type. (c) From top to bottom: Outside air mean value (HU) per subject and per scanner
used to tune µE ; Initial µN value (HU) per subject and per scanner.

histograms. The initial value of mean µN is sensitive to inflation level and morphology

and therefore made subject-specific via fitting individual intensity histograms with the

pre-fixed σN and αN . Measured initial µN values are plotted in Fig. 4.1 (c).

Emphysema class: The initial value of mean µE is set to the average scanner-specific

outside air mean value, learned on a subpopulation of both normal and disease subjects

from each scanner type, and illustrated in Fig. 4.1 (c). The standard deviation σE is set to

be equal to σN since the value of σ is mainly affected by image quality. Both parameters
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are therefore scanner-specific.

Spatial Regularization Parameters

Cliques: The spatial clique is set to 8-connected neighborhoods in 2-D planes instead

of 26-connected 3-D cliques used in (Häme et al. 2014) to handle the slice thickness change

from full-lung (mean 0.65 mm) to cardiac CT (mean 2.82 mm).

Regularization weight λ: The regularization weight λ is made scanner-specific to adapt

to image quality and noise level. There are three scanner categories: scanners used only

at baseline (SB), scanners used at baseline and some follow up times (SBF ) and scanners

used only at follow up (SF ). For scanners in SB and SBF , we chose, via Bootstrapping, the

λB values (for each scanner type) that returns a population averagem of the %emphHMMF

measure on the normal subpopulation equal tomB(λB) = 2% (i.e. a small arbitrary value

(Hoffman et al. 2014)). The selection process is illustrated in Fig. 4.1 (b). For scanners in

SBF , the same λB values are used at follow-up times, leading to population %emphHMMF

averages mBF (λB). Finally, the λF are chosen such that mBF (λB) = mF (λF ).

Parameter Tuning for full-lung CT Scans

Parameters for the segmentation of full-lung scans with HMMF were tuned similarly

to the previous work in (Häme et al. 2014), except for λ and the initial values of µN and

µE . In the previous work, scans reconstructed with a smooth kernel were used as a ref-

erence to set λ for noisier reconstructions. In this work, having only one reconstruction

per scan in MESA Exam 1-5, we propose to use the progression rate of %emph mea-

sured on longitudinal cardiac scans from the subpopulation of normal subjects. We set

mFL(λFL) = mpr with mpr the predicted normal population average of %emph at the

time of acquisition of the full-lung scans FL, based on linear interpolation of anterior
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progression rates. This lead to λ in the range [3, 3.5] for different scanners, which is quite

different from the range of λ values tuned on cardiac scans (Fig. 4.1 (b)).

4.2.3 Quantification via Thresholding

Standard thresholding-based measures %emph−950 were obtained for comparison, using

a threshold of reference Tref . Among standard values used by radiologists, Tref =-950HU

was found to generate higher intra-class correlation and lower extreme differences on a

subpopulation of repeated cardiac scans.

For reproducibility testing on repeated cardiac scans (same scanner), an additional

measure %emph−950G was generated after Gaussian filtering, which was shown to reduce

image noise-level effect in previous studies (Häme et al. 2014). The scale parameter of

the Gaussian filter is tuned in the same manner as λ for the HMMF (i.e. matching refer-

ence average population values of %emph−950 on the subpopulation of normal subjects).

This lead to scale in the range [0.075,0.175]; For longitudinal correlations, an additional

measure %emph−950C was computed correcting Tref (HU) with respect to the scanner-

dependent bias observed on mean outside air density values (µE), as:

Tref = −950 + (µE − (−1000)) (4.2)

4.3 Experimental Results

4.3.1 Reproducibility within Cardiac Scans

Intraclass Correlation (ICC) on Repeated Cardiac Scans
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Figure 4.2: Reproducibility of thresholding-based versus HMMF-based %emphmeasure-
ments on repeated cardiac scans in MESA Exam 1-4. (a) Intraclass correlation (ICC) (N =
9,621) on repeated cardiac scans; (b) Dice of emphysemamask overlap for disease subjects
(N = 471) on repeated cardiac scans.

Scatter plots and ICC (average over Exams 1-4) of %emph in 9,621 pairs of repeat

cardiac scans are reported in Fig.4.2 (a). All threemeasurements showhigh reproducibility

(ICC > 0.98). %emph−950G provides minor improvement compared with %emph−950,

which may be explained by the low noise level in MESA cardiac scans.

Spatial Overlap of Emphysema Masks on Repeated Cardiac Scans

Lung masks of repeated cardiac scans were registered with FSL (Smith et al. 2004),

using a similarity transform (7 degrees of freedom). Spatial overlap of emphysema masks

was measured with the Dice coefficient, on subjects with %emph−950 > 5% (N = 471).

Dice coefficient is defined as:

Dice =
2TP

2TP + FP + FN
(4.3)

where TP is the true positive segmentation, FP is the false positive segmentation and FN

is the false negative segmentation.
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Figure 4.3: Example of emphysema spatial overlap on a baseline axial slice from a pair
of repeated cardiac scans, using HMMF and thresholding-based segmentation. (TP = true
positive, FN = false negative, FP = false positive).

Scatter plots and average values of Dice coefficient computed are reported in Fig.4.2

(b). Except for very few cases, HMMF returned higher overlap measures than threshold-

ing, with an average Dice = 0.61, which is comparable to the value achieved on full-lung

scans (0.62) in the previous work (Häme et al. 2015a). Fig.4.3 gives an example of spatial

overlaps of emphysema segmented on a pair of repeated cardiac scans, where there is less

disagreement with HMMF.

4.3.2 Longitudinal Correlation and Progression of %emph

Pairwise Correlation on Longitudinal Cardiac Scans

For longitudinal cardiac scans, we correlated all baseline scans and follow-up scans

acquired within a time interval of 48 months, in the population of normal subjects, who

are expected to have little emphysema progression over time (due to aging). Fig.4.4 (a)

shows that %emphHMMF measures return the highest pair-wise correlations on longitudi-

nal cardiac scans, followed by %emph−950C measures.

Emphysema Progression

Differential %emph scores ∆ were computed at follow up times t to evaluate emphy-
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Figure 4.4: HMMF and thresholding-based %emph measures on longitudinal scans in
MESA. (a) %emph measurements on longitudinal cardiac scans of normal subjects (N =
478); (b) Mean and standard error of the mean of emphysema progression measurement
∆(t) over time t (normal: N=87, disease: N = 238; r = pairwise Pearson correlation).

sema progression, as:

∆(t) = %emph(t)− %emph(baseline) (4.4)

Mean values and standard errors of the mean of∆ for 87 normal subjects and 238 dis-

ease subjects who have three longitudinal cardiac scans and one full-lung scan are shown

in Fig.4.4 (b). The %emphHMMF measures progressed steadily along cardiac and full-lung

(measuring on cardiac field of view) scans, and at different rates for normal and disease

populations. The %emph−950C measures progressed steadily across cardiac scans but de-

creased from cardiac to full-lung scans, which indicates that a single threshold is not able

to provide consistency between cardiac and full-lung scans. Furthermore, thresholding

based measurements on cardiac scans show similar progression rates in normal and dis-

ease populations, which is not what is expected.

Finally, we tested mixed linear regression models (Ahmed et al. 2014) on all longitudi-
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nal scans to assess the progression of %emph over time after adjusting for demographic

and scanner factors. The initial model (model 1) includes age at baseline, gender, race,

height, weight, BMI, scanner type, voxel size, baseline smoking pack years and current

cigarettes smoking per day. In the subsequent model (model 2), interaction terms between

time (starting from the baseline) and age at baseline, gender, race, baseline smoking pack

years and current cigarettes smoking per day were added to account for the variation in

progression of %emph with time for demographic factors. In model 2 we observed that

progression of %emphHMMF was higher with higher baseline age (P = 0.0001), baseline

smoking pack years (P< 0.0001) and current cigarettes smoking per day (P= 0.03). These

findings were not significant for %emph−950C except for baseline smoking pack years (P

= 0.0016). Additionally, both models demonstrated that the effects of scanner types in

cardiac scans were attenuated for %emphHMMF when compared with %emph−950C .

4.4 Discussion and Conclusion

In this chapter, we introduced a dedicated parameter tuning framework to enable the

use of an automated HMMF segmentation method to quantify emphysema in a robust

and reproducible manner on a large dataset of cardiac CT scans from multiple scanners.

While thresholding comparedwell with HMMF segmentation for intraclass correlation on

repeated cardiac scans, only HMMF was able to provide high spatial overlaps of emphy-

sema segmentations on repeated cardiac scans, consistent longitudinal measures between

cardiac and full-lung scans, attenuated scanner effects on population-wide analysis of

emphysema progression rates, and clear discrimination of emphysema progression rates

between normal and disease subjects.
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ExploitingHMMF segmentation to quantify emphysema on low-dose cardiac CT scans

has great potentials given the very large incidence of cardiac CT scans. Being able to seg-

ment emphysema robustly across heterogeneous scanner types will enable longitudinal

study of emphysema progression, and is a prerequisite for applying our proposed lung

texture learning in Chapter 3 to the large cardiac CT dataset in MESA.
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Chapter 5

Unsupervised Domain Adaption with Adversarial Learning for

Emphysema Subtyping on Cardiac CT Scans

5.1 Introduction

Pulmonary emphysema can be characterized by specific texture patterns on CT images.

Supervised and unsupervised learning of these texture patterns is an active field of re-

search (Binder et al. 2016; Depeursinge et al. 2014; Yang et al. 2016b, 2017). As described

in Chapter 3, in our previous study (Yang et al. 2017) we have established a set of ro-

bust emphysema-specific spatially-localized lung texture patterns (sLTPs) on full-lung

high-resolution CT (HRCT) scans, using a dedicated parcellation of the lung shape to in-

troduce location information in lung texture learning. So far, largely due the the limited

availability of high-quality longitudinal full-lung CT data, lung texture patterns for em-

physema have not been previously studied in longitudinal setting, while this is crucial for

understanding disease progression.

The Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002) study consists of

6,814 subjects screened with cardiac CT scans at baseline (Exam 1, 2000-2002) and follow-

ups (Exams 2-4, 2002-2008). Among these subjects, 3,965 were enrolled in the MESA Lung

study, and underwent cardiac CT and gold-standard full-lung HRCT scanning in Exam 5
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(2010-2012). This large dataset provides an invaluable opportunity for population-level

longitudinal study of emphysema texture patterns. Emphysema quantification on cardiac

CT scans was shown in (Hoffman et al. 2009) to have high reproducibility, high correlation

with full-lungHRCT-basedmeasures, and significant associationswith risk factors of lung

disease in population studies (Oelsner et al. 2014).

As described in Chapter 4, in our previous study (Yang et al. 2016a) we have estab-

lished robust emphysema quantification on MESA cardiac scans. However, a straight-

forward application of either unsupervised learning or labeling of cardiac scans with the

pre-defined sLTPs is still hindered by the following factors:

1. CT image quality in MESA is heterogeneous. Cardiac scans in Exam 1-4 are axial

CT scans collected using one type of EBT scanner and six types of MDCT scanners,

while scans in Exam 5 were collected with helical CT scanners;

2. Cardiac scanning protocols differ from full-lung HRCT scans. The average slice

thickness is 2.82 mm for cardiac scans and is 0.65 mm for full-lung HRCT scans.

This leads to downgraded lung texture details in cardiac scans;

3. The field of view (FOV) in cardiac scans only includes bottom 70% of the lungs,

which prevents generating precise location information of lung textures.

To label sLTPs in cardiac scans, one option could be to register cardiac and full-lung

scans, and learn a discriminative model, such as a convolutional neural network (CNN)

model, to classify the cardiac ROIs using the sLTP labels in registered full-lung scans as

ground truth. However, such registration is challenging given the differences in FOVs.

Moreover, cardiac CT scans in earlier MESA exams do not have paired full-lung HRCT
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scans, thus generalization to heterogeneous scanner types cannot be guaranteed with

such approach.

To solve this problem, we propose the following original pipeline: we first synthesize

cardiac CT scans from full-lung HRCT scans with ground truth sLTP labels and learn

a CNN model for sLTP labeling on these synthetic cardiac scans. The synthetic scans

inevitably present domain differences from real cardiac CT scans. For robust sLTP labeling

on real cardiac scans, we further propose a CNN-based unsupervised domain adaptation

with adversarial learning (UDAA). The UDAA module aims to fool an auxiliary domain

discriminator at differentiating synthetic and real cardiac scans, thus enabling to learn

domain-invariant feature representations. We apply our proposed UDAA framework to

label 4,315 pairs of longitudinal cardiac CT scans, and test its robustness with respect to

image domain differences.

5.2 Method

5.2.1 Data Cohort and Preprocessing

We exploit the ten sLTPs identified in the full-lung HRCT scans from SubPopulations and

InteRmediate Outcome Measures In COPD Study (SPIROMICS) (Couper et al. 2013), as

described in Chapter 3. SPIROMICS is our reference dataset. It involves more than 55%

of subjects (more than 1,800 subjects) that have COPD, including 616 severe COPD cases.

Then we aim to label the MESA cohort, which has less disease cases.

sLTP labeling requires a pre-segmentation of emphysema regions. We use the hidden

Markovmeasure field (HMMF) model for emphysema segmentation as described in Chap-
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ter 4, which was shown to be able to handle scanner and subject variability in the HRCT

and cardiac MESA scans (Yang et al. 2016a). Regions of interest (ROIs) are extracted from

cardiac scans, with a size of 25×25×25 mm3 (36×36×8 voxels) and with percent em-

physema larger than the upper limit of normal (ULN) of emphysema. The ULN values

were defined by the reference equation derived from healthy never-smokers to account

for known demographical differences in percent emphysema (Hoffman et al. 2014).

Cardiac Scan

Full-lung Scan

Synthetic Cardiac Scan

Figure 5.1: Illustration of the generation of synthetic cardiac CT scans and ground-truth
sLTP labeling from full-lung CT scans in MESA Exam 5. Compared to full-lung CT scans,
cardiac scans have lower spatial resolution and thus down-graded texture quality, as il-
lustrated in the yellow-boxed patches that are zoomed in. Synthetic cardiac CT scans
are generated by down-sampling full-lung images along the superior-inferior axis with a
factor of 5, and keeping the bottom 2/3 of the lung.

From the full-lung HRCT scans equipped with ground-truth sLTP label maps, we gen-

erate synthetic cardiac CT data by down-sampling images along the superior-inferior axis

with a factor of 5 (the ratio of average full-lung vs. cardiac scan slice thickness), and keep-

ing the bottom 2/3 of the lung. The superior FOV cutting planes of intra-subject longitu-
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Table 5.1: Number of MESA cardiac CT scans along with splits used to train and evaluate
the proposed unsupervised domain adaptation with adversarial training (UDAA) frame-
work.

Exam
# of Helical scans

( train | val | test )

# of MDCT scans

( train | val | test )

# of EBT scans

( train | val | test )

Total # of

scans

Exam 1 - 934 | 329 | 2,245 748 | 260 | 2,167 6,683

Exam 2 - 408 | 150 | 983 271 | 102 | 967 2,881

Exam 3 - 423 | 151 | 699 459 | 152 | 772 2,656

Exam 4 - 152 | 54 | 241 245 | 83 | 380 1,155

Exam 5 1,146 | 422 | 414 - - 1,982

The initial training, validation and test split is based on full-lung HRCT scans in MESA Exam 5.

Then in longitudinal cardiac exams, subjects that do not belong to the training or validation sets

and do not have HRCT scans in Exam 5 (i.e. unseen during training and validation stages) are

added into the longitudinal test sets.

dinal cardiac and synthetic cardiac scans are aligned, by segmenting the main bronchi in

each scan as the physiological landmark, finding the superior axial slice levels that best

match, and cutting all FOVs to the matched levels. Examples of a full-lung HRCT scan,

a cardiac CT scan, and a synthetic cardiac CT scan are illustrated in Fig. 5.1 in coronal

views. In our evaluation, we exclude scans without ULN values, or did not pass the FOV

cropping algorithm. That leads to a final set of N = 15,357 longitudinal cardiac scans in

MESA as detailed in Table 5.1.

The proposed UDAA framework to label LTPs in cardiac scans involves three main

components. First, we train a CNN model to classify emphysema ROI from synthetic car-

diac CT scans. The CNNmodel consists of a fully-convolutional component as image fea-

ture extractor, and a fully-connected component for LTP classification. Simultaneously,
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Figure 5.2: Illustration of the basic CNN architecture for sLTP classification on synthetic
cardiac CT scans. The network contains two interleaved convolutional and max-pooling
layers with 3D operations, and two fully-connected layers.

we extract features of real cardiac ROIs, and train a domain discrimination component.

The UDAA framework is optimized such that the feature extractor can generate domain-

invariant features, which are discriminative for the LTP classification task with synthetic

cardiac ROIs, but able to fool the domain discriminator thus enabling robust LTP labeling

in real cardiac ROIs. We now detail the UDAA model in the following sections.

5.2.2 CNN to Label Synthetic Cardiac ROIs

We propose to train the sLTP classifier on ROIs from synthetic cardiac scans, which are

associated with ground-truth labels without requiring registration. Our CNN model used

for sLTP labeling is illustrated in Figure 5.2.

Typically, a CNN alternatively stacks convolutional (Conv) layers and sub-sampling

layers (e.g., max-pooling layers). In a Conv layer, small feature extractors (kernels) sweep

over the topology and transform the input into feature maps (called activation maps).

By denoting the i-th feature map of the l-th layer as hl
i, and the k-th feature map of the
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previous layer as hl−1
k , a Conv layer is formulated as:

hl
i = σ(

∑
k

hl−1
k ∗W l

ki + bli) (5.1)

where W l
ki and bli are the filter and bias terms that connect the feature maps of adjacent

layers, ∗ denotes the convolution operation, and σ is the element-wise non-linear activa-

tion function after the convolution operation.

In a max-pooling layer, activations within a neighborhood are summarized to acquire

invariance to local translations, and down-sampled (controlled by the stride parameter)

for dimension reduction. After several Conv and max-pooling layers, feature maps are

flattened into a feature vector (thus dismissing the spatial relationship), followed by fully-

connected (FC) layers, which is formulated as:

hl = σ(W lhl−1 + bl) (5.2)

where hl−1 ∈ RP and hl ∈ RQ are the feature vectors in the l-1 and l-th FC layers, W l ∈

RQ×P is the weight matrix and bl denotes the bias term. Finally, a softmax classification

layer yields the prediction probability.

Our CNN model consists of interleaved Conv layers and max-pooling layers, and fi-

nally FC layers. In our implementation, we choose small-sized kernels (3×3×3) in Conv

and max-pooling layers to integrate information in small 3D neighborhood, following the

size of textons as in (Yang et al. 2017). A stride of 2 is used in max-pooling layers. Rectified

linear units (ReLU) are used for the non-linear activation functions.
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Figure 5.3: Illustration of the proposed unsupervised domain adaptation with adversarial
training (UDAA) for sLTP labeling on cardiac CT scans in MESA. Compared to the basic
CNN model, the UDAA model connects an domain adaptation component to the feature
extractor via a gradient reversal layer to learn discriminative image features between
synthetic and real cardiac scans.

To be noted that, we use a relatively shallow architecture, consisting of two 3D Conv

layers and two FC layers, which proved sufficient in our experiments to achieve stable

and high-accuracy sLTP labeling without introducing too much variance. The number of

kernels in each layer is indicated in Figure 5.2, which were selected via grid search.

We carry over this CNN model to the UDAA module in Figure 5.3, and split it into

the fully-convolutional component NNf , as the feature extractor, and the FC component

NNc, as sLTP classifier.

5.2.3 UDAA Module

Adversarial Domain Discriminator

A common assumption in machine learning is that training and test data are drawn from

the same probability distribution, which may not be true for the synthetic cardiac scans

in training, and real cardiac scans in test data. Therefore, we propose to use unsupervised

86



and adversarial domain adaptation introduced in (Ganin et al. 2016) for the labeling of

ROIs from real cardiac CT scans.

Unsupervised domain adaptation is a type of method that learns from samples and

associated labels in a source domainDS (in our case, they refer to the ROIs from synthetic

cardiac scans):

S = {(xi, yi)}nS
i=1 ∼ DS (5.3)

and applies the learned model to unannotated samples from a different target domainDT

(here, ROIs from real cardiac cardiac scans), accounting for domain differences:

T = {xi}nT
i=1 ∼ DT (5.4)

The goal of the learning task is to build a classifier η with a low target risk (Kamnitsas

et al. 2017):

R(η) = Pr(x,y)∼DT
(η(x) ̸= y) (5.5)

The proposed adversarial training module is illustrated in Figure 5.3. The CNN feature

extractorNNf is used to generate feature representations h(·) for both synthetic and real

cardiac ROIs. Only features from synthetic ROIs are used to train the sLTP classifierNNc.

The NNf and NNc form together a standard feed-forward network architecture.

Then, a third neural network component, called the domain discriminator (notedNNd),

is added into the framework, which takes all h(·) as input and tries to determine whether

it comes fromDS orDT . Such discrimination serves as an indicator of how much source-

specific the representation h(·) is.
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The domain discriminatorNNd is connected to the feature extractorNNf via a gradi-

ent reversal layer (Ganin et al. 2016), which multiplies the gradient by a negative constant

during the backpropagation to NNf . Gradient reversal ensures that feature distributions

over the two domains DS and DT are forced to be similar, thus resulting in domain-

invariant features.

The sLTP classifier NNc is optimized using a categorical cross-entropy loss function

Lclass, whereas the domain discriminator NNd is optimized using a binary cross-entropy

loss function Ldomain. The adversarial training process minimizes the total loss function

Ltotal which simultaneously maximizes domain discrimination loss and minimizes sLTP

classification loss, as:

Ltotal = Lclass − αLdomain (5.6)

whereα is a positive weight that defines the relative importance of the domain-adaptation

task for the sLTP classifier. This optimization is possible with regular stochastic gradient

descent (SGD), given that NNd is interconnected and gradients of Ldomain can propagate

back through the discriminator and into the feature extractor. During training, α is ini-

tiated at 0 and is gradually increased up to αmax using the following schedule suggested

by (ibid.):

α =
2 · αmax

1 + exp(−γ · p) − 1 (5.7)

where γ was set to 10, and p is the training progress, linearly increasing from 0 to 1. This

strategy allows theNNd to be less sensitive to noisy signal at the early training stages. The

weight αmax is determined by maximizing theACCtotal = ACCclass−ACCdomain metric

in the validation set, where ACCclass is the sLTP classification accuracy and ACCdomain
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is the domain classification accuracy.

Domain Discrimination in Longitudinal Setting

While the domain discriminator does not require registered inputs in DS and DT , there

is a risk that the learning process is being driven by population-differences rather than

domain-differences if the sampling is not regulated. We therefore enforce sampling of

ROIs per training batch to come from the same subjects and similar locations, matching

the relative distance vectors di between the center voxels of ROIs xi to the lung mask

bounding box (hence not using fine registration).

In our longitudinal setting,NNd needs to discriminate synthetic cardiac ROIs inMESA

Exam 5 from real cardiac ROIs in earlier exams. We further constrain the ROIs sampling

for training NNd, such that the percent emphysema difference is less than 5% for two

ROIs xi ∈ S and xj ∈ T , if xi and xj come from same subjects longitudinal scans with

|di − dj | < 0.1. This excludes pairing ROIs with drastic changes in inflation level or

emphysema progression, which may introduce some bias when training NNd.

5.3 Experimental Results

5.3.1 Experimental Setting

We use all full-lung HRCT scans and cardiac CT scans in MESA that have ULN values of

percent emphysema (Hoffman et al. 2014). This resulted in N = 2,837 subjects in full-lung

Exam 5, which we randomly divide into training Strain, validation Sval and test Stest sets

with a ratio of 3:1:1.

In longitudinal cardiac exams, subjects belonging to Strain and Sval are used to op-
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timize the UDAA framework, while subjects belonging to Stest and subjects not having

HRCT full-lung Exam 5 (i.e. unseen during training and validation stages) are used as lon-

gitudinal test sets to evaluate the sLTP labeling performance. The final number of cardiac

scans evaluated in this study is reported in Table 5.1.

To measure the influence of the domain-adaptation task in the UDAA module, we

also test a source-only CNN training (i.e. training only NNf and NNc using the source

synthetic scans, and applying the trained model to real cardiac scans). In validation steps,

we measure ACCdomain for the source-only CNN model by adding a domain classifier

similar to NNd, but setting its gradient to zero when backpropagating to NNf , so that

the domain classifier does not impose any effect on the feature extractor.

5.3.2 Training and Validation Based on Local ROIs

We trained the UDAA domain adaptation module between synthetic cardiac scans in

MESA Exam 5 and three target real cardiac scanning conditions (i.e. domains) that exist

in MESA Exam 1-5:

1. Helical CT scans in Exam 5;

2. MDCT scans in Exam 1-4;

3. EBT scans in Exam 1-4.

We report in Table 5.2 the overall average values for ACCclass, ACCdomain and the

associated αmax for our best model in Sval.

FromTable 5.2, we can see that the UDAAmodule is able to generate CNN features that

are less distinguishable by the domain discriminator (corresponding to lower ACCdomain
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Table 5.2: Comparison of validation accuracy for sLTP labeling and domain classification,
using the proposed CNN with and without domain adaptation module.

ACCclass ACCdomain

Domain CNN UDAA CNN UDAA (αmax)

Helical 0.888 0.655 0.560 (4.5)

MDCT 0.898 0.875 0.764 0.639 (7.0)

EBT 0.867 0.829 0.603 (7.5)

ACCclass = sLTP classification accuracy on synthetic ROIs;

ACCdomain = domain classification accuracy of real vs. synthetic ROIs.

values), while resulting in only minor decrease in the accuracy of sLTP classification task

on the source synthetic domain.

5.3.3 sLTP Labeling on Longitudinal Cardiac Scans

We labeled all the test cardiac scans in MESA Exam 1-5. Longitudinal consistency of sLTP

labeling is evaluated on intra-subject pairs of scans (cardiac vs. synthetic or cardiac vs.

cardiac) acquired within a maximum time lapse of 48 months.

Reproducibility of sLTP Histograms

We compare sLTP histograms between the following pairs of scans:

1. Synthetic cardiac scans in Exam 5 (ground truth) vs. real cardiac scans in Exam 5;

2. Synthetic cardiac scans in Exam 5 vs. longitudinal cardiac scans in Exam 4;

3. Longitudinal pairs of real cardiac scans in baseline and follow-up visits from Exams

1-4 (denoted as ExB vs. ExF), with a time lapse shorter than 48 months.

In MESA Exams 1-4, we report separate measures for MDCT and EBT scanners, to

evaluate the robustness of our proposed framework versus scanner types. Longitudinal
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Table 5.3: Evaluation of reproducibility of sLTP labeling on longitudinal scan pairs in
MESA acquired within a time lapse ⩽ 48 months.

Np Nk χ2 Distance Correlation: Mean [Min, Max]
CNN UDAA CNN UDAA

Ex5-Synthetic
Ex5-Helical

369 8 2.81 2.41
0.73

[0.46, 0.90]
0.79

[0.52, 0.90]

Ex5-Synthetic
Ex4-MDCT

51 6 4.61 3.33
0.50

[0.19, 0.79]
0.60

[0.28, 0.81]
Ex5-Synthetic
Ex4-EBT

73 6 5.10 4.60
0.57

[0.14, 0.81]
0.59

[0.17, 0.82]

ExB-MDCT
ExF-MDCT

1,812 7 1.81 1.76
0.80

[0.67, 0.86]
0.82

[0.68, 0.90]
ExB-EBT
ExF-EBT

1,839 10 2.15 2.10
0.76

[0.55, 0.90]
0.77

[0.59, 0.92]
ExB-EBT
ExF-MDCT

171 8 4.69 3.12
0.53

[0.15, 0.84]
0.67

[0.42, 0.85]

Bold = significantly better performance (p < 0.05).

scan pairs with overall non-emphysema changing by more than 20% were excluded from

our evaluation.

The followingmetrics are used to compare the sLTP labeling histograms between pairs

of CT scans:

1. Subject-level χ2 distance between sLTP histograms;

2. sLTP-level intra-class correlations between synthetic cardiac scans and real cardiac

scans in MESA Exam 5;

3. sLTP-level Pearson correlations for longitudinal pairs of scans.

Results are reported in Table 5.3, with correlation coefficients computed only on the

Nk sLTPs that were present in at least twenty pairs of scans (out of Np pairs of scans
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being tested), for the sake of statistical power. Reported sLTP-level values consist of mean,

minimum and maximum among theNk sLTPs. Statistical differences between the source-

only CNN model and the UDAA model were tested using t-test.

From Table 5.3, significant differences are observed between the two models generally

when there is scanner-type change between longitudinal CT exams, and the proposed

UDAA model always achieves better reproducibility. If there is no scanner-type change

(same domain), reproducibility is similar for both models, which is expected.

Spatial Consistency of sLTP Labels

We further compare the spatial consistency of sLTP labeling in longitudinal cardiac scans.

Given the potential inaccuracy of partial lung registration in cardiac scans, we report here

a coarse measure, by dividing the bounding box of each left and right lung into 8 lung

zones (superior/inferior, anterior/posterior, medial/lateral), thus construct a histogram of

8 bins for each sLTP location per lung.

Then we compute the χ2 distances of local sLTP histograms between the longitudinal

pairs of cardiac scans in Exam 1-4, with the same number of scans as studied in Table 5.3.

We again compare separately for ExB-MDCT vs. ExF-MDCT, ExB-EBT vs. ExF-EBT

and ExB-EBT vs. ExF-MDCT scans. We found that χ2 distances are significantly smaller

(i.e. better) with the proposed UDAA model, compared to the original CNN model, for

a number of 3, 4, 3 sLTPs respectively, while the other sLTPs do not show significant

difference between UDAA and the source-only CNN model.
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5.4 Discussion and Conclusion

In this chapter, we presented an unsupervised domain adaptation with adversarial learn-

ing (UDAA) framework to label MESA cardiac CT scans with emphysema-specific lung

texture patterns (sLTPs) previously learned on full-lung HRCT scans, as described in

Chapter 3. Translation to cardiac scans relies on synthetic cardiac scans generated from

MESA HRCT scans previously labeled with sLTPs. These labels were used as our ground-

truth for the supervised training component. Domain adaptation was exploited in an

unsupervised context to transition from synthetic to real cardiac scans.

Comparison of sLTP labeling on intra-subject pairs of (cardiac, full-lung HRCT) scans

from the same scanning session, and on longitudinal cardiac scans acquired within a max-

imum time lapse of 48 months, showed significantly better consistency with the UDAA

framework than naively training a CNN model with synthetic-only data. To our knowl-

edge, this is the first study on longitudinal subtyping of emphysema patterns on cardiac

CT scans. Such tool can enable large-scale multi-sites longitudinal studies of emphysema

subtypes over 10 years follow-up, and could potentially advance the understanding of

emphysema progression and COPD.
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Chapter 6

Discriminative Localization in CNNs for Weakly-Supervised

Detection of Pulmonary Nodules

6.1 Introduction

Lung cancer is a major cause of cancer-related deaths worldwide. Pulmonary nodules

refer to a range of lung abnormalities that are visible on lung computed tomography (CT)

scans as roughly round opacities, and have been regarded as crucial indicators of primary

lung cancers (MacMahon et al. 2005). The detection and segmentation of pulmonary nod-

ules in lung CT scans can facilitate early lung cancer diagnosis, timely surgical interven-

tion and thus increase survival rate (Henschke et al. 1999).

Automated detection systems that locate nodules of various sizes can assist radiolo-

gists in cancer malignancy diagnosis (Sluimer et al. 2006). Existing supervised approaches

for automated nodule detection and segmentation require voxel-level annotations for

training, which are labor-intensive and time-consuming to obtain. Alternatively, image-

level labels, such as a binary label indicating the presence of nodules in a relatively larger

field of view, can be obtained more efficiently.

Recent work (Anirudh et al. 2016; Messay, Hardie, and Tuinstra 2015) studied nodule

segmentation using weakly labeled data without dense voxel-level annotations. Their
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methods, however, still rely on user inputs for additional information such as exact nodule

location and estimated nodule size during the segmentation.

Convolutional neural networks (CNNs) have been widely used for supervised image

classification and segmentation tasks. It was recently discovered in a study (Zhou et al.

2016) on natural images that CNNs trained on semantic labels for image classification task

(“what”), have remarkable capability in identifying the discriminative regions (“where”)

when combined with a global average pooling (GAP) operation. This method utilizes the

up-sampled weighted activation maps from the last convolutional layer in a CNN. The

localization capability of CNNs was demonstrated for detecting relatively large-sized tar-

gets within natural image, which is not the general scenario in medical imaging domain

where pathological changes are more various in size and rather subtle to capture. How-

ever, this work sheds light on weakly-supervised disease detection.

In this chapter, we exploit CNN for accurate and fully-automated segmentation of

nodules in a weakly-supervised manner with binary slice-level labels only. Specifically,

we adapt classic image classification CNN models to detect slices with nodule, and si-

multaneously learn the discriminative regions from the activation maps of convolution

units at different scales for coarse segmentation. We then introduce a candidate-screening

framework utilizing the same network to generate accurate localization and segmenta-

tion. Experimental results on the public LIDC-IDRI dataset (Armato III et al. 2011; Clark

et al. 2013) demonstrate that, despite the largely reduced amount of annotations required

for training, our weakly-supervised nodule segmentation framework achieves competi-

tive performance compared to a CNN-based fully-supervised segmentation method.

The nodule locations are informative for indicating malignancy, which is important in
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lung cancer screening programs. Therefore, we further explore the spatial distribution of

nodules with different malignancy scores in the LIDC-IDRI dataset, using the lung shape

spatial mapping PDCM that we proposed in Chapter 3. Thenwe utilize the CNN-based ac-

tivation maps proposed in this chapter to predict the malignancy risk of lung CT scans in

the Kaggle DSB2017 dataset. We will explore and discuss more explicit characterizations

of lung nodule malignancy risks in Appendix D.

6.2 Method

The proposed method for weakly-supervised lung nodule detection contains two stages:

a CNN training stage to generate robust and discriminative activation maps, as illustrated

in Fig. 6.1, and a nodule candidate screening stage to refine the detection results, as

illustrated in Fig. 6.2.

In the first stage, we train a CNNmodel to classify CT slices as with or without nodule.

The CNN is composed of a fully convolutional component, a convolutional layer + global

average pooling layer (Conv+GAP) structure, and a final fully-connected (FC) layer. Be-

sides providing a binary classification, the CNN generates a nodule activation map (NAM)

showing potential nodule localizations, using a weighted average of the activation maps

with the weights learnt in the FC layer.

In the second stage, coarse segmentation of nodule candidates is generated within a

spatial scope defined by the NAM. For fine segmentation, each nodule candidate is masked

out from the image alternately. By feeding the masked image into the same network, a

residual NAM (called R-NAM) is generated and used to select the true nodule. Shallower

layers in the CNN can be concatenated into the classification task through skip architec-
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Figure 6.1: Illustration of the proposed framework to generate nodule activation maps
(NAMs): a CNN model is trained to classify CT slices. A global average pooling (GAP)
operation is used to summarize the activation maps of a convolutional (Conv) layer into
a scalar. The final fully-connected (FC) layer will estimate weights to weigh the activa-
tion maps to generate the nodule activation maps (NAMs). Besides the last Conv layer,
shallower Conv layers can also be connected to the final FC layer via GAP operations.

ture and Conv+GAP structure, extending the one-GAP CNN model to multi-GAP CNN

that is able to generate NAMs with higher resolution.

The location information of lung nodule is informative for indicating malignancy (as

described in Section 6.3.3). Therefore, the NAMs with discriminative regions of lung nod-

ules can also be used to coarsely estimate the risk of lung cancer. We will discuss about

this application in Section 6.2.4 and Section 6.3.4.

6.2.1 Nodule Activation Map

In a classification-oriented CNN, while the shallower layers represent general appearance

information (color, edge, texture, etc.), the deep layers encode discriminative information

that is specific to the classification task.

Benefiting from the convolutional structure, spatial information can be retained in the

activations of convolutional units. Activation maps of deep convolutional layers, there-
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fore, enable discriminative spatial localization of the class/object of interest. In our case,

we locate nodules with a specially generated weighted activation map called nodule acti-

vation map (NAM).

One-GAP CNN

For a given image I , we represent the activation of unit k at spatial location (x, y) in the

last convolutional layer as ak(x, y). The activation of each unit k is summarized through

a spatially global average pooling operation as Ak =
∑

(x,y) ak(x, y).

The feature vector constituted of Ak is followed by a FC layer, which generates the

nodule classification score (i.e. input to the softmax function for nodule class) as:

Snodule =
∑

k
wk,noduleAk =

∑
k
wk,nodule

∑
(x,y)

ak(x, y) (6.1)

where the weights wk,nodule learnt in the FC layer essentially measure the importance of

unit k in the classification task.

As spatial information is retained in the activation maps through ak(x, y), a weighted

average of the activation maps results in a robust nodule activation map:

NAM(x, y) =
∑

k
wk,noduleak(x, y) (6.2)

The nodule classification score can be directly linked with the NAM by:

Snodule =
∑

(x,y)

∑
k
wk,noduleak(x, y) =

∑
(x,y)

NAM(x, y) (6.3)
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By simply up-sampling the NAM to the size of the input image I, we can identify the

discriminative image region that is most relevant to nodule.

Multi-GAP CNN

Although activation maps of the last convolutional layer carry most discriminative infor-

mation, they are usually greatly down-sampled from the original image resolution due to

pooling operations. We hereby introduce a multi-GAP CNN model that takes advantage

of shallower layers with higher spatial resolution.

Similar to the idea of the skip architecture used in fully-convolutional network (FCN)

(Shelhamer, Long, and Darrell 2016) for semantic segmentation, andmultiple state-of-the-

art image classification networks (He et al. 2016; Huang et al. 2017), shallower layers can

be directed to the final classification task skipping the following layers. We also add a

Conv+GAP structure following the shallow layers. The concatenation of feature vectors

generated by each GAP layer is fed into the final FC layer. The NAM generated from

the multi-GAP CNN model (multi-GAP NAM) is a weighted activation map involving

activations at multiple scales.

6.2.2 Lung Nodule Detection and Segmentation

Detection Scope for Coarse Segmentation

For slices classified as “nodule slice”, nodule candidates are screenedwithin a spatial scope

C defined by themost prominent blob in the NAMprocessed via watershed. They are then

coarsely segmented based on the CT intensity values and using an iterated conditional

mode (ICM) based multi-phase segmentation method (Israel-Jost et al. 2008), with the
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Figure 6.2: Illustration of the proposed lung nodule candidate screening framework: for
test slices classified as “nodule slice”, nodule candidates are screened using a spatial scope
defined by the NAM for coarse segmentation. Residual NAMs (R-NAMs) are generated
from images with masked nodule candidates for fine segmentation.

phase number equal to four as determined by global intensity distribution.

Candidate Screening for Fine Segmentation

The NAM indicates a potential but not exact nodule location. To identify the true nodule

from the coarse segmentation results, i.e. which nodule candidate triggered the activation,

we generate residual NAMs (R-NAMs) by masking each nodule candidate Rj alternately

and feeding the masked image I\Rj into the same network. The most significant change

of activations within C indicates the exclusion of the true nodule. Formally, we generate

the fine segmentation by selecting the nodule candidate Rk following:

Rk = argmax
Rj

∑
(x,y)∈C

[
NAMI(x, y)− NAMI\Rj

(x, y)
]2 (6.4)

where NAMI is the original NAM, and NAMI\Rj
is the R-NAM generated by masking

nodule candidateRj . Our current implementation targets the segmentation of one nodule

per NAM. Incidence of slices with two nodules is ∼ 1% within slices with nodules in the
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Figure 6.3: Illustration of 1-/2-/3-GAP NAMs, the screening scopes C and coarse seg-
mentation results on a sample slice. The 1-GAP NAM is most discriminative showing
only one high probability lung nodule region, while the 3-GAP NAM is least discrimina-
tive. Constraining the 3-GAP NAMwith the screening scope defined on the 1-GAP NAM,
the number of nodule candidates is reduced from four to two.

LIDC-IDRI dataset. No slices contain more than two nodules in this dataset.

Multi-GAP Models

For the multi-GAP CNN model, we observed a slight drop in classification accuracy com-

pared with the one-GAP CNN model (see Section 6.3.2), which is expected since features

from shallower layers are more general and less discriminative.

In light of this, we further propose a multi-GAP segmentation method by training

both a one-GAP CNN model and a multi-GAP CNN model to combine the discriminative

capability of the one-GAP system and finer localization of the multi-GAP system.

Specifically, we first detect “nodule slice” by the one-GAP CNN model for its higher

classification accuracy. To define the screening scope for coarse segmentation, we first

use the one-GAP NAM to generate a baseline scope C1. If there is a prominent blob Cmulti

detected via watershed within C1 in the multi-GAP NAM, we define the final scope C as

Cmulti to eliminate redundant nodule candidates with more localized spatial constraints.
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When the multi-GAP NAM fails to identify any discriminative regions within C1, the

final screening scope C remains C1. The R-NAM of the masked image is generated by the

one-GAP CNN model and compared with one-GAP NAM within C1.

Fig. 6.3 illustrates 1-/2-/3-GAP NAMs, the corresponding screening scopes C and

coarse segmentation results on a sample slice. While multi-GAP NAM enables finer lo-

calization, one-GAP NAM has better discriminative power.

6.2.3 Network Architectures

Our CNN models for generating the NAMs are primarily based on the VGG-16 architec-

ture, as illustrated in Fig. 6.4 (A).TheVGGnetwork is the winner of the localization task in

ImageNet Large Scale Visual Recognition Competition (Krizhevsky, Sutskever, and Hin-

ton 2012), or ILSVRC, in 2014. The last pooling layer pool5 and the FC layers fc6, fc7, fc8

in the original network are removed (Zhou et al. 2016). The Conv+GAP structure is added

after conv5_3 layer for 1-GAP CNN, added after conv5_3 and conv4_3 layers for 2-GAP

CNN, and added after conv5_3, conv4_3, and conv3_3 layers for 3-GAP CNN. In addition

to the VGG-16 architecture, we further exploit deeper state-of-the-art CNN architectures

such as the ResNet-50 (He et al. 2016, winner of ILSVRC 2015) and DenseNet-121 (Huang

et al. 2017, winner of the best paper award in CVPR 2017), as discussed in Section 6.3.2.

We compare our model with a fully-supervised CNN method based on U-net archi-

tecture (Ronneberger, Fischer, and Brox 2015), as illustrated in Fig. 6.4 (B). U-net is a

encoder-decoder type of network architecture that has been extensively used in biomed-

ical applications to detect cancer (Dalmis et al. 2018), kidney pathologies (Thong et al.

2018) and tracking cells (Rad et al. 2018). In the encoder part, feature maps from Conv
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Figure 6.4: Illustration of the VGG-16 network architecture used for weakly-supervised
lung nodule detection, and the U-net architecture used for fully-supervised detection. (A)
The VGG-16 network, where the last max-pooling layer pool5 and the fully-connected
layers fc6, fc7, fc8 in the original work (Simonyan and Zisserman 2014) are removed.
Global average pooling (GAP) layers are added as indicated by the red dashed lines. (B)
The U-net architecture. This figure is adapted from (Ronneberger, Fischer, and Brox 2015).

layers are down-sampled via max-pooling operations. In the decoder part, feature maps

are up-sampled via transpose Conv operations to maintain high resolution in the final

feature map. The skip connections concatenate the layers in the down-sampling path

with corresponding layers in the up-sampling path. The U-net was proven to be a very
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powerful segmentation tool in scenarios with limited data, and it has no restriction on the

size of the input image since it does not involve any fully connected layer.

6.2.4 NAM-based Cancer Map

In addition to providing potential discriminative regions of lung nodules, the NAMs can

be used as efficient nodule-specific feature representations of the lung CT images. Since

nodule location is one risk factor of lung cancer (Horeweg et al. 2014), the potential nodule

locations in NAM may advance the estimation of nodule malignancy risk.

Being able to predict lung cancer versus normal or benign cases is important for build-

ing up a cost-effective lung cancer screening program, and is gaining more and more at-

tention recently. In the Kaggle Data Science Bowl 2017 (DSB2017) challenge1, full-lung

CT scans of 2,101 subjects that have high risk of lung cancer are provided. Each subject is

associated with a binary label which is the pathological diagnosis result of with/without

early lung cancer. The goal of this challenge is to accurately predict the malignancy risk

of the test CT scans, given training and validation CT scans and their binary labels. In this

application, each CT scan is treated as a data point for the final prediction task. Therefore,

an efficient and low dimensional feature representation of the CT scan is required.

To efficiently summarize the lung nodule locations within the lungs, we propose to

generate local NAMs (pre-trained in LIDC-IDRI) per CT image slice in Kaggle DSB2017,

and then average and project them onto coronal, axial and sagittal planes for dimension

reduction. Notice that the NAMs from the deep-most Conv layer is a natural low dimen-

sional feature, and do not need to be upscaled to the initial image size in this application.

1https://www.kaggle.com/c/data- science-bowl-2017
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Axial Map Coronal Map Sagittal Map

Figure 6.5: Illustration of the NAM-based cancer map on a sample lung CT scan. (Left)
Axial projection of averaged NAMs; (Middle) Coronal projection of averaged NAMs;
(Right) Sagittal projection of averaged NAMs.

Instead, we rescale the coronal, axial and sagittal NAMs to the same size (32× 32 in our

implementation) to be able to concatenate them into a single feature representation. We

call the concatenation of the three projections the cancer map, which provides potential

lung nodule location information from 3D perspectives.

Figure 6.5 is the illustration of a cancer map for one sample lung CT scan, which

indicates the potential presence of a relatively large nodule in the superior, anterior and

peel region of the right lung.

In the classification stage, we feed the cancer map per CT scan as the input to train

a second CNN model. Considering the relatively small sample size in Kaggle DSB2017,

this CNN model contains only two Conv layers (kernel size = 3 × 3, followed by ReLU

and max-pooling) with 32 and 48 kernels respectively, and then two FC layers (followed

by ReLU) of size 128 and 256 respectively. Dropout (Srivastava et al. 2014) and batch

normalization (Ioffe and Szegedy 2015) are used to prevent overfitting of the prediction.
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6.3 Experimental Results

6.3.1 Data and Experimental Setup

Data used for evaluating the weakly-supervised lung nodule detection contains 1,010 tho-

racic CT scans from the public LIDC-IDRI database (see details in Chapter 2). Lungs were

segmented and each axial slice was cropped to 384×384 pixels centering on the lungmask.

Data used for evaluating the proposed NAM-based cancer map includes the 2,101 thoracic

CT scans from the Kaggle DSB2017 dataset.

In the LIDC-IDRI dataset, nodules were delineated by up to four experts. Voxel-level

annotations are used to generate slice-level labels, and are used as ground truth for nod-

ule detection and segmentation evaluation. Nodules with diameter < 3mm are excluded

(Setio et al. 2016). Given the high false positive rate of nodule detection, we select slices

with nodule if there were overlapped annotations by at least two experts, and select slices

without nodule if no expert reported a nodule in the slice. We merge annotations from

different experts using the STAPLE algorithm (Warfield, Zou, and Wells 2004). A total

of Nslice = 8, 345 slices with nodule are selected, and an equal number of slices without

nodule are randomly extracted. Training, validation and test sets are generated by dis-

tributing the full set of subjects in a ratio of 4:1:1 through stratified sampling so that they

have non-overlapping subjects and similar distribution of nodule occurrence. The total

number of voxels belonging to nodule is Nvoxel = 1, 658, 981. The number of labeling

required for a fully-supervised method versus our method is Nvoxel/Nslice ∼ 100.

The training, validation and test split of Kaggle DSB2017 follows the official split,
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which consists of 1,397 training scans, 198 validation scans (stage 1) and 506 test scans

(stage2), to evaluate the proposed cancer maps.

Our weakly-supervised nodule detection and segmentation is primarily trained with

slice-level weak labels in LIDC-IDRI dataset. Evaluations of nodule detection and seg-

mentation performance are focused on slices with one nodule. Rare cases of slices with

two nodules are discussed in Appendix C. Potential extension to detecting nodules in 3D

regions is also preliminarily evaluated and discussed in Appendix C.

6.3.2 Nodule Detection and Segmentation Performance

Performance Compared to Fully-Supervised U-Net Method

Our weakly-supervised CNN model based on VGG-16 network is initialized with weights

pre-trained on ImageNet. The learning rate of the newly added FC layers is 10 times

the learning rate of the remaining VGG-16 layers. We trained using stochastic gradient

descent with momentum (Qian 1999). The initial learning rate (10−2 for 1-GAP, 2× 10−3

for 2-GAP, 10−3 for 3-GAP), learning decay (0.99), batch size (30) were set by grid search

based on classification accuracy on the validation set. The best accuracy values are 88.4%

for 1-GAP CNN, 86.6% for 2-GAP model, and 84.4% for 3-GAP model on the test set.

For U-net, the cost function is the negative mean Dice coefficient across mini-batch.

The algorithm was optimized with Adammethod (Kingma and Ba 2014). The initial learn-

ing rate (2 × 10−4), learning decay (0.999), and batch size (20) were determined with

grid search based on average Dice on the validation set. The U-net model is trained on

voxel-level labels for nodule segmentation. For detection performance, a slice is labeled

as “without nodule” if there is no segmented nodule in the slice.
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Table 6.1: Comparison of nodule detection and segmentation performance between the
proposed weakly-supervised models and fully-supervised U-net model

Method TPR FPR FPRnodule Dice TP Dice TP DOA

mean ± SD mean ± SD mean ± SD

1-GAP Coarse 0.77* 0.11*† - 0.46 (±0.31) 0.61 (±0.20) 57.6 (±71.1)

2-GAP Coarse 0.76 - - 0.50 (±0.34) 0.66 (±0.18) 41.6 (±53.6)

3-GAP Coarse 0.75 - - 0.50 (±0.32) 0.67 (±0.18) 40.1 (±50.9)

1-GAP Fine 0.75 - 0.14* 0.54 (±0.34) 0.73 (±0.15) 30.7 (±52.8)

2-GAP Fine 0.75 - 0.14 0.55* (±0.33) 0.74* (±0.14) 29.2* (±46.8)

3-GAP Fine 0.74 - 0.15 0.54 (±0.34) 0.74 (±0.14) 29.3 (±46.4)

U-net 0.74 0.29 0.26 0.56 (±0.38) 0.76 (±0.19) 28.3 (±44.8)

* = best performance within our framework; boldfaced = overall best performance;

†= 1-GAP model is used for nodule slice-level detection within our framework.

True positive rate (TPR) of nodule detection, false positive rate (FPR) of “nodule” seg-

mented on slices without nodule, false positive rate (FPRnodule) of “nodule” segmented

on slices with nodule, Dice overlap of nodule segmentation over all slices with nodule

(Dice), Dice over truly detected nodules (TP Dice) and absolute difference of segmented

areas over truly detected nodules (TP DOA,mm2) are reported in Table 6.1. The proposed

method achieves the best nodule detection performance over all models with regard to the

TPR and false positive rates, and achieves competitive segmentation performance com-

pared to the fully-supervised U-net model.

Since detection and segmentation performance are closely related to the nodule size,

TP Dice and TP DOA versus nodule size are reported in Fig. 6.6.
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Figure 6.6: Comparison of nodule segmentation performance, measured by Dice over
truly detected nodules (TP Dice) and absolute difference of segmented areas over truly
detected nodules (TP DOA) (mean and standard deviation), versus nodule size between
the proposed weakly-supervised method and fully-supervised U-net model.

Comparison of Performance over Different CNN Architectures

We further compare the weakly-supervised nodule detection performance, using CNN ar-

chitectures based on VGG-16, ResNet-50 and DenseNet 121. The latter two networks were

trained to generate NAMs in their deep-most Conv layers, using the same data split as

the VGG-16, and again with training parameters determined via grid searching. The slice

classification performance in validation and test sets and nodule detection performance

in test set using the 1-GAP coarse segmentation is reported and compared in Table 6.2.

FromTable 6.2,The best slice classification accuracy (ACC) in validation set is achieved

by the DenseNet-121. During training, we also observe that the model convergence is

fastest with the DenseNet-121model, which is likely benefiting from its smaller number of

trainable parameters (DenseNet is a type of deep CNN architecture with reusable features

among layers in the same dense block), and hence fewer flexibility and smaller variance
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Table 6.2: Comparison of nodule detection performance for the weakly-supervised NAM
method versus CNN architectures

Method Validation ACC Test ACC TPR FPR # of Parameters

VGG-16 0.887 0.884 0.77 0.11 15,242,050

ResNet-50 0.891 0.870 0.78 0.17 25,687,938

DenseNet-121 0.892 0.873 0.74 0.13 8,089,154

compared to the other two networks. While ResNet-50, which has the most parameters,

is harder to train and needs careful initialization and hyper-parameter searching in our

experiments. The model with the best validation ACC is applied to the test set, and we

observe that VGG-16 has the best generalizability (highest test ACC) in our application.

As for the nodule detection performance in test set, the ResNet-50 model achieves slightly

higher TPR than the VGG-16 model, but with worse FPR, while the DenseNet-121 is least

discriminative than the other two models.

We illustrate the NAMs generated with the three CNN architectures on sample CT

slices, as shown in Fig. 6.7. The NAMs generated by the DenseNet-121 model has larger

prominent blobs (hence larger nodule screening scopes), which is due to the lower res-

olution of activation maps in the last Conv layer in DenseNet-121 (down-sampled by 32

from the original image size), compared to the other two networks (down-sampled by 16).

Therefore, the VGG-16 architecture appears to be more suited (easier to train, and

with overall higher classification accuracy and better detection performance) for our lung

nodule detection task within this relatively small sample size.

To inspect the CNN features learned in the three CNNmodels, we visualize the kernels

in Conv layers via activate maximization (Erhan et al. 2009). The idea behind activation
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VGG-16 ResNet-16 DenseNet-16

Figure 6.7: Visualization of NAMs generated with different CNN architectures on sample
CT slices. From left to right: CT image slices, NAMs based on VGG-16, ResNet-50 and
DenseNet-121.

maximization is to generate an input image that maximizes the filter output activations.

This allows us to understand what sort of input patterns activate a particular filter.

For each CNN model, we select four Conv layers (see details in Appendix B), and vi-

sualize five random filters in each layer, as shown in Fig. B.1-B.3. From the visualizations,

the shallower layers generally exhibit basic texture information, and deeper layers exhibit

more complicated textures, and the very deep layers are less interpretable since they are

operated on outputs from all previous layers. For that reason, we observe that the visu-

alizations on the deeper ResNet-50 and DenseNet-121 models are less interpretable than

that of the VGG-16 model.
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Figure 6.8: Spatial distribution of benign versus malignant nodules in the LIDC-IDRI
dataset, measured by the PDCM spatial mapping.

6.3.3 Nodule Spatial Distribution in LIDC-IDRI

The nodule location information is a risk factor of lung cancer. In Chapter 3, we proposed

a lung shape spatial mapping, the Poisson distance conformal mapping (PDCM), which

can be used as a tool to study the lung nodule locations in a standardized coordinate

system. Therefore, we apply the PDCM to all CT scan in the LIDC-IDRI dataset.

Each nodule in LIDC-IDRI is associated with one to four malignancy scores, ranging

from 1 (very benign) to 5 (very malignant), estimated by four radiologists. We define the

nodules with the majority score⩾ 4 to be malignant and the rest to be benign. This results

in N = 1,506 benign nodules and N = 285 malignant nodules. The distribution of the two

nodule types from external lung surface (peel) to the lung core, superior lung to inferior

lung, and anterior-lateral-posterior-medial directions are shown in Fig. 6.8.

From Fig. 6.8, benign nodules are more likely to locate at peel regions compared
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to malignant nodules evaluated via t-test (p < 10−6) as shown in Fig. 6.8 (A), while

malignant nodules are more likely to locate at superior regions of the lungs (p < 10−8)

as shown Fig. 6.8 (B), which agrees with the conclusion that nodules in upper lung lobes

have higher risk to be cancer (Horeweg et al. 2014; MacMahon et al. 2005). The spatial

distribution in axial directions, as in Fig. 6.8 (C), does not show significant difference

between benign and malignant nodules ( p > 0.05).

6.3.4 Cancer Map in Kaggle DSB17

We applied the cancer map model proposed in Section 6.2.4 to predict the lung cancer

risk, and participated the Kaggle DSB2017 challenge. For evaluation, we compute the log

loss as used in this challenge:

LogLoss = − 1

n

n∑
i=1

[yilog(ŷi) + (1−yi)log(1−ŷi)] (6.5)

where n is the number of patients in the test set, ŷi is the predicted probability of the CT

image belonging to a patient with cancer, and yi is 1 if the diagnosis is cancer, 0 otherwise.

Our model achieves a log loss of 0.45872, which ranks the 14th out of 1,972 teams in

the Kaggle challenge.

6.4 Discussion and Conclusion

Automated systems that locate lung nodules of various sizes can assist radiologists in

lung cancer diagnosis, and has gained more and more attentions. In this chapter, we first

presented an original design for lung nodule detection and segmentation, extending a

classification-trained CNNmodel with GAP operations, to learn discriminative regions at
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different resolution scales utilizing only weakly labeled training data (present or not of a

lung nodule). Coarse-to-fine segmentation extracted nodule candidates, and determined

the true nodule exploiting a novel candidate-screening framework.

Compared with voxel-based labels, the number of labeling required for our method

was reduced by∼100 times. Detection performance of our weakly-supervised framework

compared very favorably with a fully-supervised CNNmodel (higher TPR and lower FPR).

Our average segmentation accuracy on detected nodules was also very high and got very

close to the benchmark method for larger nodules. Fully-supervised CNN achieved, on

average, more accurate segmentation when correctly detecting the nodule, which is ex-

pected since voxel-level annotation utilized during training provides more power to deal

with various intensity patterns, especially at edges. On the other hand, standard devia-

tions were smaller with the proposed method, hence indicates fewer large mistakes.

A machine learning model requiring only weakly-labeled data is key for a sustainable

development of CAD systems, as expert time is scarce and expensive and as scanners

continue to evolve significantly. Our work use transfer learning from a CNN trained on

natural images; with more annotated data, it will be possible to train a fully dedicated

network that is likely to be more effective.

The nodule locations are informative for indicating malignancy. In Chapter 3, we

proposed a standardized lung shape spatial mapping PDCM. In this chapter, we studied the

spatial location of nodule types (benign versus malignant) in the LIDC-IDRI dataset again

using PDCM. Significant differences were observed in the spatial distributions between

nodule types, from external lung to the core regions, and from superior lung to inferior

lung regions. Lung nodule location can therefore be a useful radiological factor when
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estimating the nodule malignancy risks.

In addition to providing potential discriminative regions of lung nodules, the NAMs

proposed in this work can be used as efficient nodule-specific feature representations of

the lung CT images. In the Kaggle DSB2017 challenge, we predicted early lung cancer

risks using NAM-based cancer maps, and ranked 14th our of 1,972 teams. Lung cancer

screening has been approved and is being implemented in the United States. Challenges

present given the large number of high-risk individuals to screen, and the dominance

of benign nodules among all nodules detected on CT. Automated methods that enable

estimating early lung cancer risks based on CT images are important for a more cost-

effective lung cancer screening program with less reading efforts and minimal number

of biopsies. Our NAM-based cancer maps demonstrated the potential of detecting early

lung cancers, trained with scan-level binary diagnostic labels, which are easy to acquire

in clinical scenarios.

With detected nodules, we can perform more explicit characterizations to estimate

nodule malignancy, which can provide richer information (than scan-level prediction)

to assist radiologists in decision making and cancer management. In Appendix D, we

will discuss our proposed method to explicitly classify given nodules as benign versus

malignant, using a novel data augmentation framework based on generative adversarial

network (GAN) to deal with the class imbalance over the two nodule types.
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Chapter 7

Discussion and Conclusion

CT imaging continues to be the most important tool for assessing the parenchymal struc-

ture in the lungs. In this thesis, we presented novel methods for CT-based lung texture

learning, targeting to significantly advance the understanding and diagnosis of two im-

portant lung diseases: 1) chronic obstructive pulmonary disease (COPD) and pulmonary

emphysema; 2) lung cancer and pulmonary nodules.

Most existing CT-based lung texture learning methods to date have been limited to

supervised approaches relying on manually annotated voxels or local regions of interest

(ROIs) as ground truth, which are slow and labor-intensive to obtain. In this work, we

exploited unsupervised and weakly-supervised learning requiring less or no annotations.

More specifically, we first developed an unsupervisedmachine learningmethod to dis-

cover novel CT image-based patterns for pulmonary emphysema, incorporating spatial

and texture features. While there were three standard emphysema subtypes previously

defined at autopsy, pathologists disagreed on the very existence of them. Clinical usages

of the three standard subtypes have been limited, largely due to practical inter- and intra-

rater variability when assessing them onCT. Our proposed unsupervised learning enabled

us to discover a set of quantitative emphysema subtypes (QES) that were highly repro-

ducible, and were associated independently with respiratory symptoms, clinical charac-
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teristics and genetic variants, as demonstrated on large full-lung CT datasets including

2,922 subjects in the SPIROMICS and 3,128 subjects in the MESA Lung Study.

Then we extended the lung texture learning to the well-established MESA cardiac CT

dataset, to enable large-scale longitudinal study of emphysema. Cardiac CT scans include

approximately bottom 2/3 of the lung. Automated emphysema quantification methods

have been available for decades, and the standard and adapted methods have achieved

widespread acceptance for research purposes on full-lung high-resolution CT (HRCT)

scans; while robust emphysema quantification on cardiac scans was not well exploited

previously. In this thesis, we presented a framework which demonstrated the potential

of robust emphysema segmentation across heterogeneous cardiac CT scans by dedicated

parameterization to account for scanner and subject variability. Then we proposed a deep

learning method based on unsupervised domain adaptation to handle the texture differ-

ences between full-lung HRCT and cardiac CT scans, which significantly increased the

consistency of texture learning across imaging scanners and protocols (the “domains”).

This enabled us to study the progression of QES on 17,039 longitudinal cardiac and full-

lung CT scans over 10 years of follow-up in MESA.

Overall the discovered QES provide novel emphysema sub-phenotyping that may fa-

cilitate future study of emphysema development, understanding the stages of COPD and

the design of personalized therapies.

To facilitate lung cancer screening, we presented a weakly-supervised deep learn-

ing method for lung nodule detection, as an alternative to the fully-supervised methods

relying on voxel-level delineations that require high expense and reading efforts. The

proposed method generated weighted nodule activation maps (NAMs) from convolu-
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tional neural networks (CNNs) with skip-connections, and incorporated a novel candidate

screening framework to reduce the number of false positives. Using the proposed weakly-

supervisedmethod, we achieved competitive performance compared to a fully-supervised

method, while requiring∼100 times less annotations. With the increasing scale ofmedical

image data and the challenge of reading efforts, relying on massive ground truth labels to

develop machine learning algorithms for computer-aided diagnosis (CAD) is becoming

less practical. Alternatively, weakly-supervised learning is more suitable for a sustain-

able development of CAD systems, in the presence of heterogeneous data generated by

constantly evolving scanner types.

The proposed NAMs are also efficient nodule-specific descriptions of lung CT images.

Using NAM-based features, we were able to predict the risk of early lung cancer per sub-

ject when training on scan-level binary labels. This demonstrates the potential usage of

deep learning methods for CT-based lung cancer prediction, in scenarios where training

diagnostic information is available at individual-level. When annotations are available

at nodule-level, we can perform more explicit characterizations to estimate nodule ma-

lignancy, which can provide richer information to assist radiologists in decision making

and cancer management. The vast majority of lung nodules detected on lung CT scans are

eventually benign, hence malignant nodules are generally underrepresented in existing

datasets. Therefore, we proposed a novel data augmentation framework with class-aware

nodule synthesis, to handle the issue of class imbalance when classifying benign versus

malignant nodules. Our nodule synthesis enabled in-painting nodules with high fidelity

in specified categories at any location of the lung, and was demonstrated to be beneficial

for predicting nodule malignancy scores. Similar framework can also be applied to aug-
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ment data for lung nodule detection, and can be extended to synthesizing other disease

patterns and facilitate more fundamental problems such as lung and lobe segmentation,

in the presence of rare diseases.

Overall, the proposed work enables the usage of a vast amount of unannotated and

weakly annotated CT scans. Successful applications would potentially have a tremendous

impact in the field, for diseases that affects millions around the world.

Unsupervised and weakly-supervised learning will continue to be the focus in fu-

ture work, accounting for the practical challenge in annotation acquisition in medical

domains. Investigating the variation of lung texture subtypes in normal and mild disease

populations can be important to discover early disease signals, and will be considered in

our future study, utilizing the MESA Lung Study, a dataset for general population. Fur-

ther development is possible to refine the current emphysema subtyping and yield novel

molecular quantitative emphysema subtypes (mQES), by incorporating other data and

features, such as pulmonary vasculature on CT angiograms, expiratory lung CTs, longi-

tudinal data points, and genetic factors.

In the future work, dedicated deep learning frameworks can be exploited for incor-

porating the multimodal data. Several progresses have been made with deep neural net-

works for multimodal learning in medical studies (Ramachandram and Taylor 2017). Re-

current layers can capture spatio-temporal relationships of input data, and can be utilized

to characterize longitudinal data points. Shared representation layers are commonly used

for feature fusion in deep learning to work with multi-modal data. Regularization of such

multi-modal features to enforce inter- and intra-modality correlations is an active field of

research. Deep generative models, such as deep belief network (DBNs, Lee et al. 2009),
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GANs, and deep variational models, have been proposed to characterize joint statisti-

cal distributions of observed data and their associated classes, and are better suited for

unsupervised and weakly-supervised settings. Layer-wise pre-training is useful for ini-

tializing unsupervised deep networks. Pre-defined layers based on wavelet transforms

(Cheng, Chen, and Mallat 2016) were demonstrated to be powerful to help prevent over-

fitting when the training data set is relatively small. This will be exploited in future study.

Deep-learning associating imaging (radiomics) and genomics is still widely unexplored

(Miotto et al. 2017). Bayesian deep learning has been introduced in computer vision

(Kendall and Gal 2017) to model aleatoric uncertainty (i.e. uncertainty inherent to the

data) by placing a distribution over the output of the model, and epistemic uncertainty

(i.e. uncertainty in the model parameters) by putting prior distributions over weights.

Exploiting recurrent networks and Bayesian deep learning for mixing radiomics (exist-

ing QES) with dynamic longitudinal data and static genetic data may reveal additional

emphysema subtypes that suggest mechanistic pathways to treatment.

Emphysema and airway diseases jointly contribute to COPD. The genetic hits in our

discovered Apical QES suggested the association between emphysema and pulmonary

vasoconstriction, which is consistent with the previous suspicions that pulmonary vascu-

lature plays a role in COPD development (Hueper et al. 2015). Therefore, it is important

to exploit precision approaches of tree structures in lung CT, to study both airway trees

and vasculature trees in high-resolution CT. Joint modeling the texture and spatial vari-

ability of emphysema and pulmonary trees over populations may help us to understand

the contributions from emphysema, airway diseases, and possibly vascular abnormalities

to COPD, and will be investigated in future studies.
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Chapter 8

Related Publications and Competition Performance

8.1 Publications

Published / In Press:

• Jie Yang and et al., “Unsupervised Domain Adaption with Adversarial Learning

(UDAA) for Emphysema Subtyping on Cardiac CT Scans: The MESA Study”, in

IEEE International Symposium on Biomedical Imaging (ISBI), 2019.

• Jie Yang and et al., “Class-Aware Adversarial Lung Nodule Synthesis in CT Images”,

in IEEE International Symposium on Biomedical Imaging (ISBI), 2019.

• Y. Gan, Jie Yang and et al., “Enhanced Generative Model for Unsupervised Dis-

covery of Spatially-Informed Macroscopic Emphysema: The Mesa COPD Study”, in

IEEE International Symposium on Biomedical Imaging (ISBI), 2019.

• X. Feng, Jie Yang and et al., “Alzheimer’s Disease Diagnosis based on Anatomi-

cally Stratified Texture Analysis of the Hippocampus in Structural MRI”, in IEEE

International Symposium on Biomedical Imaging (ISBI), 2018.

• C. Aaron, …, Jie Yang and et al.: “A Longitudinal Cohort Study of Aspirin Use and

Progression of Emphysema-like Lung Characteristics on CT imaging: the MESA

Lung Study”, in CHEST, 2018.
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• Jie Yang and et al., “Unsupervised Discovery of Spatially-Informed Lung Texture

Patterns (sLTPs) for Pulmonary Emphysema: The MESA COPD Study”, in Interna-

tional Conference on Medical Image Computing and Computer-Assisted Intervention

(MICCAI), 2017.

• X. Feng*, Jie Yang* and et al., “Discriminative Localization in CNNs for Weakly-

supervised Segmentation of Pulmonary Nodules”, in International Conference on

Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2017.

(* denotes equally contributed first author)

• J. Song, Jie Yang and et al., “Generative Method to Discover Emphysema Subtypes

with Unsupervised Learning using Lung Macroscopic Patterns (LMPS): The MESA

COPD study”, in IEEE International Symposium on Biomedical Imaging (ISBI), 2017.

• Jie Yang and et al., “EmphysemaQuantification on Cardiac CT Scans using Hidden

Markov Measure Field Model: the MESA Lung Study”, in International Conference

on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2016.

• Jie Yang and et al., “Explaining Radiological Emphysema Subtypes with Unsuper-

vised Texture Prototypes: MESA COPD Study”, in International Conference on Med-

ical Image Computing and Computer-Assisted Intervention Medical Computer Vision

Workshop (MICCAI MCVW), 2016.

• Jie Yang and et al., “Texton and Sparse Representation based Texture Classification

of Lung Parenchyma in CT Images”, in IEEE Annual International Conference of the

Engineering in Medicine and Biology Society (EMBC), 2016.
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Under Review:

• Jie Yang and et al., “Characterizing Alzheimer’s Disease with Image and Genetic

Biomarkers using Supervised Topic Models”, in Journal of Biomedical and Health

Informatics (JBHI).

• X. Feng, Jie Yang and et al.: “Deep Learning on MRI Affirms the Prominence

of the Hippocampal Formation in Alzheimer’s Disease Classification”, in Brain

(bioRxiv:456277).

To Submit:

• Jie Yang and et al., “Unsupervised Machine Learning to Define Quantitative Sub-

types of Pulmonary Emphysema on CT”, in Science (to submit in January, 2019).

• Jie Yang and et al., “Novel Subtypes of Pulmonary Emphysema Based on Spatially-

Informed Lung Texture Learning”, in Transactions on Medical Imaging (TMI).

• M. Wang, …, Jie Yang and et al.: “Long-Term Exposure to Ambient Air Pollution

and Longitudinal Change inQuantitatively Assessed Emphysema on Computed To-

mography and Lung Function in the General Population: the MESA Air and Lung

Studies”, in the Journal of the American Medical Association (JAMA) (under revision).

8.2 Competition Performance

• Kaggle Data Science Bowl 2017: Can You Improve Lung Cancer Detection?

14th out of 1972 teams

124



Bibliography

Ahmed, Firas S. et al. (2014). “Plasma sphingomyelin and longitudinal change in emphy-
sema on CT.TheMESA Lung study.” In: Biomarkers 19.3, pp. 207–213. issn: 0954-6111.

Anderson, Augustus E et al. (1964). “Emphysema in lung macrosections correlated with
smoking habits.” In: Science 144.3621, pp. 1025–1026. issn: 0036-8075.

Anirudh, Rushil et al. (2016). “Lung nodule detection using 3D convolutional neural net-
works trained on weakly labeled data.” In: SPIE Medical Imaging. International Society
for Optics and Photonics, pp. 978532–978532.

Anthimopoulos, Marios et al. (2016). “Lung pattern classification for interstitial lung dis-
eases using a deep convolutional neural network.” In: IEEE Transactions on Medical
Imaging 35.5, pp. 1207–1216.

Aoshiba, Kazutetsu, Naoko Yokohori, and Atsushi Nagai (2003). “Alveolar wall apoptosis
causes lung destruction and emphysematous changes.” In: American Journal of Respi-
ratory Cell and Molecular Biology 28.5, pp. 555–562.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein gan.” In: arXiv
preprint arXiv:1701.07875.

Armato III, Samuel G et al. (2011). “The lung image database consortium (LIDC) and image
database resource initiative (IDRI): a completed reference database of lung nodules on
CT scans.” In: Medical Physics 38.2, pp. 915–931. issn: 0094-2405.

Asherov, Marina, Idit Diamant, and Hayit Greenspan (2014). “Lung texture classification
using bag of visual words.” In: SPIE Medical Imaging. International Society for Optics
and Photonics, 90352K–90352K–8.

Auerbach, Oscar et al. (1972). “Relation of smoking and age to emphysema: whole-lung
section study.” In: New England Journal of Medicine 286.16, pp. 853–857. issn: 0028-
4793.

Barr, R Graham et al. (2007). “Impaired flow-mediated dilation is associated with low pul-
monary function and emphysema in ex-smokers: the Emphysema and Cancer Action

125



Project (EMCAP) Study.” In:American Journal of Respiratory and Critical CareMedicine
176.12, pp. 1200–1207.

Barr, R Graham et al. (2010). “Percent emphysema, airflow obstruction, and impaired left
ventricular filling.” In: New England Journal of Medicine 362.3, pp. 217–227. issn: 0028-
4793.

Barr, R Graham et al. (2012). “A combined pulmonary-radiology workshop for visual eval-
uation of COPD: study design, chest CT findings and concordance with quantitative
evaluation.” In: COPD 9.2, pp. 151–159. issn: 1541-2555.

Bartel, Seth T et al. (2011). “Equating quantitative emphysema measurements on different
CT image reconstructions.” In: Journal of Medical Physics 38.8, pp. 4894–4902. issn:
0094-2405.

Bild, Diane E et al. (2002). “Multi-ethnic study of atherosclerosis: objectives and design.”
In: American Journal of Epidemiology 156.9, pp. 871–881. issn: 0002-9262.

Binder, Polina et al. (2016). “Unsupervised discovery of emphysema subtypes in a large
clinical cohort.” In: International Workshop on Machine Learning in Medical Imaging.
Springer, pp. 180–187.

Bryan, Tracey L et al. (2012). “The effects of dobutamine and dopamine on intrapulmonary
shunt and gas exchange in healthy humans.” In: Journal of Applied Physiology 113.4,
pp. 541–548.

Buzug, Thorsten M (2008). Computed tomography: from photon statistics to modern cone-
beam CT. Springer Science & Business Media.

Carreira, Joao andAndrewZisserman (2017). “Quo vadis, action recognition? a newmodel
and the kinetics dataset.” In:Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on. IEEE, pp. 4724–4733.

Ceresa, Mario et al. (2011). “Robust, standardized quantification of pulmonary emphysema
in low dose CT exams.” In: Academic Radiology 18.11, pp. 1382–1390.

Chabat, François et al. (2000). “Gradient correction and classification of CT lung images for
the automated quantification of mosaic attenuation pattern.” In: Journal of Computer
Assisted Tomography 24.3, pp. 437–447. issn: 0363-8715.

Cheng, Xiuyuan, Xu Chen, and Stéphane Mallat (2016). “Deep Haar scattering networks.”
In: Information and Inference: A Journal of the IMA 5.2, pp. 105–133.

126



Cheung, Po-Yin and Keith J Barrington (2001). “The effects of dopamine and epinephrine
on hemodynamics and oxygenmetabolism in hypoxic anesthetized piglets.” In:Critical
Care 5.3, p. 158.

Choi, Yunjey et al. (2017). “Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation.” In: arXiv preprint 1711.

Clark, Kenneth et al. (2013). “The Cancer Imaging Archive (TCIA): maintaining and oper-
ating a public information repository.” In: Journal of Digital Imaging 26.6, pp. 1045–
1057. issn: 0897-1889.

Couper, David et al. (2013). “Design of the subpopulations and intermediate outcomes in
COPD study (SPIROMICS).” In: Thorax, thoraxjnl–2013.

Dahl, Morten et al. (2002). “Change in lung function and morbidity from chronic obstruc-
tive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: a longitudinal study
of the general population.” In: Annals of Internal Medicine 136.4, pp. 270–279. issn:
0003-4819.

Dalmis, Mehmet Ufuk et al. (2018). “Fully automated detection of breast cancer in screen-
ing MRI using convolutional neural networks.” In: Journal of Medical Imaging 5.1,
p. 014502.

Davey, Claire et al. (2015). “Bronchoscopic lung volume reduction with endobronchial
valves for patients with heterogeneous emphysema and intact interlobar fissures (the
BeLieVeR-HIFi study): a randomised controlled trial.” In:TheLancet 386.9998, pp. 1066–
1073.

Depeursinge, Adrien et al. (2014). “Three-dimensional solid texture analysis in biomedical
imaging: review and opportunities.” In: Medical Image Analysis 18.1, pp. 176–196.

Detrano, Robert et al. (2008). “Coronary calcium as a predictor of coronary events in four
racial or ethnic groups.” In: New England Journal of Medicine 358.13, pp. 1336–1345.

Edge, John, George Simon, and Lynne Reid (1966). “Peri-acinar (paraseptal) emphysema:
its clinical, radiological, and physiological features.” In: British journal of diseases of
the chest 60.1, pp. 10–16.

Ellis, Peter M and Rachel Vandermeer (2011). “Delays in the diagnosis of lung cancer.” In:
Journal of Thoracic Disease 3.3, p. 183.

Erhan, Dumitru et al. (2009). “Visualizing higher-layer features of a deep network.” In:
University of Montreal 1341.3, p. 1.

127



Galbán, Craig J et al. (2012). “Computed tomography–based biomarker provides unique
signature for diagnosis of COPDphenotypes and disease progression.” In:NatureMedicine
18.11, p. 1711.

Gangeh, Mehrdad J et al. (2010). “A texton-based approach for the classification of lung
parenchyma in CT images.” In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, pp. 595–602.

Ganin, Yaroslav et al. (2016). “Domain-adversarial training of neural networks.” In: Journal
of Machine Learning Research 17.59, pp. 1–35.

Gevenois, Pierre Alain et al. (1995). “Comparison of computed density and macroscopic
morphometry in pulmonary emphysema.” In: American Journal of Respiratory and
Critical Care Medicine 152.2, pp. 653–657.

Ginsburg, Shoshana B et al. (2012). “Automated texture-based quantification of centrilob-
ular nodularity and centrilobular emphysema in chest CT images.” In: Academic Radi-
ology 19.10, pp. 1241–1251.

Goodfellow, Ian et al. (2014). “Generative adversarial nets.” In: Advances in neural infor-
mation processing systems, pp. 2672–2680.

Gorelick, Lena et al. (2006). “Shape representation and classification using the poisson
equation.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.12,
pp. 1991–2005.

Gulrajani, Ishaan et al. (2017). “Improved training of wasserstein gans.” In: Advances in
Neural Information Processing Systems, pp. 5767–5777.

Haidar, Haissam et al. (2006). “Characterizing the shape of anatomical structures with
Poisson’s equation.” In: IEEE Transactions on Medical Imaging 25.10, pp. 1249–1257.

Häme, Yrjö et al. (2014). “Adaptive quantification and longitudinal analysis of pulmonary
emphysema with a hidden Markov measure field model.” In: IEEE transactions on med-
ical imaging 33.7, pp. 1527–1540. issn: 0278-0062.

Häme, Yrjö et al. (2015a). “Equating emphysema scores and segmentations across CT re-
constructions: A comparison study.” In: IEEE International Symposium on Biomedical
Imaging (ISBI). IEEE, pp. 629–632.

Häme, Yrjö et al. (2015b). “Sparse sampling and unsupervised learning of lung texture pat-
terns in pulmonary emphysema: MESA COPD study.” In: 2015 IEEE 12th International
Symposium on Biomedical Imaging (ISBI). IEEE, pp. 109–113.

128



Hankinson, John L, John R Odencrantz, and Kathleen B Fedan (1999). “Spirometric ref-
erence values from a sample of the general US population.” In: American journal of
respiratory and critical care medicine 159.1, pp. 179–187.

Hara, Kensho, Hirokatsu Kataoka, and Yutaka Satoh (2018). “Can spatiotemporal 3DCNNs
retrace the history of 2D CNNs and ImageNet.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 18–22.

Hayhurst, MD et al. (1984). “Diagnosis of pulmonary emphysema by computerised to-
mography.” In: The Lancet 324.8398, pp. 320–322.

He, Kaiming et al. (2016). “Deep residual learning for image recognition.” In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Henschke, Claudia I et al. (1999). “Early Lung Cancer Action Project: overall design and
findings from baseline screening.” In:The Lancet 354.9173, pp. 99–105. issn: 0140-6736.

Hoffman, Eric A, Brett A Simon, and GeoffreyMcLennan (2006). “State of the Art. A struc-
tural and functional assessment of the lung via multidetector-row computed tomogra-
phy: phenotyping chronic obstructive pulmonary disease.” In: Proceedings of the Amer-
ican Thoracic Society 3.6, pp. 519–532.

Hoffman, Eric A et al. (2003). “Characterization of the interstitial lung diseases via density-
based and texture-based analysis of computed tomography images of lung structure
and function 1.” In: Academic Radiology 10.10, pp. 1104–1118.

Hoffman, Eric A et al. (2009). “Reproducibility and validity of lung density measures from
cardiac CT scans - the Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study.” In:
Academic Radiology 16.6, pp. 689–699.

Hoffman, Eric A et al. (2014). “Variation in the percent of emphysema-like lung in a
healthy, nonsmoking multiethnic sample. The MESA lung study.” In: Annals of the
American Thoracic Society 11.6, pp. 898–907.

Hogg, James C (2004). “Pathophysiology of airflow limitation in chronic obstructive pul-
monary disease.” In: The Lancet 364.9435, pp. 709–721.

Hong, Zhigang et al. (2005). “Pergolide is an inhibitor of voltage-gated potassium chan-
nels, including Kv1. 5, and causes pulmonary vasoconstriction.” In: Circulation 112.10,
pp. 1494–1499.

Horeweg, Nanda et al. (2014). “Lung cancer probability in patients with CT-detected pul-
monary nodules: a prespecified analysis of data from the NELSON trial of low-dose
CT screening.” In: The Lancet Oncology 15.12, pp. 1332–1341.

129



Hu, Shiying, Eric A Hoffman, and Joseph M Reinhardt (2001). “Automatic lung segmen-
tation for accurate quantitation of volumetric X-ray CT images.” In: IEEE Transactions
on Medical Imaging 20.6, pp. 490–498.

Huang, Gao et al. (2017). “Densely Connected Convolutional Networks.” In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 2261–2269.

Hueper, Katja et al. (2015). “Pulmonary microvascular blood flow in mild chronic obstruc-
tive pulmonary disease and emphysema. The MESA COPD Study.” In: American jour-
nal of respiratory and critical care medicine 192.5, pp. 570–580.

Hurst, John R et al. (2010). “Susceptibility to exacerbation in chronic obstructive pul-
monary disease.” In: New England Journal of Medicine 363.12, pp. 1128–1138.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift.” In: International Conference on Ma-
chine Learning, pp. 448–456.

Israel-Jost, Vincent et al. (2008). “Vectorial multi-phase mouse brain tumor segmentation
in T1-T2 MRI.” In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 5–8.

Jin, Dakai et al. (2018). “CT-Realistic Lung Nodule Simulation from 3D Conditional Gen-
erative Adversarial Networks for Robust Lung Segmentation.” In: arXiv:1806.04051.

Jones, PW et al. (2009). “Development and first validation of the COPD Assessment Test.”
In: European Respiratory Journal 34.3, pp. 648–654.

Kamnitsas, Konstantinos et al. (2017). “Unsupervised domain adaptation in brain lesion
segmentation with adversarial networks.” In: International Conference on Information
Processing in Medical Imaging. Springer, pp. 597–609.

Kendall, Alex and Yarin Gal (2017). “What uncertainties do we need in bayesian deep
learning for computer vision?” In: Advances in neural information processing systems,
pp. 5574–5584.

Kim, Song Soo et al. (2014a). “Improved correlation between CT emphysema quantifica-
tion and pulmonary function test by density correction of volumetric CT data based
on air and aortic density.” In: European Journal of Radiology 83.1, pp. 57–63. issn: 0720-
048X.

Kim, Victor et al. (2014b). “Clinical and computed tomographic predictors of chronic bron-
chitis in COPD: a cross sectional analysis of the COPDGene study.” In: Respiratory
research 15.1, p. 52.

130



Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization.”
In: arXiv preprint arXiv:1412.6980.

Kirby, Miranda et al. (2015). “COPD: Do Imaging Measurements of Emphysema and Air-
way Disease Explain Symptoms and Exercise Capacity?” In: Radiology, p. 150037. issn:
0033-8419.

Klug, Harold P and Leroy E Alexander (1974). “X-ray diffraction procedures: for polycrys-
talline and amorphous materials.” In: X-Ray Diffraction Procedures: For Polycrystalline
and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992.
ISBN 0-471-49369-4. Wiley-VCH, May 1974. P. 992.

Korkinof, Dimitrios et al. (2018). “High-resolution mammogram synthesis using progres-
sive generative adversarial networks.” In: arXiv:1807.03401.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks.” In: Advances in neural information process-
ing systems, pp. 1097–1105.

Ladizinski, Barry and Christopher Sankey (2014). “Vanishing lung syndrome.” In: New
England Journal of Medicine 370.9, e14.

Laurie, Steven S et al. (2012). “Catecholamine-induced opening of intrapulmonary arte-
riovenous anastomoses in healthy humans at rest.” In: Journal of Applied Physiology
113.8, pp. 1213–1222.

Lee, Honglak et al. (2009). “Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations.” In: Proceedings of the 26th annual interna-
tional conference on machine learning. ACM, pp. 609–616.

Leopold, JG and J Gough (1957). “The centrilobular form of hypertrophic emphysema and
its relation to chronic bronchitis.” In: Thorax 12.3, p. 219.

Liu, Ying et al. (2017). “Radiologic Features of Small Pulmonary Nodules and Lung Cancer
Risk in the National Lung Screening Trial: A Nested Case-Control Study.” In: Radiol-
ogy, p. 161458.

Lynch, David A et al. (2015). “CT-definable subtypes of chronic obstructive pulmonary
disease: a statement of the Fleischner Society.” In: Radiology 277.1, pp. 192–205.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-SNE.” In:
Journal of machine learning research 9.Nov, pp. 2579–2605.

131



MacMahon, Heber et al. (2005). “Guidelines for management of small pulmonary nodules
detected on CT scans: a statement from the Fleischner Society 1.” In: Radiology 237.2,
pp. 395–400. issn: 0033-8419.

Marchini, Jonathan et al. (2007). “A new multipoint method for genome-wide association
studies by imputation of genotypes.” In: Nature genetics 39.7, p. 906.

Masutani, Yoshitaka, Ken Masamune, and Takeyoshi Dohi (1996). “Region-growing based
feature extraction algorithm for tree-like objects.” In: Visualization in Biomedical Com-
puting. Springer, pp. 159–171.

McElvaney, Noel G et al. (2017). “Long-term efficacy and safety of α1 proteinase inhibitor
treatment for emphysema caused by severe α1 antitrypsin deficiency: an open-label
extension trial (RAPID-OLE).” In: The Lancet Respiratory Medicine 5.1, pp. 51–60.

Messay, Temesguen, Russell C Hardie, and Timothy R Tuinstra (2015). “Segmentation of
pulmonary nodules in computed tomography using a regression neural network ap-
proach and its application to the lung image database consortium and image database
resource initiative dataset.” In: Medical Image Analysis 22.1, pp. 48–62.

Mets, OM et al. (2012). “Quantitative computed tomography in COPD: possibilities and
limitations.” In: Lung 190.2, pp. 133–145. issn: 0341-2040.

Miller, Martin R et al. (2005). “Standardisation of spirometry.” In: European respiratory
journal 26.2, pp. 319–338.

Miotto, Riccardo et al. (2017). “Deep learning for healthcare: review, opportunities and
challenges.” In: Briefings in bioinformatics.

Murphy, Keelin et al. (2012). “Toward automatic regional analysis of pulmonary function
using inspiration and expiration thoracic CT.” In: Medical Physics 39.3, pp. 1650–1662.
issn: 0094-2405.

National Lung Screening Trial Research Team (2011). “Reduced lung-cancer mortality
with low-dose computed tomographic screening.” In:New England Journal of Medicine
365.5, pp. 395–409.

Norman, Geoffrey R, Jeff A Sloan, and Kathleen W Wyrwich (2003). “Interpretation of
changes in health-related quality of life: the remarkable universality of half a standard
deviation.” In: Medical care, pp. 582–592.

Oelsner, Elizabeth C et al. (2014). “Association Between Emphysema-like Lung on Car-
diac Computed Tomography and Mortality in Persons Without Airflow Obstruction
A Cohort Study Emphysema-like Lung on CT and All-Cause Mortality.” In: Annals of
Internal Medicine 161.12, pp. 863–873.

132



Oelsner, Elizabeth C et al. (2016). “Classifying chronic lower respiratory disease events
in epidemiologic cohort studies.” In: Annals of the American Thoracic Society 13.7,
pp. 1057–1066.

Pinsky, Paul F et al. (2013). “National lung screening trial: variability in nodule detection
rates in chest CT studies.” In: Radiology 268.3, pp. 865–873.

Puliyakote, Abhilash S Kizhakke et al. (2016). “Morphometric differences between central
vs. surface acini in A/J mice using high-resolution micro-computed tomography.” In:
Journal of Applied Physiology 121.1, pp. 115–122.

Qian, Ning (1999). “On the momentum term in gradient descent learning algorithms.” In:
Neural networks 12.1, pp. 145–151.

Rad, Reza Moradi et al. (2018). “Multi-Resolutional Ensemble of Stacked Dilated U-Net
for Inner Cell Mass Segmentation in Human Embryonic Images.” In: 2018 25th IEEE
International Conference on Image Processing (ICIP). IEEE, pp. 3518–3522.

Raghu, Ganesh et al. (2011). “An official ATS/ERS/JRS/ALAT statement: idiopathic pul-
monary fibrosis: evidence-based guidelines for diagnosis and management.” In: Amer-
ican Journal of Respiratory and Critical Care Medicine 183.6, pp. 788–824.

Ramachandram, Dhanesh and Graham W Taylor (2017). “Deep multimodal learning: A
survey on recent advances and trends.” In: IEEE Signal ProcessingMagazine 34.6, pp. 96–
108.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolutional net-
works for biomedical image segmentation.” In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, pp. 234–241.

Rosvall, Martin and Carl T Bergstrom (2008). “Maps of random walks on complex net-
works reveal community structure.” In: Proceedings of the National Academy of Sciences
105.4, pp. 1118–1123.

Roth, Volker et al. (2002). “A resampling approach to cluster validation.” In: Compstat,
pp. 123–128.

Rubin, Geoffrey D et al. (2005). “Pulmonary nodules on multi–detector row CT scans:
performance comparison of radiologists and computer-aided detection.” In: Radiology
234.1, pp. 274–283.

Schilham, Arnold MR et al. (2006). “Local noise weighted filtering for emphysema scoring
of low-dose CT images.” In: IEEE Transactions on Medical Imaging 25.4, pp. 451–463.
issn: 0278-0062.

133



Setio, Arnaud Arindra Adiyoso et al. (2016). “Validation, comparison, and combination of
algorithms for automatic detection of pulmonary nodules in computed tomography
images: the LUNA16 challenge.” In: arXiv preprint arXiv:1612.08012.

Shapiro, Steven D (2000). “Evolving concepts in the pathogenesis of chronic obstructive
pulmonary disease.” In: Clinics in Chest Medicine 21.4, pp. 621–632. issn: 0272-5231.

Shelhamer, Evan, Jonathon Long, and Trevor Darrell (2016). “Fully Convolutional Net-
works for Semantic Segmentation.” In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence. issn: 0162-8828.

Shen, Wei et al. (2017). “Multi-crop convolutional neural networks for lung nodule malig-
nancy suspiciousness classification.” In: Pattern Recognition 61, pp. 663–673.

Siegel, Rebecca L, Kimberly D Miller, and Ahmedin Jemal (2016). “Cancer statistics, 2016.”
In: CA: A Cancer Journal for Clinicians 66.1, pp. 7–30.

Sieren, Jered P et al. (2016). “SPIROMICS Protocol for Multicenter Quantitative CT to
Phenotype the Lungs.” In: American Journal of Respiratory and Critical Care Medicine
ja. issn: 1073-449X.

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks for
large-scale image recognition.” In: arXiv preprint arXiv:1409.1556.

Sluimer, Ingrid et al. (2006). “Computer analysis of computed tomography scans of the
lung: a survey.” In: IEEE Transactions on Medical Imaging 25.4, pp. 385–405. issn: 0278-
0062.

Smith, Benjamin M et al. (2014). “Pulmonary emphysema subtypes on computed tomog-
raphy: the MESA COPD study.” In: The American Journal of Medicine 127.1, 94.e7–23.
issn: 0002-9343.

Smith, Stephen M et al. (2004). “Advances in functional and structural MR image analysis
and implementation as FSL.” In: Neuroimage 23, S208–S219. issn: 1053-8119.

Sofer, Tamar et al. (2018). “A Fully-Adjusted Two-Stage Procedure for Rank Normalization
in Genetic Association Studies.” In: bioRxiv, p. 344770.

Sørensen, Lauge, Saher B Shaker, andMarleen De Bruijne (2010). “Quantitative analysis of
pulmonary emphysema using local binary patterns.” In: IEEE Transactions on Medical
Imaging 29.2, pp. 559–569. issn: 0278-0062.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks from
overfitting.” In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.

134



Swensen, Stephen J et al. (1997). “The probability of malignancy in solitary pulmonary
nodules: application to small radiologically indeterminate nodules.” In: Archives of In-
ternal Medicine 157.8, pp. 849–855.

Tajbakhsh, Nima et al. (2016). “Convolutional neural networks for medical image analysis:
Full training or fine tuning?” In: IEEE transactions on medical imaging 35.5, pp. 1299–
1312.

Tamimi, Asad, Dzelal Serdarevic, and Nicola A Hanania (2012). “The effects of cigarette
smoke on airway inflammation in asthma and COPD: therapeutic implications.” In:
Respiratory medicine 106.3, pp. 319–328.

Thomashow, Michael A et al. (2013). “Endothelial microparticles in mild chronic obstruc-
tive pulmonary disease and emphysema. The Multi-Ethnic Study of Atherosclerosis
Chronic Obstructive Pulmonary Disease study.” In: American Journal of Respiratory
and Critical Care Medicine 188.1, pp. 60–68.

Thong,William et al. (2018). “Convolutional networks for kidney segmentation in contrast-
enhanced CT scans.” In: Computer Methods in Biomechanics and Biomedical Engineer-
ing: Imaging & Visualization 6.3, pp. 277–282.

Thurlbeck, WM (1963). “A clinico-pathological study of emphysema in an American hos-
pital.” In: Thorax 18.1, p. 59.

Vestbo, Jørgen et al. (2013). “Global strategy for the diagnosis, management, and preven-
tion of chronic obstructive pulmonary disease: GOLD executive summary.” In: Amer-
ican Journal of Respiratory and Critical Care Medicine 187.4, pp. 347–365.

Vogelmeier, Claus F et al. (2017). “Global strategy for the diagnosis, management, and pre-
vention of chronic obstructive lung disease 2017 report. GOLD executive summary.”
In: American journal of respiratory and critical care medicine 195.5, pp. 557–582.

Warfield, Simon K, Kelly H Zou, and William M Wells (2004). “Simultaneous truth and
performance level estimation (STAPLE): an algorithm for the validation of image seg-
mentation.” In: IEEE Transactions on Medical Imaging 23.7, pp. 903–921.

West, JB (1963). “Distribution of gas and blood in the normal lungs.” In: British Medical
Bulletin 19.1, pp. 53–58.

Woodruff, Prescott G et al. (2016). “Clinical significance of symptoms in smokers with
preserved pulmonary function.” In: New England Journal of Medicine 374.19, pp. 1811–
1821.

135



Xie, Yutong et al. (2016). “Lung nodule classification by jointly using visual descriptors
and deep features.” In: Medical Computer Vision and Bayesian and Graphical Models
for Biomedical Imaging. Springer, pp. 116–125.

Xu, Ye et al. (2006). “MDCT-based 3-D texture classification of emphysema and early
smoking related lung pathologies.” In: IEEE Transactions on Medical Imaging 25.4,
pp. 464–475.

Yang, Jie et al. (2016a). “Emphysema Quantification on Cardiac CT Scans Using Hidden
Markov Measure Field Model: The MESA Lung Study.” In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 624–631.

Yang, Jie et al. (2016b). “Explaining Radiological Emphysema Subtypes with Unsupervised
Texture Prototypes: MESA COPD Study.” In: International MICCAI Workshop on Med-
ical Computer Vision. Springer.

Yang, Jie et al. (2017). “Unsupervised Discovery of Spatially-Informed Lung Texture Pat-
terns for Pulmonary Emphysema: The MESA COPD Study.” In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. Springer,
pp. 116–124.

Yu, Jiahui et al. (2018). “Generative Image Inpainting with Contextual Attention.” In: arXiv
preprint arXiv:1801.07892.

Zhou, Bolei et al. (2016). “Learning Deep Features for Discriminative Localization.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

136



Appendix A: Data Reduction From Ten sLTPs to Six QES in

SPIROMICS and MESA Lung Study

The following figures present the visualizations of ten spatially-informed lung texture

patterns (sLTPs) discovered in the SPIROMICS dataset, and the data reduction process

from ten sLTPs to six quantitative emphysema subtypes (QES).

The data reduction is a collaborative work with Dr. Yifei Sun (Fig. A.2 (a)) from De-

partment of Biostatistics at Columbia University, and Dr. Elsa D. Angelini (Fig. A.2 (b))

in our Heffner Biomedical Imaging Lab.
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Figure A.1: Qualitative illustrations of the spatially-informed lung texture patterns
(sLTPs, #1-10 ordered by mean Hounsfield Units) discovered in SPIROMICS. For each
sLTP: (top) texture appearance on CT scans visualized on axial cuts from 9 random ROIs;
(bottom) spatial density of labeled ROIs (red dots) on SPIROMICS (showing only spatial
density larger than average); legend: S = superior; I = inferior; P = posterior; A = anterior
positions.
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Figure A.2: Clustering of spatially-informed lung texture patterns (sLTPs, #1-10 ordered
by mean Hounsfield Units) and quantitative emphysema subtypes (QES): (a) Heatmap and
hierarchical clustering of all sLTP histograms in SPIROMICS and MESA Lung Study; (b)
t-SNE two-dimensional projection of all sLTP histograms in SPIROMICS and MESA Lung
Study, color-coded by the dominant sLTP or QES per CT scan.
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Appendix B: Visualization of CNN Filters Learned for

Weakly-Supervised Lung Module Detection

The following figures present the visualizations of CNN filters in CNN models (VGG-16,

ResNet-50, DenseNet-121) that are trained for the weakly-supervised lung nodule detec-

tion in Chapter 6.

In the VGG-16, four representative convolutional layers from the shallow layers to

the deep-most layer are selected, including Conv2_2, Conv3_3, Conv4_3, and Conv5_3

(Simonyan and Zisserman 2014). In each layer, we select five random filters, which are

visualized in Fig. B.1.

In the ResNet-50, the last convolutional layers in the four bottleneck blocks (He et

al. 2016) are selected, including res2c_branch2c, res3d_branch2c, res4f_branch2c, and

res5c_branch2c. In each layer, we select five random filters, as visualized in Fig. B.2.

In DenseNet-121, the last convolutional layers in the four dense blocks (Huang et al.

2017) are selected, including conv2_block6_2, conv3_block12_2, conv4_block24_2, and

conv5_block16_2. In each layer, we select five random filters, as visualized in Fig. B.3.
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Figure B.1: Visualization of CNN filters in four convolutional layers (five random filters
are visualized per layer) in the VGG-16 model trained for weakly-supervised lung nodule
detection.
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res4f_branch2c

res5c_branch2c

Figure B.2: Visualization of CNN filters in four convolutional layers (five random fil-
ters are visualized per layer) in the ResNet-50 model trained for weakly-supervised lung
nodule detection.
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conv3_block12_2

conv4_block24_2

conv5_block16_2

Figure B.3: Visualization of CNN filters in four convolutional layers (five random filters
are visualized per layer) in the DenseNet-121 model trained for weakly-supervised lung
nodule detection.
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Appendix C: Weakly-Supervised Nodule Detection in

Two-Nodule Slices and 3D Regions

In Chapter 6, we presented weakly-supervised lung nodule detection with slice-level la-

bels in LIDC-IDRI dataset, using 2D CNN architectures. Evaluations focused on 2D slices

with one nodule. In this appendix, we first discuss about nodule detection on rare cases

of slices with two nodules (accounting for ∼1% nodule slices in the LIDC-IDRI dataset).

Then we discuss about potential extension to detect nodules in 3D regions with some

preliminary results.

Detection Results on Two-Nodule Slices

For slices with two nodules, our framework can detect nodules by segmenting the top

two activation blobs in the NAM. We tested the detection on a total of 108 slices with two

nodules, using the VGG-16 based model. The 2-GAP system achieves the best detection

performance, where both nodules are correctly detected in 50 slices, and one of the two

nodules is correctly detected in another 42 slices. With adequate training data, our frame-

work can be extended to multi-class classification to automatically determine the number

of nodules to segment in the slice.
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Potential of Nodule Detection in 3D Regions

Extending the proposed framework to weak labels in 3D regions covered by continuous

axial slices will enable the usage of contextual information in 3D neighborhoods. How-

ever, the definition of 3D regions with and without nodule can be tricky, when there is

only part of the nodule presenting at the border of the field of view. In this work, we only

explore the potential of classifying 3D regions (consist of 8 continuous axial slices) with

either no nodule, or nodules covering at least the middle two slices. This results in 1,522

regions with nodule, and an equal number of regions without nodule from the LIDC-IDRI

dataset, which are split into training, validation and test sets with a ratio of 4:1:1.

We tested the 3D version of ResNet-50 and DenseNet-121 for that purpose. When

training from scratch, our training cannot converge due to the limited sample size. Then

we tested transfer learning with same models that are pre-trained on a very large video

dataset Kinetics (Carreira and Zisserman 2017). Using the ResNet-50, we can achieve a

validation classification accuracy 0.921, and the test accuracy is 0.918. Using DenseNet-

121, the validation accuracy is 0.924, and the test accuracy is 0.895.
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Appendix D: Lung Nodule Malignancy Classification with

Class-Aware Adversarial Nodule Synthesis in CT Images1

Introduction

Pulmonary nodules are crucial indicators of early-stage lung cancer. The majority of

nodules detected in lung CT screening are eventually benign. A data-driven model that

can accurately predict nodule malignancy risk from CT images may prevent unnecessary

imaging or invasive follow-up procedures on benign nodules, thus increase the effective-

ness of lung cancer screening programs (MacMahon et al. 2005).

Deep convolutional neural network (CNN) based approaches have demonstrated su-

perior performance for image related tasks such as image classification and object de-

tection, and now have been widely studied in CAD systems for automated detection of

pulmonary nodules using lung CT. In Chapter 6, we presented a weakly-supervised ap-

proach based on CNNs to detect lung nodules with less annotations, which we believe is

a more sustainable solution for CAD systems compared to fully-supervised methods.

However, to utilize CNNs for the classification of benign versus malignant nodules

for lung cancer prediction, existing methods (Shen et al. 2017; Xie et al. 2016) are still

1This work was partially done while Jie Yang was interning at Siemens Corporate Research.

146



constrained by the quantity and the diversity of the training data available. Given the

large imbalance of benign versus malignant nodules in real-world data, the malignant

cases are generally largely underrepresented. In the the large National Lung Screening

Trial (NLST) (National Lung Screening Trial Research Team 2011), a total of 96.4% of lung

nodules examined did not result in a lung cancer diagnosis. Therefore, it is important to

improve the efficiency of themedical machine learning systems by constructing a training

dataset with better represented classes or improving the learning approaches.

Collecting more malignant cases from the general population is challenging, which

can be very expensive and time consuming. In this chapter, to deal with the limited data

availability of malignant nodules for lung cancer prediction, we propose a novel image

classification systemwith class-aware data augmentation based on generative adversarial

network (GAN) (Goodfellow et al. 2014).

Basic data augmentation techniques, such as random cropping, shifting, scaling, flip-

ping and rotations, can be used to introduce a certain level of diversity during training

stage, but cannot account for the diversity of nodule morphology and locations.

Some recent studies proposed to use GANs to synthesize lesions in medical image

patches to augment the training data (Jin et al. 2018; Korkinof et al. 2018). Such methods

train a generator network and a discriminator network to in-paint a missing (masked)

area with the objects of interests (i.e. targeted lesions). The generator network is trained

with a reconstruction loss between the synthetic patch and the real patch as well as an ad-

versarial loss produced by the discriminator network. They concluded that the synthetic

patches could improve the performance of the supervised learning tasks. However, such

networks were designed to generate objects conditioning only on surrounding context
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and random noises, lacking the capability of generating objects with manipulable proper-

ties which we believe to be important for many machine learning applications in medical

imaging, such as balancing the classification datasets.

To synthesis lung nodule that are class-aware, we propose an adversarial learning

framework conditioning on the target categories (benign vs. malignant). We formulate

our approach as an image in-painting problem, so that the nodules can be synthesized at

random locations within the lungs. Evaluating on the public The Lung Image Database

Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset (Armato III et al.

2011), we show that with the proposed framework, we can synthesize nodules which have

high fidelity and can improve the assessment of the nodule malignancy risk.

Method

To estimate the malignancy risk of pulmonary nodules in lung CT images, we first in-

troduce a class-aware nodule synthesis framework to deal with the imbalance of benign

versus malignant nodules in training data. Then we train a 3D deep CNN model for lung

nodule malignancy classification.

The proposed nodule synthesis framework is formulated as an in-painting problem

which fills a missing (masked) area in a 3D lung CT image patch with a lung nodule within

the specified category. The framework contains the following three major components:

1. A coarse generator network and a refinement generator network to perform a two-

step in-painting incorporating contextual information;

2. A local discriminator network and a global discriminator network to enforce the
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Coarse Generator Refinement GeneratorCoarse Output
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Input
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Real vs. Fake

Global Discriminator

Local Discriminator

Real vs. Fake

Noise

L1 loss

Conv. Dilated Conv. Contextual Attention FC

Class
Label

Class: fake,1,2,…

Class: fake,1,2,…

L1 loss

Figure D.1: Illustration of the proposed class-aware adversarial nodule synthesis frame-
work. The noise masked 3D CT image patch is fed into two generators, a coarse gener-
ator and a refinement generator, sequentially. The same ground truth patch is used for
computing the reconstruction L1 loss for both the coarse generator and the refinement
generator. The refinement generator is trained with both L1 and the adversarial losses
provided by both a local and a global discriminators. Each discriminator is responsible
for predicting if a patch is fake as well as the nodule malignancy label.

local quality and the global consistency of the generated nodules;

3. Auxiliary domain classifiers in the discriminators to constrain the generated nod-

ules with the specified category conditions.

The coarse generator is optimized with L1 reconstruction loss, and the refinement

generator is optimized with both L1 reconstruction loss and adversarial loss. The nodule

synthesis framework is illustrated in Fig. D.1.

After synthesizing sufficient malignant nodules for data augmentation, we train a 3D

CNN to classify benign versus malignant patches. Transfer learning is used to enable the

usage of very deep neural networks for better characterization.
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We now detail these components in the below sections.

Coarse-to-Fine Generators

3D images patches are extracted from the lung CT volumes centering on annotated nod-

ules. The nodule in each patch is replaced with a 3D spherical (to approximate the round

shape of most nodules) noise mask generated according to the size determined the anno-

tated nodule diameter.

The masked patch and a class-label map (padded to the same size as the image patch)

are firstly fed into a 3D hour-glass CNN G1, named coarse generator, to reconstruct the

masked region with a coarsely synthesized nodule.

The output of G1 is fed into another network G2, named refinement generator, with

a similar architecture as G1 to refine the details. G1 and G2 together form the stacked

image in-painting generators G.

BothG1 andG2 are optimized with the reconstruction loss L(1,2)
recon between the recon-

structed patch and the real nodule patch:

L(1,2)
recon = Lmasked + λ1Lglobal (1)

where Lmask and Lglobal are respectively the normalized L1 loss across the masked area

and the entire patch. While only mask areas are kept and are embedded into the original

image patch context for the final output, the Lglobal is an important indicator here to

stabilize the reconstruction. By optimizing L
(1,2)
recon, the stacked generators are trained to

reconstruct the nodules in the original patch based on the lung tissue image context,
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random noise mask, and also the class-label map as enforced in Section 8.2.

For the purpose of data augmentation, variability of the output is required for our

nodule synthesis framework. Meanwhile, L1 loss is a classic loss function in GAN-based

image synthesis to ensure that the synthesized output manifests information in the orig-

inal input, and thus stabilize the training process (Korkinof et al. 2018).

Aside from L
(2)
recon, the output of the refinement generator G2 is also optimized by

an adversarial loss provided by two discriminator networks described in Section 8.2 and

Section 8.2.

Contextual Attention

Features from surrounding regions can be helpful for in-painting the boundary of the

nodules in the masked area. In a recent study (Yu et al. 2018), a contextual attention model

is proposed to borrow the textures adaptively from the background patches to generate

the foreground missing patches.

We use the contextual attention model to match between the foreground (missing

regions) and background textures by measuring the normalized cosine similarity of their

features:

sx,y,x′,y′ =

⟨
fx,y
||fx,y||

,
bx′,y′

||bx′,y′||

⟩
(2)

where sx,y,x′,y′ represents similarity of patch centered in foreground (x, y) and back-

ground (x′, y′), and f , b denote the features respectively.

Then we weigh the similarity to get attention score for each surrounding pixel, and

finally, reconstruct foreground patches with background ones by performing deconvolu-

tion on attention score maps.
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The contextual attention operation is embedded in the second generator in the refine-

ment stage, as shown in Fig. D.1, and is differentiable and fully-convolutional.

Local and Global Discriminators

Two discriminator networksDlocal andDglobal are used to trainG1 andG2 in an adversar-

ial fashion. Dlocal is applied to the masked area only to refine the local nodule appearance;

while Dglobal is applied to the entire patch for global consistency of the in-painting. We

denote both discriminators as D∗ for brevity.

We use the conditional Wasserstein GAN objective (Arjovsky, Chintala, and Bottou

2017) and enforcing the gradient penalty (Gulrajani et al. 2017) to train the discriminators

D∗ and the stacked generator G as

Ladv = Ex[D∗(x)]− Ez,c[D∗(G(z, c))]− λgpEx̂[(∥∇D∗(x̂)∥2 − 1)2] (3)

where x is sampled from the real patch distribution, z is the image patch masked with

random noise. G(z, c) is the final output of the stacked generator networks, x̂ is sampled

uniformly between a pair of real and generated patches during training, according to the

optimization with gradient penalty. And c is the class-label map.

The Wasserstein GAN, or commonly termed WGAN, improves the stability of model

convergence and avoids model collapse compared to the original GANmodel by introduc-

ing a new cost function using Wasserstein distance that has a smoother gradient every-

where. WGAN with gradient penalty (WGAN-GP) has now been widely used in natural

image synthesis and image translation tasks (Choi et al. 2017).
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Class-Aware Synthesis

To achieve “class-aware” nodule synthesis for data augmentation in training nodule ma-

lignancy classification, we further add an auxiliary domain classifier Dcls on top of each

discriminator network to ensure G to generate nodules in the targeted class c. Dcls tries

to classify the image patch x into the class label c (0 = fake, 1 = benign and 2 = malignant).

The label 0 is used to prevent the generator from in-painting near-identical nodules that

are easy to classify but less diversified. Dcls is optimized with the class-aware loss Lcls

as:

Lcls = Ex,c[−logDcls(c|x)] (4)

whereDcls(c|x) represents a probability distribution over class labels c for an image patch

x. When optimizing Dcls, x represents either a real image patch or a generated image

patch, and c represents the real class label; While in the adversarial training to optimize

G, c represents the target class label for a generated image patch x, so that G minimizes

this objective to generate images that can be classified by Dcls as the target class.

The objective function for our whole class-aware nodule synthesis learning can then

be summarized as:

LD∗ = Ladv + λ
(D∗)
cls Lcls

LG = −Ladv + λ
(G)
cls Lcls + λreconLrecon

(5)

3D Deep CNNs with Transfer Learning

To classify the CT nodule patches into benign and malignant classes, we propose to use

deep CNNs pre-trained for video classification tasks, with transfer learning.
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Fine-tuning of deepCNNweights pre-trained on very large-scale nature image datasets

such as the ImageNet (Krizhevsky, Sutskever, and Hinton 2012) was demonstrated to

have superior performance compared to training from scratch in medical image domain

(Tajbakhsh et al. 2016).

Video data resembles 3D images volumes where the temporal dimension is analogous

to the third spatial dimension manifesting the consistency of nearby frames/slices. It

is much easier to scale up the collection and annotation of natural video datasets than

medical image datasets.

It was very recently demonstrated that, for human action recognition tasks in videos,

spatiotemporal three dimensional convolutional kernels (3D CNNs) are more effective

than CNNs with two-dimensional (2D) kernels, when large-scale frame-wise annotated

datasets such as the Kinetics dataset are readily available (Carreira and Zisserman 2017).

And state-of-the-art CNN architectures pre-trained on Kinetics were demonstrated to

have superior performance when generalizing to smaller video datasets (Hara, Kataoka,

and Satoh 2018).

Therefore, using video pre-trained networks enables the usage of very deep 3D CNNs

for our task, and is helpful for stabilizing the network training and preventing overfitting.

Experimental Results

Data and Experimental Setup

We evaluate our proposed methods on the LIDC-IDRI dataset (Armato III et al. 2011)

consisting of diagnostic and lung cancer screening thoracic computed tomography (CT)
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Subset Benign Malignant Real Malignant Synthesized Total

Train 1,004 191 - 1,195

Train+Syn 1,004 191 463 1,658

Validation 251 47 - 298

Test 251 47 - 298

Table D.1: The split of training, validation and test data in LIDC-IDRI for the proposed
class-aware nodule synthesis.

   Noise 1       Noise 2    Original

Figure D.2: Examples of the nodule synthesis results with the same input patch and
different the initial noise masks. Left) Original image patch with a malignant nodule;
Middle-Right) In-painted nodule patches that are generated with two sets of random noise
seeds.

scans with marked-up annotated lesions.

The LIDC-IDRI dataset consists of 1,010 patients and 1,018 chest CT imaging studies

in total. The nodules were annotated by four radiologists as benign and malignant by

giving a score ranging from 0 (confident benign) to 5 (confident malignant). We define

the nodules with the majority score ≥ 4 to be malignant and the rest to be benign.

Visual Evaluation of the Nodule Synthesis Results

In our experiments, we extract the nodule patches from the LIDC-IDRI dataset with the

resolution 1×1×2mm and the size 64×64×32. The patches are randomly split into the

training set, validation set and testing set according to the patients as shown in Table D.1.
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Synthesized Benign Synthesized MalignantReal Benign Synthesized Benign Synthesized MalignantReal Benign

Synthesized Benign Synthesized MalignantReal Malignant Synthesized Benign Synthesized MalignantReal Malignant

Synthesized Benign Synthesized MalignantReal Benign Synthesized Benign Synthesized MalignantReal Benign

Synthesized Benign Synthesized MalignantReal Malignant Synthesized Benign Synthesized MalignantReal Malignant

Synthesized Benign Real Benign Synthesized Malignant

Synthesized Benign Real Malignant Synthesized Malignant

Synthesized Benign Real Benign Synthesized Malignant

Synthesized Benign Real Malignant Synthesized Malignant

(A)

(B)

Figure D.3: Examples of the nodule synthesis results by altering the nodule malignancy
labeling condition. (A) Nodule synthesis results on image patches originally with benign
nodules; (B) Nodule synthesis results on image patches originally with malignant nodules
(Left = in-painted image patch to synthesize a benign nodule; Middle = original image
patch; right = in-painted image patch to synthesize a malignant nodule).

We train the proposed nodule synthesis framework on the training patches only. We

first show in Fig.D.2 that the network could generate nodules with different morphology

and textures using different noise masks, which is a desirable property for our purpose of
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data augmentation. The two noise masks used in Fig.D.2 are Gaussian noises with zero

mean and standard deviation = 0.2, that are generated with two random seeds.

Then in Fig.D.3, we demonstrate the nodule synthesis results by conditioning on dif-

ferent target class labels (benign or malignant). We can observe that, given the same

background patch, the framework is capable of generating nodules with different speci-

fied malignancy labels.

Quantitative Evaluation of Nodule Malignancy Prediction

The trained generator is used for synthesizing 463 patches containing malignant patches

since malignant nodules are relatively rare in the original LIDC-IDRI dataset. The syn-

thetic nodule patches are combined with the original training patches to train the 3D

classification CNNs in our proposed setting.

To evaluate the effectiveness of the synthetic patches on estimating the lung nodules

malignancy, we trained three 3D ResNet-based CNN architectures with different network

depth, respectively ResNet-50, ResNet-101, and ResNet-152 (He et al. 2016). All the net-

works were initialized with the weights pre-trained on the Kinetic video dataset (Carreira

and Zisserman 2017; Hara, Kataoka, and Satoh 2018). The cross-entropy loss was used for

training the CNN classifiers.

We also evaluated the differences between the unweighted (Raw) and weighted cross

entropy loss (Raw + Weighted Loss). Traditional data augmentation methods including

random cropping and scalingwere used for training all the networks. The testing accuracy

(ACC), sensitivity (SEN), specificity and the area under the ROC curve (AUC) presented

in Table.D.2 were selected based on the highest AUCs on the validation set.
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Network ACC SEN SPE AUC

Raw Training

ResNet-50 0.859 0.660 0.896 0.862

ResNet-101 0.861 0.653 0.901 0.847

ResNet-152 0.873 0.596 0.924 0.860

Raw Training + Weighted Loss

ResNet-50 0.842 0.681 0.873 0.836

ResNet-101 0.826 0.723 0.847 0.810

ResNet-152 0.829 0.702 0.853 0.818

Raw Training + Synthesis

ResNet-50 0.883 0.702 0.916 0.867

ResNet-101 0.893 0.702 0.928 0.881

ResNet-152 0.903 0.660 0.948 0.883

Table D.2: The nodule malignancy classification results with different network architec-
tures and different data balancing strategies.

From Table.D.2, our method with the synthetic patches (Raw + Synthesis), the 3D

ResNet152 achieved the highest accuracy, specificity and AUC score across all the trials.

The overall mean AUC scores also indicate that the synthetic nodule patches are helpful

for improving the nodule malignancy classification performance. Using weighted loss,

the sensitivity for predicting malignant class can increase, but with a large sacrifice in

specificity and AUC.

Discussion and Conclusion

There is a large data imbalance of benign nodules versus malignant nodules presenting

in general population as shown in the large-scale study (National Lung Screening Trial

Research Team 2011), or even in populations that are high risk of lung cancer as shown in
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the public dataset (Armato III et al. 2011). In this appendix, to deal with the issue of limited

data availability of malignant nodules for lung cancer prediction, we propose a novel

image classification framework with an adversarial in-painting based nodule synthesis to

generate training samples in targeted category for data augmentation.

The qualitative results show that the proposed framework is capable of generating

lung nodules in the specified malignancy class, with high visual fidelity. By evaluating

on the nodule patches obtained from CT scans in the LIDC-IDRI study, we show that

the generated nodules can be helpful for improving the classification performance on

an imbalanced lung nodule dataset. The proposed work demonstrated the potential of

reliable nodule synthesis, and can be applied to other tasks such as nodule detection, and

lung lobe segmentation with nodule presence.
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