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ABSTRACT
Unsupervised and Weakly-Supervised Learning of Localized Texture Patterns of
Lung Diseases on Computed Tomography

Jie Yang

Computed tomography (CT) imaging enables in vivo assessment of lung parenchyma
and several lung diseases. CT scans are key in particular for the diagnosis of 1) chronic
obstructive pulmonary disease (COPD), which is the fourth leading cause of death world-
wide, and largely overlaps with pulmonary emphysema; and 2) lung cancer, which is
the first leading cause of cancer-related death, and manifests in its early stage with the
presence of lung nodules.

Most lung CT image analysis methods to-date have relied on supervised learning re-
quiring manually annotated local regions of interest (ROIs), which are slow and labor-
intensive to obtain. Machine learning models requiring less or no manual annotations are
important for a sustainable development of computer-aided diagnosis (CAD) systems.

This thesis focused on exploiting CT scans for lung disease characterization via two
learning strategies: 1) fully unsupervised learning on a very large amount of unannotated
image patches to discover novel lung texture patterns for pulmonary emphysema; and 2)
weakly-supervised learning to generate voxel-level localization of lung nodules from CT
whole-slice labels.

In the first part of this thesis, we proposed an original unsupervised approach to learn
emphysema-specific radiological texture patterns. We have designed dedicated spatial

and texture features and a two-stage learning strategy incorporating clustering and graph



partitioning. Learning was performed on a cohort of 2,922 high-resolution full-lung CT
scans, which included a high prevalence of smokers and COPD subjects. Experiments
lead to discovering 10 highly-reproducible spatially-informed lung texture patterns and 6
quantitative emphysema subtypes (QES). Our discovered QES were associated indepen-
dently with distinct risk of symptoms, physiological changes, exacerbations and mortality.
Genome-wide association studies identified loci associated with four subtypes.

Then we designed a deep-learning approach, using unsupervised domain adaptation
with adversarial training, to label the QES on cardiac CT scans, which included approxi-
mately 70% of the lung. Our proposed method accounted for the differences in CT image
qualities, and enabled us to study the progression of QES on a cohort of 17,039 longitudi-
nal cardiac and full-lung CT scans.

Overall, the discovered QES provide novel emphysema sub-phenotyping that may
facilitate future study of emphysema development, understanding the stages of COPD
and the design of personalized therapies.

In the second part of the thesis, we have designed a deep-learning method for lung
nodule detection with weak labels, using classification convolutional neural networks
(CNNs) with skip-connections to generate high-quality discriminative class activation
maps, and a novel candidate screening framework to reduce the number of false posi-
tives. Given that the vast majority of annotated nodules are benign, we further exploited
a data augmentation framework with a generative adversarial network (GAN) to address
the issue of data imbalance for lung cancer prediction. Our weakly-supervised lung nod-
ule detection on 1,000s CT scans achieved competitive performance compared to a fully-

supervised method, while requiring 100 times less annotations. Our data augmentation



framework enabled synthesizing nodules with high fidelity in specified categories, and is
beneficial for predicting nodule malignancy scores and hence improving the accuracy /

reliability of lung cancer screening.
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Chapter 1

Introduction

1.1 Computed Tomography for Lung Imaging

X-ray is electromagnetic radiation that can traverse through relatively thick objects (Klug
and Alexander 1974). Radiography is an imaging technique that uses X-rays to view the
internal structure of a subject. A radiography machine typically consists of an X-ray
generator and sensors, between which the subjects are placed. The X-rays are absorbed
by the tissues while they pass through the subject. Soft tissue (e.g., muscle) absorbs fewer
X-rays than hard tissue (e.g., bone). The varying energy patterns which were not absorbed
by the subject are detected by the sensors and a projection image is obtained.

Computed tomography (CT) is a specific radiography imaging procedure that creates
volumetric scans of areas inside the body. In a modern CT scanner, the X-ray generator
and sensors continuously rotate around the subject while the subject slides through the
scanner. Thereafter, a series of 2D CT slices are reconstructed from the projection images.
The 2D slices form a 3D scan and can be visualized in the three orthogonal planes.

The value of a voxel in a CT scan represents the radiodensity of a tissue and is mea-

sured on the Hounsfield unit (HU). In a voxel with a mean attenuation coefficient y, the



corresponding HU value is:

,u - ,uwater
Hwater — Hair

HU = 1000 x (1.1)

where fiyaer and i, are the attenuation coefficients of water and air. A radiodensity of
distilled water at standard temperature and pressure (STP) is defined as 0 HU while the
air at STP is defined as -1,000 HU (Buzug 2008).

The lungs are well suited to be imaged with CT, because they consist of air with density
values close to -1,000 HU, and other tissues with higher density values and thus exhibiting
large intensity contrast. The development of CT imaging provides clinicians with high-
quality information of the lung parenchyma and related pulmonary pathologies. Since
the introduction of the first commercially available systems in the 1980s, CT has enabled
in vivo assessment of lung diseases at the macroscopic level. Modern multidetector-row
CT (MDCT) scanners enable fast imaging (<12 s), so that the entire lungs can be imaged

in a single breath-hold (Hoffman, Simon, and McLennan 2006).

1.2 COPD and Pulmonary Emphysema

Pulmonary emphysema is defined morphologically by the enlargement of airspaces with
destruction of alveolar walls distal to the terminal bronchioles (Mets et al. 2012). Emphy-
sematous lung destruction decreases the elastic recoil force that drives air out of the lung,
causing a reduction in the maximum expiratory flow (Hogg 2004). A mixture of emphy-
sema and small airways disease contributes to chronic airflow limitation, characteristic of

chronic obstructive pulmonary disease (COPD). Emphysema and COPD are, jointly, the



fourth leading cause of death in the world in 2017 and are projected to be the third leading
cause of death in 2020. More than 3 million people died of COPD in 2012, accounting for
6% of all deaths globallyl.

A major contributor to emphysema is the inhalation of particles from smoking or other
sources, causing an inflammatory response in the lungs (Vestbo et al. 2013). A chronic
inflammatory response may then induce parenchymal tissue destruction, although the ex-
act mechanism of the process remains unknown. Recent research has associated changes
in microvascular blood flow dynamics with structural and physiological changes leading
to emphysema (Hoffman, Simon, and McLennan 2006). Emphysema can develop without
smoking. At autopsy, pulmonary emphysema occurs in 30% to 50% of cigarette smok-
ers, 8% of cigar smokers and 3% of never-smokers (Auerbach et al. 1972; Leopold and
Gough 1957; Thurlbeck 1963). Genetics have been shown to affect the development of
the disease. Specifically, alphal-antitrypsin deficiency has been associated with younger
patients (<45 yr) and lower lobe emphysema (McElvaney et al. 2017).

Since the alveolar wall destruction in emphysema is irreversible, the disease cannot
be fully cured. However, the progression of the disease can be slowed down. Also, for
patients with COPD, there are several ways to reduce symptoms. The therapeutic options
include smoking cessation, pharmacological therapy, rehabilitation, oxygen therapy, ven-
tilatory support, and surgical treatments. An example of a surgical treatment is lung vol-
ume reduction surgery, where parts of the lung are resected to reduce hyperinflation. This
operation has been shown to improve survival in some patients with severe upper-lobe

emphysema, but it is not suitable for all types of emphysema (Vestbo et al. 2013).

Thttp://www.goldcopd.org/
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1.3 Challenges with Emphysema Quantification and

Subtyping on CT

An early study of eleven patients (Hayhurst et al. 1984) reported that patients with em-
physema on pathology had significantly more low-density values on CT than the group
of patients without emphysema. This finding inspired the development of objective and
reproducible emphysema quantitation on CT.

The most widely used measure for assessing emphysema severity is obtained using
a density measure, called percent emphysema (%emph), also referred to as emphysema
index or percent low attenuation area (%L AA), which quantifies the proportion of voxels
with intensity values below a fixed threshold within the lung region. The %emph measure
is currently used commonly in clinical studies (Galban et al. 2012; Gevenois et al. 1995),
and it has been shown to be able to predict mortality in COPD (Ceresa et al. 2011). How-
ever, there is no consensus on the intensity threshold value that should be used (Mets
et al. 2012), and typical threshold values range from -950 to -910 HU (Hoffman, Simon,
and McLennan 2006).

Emphysema was subtyped into centrilobular and panlobular emphysema by Leopold
and Gough’s on 140 autopsies (Leopold and Gough [1957); a third subtype, paraseptal
emphysema, was reported on only two autopsies (Edge, Simon, and Reid 1966). The three
emphysema subtypes can be visually assessed on lung CT images, using the following

definitions:

1. Centrilobular emphysema (CLE), which is commonly characterized by low-attenuation



Normal Lung

Figure 1.1: Illustration of the three standard emphysema subtypes on CT. From left to
right: coronal views of a normal lung, a sample lung predominantly affected by centrilob-
ular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema (PSE).
The intensity window is [-1000, -700] HU.

regions surrounded by normal lung attenuation, and located centrally in the sec-
ondary pulmonary lobules (Lynch et al. 2015). Classically, its distribution is pre-
dominantly in the apical regions of the lungs;

2. Panlobular emphysema (PLE), which is commonly characterized by low-attenuation
regions uniformly diffused in the secondary pulmonary lobules (Smith et al. 2014),
and is associated with alphal-antitrypsin deficiency. Classically, its distribution is
predominantly in the basal regions of the lungs;

3. Paraseptal emphysema (PSE), which is commonly characterized by low-attenuation
regions adjacent to pleura and to intact interlobular septa, typically found in juxta-
pleural lobules adjacent to mediastinal and costal pleura (Lynch et al. 2015). Clas-

sically, its distribution is predominantly in the upper and middle lung zones.

[lustrations of coronal views of a normal lung CT scan, and CT scans predominantly
affected by the three emphysema subtypes are provided in Fig, [L.1.
A previous study (Smith et al. 2014) evaluated emphysema subtypes that were assessed

visually on 321 CT scans by multiple readers. The study found that on patients with any



type of emphysema, 57% had multiple subtypes present, with CLE and PSE appearing
together most frequently. Compared to controls, patients with CLE and PLE had greater
dyspnea, reduced walk distance, greater hyperinflation and lower diffusing capacity, but
patients with PSE were similar to controls. CLE was associated with an extensive smoking
history, but the other two subtypes were not. Only PLE was associated with reduced body
mass index. In addition, 17% of smokers without COPD on spirometry had emphysema.
Given differing risk factors (Dahl et al. 2002; Shapiro 2000), it is likely that the three
standard emphysema subtypes represent different diseases; however, pathologists dis-
agreed on the very existence of them (Anderson et al. 1964) and the large study on em-
physema - of 1,800 autopsies - ignored them completely, largely for practical reasons
(Auerbach et al. 1972). Moreover, radiologists’ interpretation of these subtypes on CT
images is labor-intensive, with substantial intra- and inter-rater variability, even in ex-
pert hands (Barr et al. 2012). Basic emphysema quantification methods (e.g. thresholding
based %emph) provide reproducible measures of emphysema in population study (Hoff-
man et al. 2009), but discards most information in individual scans and provides limited

information on emphysema subtypes.

1.4 Lung Cancer and Pulmonary Nodule

Lung cancer is the leading cause of cancer death worldwide. It is the second most common
cancer in men, after prostate cancer, and in women, after breast cancer (Siegel, Miller, and
Jemal 2016). It is estimated that 222,500 new cases of lung cancer will be diagnosed in 2017.
With an approximated 155,870 deaths, lung cancer accounts for 1 in 4 mortalities caused

by cancer. The 5-year survival rate of subjects diagnosed with lung cancer is only 18.1%



Solid Nodules Part-solid Nodules Non-solid Nodules

Figure 1.2: Illustration of the three main categories of lung nodules on CT. From left to

right: four axial patches with solid nodules, part-solid nodules, and non-solid nodules.
The figure is adapted from (Setio et al. 2016).

(Henschke et al. 1999).

The stage of the cancer at diagnosis determines treatment options, and is strongly
correlated to survival rate. Most of the lung cancers are diagnosed at a late stage (57%),
by which they have already metastasized (5-year survival rate is 4.5%) (Siegel, Miller, and
Jemal 2016). The diagnosis is usually only made at a late stage because symptoms, such
as a persistent cough, sputum with blood, chest pain, or recurrent pneumonia, typically
do not occur until the cancer is already several centimeters in size (Ellis and Vandermeer
2011). Only when lung cancers are diagnosed at a localized stage, treatment options are
better, and the 5-year survival rate is 55%. Therefore, to reduce the high mortality rate,
there is a strong need to detect subjects with lung cancer as early as possible.

Early stage lung cancer generally manifests in the form of pulmonary nodules. A
pulmonary nodule is defined as a rounded opacity, well or poorly defined, measuring up

to 3 cm in diameter (Raghu et al. 2011). They can be grouped into three main categories:

1. Solid nodules: nodules with homogeneous soft tissue attenuation;

2. Part-solid nodules: also known as ground-glass nodules, manifest as hazy increased



attenuation in the lung that does not obliterate the bronchial and vascular margins;
3. Non-solid nodules: consist of both ground-glass regions and a solid core with soft-

tissue attenuation.

Illustrations of the three main categories of lung nodules on CT are provided in Fig.
1.3 Predictors of cancer include larger nodule size, part-solid nodule type, upper lobe
location, spiculated morphology, and presence of emphysema (Horeweg et al. 2014). Au-
tomated detection and prediction systems that locate and classify nodules of various sizes
can assist radiologists in lung cancer diagnosis, and can therefore facilitate early lung

cancer detection and timely surgical intervention (Setio et al. 2016).

1.5 Challenges with Lung Cancer Screening

Lung cancer screening has been approved and is being implemented in the United States.
However, challenges present and discussions remain about the cost-effectiveness of lung
cancer screening. Three major challenges were identified.

The first challenge is the need to screen many high-risk individuals. Using the rec-
ommended screening criteria, it is estimated that 8.6 million Americans are potentially
eligible for screening (Siegel, Miller, and Jemal 2016). In addition, the interpretation of
lung CT screening scans is tedious, error-prone, and can take up to 10 minutes per scan
(Rubin et al. 2005). Therefore, national lung cancer screening can lead to a substantial
increase in reading efforts for radiologists.

The second challenge is the high rate of false positives. In the the large National Lung

Screening Trial (NLST) (National Lung Screening Trial Research Team 2011), the vast



majority of the nodules identified to be potentially cancerous were eventually benign. A
total of 96.4% of positive examinations and 24.2% of all examinations did not result in a
lung cancer diagnosis.

The third challenge is the inter-rater variability among radiologists. In the Lung Image
Database Consortium and Image Database Resource Initiative (LIDC-IDRI) study (Armato
III et al. 2011), four radiologists reviewed 1,018 CT scans and marked nodules larger than
3 mm. It was shown that complete agreement on what should be considered as a nodule
between all four radiologists was only reached on 928 out of 2,669 nodules. Substantial
variability in radiologists’ false positives rate due to difference in interpretations was also
found in a retrospective analysis of the NLST data (Pinsky et al. 2013).

To enable the implementation of a cost-effective lung cancer screening program, an
accurate and robust interpretation of the large volume of CT scans is needed. To minimize
the number of biopsies, it would be helpful if the lung nodules can be robustly detected

and their malignancy can be predicted from the CT scans.

1.6 Proposed Alternatives

1.6.1 Unsupervised and Weakly-Supervised Machine Learning

Texture analysis on CT has received increasing interest recently (Depeursinge et al. 2014)
for computer-aid diagnosis (CAD) of lung diseases. However, most existing methods
are limited to supervised approaches (Anthimopoulos et al. 2016; Gangeh et al. 2010;
Serensen, Shaker, and De Bruijne 2010; Xu et al. 2006) relying on manually annotated

regions of interest (ROIs) as ground truth, which are slow and labor-intensive to obtain.



In the era of big data, relying on massive ground truth labels to develop machine learn-
ing algorithms will become less practical, as expert time is scarce and expensive and as
scanners continue to evolve significantly. A machine learning model requiring less anno-
tations and suitable for heterogeneous scans is key for a sustainable development of CAD
systems.

In this thesis, we developed unsupervised (without annotation) and weakly-supervised
(with weak annotations, such as binary labels indicating the presence of disease tissue
in a large field of view, rather than voxel-level delineation) methods for lung texture
learning, to enable the usage of a vast amount of unannotated and weakly annotated CT
scans. More specifically, we used unsupervised machine learning and discovered novel
quantitive emphysema subtypes that went beyond the current definition of three stan-
dard emphysema subtypes for better understanding of the disease. And we used weakly-
supervised machine learning for lung nodule detection, to address the high expense and

reading efforts for more cost-effectiveness of lung cancer screening.

1.6.2 Spatial Information for Lung Texture Learning

Preliminary CT-based clinical studies suggest that regional analysis will be instrumental
in advancing the understanding of multiple pulmonary diseases (Murphy et al. 2012).

In the case of pulmonary emphysema, it is suspected that different emphysema sub-
types affect the lungs in preferential anatomical regions. But epidemiological understand-
ing of how many subtypes exist, how they evolve in time and how they vary with spa-
tial localization is still unsolved. Categorization of emphysema on CT images to date

has relied on analysis of local textural patterns, using gray-level intensity-based features
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(Binder et al. 2016; Gangeh et al. 2010; Serensen, Shaker, and De Bruijne 2010; Xu et al.
2006), without consideration of spatial localization.

In the case of pulmonary nodules, their location has been shown to be a useful pre-
dictor of malignancy (Swensen et al. 1997), in addition to texture-based and shape-based
features. Incorporating radiological predictors for quantitative lung cancer prediction is
an active research field (Liu et al. 2017).

In this work, towards better understanding the importance of disease localization,
we proposed a standardized lung shape spatial mapping, and incorporated the spatial
information for novel lung texture learning and analysis, with specific validations on pul-

monary emphysema and nodules.

1.6.3 Usage of Large-Scale Longitudinal Cardiac CT Datasets for

Emphysema Quantification

Cardiac CT scans, which are commonly used for the assessment of coronary artery cal-
cium scores to predict cardiac events (Detrano et al. 2008), include approximately 70% of
the lungs. Despite missing apical regions, emphysema quantification on cardiac CT was
shown to have high reproducibility, high correlation with full-lung measures (Hoffman
et al. 2009), and correlate well with risk factors of lung disease and mortality (Oelsner
et al. 2014), in population-based studies.

Large datasets of cardiac CT scans are readily available. The longitudinal cohort Multi-
Ethnic Study of Atherosclerosis (MESA, 2000-2012) (Bild et al. 2002) study contains more
than 20,000 cardiac scans, providing an invaluable opportunity for a large-scale longitu-

dinal evaluation of emphysema quantification and texture learning, as the participants in
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MESA also underwent gold-standard full-lung scanning in the most recent follow-up visit
(Exam 5, 2010-2012).

However, MESA cardiac CT scans involve heterogeneous scanner types, and their
imaging protocols are different from full-lung scans, which can cause variations in the
image intensity distribution and texture appearance, and thus hinder the visual charac-
teristics of texture patterns in emphysema-like lung.

In this work, in addition to exploiting gold-standard full-lung CT scans, we utilized
the large and longitudinal cardiac CT dataset in MESA, and developed robust emphy-
sema segmentation and texture learning methods, accounting for variabilities across im-
age domains and subjects. The proposed work enabled us to study CT image patterns of
emphysema on cardiac scans from different sites, and over 10 years of longitudinal follow-
up data, and would potentially advance the understanding of progression of emphysema

and emphysema subtypes.

1.7 Potential Impact and Thesis Outline

The aim of this work is to significantly advance the CT-based lung texture learning meth-
ods by: 1) Exploiting unsupervised and weakly-supervised learning requiring less (or no)
annotations; 2) Incorporating spatial information to study lung disease locations; 3) Ex-
tending lung texture learning to large cardiac CT datasets for longitudinal study. Our
work focused on the understanding and diagnosis of two major types of lung abnormali-
ties: emphysema (associated with COPD) and nodule (associated with lung cancer).

The proposed unsupervised learning method enabled us to discover a set of novel

quantitative emphysema subtypes that were highly-reproducible. Going beyond the cur-
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rent definitions of three standard emphysema subtypes, which provide an imprecise and
non-biologically based disease definition that prevents the development of effective pre-
vention and treatment strategies for COPD, our novel radiological emphysema subtypes
have distinct CT representations and structures, are associated independently with unique
patterns of respiratory symptoms and clinical events, have varying physiologic charac-
teristics, and may have non-overlapping genetic associations, hence may facilitate per-
sonalized therapies.

The proposed methods for emphysema quantification and texture learning on cardiac
CT scans accounted for the domain differences in CT imaging protocols and qualities,
and would enable large-scale longitudinal studies over 10 years of follow-up, for better
understanding of the disease progression. To our knowledge, this is the first study on
longitudinal subtyping of emphysema patterns on cardiac CT scans.

The proposed weakly-supervised learning for lung nodule detection achieved com-
petitive performance compared to a fully-supervised method, yet requiring 100 times less
annotations. Based on that, we further proposed novel method to estimate lung cancer
risks with scan-level diagnostic labels, which are easy to acquire in clinical scenarios.
Automated methods that enable estimating early lung cancer risks based on CT images
are important for a more cost-effective lung cancer screening program with less reading
efforts and minimal number of biopsies.

Overall, the proposed work would enable the usage of a vast amount of unannotated
and weakly annotated CT scans. Successful applications would potentially have a tremen-
dous impact in the field, for diseases that affects millions around the world.

Hence, this thesis is organized to present the three main components: 1) Unsuper-
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vised learning to discover novel quantitative emphysema subtype on CT; 2) Extending
emphysema lung texture learning to cardiac CT scans; 3) Weakly-supervised learning for
lung nodule detection and lung cancer prediction.

In Chapter 2, we will overview the CT datasets that are used in this thesis. In Chapter
3, we will present the unsupervised learning framework to discover novel emphysema
subtypes, which incorporates spatial and texture features. We call the discovered pat-
terns the spatially-informed lung texture patterns (sLTPs). The proposed method is first
evaluated on the MESA COPD dataset (Thomashow et al. 2013) for proof-of-concept, and
is then evaluated on a large full-lung CT cohort of COPD and normal controls, SubPopu-
lations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) (Couper et al.
2013). To extend emphysema texture learning to the MESA cardiac CT scans, we will first
present, in Chapter 4, an emphysema segmentation method based on the hidden Markov
measure field (HMMF) model (Hame et al. 2014) to handle scanner and subject variability
in MESA. Then we will present, in Chapter 5, a deep-learning method based on unsu-
pervised domain adaptation (Ganin et al. 2016) to learn domain-invariant features across
full-lung versus cardiac imaging scanners and protocols (the “domains”). In Chapter 6,
we will present a weakly-supervised learning method for lung nodule detection and can-
cer prediction based on convolutional neural networks (CNNs). Finally, Chapter 7 will
provide the summary and discussions, and Chapter 8 will present the publication list and

competition performance related to this thesis.
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Chapter 2

Data and Preprocessing

2.1 Available CT Data

This work includes CT scans (full-lung and/or cardiac CT) and related demographic/clinical

measures from the following cohorts:

1. Multi-ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002), including longitu-
dinal cardiac CT scans at baseline and four follow-up visits, and full-lung CT scans
in the most recent visit;

2. MESA COPD (Thomashow et al. 2013), including cross-sectional full-lung CT scans;

3. SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS)
(Couper et al. 2013) with cross-sectional full-lung CT scans;

4. The Lung Image Database Consortium and Image Database Resource Initiative (LIDC-
IDRI) (Armato III et al. 2011) with cross-sectional full-lung CT scans;

5. Kaggle Data Science Bowl 2017 (DSB2017) with cross-sectional full-lung CT scans.

We summarize the image data being used in Table P.1.
The participants in the studies and the imaging protocols used to acquire the CT scans

are described in the sections below. More detailed information can be found in their liter-

Thttps://www.kaggle.com/c/data- science-bowl-2017
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Table 2.1: Overview of image data used in this work, including three cohorts for emphy-
sema and COPD study (MESA, MESA COPD and SPIROMICS) and two cohorts for nodule
and lung cancer study (LIDC-IDRI and Kaggle DSB2017).

Study Nppt | Nscan Niype | Nyear | Lung Disease

MESAT 6,814 | 31,228% cardiac | 11 12 Emphysema & COPD
3,131 full-lung | 4

MESA COPD 321 | 317% full-lung | 3 - Emphysema & COPD
SPIROMICS 3,200 | 3,200 full-lung | 9 - Emphysema & COPD
LIDC-IDRI 1,010 | 1,018 full-lung | 17 - Nodule & Lung Cancer
Kaggle DSB2017 | 2,101 | 2,101 full-lung | n/a - Nodule & Lung Cancer

Nppt = number of participants in the study;

Nyean = number of CT scans;

Niype = number of scanner types;

Nyear = years of follow-up.

1 MESA cardiac CT scans were acquired at visits 1-4 in 2000-08 with axial CT scanners, and at
visit 5 in 2010-2012 with helical CT scanners; full-lung CT scans were acquired at visit 5 in
2010-12 with helical CT scanners.

I Most subjects had two repeated cardiac scans per visit at visit 1-4, while there is one full-lung
scan and one cardiac scan in visit 5.

§ Four CT scans are discarded due to data corruption or incomplete lung field of view.

atures for study designs respectively. The subsequent chapters describing the performed
studies include additional information that was specific to each experiment.

The CT scans in MESA study, MESA COPD study and SPIROMICS are available in the
Heftner Biomedical Imaging Lab. The CT scans in LIDC-IDRI and Kaggle DSB2017 are

publicly available online.
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2.1.1 MESA

MESA is a prospective cohort study, which recruited 6,814 men and women in 2000-2002
at six US field centers from four racial/ethnic groups, who were aged 45-84 years and
free of clinical cardiovascular disease. All 6,814 of these MESA participants underwent
cardiac CT scanning at enrollment with either electron beam CT (EBT, Imatron C-150
scanners) or multi-detector CT (MDCT, GE LightSpeed or Siemens S4+ Volume Zoom
scanners). Scans were performed under a standardized protocol by designated, MESA-
certified, experienced radiology technologists under the supervision of the reading center
co-investigator. Axial images were reconstructed with an isotropic pixel resolution in the
range [0.44, 0.78] mm, and a slice thickness of 2.5 or 3.0 mm.

The MESA Lung study performed spirometry tests, quantitative lung measures, and
assessed cotinine levels on all MESA cardiac CT scans in addition to acquiring gold-
standard full-lung CTs for 3,200 participants on 64-slice helical scanners in 2010-12, fol-
lowing the MESA-Lung/SPIROMICS full-inspiration protocol (Sieren et al. 2016). Full-
lung images were reconstructed with an in-plane pixel resolution in the range [0.47, 0.92]

mm and a slice thickness of 0.625 or 0.75 mm.

2.1.2 MESA COPD

The MESA COPD study includes 321 subjects who were aged 50-79 years, with 10 or
more pack-year smoking history and who did not have clinical cardiovascular disease,
stage IIIb-V kidney disease, asthma prior to age 45 years, other lung disease, prior lung

resection, cancer, allergy to gadolinium, claustrophobia, metal in the body, pregnancy or
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weight > 300 lbs. Among the 321 subjects, 192 were recruited from the MESA study, and
the rest were recruited from the EMCAP study (Barr et al. 2007), which is a cohort study
of smokers. Full-lung CTs were acquired with Siemens and GE 64-slice scanners, at 120
kVp, 0.5 seconds, with 200 mA for the EMCAP participants, and current (mA) set by body
mass index (BMI) for the MESA participants, following the MESA-Lung/SPIROMICS full-
inspiration protocol (Sieren et al. 2016). Images were reconstructed with an in-plane pixel

resolution within the range [0.58, 0.88] mm, and a slice thickness of 0.625 mm.

2.1.3 SPIROMICS

The SPIROMICS recruited 3,200 participants (2,400 patients with COPD, 600 smokers
without COPD and 200 non-smokers without COPD) aged 40-80 years old in six US field
centers. All participants underwent the CT scan at baseline and one-year follow-up. The
lung CT scanning protocol in SPIROMICS is identical to that in MESA Lung. Images were
reconstructed with an in-plane pixel resolution within the range [0.48, 0.98] mm, and a

slice thickness of 0.625 or 0.75 mm.

2.1.4 LIDC-IDRI

The LIDC-IDRI dataset is a web-accessible international resource for development, train-
ing, and evaluation of CAD methods for lung cancer detection and diagnosis. Seven aca-
demic centers and eight medical imaging companies collaborated to create this resource.
The dataset contains 1018 cases, each of which includes a clinical thoracic CT scan and an
associated record of lung nodule annotation process performed by four experienced tho-

racic radiologists. Four scanner manufacturers and 17 models were represented, and four
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types of convolution kernels were used for image reconstruction. The in-plane pixel res-
olution ranged from 0.46 to 0.98 mm (mean = 0.69 mm), and the slice thicknesses ranged

from 0.45 to 5.0 mm (mean = 1.74 mm).

2.1.5 Kaggle DSB2017

The Kaggle DSB2017 dataset is provided by the public Kaggle Data Science Bowl 2017
international competition for early lung cancer detection, which involves 2,101 patients
who were high-risk of lung cancer. Each patient is associated with a full-lung CT scan
and a pathological diagnosis of with/without early lung cancer. While the CT scans vary
in scanner, acquisition time and image quality, only necessary information such as patient
ID, in-plane pixel resolution ([0.49, 0.98] mm, mean = 0.68 mm) and slice thickness ([0.625,
3.0] mm, mean = 1.71 mm) is provided to encourage the development of CAD methods

that are invariant to acquisition conditions.

2.2 Preprocessing

2.2.1 Lung Mask Segmentation

Along with CT scans in MESA study, MESA COPD study and SPIROMICS study, lung
mask files were generated by the APOLLO® software (VIDA Diagnostics, lowa). For CT
scans in LIDC-IDRI and Kaggle DSB2017, lung masks were segmented with a classic lung

segmentation method, by:

1. Applying an intensity threshold of -400 HU and locating the largest connected ob-

jects in the resulting binary mask (Hu, Hoffman, and Reinhardt 2001);
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Figure 2.1: Illustration of lung and airway segmentation results on a sample CT scan in
the preprocessing stage. (Left) Coronal view of a sample lung CT intensity image; (Middle)
Coronal view of the segmentation of lung (green) and airway (blue); (Right) 3D view of
the segmentation of lung (green) and airway (blue).

2. Removing trachea and some of the large airways using closed space dilation (Ma-

sutani, Masamune, and Dohi 1996).

The segmentation results of lung and airway are illustrated in Fig. 2.1 for a sample

full-lung CT scan.

2.2.2 Emphysema Segmentation

In the proposed work, emphysema was segmented from the lungs using two approaches:
a traditional thresholding-based approach, and a preliminary segmentation tool based on
the hidden Markov measure field (HMMF) (Hame et al. 2014).

In the thresholding-based segmentation, regions of lung with attenuation < -950 HU
were segmented as emphysema (denoted as %emph_osy). This threshold has been previ-
ously validated against autopsy specimens and is commonly used in large clinical studies
(Oelsner et al. 2014; Yang et al. 20164).

The HMMF segmentation (denoted as %emphuyur) method is a prior work in the
Heftner Biomedical Imaging Lab. It provides robust emphysema segmentation, which has
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Figure 2.2: Illustration of HMMF-based emphysema segmentation result on a sample
full-lung CT scan in the preprocessing stage. (Left) Coronal view of a sample lung CT
intensity image; (Middle) Coronal view of the intermediate measure field values, in the

range of [0,1], in the HMMF segmentation model; (Right) Coronal view of final HMMF-
based binary segmentation result. This figure is adapted from (Hame et al. 2014).

been demonstrated in heterogeneous full-lung CT scans in (Hame et al. 2014). It enforces
spatial coherence of the labeled emphysematous regions within neighborhood cliques via
Markovian regularization weight, and relies on parametric modeling of intensity distri-
butions within emphysematous and normal lung tissue to adapt to individual and scanner
variability. The HMMF model first optimizes an intermediate Markov measure field out-
put, which estimates the probability of each voxel belonging to the emphysema class, and
then computes the final emphysema segmentation. A Gaussian distribution is used to
characterize the intensity of emphysema class, and a skew-normal distribution is used to
characterize the intensity for normal lung tissue. The intermediate Markov measure field
values and emphysema segmentation result using HMMF are illustrated in Fig. P.1 for a
sample full-lung CT scan.

In Chapter 4, we will also present a dedicated framework which extends the HMMF-
based model for robust emphysema segmentation on heterogeneous and longitudinal car-

diac CT scans in MESA.
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Chapter 3

Unsupervised Learning of Spatially-Informed Lung Texture

Patterns for Pulmonary Emphysema

3.1 Introduction

Pulmonary emphysema is morphologically defined by the enlargement of airspaces with
destruction of alveolar walls distal to the terminal bronchioles (Aoshiba, Yokohori, and
Nagai 2003). Emphysema overlaps considerably with chronic obstructive pulmonary dis-
ease (COPD), which is currently the 4th leading cause of death worldwide, and is projected
to be the 3rd leading cause of death in 20200,

Based on small autopsy series, pulmonary emphysema is traditionally subcategorized
into three standard subtypes: centrilobular emphysema (CLE), panlobular emphysema
(PLE) and paraseptal emphysema (PSE). The three standard emphysema subtypes are as-
sociated with different risk factors and clinical manifestations (Dahl et al. 2002), and are
likely to represent different diseases.

However, given that these subtypes were initially defined at autopsy before the avail-
ability of CT scanning, there have been disagreements among pathologists on the very

existence of such pure subtypes (Anderson et al. 1964), and a large emphysema study on

thttp://www.goldcopd.org/
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1,800 autopsies (Auerbach et al. 1972) ignored them completely, mainly for practical rea-
sons. Radiologists’ interpretation of these subtypes on CT scans is labor-intensive, with
substantial intra- and inter-rater variability (Smith et al. 2014).

Automated CT-based analysis enables in vivo study of emphysema patterns, and has
received increasing interest recently (Depeursinge et al. 2014; Mets et al. 2012), either via
supervised learning for replicating emphysema subtype labeling as in (Asherov, Diamant,
and Greenspan 2014; Gangeh et al. 2010; Ginsburg et al. 2012; Serensen, Shaker, and De
Bruijne 2010), or via unsupervised learning for the discovery of new emphysema subtypes
as in (Binder et al. 2016; Hame et al. 2015b; Yang et al. 2016b).

Preliminary CT-based clinical studies suggest that regional analysis will be instrumen-
tal in advancing the understanding of multiple pulmonary diseases (Murphy et al. 2012).
In the case of pulmonary emphysema, it is suspected that different subtypes of emphy-
sema affect the lungs in preferred anatomical region. But physiological understanding
of how many subtypes exist, how they evolve in time and how they vary with spatial
location is still unsolved.

To date, categorization of emphysema on CT images has relied only on analysis of local
textural patterns, using either grey-level co-occurrence matrix (GLCM) features (Ginsburg
et al. 2012), texton features (Gangeh et al. 2010), or local binary pattern (LBP) features
(Serensen, Shaker, and De Bruijne 2010). All these approaches use intensity information
without consideration of spatial location.

In two previous studies (Hame et al. 2015b; Yang et al. 2016b), we proposed to use local
textural patterns to generate unsupervised lung texture patterns (LTPs) followed by LTP-
grouping based on their spatial co-occurrence in local neighborhoods. Such separate use
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of intensity and spatial information cannot guarantee spatial and textural homogeneity
of the final LTPs. Therefore, we propose to perform discovery of LTPs via unsupervised
clustering of joint spatial and textural information of local patterns on CT. Spatial infor-
mation can be inferred from crude partitioning of the lung with subdivisions of Cartesian
coordinates or by segmenting the lung into zones (e.g. upper, lower) (Smith et al. 2014) or
lobes (Hoffman et al. 2003). However, such approaches have limited spatial precision and
lack relative information such as peripheral versus central positioning, which is important
in defining paraseptal emphysema and subpleural bullae.

In this work, we first propose a new standardized lung shape spatial mapping, called
Poisson distance conformal mapping (PDCM), which enables detailed, precise and stan-
dardized mapping of voxel positions with respect to the lung surfaces. And we exploit
the proposed mapping for the study of emphysema spatial patterns across populations
of CLE-, PLE- and PSE-predominant subjects, without registration being required besides
orientation alignment. Then we propose a two-stage unsupervised learning framework to
discover emphysema-specific lung texture patterns, which we call the spatially-informed
LTPs (sLTPs).

For a proof-of-concept, we first exploit the proposed the method using a cohort of
317 full-lung CT scans from the MESA COPD study (Thomashow et al. 2013), and 22
longitudinal CT scans from the EMCAP study (Barr et al. 2007). The discovered sLTPs
are evaluated in terms of their reproducibility, and ability to encode standard emphy-
sema subtypes. Then we apply the unsupervised learning framework to a large cohort,
the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS)
(Couper et al. 2013), which contains CT scans of 2,922 individuals of COPD subjects and
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normal controls. Then we use the discovered patterns to label all CT scans in SPIROMICS
and another large cohort, the MESA Lung Study (Bild et al. 2002), and evaluate the dis-
covered patterns extensively in terms of their associations with respiratory symptoms,

clinical events, physiologic characteristics, and genetic variants.

3.2 Method

3.2.1 Overview

The proposed framework is structured in four main steps to model the spatial and texture

features within emphysema-like lung, and generate the emphysema-specific sLTPs:

1. Generate spatial mapping of the lung masks: mapping voxels within the lung masks
into a custom Poisson distance map (PDM) to encode the “peel to core” distance,
and a conformal mapping to distinguish superior versus inferior, anterior versus
posterior and medial versus lateral voxel positions;

2. Encode regions of interest (ROIs) within emphysema-like lung: sampling ROIs from
emphysema segmentation masks, and generating spatial features (based on spatial
mapping) and texture features of each ROL

3. Discover an initial set of LTPs: clustering training ROIs into a large number of clus-
ters, based on texture features, and then iteratively augment the LTPs with spatial
information via customized regularization and penalty terms;

4. Generate the final set of SLTPs: measure the similarity between LTPs in the initial
set, and then group similar / redundant LTPs and generate the final set of SLTPs via

partitioning the similarity graph.
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Figure 3.1: Illustration of the proposed lung shape spatial mapping. (a) Coronal slice of a
sample CT image (green contour indicates the boundary of lung mask); (b) Corresponding
Poisson distance map (PDM) Us, with values in range [0, 1] that measure the “peel to core”
distance to the lung mask external surface; (c) Modified PDM U,,,,4, for comparable core
locations between subjects; (d) Conformal mapping of the lung PDM to a sphere leading
to a Poisson distance conformal map (PDCM) where pixels are assigned three coordinate
values (7,6, ¢) which enable to distinguish superior vs. inferior, anterior vs. posterior
and medial vs. lateral positions, in addition to “peel to core” distance.

We now detail these steps individually in sections below.

3.2.2 Spatial Mapping of the Lung Masks

To generate spatial mapping of the lung masks, we first use the concept of Poisson dis-
tance map (PDM), introduced in (Gorelick et al. 2006), to encode the shape of individual
lung masks V. PDM is commonly used for characterizing the silhouette of an object via
continuous labeling of voxel positions with scalar field values U in the range of [0, 1]. In

our case, the field value U encodes the “peel to core” distance between a given voxel and
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the external lung surface V. This field is computed by solving the following Poisson

equation:
AU(x,y,z) = —1, for (z,y,2) € V
(3.1)
subject to U(x,y, z) =0, for (z,y,2) € OV
where AU = U, + Uy, + U...

The solution for U proposed in (Gorelick et al. 2006) is guaranteed to be smooth ac-
cording to (Haidar et al. 2006). It has the advantage of generating distance values that are
sensitive to global shape characteristics, unlike other distance metrics (e.g. Euclidian or
Metropolis distances) which exploit single contour points. PDM can therefore reflect rich
shape properties of the lung.

The core of the PDM is the set of voxels (one or very few) with the largest U value.
The PDM generated from a lung surface generally exhibits nice star-shaped profiles when
viewed in axial cuts, with a unique maxima in the center. On the other hand, core posi-
tions can vary greatly among subjects along superior-inferior axis, due to variable mor-
phologies of the lungs, especially near the heart and at the base. We illustrate an example
in Fig. B.1 (b) where the PDM generated with Equation (B.1) has core point(s) located very
low within the lung rather than concentrated toward the middle of the longitudinal axis.
We propose the following approach to calibrate lung PDMs targeting high values of U
concentrated near the skeleton of the lung shapes and in the mid-level slices.

We denote U™ (S;) the maximal in-slice value of U, where S; is the axial slice level

with ¢ in ascending order from the apex. We denote Sy, the slice level with V' % of total

lung volume above. A normalized version (denoted as Usg), of the original PDM (denoted
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as Usyg), is then defined, per axial slice S;, as Usq(S;) = Usa(S;) /U (S;).
We further modify U by combining Us, and Usg values. First, two axial slice levels .Sj,
and Sy, corresponding to the most apical and basal slice levels of local maxima in Usg,

are identified as:

i, = argmax|[ U3y (S,) < U§y™(5,).V i < ]

: (3.2)
i, = argmin[Ui?fx(Si) < Ut (Sy), Vi > x}
We then define two reference slice levels S;, and .S;, as:
Siu = min(525%, Sz;)
(3.3)

Sid = maX(S75%, Sifi)

The reference levels S;, and S;, are exploited to ensure that the modified core regions
reach at least extremal levels Sy5, and S7s,, With the following modification of the U

values into the modified PDM (denoted as U,,,,q):

Umod(Si) = U2d<Si)7 v Zu < l < Z.d
Umod(Sl) = Ugd(Sl)/U;}“x(Slu), Vi< Ty (34)

Umod(si) = Ugd(Si)/U£a$(Sid), Yi> id

We illustrate in Fig. B.1 (c) an example of U,,,,q which takes similar maximal values
(equal to 1) over a large mid-level extent along the superior-inferior axis and exhibits
decreasing values when moving toward the apex or the base of the lung,.

This simple calibration enables us to equip the PDM with a coordinate system centered
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at a core localized on axial slice level S5y, (ensuring a balanced numbers of voxels above
and below), where the core is defined as the point with U,,,,q = 1, and closest to the 2D
center of mass, for the sake of simplicity.

To uniquely encode 3D voxel positions, we define radial values r = 1 — U,,,q and
add conformal mapping of voxels positions onto a sphere, generating a Poisson distance
conformal map (PDCM). We encode superior versus inferior, anterior versus posterior
and medial versus lateral voxel positioning via latitude and longitude angles (6, ¢) with
respect to the PDM core defined above and standard image axis. The generation of the
spatial PDCM mapping is illustrated in Fig. B.1 (d).

The PDCM spatial mapping will be exploited for sLTP learning. Furthermore, we can
use PDCM to study population-based spatial distributions of pulmonary diseases. In this
chapter, we exploit PDCM to study emphysema spatial location, as reported in Section
B.3.4. Later on in this thesis (Chapter 6 Section f.3.3), we will also exploit PDCM to study

the spatial location of lung nodules.

3.2.3 Texture and Spatial Features

Prior Emphysema Segmentation and ROI Sampling

Texture and spatial analysis is performed within local ROIs centered on a subset of lung
voxels. Sampling ROIs from emphysema-like lung requires prior emphysema segmen-
tation. In this work, we exploit two training cohorts (MESA COPD and SPIROMICS) of
full-lung CT scans and their associated emphysema masks, which are generated using
both a thresholding-based voxel selection and a hidden Markov measure field (HMMF)

segmentation (Hame et al. 2014).
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For thresholding, voxels with attenuation values below —950 HU are selected. This
threshold has been previously validated against autopsy specimens and is commonly used
in large clinical studies (Hoffman et al. 2014; Yang et al. 2016d). The HMMF segmentation
enforces spatial coherence of the labeled emphysematous regions, and relies on scanner-
specific and subject-specific parametric modeling of intensity distributions within em-
physematous and normal lung tissues to adapt to individual and scanner variability (more
details are in Chapter 4). With the two sets of emphysema masks, percent emphysema
measurements quantify the proportion of emphysematous voxels within the lung region,
and are denoted %emph_gs59 and %emphgyve.

We experimented several options for ROI sampling in preliminary implementations
such as keypoint sampling in (Hame et al. 2015b) and regular sampling in (Yang et al.
2016b). In this study, we use the systematic uniform random sampling (SURS) strategy as
suggested in (Puliyakote et al. 2016) for use on lung CT scans. Each individual lung mask
is randomly sampled via dividing the bounding box of each lung into 3D regular stacks,
and then selecting voxels per stack with a random shift of positions. Two parameters are
used for the sampling: f3; is used for the random shift of positions and (3, is used to set the
number of sampled voxels per stack. The SURS sampling ensures even representation of
all lung regions while introducing variability in the position of sampled points with the
random shift parameter [3;.

When applying the learning algorithm to the MESA COPD dataset, we select only
ROIs with both percent emphysema measures %emph_g59 and %emphymr larger than
1% for training to ensure sufficient representation of emphysematous regions (i.e. each
training ROI has a minimal proportion of emphysema but can be a mixture of normal
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and emphysematous tissues). The threshold 1% here is a pre-fixed value, that we consider
to be sufficient to include early emphysema signals. When applying the algorithm to
the SPIROMICS and MESA Lung Study, the ROI selection is based on subject-specific
threshold values computed by a reference equation (Hoffman et al. 2014). More details

are provided in Section .4.
Texture Features

We use texton-based texture features to characterize each ROIL, which model texture as
the repetition of a few basic primitives (called textons), and were shown to outperform
other texture features in unsupervised lung texture learning in (Yang et al. 2016b).

First, we generate small-sized random patches from the training ROIs. A texton code-
book is constructed by retaining the cluster centers (textons) of intensity values from
those small-sized training patches. The clustering is performed with K -means.

Then, for each ROL we extract all small-sized patches in a sliding window manner,
and compute their voxel intensity distance to the textons. By projecting all small-sized
patches of a ROI onto the codebook via searching for the closest textons, the texton-based

feature of this ROI is the normalized histogram of texton frequencies.
Spatial Features

To generate spatial features of individual ROIs, we divide the lung masks into lung sub-
regions via discretizing our lung shape spatial mapping. For the sake of simplicity, we
define lung sub-regions by dividing r € [0, 1] into 3 regular intervals to distinguish core
to peel regions, dividing 0 € [0, 27] into 4 regular intervals to distinguish anterior, medial,

posterior and lateral regions, and dividing ¢ € [—7/2,7/2] into 3 regular intervals to
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distinguish inferior, mid-level and superior regions. The spatial feature of each ROI is
a one-hot vector indicating the lung sub-region it belongs to. Ordering of the bins that
represent the sub-regions is done via arbitrary spatial rastering as no assumption needs

to be made on spatial adjacency of adjacent bins.

3.2.4 Initial Augmented LTPs

Our discovery of spatially-informed lung texture patterns (sLTPs) is formulated as an un-
supervised clustering problem. One key factor in unsupervised clustering is the choice
of number of clusters. The algorithm is expected to find quantitative emphysema sub-
types that are finer-grained than the three standard emphysema subtypes. Therefore, the
number of clusters should be large enough to handle the diversity of textures encoun-
tered in the lung volumes (i.e. good intra-cluster homogeneity), and on the other hand,
be small enough to avoid redundancy (i.e. good inter-cluster differences) for better clin-
ical interpretation. A simple one-stage clustering is suboptimal since it requires tuning
or a pre-fixed number of clusters, and may not be able to preserve rare patterns. There-
fore, we propose a two-stage learning strategy, where we first generate an empirically
large number of fine-grained lung texture patterns (LTPs), and then group similar LTPs
to produce the final set of sLTPs, according to a dedicated metric.

LTPs {LT P;.} ({-} denotes a set of variables hereafter) are characterized by their spa-
tial and texture feature centroids, which are encoded as histograms, and are enforced for

intra-class similarity and inter-class separation. For a given LT'P}, its texture centroid
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Algorithm 1: Generating and Augmenting LTPs

Input : Njpp: Target number of LTPs;
{z,FT,,FS,} : Training ROIs x along with their
texture features F'T,, and spatial features F'S,.
Output: {FTrp,, FS LTP, k=1, Norp : LTP texture and spatial feature centroids.
Procedure:
- Cluster training ROIs {z} into Nyrp clusters with { F'T, }, using K -means.
- Set t = 0, and initialize A(LO:)rPk (k=1,..., Nprp) with the Nypp LTPs.
- For each k, compute F'T (LO% P FS (LO% p, based on A(LO% P

while t = 0 or {AY)., } # {AY7})} do
1.t=t+1;

2. {Al), Pt (A, p.}* following Equation (B.6);
3. Compute {F_T(Lt)TPk, F_S(Lt)TPk} based on {A%P]c :

end

FT rrp, and spatial centroid FS rrp, are computed as:

1

[F_T LTPy, F_SLTP,C] = Arrr]
k

[FTx, st] (3.5)

z€ALTP,

where F'T, and F'S, are respectively the texture feature and spatial feature of a ROI =z,
and Azrp, denotes the set of ROIs that are labeled as LT'F.

An initial set of LTPs is generated by clustering with texture features, and is then
augmented with spatial regularizations via iteratively updating {FT .rp,, F'Syrp, } and

{ALrp,}. The generation and augmentation of LTPs are summarized in Algorithm fl.

Designing proper distance metrics for histograms plays a crucial role in many com-

puter vision tasks. Two popular choices are the x? and the ¢? distance metrics. The latter
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equally weights distances of all bins and is favored to compare one-hot vectors, while
the former is a weighted distance and is favored to compare probability distributions. In
our case, texture feature histograms encode distributions over textons, and the x? met-
ric is used. On the other hand, spatial features are sparse one-hot vectors for individual
ROIs and we chose the ¢? metric to favor spatial centroids being concentrated in specific
lung sub-regions. We therefore propose a mixed x*-¢? similarity metric to enforce spatial

concentration of LTPs while preserving their intra-class textural homogeneity:

(t) * _ :
{ALTPk }{/\,W:y} = ar(g;nmz Z (3.6)
Niped F erfh,

2 =(t—1) =at-1)||?
X (FTxaFTLTPk) +A-W- HFS?C—FSLTPk ’2"‘

v-1 [Xz (FTI, F_Tg;}%) >  max XQ(FTI/, ﬁgf}%)]

(t—1)
mIEALTPk

where {Ag)T P denotes the optimal value identified with a set of parameters {\, W, v}

Yo
at iteration ¢. The first distance metric x*(-) measures the x? distance between the tex-
tural feature of a ROI x and LT P,. The second distance metric || - || measures the (2
distance between the spatial feature of a ROI z and LT P;. A textural penalty term is then
introduce as the third term, where 1 is the indicator function.

Minimization of Equation (B.6) (step 1 in Algorithm [l}) is performed via exhaustive
search over all possible values of {A(Lt% p, ;- Update of LTP centroids (step 2 in Algorithm
[l is performed after relabeling each ROI to the LTP to which it has the smallest weighted

feature distances without turning on the penalty.

Parameter IW: This parameter is used to scale contributions between textural distance
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and spatial distance terms so that A can be tuned within a small range of values. We

defined it as:

_SSTr Y P (FTL, Y, FT./N)

W = —
SSTs — S ||FS, — 5, FS,/N|2

(3.7)

where SSTr and SSTs are respectively the texture and spatial total sum-of-square dis-
tances, computed on the whole /V training ROIs to measure the overall diversity of texture
and spatial features.

Parameter \: This parameter controls the spatial regularization which will inevitably
decrease textural homogeneity of individual LTPs. The value of A is set as follows. First we
define SSWr as the initial sum-of-square within-cluster homogeneity of texture features

without spatial regularization:

SSWyp = Zk erw 22 ( FT,, ZT_T(L()%Pk> (3.8)

LT Py,

Then we define SSW as the SSW; measured on augmented LTPs with spatial regular-

ization enforced with A € [0, 2]. Final value of ) is set to:

A
\* = argmax [ASSWr()\) < Ly| where ASSWrp(\) = S5Wr SSWT% (3.9)
A SSWT

In the context of unsupervised discovery, we hereby spatially regularize the augmented
LTPs via an empirically acceptable textural homogeneity loss with the threshold L (set
based on data observations, as reported in Section B.3).

Parameter 7: This parameter weights the textural penalty term which is used for ROI

labeling. We set 7 = oo to prevent a ROI from being labeled to a spatially preferred but
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texturally dissimilar LTP.

3.2.5 Final Spatially-Informed LTPs (sLTPs)

In this final step, we generate sLTPs by partitioning a weighted undirected graph G where
nodes are the N pp initial augmented LTPs. To define weighted edges between nodes, we
rely on replacement tests. We first define Ny p subsets of augmented LTPs as { LT Py } 1.«
(i.e. without LT P, in the subset of LTPs) fori = 1,2, ..., Ny rp. Labeling again all training
ROIs with these subsets, we defined N rp sets of labeled data A; p,_,; as the ROIs labeled
as LT P; when using { LT Py }.+;. In the replacement tests, a ROI with a textural distance

to LT Py, exceeding the maximal within-cluster textural distance of LT Py, is not re-labeled.

Therefore, defining N;_,; = |Arrp,,;|, we guarantee that ), N;,x/N; < 1 for N; =
|Arrp,| when all augmented LTPs are used for labeling. We define similarity weights G ;

as a measure of replacement ratios of LT'F; into LT P; and vice versa:

NA_Y_‘_N._)A
Gz:MEZ 3.10
5J Nl—f—N] 5J ( )

The binary variable £; ; controls the existence of an edge between LT'F; and LT P;. To
prevent weak associations of LTPs that are not easily replaceable, we define this binary

variable as:

N; N

J

E,;=1 <M > 77) 1 (% > 17) (3.11)

The threshold parameter 7 is set to 0.5 focusing on the elimination of LTPs via graph parti-
tioning that are replaceable in at least 50% of the training ROIs. Indeed, graph partitioning

tends to preserve nodes that are not connected, which in our case would correspond to
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LTPs that are not easily replaced by other ones in the labeling task.

We use the Infomap algorithm (Rosvall and Bergstrom 2008) to partition the similarity
graph GG. We define the frequency of each node on G as the sum of the similarity weights
of connected nodes divided by twice the total weight in . Then, each node is encoded
with Huffman coding, where short codewords are assigned to the high-frequency nodes
and long codewords are assigned to the low-frequency ones. Infomap then finds an ef-
ficient description of how information flows on the network. By detecting the partition
that minimizes the description length of the network, Infomap returns a final set of sLTPs
with guaranteed global optimality.

Texture and spatial centroids {FTs;rp,, F'Ssprp, } of the sSLTPs {sLTP,} are then

computed with Equation (B.5) utilizing the ROIs labeled with { LT P, }.

3.2.6 Labeling of CT Scans with sLTPs

In the test stage, scans in the whole dataset are labeled by extracting sample points and
their ROIs {z}. Since it is computationally prohibitive to evaluate the textural and spa-
tial features on every voxels within the lung masks, we only label centers of ROIs that
are densely sampled using again SURS. Sampled ROIs with percent emphysema mea-
surements below the previously defined thresholds will have their center labeled as no-
emphysema class. Remaining sampled centers get a sSLTP label, via minimization of the

following cost metric:

Xz(FTxuﬁsLTPk)+A’W' "st_msLTPk|’§ (312)
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Non-sampled voxels are labeled with the sLTP index of the nearest sampled center point
via nearest neighbor search within the lung mask (i.e. using a Voronoi diagram). Labeling
lung scans with the discovered sLTPs generates histograms of sLTPs, which are efficient

lung texture signatures exploited for several tasks, as described in the evaluation sections.

3.2.7 Spatial Density Visualization of sLTPs

To study the spatial distribution of sLTPs, we generate spatial visualization by scatter
plotting of voxels labeled with individual sLTPs in sagittal projections, as follows.

We first randomly sample a initial set of ROIs over each lung via SURS sampling.
Each ROI is associated with its center point coordinates (r, 0, ¢) in the PDCMs. To avoid
artificial higher densities on the scatter plot in regions close to the core, we adapt the
number of ROIs selected per radial regions. The r values are binned into N, intervals
with midpoint values 71, ..., 7y, to generate isovolumetric sub-volumes of the lung. We
then define the sub-sampling ratio «; = 7; /7y, (which approximates the ratio of areas in
the scatter plot) and set the number of ROIs sampled per 7 bin to Ny, = «; - Ny where
Niy is a pre-set number of ROIs sampled in the outermost part of the lung.

All ROI centers in the sub-sampled set are converted to (z,y, z) Cartesian image co-
ordinates and accumulated in a sagittal single plane, by setting x = 0. Final density plots
of SLTPs are shown in projected radial coordinates ' = /42 + 22 and ¢/ = atan(z/y).

We color-code each point on the sagittal projection with the following density measure:

Den™:#) _ |Aszre, N Agrgny| /20 Nspre, N A o)
sLTF |Ascrp,| > il Asrp,

(3.13)
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where A, 4 denotes the set of ROIs at (1, ¢') positions. The numerator (the first term)
in Equation (B.13) measures the probability of sLT P, at projected position (1, ¢'), and
the denominator (the second term) measures the observed overall probability of (17, ¢')

to host any sLT'P,.

3.3 Experimental Results in MESA COPD Study

3.3.1 Data

The data used for evaluation consists of full-lung CT scans of 317 subjects. All subjects had
underwent CT scanning in the MESA COPD study (Smith et al. 2014), between 2009—2011.
In addition, 22 out of the 317 subjects underwent CT scanning in the EMCAP study (Barr
et al. 2007), between 2008—2009.

For the MESA COPD study, all CT scans were acquired at full inspiration with either
a Siemens 64-slice scanner or a GE 64-slice scanner, at 120 kVp, speed 0.5 s, and current
(mA) set according to body mass index following the SPIROMICS protocol (Couper et al.
2013). Images were reconstructed using B35/Standard kernels with axial pixel resolutions
within the range [0.58, 0.88] mm, and 0.625 mm slice thickness.

For the EMCAP study, scans were acquired with a Siemens 16-slice scanner, at 120
kVp, speed 0.5 s, and a current between 169 mA and 253 mA. Images were reconstructed
using the B31f kernel with axial resolutions within the range [0.49, 0.87] mm, and 0.75
mm slice thickness.

Emphysema subtypes and severity have previously been assessed visually in the MESA

COPD study (details available in Smith et al. 2014). The raters included four experienced
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chest radiologists from two academic medical centers. They assessed emphysema sub-
types on CT scans by assigning a percentage of the lung volume affected by CLE, PLE
and PSE respectively. Based on (Smith et al. 2014), N = 205 subjects do not exhibit
emphysema, and are used here as the control set of no emphysema (NE) subjects. The re-
maining N = 112 subjects exhibit light (N = 53) or mild-to-severe (N = 59) emphysema.
For these subjects, predominant emphysema subtype is defined as the subtype affecting
the greatest proportion of the lungs. In the mild-to-severe cases, there are N = 37 CLE-
predominant, N = 12 PLE-predominant, and N = 10 PSE-predominant subjects. Overall
population prevalence of emphysema in the MESA COPD cohort is 27%, composed of 14%

of CLE-subtype, 9% of PSE-subtype, and 4% PLE-subtype.

3.3.2 Population Evaluation of Emphysema Using PDCM

We first demonstrate the ability of our proposed PDCM lung shape mapping to study the
spatial patterns of emphysema over a population of subjects in Fig. B.4. For each scan in
MESA COPD study, PDCMs of voxels inside individual lungs are generated, attributing
to each voxel a coordinate (7,6, ¢). Voxel intensity values in PDCMs are then averaged

and visualized along two types of projections:

1. Angular projections: intensity values averaged along r for each pair of angular di-
rections (0, ¢);
2. Radial projections: intensity values averaged over all angular directions at a subset

of N, = 60 regular radial positions 1, ..., 7y, .
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Figure 3.2: Population evaluation of emphysema spatial distribution in MESA COPD,
using the proposed PDCM spatial mapping. (a) Illustration of PDCM-based intensity pro-
jections on a sample right lung. (b) Average intensity (in HU) on PDCM-based angular
and radial projections for MESA-COPD subjects with no emphysema (N=205); (c) Av-
erage relative intensity differences, with respect to (b), on PDCM-based projections for
MESA-COPD subjects with CLE-, PLE- and PSE-predominant emphysema (N= 37, 12 and
10 respectively).

An illustration of these two PDCM intensity projections on a sample lung are visual-
ized in Fig. B.9 (a).

Population-average PDCM angular and radial intensity projections over subjects with-
out emphysema (NE) are displayed in Fig. B.9 (b). The averaged angular projection shows

a clear pattern of lower attenuations (i.e. intensity values) in the anterior versus poste-
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rior region, which agrees with the intensity gradient due to gravity-dependent regional
distribution of blood flow and air (Chabat et al. 2000; West 1963). The averaged radial
projection shows a slight gradient from core to peel regions, which is likely due to the
inclusion of voxels belonging to the mediastinal and costal pleura inside the lung mask.

Population-average PDCM intensity projections over subjects with CLE-, PLE-, and
PSE-predominant emphysema subtypes are visualized in Fig. B.4 (c). To highlight differ-
ences with respect to the control set, we display relative values after subtraction of the
values from the corresponding NE average projection in Fig. B.d (b). Color coding rep-
resents relative intensity differences with more emphysema (more negative attenuation
values) corresponding to the red color.

We can see on the relative angular PDCM intensity projections that regions of normal
attenuation (green to blue) are absent for PLE-predominant subjects, whereas CLE- and
PSE-predominant subjects appear to have emphysema regions (red) concentrated in the
superior lung. The average relative radial PDCM intensity projections on emphysema
subjects show systematic higher attenuation values, with more emphysema in the core
regions for CLE-predominant subjects and more emphysema in the peel regions for PSE-

predominant subjects.

3.3.3 Qualitative Evaluation of Discovered sLTPs

For the discovery of sLTPs, 3/4 of the total scans in MESA COPD study (N=238) were
used for training, using random stratified sampling without replacement, while the other
scans (N=79) were used for testing. We summarize the setting of pre-defined parameters

for the sLTP learning in Table B.1. In addition, spatial regularization weight ) is set via
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Table 3.1: Parameter setting for sSLTP learning.

Parameters Setting

ROI size = 25 mm?, to approximate the size of secondary

pulmonary lobules

f1: random shift € [0, 25] mm

(for ROI sampling)

B2: sample density = 3 samples per stack

(for ROI sampling)

# of textons: = 40, targeting 10 textons per

(for texture feature) standard emphysema subtype and

normal tissue class, according to (Yang et al. 2017)

Texton size 3x3x3 pixels, according to (Yang et al. 2016b)

# of lung sub-regions = 36, according to binning of (, 6, ¢)

(for spatial feature) in Section .2.3.

Nipp: # of LTPs in = 100, as suggested in (Yang et al. 2016b), for sufficient

initial set diversity of the patterns and being able to discover rare
emphysema types

empirical tuning using Equation (3.9). Based on the relative texture homogeneity loss
measure ASSWr, we chose Ly = 1% which corresponds to A = 1.52, above which
ASSWr increases drastically.

A total of 12 sLTPs were discovered using the full training set, and were used to label
both the training and test scans in emphysema-like lung. Each sLTP was detected (i.e.
%sLTP, > 0) in at least 5% of scans both in training and test sets. In Fig. B.3, we il-
lustrate in (a) the sLTP labeling of two sample CT scans; and in (b) the characteristics of
each sLTP via visual illustrations of labeled patches, average occurrence in MESA COPD
scans, and spatial distribution of their occurrence within the lungs. For the patch illustra-
tions, 9 samples were randomly selected from all available labeled ROIs. For the average

occurrence, we averaged %sL1T Py values over scans with %sLT P, > 0. For the spa-
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Figure 3.3: Qualitative illustrations of discovered sLTPs in MESA COPD. (a) Two exam-
ples of lung scans and their sLTP labeled masks; (b) Characteristics of {SLT P }x=1, 12,
from top to bottom: texture appearance (visualized on axial cuts from 9 random ROIs);
average %sLT P, on MESA COPD scans presented within training | test | all cases; Spatial
density plots of s LT Py using labeled ROIs (legend: S = superior; I = inferior; P = posterior;
A = anterior positions).
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tial distributions, we generated spatial scatter plots of sLTP locations from labeled ROlIs,
following the method described in , with Ny = 5,000, and NV, = 60.

We can observe that patches belonging to an individual sLTP appear to be textually
homogeneous. sLTP 1 and 4 show clear spatial accumulation in superior (apical) regions,
sLTP 3, 5 and 7 in anterior regions, and sLTP 10, 11 and 12 in posterior regions. All sLTPs
returned similar occurrences in training and test sets. Some sLTPs are rare, such as sLTP
12 which covers ~1% of the lungs when present, but is still found in 24 scans over the

whole MESA COPD cohort.

3.3.4 Reproducibility of sLTPs

Reproducibility of sLTP Labeling versus Training Sets

To test the reproducibility of sLTPs learning, we first compare the set of Nyrp = 12
sLTPs {sLT P} generated with the full set of training scans, to Ny = 4 sLTPs sets
{SLT P} (c=1,2,3,4) using subsets of training data by randomly eliminating 25% of the train-
ing scans. Reproducibility of sLTPs is evaluated on the ROI labeling task, by computing

the average overlap of labeled test ROIs with the following metric:

Niet N, sLTP

1 Z |Aszrp, N Ar(sLTPe)

Nset : NsLTP

R, (3.14)

=1 k=1 [Asrr,|

where A;prp, denotes the set of ROIs labeled with sLT Py, and 7() denotes the permu-
tation operator on the {sLT P¢} determined by the Hungarian method (Roth et al. 2002)
for optimal matching between sets {sLT Py} and {sLTP{}.

Compared with the Ng1p = 12 sLTPs learned on the full training set, we discovered
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N§1p = 12,12, 13, and 13 sLTPs on training subsets. We obtain an overall labeling repro-
ducibility measure of Ry, = 0.91 which corresponds to a high reproducibility level. We

then further compute the reproducibility measure, denoted as R| , among training sub-
sets. The metric is similar to Equation B.14, replacing {sLT P, } and {sLT P¢} with sLTPs
{sLTP&'} and {SLTP¢*} (c1 # c2) learned on different training subsets. We obtain an
overall labeling reproducibility measure of R, = 0.85 (standard deviation = 0.07).

To evaluate the contribution of spatial features in sLTP learning, we further generate
sets of lung texture patterns using only texture features (i.e. using initial LTPs without
spatial augmentation in Section B.2.4, and setting A\ = 0 for replacement test in Section
B.2.5). We discovered 11 patterns using the full training set, and 11, 11, 12 and 12 patterns
on training subsets. The reproducibility measures R, and R] are 0.84 and 0.78 (standard

deviation = 0.12) respectively, both are lower than the proposed sLTP learning, hence

confirm the benefit of adding spatial features.
Reproducibility of sLTP Labeling versus ROI Sampling

As detailed in Section 8.2.6, SLTP labeling is based on a subset of voxels setting ROI po-
sitions, using SURS-based sampling strategy, which is controlled with the parameter 3,
(number of samples per stack). The selected ROIs have an influence on the final outline
of the label map, which is expected to be minor if ROIs are sampled densely enough and
if sLTPs are generic enough.

In this experiment, we test this hypothesis by generating two different sets of ROIs
on test scans using two different random seedings, and measure the reproducibility of

the generated label masks using the {sLT P} discovered on the full training set, while
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Figure 3.4: Results of sLTP reproducibility measures in MESA COPD. (a) Reproducibility
measures 1), versus ROI sampling parameter (35; (b) Reproducibility of sLTPs labeling
across scanners (from EMCAP and MESA COPD studies) measured with Cohen’s Kappa
coefficients of sLT P, presence and Spearman correlation coefficients of %sLT P, values
(white = without and black = with intensity histogram mapping).

varying the (3, parameter. We measure labeling reproducibility using the two sets of ROIs

with the following metrics:

« RPC(sLT Py, B2) = average of Dice coefficients of sLTP masks over all test scans;
. RgC(SLTPk, f2) = Spearman correlation coefficients of %sLT Py values within the

lungs over all test scans.
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We illustrate in Fig. @ (a), the average, max and min values of R}, measures over
all {sLT Py}, for 5 € [1, 20]. Both reproducibility measures increase with (5 in an
exponential manner. We obtain an average R2¢ > 0.8 when 3, > 10, corresponding to
sampling less than 0.05% points in each stack. We obtain an average R.“ > 0.9 when

B2 > 5. Minimum R), values always occur for sLTP 12, which is the rarest sLTP, as
reported in Section B.3.3.

Reproducibility of sLTP Labeling versus Scanner Type

The 22 subjects from MESA COPD previously scanned within the EMCAP study, under-
went different generations of CT scanners. This subset of population is relatively normal.
The average time lapse between EMCAP and MESA COPD scans is 14-months. The mean
of %“emph _gs50, calibrated for outside air values, is 0.7% (min < 0.1%, max = 3.9%) in EM-
CAP, and 2.6% (min = 0.3%, max = 9.5%) in MESA COPD, corresponding to an average
increase of %emph_g50 equal to 1.9%. Therefore, we use this subset of scans to evaluate
the reproducibility of sLTP labeling versus scanner types.

We used the 12 sLTPs discovered on the full MESA COPD training set. Because of
differences in scanner generations (axial CT in EMCAP versus spiral CT in MESA COPD)
and radiation dose settings, intensity calibration was required, implemented in two steps:
1) equalizing the outside air mean intensity value (according to Héme et al. 2014); 2)
histogram mapping of normal lung parenchyma identified with the HMMF-based em-
physema masks. The sLTPs 2 to 12 were found to be present in both datasets, but sLTPs
{2,3,4,12} occur in less than 6 pairs of scans. We report in Fig. B.4 (b) the Cohen’s Kappa

coefficients of sLT P presence for sLTPs 2-12, and the Spearman correlation coeflicients
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of %sLT Py, for the frequent sLTPs only (sLTPs 5 to 11). The Cohen’s Kappa coeflicients
and Spearman correlations are all above 0.8, which confirms robust sLTP presence and

percentage labeling on the 22 subjects scanned on different scanner types in two studies.

3.3.5 sLTPs’ Ability to Encode Standard Emphysema Subtypes

When generating unsupervised lung texture patterns (either sLTPs in this work or earlier
generations of LTPs in previous work), we expect them to be finer-grained than the three
standard emphysema subtypes used in (Smith et al. 2014), while still capable to encode
them, hence linking unsupervised image-based emphysema subtyping with clinical prior

knowledge.
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Figure 3.5: Intraclass correlation (ICC) and 95% confidence interval between standard
emphysema subtype scores predicted from %sLTP versus ground-truth. Differences with
sLTP-based values are marked as x when significant (p < 0.05).
The LTPs (or sLTPs) can be interpreted as either pure or a mixture of the three stan-
dard subtypes. We hereby evaluate the ability of the generated LTPs (sLTPs) to predict
the overall extent of standard emphysema subtypes. To do this, we generate, for each

scan and per lung, two signature vectors: 1) a LTP signature histogram composed of the

49



percentage of non-emphysema class (obtained as in Section B.2.6) and the percentages of
individual LTP (sLTP) in the emphysema-like lung. This normalized histogram is called
the LTP predictor signature and is of size Nyredictor = Nr7p + 1; 2) a ground-truth signa-
ture composed of the percentage of non-emphysema and the three standard emphysema
subtypes, as visually evaluated in (Smith et al. 2014). A constrained multivariate regres-
sion model is used on labeled training scans to learn regression coefficients between the

LTP and ground-truth signatures, using the following optimization:

argmin

JXA=Y[3 st 0< A <land > Ay;=1 (3.15)

where Xy« is composed of all training LTP signatures in N, training scans,

redictor

and Yy, x4 contains the ground-truth signatures. Ay, is the matrix of regression

redictor X 4
coefficients { A ; }, which measure the probability of a voxel labeled as a certain predictor
belonging to one of the ground-truth classes, and are therefore constrained to be in the
range of [0, 1]. Optimization of regression was solved using the CVX toolbox i}

Quality of prediction is measured with the intraclass correlation (ICC) between pre-
dicted and ground-truth exploiting the full MESA COPD dataset. We use a 4-fold cross
validation (3/4 label masks used for training the regression and 1/4 used for testing and
measuring prediction quality). Significance of differences in ICC values was assessed us-
ing Fisher’s r-to-z transformation and a two-tailed test of the resulting z-scores.

In Fig. B.5, we compare prediction quality with 7 sets of emphysema-specific LTPs

(re)trained on the same set of emphysematous ROIs: 1) the 12 sLTPs learned in this study;

%http://cvxr.com/cvx
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2-3) the initial set of 100 LTPs generated in this study before (denoted as LTP init-T)
and after (denoted as LTP init-TS) spatial augmentation; 4) LTPs generated by one-stage
clustering (denoted as LTP TS) of the proposed texture and spatial features, by setting
Nprp = 12 directly (this is to test the contribution of the proposed two-stage learning
in Section B.2.4); 5-6) LTPs re-generated using Method A (Hame et al. 2015b), discovered
via graph partitioning of 100 candidates based on local spatial co-occurrence and with
Nprp = 8 as in the original work or 12; 7) LTPs re-generated using Method B (Yang
et al. 2016b), discovered via merging 100 candidates based on texture similarity and local
spatial co-occurrence, and setting N;rp = 12 for the iterative merging.

Fig. B.5 shows that the two sets of 100 LTP models achieve overall best prediction
accuracy, and that the newly discovered 12 sLTPs have the best performance among the 5
small LTP sets. Difference of ICC values between the sLTPs and the 100 LTP models was

not significant for PLE emphysema subtype.

3.4 Experimental Results in SPIROMICS and MESA
Lung Study

3.4.1 Data

The SPIROMICS recruited 3,200 cases of COPD and controls (N = 200 non-smokers), 40-80
years of age with > 20 pack-years of smoking, in 2010-2015 at 7 major sites and 5 smaller
sites (Couper et al. 2013). Exclusion criteria included other chronic lung diseases except
asthma, body mass index (BMI) > 40 kg/m2, prior lung resection, metal in the chest, and

pregnancy. The MESA Study is a multicenter, prospective cohort study of whites, African-
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Americans, Hispanics, and Chinese-Americans (Bild et al. 2002). MESA recruited 6,814
men and women 45-84 years of age in 2000-02 from the general population in 6 commu-
nities. Exclusion criteria at baseline were clinical cardiovascular disease, weight over 136
kg, pregnancy, and impediments to long-term follow-up. The MESA Lung Study enrolled
participants sampled from MESA who underwent measurements of endothelial function,
consented to genetic analyses, and completed an examination in 2004-06 (Tamimi, Ser-
darevic, and Hanania 2012).

All participants in SPIROMICS and MESA Lung Study underwent full-lung chest inspi-
ratory CT on 64-slice or 128-slice helical scanners (120 kVp, 0.625-0.75 mm slice thickness,
0.5 sec. rotation time) in 2009-14 and 2010-12, respectively, following the same highly-
standardized protocol in both studies (Sieren et al. 2016) and on the same CT scanners at
4 sites that were in both studies. In addition, all MESA participants underwent cardiac
CT scans in 2000-02 (Bild et al. 2002), which provided complete imaging of the lower lung
lobe segment (Hoffman et al. 2009).

Spirometry was performed following the American Thoracic Society recommenda-
tions (Miller et al. 2005) on a dry-rolling-seal spirometer in MESA Lung Study and a pneu-
motachograph in SPIROMICS. Predicted values were calculated using reference equations
(Hankinson, Odencrantz, and Fedan 1999). COPD was defined as post-bronchodilator
FEV1-to-FVC ratio less than 0.7 (Vogelmeier et al. 2017). Dyspnea was assessed using
the modified Medical Research Council (mMRC) breathlessness scale (Norman, Sloan,
and Wyrwich 2003), with scores above 0 corresponding to increasing levels of dyspnea-
associated disability. Chronic bronchitis was defined by affirmative responses to ques-
tions about cough and phlegm production for > 3 months each year for > 2 consecutive
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years (Kim et al. 2014b). In SPIROMICS, respiratory health status was assessed using the
COPD Assessment Test (CAT) (Jones et al. 2009), and the COPD-specific St. George Respi-
ratory Questionnaire (SGRQ-C), with higher scores indicating greater impairment (Hurst
et al. 2010). The CAT test consists of 8 questions and yields a score from 0 (no impact)
to 40 (very high impact). The SGRQ-C consists of 40 questions and yields a score from
0 (no impairment) and 100 (worst possible health). The minimum clinically important
differences for the CAT and SGRQ-C scores are 2 and 4, respectively (Davey et al. 2015).

For full-lung CT scans in SPIROMICS and MESA Lung Study, we select local emphy-
sema ROIs by first segmenting voxels with attenuation below —-950 HU, and then using
the upper limit of normal (ULN) (Hoffman et al. 2014) of %emph _g5 to distinguish ROIs
with (%Zemph_g50 > ULN) from without (Zemph_g50 < ULN) emphysema regions, to ac-
count for differences in normal population variation in percent emphysema measure. For
longitudinal cardiac CT scans in MESA, we further exploit the HMMF-based emphysema
measure %emphmywr with adapted ULN values, given the better longitudinal performance

of %emphummr as demonstrated in (Yang et al. 2016a, and more details in Chapter 4).

3.4.2 sLTP Learning in SPIROMICS and Data Reduction

We first apply the proposed unsupervised learning algorithm on the full-lung scans from
heavy smokers with COPD and controls in SPIROMICS. A random subset of 1,462 partic-
ipants is initially used for learning the patterns. By applying the unsupervised learning
of texture and spatial features from local ROIs, a set of 10 sLTPs are discovered.

To evaluate the inter-learner reproducibility, we re-learn in another non-overlapping

subset of 1,460 participants in SPIROMICS. Again, 10 sLTPs are discovered. The learn-
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ing reproducibility measure at regional level (computed similar to Equation B.14) is 0.82,
which indicates a high level of reproducibility. Then we label all full-lung CT scans in
SPIROMICS with the two sets of sSLTPs and evaluated the Spearman’s correlation coeffi-
cients of the percentage of each sLTP within the lungs for each participant. The corre-
lation coefficients are above 0.95 for all sSLTPs, which confirms the reproducibility of the
learning at the individual level.

Then we apply the unsupervised learning to scans from all 2,922 participants that
we have both CT images and ULN values in SPIROMICS, which again yields 10 sLTP
(as visualized in Fig. [A.1). These 10 sLTPs are used to label all full-lung CT scans in
SPIROMICS and MESA Lung Study.

There is evidence that some of the sLTPs overlapped by visual inspection of CT imag-
ing. We collaborated with Dr. Yifei Sunf to investigate possible data reduction. Using the
sLTP histograms from all scans, we examine the individual-level Spearman’s correlations
of %sLTP, and heatmaps of sLTP distributions in both SPIROMICS and MESA Lung (see
details in Appendix A). We observe that some sLTPs have high population correlations (as
shown in Fig. [A.9 (a)), suggesting that they may represent the same emphysema subtype
at different levels of severity. We therefore aggregate the following sLTPs: (1, 2), (3, 5, 9),
(4, 6). This reduces the set of ten sLTPs into six final patterns, that we call the quantitative
emphysema subtypes (QES).

Embedding the sLTP histograms in two-dimensions using t-SNE (Maaten and Hinton

2008) on the SPIROMICS and MESA Lung cohorts (as shown in Fig. @ (b)), and color-

5Dr. Yifei Sun is with the Department of Biostatistics, Mailman School of Public Health, Columbia
University.
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coding in the projection space the individual subjects by their predominant sLTP / QES,
further confirms that the sLTPs can be aggregated into QES in a similar manner.
The whole pipeline to learn the 10 sLTPs in SPIROMICS and then generate the 6 QES

with data from SPIROMICS and MESA Lung is illustrated in Fig. B.6.

3.4.3 Quantitative Emphysema Subtypes (QES)

The six QES are shown in Fig. B.7 in the order of frequency in SPIROMICS.

The first QES, labelled as apical, has a predominantly apical distribution with vascular
changes. The second QES, labelled as diffuse, has a more diffuse distribution with less
parenchymal destruction, apical sparing, and preserved or accentuated vasculature. The
third QES, labelled as senile, is without visually distinct emphysema but has homoge-
neously reduced attenuation. The fourth QES, labelled as restrictive combined pulmonary
fibrosis/femphysema (CPFE), has distinct and discrete small holes at the level of the sec-
ondary pulmonary lobule in apical, posterior and inferior regions resembling centrilob-
ular emphysema with local fibrosis visually suggestive of CPFE. The fifth QES, labelled
as obstructive CPFE, has diffuse, patchy emphysema with intermingled regions of fibro-
sis suggestive of a different type of CPFE. The six QES, labelled as vanishing lung, has a
predominantly apical distribution and visually demonstrates bullous emphysema resem-
bling vanishing lung syndrome (Ladizinski and Sankey 2014) when severe and, when less
severe, prominent lobular septal with reduced parenchyma with few vessels. 3

Histograms of QES per CT scan are generated in the SPIROMICS and MESA Lung
Study. The apical, diffuse, restrictive CPFE and vanishing lung QES are much more preva-

lent among heavy smokers and in COPD. The senile and obstructive CPFE QES are equally
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Figure 3.8: Mean values of %2QES in heavy smokers in SPIROMICS (excluding the N=200
normal controls) and in the general population in the MESA Lung Study.

common in heavy smokers with COPD in SPIROMICS and in MESA Lung Study, approx-

imately half of whom had never smoked (as shown in Fig. B.g).

3.4.4 Association between QES and Symptoms

Collaborating with Dr. R. Graham Barrd, we further investigated the clinical significance
of the QES. Dr. Pallavi P. Baltefl from Dr. Barr’s lab helped us to run multivariable regres-
sion models to examine associations between the %QES and the respiratory symptoms.
Linear regression is used for MRC-Dyspnea, total SGRQ-C score, resting oxygen sat-
uration, post six-minute walk test (6MWT) oxygen saturation, total 6t MW T Distance and
exacerbation count; logistic regression is used for the presence of MRC-Chronic bronchi-

tis and wheeze in past 12 months. We adjust for continuous variables age, height and

‘Dr. R. Graham Barr is with the Department of Medicine, College of Physicians and Surgeons, and
Department of Epidemiology, Mailman School of Public Health, Columbia University.

SDr. Pallavi P. Balte is with the Department of Medicine, College of Physicians and Surgeons, Columbia
University.
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weight as linear terms. Categorical variables include sex, race/ethnicity (white, African-
American, Hispanic, and Asian-American), smoking status (never, former, current), pack-
years (0, 0 to 10, 10 to 20, > 20), COPD status (yes or no) and CT scanner manufacturer
(GE or Siemens). Moreover, we adjust for FEV1, percent emphysema, and other QES, to
evaluate the complementarity of the information provided by individual QESE.

All six QES have independent - but varying — associations with respiratory symptoms
and function (as shown in Table B.2).

In SPIROMICS, the apical QES is associated with greater dyspnea and symptom scores,
desaturation on exertion only, reduced exercise capacity (shorter six-minute walk test
distance) and greater exacerbation risk independent of demographics, body size, smoking
history, lung function and other QES. Alone among QES, it is also associated with symp-
toms of a chronic productive cough. The diffuse QES, by contrast, is not associated with
symptoms independent of lung function and other QES but is characterized by resting hy-
poxemia, which is not appreciably worsened by exercise, and with greater exacerbation
risk. The restrictive CPFE QES is associated with greater dyspnea and symptom scores,
desaturation at rest and exertion, and reduced exercise capacity. The senile QES and ob-
structive CPFE QES are not independently associated with symptoms. The vanishing lung
QES is associated with increased dyspnea and desaturation on exertion only.

Findings for available measures in the MESA Lung Study were similar (Table B.2).

6 All multivariable regression models in this thesis, to study the clinical associations and prognostic
significance of QES, was run by Dr. Pallavi P. Balte.
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3.4.5 Association between QES and Physiology

We then examine physiologic alterations of QES in the MESA Lung Study. Four QES
are associated with obstructive spirometry (reduced FEV1/FVC) consistent with COPD
but the reason varied: the apical and obstructive CPFE QES have the expected larger re-
duction in FEV1 than FVC (Table B.Z) but the diffuse QES and senile QES have reduced
FEV1/FVC due to increased FVC, with a consistent increase in total lung volume (TLV)
on CT, presumably due to increased lung compliance. In contrast, restrictive CPFE QES
are characterized by restrictive spirometry and reduced TLV despite being ‘discovered’
in SPIROMICS, an obstructive lung disease cohort. The vanishing lung QES is not asso-
ciated with obstructive spirometry but demonstrates large increases in all lung volumes

consistent with loss of elastic recoil from lung destruction.

3.4.6 Prognostic Significance of the QES

We first examine exacerbation risk in SPIROMICS, as previously defined (Woodruff et
al. 2016). Apical, diffuse and restrictive CPFE QES are prospectively and independently
associated with exacerbations (Table B.J).

We then examine risk in a larger sample of MESA participants using cardiac CT scans
acquired by MESA in 2000-02 (see more details in Chapter 4 and Chapter 5). In order to
do this, we develop a deep learning method, based on unsupervised domain adaptation
(Ganin et al. 2016; Kamnitsas et al. 2017) to handle the differences between full-lung and
cardiac CTs. A convolutional neural network (CNN) classifier is trained with adversarial

learning to learn domain-invariant features across imaging scanners and protocols (the
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“domains”), while optimizing coherent labeling of QES on pairs of full-lung and cardiac
CT scans. More details are provided in Chapter 5.

Among 6,660 participants in MESA Lung followed for a median of 13 years, there are
148 incident hospitalizations for CLRD and 74 deaths from CLRD adjudicated as previ-
ously described (Oelsner et al. 2016). All QES except senile and restrictive CPFE predict
incident CLRD hospitalizations independent of demographics, body size, smoking history,
and type of CT scanner. With additional adjustment for other QES (or percent emphy-
sema), apical and diffuse QES independently predict hospitalizations (Table B.2).

All QES except the senile QES predicted CLRD mortality independently. With ad-
ditional adjustment for all other QES (or percent emphysema), the apical, diffuse and

obstructive CPFE QES independently predicted CLRD deaths (Table B.2).

3.4.7 Genome-wide Association Analysis

Collaborating with Dr. Ani Manichaikull, we performed a genome-wide association study
(GWASY)! of the QES in addition to their component sLTPs in SPIROMICS (N = 2,538)E.

Five significant (p < 10~®) novel gene variants are found on different chromosomes for

"Dr. Ani Manichaikul is with the Center for Public Health Genomics, University of Virginia.
8 All GWAS analysis used in this thesis was run by Dr. Ani Manichaikul.

?SPIROMICS participants who consented to genetic analysis were genotyped with the Illumina Om-
niExpress HumanExome BeadChip with SNP level quality control included filter on Hardy-Weinberg
p > 107* and removal of duplicated SNPs. Genome-wide imputation was performed using the Michi-
gan Imputation Server with the Haplotype Reference Consortium (HRC) as the reference panel. Genetic
analysis of sLTP and QES traits was performed through pooled analysis of SPIROMICS samples from all
race/ethnic groups using a heterogeneous variance model (Sofer et al. 2018) to account for differences in
trait distributions across race/ethnic groups, with covariate adjustment for age, sex, four PCs of ancestry,
height, weight, CT scanner manufacturer, COPD stratum, current-smoking status and pack-years of smok-
ing. Regression analyses were implemented using SNPTEST v2.5 (Marchini et al. 2007). GWAS results were
filtered on 1) heterozygosity count (HC) > 30 and Hardy-Weinberg p > 105 for genotyped SNPs, or 2)
imputation R-squared > 0.5 and effective HC > 30 (where effective HC = HC x imputation R-squared) for
imputed SNPs.
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the most severe sLTP of the apical QES, the restrictive CPFE QES, the obstructive CPFE
QES (two gene variants), and the more severe sLTP of the vanishing lung QES.

Among the five gene variants, the variant identified for the most severe sLTP of the
apical QES is near DRD1 (p = 3.92 x 10~®), which encodes dopamine receptor1 (DAR1).
This variant is close to GWAS-significant for the two other sLTPs that constitute the api-
cal QES (p = 6.48 x 107% and p = 2.57 x 107°). DARI is present on the pulmonary
vasculature and is implicated in vasoconstriction and intrapulmonary shunting (Bryan et
al. 2012). Dopamine and other DAR1 agonists (including some anti-Parkinsonian drugs)
increase pulmonary artery pressure (PAP) by enhancing hypoxic pulmonary vasocon-
striction (Cheung and Barrington 2001, Hong et al. 2005), an effect that is blocked by

haloperidol and numerous other DAR1 antagonists (Laurie et al. 2012).

3.5 Discussion and Conclusion

In this chapter, we proposed a novel unsupervised learning framework for discovering
lung texture patterns for emphysema on full-lung CT scans, via incorporating spatial and
texture features using an original cost metric, along with data-driven parameter tuning,
and Infomap graph partitioning. Our methodological framework includes the introduc-
tion of a standardized spatial mapping of the lung shape utilizing Poisson distance map
and conformal mapping to uniquely encode 3D voxel positions and enable comparison
of CT scans without registration being required besides orientation alignment. Our lung
shape spatial mapping PDCM enabled straightforward population-wide study of emphy-
sema spatial patterns. By visualizing relative angular PDCM intensity projections on

CLE-, PLE- and PSE-predominant subjects in MESA COPD, we observed that regions of
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normal attenuation were absent for PLE-predominant subjects, which agrees with the
definition of PLE (diffused emphysema subtype). CLE- and PSE-predominant subjects
appeared to have emphysema regions concentrated in the superior part. This agrees with
the observation made in (Smith et al. 2014) on the same dataset that CLE and PSE severity
was greater in upper versus lower lung zones, whereas severity of PLE did not vary by
lung zone. By visualizing relative radial PDCM intensity projections, we observed that
emphysema subjects showed systematic higher attenuation values than subjects without
emphysema, as expected. CLE-predominant subjects appeared to have more emphysema
in the core part, whereas PSE-predominant subjects appeared to have more emphysema in
the peel part. This agrees with the definitions of CLE and PSE. As a standardized tool, the
proposed PDCM spatial mapping is not tied to emphysema pattern, and we will demon-
strate its application to study spatial location of lung nodules, in Chapter 6.

With the proposed method, and using a prefixed percent emphysema threshold 1% to
select emphysema-like lung, we discovered 12 spatially-informed lung texture patterns
(sLTPs) on the MESA COPD cohort. Qualitative visualization showed that the discovered
sLTPs appeared to be textually homogeneous with different spatial prevalence. Since we
jointly enforce spatial prevalence and textural homogeneity, each sLTP can have spatial
“outliers” that are texturally favored. Extensive evaluations showed that the discovered
sLTPs were reproducible with respect to training sets, sampling of ROI for labeling, and
certain scanner changes. The proposed incorporation of spatial and texture features ob-
tained higher learning reproducibility compared to using texture features only, confirm-
ing the benefit of spatial regularization.

Moreover, the sLTPs discovered in MESA COPD study were able to encode the three
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standard emphysema subtypes, and thus link unsupervised discovery with clinical prior
knowledge. Prediction quality was better than previous methods, and close to the opti-
mal level reached with 100 emphysema-specific LTPs. While intra-cluster LTP homogene-
ity increases with the number of LTPs, hence leading to higher prediction performance,
working with 100 LTPs leads to redundancy between subtypes which is detrimental when
studying associations of individual LTPs with clinical measures. One-stage clustering led
to significantly lower prediction power for PLE and PSE subtypes, compared to sLTPs,
which demonstrated the benefit of the proposed two-stage learning.

Then we applied the unsupervised learning method to the larger cohort of SPIROMICS,
using subject-specific threshold values to account for differences in normal population
variation in percent emphysema. We discovered 10 sLTPs that were highly reproducible
between independent training subsets in SPIROMICS. Population-based heatmaps and
hierarchical clustering of sLTP histograms in SPIROMICS and the MESA Lung Study led
to data reduction from 10 sLTPs to the final set of six quantitative emphysema subtypes
(QES). The six QES were shown to have distinct CT representations and structures, are as-
sociated independently with unique patterns of respiratory symptoms and clinical events,
have varying physiologic characteristics, and may have non-overlapping genetic associ-

ations, hence may facilitate personalized therapies.
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Chapter 4

Robust Emphysema Quantification on Cardiac CT Scans Using

Hidden Markov Measure Field Model

4.1 Introduction

Pulmonary emphysema is defined by a loss of lung tissue in the absence of fibrosis,
and overlaps considerably with chronic obstructive pulmonary disease (COPD). Full-lung
quantitative computed tomography (CT) imaging is commonly used to measure a con-
tinuous score of the extent of emphysema-like lung tissue, which has been shown to be
reproducible (Mets et al. 2012), and correlates well with respiratory symptoms (Kirby et
al. 2015). Cardiac CT scans, which are commonly used for the assessment of coronary
artery calcium scores to predict cardiac events (Detrano et al. 2008), include about 70% of
the lung volume, and can be obtained with low radiation exposure. Despite missing api-
cal and caudal individual measurements, emphysema quantification on cardiac CT were
shown to have high reproducibility and correlation with full-lung measures (Hoffman et
al. 2009), and correlate well with risk factors of lung disease and mortality (Oelsner et al.
2014) at the population-based level.

With the availability of large scale well characterized cardiac CT databases such as

the Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002), emphysema quantifi-
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cation on cardiac scans has now been actively used in various population-based studies
(Barr et al. 2010). However, currently used methods for emphysema quantification on car-
diac scans rely on measuring the percentage of lung volume (referred to as %emph) with
intensity value below a fixed threshold. Although thresholding-based %emph is com-
monly used in research, it can be very sensitive to factors that lead to variation in image
quality and voxel intensity distributions, including variations between scanner types, re-
construction kernel, radiation dose and slice thickness. Being able to segment emphysema
robustly on cardiac CT scans will enable longitudinal study of emphysema progression,
and is a prerequisite for applying our proposed lung texture learning in Chapter 3 to large
scale cardiac CT datasets.

To study %emph on heterogeneous datasets of full-lung scans, density correction
(Kim et al. 2014a), noise filtering (Schilham et al. 2006) and reconstruction-kernel adap-
tation (Bartel et al. 2011) have been proposed. These approaches consider only a part
of the sources of variation, and their applicability to cardiac scans has not been demon-
strated. The superiority of a segmentation method based on Hidden Markov Measure
Field (HMMF) model was demonstrated in a previous study in our lab (Hame et al. 2014,
20154) on full-lung scans. In this work, we propose to further adapt the parameterization
of the HMMF segmentation model to cardiac CT scans from 6,814 subjects in the longi-
tudinal MESA Lung Study. Our results compare HMMF-based and thresholding-based
%emph measures for three metrics: 1) intra-cardiac scan reproducibility, 2) longitudinal
correlation of %emph measures on “normal” subjects who are never-smokers without res-
piratory symptoms or disease (Hoffman et al. 2014), and 3) emphysema progression on
“normal” and “disease” subjects.
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4.2 Method

In sections below, we first overview the cardiac and full-lung CT data in MESA used in

our evaluation, and then present the HMMF-based emphysema segmentation framework.

4.2.1 Data

The MESA Study consists of 6,814 subjects screened with cardiac CT scans at baseline
(Exam 1, 2000-2002), and with follow-up scans in Exam 2 to 4 (2002-2008). Most subjects
had two repeated cardiac scans per visit (same scanner). Among these subjects, 3,965 were
enrolled in the MESA Lung Study and underwent full-lung scans in Exam 5 (2010-2012).

MESA cardiac scans were collected using either one type of EBT scanner from GE, or
six types of MDCT scanners (cf. Figure [£.1] (c)) from GE or Siemens (Hoffman et al. 2009).
The average slice thickness is 2.82 mm, and isotropic in-plane resolution is in the range
[0.44, 0.78] mm.

Lung segmentation was performed with the APOLLO software (VIDA Diagnostics,
Iowa). Longitudinal correlation of segmented lung volume in incremental cardiac exams
is in the range [0.84, 0.95]. Cardiac CT scans were acquired at full inspiration with cardiac
and respiration gating, while full-lung CT scans were acquired at full inspiration without
cardiac gating.

For this study we selected a random subset of 10,000 pairs of repeated cardiac scans
with one in each pair considered as the “better” scan in terms of inflation or scan quality
(Barr et al. 2010). Out of these 10,000 pairs, 379 pairs were discarded due to corruption in

one scan during image reconstruction or storage, detected via abnormally high values of
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Table 4.1: Year and number of MESA cardiac and full-lung CT scans evaluated for HMMF-
based emphysema segmentation.

Exam # 1 2 3 4 5

Year start-end 2000-02 2002-04 2004-05 2005-08  2010-12
# of subjects in MESA 6,814 2,955 2,929 1,406 3,965

# of normals evaluated 741 261 307 141 827
Scan type cardiac cardiac cardiac cardiac  full-lung

Total # of scans evaluated 6,088 (x2) 1,164 (x2) 1,645 (x2) 724 (x2) 2,984

mean and standard deviation of outside air voxel intensities (cf. Figure .1 (c) for ranges
of normal values).

The selected subset involves 6,552 subjects, among which 2,984 subjects had a full-
lung scan in Exam 5, and 827 are “normals”, as detailed in Table 1. We processed a grand
total of 9,621 pairs of repeated cardiac scans, 3,508 pairs of “better” longitudinal cardiac

scans, and 5,134 pairs of “better” cardiac-full-lung scans.

4.2.2 HMMF-based Emphysema Segmentation

The HMMF-based method enforces spatial coherence of the segmentation, and relies on
parametric models of intensity distributions within emphysematous and normal lung tis-

sue that use:

1. A Gaussian distribution Ng(0g) for the emphysema class;

2. A skew-normal distribution Ny (6y) for normal lung tissue.

Using skew-normal distribution to fit the intensity of normal lung tissue on full-lung

CT scans was originally proposed in (Hame et al. 2014). We found this model to be ap-
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plicable to cardiac scans. Fig. ¢.1| (a) gives examples of histogram fitting results for three
cardiac scans from normal subjects.

For a given image [/ : 2 — R, the HMMF estimates on () the continuous-valued
measure field ¢ € [0, 1] by maximizing the posterior distribution P for ¢ and the associated

parameter vector § = [0, 0] expressed as:
1
P(g,01) = L P(Ilq,0)Fy(q)Fo(0) (4.1)

where R is a normalization constant. The Markov random field (MRF) variable ¢ is a vector
q = [qE, qn], representing the intermediate labeling of both classes. Emphysema voxels
are selected as {v € Q|qg(v) > qn(v)}, from which %emphpmyr is computed.

The distribution P,(¢q) enforces spatial regularity via Markovian regularization on
neighborhood cliques C' and involves a weight parameter \ in the potential of the Gibbs
distribution. The likelihood P(1|q, #) requires initialization of parameter values for both
classes, which are tuned in this work to handle the heterogeneity of the dataset, as de-
scribed below.

Parameter Tuning for Cardiac CT Scans
Likelihood Parameters

The parameters of intensity distributions are g = [ug, 0], O = [un, 0N, an] Where
1t denotes the mean, o the standard deviation and « the skewness of respective classes.

Normal tissue class: The standard deviation oy and the skew ap are assumed to be
sensitive to scanner-specific image differences. They are tuned separately for each scanner

type by averaging on the subpopulation of normal subjects, after fitting their intensity
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Figure 4.1: Illustration of the proposed HMMF-based framework for emphysema seg-
mentation on cardiac CT scans. (a) Illustration of fitting lung-field intensity with
skew-normal distribution on three cardiac scans. (b) Population average of mp()) for
%emphpvve measured from normal subjects on four baseline cardiac scanners (Sg) ver-
sus A values. The optimal Ap value is chosen such that mg(Ag) = 2%, for each scanner
type. (c) From top to bottom: Outside air mean value (HU) per subject and per scanner
used to tune pp; Initial pn value (HU) per subject and per scanner.

histograms. The initial value of mean u is sensitive to inflation level and morphology
and therefore made subject-specific via fitting individual intensity histograms with the
pre-fixed oy and ay. Measured initial ;1 values are plotted in Fig. (c).

Emphysema class: The initial value of mean pp is set to the average scanner-specific
outside air mean value, learned on a subpopulation of both normal and disease subjects
from each scanner type, and illustrated in Fig. .1 (c). The standard deviation o is set to

be equal to o since the value of ¢ is mainly affected by image quality. Both parameters
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are therefore scanner-specific.
Spatial Regularization Parameters

Cliques: The spatial clique is set to 8-connected neighborhoods in 2-D planes instead
of 26-connected 3-D cliques used in (Héame et al. 2014) to handle the slice thickness change
from full-lung (mean 0.65 mm) to cardiac CT (mean 2.82 mm).

Regularization weight \: The regularization weight ) is made scanner-specific to adapt
to image quality and noise level. There are three scanner categories: scanners used only
at baseline (Sp), scanners used at baseline and some follow up times (Spr) and scanners
used only at follow up (Sr). For scanners in Sp and Sgr, we chose, via Bootstrapping, the
Ap values (for each scanner type) that returns a population average m of the %emphuyme
measure on the normal subpopulation equal to mp(Ag) = 2% (i.e. a small arbitrary value
(Hoffman et al. 2014)). The selection process is illustrated in Fig. .1 (b). For scanners in
Spr, the same \p values are used at follow-up times, leading to population %emphpyme
averages mpr (Ap). Finally, the Ap are chosen such that mppr(Ag) = mp(Ap).
Parameter Tuning for full-lung CT Scans

Parameters for the segmentation of full-lung scans with HMMF were tuned similarly
to the previous work in (Hame et al. 2014), except for A and the initial values of ;y and
(- In the previous work, scans reconstructed with a smooth kernel were used as a ref-
erence to set A for noisier reconstructions. In this work, having only one reconstruction
per scan in MESA Exam 1-5, we propose to use the progression rate of %emph mea-
sured on longitudinal cardiac scans from the subpopulation of normal subjects. We set
mpr(ArL) = my, with my, the predicted normal population average of %emph at the
time of acquisition of the full-lung scans F'L, based on linear interpolation of anterior
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progression rates. This lead to A in the range [3, 3.5] for different scanners, which is quite

different from the range of A values tuned on cardiac scans (Fig. (b)).

4.2.3 Quantification via Thresholding

Standard thresholding-based measures %emph_g5, were obtained for comparison, using
a threshold of reference 7. . Among standard values used by radiologists, 7}..; =-950HU
was found to generate higher intra-class correlation and lower extreme differences on a
subpopulation of repeated cardiac scans.

For reproducibility testing on repeated cardiac scans (same scanner), an additional
measure %emph_gs50c was generated after Gaussian filtering, which was shown to reduce
image noise-level effect in previous studies (Hame et al. 2014). The scale parameter of
the Gaussian filter is tuned in the same manner as ) for the HMMF (i.e. matching refer-
ence average population values of %emph_g50 on the subpopulation of normal subjects).
This lead to scale in the range [0.075,0.175]; For longitudinal correlations, an additional
measure %emph_gsoc was computed correcting 7., (HU) with respect to the scanner-

dependent bias observed on mean outside air density values (1), as:

Tyep = —950 + (ug — (~1000)) (4.2)

4.3 Experimental Results

4.3.1 Reproducibility within Cardiac Scans

Intraclass Correlation (ICC) on Repeated Cardiac Scans
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Figure 4.2: Reproducibility of thresholding-based versus HMMF-based %emph measure-
ments on repeated cardiac scans in MESA Exam 1-4. (a) Intraclass correlation (ICC) (N =

9,621) on repeated cardiac scans; (b) Dice of emphysema mask overlap for disease subjects
(N = 471) on repeated cardiac scans.

Scatter plots and ICC (average over Exams 1-4) of %emph in 9,621 pairs of repeat
cardiac scans are reported in Figt.9 (a). All three measurements show high reproducibility
(ICC > 0.98). %emph_g50c provides minor improvement compared with %emph _gs0,
which may be explained by the low noise level in MESA cardiac scans.

Spatial Overlap of Emphysema Masks on Repeated Cardiac Scans

Lung masks of repeated cardiac scans were registered with FSL (Smith et al. 2004),
using a similarity transform (7 degrees of freedom). Spatial overlap of emphysema masks
was measured with the Dice coefficient, on subjects with %emph_g50 > 5% (N = 471).

Dice coeflicient is defined as:

Dice — 2P (4.3)
T TP Y FPY FN ‘

where TP is the true positive segmentation, FP is the false positive segmentation and FN

is the false negative segmentation.
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Figure 4.3: Example of emphysema spatial overlap on a baseline axial slice from a pair
of repeated cardiac scans, using HMMF and thresholding-based segmentation. (TP = true
positive, FN = false negative, FP = false positive).

Scatter plots and average values of Dice coefficient computed are reported in Fig}.2
(b). Except for very few cases, HMMF returned higher overlap measures than threshold-
ing, with an average Dice = 0.61, which is comparable to the value achieved on full-lung
scans (0.62) in the previous work (Hame et al. 20154d). Fig4.3 gives an example of spatial
overlaps of emphysema segmented on a pair of repeated cardiac scans, where there is less

disagreement with HMMF.

4.3.2 Longitudinal Correlation and Progression of %emph

Pairwise Correlation on Longitudinal Cardiac Scans

For longitudinal cardiac scans, we correlated all baseline scans and follow-up scans
acquired within a time interval of 48 months, in the population of normal subjects, who
are expected to have little emphysema progression over time (due to aging). Figh.4 (a)
shows that %emphuvvr measures return the highest pair-wise correlations on longitudi-
nal cardiac scans, followed by %emph_g50c measures.
Emphysema Progression

Differential %emph scores A were computed at follow up times ¢ to evaluate emphy-
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Figure 4.4: HMMF and thresholding-based %emph measures on longitudinal scans in
MESA. (a) %emph measurements on longitudinal cardiac scans of normal subjects (N =
478); (b) Mean and standard error of the mean of emphysema progression measurement
A(t) over time ¢ (normal: N=87, disease: N = 238; r = pairwise Pearson correlation).

sema progression, as:

A(t) = %emph(t) — %emph(baseline) (4.4)

Mean values and standard errors of the mean of A for 87 normal subjects and 238 dis-
ease subjects who have three longitudinal cardiac scans and one full-lung scan are shown
in Figlt.4 (b). The %emphuyyr measures progressed steadily along cardiac and full-lung
(measuring on cardiac field of view) scans, and at different rates for normal and disease
populations. The %emph_g50c measures progressed steadily across cardiac scans but de-
creased from cardiac to full-lung scans, which indicates that a single threshold is not able
to provide consistency between cardiac and full-lung scans. Furthermore, thresholding
based measurements on cardiac scans show similar progression rates in normal and dis-
ease populations, which is not what is expected.

Finally, we tested mixed linear regression models (Ahmed et al. 2014) on all longitudi-
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nal scans to assess the progression of %emph over time after adjusting for demographic
and scanner factors. The initial model (model 1) includes age at baseline, gender, race,
height, weight, BMI, scanner type, voxel size, baseline smoking pack years and current
cigarettes smoking per day. In the subsequent model (model 2), interaction terms between
time (starting from the baseline) and age at baseline, gender, race, baseline smoking pack
years and current cigarettes smoking per day were added to account for the variation in
progression of %emph with time for demographic factors. In model 2 we observed that
progression of %emphivvr was higher with higher baseline age (P = 0.0001), baseline
smoking pack years (P < 0.0001) and current cigarettes smoking per day (P = 0.03). These
findings were not significant for %emph _g50c except for baseline smoking pack years (P
= 0.0016). Additionally, both models demonstrated that the effects of scanner types in

cardiac scans were attenuated for Zemphyvmr When compared with %emph _gs0c.

4.4 Discussion and Conclusion

In this chapter, we introduced a dedicated parameter tuning framework to enable the
use of an automated HMMF segmentation method to quantify emphysema in a robust
and reproducible manner on a large dataset of cardiac CT scans from multiple scanners.
While thresholding compared well with HMMF segmentation for intraclass correlation on
repeated cardiac scans, only HMMF was able to provide high spatial overlaps of emphy-
sema segmentations on repeated cardiac scans, consistent longitudinal measures between
cardiac and full-lung scans, attenuated scanner effects on population-wide analysis of
emphysema progression rates, and clear discrimination of emphysema progression rates

between normal and disease subjects.
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Exploiting HMMF segmentation to quantify emphysema on low-dose cardiac CT scans
has great potentials given the very large incidence of cardiac CT scans. Being able to seg-
ment emphysema robustly across heterogeneous scanner types will enable longitudinal
study of emphysema progression, and is a prerequisite for applying our proposed lung

texture learning in Chapter 3 to the large cardiac CT dataset in MESA.
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Chapter 5

Unsupervised Domain Adaption with Adversarial Learning for

Emphysema Subtyping on Cardiac CT Scans

5.1 Introduction

Pulmonary emphysema can be characterized by specific texture patterns on CT images.
Supervised and unsupervised learning of these texture patterns is an active field of re-
search (Binder et al. 2016; Depeursinge et al. 2014; Yang et al. 2016b, 2017). As described
in Chapter 3, in our previous study (Yang et al. 2017) we have established a set of ro-
bust emphysema-specific spatially-localized lung texture patterns (sLTPs) on full-lung
high-resolution CT (HRCT) scans, using a dedicated parcellation of the lung shape to in-
troduce location information in lung texture learning. So far, largely due the the limited
availability of high-quality longitudinal full-lung CT data, lung texture patterns for em-
physema have not been previously studied in longitudinal setting, while this is crucial for
understanding disease progression.

The Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al. 2002) study consists of
6,814 subjects screened with cardiac CT scans at baseline (Exam 1, 2000-2002) and follow-
ups (Exams 2-4, 2002-2008). Among these subjects, 3,965 were enrolled in the MESA Lung

study, and underwent cardiac CT and gold-standard full-lung HRCT scanning in Exam 5
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(2010-2012). This large dataset provides an invaluable opportunity for population-level
longitudinal study of emphysema texture patterns. Emphysema quantification on cardiac
CT scans was shown in (Hoffman et al. 2009) to have high reproducibility, high correlation
with full-lung HRCT-based measures, and significant associations with risk factors of lung
disease in population studies (Oelsner et al. 2014).

As described in Chapter 4, in our previous study (Yang et al. 2016a) we have estab-
lished robust emphyse