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1. General introduction 

 

1.1. Central regulation of energy metabolism 

In healthy humans, the amount of energy consumed matches the amount of energy 

expended over a long-term period, even though short-term mismatches in energy 

balance can occur (1). This phenomenon is called energy homeostasis and works to a 

surprisingly precise extend, considering that adult mammals, including humans, 

maintain a relatively stable body weight over long periods of time even when presented 

with unlimited access to food sources. A study conducted in rats demonstrated that an 

extended period of fasting accompanied by body weight loss results in an increase of 

energy intake once animals regain ad libitum access to food. This increase only lasted 

for a limited time though, until rats recovered baseline body weight (2). These data 

demonstrate a highly accurate regulatory system controlling energy homeostasis. 

Already in 1953 a mechanism was proposed that aimed to explain this phenomenon, 

postulating inhibitory signals that are secreted in proportion to fat depots, acting in the 

hypothalamus to reduce energy intake (3). Decades later, this hypothesis turned out to 

be very precise, when the adiposity signal leptin was discovered (4). 

 

1.1.1. Leptin and its role in the development of obesity 

In 1994, a novel adipocyte-derived hormone was discovered by Jeffrey Friedman and 

colleagues (4). It was named leptin (from Greek leptos, meaning ‘thin’) for its 

anorexigenic and catabolic effects observed in mice (5). The absence of leptin results in 

hyperphagia, decreased energy expenditure and severe obesity, as observed in the 

Lepob/ob mouse, which is leptin deficient due to a mutation in the obese gene (4). After 

this discovery, leptin was believed to have great potential as an ‘obesity drug’ for the 

growing obesity problem of our modern society. However, this initial euphoria soon 

abated, after leptin was shown to be secreted by white adipose tissue and to circulate in 

proportion to body fat mass (6). In fact, most obese individuals have elevated leptin 

levels, whereas monogenetic defects as described for Lepob/ob mice are extremely rare 
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in humans, although they result in extreme cases of obesity if present (7). In both 

leptin-deficient humans as well as mice, leptin administration leads to rapid decrease in 

food intake, increase in energy expenditure and weight loss, demonstrating that these 

subjects are highly leptin sensitive (7-10), whereas this does not apply to obese patients 

with elevated serum leptin concentrations (11). This diet-induced obesity (DIO) is 

characterized by hyperleptinemia and leptin resistance, the failure of leptin to mediate 

its catabolic effects. In mice, DIO can be induced by feeding mice a high-fat diet 

(HFD) enriched in saturated fatty acids. These mice become obese and develop 

hypothalamic leptin resistance (12). The molecular cause for hypothalamic leptin 

resistance is still not fully understood. 

The main target tissue for leptin resides in the brain, specifically the mediobasal 

hypothalamus, which forms the regulatory centre of hunger and satiety and plays a key 

role in energy balance regulation (13, 14). Intracerebroventricular (icv) leptin injections 

were shown to decrease food intake and body weight, in both wild-type and leptin-

deficient Lepob/ob mice (15). Leptin crosses the blood-brain-barrier via the short isoform 

of the leptin receptor (LepRa) and enters the brain in proportion to its serum 

concentration (16-18). In the mediobasal hypothalamus, the long form of the leptin 

receptor (LepRb) is expressed particularly in the arcuate nucleus (ARC), ventromedial 

hypothalamus (VMH), dorsomedial hypothalamus (DMH) and lateral hypothalamic 

area (LHA) (19, 20). Of particular interest is the ARC, due to its crucial role in the 

regulation of energy metabolism and other homeostatic systems (21-24). 

Leptin conveys its weight-reducing effects by binding to LepRb, causing a 

conformational change and activating the associated Janus kinase 2 (JAK2), a tyrosine 

kinase. This results in phosphorylation of three intracellular receptor tyrosine residues; 

these are tyrosine 985, tyrosine 1077 and tyrosine 1138 (25, 26). Tyrosine 985 and 

tyrosine 1077 are involved in signal transduction via extracellular-regulated kinase 

(ERK) and Src homology 2-containing tyrosine phosphatase (SHP2) and will not be 

further discussed in this thesis. Phosphorylation of tyrosine 1138, on the other hand, 

leads to recruitment of signal transducer and activator of transcription 3 (STAT3), 

which then gets phosphorylated at its phosphorylation site tyrosine 705 by JAK2. 

Phosphorylated STAT3 (pSTAT3) homodimerises and translocates into the nucleus, 

where it acts as a transcription factor and activates target gene expression (26, 27). 

Among those are effector molecules that cause satiety and increased energy 
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expenditure as well as the suppressor of cytokine signalling 3 (SOCS3). Through 

negative feedback regulation, SOCS3 binds to LepRb and inhibits JAK2 activity, 

making SOCS3 an effective inhibitor of leptin signal transduction via JAK2/STAT3 

signalling (28, 29) (Figure 1). 

Two distinct populations of neurons in the ARC co-express LepRb. These are 

neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing neurons, which are 

inhibited by leptin (30, 31), as well as pro-opiomelanocortin/cocaine- and 

amphetamine-regulated transcript (POMC/CART)-expressing neurons, which are 

activated by leptin (32-34). Icv injections of NPY as well as AgRP cause hyperphagia, 

decreased energy expenditure and obesity (35-39), identifying both neuropeptides as 

anabolic signals. In contrast, catabolic effects were demonstrated for both α-

melanocyte-stimulating hormone (α-MSH), which is cleaved from the POMC precursor 

molecule, and CART (40-42). These ARC-located neurons are first-order neurons in 

the hypothalamic response to circulating hormones and send projections to other nuclei, 

such as the LHA, paraventricular nucleus (PVN) and perifornical area (PA), which are 

locations of second-order neurons involved in energy metabolism (43, 44). Stimulation 

of LHA and the adjacent PA provokes feeding, whereas PVN stimulation inhibits food 

intake (23, 45).  

In wildtype mice, leptin injections increase pSTAT3 levels, which serve as a marker for 

activated intracellular leptin signal transduction. In mice that are obese due to HFD 

feeding, this response to exogenous leptin is deteriorated, particularly in the ARC (12). 

Impaired leptin transport via the blood-brain-barrier into the brain potentially plays a 

role in the manifestation of leptin resistance. In healthy mice with normal circulating 

leptin levels the transport mechanism via LepRa processes linearly. However, during 

obesity accompanied by hyperleptinemia this system is saturated, suggesting that the 

hypothalamus receives misinformation about the peripheral energy state and integrates 

these signals into an inapt neural response (46, 47). Furthermore, expression of Socs3 

has been shown to be upregulated and lead to impairment of leptin signalling in obese 

mice as well as other rodent models of leptin resistance (28, 48). Notably, Socs3 is a 

target gene of different pro-inflammatory pathways (49). Our laboratory provided 

evidence that chronic low-grade hypothalamic inflammation, which has been 

associated with the development of metabolic disorders (50), plays a crucial role in the 

disruption of normal energy and glucose metabolism and the development of obesity 
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(51, 52). To date, the molecular mechanisms underlying the manifestation of 

hypothalamic leptin resistance and the development of obesity are still not entirely 

understood and have to be further determined.  

 

1.1.2. Insulin and its central control of energy metabolism 

Insulin is a peptide hormone produced by β-cells of the pancreatic islets of Langerhans 

and was the first hormone to be implicated in the control of glucose homeostasis. 

Circulating insulin concentrations are proportional to body fat mass (53). Since its 

discovery in the early 1920s insulin injections in type 1 diabetic patients proved to 

normalise their blood glucose concentrations and eliminate glycosuria. The blood 

glucose-lowering actions of insulin had long been regarded as solely peripheral, even 

though as early as in 1854, the French physiologist Claude Bernard discovered that 

lesions in the base of the fourth ventricle led to glycosuria in rabbits, demonstrating a 

crucial role of the central nervous system (CNS) in glucose homeostasis (54). Since 

then, icv injections of insulin have been shown to lead to body weight loss and reduced 

food intake in both monkeys and rats (55, 56). Additionally, neuron-specific insulin 

receptor knockout mice exhibit increased food intake, body fat, plasma leptin and 

insulin levels as well as mild insulin resistance (57), demonstrating that the brain is a 

key target tissue for insulin to mediate its catabolic and anorexigenic effects on energy 

metabolism. 

Circulating insulin from the periphery passes the blood-brain-barrier and binds to 

insulin receptors (IR) that are expressed throughout the brain and in particular 

abundance in the hypothalamic ARC (58, 59). As described for leptin, insulin acts on 

NPY/AgRP- and POMC/CART-expressing neurons in the ARC (23). Upon insulin 

binding to IR, the intrinsic tyrosine kinase domain of the receptor activates insulin 

receptor substrate (IRS) through phosphorylation at tyrosine residues, which in turn 

activates phosphatidylinositol 3-kinase (PI3K). This leads to downstream 

phosphorylation of AKT (protein kinase B) at its positive phosphorylation sites serine 

473 and threonine 308. AKT is a serine/threonine-specific protein kinase and in turn 

activates multiple insulin-sensitive metabolic pathways and gene expression, thereby 

controlling energy and glucose metabolism (23, 60). The enzyme glycogen synthase 

kinase-3β (GSK-3β) plays a crucial role in this signal transduction. Upon stimulation of 



5 
 

the insulin pathway GSK-3β gets phosphorylated at its negative phosphorylation site 

serine 9, thereby being inhibited (61-63). Furthermore, inhibition of GSK-3β has been 

demonstrated to improve glucose homeostasis in glucose-intolerant rodent models (64-

66), presenting GSK-3β as a potential modulator of insulin sensitivity (Figure 1). 

 

1.1.3. The connection of obesity and type 2 diabetes  

During obesity, circulating insulin concentrations are elevated, but insulin is unable to 

mediate its catabolic effects, as already described for leptin. Obesity is regarded as one 

of the major risk factors for the development of type 2 diabetes (67). During early 

stages of type 2 diabetes insulin sensitivity is attenuated. This leads to elevated insulin 

secretion from the pancreas in order to counteract this condition (68). During the 

further manifestation of type 2 diabetes this mechanism loses its ability to compensate 

for the disrupted insulin sensitivity and leads to deteriorated glucose tolerance, 

eventually resulting in the destruction of insulin-producing β-cells in the pancreas and 

insulin deficiency. At this stage, glucose homeostasis is fully disrupted and other 

physiological disorders can develop in the long-term, including nephropathy, 

retinopathy and cardiovascular disorders (69).  

In obese rats icv insulin injections fail to decrease food intake and body weight (56), 

thereby demonstrating a close relationship between obesity and insulin insensitivity and 

providing evidence for the importance of central insulin signalling for normal energy 

homeostasis. Both leptin-deficient Lepob/ob mice as well as leptin resistant subjects 

develop obesity accompanied by glucose intolerance and reduced hypothalamic insulin 

sensitivity (4, 70). Our laboratory and others showed that intact leptin signalling is 

necessary to sensitise insulin signal transduction, through modulation of IRS and 

subsequent activation of PI3K by leptin (71, 72) (Figure 1). These results reveal the 

potential connection between obesity and the related metabolic disorder type 2 

diabetes. 
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Figure 1: Central regulation of energy metabolism via leptin and insulin. Pancreatic insulin 

and adipose tissue-derived leptin cross the blood-brain-barrier and bind to their respective 

receptors in the hypothalamus. Upon binding, leptin leads to activation of the intracellular 

JAK2/STAT3 signalling cascade and the translocation of pSTAT3 homodimers into the nucleus. 

There, they activate the expression of target genes such as SOCS3, which in turn initiates a 

negative feedback loop and thereby decreases leptin action. Binding of insulin to IR leads to 

activation of the intracellular IRS-PI3K-AKT pathway and inhibition of GSK-3β, thereby 

regulating glucose homeostasis. Furthermore, leptin results in the sensitisation of insulin 

signalling by modulation of IRS. Glycogen synthase kinase-3β (GSK-3β), Insulin receptor (IR), 

Insulin receptor substrate (IRS), Janus kinase 2 (JAK2), Leptin receptor (LepRb), 

Phosphatidylinositol 3-kinase (PI3K), Protein kinase B (AKT), Signal transducer and activator of 

transcription 3 (STAT3), Suppressor of cytokine signalling 3 (SOCS3). 
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1.1.4. Adiponectin and its effects on energy metabolism 

The cytokine adiponectin is secreted by adipocytes and has been described to possess 

anti-inflammatory and insulin-sensitizing effects (73, 74). Due to the inversely 

correlated levels of circulating adiponectin and the amount of adipose tissue, a 

causative link between obesity and type 2 diabetes based on adiponectin has been 

proposed (75-77). Qi and colleagues observed rising adiponectin levels in the 

cerebrospinal fluid of mice after intravenous injections (78). Despite these findings, 

whether adiponectin is in fact able to cross the blood-brain-barrier or whether it is also 

expressed in the brain has long been a matter of debate, with some evidence indicating 

central expression of the hormone (79-81).  

Adiponectin has been shown to have very contradictory effects on metabolism, 

depending on its route of application. While peripherally administered adiponectin had 

orexigenic and anabolic effects, central administration revealed anorexigenic and 

catabolic effects on energy metabolism (78, 82, 83). Adiponectin mediates its effects by 

binding to one of the two adiponectin receptors, AdipoR1 and AdipoR2, both of which 

are seven-transmembrane domain receptors. Studies conducted in peripheral tissues 

demonstrated that adiponectin leads to an increase in adenosine monophosphate-

activated protein kinase (AMPK) activity, mainly mediated through the interaction with 

AdiopR1 (83, 84). After adiponectin binds to AdipoR1, the adapter protein 

phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) is activated, 

leading to phosphorylation of AMPK at the positive phosphorylation site threonine 

172. AMPK monitors the energy status of the cell and phosphorylation at threonine 172 

results in an increase in food intake (85).  

Notably, both AdipoR1 and AdipoR2 were found to be expressed in the hypothalamus 

and are located on NPY/AgRP as well as POMC/CART neurons in the ARC (84, 86, 

87). Furthermore, APPL1 was shown to phosphorylate and activate JAK2 and IRS1-4, 

thereby suggesting a crosstalk between adiponectin and insulin as well as leptin signal 

transduction (73). Most of our knowledge about the effects and the mechanisms 

underlying adiponectin signal transduction derives from peripheral studies. However, 

whether central adiponectin signalling is mediated similarly and how it affects glucose 

and energy metabolism remains to be further determined. 
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1.1.5. WNT/β-catenin signalling pathway 

The WNT pathway is a highly conserved signal transduction pathway that is present in 

species throughout all of animal kingdom, from sponges and worms to insects and 

mammals. It regulates numerous cellular processes, such as stem cell differentiation 

and proliferation and has been well characterized in tumorigenesis and embryogenesis 

(88-90). Much of our early knowledge about the WNT pathway derived from 

developmental studies conducted in the fruit fly Drosophila melanogaster. The term 

WNT is composed of the gene names wg (wingless), characterized in D. melanogaster, 

and int-1 (integration-1), characterized in mice (91, 92). Both described the same 

highly conserved ligand, therefore later named WNT-1.  

As of today, three different WNT pathways have been identified, which are classified 

as either non-canonical or canonical. The non-canonical pathways are β-catenin-

independent. Of those, the WNT/planar cell polarity (PCP) pathway regulates 

cytoskeletal rearrangements as well as cell migration and tissue polarity during 

development (93, 94). The WNT/Ca2+ pathway, on the other hand, regulates 

intracellular Ca2+ concentrations and activates various kinases, such as the protein 

kinase-C (94-96). The canonical, β-catenin-dependent WNT pathway is most 

prominently involved in proliferation, differentiation and cell survival during 

development, whereas aberrant pathway activation is linked to carcinogenesis and the 

pathogenesis of other diseases, such as Alzheimer’s disease (97, 98). In the last decade, 

intriguing evidence was provided, linking the WNT/β-catenin pathway to the 

pathogenesis of type 2 diabetes and other metabolic risk factors. Polymorphisms in the 

genes encoding for T-cell factor-7 (TCF-7) and low-density lipoprotein receptor-related 

protein-6 (LRP-6) were shown to be associated with a higher risk of developing type 2 

diabetes in humans (99-102). 

While both canonical and non-canonical WNT pathways include the G protein-coupled, 

seven-transmembrane domain receptor Frizzled (Fz) (103-105), the co-receptor family 

LRP-5/6 is specific for the canonical, β-catenin-dependent WNT pathway (106-108). In 

mammals, the WNT protein family consists of 19 different WNT ligands (WNTs). The 

WNT pathway involves several regulatory steps for its activation. While in steady-

state, receptors are intracellularly phosphorylated and thereby inhibited. Additionally, 

there are several classes of extracellular antagonists, such as Dickkopf-related protein-1 



9 
 

(DKK-1) and secreted Frizzled-related proteins (SFRP). While DKK-1 exclusively 

targets the canonical WNT/β-catenin pathway by binding and blocking LRP-5/6 

receptors (109), members of the SFRP family act on WNT signalling in general by 

binding to WNTs, due to their close sequence homology to the WNT-binding domain 

of Fz receptors (110, 111).  

In the absence of WNT stimulation, which represents the steady-state of the canonical 

WNT/β-catenin pathway, a β-catenin destruction complex lingers in the cytoplasm, 

which contains the pathway’s key regulatory enzyme GSK-3β, casein kinase-1α (CK-

1α), adenomatous polyposis coli (APC), dishevelled (Dsh), as well as the scaffolding 

protein Axin (112-114). Cytoplasmic β-catenin is bound by this destruction complex 

and phosphorylated by GSK-3β, thereby targeting β-catenin for ubiquitination and 

proteasomal degradation (115, 116).  

The WNT/β-catenin pathway is activated when extracellular WNTs bind to Fz 

receptors, leading to heterodimerisation between those and the co-receptor LRP-5/6 and 

resulting in the recruitment of Dsh to the receptor complex. In the next stage, the 

destruction complex is recruited and CK-1α phosphorylates and thereby activates LRP-

5/6 at its phosphorylation site serine 1490 (106). Phosphorylated LRP-5/6 inhibits the 

destruction complex and GSK-3β is targeted for negative phosphorylation at serine 9 

and is thereby inhibited (117). As a consequence of this inhibition, hypophosphorylated 

β-catenin is stabilized and accumulates in the cytoplasm, before it translocates into the 

nucleus. Here, it acts as a co-transcriptional factor by activating the transcription 

factors TCF-7 and lymphoid enhancer factor (LEF). This leads to the transcription of 

WNT target genes, such as Cyclin-D1 and Axin-2 (118) (Figure 2). 

Recently, we provided strong evidence suggesting that hypothalamic WNT signalling is 

involved in the neuroendocrine control of energy metabolism in genetically obese and 

diabetic Lepob/ob mice (119, 120). Other studies further supported the role of the WNT 

pathway in energy homeostasis as well as an implication of WNT and leptin signalling 

in peripheral tissues (121-123). Furthermore, hypothalamic WNT signalling was shown 

to play a crucial role in adult neurogenesis as well as the cellular and structural 

remodelling of the hypothalamus (124, 125). Interestingly, alterations in the central 

WNT signal transduction seem to be at least partially regulated by photoperiod in 

photoperiod-responsive rats, suggesting an important role of the WNT pathway in the 
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control of seasonal biology in rats (125-127). However, whether this also applies to 

other seasonal species and whether hypothalamic WNT signalling is regulated by 

temporal rhythms remains to be determined. 

 

 

 

Figure 2: WNT/β-catenin signalling pathway in the presence of WNT ligands. Upon binding of 

WNT ligands to their receptors Frizzled and LRP-5/6, CK-1 phosphorylates LRP-5/6, which in 

turn results in the inhibition of GSK-3β. As a result, β-catenin is stabilized and translocates into 

the nucleus, where it activates the transcription factors TCF-7 and LEF, leading to the 

expression of WNT target genes such as Axin-2 and Cyclin-D1. Adenomatous polyposis coli 

(APC), Casein kinase 1 (CK-1), Dishevelled (Dsh), Glycogen synthase kinase-3β (GSK-3β), 

Lymphoid enhancer factor (LEF), Low-density lipoprotein receptor-related protein 5/6 (LRP-

5/6), T-cell factor 7 (TCF-7). 
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1.2. Biological rhythms in life on Earth 

All living organisms are exposed to ever-changing environmental conditions. Daily 

rotations of the earth around its axis generate distinct differences in the amount of light, 

temperature, humidity and various other environmental factors between day and night. 

The annual orbit of the earth around the sun results in the origin of seasons, due to 

Earth’s axial tilt relative to its ecliptic plane. This leads to seasonal periodicity of day 

length (photoperiod), the intensity of light, weather conditions, temperature and food 

availability. In temperate and polar climate zones, these changes are specifically 

pronounced. Warm summers accompanied by a long photoperiod and plenty of food 

alternate with cold winters accompanied by a short photoperiod and limited food 

supplies. To survive in these varying conditions, organisms must be able to anticipate 

these changes and optimize their metabolism and behaviour accordingly. Animals have 

evolved to be either diurnal or nocturnal, depending on factors such as their source of 

food and the presence of predators. Seasonal adaptations involve numerous 

behavioural, morphological and physiological modifications, including, amongst other 

things, reproduction, energy metabolism, body weight and pelage. To ensure these 

adaptations are accomplished in time, animals need a reliable environmental cue that 

notifies them of upcoming seasonal changes. While temperature and weather conditions 

can be rather variable, the photoperiod is always precise and is therefore used by a large 

variety of organisms to predict environmental changes. However, these daily and 

seasonal phenotypic oscillations are not merely passive responses to environmental 

changes. Instead, they are generated endogenously. The mechanisms that underlie both 

adaptive systems are closely interlinked and will be discussed in the next chapters.  

 

1.2.1. Circadian rhythmicity 

The notion of an internal timekeeping system that runs independent from external cues 

was first documented in the early 18th century, when French astronomer Jean-Jacques 

d’Ortous de Mairan observed the daily rhythm of leave movement of a Mimosa plant. 

De Mairan reported that the rhythmic opening and closing of the plant’s leaves 

persisted even in constant darkness (128). About a century later, the French-Swiss 

botanist Alphonse de Candolle repeated de Mairan’s experiment and recorded that 
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while in constant darkness, the rhythmic opening of leaves occurred not every 24 hours, 

but one hour earlier each day (129). This observation sparked further research in the 

field of chronobiology and eventually led to the introduction of the term circadian 

(derived from the Latin circa diem, meaning ‘about a day’), referring to endogenously 

generated rhythms of approximately 24-hour cycles (130). Today we know that all 

organisms depict circadian rhythms in physiology and behaviour, from simple 

cyanobacteria to mammals (131). Without external entrainment, the free-running period 

of circadian rhythms deviates slightly from 24 hours. Generally, in nocturnal animals it 

is slightly shorter than 24 hours, whereas diurnal animals show a slightly longer free-

running period.  

 

1.2.1.1. The suprachiasmatic nuclei as the master circadian clock 

In 1972, two independent research groups found evidence that the master pacemaker of 

circadian rhythms in mammals is located in the anterior hypothalamus, directly above 

the optic tract. Lesions in this brain region, later named the suprachiasmatic nucleus 

(SCN), resulted in the complete loss of circadian rhythms (132, 133). The SCN was 

fully verified as the central master pacemaker by an elegant study performed in 1990 in 

hamsters. Wildtype hamsters were SCN-lesioned and received SCN transplants from 

hamsters with a clock gene mutation, which displayed circadian rhythms with a shorter 

free-running period than wildtypes. Intriguingly, wildtype hamsters with mutant SCN 

transplants now displayed the same shortened free-running period, confirming that the 

SCN dictates peripheral circadian rhythms (134).  

As the central circadian clock, the SCN controls various local clocks, both in other 

brain areas and the periphery (135-137). To distinguish between those two different 

clock systems, the term 'peripheral clocks' was introduced for the latter, in opposition to 

the central clock. Interestingly, local outputs from peripheral clocks remain rhythmic 

even without a functional input from the SCN. However, all these peripheral circadian 

rhythms then desynchronize from each other (138-143), suggesting that the main role 

of the SCN is to align peripheral clocks and ensure a smooth coordination between an 

organism’s physiology and behaviour. 
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Circadian clocks feature three basic components: 1) they are endogenously generating 

circadian rhythms that have a free-running period of approximately 24 hours, meaning 

that they persist under constant conditions; 2) they receive input signals and are 

entrainable by these external cues, called Zeitgebers, of which light is the primary 

entrainment signal (144, 145); and 3) they generate output signals that mediate 

physiological and behavioural rhythms, which display a 24-hour oscillation (146).  

 

1.2.1.2. Molecular clockwork of biological clocks 

On a molecular level, the mechanism of the circadian clock is driven by a cell-

autonomous rhythmic transcriptional-translational feedback loop that is present in 

virtually all cells. The first clock gene was discovered in 1971 in Drosophila and 

named Period (147). Since then, the clock gene machinery has been largely unravelled. 

Joseph Takahashi and colleagues identified the first mammalian clock gene responsible 

for circadian rhythms in behaviour in 1994 and named it circadian locomotor output 

cycles kaput (Clock) (148). The positive arm of the mammalian feedback loop consists 

of the proteins CLOCK and brain and muscle ARNT-like protein 1 (BMAL-1) (135), 

which heterodimerise and bind to E-box regions in promotors of the clock genes Period 

(Per1 – 3) and Cryptochrome (Cry1/2), thereby inducing their transcription (149, 150). 

The protein products PER and CRY represent the negative arm of the feedback loop. 

PER/CRY heterodimers translocate into the nucleus and inhibit the activity of 

CLOCK/BMAL-1 heterodimers, thereby inhibiting their own transcription (151). PER 

and CRY are post-translationally targeted for degradation by casein kinases (CK-1ε/δ) 

and GSK-3β (151-153). The degradation of PER and CRY subsequently leads to the 

initiation of a new cycle. This feedback loop takes roughly 24 hours to completion, 

thereby defining the near-24-hour period of circadian rhythms. Additionally, 

CLOCK/BMAL-1 initiates transcription of Rev-erbα (reverse erythoblastoma) and 

Rorα/β (retinoid orphan receptor) nuclear receptors. Their protein products in turn 

either inhibit (REV-ERBα) or activate (RORα/β) Bmal-1 transcription (Figure 3).  
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Figure 3: Cell-autonomous regulation of the circadian clock in mammals. The central 

circadian clock, which resides in the SCN of the hypothalamus, receives light input via the RHT 

and synchronises peripheral circadian clocks that are present in virtually all tissues. On the 

molecular level, the transcription factors CLOCK and BMAL-1 activate gene expression of Per, 

Cry, Rev-erbα and Rorα/β as well as a variety of other target genes that are clock outputs. 

PER/CRY heterodimers in turn inhibit the transcriptional activity of CLOCK/BMAL-1, thereby 

preventing their own transcription. Additionally, Bmal-1 expression is initiated by RORα/β, but 

repressed by REV-ERBα. In the cytoplasm, CK-1 and GSK-3β target PER and CRY for 

degradation, thereby initiating the start of a new transcriptional-translational cycle. Brain and 

muscle ARNT-like protein 1 (BMAL-1), Casein kinase 1 (CK-1), Circadian locomotor output 

cycles kaput (CLOCK), Cryptochrome (CRY), Glycogen synthase kinase 3β (GSK-3β), Period 

(PER), Retinohypothalamic tract (RHT), Reverse erythoblastoma (REV-ERBα), Retinoid orphan 

receptor (RORα/β), Suprachiasmatic nucleus (SCN).  

 

 

1.2.1.3. Entrainment signals in circadian clocks 

The SCN receives light input directly from melanopsin-containing ganglion cells in the 

retina of the eyes via the retinohypothalamic tract (RHT) and ultimately synchronises 

peripheral clocks via circulating humoral factors and autonomic innervation (154-157). 

Apart from light, other external cues have been proposed to be able to entrain circadian 

clocks, such as social interactions, exercise and feeding patterns. Interestingly, HFD 

consumption leads to a disruption of circadian rhythms in the liver and in eating 
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behaviour of mice after just one week. However, at this point neither the central 

circadian clock in the SCN nor other peripheral clocks were compromised (158), 

showing that not only the time of food intake, but also the diet composition affects 

circadian clocks. Furthermore, these results demonstrated that not all circadian clocks 

are affected by the same external factors to the same extent and that the brain areas 

mediating the disruptions in eating behaviour caused by HFD must be located 

downstream of the SCN. Food intake had already been identified as a powerful SCN-

independent entrainment signal for circadian rhythms more than 40 years ago (159, 

160). More recently, the existence of a food-entrainable oscillator involving 

AgRP/NPY neurons in the hypothalamus has been proposed (161). Notably, as 

discussed in chapter 1.1.1, AgRP/NPY neurons play an important role in the leptin-

mediated control of body weight and metabolism.  

 

1.2.1.4. Circadian clock and metabolism 

Over the last 15 years, a close link of the circadian clock and metabolism has been 

demonstrated in numerous studies (162-167). In mice, SCN lesions as well as various 

clock gene mutations were shown to cause metabolic disorders, including obesity, 

hyperlipidaemia, hyperglycaemia and an impairment of glucose homeostasis and 

insulin signalling (163, 168-171). The research group of Joseph Takahashi discovered 

that a missense mutation in the murine Clock gene results in the loss of rhythmic 

expression of metabolic genes in liver, pancreas and muscle as well as a disruption of 

glucose and lipid homeostasis, ultimately leading to the development of obesity (170, 

171). Similar metabolic syndrome phenotypes occur after mutations in other clock 

genes, such as Bmal-1 and Per2 (164, 172-176). In humans, circadian disruptions such 

as continuous shift-work and social jet lag have been shown to result in symptoms of 

the metabolic syndrome. These include impaired glucose tolerance, serving as an 

indicator for prediabetes, as well as decreased insulin sensitivity, increased body mass 

index (BMI) and increased mean arterial blood pressure, indicating cardiovascular 

complications (177, 178). Results from our laboratory and from others demonstrate that 

chronic circadian misalignment, evoked by continuous exposure to jet lags, causes 

reduced hypothalamic leptin sensitivity and elevated body weight in mice [(179) and 

our own unpublished observations]. This offers a potential explanation for the 
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prominent correlation between circadian misalignment and obesity as observed in 

humans (177). While circadian misalignment was shown to cause metabolic 

dysfunctions in both rodents and humans, HFD feeding was in return shown to disrupt 

behavioural and molecular circadian rhythms. Consumption of HFD leads to 

arrhythmic feeding patterns, locomotor activity and expression of circadian clock genes 

(158, 180, 181). As mentioned above, AgRP/NPY-expressing neurons in the 

hypothalamus were shown to play an important role as a component of a food-

entrainable oscillator (161). These neurons express leptin receptors and are crucial for 

the maintenance of metabolism and body weight. Interestingly, ARC-targeted ablation 

of leptin-sensitive neurons in rats leads not only to the development of obesity, but also 

to an attenuation of feeding rhythms. Ablation of leptin-sensitive neurons in other 

nuclei of the hypothalamus, on the other hand, did not cause arrhythmic feeding (182). 

This suggests a unique involvement of the ARC in generating feeding rhythms over 

other hypothalamic areas involved in metabolic control. Whether leptin signal 

transduction in the ARC is controlled by a circadian rhythm and how HFD feeding 

interferes with central leptin sensitivity at different times throughout the day has not 

been investigated to date.  

 

1.2.2. Time-restricted food intake has beneficial effects on metabolic health 

Time-restricted feeding (TRF) is a new diet strategy with apparent efficacy in 

promoting weight loss and preventing metabolic diseases in both fruit flies and rodents 

(183, 184). In many organisms, including bacteria, yeast, nematodes, fruit flies and 

mice, temporary caloric restrictions lead to an extension of lifespan (185). TRF limits 

energy intake to certain times each day, followed by an extended period of food 

deprivation. This feeding regimen has been shown to attenuate peripheral inflammation 

by reducing circulating levels of pro-inflammatory cytokines in mice (185, 186). Two 

recent studies suggested that the beneficial effects of TRF on health seem to depend on 

the time of food access throughout the day. Time-restricted access to HFD exclusively 

during the inactive phase of mice (light phase) leads to increased body weight 

compared with mice that have access to HFD exclusively during their active phase 

(dark phase), even though both groups have the same overall caloric intake (181). In 

line with these results, access to HFD exclusively during their active phase prevents 
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mice from developing symptoms of metabolic disease, such as obesity, 

hyperinsulinemia, glucose intolerance and inflammation compared with mice with ad 

libitum access to HFD, while both groups consume a similar amount of calories (184). 

In humans, restriction of food intake to a maximum of 12 hours per day leads to weight 

loss in overweight individuals (187). Notably, in this study food access was only 

restricted to a certain amount of time each day, but not strictly to the participants’ 

active (light) phase. Additionally, while body weight was monitored during this study, 

caloric intake was not and the observed weight loss might be due to reduced caloric 

intake instead of a sole effect of circadian timing of food intake. The importance of 

circadian timing of TRF has so far mainly distinguished between the active and inactive 

phase in rodent studies. To what extent beneficial effects of TRF on metabolic health 

depend on circadian timing and during which specific periods throughout the 24-hour 

cycle TRF can reverse detrimental effects of HFD remains to be examined further.   

 

1.2.3. Seasonal rhythmicity 

Many organisms use the annual progression of day length as a cue to anticipate 

upcoming seasonal changes in environmental factors. This ability to adapt their 

phenotype accordingly is called photoperiodism and has first been described in 

conjunction with the seasonal flowering of tobacco plants and was since discovered in a 

wide variety of species (188). Not all animals are influenced by photoperiod to the 

same extent. Therefore, only species whose phenotype significantly depends on the 

photoperiod are considered as photoperiodic, or seasonal. In humans, mice and rats, for 

instance, reproduction and other physiological processes are less dictated by seasons 

and therefore those are not considered as photoperiodic species. In animals such as 

sheep and Djungarian hamsters, on the other hand, reproduction is highly seasonal.  

 

1.2.3.1. Seasonal encoding via circadian oscillation 

Melatonin is a crucial hormone for the regulation of circadian rhythmicity of sleep and 

wakefulness and other physiological functions (189). It is produced exclusively during 

the dark phase by the pineal gland and its secretion is controlled by a neural pathway 

originating from the SCN (190). At night, the SCN stimulates norepinephrine release in 
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the pineal gland, resulting in increased activity of the melatonin synthesis enzyme 

arylalkylamine N-acetyltransferase (AANAT) (191, 192). The duration of melatonin 

production during night-time is dependent on the photoperiod, with gradually 

prolonged production from summer to winter and shortening production from winter to 

summer. This led to the assumption that changes in photoperiod are mediated through 

the circadian oscillation of melatonin production (192-194). Furthermore, the electrical 

activity pattern of the SCN is compressed during short day photoperiod (resembles 

winter) and extended during long day photoperiod (resembles summer), resulting in 

changes in the duration of behavioural activity and other physiological processes 

between those photoperiods (195, 196).  

 

1.2.3.2. Seasonal adaptation of Phodopus sungorus 

Seasonal mammals have developed different adaptive mechanisms to survive in a 

seasonally changing environment. Winter-specific strategies include accumulation of 

large fat deposits or hibernation, methods that are mainly used by larger mammals. 

Small mammals, on the other hand, decrease their body weight in order to reduce their 

energy requirements (197). Since a reduction in body mass leads to a relatively larger 

surface area and increased heat loss (198), this strategy has to be accompanied by other 

morphological and physiological adaptations. The Djungarian hamster, Phodopus 

sungorus, is a powerful model organism to study seasonal adaptations in mammals. 

Originating from the steppes of Siberia and the region of Djungaria, this small rodent 

reduces its body weight by up to 40% during winter. This reduction of body mass is 

mainly due to a loss of white adipose tissue (199-201). During winter, male hamsters 

undergo testicular regression and become infertile. To compensate for the loss of body 

mass and thereby the increased heat loss, hamsters grow a more thermally insulated 

winter pelage, which turns white compared with their grey-tinged summer pelage and 

thereby also improves their camouflage (202, 203). Additionally, the cold tolerance of 

winter-adapted hamsters is improved due to nonshivering thermogenesis in brown 

adipose tissue (203). The annual cycle of body weight is accompanied by a seasonal, 

reversible switch in hypothalamic leptin sensitivity. Under laboratory conditions, the 

summer-like photoperiod is mimicked by an exposure to 16 hours of light and 8 hours 

of dark (long day, LD), whereas the winter-like photoperiod is mimicked by an 
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exposure to 8 hours of light and 16 hours of dark (short day, SD). During LD, hamsters 

have high circulating concentrations of leptin, but are resistant to the central effects of 

the hormone, whereas they have lower circulating concentrations and are highly leptin 

sensitive during SD (201, 204, 205). The expression of Socs-3 in the ARC of hamsters 

seems to play a crucial role in this cyclic leptin sensitivity (48, 206). After a switch 

from LD to SD, Socs-3 gene expression decreases promptly, long before the amount of 

white adipose tissue and circulating concentrations of leptin change (48). This leads to 

an increase in leptin sensitivity during SD and due to the yet high leptin levels results in 

the mediation of anorexigenic and catabolic effects.   
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1.3. Aims and objectives 

Development of hypothalamic leptin resistance is a key event in the manifestation of 

obesity and related metabolic diseases, such as type 2 diabetes. Over the last decades, 

significant process has been made in uncovering the neuroendocrine mechanisms that 

link these metabolic disorders. However, the environmental incitements of our modern 

age that trigger the disruption of molecular mechanisms underlying leptin resistance are 

still not entirely understood. The aim of this doctoral research study was to gain new 

insights into regulatory processes that lead to the development of leptin resistance and 

the disruption of energy metabolism. In this regard, the main objectives were to 

determine: 

 

1. Whether other adipocyte-derived hormones, beside leptin, are involved in the 

neuroendocrine control of energy metabolism.  

 

2. Whether WNT signalling is involved in the neuroendocrine control of energy 

metabolism in the seasonal rodent Phodopus sungorus.  

 

3. Whether hypothalamic leptin signalling and whole body metabolism are 

modulated by a 24-hour rhythm. 

 

4. How DIO interferes with hypothalamic leptin signalling and whole body 

metabolism throughout the course of the day. 

 

5. Whether TRF can reverse the detrimental effects of DIO on metabolic health. 

 

1. To examine whether other adipocyte-derived hormones, beside leptin, are 

involved in the neuroendocrine control of energy metabolism, the adipokine 

adiponectin was investigated. Therefore, its hypothalamic expression profile was 

examined and the effects of central adiponectin on glucose homeostasis as well as its 

implication in other neuroendocrine signalling pathways in lean wildtype and obese 

mice were analysed (207).  
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2. To determine whether WNT signalling is involved in the neuroendocrine 

control of energy metabolism in the seasonal rodent Phodopus sungorus, the 

hypothalamic expression profile of WNT pathway-related genes was examined at 

specific times throughout the 24-hour cycle in adult LD and SD acclimated hamsters. 

Next, the effect of leptin on hypothalamic WNT pathway activation was analysed 

(208). 

3. To determine whether hypothalamic leptin signalling and whole body 

metabolism are modulated by a 24-hour rhythm, the activation of the leptin signal 

transduction marker STAT3 was analysed every 3 hours throughout the 24-hour cycle 

in wildtype mice. Furthermore, circulating metabolic markers were examined at these 

time points.  

4. To investigate how DIO interferes with hypothalamic leptin signalling and 

whole body metabolism throughout the course of the 24-hour cycle, the same markers 

as described above were analysed every 3 hours throughout the day in DIO mice that 

received HFD. 

5. To determine whether TRF has beneficial effects on metabolic health and can 

reverse the detrimental impairment of normal energy metabolism caused by DIO, mice 

received ad libitum access to low-fat diet (LFD) or HFD (control groups) or time-

restricted access to HFD during different 6-hour periods throughout the 24-hour cycle. 

Metabolic measurements of energy metabolism and behaviour were examined and 

circulating metabolic markers were analysed. 
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2. General methods 

 

2.1. Animals 

All experimental protocols involving animals were performed in accordance with the 

German animal ethics legislation or the New Zealand Animal Welfare Act and 

associated guidelines, as appropriate, and received approval by the respective 

authorities for animal ethics.  

 

2.1.1. Djungarian hamsters, Phodopus sungorus 

Adult female Djungarian hamsters were used for the experiments described in chapter 

4.2. Hamsters were bred within the Department of Biology at the Philipps University of 

Marburg in Germany and were randomised and housed individually at an ambient 

temperature of 21 ± 1˚C with ad libitum access to a hamster-specific standard chow diet 

and water. Hamsters were maintained either under LD (16:8 hours light/dark cycle) or 

SD (8:16 hours light/dark cycle) conditions for eight weeks prior to experiments to 

ensure full adaptation to the respective photoperiods.  

 

2.1.2. Mice 

For experiments described in chapter 4.1, adult male C57BL/6J wild-type (Lep+/+) and 

leptin-deficient Lepob/ob mice were purchased from Janvier (France). They were 

randomised and housed individually under a 12:12 hours light/dark cycle at an ambient 

temperature of 22 ± 1˚C with ad libitum access to food and water. Mice received either 

LFD with 10% energy from fat (kcal), moderate HFD (mHFD) with 45% energy from 

fat (kcal) or HFD with 60% energy from fat (kcal). 

Adult male C57BL/6J mice bred at the University of Otago Taieri Resource Unit were 

used for experiments described in chapter 4.3. Animals were randomised and housed 

individually under a 12:12 hours light/dark cycle at an ambient temperature of 22 ± 1˚C 
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with ad libitum access to food and water, aside from mice that received time-restricted 

access to food during the TRF regimen, as described in chapter 4.3. The time periods 

for TRF were based on our findings about the circadian rhythmicity of leptin sensitivity 

in lean and DIO mice, as presented in chapter 4.3. Four groups received access to HFD 

for 6 hours per day, each group during a different period. Thereby, one group had 

access to food solely during the light (inactive) phase from Zeitgeber time (ZT) 3 – 

ZT9, one group solely during the dark (active) phase from ZT15 – ZT21 and two 

groups each during equal times of light and dark (both inactive and active) phase. In 

those activity-independent groups, mice received HFD either during their relative leptin 

sensitive phase from ZT9 – ZT15 or their relative leptin resistant phase from ZT21 – 

ZT3. Mice received either LFD with 10% energy from fat (kcal) or HFD with 60% 

energy from fat (kcal).  

 

 

2.2. Immunohistochemistry 

2.2.1. Collection of brain tissue for immunohistochemistry 

Treatment of animals prior to transcardial perfusions is described in the respective 

subchapters in chapter 4. Animals were deeply anaesthetised with an overdosed 

intraperitoneal (ip) injection of sodium pentobarbital (200 mg/kg body weight) with 

heparin to prevent blood clotting. Upon confirmation of deep anaesthesia by testing the 

pedal withdrawal reflex animals were transcardially perfused. Therefore, the chest 

cavity was opened, a needle was inserted into the left ventricle of the heart and the right 

atrium was cut open. Animals were perfused with saline, followed by perfusion with 

~20 mL of 4% paraformaldehyde in 0.1 M phosphate buffer (PFA; pH 7.5). Brains 

were dissected and post-fixed in 4% PFA for 4 hours, followed by 48 hours storage in 

30% sucrose solution in 0.1 M phosphate buffer at 4˚C for osmotic dehydration of 

brains. Brains were then rapidly frozen in 2-methylbutane at -40˚C and stored at -80˚C. 

Coronal brain sections (30 μm) were collected throughout the extent of the ARC, 

spanning the hypothalamic region from approximately -2.7 to -0.8 mm relative to 

Bregma according to the atlas of the mouse brain (209). Sections were stored in 
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cryoprotectant (30% sucrose, 30% ethylene glycol, 1% polyvinylpyrrolidone, in 0.2 M 

phosphate-buffered saline) at -20˚C.  

 

2.2.2. Antigen retrieval immunohistochemistry 

Antigen retrieval steps were performed to break aldehyde bonds between proteins that 

were formed in the fixation process during perfusion. This increases immunoreactivity 

of the brain tissue. Unless stated otherwise, all reagents were diluted in 0.1 M Tris-

buffered saline (TBS) and incubation steps were performed at room temperature. 

Free-floating brain sections were rinsed three times in 0.1 M TBS to remove 

cryoprotectant. This step was carried out between all subsequent incubations. For 

antigen retrieval and blocking of endogenous peroxidase activity, sections were treated 

with 10% methanol, 1% sodium hydroxide and 1% hydrogen peroxide in water for 20 

minutes, followed by incubation in 0.3% glycine for 10 minutes as well as 0.03% 

sodium dodecyl sulphate for 10 minutes. Next, brain sections were incubated for 1 hour 

in blocking solution consisting of 1% normal goat serum and 5% bovine serum albumin 

in TBS with 0.5% Triton-X (TBS-TX) to prevent non-specific binding of the antibody 

to tissue, followed by incubation in the respective primary antibody (diluted in blocking 

solution) for 16 hours at 4˚C. Triton-X is used to increase cell membrane permeability 

and improve the penetration of the primary antibody into the cytoplasm. On the next 

day, sections were incubated for 1 hour with the biotinylated secondary antibody 

(diluted in blocking solution), which was targeted against the primary antibody host 

species. This was followed by 1 hour of incubation in avidin-biotin complex solution. 

Finally, the signal was developed with diaminobenzidine solution, giving a grey 

precipitate. Stained brain sections were mounted onto gelatinised object slides and 

dehydrated in a series of ethanol solutions of increasing concentrations (50% - 100% 

ethanol), followed by a final wash in xylene. Sections were then coverslipped, using 

DPX mounting medium. 
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2.3. Analysis of hypothalamic gene expression 

2.3.1. Collection of brain tissue for in situ hybridization 

Treatment of animals prior to tissue collection is described in the respective 

subchapters in chapter 4. For in situ hybridization, animals were decapitated and brains 

were rapidly frozen on dry ice. Coronal brain sections (16 μm) were collected 

throughout the extent of the ARC, spanning the hypothalamic region from 

approximately -2.7 to -0.8 mm relative to Bregma according to the atlas of the mouse 

brain (209). Sections were mounted onto object slides and stored at -80˚C.  

 

2.3.2. Preparation of riboprobes 

To create riboprobes specific for the genes of interest, the hypothalamus of a hamster or 

mouse, respectively, was homogenised and ribonucleic acid (RNA) was extracted. 

Using reverse transcriptase, an enzyme functioning as a RNA-dependent 

deoxyribonucleic acid (DNA) polymerase, hypothalamic RNA was transcribed into 

complementary DNA (cDNA). In the next step, polymerase chain reaction (PCR) was 

performed to amplify cDNA fragments of interest. Therefore, specific primers were 

used, resulting in the amplification of specific genes sections. The primers used for 

each study are listed in the respective subchapters in chapter 4. Amplified cDNA 

fragments were purified and extracted with an agarose gel and via ligation into 

pGEM®-T Easy vector (Promega Corp.) and subsequent transformation into competent 

DH5-α Escherichia coli cells, cDNA was replicated to a great extent. The replicated 

DNA of interest was separated from the cells’ own structures by minipreparation, 

followed by sequencing and linearization of the plasmid DNA. To create radioactive 

RNA that is able to bind to its complementary messenger RNA (mRNA) in tissue, the 

generated cDNA was used as a template and in vitro transcription was performed, using 

a DNA-dependent RNA polymerase. This polymerase synthesises RNA with provided 

ribonucleoside triphosphates, including (35S)-radiolabelled uracil triphosphates.  
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2.3.3. In situ hybridization 

Brain sections were fixed in 4% PFA for 20 minutes followed by acetylation in 0.1 M 

triethanolamine and acetic anhydride in order to block non-specific binding sites. Next, 

sections were dehydrated in a series of ethanol solutions of increasing concentrations. 

This was followed by a 16-hour hybridization reaction at 58˚C. Therefore, object slides 

were covered with a hybridization solution containing radiolabelled riboprobes. On the 

next day, sections were treated with ribonuclease A, leading to the degradation of 

unbound radiolabelled RNA fragments and preventing false positive detection of 

tissue-specific mRNA. Subsequently, brain sections were desalted, dehydrated and 

exposed to an X-ray film sensitive to decay emissions, giving a black precipitation on 

the radiograph.  

 

 

2.4. Respirometry 

Metabolic measurements were performed using a multichannel respirometry system 

(Promethion, Sable Systems International), allowing synchronised monitoring of 

energy metabolism and behaviour. The Promethion system used in this study is an 

open-flow multiplexed system, with up to eight cages sharing one gas analyser. This 

allows the gas analyser to take brief metabolic measurements of the animal in each cage 

at intervals of a few minutes. To accurately determine the effect each animal has on air 

analysed from its cage relative to background air around the cage, continuous baseline 

measurements of the surrounding air are required (210). Energy expenditure was 

determined by indirect calorimetry, a method by which oxygen consumption and 

carbon dioxide production are synchronously measured, thereby accurately evaluating 

an endothermic animal’s metabolic rate. The air flow rate was adjusted to 

2000 mL/min, guaranteeing complete air exchange of 15 times per hour in compliance 

with Institutional Animal Care and Use Committee mouse calorimetry standards. The 

system synchronously measured oxygen consumption, carbon dioxide production, 

energy expenditure, food intake, body weight and locomotor activity. Access to food 

was restricted to defined 6-hour periods each day (specified in chapter 2.1.2) by 
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programming the food hopper doors in each individual cage to open and close at 

specific times. To compare metabolic parameters specific for the different feeding 

periods of the TRF groups, raw data were binned into the defined 6-hour periods using 

a customized automated analysis script kindly created and provided by Sable Systems 

International. The average of each of the four 6-hour periods recorded over three 

consecutive days was then assessed and compared between the different animal groups. 

 

 

2.5. Analysis of blood-borne metabolic signals 

Circulating levels of leptin, insulin and glucose were measured using enzyme-linked 

immunosorbent assays (ELISA) and glucose assays. Therefore, animals were 

decapitated; blood was collected and immediately placed on ice to allow coagulation, 

followed by centrifugation for 20 minutes at 4 °C and 13000 rpm. Extracted serum and 

plasma were stored at -80˚C. Assays were carried out using 96 well microplates and all 

samples were assayed in duplicate.  

 

2.5.1. Leptin ELISA 

Because circulating leptin levels of mice fed HFD were expected to be above the 

sensitivity range of the leptin ELISA (0.2 to 12.8 ng/mL), serum and plasma samples of 

those mice were diluted using sample diluent provided within the ELISA kit prior to 

performing the assay. To measure circulating leptin concentrations, a sandwich ELISA 

was performed. Here, two sets of antibodies are used to detect mouse leptin in the 

samples. Mouse serum or plasma samples as well as predefined mouse leptin standards 

were dispensed into wells together with sample diluent and guinea pig anti-leptin serum 

and incubated for 20 hours at 4˚C. During this first reaction, mouse leptin in the serum 

or plasma samples is simultaneously bound to the rabbit anti-leptin antibody coated on 

the microplate well and the anti-leptin antibody of the guinea pig serum. On the next 

day, wells were washed using washing buffer to remove unbound material. This step 

was carried out between all subsequent incubations. For the next step, horseradish 
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peroxidase (HRP)-conjugated anti-guinea pig antibody was added and incubated for 3 

hours at 4˚C to allow binding of the HRP-conjugated antibody to the immobilized 

complex on the microplate well. This was followed by 30 minutes of incubation with 

tetramethylbenzidine (TMB) enzyme substrate solution to chromogenically detect the 

HRP-conjugated antibody. Finally, the enzyme reaction was stopped with sulfuric acid 

and absorbance was measured using a plate reader. Leptin concentrations in the 

samples were interpolated using the standard curve and mean absorbance values for 

each sample.  

 

2.5.2. Insulin ELISA 

To determine circulating insulin concentrations, a sandwich ELISA was performed. 

Mouse serum or plasma samples as well as predefined mouse insulin standards were 

dispensed into wells together with sample diluent and incubated for 2 hours at 4˚C. 

During this first reaction, mouse insulin in the serum or plasma samples binds to the 

guinea pig anti-insulin antibody coated on the microplate well. Subsequently, wells 

were washed using washing buffer to remove unbound material. This step was carried 

out between all subsequent incubations. Next, HRP-conjugated anti-insulin antibody 

was dispensed into the wells and incubated for 30 minutes at room temperature to allow 

binding of the HRP-conjugated antibody to the immobilized complex on the microplate 

well. This was followed by 40 minutes of incubation with TMB enzyme substrate 

solution. Finally, the enzyme reaction was stopped with sulfuric acid and absorbance 

was measured using a plate reader. Insulin concentrations in the samples were 

determined by interpolation using the standard curve and mean absorbance values for 

each sample. 

 

2.5.3. Glucose assay 

Serum glucose concentrations were measured performing a multi-step glucose assay. 

Therefore, mouse serum samples as well as predefined glucose standards were 

incubated with an enzyme solution containing mutarotase for 5 minutes at 37˚C, 

leading to the rapid conversion of α-D-glucose to β-D-glucose. The β-D-glucose is then 
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oxidised and releases hydrogen peroxide, which reacts with the enzyme solution to 

yield a red dye. Absorbance was measured and serum glucose concentrations were 

determined by interpolation using the standard curve and mean absorbance values for 

each sample. 

 

 

2.6. Analysis of glucose metabolism 

To measure glucose tolerance and insulin sensitivity in mice, intraperitoneal glucose 

tolerance tests (ipGTT) were performed. For respective treatments prior to the ipGTT, 

see chapter 4.1. Fasted animals received an ip injection of glucose solution (0.75 – 

1.0 g glucose/kg body weight) and blood glucose concentration was measured at 

defined time points (0, 15, 30, 60, 90, 120, 150 and 180 minutes after glucose injection) 

using a glucometer. Blood was collected by puncturing the facial vein. 

Furthermore, hepatic glucose production was analysed by performing an ip pyruvate 

tolerance test (ipPTT). Pyruvate is an intermediate of gluconeogenesis and the 

conversion of pyruvate to glucose reflects hepatic glucose production. Mice received an 

ip pyruvate injection (1.5 g/kg) and blood glucose concentration was detected at 

defined time points (0, 15, 30, 45, 60, 90, 120, 150 and 180 minutes after pyruvate 

injection) as described above.  
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3. General results and discussion 

 

3.1. The role of adiponectin in the central regulation of energy 

metabolism 

Peripheral effects of adiponectin on energy metabolism have been demonstrated to 

possess anabolic and orexigenic properties (83), whereas the opposite appears to apply 

to its central effects (78, 82). Adiponectin receptors have been found to be expressed on 

energy homeostasis-regulating neurons in the ARC (84, 86, 87). However, the role of 

central adiponectin has been insufficiently studied to date.  

 

3.1.1. Central expression profile of genes involved in adiponectin signal 

transduction 

Whether adiponectin is expressed in the CNS and whether it is able to cross the blood-

brain-barrier has so far been discussed controversially. While some studies suggest that 

adiponectin is expressed in brain tissue (79), others rebut that adiponectin has any 

direct central effect at all (81).  

By performing in situ hybridization, we found central expression of adiponectin, 

APPL1, AdipoR1 and AdipoR2 in the mediobasal hypothalamus of mice, specifically in 

the ARC (chapter 4.1, figure 1). The gene expression of all investigated genes was 

dependent on the nutritional state of mice. We detected markedly reduced adiponectin 

mRNA levels in the ARC after 16 hours of food deprivation compared with ad libitum 

fed mice. This regulatory mechanism might compensate for the catabolic and 

anorexigenic properties described for central adiponectin (78, 82), in order to prevent 

further body weight loss. In the periphery, on the other hand, circulating adiponectin 

concentrations are inversely correlated with adipose tissue mass and food deprivation 

leads to elevated adiponectin secretion (75-77). Regarding the anti-inflammatory and 

insulin-sensitizing effects described for peripheral adiponectin (73, 74), this increase 

might be a potential explanation for the beneficial effects of periodic fasting on 
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metabolic health. Furthermore, due to the anabolic and orexigenic effects of peripheral 

adiponectin the up-regulation of adiponectin secretion might be a mechanism to 

antagonize further body weight loss during food deprivation. The down-regulation of 

adiponectin gene expression during fasting might also explain contradictory results 

from prior studies regarding adiponectin action in the CNS (79, 81). Spranger and 

colleagues reported that adiponectin does not cross the brain-blood-barrier in either 

mice or humans, nor did they detect adiponectin gene expression in the brain. 

However, in their study, cerebrospinal fluid (CSF) was sampled from human subjects 

that had fasted overnight prior to the surgical intervention. Unfortunately, no 

information about the nutritional state of mice used in those experiments was provided 

(81).  

Interestingly, we found increased APPL1 and AdipoR1 gene expression in the ARC of 

food deprived compared with ad libitum fed mice. This might be an adaptive 

mechanism to ensure sufficient hypothalamic adiponectin signal transduction to 

compensate for decreased levels of adiponectin. AdipoR2 showed a trend towards lower 

gene expression after fasting, although this decrease did not reach significance. 

However, in both ad libitum fed and fasted mice, AdipoR2 gene expression in the ARC 

was considerably low suggesting that adiponectin signal transduction via this receptor 

plays only a minor role in central regulation of metabolism. Furthermore, AdipoR1 

gene expression was increased in mice that received mHFD and HFD, whereas 

AdipoR2 gene expression was only elevated in mHFD mice. Leptin-deficient Lepob/ob 

mice showed no change in gene expression of both receptors (chapter 4.1, figure 2). 

These results suggest that hypothalamic adiponectin signal transduction is 

compromised by DIO, but is independent of functional leptin signal transduction.  

 

3.1.2. Central adiponectin has insulin-sensitizing and anti-inflammatory effects 

By performing ipGTTs, we next analysed the effects of centrally administered 

adiponectin on glucose homeostasis in mice with genetically or diet-induced obesity. 

Central adiponectin proved to have the same blood glucose-lowering effects as 

described for peripherally administered adiponectin (74). This was not only the case in 

leptin-deficient Lepob/ob mice on LFD and DIO mice that received HFD, but even in 
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Lepob/ob mice on HFD, an extremely severe model of obesity (chapter 4.1, figure 3). To 

determine via which neuroendocrine pathways these beneficial effects on metabolic 

health are mediated, we measured the activation of several signalling markers of 

hormone pathways in the hypothalamus (chapter 4.1, figures 4 and 5c, d). Central 

adiponectin led to an activation of insulin signal transduction as demonstrated by 

activated pAKT in the VMH of Lepob/ob mice, while the increase in pAKT 

immunoreactivity in the ARC only showed a trend towards elevated insulin signalling 

activation. Inhibition of the negative insulin signalling modulator GSK-3β was also 

increased in both ARC and VMH after adiponectin administration during DIO. 

Additionally, central adiponectin led to a decrease in pAMPK immunoreactivity in both 

ARC and VMH, whereas no effect was observed for the activation of leptin signal 

transduction in either ARC or VMH after icv adiponectin administration in leptin 

deficient Lepob/ob mice. These results suggest that adiponectin mediates its glucose-

lowering effects by interacting with hypothalamic insulin signal transduction, without 

affecting leptin signalling in the hypothalamus as observed in both leptin deficient 

Lepob/ob mice and leptin resistant DIO mice. Furthermore, we confirmed the catabolic 

and anorexigenic properties of central adiponectin (78, 82), as shown by the decrease of 

AMPK activation, since phosphorylation of AMPK leads to increased food intake (85). 

Anti-inflammatory effects have previously been described for peripheral adiponectin 

(73). By measuring the activation of pro-inflammatory markers in DIO mice, which 

have been demonstrated to have increased hypothalamic inflammation (211), we found 

ameliorated hypothalamic inflammation after central adiponectin administration 

(chapter 4.1, figure 5). These results provide evidence for anti-inflammatory properties 

of central adiponectin. 
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3.2. Central WNT signal transduction and its role in the 

neuroendocrine control of seasonal energy metabolism 

The evolutionary highly conserved WNT signalling pathway is best studied for its role 

in embryogenesis and tumorigenesis (88-90). Recent findings suggest an important role 

of this pathway in adult neurogenesis and the neuroendocrine control of energy 

metabolism, in particular in hypothalamic leptin signalling in obese mice (119, 120, 

124, 125). Furthermore, hypothalamic WNT signalling is involved in seasonal 

physiology in photoperiod-responsive rats (125-127). Here, we examined the 

implication of WNT signalling in the neuroendocrine control of seasonal body weight 

regulation and annual changes in leptin sensitivity exhibited by Phodopus sungorus. 

Furthermore, we examined whether hypothalamic WNT signalling is regulated by a 24-

hour rhythm. 

 

3.2.1. Central expression profile of WNT genes and the effect of photoperiod and 

time of day on WNT signal transduction in adult Phodopus sungorus 

We first characterised the hypothalamic expression profile of genes encoding 

components involved in the WNT pathway by performing in situ hybridization. We 

found gene expression of the WNT pathway ligands WNT-4, SFRP-2 and DKK-3, the 

key enzyme GSK-3β and the WNT pathway target genes Axin-2 and Cyclin-D1 in the 

mediobasal hypothalamus of adult Djungarian hamsters, specifically in the ARC 

(chapter 4.2, figure 1). Interestingly, gene expression of all investigated ligands as well 

as target genes was dependent on the photoperiod (chapter 4.2, figures 2 and 3a, b). The 

up-regulation of WNT-4, a WNT/β-catenin pathway agonist (212), together with 

increased levels of Axin-2 and Cyclin-D1 mRNA in the hypothalami of LD compared 

with SD hamsters, indicates enhanced activation of the canonical WNT/β-catenin 

pathway during LD conditions. Nonetheless, these data solely stem from observations 

of WNT signalling on a transcriptional level.  

To provide further evidence for increased hypothalamic WNT/β-catenin signalling in 

LD relative to SD hamsters, we next examined the canonical WNT/β-catenin pathway 

on a posttranslational level. Indeed, by performing immunohistochemistry we found 
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elevated phosphorylation of the WNT co-receptor LRP-6 at serine 1490 in the ARC of 

LD hamsters in comparison with SD hamsters (chapter 4.2, figure 4). Phosphorylation 

at this serine residue leads to activation of LRP-6, which is required for the initiation of 

canonical WNT/β-catenin signal transduction (106, 107). These data provide strong 

evidence for elevated WNT/β-catenin signalling in the ARC of Djungarian hamsters 

during LD relative to SD conditions. 

Additionally, SFRP-2 mRNA levels were increased in LD hamsters. In light of the 

proposed increased WNT/β-catenin pathway activation during LD this appears 

paradoxical at first, due to the general antagonizing effect on both canonical and non-

canonical WNT signalling described for members of the SFRP family (110, 111). 

However, SFRP-2 has been demonstrated to particularly facilitate the activity of WNT-

4 during kidney development (213). Thereby, the increase in SFRP-2 mRNA observed 

in our study might illustrate a regulatory mechanism to prevent aberrant activation of 

non-canonical WNT signalling, while at the same time allowing enhanced activation of 

canonical WNT/β-catenin signalling via WNT-4 in the ARC of LD hamsters.  

A key regulatory enzyme of the WNT/β-catenin pathway is GSK-3β, being responsible 

for the phosphorylation and subsequent proteasomal degradation of the co-transcription 

factor β-catenin (115, 116). In the present study, GSK-3β gene expression was 

regulated by neither photoperiod nor time of day (chapter 4.2, figure 3c). The WNT/β-

catenin pathway-inhibiting activity of GSK-3β is, however, altered by phosphorylation 

at serine 9, which results in the inhibition of this kinase (117). We performed 

immunohistochemistry to evaluate the number of pGSK-3β (serine 9)-immunoreactive 

cells in the ARC of hamsters from LD or SD and at different times throughout the 24-

hour period. Unfortunately, commercially available antibodies used in this study did 

not cross-react with hamster tissue. Therefore, no definite prediction can be made as to 

how GSK-3β activity is regulated by seasonal adaptations or during day and night in 

Djungarian hamsters. However, in light of our findings regarding increased WNT/β-

catenin pathway activation and elevated target gene expression during LD relative to 

SD, a probable reduction in GSK-3β activity in the ARC of LD hamsters can be 

proposed. Interestingly, SD compared with LD photoperiod was shown to induce 

deteriorated insulin signalling in the ARC of Djungarian hamsters (214). GSK-3β is a 

potent inhibitor of insulin signal transduction. The reduction in hypothalamic insulin 

signalling detected in SD hamsters may therefore result from ameliorated GSK-3β 
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activity as a consequence of reduced WNT/β-catenin pathway activation during SD 

compared with LD. In line with this, Benzler et al. demonstrated that blockade of 

canonical WNT/β-catenin signalling in diabetic Lepob/ob mice inhibits the glucose-

lowering effects of exogenous leptin (119). This suggests that WNT/β-catenin 

signalling is an important mediator of leptin-induced attenuation of glucose 

homeostasis and provides further evidence for a crucial role of hypothalamic WNT/β-

catenin signal transduction in the neuroendocrine control of metabolism.  

Furthermore, we investigated the 24-hour profile of hypothalamic WNT component 

gene expression. Overall, the effects of time of day on gene expression were limited, 

with no rhythmic regulation for WNT-4, SFRP-2 and GSK-3β (chapter 4.2, figure 3). 

On the other hand, DKK-3, Axin-2 and Cyclin-D1 revealed rhythmic regulation of 

hypothalamic gene expression throughout the 24-hour cycle (chapter 4.2, figure 2). In 

both LD and SD hamsters, expression of the two WNT target genes Axin-2 and Cyclin-

D1 appeared to decline throughout the light phase and increase throughout the dark 

phase. In LD hamsters, this was accompanied by increasing expression of the WNT/β-

catenin signalling antagonist DKK-3 throughout the light phase and decreasing 

expression throughout the dark phase, potentially resulting in the reciprocal expression 

profile of WNT target genes that we observed in the present study. Other than in LD 

hamsters, the 24-hour expression profile of DKK-3 did not justify the rhythmic 

regulation of Axin-2 and Cyclin-D1 mRNA in SD hamsters. Interestingly, several WNT 

gene promotors were shown to exhibit BMAL-1 occupancy, suggesting direct circadian 

regulation of expression of genes encoding components involved in the WNT pathway. 

Guo and colleagues demonstrated that overexpression of BMAL-1 resulted in enhanced 

WNT/β-catenin signal activity. Disruption of BMAL-1 function, on the other hand, led 

to down-regulation of genes involved in the canonical WNT/β-catenin pathway, 

accompanied by increased adipogenesis and the development of obesity in mice (215). 

Furthermore, BMAL-1 has been shown to be a prominent transcription factor for genes 

encoding central regulators of metabolism (216). These results, together with our 

findings in the Djungarian hamster, support an important role of canonical WNT/β-

catenin signalling in the seasonal as well as 24-hour-rhythmic hypothalamic regulation 

of cell differentiation as well as energy metabolism, as further discussed below. 
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3.2.2. The potential role of canonical WNT/β-catenin signalling in cell 

differentiation processes in Phodopus sungorus 

WNT/β-catenin signalling has been shown to control adipogenesis; it prevents 

differentiation of preadipocytes by inhibition of adipogenic transcription factors, 

namely CCAAT-enhancer binding protein α (C/EBPα) and peroxisome proliferator-

activated receptor γ (PPARγ), whereas disruption of WNT signal transduction in 

preadipocytes causes these cells to differentiate into adipocytes (217, 218). 

Interestingly, C/EBPα disruption in knockout mice causes a major reduction in lipid 

content and adipose cell size, while adipocyte differentiation still occurs (219). We 

found elevated WNT/β-catenin pathway activity during LD compared with SD, 

pointing to reduced adipogenesis in LD hamsters. However, LD hamsters possess 

larger body fat stores than SD hamsters (199, 200). This is primarily due to increased 

adipose hypertrophy, but not adipose hyperplasia (220). Therefore, the adipogenesis-

inhibiting role of canonical WNT/β-catenin signalling appears to play only a minor role 

in the seasonal regulation of fat pad mass in Djungarian hamsters. However, it is 

important to consider that we examined WNT/β-catenin signal transduction only in 

brain tissue, but not in the periphery. In peripheral tissues it might be regulated 

conversely depending on photoperiodic background and still contribute to the seasonal 

changes in adipose mass observed in Djungarian hamsters. 

The importance of neural WNT signalling has been extensively described in embryonic 

development. For a long time, neurogenesis in the adult mammalian brain was 

considered to be restricted to two distinct regions: the dentate gyrus in the hippocampus 

and the subventricular zone of the lateral ventricles in the forebrain, linked to learning, 

memory formation, olfaction and mood modulation (221-225). In these brain regions, 

canonical WNT signalling promotes neurogenesis (226). Recently, accumulating 

evidence suggests that adult neurogenesis also appears in other brain regions, such as 

the hypothalamus (227, 228). It was demonstrated that WNT signalling is required in 

the developed hypothalamus of both zebrafish and mice (227). Furthermore, there is a 

large body of evidence showing photoperiodic control of hypothalamic WNT signalling 

in photoperiod-sensitive F344 rats (125, 126, 229), and various members of the 

canonical WNT/β-catenin pathway were up-regulated in LD-acclimated F344 rats 

(127). In line with these findings, we demonstrated elevated canonical WNT pathway 

activity in the Djungarian hamster during LD. It is tempting to speculate that this 
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increased pathway activation in LD hamsters entails increased neurogenesis. However, 

a study conducted in another hamster species, the adult Syrian hamster (Mesocricetus 

auratus), found contradictory results. There, higher numbers of newly incorporated 

neurons were detected in the hypothalamus of SD hamsters. It was unclear whether this 

was due to increased cell birth or reduced cell death, but the authors concluded that 

LD-acclimated Syrian hamsters exhibit reduced neuronal cell proliferation compared 

with SD hamsters (230). Whether this is regulated similarly in Djungarian hamsters is 

unclear. While both hamster species are long day-breeders, there are numerous 

differences in regards to their photoperiodic adaptations. While Djungarian hamsters 

exhibit an increase in body weight, adipose tissue mass and circulating leptin levels 

during LD compared with SD, these effects are absent or very limited in Syrian 

hamsters (231-233). Additionally, Djungarian hamsters exhibit increased Socs-3 

mRNA levels during LD relative to SD conditions, accompanied by deteriorated 

hypothalamic leptin sensitivity (48). In Syrian hamsters, on the other hand, photoperiod 

had no effect on Socs-3 gene expression (206). Therefore, neurogenesis might also be 

regulated differently in these two hamster species.  

Studies conducted in photoperiod-responsive hamsters as well as sheep suggest 

photoperiod-induced alterations in the morphology of the mediobasal hypothalamus 

(230, 234-236). Neurogenesis in the adult murine hypothalamus has been demonstrated 

to play an important role in the regulation of neuroendocrine pathways that are in 

control of energy metabolism (237, 238). The increase in WNT/β-catenin signalling in 

the ARC of LD hamsters demonstrated in the present study potentially represents a 

mechanism for cellular and structural remodelling of neurocircuits that mediate 

photoperiodic alterations in energy balance in the Djungarian hamster. Further 

investigation into the effects of photoperiod on neurogenesis and morphological 

remodelling of the adult Djungarian hamster’s hypothalamus with a focus on signalling 

pathways regulating energy homeostasis is required. 
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3.2.3. Leptin activates the canonical WNT/β-catenin signalling pathway in 

Phodopus sungorus 

Recently, our group demonstrated that hypothalamic WNT/β-catenin signalling is 

disrupted in obese leptin-deficient Lepob/ob mice and is reinstated by leptin 

administration (119). Therefore, we next wanted to investigate whether leptin 

administration in Djungarian hamsters leads to an activation of the canonical WNT 

pathway and whether this effect is photoperiod-dependent. By using 

immunohistochemistry to determine the number of pLRP-6 (serine 1490)-

immunoreactive cells, we found increased activation of the canonical WNT co-receptor 

LRP-6 in the ARC of hamsters that were challenged with leptin compared with vehicle-

treated control animals (chapter 4.2, figure 4). Interestingly, leptin led to activation of 

the WNT/β-catenin pathway in Djungarian hamsters from LD as well as SD. This 

finding was surprising, since LD hamsters are leptin resistant relative to SD hamsters 

(201, 204, 205, 239). In Djungarian hamsters, hypothalamic leptin resistance during LD 

was shown to be mediated by reduced translocation of activated STAT3 into the 

nucleus and as a consequence of up-regulated Socs-3 expression, leading to an 

inhibition of intracellular signal transduction via JAK2/STAT3 signalling (28, 29, 48, 

206, 240). Therefore, it is probable that the leptin-induced activation of the WNT/β-

catenin pathway is independent of the JAK2/STAT3 pathway. Instead, signal 

transduction via an indirect mechanism could be possible. However, the rapid 

activation of the WNT/β-catenin co-receptor LRP-6 only 15 minutes after 

intraperitoneal leptin administration suggests a direct effect of leptin. Therefore, the 

exact mechanism via which leptin mediates its WNT pathway-activating effects in the 

hypothalamus remains to be further investigated. A very recent study conducted in 

Xenopus laevis tadpoles confirmed our finding that leptin is able to activate WNT/β-

catenin signalling in the hypothalamus of yet another species (241), indicating that this 

particular effect of leptin is conserved throughout several taxonomic classes of the 

animal kingdom. 

Intriguingly, Ellis et al. reported a time of day-dependent effect on LepRb gene 

expression in the ARC of Djungarian hamsters acclimated to LD, but this rhythm was 

not present in SD animals (242). In LD hamsters, LepRb mRNA levels are elevated 

during the dark phase relative to the light phase. It is interesting to note that LepRb 

gene expression in LD hamsters peaks in the middle of the dark phase at ZT21 (242). 
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We found that at this exact time mRNA levels of the WNT target genes Axin-2 and 

Cyclin-D1 reach their nadir in LD hamsters, followed by an abrupt increase in gene 

expression. This may be a consequence of enhanced leptin signalling due to increased 

leptin receptor levels. It appears that the 24-hour rhythm in LepRb gene expression and, 

as a potential consequence, leptin sensitivity is revealed under conditions of leptin 

resistance and high levels of the hormone during LD, whereas this does not apply to 

leptin sensitive SD hamsters with low hormone levels (242). Furthermore, these data 

suggest that hypothalamic leptin resistance does not persist throughout the entire day 

once it is established, but may be subject to daily variations. 
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3.3. Influence of the time of day on the control of energy metabolism 

It is well established that circadian clocks play an important role in the maintenance of 

energy metabolism. Disruptions of circadian rhythms lead to metabolic disorders in 

both rodents and humans (177-179) and HFD feeding has been shown to interfere with 

circadian rhythms (158, 180, 181). However, whether leptin signal transduction in the 

ARC, a key region in neuronal control of body weight and overall energy metabolism, 

is rhythmically regulated throughout the day has not yet been examined. Furthermore, 

the suggestion that physiological leptin resistance in LD-acclimated Djungarian 

hamsters may underlie a 24-hour rhythm, as discussed above (chapter 3.2.3), brings 

about the question as to whether this also applies to the pathological model of leptin 

resistance during DIO. In the present study, we therefore investigated how activation of 

the leptin signalling pathway is modulated over the course of the day per se and 

whether HFD-induced obesity interferes with this. We also examined the effects of 

time-restricted access to HFD on metabolic markers and whether the time of TRF has 

an influence on the amelioration of metabolic health. For an overview of the 

experimental designs of this study, see chapter 4.3, supplementary figure 1.  

 

3.3.1. Time of day-dependent action of hypothalamic leptin signalling 

3.3.1.1. Rhythmic regulation of basal leptin signal transduction is disrupted by 

HFD feeding 

By performing immunohistochemistry, we examined the activation of the transcription 

factor STAT3 at its phosphorylation site tyrosine 705 as a marker for leptin’s 

intracellular signalling action over the course of an entire day in mice that had been 

fasted for 24 hours prior to perfusion (chapter 4.3, figure 1a, b). We discovered a 24-

hour rhythm of leptin pathway activation, as demonstrated by the number of pSTAT3 

(tyrosine 705)-immunoreactive cells, in the ARC of vehicle-treated mice that were fed 

with LFD, as well as both mice fed with LFD and HFD after leptin treatment. Although 

three-way ANOVA detected an overall rhythmicity of basal pSTAT3 immunoreactivity 

in vehicle-treated mice fed HFD, the subsequent post hoc test did not reveal significant 

differences between the individual time points. Instead, these mice showed a consistent 
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number of basal pSTAT3-immunoreactive cells throughout the entire 24-hour cycle. 

We therefore concluded that no physiologically relevant 24-hour rhythm of endogenous 

leptin pathway activation is present in mice fed HFD, showing that HFD feeding leads 

to a disruption of the rhythmic regulation of basal leptin pathway activity. 

In vehicle-treated mice fed LFD, basal leptin pathway activity was at a maximum at the 

beginning of the light phase at ZT0 and at a minimum at ZT6 with continuously 

increasing pSTAT3 activation from the middle of the light phase to the end of the dark 

phase. This rhythmic regulation of basal leptin pathway activity occurred despite an 

extended fasting period of 24 hours prior to tissue sampling and therefore indicates a 

physiological role that is independent of preceding food intake. Furthermore, this 

rhythmic oscillation of basal pSTAT3 activation is also independent of variations in 

serum leptin concentrations, which revealed no rhythmic regulation over 24 hours in 

fasted vehicle-treated mice fed LFD (chapter 4.3, figure 2a). These results indicate that 

the elevated number of pSTAT3-immunoreactive cells during the dark compared with 

the light phase is due to enhanced leptin sensitivity caused by mechanisms independent 

of the short-term factors food intake and circulating leptin levels. 

The majority of studies that investigated the effect of HFD feeding on leptin sensitivity 

in the ARC so far reported similar numbers of basal pSTAT3-immunoreactive cells in 

wild-type mice as well as in rats fed either LFD or HFD (12, 243, 244). By rigorous 

tissue sampling every 3 hours throughout the 24-hour cycle, we discovered that the 

effect of the diet on pSTAT3 activation is dependent on the time of day. Mice fed LFD 

compared with HFD had similar levels of pSTAT3 activation exclusively during the 

second part of the dark phase and the first part of the light phase from ZT21 – ZT3. 

However, HFD feeding led to an increase in pSTAT3 activation during the second part 

of the light phase and the first part of the dark phase from ZT6 – ZT18 (chapter 4.3, 

figure 1b). The discrepant results between our and the above-mentioned studies can be 

explained by the time of tissue sampling, which is typically performed in the early 

morning as has been specified in at least one of these studies (243). To our knowledge, 

there is only one other study that demonstrates elevated basal pSTAT3 activation 

during DIO. This study was conducted in rats that were fed either chow or HFD and 

received an icv injection of artificial cerebrospinal fluid (ACSF) and pSTAT3 

immunoreactivity was measured in the entire hypothalamus (245). Unfortunately, the 

authors did not indicate at what time of day brains were harvested. 
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A plausible explanation for this HFD-induced activation of pSTAT3 at specific times 

during the day compared with basal pathway activation in mice on LFD might be 

hypothalamic inflammation. Obesity is associated with chronic low-grade systemic and 

central inflammation (50, 246, 247). Pro-inflammatory cytokines such as interleukin 6 

(IL-6) and tumour necrosis factor α (TNFα) are secreted by white adipose and brain 

tissue, amongst a variety of other cell types, and circulating levels of IL-6 as well as 

TNFα were shown to be elevated during obesity (248-250). Interestingly, the role of 

IL-6 in inflammatory responses is complex and appears to be tissue-dependent. While 

myocyte-derived IL-6 has been shown to improve glucose metabolism and to have anti-

inflammatory functions (251, 252), these effects appear to be specific for its role as a 

myokine. Pro-inflammatory effects have been demonstrated for IL-6 in the majority of 

other tissues. Both IL-6 and TNFα mediate their effects via actions in the CNS, 

specifically the hypothalamus (253, 254), and hypothalamic inflammation via these 

cytokines has been implicated in the development of leptin as well as insulin resistance 

and type 2 diabetes (50, 248, 255, 256). Both cytokines have been shown to be able to 

mediate their pro-inflammatory effects via activation of the intracellular JAK2/STAT3 

pathway (257, 258). In line with this, our research group recently demonstrated that 

pSTAT3 is equally activated in leptin-deficient Lepob/ob mice fed HFD and treated with 

vehicle and mice fed LFD and treated with leptin (51). Since these mice lack 

endogenous leptin, the activation of pSTAT3 observed in vehicle-treated mice on HFD 

must be due to mechanisms other than leptin signalling. Furthermore, inhibition of the 

pro-inflammatory c-Jun N-terminal kinase (JNK) pathway in the hypothalamus of 

Lepob/ob mice reversed the HFD-induced resistance to the glucose-lowering effects of 

leptin (51). These results suggest that hypothalamic inflammation due to HFD-induced 

elevation of pro-inflammatory cytokine levels, but not the occurrence of 

hyperleptinemia, causes leptin resistance in leptin-deficient Lepob/ob mice. Therefore, it 

is possible that the increase in pSTAT3 activation in vehicle-treated wild-type mice fed 

HFD compared with LFD at particular times of the day demonstrated in the current 

study is a direct effect of pro-inflammatory cytokines leading to pSTAT3 activation. 

Notably, in the current study we used a mouse model of DIO typically associated with 

high circulating levels of leptin. Nonetheless, hypothalamic inflammation has been 

shown to interfere with leptin signalling in this mouse model and is causative for the 

development of HFD-induced obesity and related metabolic disorders (246, 259). 



43 
 

Hypothalamic inflammation is already altered within just hours of HFD consumption 

(247). By central inhibition of pro-inflammatory inhibitor of nuclear factor-κB kinase β 

(IKKβ)/nuclear factor-κ-light-chain-enhancer of B-cells (NF-κB) signal transduction in 

mice fed HFD, our research group recently confirmed that this pathway is involved in 

the development of DIO (52). Mice subjected to ARC-directed genetic inhibition of 

IKKβ/NF-κB signalling experienced an amelioration of the detrimental effects of HFD 

on body weight gain, body fat mass, energy expenditure, Socs3 gene expression in the 

ARC, as well as glucose tolerance. Since all of these factors are regulated by 

hypothalamic leptin signalling, these results provide evidence that the central pro-

inflammatory IKKβ/NF-κB pathway is involved in the development of arcuate leptin 

resistance during DIO (52). Indeed, a prominent target of the IKKβ/NF-κB signalling 

cascade is the expression of SOCS3, a potent inhibitor of leptin signalling (49). Gao 

and colleagues demonstrated similar effects for the JNK pathway. They found 

enhanced hypothalamic leptin signalling as well as decreased body weight gain and 

food intake in DIO mice after pharmacological inhibition of JNK signal transduction 

(260). Based on these findings, the elevated activation of pSTAT3 in HFD-induced 

obese mice at specific times, as observed in the current study, might result from a 

rhythmic occurrence of hypothalamic inflammation and thus rhythmic appearance and 

abatement of leptin signal transduction-inhibiting inflammatory effects, rather than 

from a direct effect of pro-inflammatory cytokines.  

 

3.3.1.2. Rhythmic regulation of leptin-induced leptin signal transduction is 

disrupted by HFD feeding 

This phenomenon would also explain our findings of leptin-induced pSTAT3 activation 

over the course of a day in mice that were fasted for 24 hours prior to leptin injections. 

Mice fed LFD displayed a 24-hour rhythm in arcuate pSTAT3 levels, with maximum 

activation at ZT0 and declining levels throughout the light phase, reaching a minimum 

at ZT9 (chapter 4.3, figure 1a, b). These findings suggest rhythmic regulation of leptin 

signal transduction in the hypothalamic ARC of mice independent of food intake, with 

highest leptin sensitivity at the end of their active phase and lowest sensitivity before 

the onset of their active phase. Interestingly, basal pSTAT3 activation in vehicle-treated 

mice fed LFD follows the same daily pattern, even though baseline levels are 
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significantly lower at all investigated time points compared with leptin-induced 

pSTAT3 activation (chapter 4.3, figure 1a, b). 

On the other hand, HFD feeding led to a disruption of the 24-hour rhythm of leptin-

induced pSTAT3 activation that we observed in mice fed LFD. Leptin-treated mice fed 

HFD showed pSTAT3 levels that were at a minimum at ZT0 and continuously 

increasing throughout the light as well as the first half of the dark phase, reaching 

maximum levels at ZT18. Intriguingly, mice fed HFD showed lower levels of leptin-

induced pSTAT3 activation only during the second part of the dark and the first part of 

the light phase from ZT21 – ZT6 compared with mice fed LFD. At all other time 

points, pSTAT3 levels were similar between mice fed HFD and LFD (chapter 4.3, 

figure 1a, b). To our knowledge, this is the first description of this time of day-

dependent occurrence of leptin resistance in response to HFD feeding. Other studies so 

far reported decreased leptin-induced pSTAT3 activation and thus impaired leptin 

sensitivity in rodents fed HFD as a temporally omnipresent phenomenon (12, 243, 

244). As discussed above for basal pSTAT3 activation, this discrepancy most likely 

arises from the limited number of time points of tissue sampling in those studies. 

Taken together, our results demonstrate that DIO leads to a disruption of the 24-hour 

rhythm in the control of both basal as well as leptin-induced leptin signalling and 

furthermore suggest that DIO-induced leptin resistance is restricted to specific times of 

the day. In vehicle-treated mice fed HFD, which have higher circulating leptin 

concentrations relative to LFD throughout the entire day (chapter 4.3, figure 2a), we 

report increased leptin pathway activity, exemplified by the number of pSTAT3-

immunoreactive cells, exclusively from ZT6 – ZT18. In line with this, leptin-treated 

mice fed HFD show leptin sensitivity similar to mice fed LFD exclusively from ZT9 – 

ZT18, whereas pSTAT3 activation is deteriorated at all other times. A DIO-induced 

increase in hypothalamic inflammatory activity during the second half of the dark 

(active) and the first half of the light (inactive) phase, evoking impaired leptin 

signalling, might be causative for this time of day-dependent impairment of leptin 

signal transduction as observed in both vehicle- and leptin-treated mice fed HFD 

compared with LFD. 

Although a large body of evidence demonstrates circadian regulation of central 

inflammation in rodents, only few of these studies concentrated on the hypothalamus 
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and results are contradictory. Some studies report that Tnfα gene expression in the 

hypothalamus is increased in the light phase compared with the dark phase (261), with 

peak mRNA levels at ZT0 and lowest levels at ZT18 (262), while others found 

relatively low Tnfα gene expression during the light phase and highest mRNA levels 

during the middle of the dark phase (263). Notably, only the latter study was conducted 

in mice, whereas all other studies used rats. These discrepancies could be due to 

differences between species or to different experimental conditions. Cytokines and 

other immune mediators have been shown to be directly influenced by circadian 

timekeeping processes in various tissues (264). For example, CLOCK can directly 

interact with the pro-inflammatory transcription factor NF-κB, leading to elevated 

transcriptional activity, whereas the heterodimerisation of CLOCK and BMAL-1 

results in rhythmic repression of inflammatory genes (265). Furthermore, REV-ERBα 

represses a distinct subset of inflammatory genes in macrophages (266) and loss of 

CRY proteins results in constitutive NF-κB activation (267). These studies show that 

the rhythmic regulation of inflammatory responses is intricately arranged. 

Characteristically, a peak in circulating cytokines during the onset of an animal’s active 

phase has been described for humans as well as mice (268, 269). Of great importance is 

that all above-mentioned studies examining rhythmic regulation of inflammatory 

activity focused on non-obese subjects (261-263, 268, 269). Therefore, it is rather 

possible that the daily rhythm of hypothalamic inflammation in DIO mice, which show 

an increase in pro-inflammatory markers, is regulated differently. Unfortunately, 

commercially available ELISA kits for the analysis of circulating cytokines required 

too large serum sample volumes and we were therefore unable to measure circulating 

levels of IL-6 and TNFα throughout the 24-hour cycle in mice used in our study. 

 

3.3.1.3. Leptin sensitivity on a behavioural level is dependent on the time of day 

After we had established that arcuate leptin sensitivity on a molecular level exhibits a 

24-hour rhythm in mice, we next analysed whether this rhythmicity also applies to the 

behavioural response to exogenous leptin. Mice fed either LFD or HFD were injected 

at either ZT0, when leptin sensitivity on a molecular level was at a maximum in LFD 

mice, or at ZT12. Subsequently, accumulated caloric intake was measured 4 hours and 

24 hours post injections to assess the anorexigenic effects of the hormone (chapter 4.3, 
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figure 1b, c). Compared with their vehicle-treated counterparts, mice fed LFD showed a 

significant reduction in caloric intake after both 4 hours and 24 hours when leptin was 

administered at ZT0, whereas injections at ZT12 had no effect on caloric intake. In 

mice fed HFD, on the other hand, exogenous leptin at either time point did not result in 

decreased caloric intake, suggesting that on a behavioural level these mice are resistant 

to the anorexigenic effects of leptin throughout the entire 24-hour cycle.  

 

3.3.1.4. 24-hour profile of blood-borne metabolic markers 

To further investigate the impact of DIO on physiological rhythms, we next analysed 

circulating metabolic markers throughout the 24-hour cycle. Vehicle-treated mice fed 

LFD showed consistently low levels of circulating leptin. The absence of a 24-hour 

rhythm in these mice is most likely due to the extended fasting period prior to blood 

sampling. Non-fasted male mice on a control diet have been shown to exhibit a 24-hour 

rhythm of endogenous leptin, with elevated levels during the dark and reduced levels 

during the light phase (270). Intriguingly, vehicle-treated mice fed HFD displayed a 

prominent rhythm in serum leptin concentrations, despite the preceding 24-hour fasting 

period (chapter 4.3, figure 2a). Leptin concentrations were elevated during the light 

phase, reaching a maximum at ZT6, and reduced during the dark phase. This peak in 

endogenous leptin levels coincides with reduced pSTAT3 activation in mice fed HFD 

on a molecular level, indicating an inhibitory effect of leptin on leptin pathway 

activation during DIO. This finding furthermore corroborates that hyperleptinemia is 

required for the development of hypothalamic leptin resistance (271).  

Indeed, in a series of elegant studies, Scarpace and colleagues demonstrated that 

elevated central leptin levels are causative for hypothalamic leptin resistance. Rats 

received a chronic virus-mediated leptin transgene overexpression directly into the 

third ventricle of the brain, resulting in elevated hypothalamic but not systemic leptin 

levels (272). These rats developed impaired leptin responsiveness despite lower body 

mass and serum leptin levels compared with control rats, demonstrating hypothalamic 

leptin-induced leptin resistance independent of other detrimental effects typically 

associated with DIO, such as elevated hypothalamic inflammation (272). In a follow-up 

study, hypothalamic leptin resistance was induced as described above and rats received 

a HFD after hypothalamic leptin resistance was established (273). Leptin-vector-treated 
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rats fed HFD consumed significantly more calories and gained more body weight and 

fat mass than rats that were treated with a control virus and fed HFD. These results 

indicate that hypothalamic leptin resistance provokes increased susceptibility to DIO, 

proposing the fascinating notion that leptin resistance is both a cause and a 

consequence of obesity (273). As discussed above, the involvement of hypothalamic 

inflammation has also been shown to contribute to the development of leptin resistance 

and obesity (52, 260). Taken together, these findings provide evidence that not one 

single cause underlies these metabolic derangements, but rather the conjoined 

occurrence of both hyperleptinemia and elevated hypothalamic inflammation is 

causative for their development.  

To further examine the hypothesis that leptin has an inhibitory effect on hypothalamic 

leptin signal transduction in states of DIO, we conducted another study with the same 

experimental setup as described above in which mice were injected at either ZT0 or 

ZT12. This time mice received an ip injection of a potent short-acting leptin antagonist 

(LAN; 1.0 mg/kg in PBS; Protein Laboratories Rehovot Ltd.) with the same half-life as 

recombinant mouse leptin, to assess whether acute targeted inhibition of leptin action at 

specific time points leads to an increased anorexigenic response on a behavioural level 

in mice fed HFD. Unfortunately, we found no effect of acute LAN administration on 

caloric intake in either mice fed LFD or HFD, potentially because the applied dose was 

insufficient to entirely antagonise leptin binding to its receptor and activating 

downstream pathway signalling.  

Circulating insulin concentrations displayed no rhythmic oscillation over the 24-hour 

cycle in either mice fed LFD or HFD, but three-way ANOVA revealed an overall 

increase of serum insulin levels in mice fed HFD compared with LFD, independent of 

leptin administration (chapter 4.3, figure 2b). Increased insulin levels during DIO have 

been reported previously and are an indicator for disrupted insulin signal transduction, 

eventually resulting in the manifestation of type 2 diabetes (23). 

In line with the consistently low levels of leptin and insulin, mice that were fed LFD 

and fasted for 24 hours prior to blood sampling showed no rhythmic regulation of 

serum glucose levels throughout the day. In contrast, mice fed HFD displayed rhythmic 

levels of circulating glucose with concentrations similar to those observed in mice fed 

LFD during the light phase and elevated levels during the dark phase (chapter 4.3, 
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figure 2c). Notably, this peak occurs independently of food intake, but simultaneously 

with reduced levels of serum leptin, suggesting a correlation between circulating leptin 

and glucose levels. Indeed, obese leptin-deficient Lepob/ob mice display severe 

hyperglycaemia despite increased levels of circulating insulin. In these mice, even low 

doses of exogenous leptin restore normal glucose homeostasis without leptin eliciting 

its anorexigenic properties on food intake and body weight, demonstrating a profound 

blood glucose-lowering effect of the hormone and highlighting the importance of leptin 

signalling on functional insulin signal transduction (271). On a molecular level, leptin 

injections lead to increased activation of IRS1 (71). This is most likely achieved by 

leptin activating the WNT/β-catenin pathway and subsequent inhibition of GSK3β 

[chapter 3.2 and (119)]. Since GSK3β is a potent inhibitor of insulin signalling, this 

decrease in GSK3β activity might be causative for the leptin-mediated sensitisation of 

insulin pathway activation. 

Taken together, our and the above-mentioned studies suggest that leptin in more 

efficient in regulating glucose homeostasis than in mediating its anorexigenic effects on 

food intake and body weight. Furthermore, no difference in serum glucose levels 

throughout the day was observed between vehicle- and leptin-treated mice in either 

mice fed LFD or HFD. This indicates that in mice fed LFD, glucose homeostasis is 

fully functional and additional leptin administration does not improve glucose tolerance 

any further. On the other hand, in mice fed HFD that exhibit responsiveness to the 

glucose-lowering effects of endogenous leptin during the light phase, exogenous leptin 

seems unable to counteract the deteriorated glucose homeostasis displayed during the 

dark phase. These findings suggest an intricately regulated mechanism discriminating 

between effects of endogenous versus exogenous leptin. Indeed, Ottaway et al. reported 

that repeated administration of high doses of a long-acting leptin antagonist leads to an 

increase in caloric intake in mice fed HFD relative to vehicle-treated animals, 

suggesting that on a behavioural level DIO mice are still responsive to endogenous 

leptin to some extent, despite impaired leptin signalling and resistance to exogenous 

leptin (274). 

In conclusion, we demonstrate a time of day-dependent regulation of leptin action that 

is disrupted by the consumption of HFD. Physiologically, the elevated responsiveness 

to leptin on both the molecular and behavioural level at the beginning of the light phase 

as observed in mice fed LFD might present a regulatory mechanism that inhibits the 
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drive to eat and ultimately prevents food seeking behaviour during the animals’ 

inactive phase. The disruption of this physiological rhythm during DIO might be 

causative for the arrhythmic behavioural patterns observed during obesity. Mice 

subjected to HFD were shown to have increased relative locomotor activity and food 

intake during the light phase (158, 181), coinciding with decreased leptin sensitivity as 

demonstrated in our study. 

 

3.3.2. Effects of time-restricted feeding on energy metabolism 

We next examined whether the beneficial effects on metabolic health that have been 

described for TRF regimens depend on the rhythmic control of hypothalamic leptin 

sensitivity. Based on our observations about the DIO-induced disruption of this rhythm 

on a molecular level, we restricted access to HFD to four defined 6-hour intervals each 

day, thereby covering the entire 24-hour cycle. One group of mice subjected to the TRF 

regimen received HFD during the interval when mice fed HFD displayed leptin 

resistance on a molecular level compared with mice fed LFD (ZT21 – ZT3). A second 

group received HFD during the interval when both mice fed LFD and HFD showed 

identical responsiveness to exogenous leptin (ZT9 – ZT15). Because these two groups 

had access to HFD for 3 hours during both the light and the dark phase, effects 

observed between these groups can be regarded as activity-independent. Two more 

groups had access to HFD during either the light (resting) phase (ZT3 – ZT9) or the 

dark (active) phase (ZT15 – ZT21). 

 

3.3.2.1. Effect of time-restricted feeding on body weight and behaviour 

Mice showed increased body weight as early as nine days after the start of HFD feeding 

relative to mice fed LFD (chapter 4.3, figure 3). After four weeks of ad libitum HFD 

feeding, these mice were separated into five groups of which one continued to receive 

ad libitum HFD and the other animals were subjected to the TRF regimen as described 

above. By the end of the experiment, all TRF mice had significantly reduced body 

weight as well as circulating leptin concentrations (chapter 4.3, figure 5a) relative to 

mice fed HFD ad libitum, with values similar to those detected in mice fed LFD. We 

observed no differences of these parameters between the TRF groups. The reduction in 
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body weight of TRF mice can be accounted for by reduced daily caloric intake 

compared with mice fed HFD ad libitum (chapter 4.3, supplementary figure 2a), 

however, this was not accompanied by a reduction of daily locomotor activity (chapter 

4.3, supplementary figure 2b). Notably, since circulating leptin levels are proportional 

to body fat mass (275), the reduction in body weight together with decreased plasma 

leptin levels observed in TRF mice relative to mice fed HFD ad libitum indicates a 

reduction in fat mass but not lean mass. Indeed, this effect on body fat content has 

recently been described for a TRF regimen (276). 

 

3.3.2.2. Effect of time-restricted feeding on markers of metabolic health 

We monitored parameters of energy metabolism and behaviour of mice from this study 

using a respirometry system. By analysing data that were binned into 6-hour intervals, 

we found that locomotor activity as well as average metabolic rate and energy 

expenditure followed a clear daily rhythm in mice fed LFD and HFD ad libitum 

(chapter 4.3, figure 4b, c, d). These parameters were lowest during the animals’ resting 

phase from ZT3 – ZT9 and highest during their active phase from ZT15 – ZT21, 

whereas they exhibited similar values during both activity-independent intervals (ZT9 – 

ZT15 and ZT21 – ZT3) that were situated medially between these two extremes. 

However, mice fed HFD showed a reduction in these parameters during one or more 6-

hour intervals compared with mice fed LFD (chapter 4.3, figure 4b, c, d). This is in 

accordance with previous studies revealing impaired locomotor activity and energy 

metabolism during DIO (181). Here, we demonstrate that these impairments occur 

during phases when mice are active, but not during their exclusive resting phase. 

Feeding behaviour exhibited a slight variation from this clear daily rhythm (chapter 4.3, 

figure 4a). In mice fed LFD, caloric intake was minimal during their inactive phase and 

maximal during their active phase. Concerning the two activity-independent intervals, 

caloric intake was significantly higher during ZT9 – ZT15 relative to ZT21 – ZT3. We 

found similar results in mice fed HFD. Here, caloric intake was lowest during their 

inactive phase and highest during the two following intervals. However, this was not 

followed by a reduction in caloric intake as observed in mice fed LFD, but remained 

significantly increased during ZT21 – ZT3. The caloric overconsumption exclusively 

during this interval was sufficient to result in the overall increase in daily caloric intake 
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relative to mice fed LFD (chapter 4.3, supplementary figure 2a). A relative increase in 

caloric intake during the light relative to the dark phase has been reported previously in 

mice fed HFD (181). Here, we show that this increase is linked to the animals’ 

responsiveness to leptin. Intriguingly, in mice fed LFD caloric intake is increased at 

times when leptin sensitivity on a molecular level is at a minimum, and decreases when 

leptin sensitivity is at a maximum. Moreover, mice fed HFD show abnormally elevated 

caloric intake exclusively at times when leptin sensitivity on a molecular level is 

impaired relative to control mice. These findings provide further evidence for an 

important impact of this 24-hour rhythm of leptin signal transduction on physiological 

and behavioural responses. 

In TRF mice, access to HFD during either the inactive (ZT3 – ZT9) or active (ZT15 – 

ZT21) phase resulted in a slight dampening of the daily rhythm of locomotor activity, 

whereas mice with access to HFD exclusively during their leptin sensitive interval from 

ZT9 – ZT15 retained a robust locomotor activity rhythm relative to mice fed LFD ad 

libitum. In contrast, while mice that consumed HFD exclusively during their relative 

leptin resistant interval from ZT21 – ZT3 still showed lowest activity during the light 

phase, these animals lost the daily rhythm in locomotor activity observed in mice fed 

LFD and HFD ad libitum and displayed no variations between any of the subsequent 

intervals (chapter 4.3, figure 4b). 

The daily rhythms in average metabolic rate as well as energy expenditure that were 

displayed by ad libitum fed mice were affected in all TRF mice. To account for the 

differences in body mass between the experimental groups, we evaluated these 

parameters based on body weight. Mice with access to HFD during either their leptin 

sensitive or active phase retained the most robust rhythm relative to animals with ad 

libitum access to food, even though mice with access to food exclusively during their 

leptin sensitive phase showed no differences in both metabolic rate and energy 

expenditure between the feeding phase and the subsequent active phase. Notably, an 

animals’ metabolic rate is elevated during times of food intake and this finding can 

therefore be accounted for by the food intake-mediated increase in oxygen 

consumption. HFD feeding during either the animals’ inactive or leptin resistant phase, 

on the other hand, led to a loss of the daily rhythms in metabolic rate as well as energy 

expenditure, with energy expenditure being most severely impaired in mice that had 

food during the leptin resistant phase (chapter 4.3, figure 4c, d). 
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Furthermore, mice fed during the leptin resistant interval displayed elevated circulating 

insulin concentrations compared with mice fed LFD, independent of leptin treatment 

prior to blood sampling (chapter 4.3, figure 5b). Unfortunately, we were unable to 

analyse blood glucose concentrations in these mice, which could have revealed the 

severity of the metabolic derailment. Nonetheless, the increase in plasma insulin levels 

suggests disrupted insulin signal transduction that may eventually result in the 

manifestation of type 2 diabetes (23). 

Taken together, we demonstrate that the detrimental effects of HFD on metabolic 

health are dependent on when throughout the day the diet is consumed. HFD feeding at 

times when mice are unresponsive to the anorexigenic effects of leptin leads to 

symptoms of metabolic disease, whereas HFD at times when mice are sensitive to 

leptin protects from these detrimental health outcomes (Figure 4). 
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Figure 4: Effects of time-restricted feeding on metabolic health are dependent on the time 

of day. In mice, restricted access to HFD exclusively from ZT21 – ZT3, coinciding with their 

relative leptin resistant interval, leads to the manifestation of symptoms of metabolic disease 

such as compromised daily rhythms of locomotor activity, metabolic rate, and energy 

expenditure as well as increased circulating insulin levels. On the other hand, restricted access 

to HFD exclusively from ZT9 – ZT15, coinciding with their relative leptin sensitive interval, 

protects from the manifestation of these metabolic impairments. These effects on metabolic 

health are independent of activity states, since both TRF regimens allowed access to HFD for 3 

hours during the light and 3 hours during the dark phase each day. High-fat diet (HFD), Time-

restricted feeding (TRF), Zeitgeber time (ZT).  
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3.4. Future perspectives 

In this thesis, we revealed a 24-hour rhythm of hypothalamic leptin sensitivity that 

plays a crucial role in the regulation of whole body energy homeostasis. We 

furthermore demonstrated that HFD-induced obesity leads to a disruption of this 

rhythm, which in turn underlies the metabolic derangements observed in obese mice. 

The underlying molecular mechanism, by which obesity leads to this breakdown of 

physiological rhythmicity, is yet to be determined. Alterations in the secretion of 

circulating inflammatory cytokines or expression patterns of other leptin pathway-

inhibiting signals could be a plausible explanation for this phenomenon. Therefore, the 

investigation of 24-hour rhythms in hypothalamic gene expression of leptin inhibitors 

such as SOCS3 and the effect of HFD feeding on these patterns are to be considered in 

future experiments, as well as a potential rhythmic regulation of circulating pro-

inflammatory cytokines such as TNFα and IL-6.  

To assess whether elevated hypothalamic inflammation causes the disruption of leptin 

sensitivity at specific times during the day as observed in DIO mice, it would be of 

great interest to examine how inhibition of inflammation at defined times affects this 

phenomenon. Administration of short-acting pharmacological inhibitors of the pro-

inflammatory NFκB and JNK pathways in the middle of the dark phase, when reduced 

responsiveness to leptin in mice fed HFD first appears, and a potential reversal of HFD-

induced disruptions of metabolic rhythms on the molecular as well as behavioural level 

would determine the implication of hypothalamic inflammation in this metabolic 

derangement. 

Additionally, a closer investigation of the long-term effects of TRF on metabolic health 

could help develop better strategies for therapeutic interventions on a behavioural level, 

which could circumvent the side effects that often accompany pharmacological 

interventions. For example, it needs to be determined whether TRF at defined times 

during the day maintains its beneficial effects on metabolic health independent of the 

patients’ age and baseline health status, and how these positive health outcomes are 

affected by prolonged periods of unrestricted food consumption after periods of TRF.  
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3.5. Abstract 

3.5.1. Abstract (English) 

Obesity and related metabolic disorders such as type 2 diabetes are a major health issue 

of our modern society. The brain has been identified to play an essential role in the 

pathogenesis of these diseases. Disruptions of the neuroendocrine system, such as the 

development of hypothalamic leptin resistance, are strongly correlated with the 

manifestation of diet-induced obesity (DIO). To date, the molecular mechanisms 

underlying these metabolic derangements are incompletely understood. Over the last 

decade, a close connection of energy metabolism and the circadian clock has been 

established, but the link between DIO and disruptions of physiological rhythms still 

needs further investigation. Therefore, the aim of this thesis was to gain new insights 

into neuroendocrine mechanisms that lead to the development of leptin resistance and 

the role of physiological rhythms in the disruption of energy metabolism. 

In this study, we investigated the implication of the adipocyte-derived hormone 

adiponectin in neuroendocrine control of energy metabolism. We detected expression 

of all investigated genes involved in the adiponectin signalling pathway in the 

hypothalamus of mice. Expression levels of adiponectin were reduced during states of 

food deprivation, potentially presenting a regulatory mechanism to counteract the 

anorexigenic traits that had been previously described for central adiponectin signalling 

and that were confirmed by us in this study, in order to prevent further reduction in 

body weight. In both fasted control mice as well as DIO mice, gene expression of the 

adiponectin receptor AdipoR1 was elevated, suggesting multiple regulatory 

mechanisms to maintain sufficient adiponectin signal transduction. The upregulation of 

AdipoR1 during DIO might be an attempt to support the beneficial effects of the 

hormone on metabolic health that have been reported for peripheral adiponectin. In line 

with this, we demonstrated that adiponectin holds insulin-sensitising, blood glucose-

lowering and anti-inflammatory properties in control as well as DIO mice and that 

these effects are mediated via central signal transduction. 

We furthermore investigated the role of the WNT/β-catenin pathway in the 

neuroendocrine control of energy metabolism. Here, we found gene expression of 

members of the WNT pathway on all regulatory levels (ligands, intracellular pathway 
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enzymes, target genes) in the hypothalamus of adult Djungarian hamsters, Phodopus 

sungorus, a seasonal rodent that exhibits profound annual changes in body weight and 

leptin sensitivity. Expression of all ligands as well as target genes was upregulated in 

hamsters acclimated to long day (LD) relative to short day (SD) conditions. Confirming 

our results from these transcriptional studies, we furthermore found increased 

phosphorylation of the WNT pathway co-receptor LRP-6, demonstrating elevated 

activation of canonical WNT signalling, in LD hamsters. These findings provide strong 

evidence for increased WNT signalling during LD compared with SD photoperiod. We 

found a 24-hour rhythm in the hypothalamic expression of WNT target genes, with 

decreasing levels during the light and increasing levels during the dark phase in both 

LD and SD hamsters. Moreover, leptin administration led to a further increase in LRP-

6 activation in hamsters from both photoperiods. Taken together, we demonstrate a 

novel integration site for the leptin signal in the hypothalamus, potentially linking the 

WNT pathway to body weight regulation. Furthermore, our results suggest an 

important role of canonical WNT signalling in the seasonal as well as daily 

neuroendocrine control of energy metabolism in Djungarian hamsters. 

By examining whether hypothalamic leptin signalling and whole body metabolism are 

modulated by a daily rhythm, we detected a 24-hour rhythm of STAT3 

phosphorylation, a marker for activated leptin signalling on a molecular level, in the 

hypothalamus of wild-type mice. Both basal as well as leptin-induced leptin sensitivity 

were highest at the end of the dark (active) phase and lowest at the end of the light 

(inactive) phase. Furthermore, we found that leptin sensitivity on a behavioural level 

followed the same rhythm, with mice showing a greater response to exogenous leptin at 

the end of the dark phase at Zeitgeber time (ZT) 0 compared with the end of the light 

phase at ZT12. Throughout the 24-hour cycle, mice displayed a robust rhythm in food 

intake, locomotor activity as well as oxygen consumption and energy expenditure, with 

reduced whole body metabolism during their inactive and increased metabolic rate 

during their active phase. In DIO mice that were subjected to high-fat diet (HFD) 

feeding, we found a disruption of the 24-hour rhythmic regulation of leptin pathway 

activation on a molecular level for both basal and leptin-induced leptin sensitivity. 

Intriguingly, we demonstrated that this hypothalamic leptin resistance is a temporary 

phenomenon that persists only at specific times during the day. Responsiveness to 

leptin was deteriorated during the second part of the dark and the first half of the light 
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phase (ZT21 – ZT6), but identical to mice fed low-fat diet (LFD) at all other times on 

both the molecular and behavioural level. Furthermore, DIO mice displayed a 

disruption of the daily rhythms in food intake, locomotor activity, oxygen consumption 

and energy expenditure. We found that the daily caloric overconsumption observed in 

mice fed HFD was restricted to the phase when DIO mice were leptin resistant relative 

to mice fed LFD. In conclusion, these findings provide strong evidence for a crucial 

role of the 24-hour rhythm of leptin sensitivity in the control of energy metabolism.  

We furthermore demonstrated that mice with access to HFD exclusively during their 

leptin resistant phase (ZT21 – ZT3) displayed impairments in a variety of parameters 

that indicate metabolic health, such as compromised rhythms of locomotor activity, 

metabolic rate, and energy expenditure as well as increased circulating insulin levels. 

Restricting HFD exclusively to the leptin sensitive phase (ZT9 – ZT15), on the other 

hand, protected mice from the development of these severe metabolic impairments. To 

date it is still largely unknown whether HFD-induced development of metabolic 

diseases results from an increase in body fat content, diet composition or disrupted 

circadian rhythms. We observed these differences between TRF groups despite an 

identical reduction in body weight and plasma leptin levels in all TRF mice, suggesting 

that they are based on the time of food intake during the 24-hour rhythm of leptin 

sensitivity, but independent from factors such as body composition or HFD content. 

Nonetheless, all mice fed HFD displayed a reduction in the absolute values of average 

metabolic rate and energy expenditure relative to mice fed LFD, demonstrating that 

also the HFD itself affects energy metabolism. In conclusion, these results demonstrate 

that TRF is efficient in the reduction of body weight and the amelioration of metabolic 

health. However, our findings also highlight the importance of synchronising food 

intake with daily physiological rhythms to maintain metabolic health. 

Taken together, this thesis identifies novel pathways that are involved in the 

neuroendocrine regulation of energy metabolism and provides new insights into the 

connection between physiological rhythms and the development of metabolic diseases.  
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3.5.2. Zusammenfassung (Deutsch) 

Adipositas und damit einhergehende Folgeerkrankungen, wie zum Beispiel Diabetes 

mellitus Typ 2, stellen ein enormes Gesundheitsproblem in unserer modernen 

Wohlstandsgesellschaft dar. Dem zentralen Nervensystem wurde dabei eine 

wesentliche Rolle in der Pathogenese dieser Erkrankungen nachgewiesen. Stӧrungen 

des neuroendokrinen Systems, im Besonderen die Entstehung von hypothalamischer 

Leptinresistenz, korrelieren stark mit dem Auftreten von diӓtinduzierter Adipositas. Die 

molekularen Mechanismen, die diesen metabolischen Stӧrungen zugrunde liegen, sind 

noch immer unzureichend erforscht. Zudem wurde gezeigt, dass die Regulierung des 

Energiemetabolismus eng mit der circadianen Uhr in Verbindung steht. Der 

Zusammenhang zwischen Adipositas und der Stӧrung physiologischer Rhythmen 

bedarf jedoch noch weiterer Untersuchungen, um ausreichend verstanden zu werden. 

Das Ziel der vorliegenden Arbeit war es daher, sowohl neue Einblicke in die 

neuroendokrinen Mechanismen zu erlangen, die zur Entstehung von Leptinresistenz 

führen, als auch die Rolle physiologischer Rhythmen in der Entgleisung des 

Energiemetabolismus zu entschlüsseln. 

In dieser Arbeit konnte die Expression von Genen des Adiponektinsignalweges im 

Hypothalamus von Mӓusen sowie eine Reduktion der adiponektin-Konzentration bei 

gefasteten Tieren nachgewiesen werden. Dies dient mӧglicherweise dazu, den 

katabolen Eigenschaften von Adiponektin entgegenzuwirken und verhindert somit 

einen weiteren Verlust an Kӧrpergewicht. Die Erhӧhung der Genexpression des 

Adiponektinrezeptors, die wir in adipӧsen Mӓusen nachweisen konnten, kӧnnte einen 

Regulationsmechanismus darstellen, um den gesundheitsschӓdlichen Auswirkungen 

von Adipositas entgegenzuwirken. Dazu passen unsere Ergebnisse, die zeigen, dass 

zentral appliziertes Adiponektin zu einer Sensitisierung des Insulinsignalweges, einer 

Verbesserung der Glucosehomӧostase sowie einem antiinflammatorischen Effekt führt. 

Des Weiteren wurde die Rolle des WNT/β-catenin-Signalweges in der neuroendokrinen 

Regulation des Energiemetabolismus untersucht. Hierbei konnten wir die Expression 

aller untersuchten Gene des WNT-Signalweges im Gehirn von adulten Dsungarischen 

Zwerghamstern, deren Kӧrpergewicht und Leptinsensitivitӓt einer strengen 

jahreszeitlichen Regulation unterliegen, nachweisen. Zudem zeigten Zielgene des 

WNT-Signalweges eine tagesrhythmische Oszillation mit abfallenden Konzentrationen 
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wӓhrend des Tages und ansteigenden Konzentrationen wӓhrend der Nacht. Dies traf 

sowohl auf Langtag- (LT)- als auch auf Kurztag- (KT)-akklimatisierte Hamster zu. Die 

Genexpression bei LT-Hamstern war im Vergleich zu der bei KT-Hamstern ebenso 

erhӧht wie die Phosphorylierung des WNT-Korezeptors LRP-6, ein Zeichen für die 

Aktivierung des WNT-Signalweges. Diese Ergebnisse deuten auf eine erhӧhte WNT-

Signaltransduktion in LT-Hamstern hin. Zudem führte die Gabe von Leptin zu einer 

zusӓtzlichen Aktivierung des WNT-Signalweges in Hamstern aus beiden 

Photoperioden. Zusammenfassend legen diese Daten nahe, dass der WNT-Signalweg 

an der saisonalen sowie tagesrhythmischen Regulation des Energiestoffwechsels und 

des Kӧrpergewichts des Dsungarischen Zwerghamsters beteiligt ist. 

Zusӓtzlich konnten wir einen 24-Stunden-Rhythmus bei der Aktivierung des 

Leptinsignalweges im Hypothalamus von schlanken Kontrollmӓusen auf molekularer 

Ebene nachweisen. Sowohl die basale als auch die leptininduzierte Leptinsensitivitӓt 

waren am Ende der aktiven Phase (Zeitgeber time; ZT0) der Tiere am hӧchsten und am 

Ende der inaktiven Phase am niedrigsten. Auch auf der Verhaltensebene zeigten die 

Mӓuse zu ZT0 eine hӧhere Empfindlichkeit gegenüber Leptin als zu ZT12. 

Futteraufnahme, Bewegungsaktivitӓt, Stoffwechselrate und Energieverbrauch 

unterlagen ebenfalls einem tagesrhythmischen Verlauf und waren wӓhrend der 

inaktiven Phase reduziert und wӓhrend der aktiven Phase erhӧht. 

Adipӧse Mӓuse wiesen im Vergleich dazu eine Stӧrung des 24-Stunden-Rhythmus der 

Leptinsensitivitӓt auf molekularer Ebene auf. Überraschenderweise bestand diese 

Leptinresistenz allerdings nicht wӓhrend des gesamten Tagesverlaufs, sondern 

ausschließlich von ZT21 – ZT6. Zu allen anderen Zeitpunkten wiesen schlanke und 

adipӧse Mӓuse sowohl auf molekularer als auch auf Verhaltensebene die gleiche 

Sensitivitӓt gegenüber Leptin auf. Zudem waren die Tagesrhythmen von 

Futteraufnahme, Bewegungsaktivitӓt, Stoffwechselrate und Energieverbrauch bei 

Mӓusen auf hochkalorischer Diӓt gestӧrt. Die gesteigerte Kalorienaufnahme dieser 

Mӓuse im Vergleich zu der von Kontrollmӓusen fand ausschließlich wӓhrend deren 

leptinresistenter Phase statt. Diese Ergebnisse zeigen, dass die rhythmische Oszillation 

der hypothalamischen Leptinsensitivitӓt eine wichtige Rolle in der Regulation des 

Energiestoffwechsels spielt. 
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Des Weiteren konnten wir in dieser Arbeit nachweisen, dass der Verzehr einer 

hochkalorischen Diӓt ausschließlich wӓhrend der leptinresistenen Phase adipӧser 

Mӓuse (ZT21 – ZT3) zu einer Beeintrӓchtigung verschiedener Parameter führt, die 

einen gesunden Stoffwechsel anzeigen. Dies traf auf die Tagesrhythmik von 

Bewegungsaktivitӓt, Stoffwechselrate und Energieverbrauch sowie auf die 

zirkulierenden Insulinkonzentrationen zu. Mӓuse, deren Futteraufnahme ausschließlich 

wӓhrend ihrer leptinsensitiven Phase (ZT9 – ZT15) erfolgte, waren im Gegensatz dazu 

vor diesen negativen Auswirkungen auf den Energiemetabolismus geschützt. Ob die 

Entgleisung des Energiestoffwechsels, die durch den Konsum einer hochkalorischen 

Diӓt hervorgerufen wird, durch erhӧhte Kӧrperfettmasse, die Zusammensetzung der 

Diӓt oder Stӧrungen der circadianen Rhythmen bedingt ist, ist noch immer weitgehend 

unklar. Die Unterschiede im Energiestoffwechsel traten ungeachtet einer identischen 

Abnahme an Kӧrpergewicht sowie von zirkulierenden Leptinkonzentrationen bei allen 

Mӓusen auf, deren Zugang zu hochkalorischer Diӓt auf verschiedene Zeitrӓume 

wӓhrend des Tages (inaktive, leptinsensitive, aktive, leptinresistente Phase) beschrӓnkt 

war. Dies deutet darauf hin, dass der Einfluss der Futteraufnahme auf die metabolische 

Gesundheit hauptsӓchlich von der Tageszeit und dem Status der Leptinsensitivitӓt 

abhӓngt, weniger jedoch von anderen Faktoren wie Kӧrperfettgehalt oder 

Zusammensetzung der Diӓt. Trotzdessen wiesen alle Mӓuse, die eine hochkalorische 

Diӓt erhielten, im Vergleich zu Kontrollmӓusen eine Beeintrӓchtigung der absoluten 

Werte für Stoffwechselrate und Energieverbrauch auf, was zusӓtzlich auf einen 

metabolischen Effekt der hochkalorischen Diӓt selbst hindeutet. Zusammengefasst 

konnten wir mit dieser Studie nachweisen, dass Varianten des intermittierenden 

Fastens, in diesem Fall die sogenannte 16/8-Variante mit 16 Stunden Fasten und 8 

Stunden Nahrungsaufnahme pro Tag, bei einer Gewichtsabnahme und der 

Verbesserung der metabolischen Gesundheit helfen kӧnnen. Allerdings ist hierbei zu 

beachten, dass der Zeitraum der Nahrungsaufnahme kritisch ist, um die positiven 

Auswirkungen auf den Stoffwechsel zu garantieren. 

Mit der vorliegenden Arbeit konnten neue Einblicke in die neuroendokrine Regulation 

des Energiestoffwechsels gewonnen und weitere Signalwege identifiziert werden, die 

an dieser Regulation beteiligt sind. Zusӓtzlich konnten wir eine wichtige Rolle der 

rhythmischen Oszillation der hypothalamischen Leptinsensitivitӓt bei der Entstehung 

von Stoffwechselentgleisungen nachweisen.  
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4.2. Photoperiodic and diurnal regulation of WNT signaling in the 

arcuate nucleus of the female Djungarian hamster, Phodopus 

sungorus 
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4.3. Hypothalamic Leptin Sensitivity and Benefits of Time-

Restricted Feeding are Dependent on the Time of Day 
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Abstract 

Synchronisation between biological temporal clocks and metabolism is crucial for the 

survival of most species. It is unknown as to whether the circadian timing of time-

restricted feeding (TRF), a diet strategy with apparent efficacy in promoting weight 

loss, is important for maximising its beneficial effects. Here, we examined whether 

leptin signalling, important for the control of energy metabolism, is regulated by a 24-

hour rhythm in the hypothalamus of mice and whether diet-induced obesity (DIO) 

affects this rhythmicity. Furthermore, we investigated whether the beneficial effects of 

TRF depend on the timing of the feeding period. Therefore, we examined the ability of 

leptin to induce leptin signalling in the arcuate nucleus (ARC) of fasted mice 

throughout the 24-hour rhythm by immunohistochemistry. By measuring activated 

phospho-STAT3-immunoreactive cells after leptin injection, we found that leptin 

sensitivity was regulated in a 24-rhythmic manner in control mice. In these mice leptin 

sensitivity was highest in the early morning around Zeitgeber time (ZT) 0, after lights 

on, with sensitivity declining throughout the light phase and increasing throughout the 

dark phase. Surprisingly, leptin resistance in mice fed a high-fat diet (HFD) was only 

temporary and varied during the 24-hour rhythm, with deteriorated leptin signalling 

occurring only during the last half of the dark phase and the first half of the light phase 

compared with control animals. At all other time points, leptin sensitivity was similar to 

control mice. To investigate the physiological effect of this rhythmicity, we next 

injected leptin or vehicle in control and HFD mice either at ZT0 or ZT12 and compared 

their caloric intake. Surprisingly, control mice showed decreased caloric intake only 

when leptin injections occurred at ZT0, while HFD mice remained resistant to leptin at 

both ZT0 and ZT12, suggesting that control mice are sensitive to exogenous leptin on a 

behavioural level exclusively during the first part of the light phase. The daily rhythm 

of caloric intake between control and HFD mice was identical over the 24-hour rhythm, 

except for elevated caloric intake in HFD mice between ZT21-3 (3 hours of dark and 3 

hours of light period, the period when HFD mice were leptin resistant on a molecular 

level) independent of locomotor activity. TRF (a limitation of HFD to 6 hours each day 

continuously for 3 weeks) regardless of circadian timing led to a marked reduction in 

food intake and body weight, but not in locomotor activity or energy expenditure 

compared with ad libitum fed mice. Specifically when TRF occurred from ZT21-3, it 

led to a disruption in the daily rhythm of locomotor activity and energy expenditure, as 
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well as to increased plasma insulin levels compared with other TRF periods. These data 

provide evidence that the circadian clock plays a crucial role in the control of leptin 

action and whole body energy homeostasis. Furthermore, TRF may be a promising 

weight loss strategy and its beneficial effects depend on circadian timing. 
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Introduction 

Synchronisation between daily environmental alterations and biological processes is 

crucial for the survival of most living organisms. Endogenous circadian clocks adjust 

these processes to the most beneficial time of day in a broad range of species. In 

mammals, the master pacemaker resides in the suprachiasmatic nucleus (SCN) of the 

hypothalamus and is entrained by external cues (Zeitgebers), of which light is the 

primary entrainment signal. This central circadian clock controls local clocks in other 

brain regions as well as the periphery to orchestrate physiological and behavioural 

rhythms (1-3). 

In recent years, numerous studies have highlighted a close correlation of the circadian 

clock system and the maintenance of energy metabolism (4-9). In mice, SCN lesions as 

well as various clock gene mutations result in metabolic disorders, including obesity, 

hyperlipidemia, hyperglycemia and an impairment in glucose tolerance and insulin 

sensitivity (8, 10-13). In humans, circadian misalignments such as shift work and social 

jet lag have been shown to be associated with symptoms of the metabolic syndrome, 

including an increased BMI, impaired glucose tolerance and insulin sensitivity and an 

increase in mean arterial blood pressure (14, 15).  

The adipocyte-derived hormone leptin plays a crucial role in the control of metabolism 

by reducing food intake and increasing energy expenditure, ultimately leading to a 

decrease of body weight (BW) (16-18). Diet-induced obesity (DIO), the leading cause 

for obesity in humans and many rodent models, is accompanied by hyperleptinemia 

(19). Despite increased circulating leptin levels in most cases of obesity, leptin however 

fails to mediate its weight-reducing effects (20). Molecularly, this condition of leptin 

resistance is characterised by a disturbance in the ability of leptin to phosphorylate and 

activate the transcription factor signal transducer and activator of transcription 3 

(STAT3) in the hypothalamus, specifically the arcuate nucleus (ARC), a brain region 

where large numbers of leptin receptors are expressed and that is crucial for 

maintaining energy homeostasis (21-24). Recent findings from our laboratory as well 

as from others show that chronic circadian disruptions cause impaired hypothalamic 

leptin sensitivity and elevated BW gain (25)(own unpublished observations), providing 

a possible explanation for the association between circadian misalignment and obesity 

as seen in humans (14). 
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While circadian misalignment led to reduced hypothalamic leptin signal transduction 

(25)(own unpublished observations), high-fat diet (HFD) feeding was also shown to 

disrupt behavioural and molecular circadian rhythms, including eating behaviour, 

locomotor activity and expression of circadian clock genes (26-28). Interestingly, 

feeding of this diet for only one week already causes a disruption of circadian rhythms 

in the liver, whereas neither the SCN nor other peripheral clocks were impaired (26), 

suggesting the presence and involvement of an SCN-independent oscillator in this 

process. Aside from light, food intake has been identified as another Zeitgeber for 

circadian rhythms and the existence of a food-entrainable oscillator involving 

AgRP/NPY neurons of the hypothalamus was proposed (29-31).  

Kohsaka et al. showed that time-restricted feeding (TRF) of HFD during the inactive 

phase of mice results in increased BW, even though caloric intake is similar to mice 

that have access to HFD during their active phase (28). In line with this, access to HFD 

only during the active phase protects mice from metabolic disease compared with mice 

that have ad libitum access to HFD (32). 

To our knowledge it is still unknown as to whether hypothalamic leptin sensitivity is 

regulated by a circadian rhythm and how HFD feeding affects leptin signal transduction 

throughout the day. In the current study we therefore examined the ability of leptin to 

induce activation of the transcription factor STAT3 (pSTAT3) at different times 

throughout the 24 hour day in mice that were either fed HFD or low-fat diet (LFD). 

After identifying that the response to leptin differs throughout the day and depends on 

the type of diet, we measured the behavioural response to leptin at times when the 

ability of leptin to activate pSTAT3 was either maximal or minimal. By restricting the 

timing of food access to 6 hours per day (time-restricted feeding; TRF) at 4 different 

intervals throughout the 24 hour day we assessed to what extent the beneficial effects 

of TRF during HFD feeding on BW gain and metabolic health are dependent on the 

time of day. 
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Materials and methods 

Animals 

Adult male C57BL/6J mice were obtained from the University of Otago Taieri 

Resource Unit and housed individually under controlled conditions of temperature 

(22 °C ± 1 °C) and light (12 h:12 h light:dark cycle; lights on at Zeitgeber time (ZT) 0, 

lights off at ZT12) with ad libitum access to water and food, unless stated otherwise. 

Mice aged 3 – 6 months were fed either LFD, with 10% energy from fat (kcal) or HFD 

with 60% energy from fat (D12450B and D12492, respectively; Research Diets). All 

experimental protocols were approved by the University of Otago Animal Ethics 

Committee. 

 

Experiment 1: Daily rhythm in leptin sensitivity 

We investigated whether intracellular leptin signalling is modulated by a 24-hour 

rhythm in the hypothalamus of lean mice and to what extent the consumption of HFD 

affects this daily rhythm. Therefore, we examined the phosphorylation of STAT3 

(Tyr705), as a marker of leptin pathway activation, every 3 h throughout the 24-h day by 

immunohistochemistry. Mice were fed either LFD or HFD (n = 64 each) for four weeks 

and were food deprived for 24 h before transcardial perfusion. Animals were 

subdivided into weight-matched groups and received a single intraperitoneal (i.p.) 

injection of either recombinant mouse leptin (1.25 mg/kg in PBS; R&D Systems) or 

vehicle (PBS) every three hours throughout a day, with animals being treated at either 

ZT0, ZT3, ZT6, ZT9, ZT12, ZT15, ZT18 or ZT21 (n = 4 per group). Thirty minutes 

after injections, transcardial perfusion was performed and brains were treated as 

described elsewhere (33). A second cohort of mice was generated as described above, 

decapitated and trunk blood was collected from these animals, in order to measure 

serum levels of the adiposity hormones leptin and insulin as well as fasting glucose 

levels. Animals killed during the dark phase were handled under dim red light. 
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Experiment 2: Leptin-mediated anorexigenic effects at ZT0 vs ZT12 

To assess whether the ability of leptin to reduce food intake is affected by the circadian 

rhythm, we administered leptin at different times of the day. Mice were fed either LFD 

or HFD (n = 20 each) for four weeks and were food deprived for 24 h before the 

experiment. Half of each group was injected at ZT0, the other half at ZT12. Animals 

were weight-matched for each time point and received a single i.p. injection of either 

leptin (5.0 mg/kg in 20 mM TRIS-HCl) or vehicle (20 mM TRIS-HCl). Animals were 

re-fed with their respective diets directly after the injections and food intake was 

monitored 4 h and 24 h post-injection. For ethical reasons, the experiment was repeated 

after a recovery period of 3 days as described above and results are presented as pooled 

data points from both experiments. Animals treated with leptin or vehicle at ZT0 in the 

first experiment received the same treatment at ZT12 in the second experiment and vice 

versa (n = 6 – 10 per group). 

 

Experiment 3: Effects of time-restricted feeding on energy metabolism 

To investigate whether periodic reductions in caloric intake are able to reverse 

metabolic derangements induced by HFD, mice were put on a time-restricted feeding 

(TRF) schedule. Mice were fed either LFD (n = 8) or HFD (n = 40) ad libitum for 28 

days, followed by time-restricted access to HFD for a further 24 days. To examine 

whether potential beneficial effects of TRF are dependent on the timing of food intake 

throughout the 24-hour rhythm, mice were granted access to food at different intervals 

(n = 8 per group). Two control groups had ad libitum access to LFD (LFDal) and HFD 

(HFDal), respectively, whereas four TRF groups had access to HFD for a 6 h 

continuous interval each day, followed by 18 h of food deprivation, until the end of the 

experiment. The TRF groups were granted access to food during the following 

intervals: from ZT3 – ZT9 (group TRF3–9), ZT9 – ZT15 (TRF9–15), ZT15 – ZT21 

(TRF15–21) and ZT21 – ZT3 (TRF21–3), respectively (Supplementary figure 1). BW 

was monitored throughout the entire experiment. For mice fed LFDal and HFDal, these 

parameters were measured at ZT3, whereas for all TRF groups, they were measured 

before and after their respective feeding periods. On day 7 of TRF, mice were 

transferred to metabolic cages for 3 days, followed by a return to their normal housing 

conditions, as described above. At the end of the experiment, mice were fasted for 18 h; 
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each group was subdivided and received a single i.p. injection of either leptin 

(1.25 mg/kg in PBS) or vehicle (PBS) 30 minutes prior to transcardial perfusion (33). 

Both control groups were injected at ZT3, whereas TRF groups were injected at the 

start of their usual feeding periods (i.e. injection of TRF3–9 mice at ZT3, injection of 

TRF9–15 mice at ZT9 etc.). Blood was collected prior to perfusions from the inferior 

vena cava into heparinized tubes in order to measure plasma levels of leptin, insulin 

and fasting glucose levels. Animals killed during the dark phase were handled under 

dim red light. 

 

Metabolic measurements 

As part of experiment 3, we examined whether TRF causes changes in energy 

metabolism and behaviour. Therefore, mice were monitored in a multichannel 

respirometry system (3721 mouse cages, Promethion, Sable Systems International) for 

3 days. The air flow in the cages was adjusted to 2000 ml/min and monitored 

constantly. The system allowed synchronised analysis of O2 consumption (VO2), CO2 

production (VCO2), energy expenditure (EE), food intake, BW and locomotor activity. 

Running wheels were removed from the cages during the experiment. Data collected 

were analysed with the ExpeData data analysis software (Sable Systems Int.). To 

compare metabolic parameters specific for the different feeding intervals of the TRF 

groups, raw data for each day were binned into defined 6-hour intervals (ZT3 – ZT9, 

ZT9 – ZT15, ZT15 – ZT21, ZT21 – ZT3) using a customized automated analysis script 

(Sable Systems Int.). The average of each of the four 6-hour intervals over the 3 days of 

measurement was then calculated and compared between the six groups. Additionally, 

we compared these metabolic parameters over the 24-hour cycle, by combining the data 

from the 6-hour intervals. 

 

Immunohistochemistry 

Free-floating brain sections were pre-treated with 10% methanol, 1% NaOH and 1% 

H2O2 in H2O for 20 min, 0.3% glycine for 10 min and 0.03% sodium dodecyl sulphate 

for 10 min. Next, sections were blocked for 1 h with 1% normal goat serum and 5% 

bovine serum albumin in Tris-buffered saline (TBS)-Triton X-100 (0.5%), followed by 
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overnight incubation at 4 °C using a rabbit anti-phospho-STAT3 (Tyr705) antibody 

(1:1000 in blocking solution; catalogue no. 9131, Cell Signaling Technology, Inc.). On 

the next day, sections were rinsed and incubated for 1 h with biotinylated goat anti-

rabbit antibody (1:1000 in blocking solution), followed by 1 h in avidin-biotin complex 

solution (Vector Laboratories, Inc.). Then, the signal was developed by 

diaminobenzidine solution (Vector Laboratories, Inc.), giving a grey precipitate. 

Pictures were taken and immunoreactive (ir) cells in the ARC were counted in three 

sections per animal by two investigators who were blinded to the treatments. 

 

Enzyme-linked immunosorbent assays and Glucose assays 

To measure circulating levels of leptin, insulin and glucose, blood was collected from 

mice as described above. After collection, blood was immediately placed on ice and 

then centrifuged for 20 minutes at 4 °C and 13000 rpm. Serum and plasma were stored 

at -80 °C until assayed. Enzyme-linked immunosorbent assays and glucose assays 

(Mouse Leptin ELISA Kit, catalogue no. 90030; Ultra Sensitive Mouse Insulin ELISA 

Kit, catalogue no. 90080; Mouse Glucose Assay Kit, catalogue no. 81692; Crystal 

Chem Inc.) were performed in accordance with the kit instructions and all samples 

were assayed in duplicate. Because circulating leptin levels of mice fed HFD were 

expected to be above the sensitivity range of the leptin assay, serum and plasma 

samples of those mice were diluted 1:8 with the kits’ own sample diluent to allow the 

analysis of circulating leptin levels. 

 

Statistical analysis 

The 24-hour rhythmicity of leptin sensitivity was analysed by three-way ANOVA with 

diet (LFD or HFD), treatment (vehicle or leptin) and time (ZT) as variables, followed 

by a Tukey’s range post hoc test using SigmaStat statistical software (Systat Software, 

Inc.). To illustrate rhythmicity, a fourth order polynomial nonlinear regression curve 

was fitted with GraphPad Prism software (GraphPad Software, Inc.). Serum insulin 

levels were analysed by three-way ANOVA, as described above. All other data were 

analysed by either one- or two-way ANOVA, as appropriate, with diet and time as 

variables for serum leptin levels throughout the 24-hour cycle or time of food access 
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(LFDal, HFDal, TRF3–9, TRF9–15, TRF15–21 or TRF21–3) and period of day (ZT3 – 

ZT9, ZT9 – ZT15, ZT15 – ZT21, ZT21 – ZT3) for metabolic measurements or 

treatment for both leptin sensitivity and plasma insulin levels of TRF mice. BW 

trajectory of TRF mice was analysed by two-way repeated measures ANOVA. Where 

appropriate, this was followed by a Tukey’s range post hoc test using GraphPad Prism 

software. Results are presented as the mean ± SEM and P < 0.05 was considered 

statistically significant. 
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Results 

Experiment 1:  

Daily rhythm in the regulation of hypothalamic leptin sensitivity in mice on LFD 

and HFD 

To investigate how leptin sensitivity is regulated over the course of a day, we evaluated 

the number of pSTAT3 (Tyr705)-ir cells in the ARC of 24 h fasted mice on LFD or 

HFD every 3 h throughout the 24-hour cycle. We found a 24-hour rhythm of pSTAT3 

activation in both LFD and HFD-fed mice, with significant interactions between diet 

and time (P < 0.001), diet and treatment (P < 0.001) and diet, treatment and time 

(P = 0.005; Fig. 1, A and B), but not treatment and time (P = 0.692). In both LFD- and 

HFD-fed mice, leptin compared with vehicle treatment led to an increase of pSTAT3-ir 

cells in the ARC at all examined time points (LFD, P < 0.001; HFD, P ≤ 0.012).  

In vehicle-treated mice on LFD the number of pSTAT3-ir cells differed dependent on 

the time of day (P < 0.001) The highest number was detected at the beginning of the 

light phase at ZT0 (34 ± 3 cells), followed by declining levels throughout the light and 

increasing levels throughout the dark phase. Relative to ZT0, the number of pSTAT3-ir 

cells was reduced by about 65% at ZT3 (P = 0.016), 84% at ZT6 (P < 0.001), 78% at 

ZT9 (P = 0.001) and 66% at ZT12 (P = 0.008). For vehicle-treated mice on HFD an 

overall rhythmicity in basal pSTAT3-ir levels was detected (P = 0.027), however 

contrary to mice fed LFD, the subsequent Tukey’s multiple comparisons test did not 

reveal significant differences between any of the individual time points (48 ± 10 cells at 

ZT0).  

Leptin-treated mice fed LFD revealed a significant difference in the number of 

pSTAT3-ir cells over the 24-hour rhythm (P = 0.023) with levels peaking at the 

beginning of the light phase at ZT0 (198 ± 16 cells). Levels declined throughout the 

light phase and were reduced by about 26% at ZT9 compared with ZT0 (P = 0.015). 

This trough at the end of the light phase was followed by increasing levels of pSTAT3-

ir cells throughout the dark phase. Leptin treatment in mice fed HFD revealed a 24-

hour rhythm in the activation of STAT3 (P < 0.001), but this rhythm was inverted 

compared to mice fed LFD, revealing lowest levels at ZT0 (110 ± 15 cells). Levels then 

increased during the light phase, reaching peak values half-way throughout the dark 
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phase at ZT18 and subsequently decreased during the second half of the dark phase. 

Activation of STAT3 was elevated by about 46% at ZT9 (P = 0.049), 49% at ZT12 

(P = 0.032), 70% at ZT15 (P < 0.001) and 75% at ZT18 (P = 0.001). 

We found that the number of pSTAT3-ir cells, when compared between mice fed LFD 

vs HFD (in both vehicle- and leptin-treated groups), was not consistently different 

throughout the whole 24-hour cycle, but differences were dependent on the time of day. 

Vehicle-treated mice fed HFD compared with LFD showed an increased number of 

pSTAT3-ir cells at ZT6 (P = 0.023), ZT9 (P = 0.024), ZT12 (P = 0.003), ZT15 

(P < 0.001) and ZT18 (P < 0.001), whereas at ZT0, ZT3 and ZT21 no differences were 

revealed. Leptin treatment, by contrast, revealed reduced levels in mice fed HFD 

compared with LFD during the first half of the light phase at ZT0 (P < 0.001), ZT3 

(P < 0.001) and ZT6 (P < 0.001) and towards the end of the dark phase at 

ZT21(P = 0.018), whereas levels remained similar between LFD- and HFD-fed mice 

from ZT9 to ZT18. 

 

Daily rhythm of serum leptin levels in fasted mice on LFD and HFD 

We next investigated to what extent endogenous leptin levels vary throughout the 24-

hour rhythm in 24 h fasted mice on LFD and HFD. To reflect endogenous leptin levels 

only measurements of vehicle-injected mice were included whereas analysis of leptin-

injected mice was excluded from the study due to excessively high leptin 

concentrations. We found significant effects of diet and time (P < 0.001), as well as an 

interaction between diet and time on levels of circulating leptin (P < 0.001). Mice on 

LFD revealed no significant changes in serum leptin concentrations over the course of 

the day, with concentrations ranging between a maximum of 6.08 ± 0.59 ng/mL at ZT9 

and a minimum of 3.37 ± 1.48 ng/mL at ZT12 (P ≥ 0.997; Fig. 2, A). Mice on HFD on 

the other hand showed a daily rhythm of serum leptin levels with elevated levels during 

the first half of the light phase, reaching a peak at ZT6 with a concentration of 48.08 ± 

2.60 ng/mL, followed by reduced levels during the second half of the light phase and 

continuously low levels during the dark phase. Leptin levels reached a minimum of 

13.68 ± 2.57 ng/mL at ZT18. Leptin levels were elevated at ZT3 compared with ZT0, 

ZT12, ZT15, ZT18 and ZT21 (P < 0.05, each), at ZT6 compared with ZT0, ZT9, ZT12, 

ZT15, ZT18 and ZT21 (P < 0.05, each) and at ZT9 compared with ZT0, ZT12, ZT18 
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and ZT21 (P < 0.01, each). HFD feeding led to an overall increase of serum leptin 

levels across all examined time points compared with LFD feeding (LFD = 4.80 ± 0.94 

ng/mL on average; HFD = 26.65 ± 1.05 ng/mL on average; P < 0.05 for each ZT).  

Effects of diet, leptin injections and time on serum insulin levels in fasted mice 

We measured serum insulin levels over the 24-hour time course in fasted mice on LFD 

and HFD that were challenged with either vehicle or leptin injections. The 24-hour 

profile of circulating insulin levels revealed a significant effect of diet (P < 0.001; Fig. 

2, B), whereas neither leptin treatment nor time of day had a significant effect on 

insulin concentrations (P = 0.229 and P = 0.541, respectively). Mice on HFD as 

compared with LFD showed an overall increase in serum insulin concentrations 

(LFD = 0.49 ± 0.03 ng/mL on average; HFD = 0.69 ± 0.03 ng/mL on average) that was 

independent of both the treatment and the time of day.  

 

Effects of diet, leptin injections and time on fasting serum glucose levels in mice 

Fasting glucose concentrations were significantly affected by of both diet and time of 

day (P = 0.003 and P < 0.001, respectively), whereas leptin injections did not alter 

serum glucose levels (P = 0.845). The effect of different times throughout the day was 

dependent on which diet was present (ZT x Diet, P = 0.010). In LFD-fed animals, no 

significant changes in glucose levels over the 24-hour course were detected, with 

concentrations ranging from a minimum of 108.79 ± 16.23 mg/dL at ZT0 to a 

maximum of 152.18 ± 6.02 mg/dL at ZT21 in vehicle-treated mice and between 

143.74 ± 19.20 mg/dL at ZT 3 and 102.25 ± 8.90 mg/dL at ZT6 in leptin-treated mice 

(Fig. 2, C). HFD-fed mice on the other hand revealed a time-dependent rhythm in 

glucose levels with continuously low levels during the light phase, with vehicle-treated 

mice reaching a nadir at ZT9 (concentrations of 103.37 ± 2.58 mg/dL) and leptin-

treated mice revealing lowest levels at ZT6 with 108.67 ± 4.78 mg/dL. This was 

followed by increasing levels during the dark phase, with both vehicle- and leptin-

treated mice reaching a peak at ZT21 with concentrations of 166.25 ± 15.59 mg/dL and 

192.86 ± 11.77 mg/dL, respectively. Glucose levels in mice on HFD at ZT0, ZT3, ZT6 

and ZT9 were reduced compared with ZT21, as well as at ZT6 and ZT9 compared with 

both ZT15 and ZT18 (P < 0.05, for each time comparison). HFD feeding as compared 
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with LFD caused an increase in glucose concentrations at ZT15, ZT18 and ZT21 

(P = 0.017, P = 0.006 and P = 0.004, respectively), whereas at all other times glucose 

concentrations remained similar between the two diets.  

 

Experiment 2:  

Leptin’s anorexigenic effects are restricted to the relative leptin sensitive phase in 

mice fed LFD  

After we had established that leptin sensitivity on a molecular level in the ARC is 

altered depending on the time of day, we next investigated whether leptin 

responsiveness at a behavioural level is also rhythmically regulated. Therefore, caloric 

intake was measured following leptin injections at times when DIO mice were leptin 

resistant (ZT0) and sensitive (ZT12) compared with mice fed LFD. Two-way ANOVA 

revealed a significant effect of leptin treatment (P < 0.001), which was dependent on 

the time of the injections (interaction, P = 0.024). For further analysis, we next 

compared the accumulated caloric intake over 4 h (Fig. 1, C) and 24 h (Fig. 1, D) after 

injections between vehicle-treated mice and their respective leptin-treated counterparts. 

Therefore, we defined the average caloric intake of vehicle-treated mice as baseline and 

compared it with the deviant caloric intake of leptin-treated mice that were fed the same 

diet and injected at the same time point. We found that in mice fed LFD, leptin 

administration at ZT0 led to a decrease in accumulated caloric intake over 4 h (Δ 

1.97 ± 0.45 kcal, P = 0.013) as well as 24 h (Δ 2.07 ± 0.60 kcal; P = 0.024) after 

injections compared with vehicle-treated mice. In contrast, mice fed HFD and injected 

with leptin at ZT0 showed no differences in caloric intake after 4 h (Δ 0.77 ± 0.40 kcal) 

and 24 h (Δ 0.26 ± 0.86 kcal) compared with their vehicle-treated counterparts. Leptin 

injections at ZT12 did not lead to a decrease in caloric intake in mice fed either LFD 

(4 h: Δ 0.75 ± 0.22 kcal; 24 h: Δ 0.65 ± 0.55 kcal) or HFD (4 h: Δ 0.71 ± 0.63 kcal; 

24 h: Δ 0.45 ± 1.00 kcal).  

 

 

 



123 
 

Experiment 3:  

Body weight trajectory of TRF mice 

We established that HFD-induced leptin resistance on a molecular level is restricted to 

the period between ZT21 – ZT6 whereas mice fed HFD revealed an identical absolute 

increase in the number of pSTAT3-ir cells compared with mice fed LFD, suggesting 

molecular leptin sensitivity between ZT9 – ZT18. To investigate the potential impact of 

food restriction to these time periods, we restricted access to HFD to 6-hour intervals 

with TRF9–15 mice receiving HFD exclusively during their leptin sensitive interval 

and TRF21–3 mice exclusively during their leptin resistant interval. The BW of mice 

from experiment 3 was monitored every second day for the first 3 weeks while all mice 

had ad libitum access to their respective diets and then daily with the onset of TRF 

throughout the remainder of the experiment. By day 9 of exposure to their respective 

diets, mice fed HFD had a significantly increased BW compared with mice fed LFD 

(Fig. 3). This BW increase in HFDal mice persisted until the end of the experiment 

(P ≤ 0.023). After 28 days of ad libitum feeding, mice on HFD were transferred to the 

TRF regimen. While mice fed HFDal were still on a positive BW trajectory until the 

end of the experiment, TRF mice decreased their BW shortly after the start of TRF, but 

retained a higher BW compared with mice fed LFDal until all animals were transferred 

into the metabolic cages on day 35 of the experiment (P ≤ 0.027). By day 40, all TRF 

mice had reduced their BW to levels similar to LFDal mice. TRF3–9, TRF9–15 and 

TRF21–3 mice had a significantly lower BW after 16 days of restricted food access and 

TRF15–21 mice after 18 days compared with HFDal mice (P ≤ 0.034). There was no 

difference in BW between the four TRF groups throughout the whole experiment. At 

the end of the experiment, BW was 30.8 ± 0.7 g for mice on LFDal, 38.4 ± 1.3 g for 

mice on HFDal, 32.5 ± 0.8 g for TRF3–9 mice, 32.9 ± 0.9 g for TRF9–15 mice, 

33.6 ± 0.4 g for TRF15–21 mice and 33.4 ± 0.8 g for TRF21–3 mice. 

 

Mice on HFD were susceptible to caloric overconsumption exclusively during their 

relative leptin insensitive phase from ZT21 – ZT3 

Using metabolic cages, we assessed the average caloric intake during the four TRF 

intervals throughout the 24-hour time course. TRF mice with limited access to food 
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consumed their food allocations exclusively during their respective food access 

intervals (Fig. 4, A). Comparing caloric intake for each of the defined intervals 

throughout the day amongst mice fed LFDal and HFDal, we found a distinct daily 

rhythm that was present in mice fed LFD, but less pronounced in mice fed HFD (Fig. 4, 

A). With a caloric intake of 0.92 ± 0.20 kcal, mice fed LFD revealed the lowest caloric 

intake during the light phase from ZT3 – ZT9, coinciding with their inactive phase. 

Compared with the preceding interval, their caloric intake increased significantly 

during ZT9 – ZT15 (3.49 ± 0.33 kcal; P < 0.001) and remained high during the dark 

phase between ZT15 – ZT21 (3.85 ± 0.38 kcal; Vs ZT3 – ZT9, P < 0.001). This was 

followed by a significant reduction in caloric intake during ZT21 – ZT3 (2.24 ± 0.31 

kcal; P = 0.025, vs ZT15 – ZT21), with a return to levels that were statistically similar 

to ZT3 – ZT9. Caloric intake in mice fed HFD during ZT3 – ZT9 (1.54 ± 0.35 kcal), 

ZT9 – ZT15 (3.91 ± 0.48 kcal) and ZT15 – ZT21 (4.69 ± 0.42 kcal) was not 

significantly different from caloric intake in LFD during their respective intervals. 

Surprisingly, HFD feeding led to the consumption of more calories compared with LFD 

exclusively during the relative leptin insensitive interval of mice on HFD from ZT21 – 

ZT3 (4.04 ± 0.40 kcal; P = 0.011). While in mice on LFD food intake dropped 

distinctly after the dark period, it remained elevated in mice on HFD (ZT15 – ZT21 vs 

ZT21 – ZT3; LFD, P = 0.025; HFD, P = 0.912).  

Additionally, we evaluated the cumulative caloric intake over 24 hours for each group 

(Suppl Fig. 2, A). The overall daily caloric intake was 10.50 ± 0.61 kcal for mice that 

received LFDal, 14.17 ± 0.47 kcal for HFDal, 5.94 ± 0.72 kcal for TRF3–9, 7.09 ± 0.71 

kcal for TRF9–15, 7.70 ± 0.76 kcal for TRF15–21 and 8.07 ± 0.69 kcal for TRF21–3. 

One-way ANOVA revealed that mice on HFDal consumed significantly more calories 

than any other group (vs. LFDal, P = 0.003; vs. all other groups, P < 0.001). The daily 

caloric intake of mice from the TRF3–9 and TRF9–15 groups was significantly lower 

compared with mice on LFDal (P < 0.001 and P = 0.013, respectively), whereas it was 

similar to the TRF15–21 and TRF21–3 groups, which were also not different to mice 

on LFDal. 
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TRF21–3 mice lose their daily rhythm of locomotor activity 

We next investigated whether the rhythm that we observed in the feeding pattern is 

associated with alterations in locomotor activity. Two-way ANOVA revealed 

significant effects of both time of food access and the period of day, as well as a 

significant interaction between both parameters (P < 0.001, each; Fig. 4, B). Locomotor 

activity during the intervals ZT3 – ZT9, ZT9 – ZT15, ZT15 – ZT21 and ZT21 – ZT3 

was 16.65 ± 1.97 m, 45.32 ± 3.50 m, 83.00 ± 8.01 m, 47.91 ± 4.25 m in LFDal mice, 

16.54 ± 1.53 m, 34.04 ± 2.76 m, 52.16 ± 3.39 m, 34.59 ± 2.45 m in HFDal mice, 

15.83 ± 1.63 m, 56.46 ± 5.30 m, 63.38 ± 4.83 m, 35.98 ± 2.93 m in TRF3–9, 

18.05 ± 1.96 m, 51.34 ± 3.65 m, 70.82 ± 5.96 m, 43.28 ± 5.69 m in TRF9–15, 

15.43 ± 1.67 m, 47.00 ± 3.51 m, 63.11 ± 5.09 m, 51.30 ± 4.16 m in TRF15–21 and 

19.28 ± 1.84 m, 52.80 ± 2.98 m, 48.79 ± 3.14 m, 48.70 ± 3.69 m in TRF21–3 mice, 

respectively. Mice fed LFDal as well as HFDal demonstrated a circadian rhythm of 

locomotor activity, with lowest activity levels during their inactive phase from ZT3 – 

ZT9 and highest activity levels during their active phase from ZT15 – ZT21 (LFDal: 

P < 0.001; HFDal: P < 0.001). During ZT9 – ZT15 and ZT21 – ZT3, activity levels 

were halfway between those extremes in both groups. Locomotion in mice fed HFDal 

during ZT3 – ZT9, ZT9 – ZT15 and ZT21 – ZT3 was similar compared with mice fed 

LFDal during their respective periods. Notably, mice fed HFDal showed decreased 

locomotion relative to LFDal exclusively during ZT15 – ZT21 (P < 0.001). TRF9–15 

mice, which received HFD only during their relative leptin sensitive phase, showed the 

same circadian rhythm of locomotor activity compared with both LFDal and HFDal 

groups, with increased levels of activity solely during ZT9 – ZT15 compared with the 

respective interval in mice on HFDal (P < 0.001). In contrast, TRF21–3 mice, which 

received HFD exclusively during their relative leptin insensitive phase, showed a loss 

of the rhythmic pattern in locomotion with similar activity levels during ZT9 – ZT15, 

ZT15 – ZT21 and ZT21 – ZT3. Both TRF3–9 and TRF15–21 mice still revealed 

rhythmic variations in locomotion, even though less pronounced compared with LFDal, 

HFDal and TRF9–15 mice (Fig. 4, B). 

Summated over 24 hours, locomotion was 194.94 ± 18.30 m in LFDal, 137.09 ± 4.70 m 

in HFDal, 176.66 ± 13.86 m in TRF3–9, 179.57 ± 21.02 m in TRF9–15, 177.09 ± 12.17 

m in TRF15–21 and 169.58 ± 7.45 m in TRF21–3 mice (Suppl. Figure 2, B). One-way 

ANOVA revealed no significant differences between any of the groups, although 
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HFDal caused a trend towards a significant reduction of locomotion compared with 

LFDal feeding (P = 0.060). 

 

TRF21–3 mice lose their daily rhythm of VO2 

Next, we investigated whether the alterations in feeding and locomotor activity patterns 

are correlated with differences in average metabolic rate (VO2), defined by ml of 

oxygen consumption per minute. VO2 during the intervals ZT3 – ZT9, ZT9 – ZT15, 

ZT15 – ZT21 and ZT21 – ZT3 was 1.07 ± 0.03 ml O2/min, 1.30 ± 0.02 ml O2/min, 1.62 

± 0.04 ml O2/min, 1.30 ± 0.05 ml O2/min in LFDal mice, 1.24 ± 0.03 ml O2/min, 1.42 ± 

0.03 ml O2/min, 1.55 ± 0.03 ml O2/min, 1.42 ± 0.02 ml O2/min in HFDal, 1.20 ± 0.02 

ml O2/min, 1.39 ± 0.03 ml O2/min, 1.37 ± 0.02 ml O2/min, 1.26 ± 0.02 ml O2/min in 

TRF3–9, 1.00 ± 0.02 ml O2/min, 1.37 ± 0.02 ml O2/min, 1.41 ± 0.03 ml O2/min, 1.17 ± 

0.03 ml O2/min in TRF9–15, 1.20 ± 0.02 ml O2/min, 1.32 ± 0.03 ml O2/min, 1.56 ± 

0.02 ml O2/min, 1.42 ± 0.03 ml O2/min in TRF15–21 and 1.17 ± 0.03 ml O2/min, 1.29 

± 0.03 ml O2/min, 1.25 ± 0.05 ml O2/min, 1.41 ± 0.05 ml O2/min in TRF21–3 mice, 

respectively. Two-way ANOVA revealed significant effects of both time of food access 

and the period of day, as well as a significant interaction between both factors 

(P < 0.001, each; Suppl. Fig. 3, A). Mice on LFDal as well as HFDal showed a 

prominent circadian rhythm of VO2 with lowest rates during ZT3 – ZT9 and highest 

rates during ZT15 – ZT21 (LFDal: P < 0.001; HFDal: P < 0.001), while VO2 was 

situated between those extremes during ZT9 – ZT15 and ZT21 – ZT3. Interestingly, 

VO2 was increased during ZT3 – ZT9 and ZT9 – ZT15 in HFDal- compared with 

LFDal-fed mice (P < 0.001 and P < 0.001), but similar during ZT15 – ZT21 and ZT21 

– ZT3. The circadian rhythm of VO2 found in both ad libitum fed groups was altered in 

all TRF groups. Notably, VO2 appeared to be elevated during the respective intervals 

when TRF mice had access to food. Taking this food intake-related increase in VO2 

into account, TRF9–15 mice, which had access to food during their leptin sensitive 

phase, showed a circadian rhythm that is most similar to the LFDal and HFDal groups 

with lowest VO2 during ZT3 – ZT9 and highest rates during ZT15 – ZT21 (P < 0.001). 

In contrast, TRF21–3 mice, which had access to food during their relative leptin 

insensitive phase, showed no differences in VO2 between ZT3 – ZT9, ZT9 – ZT15 and 
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ZT15 – ZT21. Here, VO2 was highest during ZT21 – ZT3, when they had access to 

food (Suppl. Fig. 3, A).  

We corrected for the influence of BW by calculating VO2 per g BW. VO2 during the 

intervals ZT3 – ZT9, ZT9 – ZT15, ZT15 – ZT21 and ZT21 – ZT3 was 0.036 ± 0.001 

ml O2/g/min, 0.044 ± 0.001 ml O2/g/min, 0.053 ± 0.001 ml O2/g/min, 0.043 ± 0.001 ml 

O2/g/min in LFDal mice, 0.034 ± 0.001 ml O2/g/min, 0.039 ± 0.001 ml O2/g/min, 0.043 

± 0.001 ml O2/g/min, 0.039 ± 0.001 ml O2/g/min in HFDal, 0.035 ± 0.001 ml O2/g/min, 

0.040 ± 0.001 ml O2/g/min, 0.040 ± 0.001 ml O2/g/min, 0.037 ± 0.001 ml O2/g/min in 

TRF3–9, 0.029 ± 0.001 ml O2/g/min, 0.039 ± 0.001 ml O2/g/min, 0.040 ± 0.001 ml 

O2/g/min, 0.034 ± 0.001 ml O2/g/min in TRF9–15, 0.035 ± 0.001 ml O2/g/min, 0.038 ± 

0.001 ml O2/g/min, 0.045 ± 0.001 ml O2/g/min, 0.041 ± 0.001 ml O2/g/min in TRF15–

21 and 0.034 ± 0.001 ml O2/g/min, 0.039 ± 0.001 ml O2/g/min, 0.037 ± 0.001 ml 

O2/g/min, 0.042 ± 0.001 ml O2/g/min in TRF21–3 mice, respectively. Two-way 

ANOVA revealed significant effects of both time of food access and the period of day, 

as well as a significant interaction between both factors (P < 0.001, each; Fig. 4, C). As 

described for the non-BW-corrected values, mice on LFDal as well as HFDal showed a 

prominent circadian rhythm of VO2 with lowest rates during ZT3 – ZT9 and highest 

rates during ZT15 – ZT21 (LFDal: P < 0.001; HFDal: P < 0.001), while VO2 was 

situated between those extremes during ZT9 – ZT15 and ZT21 – ZT3. In the ad 

libitum-fed groups, mice fed LFD had increased VO2 during ZT9 – ZT15 and ZT15 – 

ZT21 compared with mice fed HFD (P = 0.007 and P < 0.001, respectively). The here 

observed rhythm was altered in all TRF groups. TRF9–15 mice, which had access to 

food during their leptin sensitive phase, as well as TRF15–21 showed a slightly 

dampened rhythm relative to LFDal and HFDal groups, whereas TRF3–9 as well as 

TRF21–3 mice, which had access to food during their relative leptin insensitive phase, 

showed no differences during the three intervals from ZT9–ZT3 (Fig. 4, C).  

Averaged over 24 hours, VO2 was 1.32 ± 0.04 ml O2/min in LFDal, 1.41 ± 0.04 ml 

O2/min in HFDal, 1.31 ± 0.03 ml O2/min in TRF3–9, 1.24 ± 0.03 ml O2/min in TRF9–

15, 1.37 ± 0.01 ml O2/min in TRF15–21 and 1.28 ± 0.06 ml O2/min in TRF21–3 mice 

(Suppl. Figure 2, C). One-way ANOVA revealed a significantly reduced VO2 in TRF9–

15 compared with HFDal-fed mice (P = 0.034), whereas there were no differences 

amongst the other groups.  
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However, the BW-corrected VO2 over the course of 24 hours revealed a reduction in 

VO2 in TRF9–15 of about 20% per day and in TRF21–3 of about 14% per day relative 

to LFDal mice (P = 0.003, P = 0.044, respectively). BW-corrected daily VO2 was 0.044 

± 0.001 ml O2/g/min in LFDal mice, 0.039 ± 0.001 ml O2/g/min in HFDal, 

0.038 ± 0.001 ml O2/g/min in TRF3–9, 0.036 ± 0.002 ml O2/g/min in TRF9–15, 

0.040 ± 0.001 ml O2/g/min in TRF15–21 and 0.038 ± 0.02 ml O2/g/min in TRF21–3 

(Suppl. Fig. 4, A).  

 

The daily rhythm of energy expenditure is disrupted in TRF21–3 mice 

Energy expenditure (EE) during the intervals ZT3 – ZT9, ZT9 – ZT15, ZT15 – ZT21 

and ZT21 – ZT3 was 1.93 ± 0.06 kcal, 2.40 ± 0.03 kcal, 3.03 ± 0.07 kcal, 2.39 ± 0.10 

kcal in LFDal mice, 2.21 ± 0.05 kcal, 2.53 ± 0.05 kcal, 2.77 ± 0.05 kcal, 2.51 ± 0.04 

kcal in HFDal, 2.14 ± 0.03 kcal, 2.47 ± 0.05 kcal, 2.41 ± 0.04 kcal, 2.23 ± 0.04 kcal in 

TRF3–9, 1.74 ± 0.04 kcal, 2.43 ± 0.03 kcal, 2.49 ± 0.05 kcal, 2.03 ± 0.06 kcal in 

TRF9–15, 2.11 ± 0.03 kcal, 2.33 ± 0.05 kcal, 2.78 ± 0.04 kcal, 2.52 ± 0.05 kcal in 

TRF15–21 and 2.05 ± 0.07 kcal, 2.28 ± 0.05 kcal, 2.18 ± 0.09 kcal, 2.50 ± 0.09 kcal in 

TRF21–3 mice, respectively. Two-way ANOVA revealed significant effects of both 

time of food access and the period of day, as well as a significant interaction between 

both factors (P < 0.001, each; Suppl. Fig. 3, B). Similar to VO2 as described above, EE 

was of a rhythmic pattern in mice on LFDal as well as HFDal with lowest EE during 

their inactive phase from ZT3 – ZT9 and highest EE during their active phase during 

ZT15 – ZT21, while EE was situated between those extremes during ZT9 – ZT15 and 

ZT21 – ZT3. In mice on HFDal EE was increased during ZT3 – ZT9 compared with 

mice on LFDal (P = 0.004), whereas it was similar between both groups during the 

other intervals. In all TRF groups, the rhythmic pattern of EE was identical to the one 

described for VO2, with TRF9–15 showing a rhythm that was most similar to that 

observed in both ad libitum fed groups and TRF21–3 mice showing the least 

pronounced rhythm once the food intake-related increase of EE was taken into account 

(Suppl. Fig. 3, B).  

BW-corrected EE during the intervals ZT3 – ZT9, ZT9 – ZT15, ZT15 – ZT21 and 

ZT21 – ZT3 was 0.065 ± 0.002 kcal/g, 0.080 ± 0.002 kcal/g, 0.103 ± 0.003 kcal/g, 

0.080 ± 0.002 kcal/g in LFDal mice, 0.061 ± 0.001 kcal/g, 0.070 ± 0.001 kcal/g, 0.080 
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± 0.003 kcal/g, 0.070 ± 0.001 kcal/g in HFDal, 0.063 ± 0.001 kcal/g, 0.071 ± 0.001 

kcal/g, 0.072 ± 0.002 kcal/g, 0.066 ± 0.002 kcal/g in TRF3–9, 0.050 ± 0.001 kcal/g, 

0.070 ± 0.002 kcal/g, 0.074 ± 0.003 kcal/g, 0.059 ± 0.002 kcal/g in TRF9–15, 0.061 ± 

0.001 kcal/g, 0.067 ± 0.001 kcal/g, 0.081 ± 0.002 kcal/g, 0.072 ± 0.003 kcal/g in 

TRF15–21 and 0.060 ± 0.002 kcal/g, 0.068 ± 0.002 kcal/g, 0.072 ± 0.004 kcal/g, 0.074 

± 0.003 kcal/g in TRF21–3 mice, respectively. Two-way ANOVA revealed significant 

effects of both time of food access and the period of day, as well as a significant 

interaction between both factors (P < 0.001, each; Fig. 4, D). In the ad libitum-fed 

groups, mice fed LFD had increased BW-corrected EE during ZT9 – ZT15 (P < 0.001), 

ZT15 – ZT21 (P < 0.001) and ZT21 – ZT3 (P = 0.037) compared with HFDal. As 

described for the non-BW-corrected values, mice on LFDal as well as HFDal showed a 

rhythm in EE with lowest rates during ZT3 – ZT9 and highest rates during ZT15 – 

ZT21 (LFDal: P < 0.001; HFDal: P < 0.001). This rhythm was altered in all TRF 

groups. TRF9–15 mice, which had access to food during their leptin sensitive phase, as 

well as TRF15–21 showed a slight dampening in their 24-hour rhythm relative to 

LFDal and HFDal groups, whereas TRF21–3 mice, which had access to food during 

their relative leptin insensitive phase, showed no differences during the three intervals 

from ZT9–ZT3 (Fig. 4, C).  

Summed over 24 hours, total energy expenditure was 9.72 ± 0.31 kcal in LFDal, 

10.07 ± 0.26 kcal in HFDal, 9.31 ± 0.23 kcal in TRF3–9, 8.71 ± 0.23 kcal in TRF9–15, 

9.72 ± 0.11 kcal in TRF15–21 and 9.03 ± 0.44 kcal in TRF21–3 mice (Suppl. Fig. 2, 

D). As shown with VO2, there was a statistically significant reduction of EE in TRF9–

15 compared with mice on HFDal (P = 0.035), but none of the other groups revealed 

significant differences between each other.  

The BW-corrected energy expenditure summed over 24 hours was 0.33 ± 0.01 kcal/g in 

LFDal, 0.28 ± 0.01 kcal/g in HFDal, 0.27 ± 0.01 kcal/g in TRF3–9, 0.25 ± 0.01 kcal/g 

in TRF9–15, 0.28 ± 0.01 kcal/g in TRF15–21 and 0.28 ± 0.01 kcal/g in TRF21–3 mice 

(Suppl. Fig. 4, B). Thus, LFDal mice had the highest energy expenditure per day 

compared with all other groups (P < 0.019 for all groups), but there were no significant 

differences amongst the other groups. 
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TRF decreases plasma leptin levels in mice fed HFD 

We next investigated whether time-restricted access to HFD alters circulating levels of 

leptin in the blood plasma of fasted mice that were treated with vehicle. As explained 

above, samples from animals that were injected with leptin were not included in this 

experiment due to the extensively high levels of circulating leptin. One-way ANOVA 

revealed a decrease of plasma leptin concentrations in all TRF groups compared with 

HFDal feeding, approximating levels found in mice fed LFDal (HFDal vs. LFDal, 

TRF3–9, TRF9–15, TRF15–21 and TRF21–3; P < 0.001, P = 0.005, P = 0.019, 

P = 0.032 and P = 0.003, respectively; Fig. 5, A). Mice fed HFDal showed the highest 

leptin levels of 49.87 ± 9.18 ng/mL, whereas mice fed LFDal revealed the lowest levels 

of 4.24 ± 0.19 ng/mL. TRF mice showed concentrations of 13.24 ± 1.31 ng/mL for 

TRF3–9, 21.43 ± 5.52 ng/mL for TRF9–15, 23.44 ± 6.09 ng/mL for TRF15–21 and 

13.68 ± 1.84 ng/mL for TRF21–3 mice. 

 

Access to HFD from ZT21 – ZT3 increases plasma insulin levels 

We examined plasma insulin levels in fasted mice from experiment 3 that were 

challenged with either vehicle or leptin injections. Two-way ANOVA revealed a 

significant effect of time of food access (P = 0.036), but neither an effect of treatment 

nor an interaction between the two factors. On average, mice on LFDal had plasma 

insulin levels of 0.21 ± 0.01 ng/mL, mice on HFDal of 0.41 ± 0.09 ng/mL, TRF3–9 of 

0.28 ± 0.05 ng/mL, TRF9–15 of 0.41 ± 0.07 ng/mL, TRF15–21 of 0.32 ± 0.04 ng/mL 

and TRF21–3 of 0.63 ± 0.14 ng/mL (Fig. 5, B). Plasma insulin concentrations of 

TRF21–3 mice were significantly increased compared with concentrations of mice fed 

LFDal (P = 0.021), whereas none of the other TRF groups revealed a difference in 

insulin concentrations compared with LFDal and HFDal groups. 
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Discussion 

We discovered a 24-h rhythm in the number of basal pSTAT3-ir cells in the ARC of 

vehicle-treated mice on LFD that were fasted for 24 hours, indicating rhythmic 

regulation of leptin sensitivity. With 34 ± 3 pSTAT3-ir cells the level of basal pathway 

activity was highest at the beginning of the light phase at ZT0 and lowest at ZT6 with 

as little as 5 ± 1 pSTAT3-ir cells. The very low number of pSTAT3-ir cells around the 

middle of the light phase suggests a limited physiological role of leptin signalling 

during this time, whereas leptin pathway activation was significantly higher during the 

dark phase. In mice on HFD, on the other hand, this 24-h rhythm was absent, with 

consistent numbers of basal pSTAT3-ir cells throughout the 24-h cycle. Interestingly, 

HFD vs LFD feeding led to an increase in the number of pSTAT3-ir cells from ZT6 – 

ZT18, whereas there was no difference from ZT21 – ZT3. To our knowledge this is the 

first description of HFD-induced activation of pSTAT3 during certain times of the day 

as well as the first description of rhythmic variations in basal pSTAT3 in wild-type 

mice fed LFD that suggest 24-h-rhythmic alterations in leptin signal transduction. 

Other studies so far reported similar numbers of pSTAT3-ir cells in the ARC between 

wild-type mice fed LFD and HFD (23, 34). This discrepancy might be explained by the 

time of sampling which is typically performed in the early morning and this was indeed 

described for at least one of these studies (34).  

Leptin-treated mice on both LFD and HFD revealed a 24-h rhythm of leptin-induced 

pSTAT3 activation in the ARC; however, this rhythm was inversely regulated 

dependent on the diet. At ZT0 compared with all other times, the number of pSTAT3-ir 

cells was maximal in mice on LFD, but minimal in mice on HFD. Leptin-treated mice 

on HFD showed a decreased response to exogenous leptin exemplified by the number 

of pSTAT3-ir cells compared with mice on LFD only in the first half of the light and 

the second half of the dark phase. This suggests that HFD-induced leptin resistance is a 

temporary phenomenon; it is restricted to these specific times of the day. To investigate 

the behavioural response to exogenous leptin, we injected mice on LFD as well as HFD 

with leptin at either ZT0 or ZT12 and compared their subsequent caloric intake with 

vehicle-treated mice. In this experiment, mice fed LFD reduced their caloric intake only 

when injected at ZT0, the time when relative leptin sensitivity was maximal, whereas in 

mice fed HFD leptin failed to reduce food intake at both ZT0 and ZT12. This suggests 
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that in mice fed LFD the behavioural response to the hormone reflects the pattern of 

molecular leptin sensitivity with leptin eliciting its anorexigenic effects at the beginning 

of the light phase, when leptin sensitivity at a molecular level was at a maximum. HFD 

feeding, however, leads to complete resistance to exogenous leptin on a behavioural 

level.  

We discovered that in mice fed LFD a 24-h rhythm in serum leptin concentrations was 

absent, which can be mostly attributed to the 24-h fasting period preceding blood 

sampling. Intriguingly, mice fed HFD showed a profound rhythmic regulation of 

endogenous leptin concentrations with maximal concentrations during the light phase 

compared with lower levels during the dark phase. Notably, this rhythm occurred 

despite a 24-h fasting period prior to sampling and is therefore independent of food 

intake. Intriguingly, the increase in serum leptin levels coincides with the time when 

leptin sensitivity in the ARC of mice fed HFD was minimal and the nadir in circulating 

leptin levels coincides with maximal stimulation of STAT3. This finding suggests an 

inhibitory effect of leptin on pSTAT3 activation in states of DIO and reinforces the 

notion that hyperleptinemia is a crucial factor in the development of hypothalamic 

leptin resistance and obesity (35). Neither mice on LFD nor HFD showed rhythmic 

regulation of serum insulin levels, but HFD feeding led to an overall increase of insulin 

levels relative to LFD feeding. This is in accordance with other studies, showing that 

insulin secretion is upregulated to counteract elevated blood glucose levels, 

representing an ultradian regulatory rhythm reflecting food intake. Chronic HFD 

feeding is associated with an overall increase of insulin secretion, reflecting the role of 

the hormone as an adipostat (36). These elevated insulin levels eventually give rise to 

the manifestation of type 2 diabetes during DIO. Unlike insulin, we found higher serum 

glucose concentrations in mice on HFD compared with LFD during the dark phase. At 

this time, serum leptin levels were minimal in mice fed HFD suggesting that increases 

in leptin levels during the light phase may contribute to glucose uptake. This could be 

mediated by leptin facilitating insulin action. Indeed, we and others have shown that 

leptin is required for the activation of the insulin pathway (33, 37-39). 

The above-mentioned peak in leptin signal transduction at the beginning of the light 

phase observed in both vehicle- and leptin-treated mice fed LFD and the behavioural 

response to leptin at ZT0 indicates a greater anorexigenic effect of leptin with the 

beginning of the light phase. Since mice are nocturnal this may prepare the animal for 
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the inhibition of the drive to eat during the inactive (light) phase. Mice fed HFD, on the 

other hand, show a disruption of the normal 24-h rhythm of leptin signal transduction, 

which offers an explanation for the development of arrhythmic feeding as well as 

disrupted expression patterns of leptin-induced hypothalamic genes, typically 

associated with DIO (26-28). Based on these findings, we conducted a study to 

examine whether restricting the access to HFD to these intervals of varying leptin 

sensitivity affects energy metabolism and behaviour.  

We exposed mice to HFD for an interval of six hours each day, in which they had 

access to food either during their relative leptin sensitive phase (ZT9 – ZT15), their 

relative leptin insensitive phase (ZT21 – ZT3) or during one of the remaining six hours 

in-between those intervals (ZT3 – ZT9 and ZT15 – ZT21). Intriguingly, we found that 

ad libitum-fed mice on HFD showed increased caloric intake compared with ad 

libitum-fed mice on LFD exclusively during the interval from ZT21 – ZT3, when mice 

on HFD have lower numbers of leptin-induced pSTAT3-ir cells compared with mice on 

LFD. The caloric overconsumption observed in mice on HFD during this interval was 

sufficient to lead to a significant increase in overall caloric intake displayed over the 

24-hour cycle. Similar behavioural results were reported by Kohsaka et al., showing 

that even though mice on HFD consume more food during the dark (active) compared 

with the light (inactive) phase, the relative caloric intake was increased by 

approximately 20% during the light phase (28). In accordance with other studies, all 

TRF groups consumed fewer calories over 24 hours and had reduced BW compared to 

ad libitum fed mice on HFD (40). Additionally, TRF of HFD led to a reduction of 

plasma leptin levels in all TRF groups. Since circulating leptin levels are proportional 

to adipose tissue mass (41), this suggests that the reduction of BW may be due to a 

reduction of adipose tissue mass. Indeed, a reduction of body weight due to loss of fat 

mass has been shown for mice on a TRF protocol (40). Despite the similar reduction of 

BW, we saw differences in other metabolic parameters between the different TRF 

groups. The ad libitum fed mice on LFD and HFD showed a clear rhythm of locomotor 

activity, average metabolic rate and energy expenditure, with lowest levels during their 

inactive phase and highest levels during their active phase. However, HFD feeding 

caused a dampening of these daily rhythms. For instance, locomotor activity in mice 

fed HFD was lower during their active phase relative to mice fed LFD. This effect has 

been demonstrated previously for mice fed HFD compared with control chow diet. 
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There, a non-significant but consistent increase in locomotion during the light phase 

relative to the dark phase has been reported for mice fed HFD (28). Interestingly, all 

metabolic parameters analysed in the current study were reduced by HFD compared 

with LFD feeding only when access to HFD was limited to specific intervals. For 

example, mice with access to HFD exclusively during their leptin sensitive interval 

from ZT9 – ZT15 maintained their rhythm of locomotor activity and showed the most 

robust rhythm of average metabolic rate and energy expenditure amongst all TRF 

groups when compared with ad libitum fed mice on LFD and HFD. Mice with access to 

HFD exclusively during their leptin resistant interval from ZT21 – ZT3 on the other 

hand experienced a disruption of the 24-h rhythms of locomotor activity as well as both 

average metabolic rate and energy expenditure. Furthermore, those mice had higher 

plasma insulin concentration compared with mice on LFD, indicating an impairment of 

insulin signalling that may result in the development of type 2 diabetes. Although all 

TRF groups had the same duration of food access and similar caloric intake, mice that 

received HFD during their relative leptin sensitive interval showed ameliorated 

parameters of metabolic health compared with mice that received HFD during their 

leptin insensitive interval, which showed evidence for impaired metabolic health. 

In conclusion, these data show that leptin sensitivity is controlled by a 24-h rhythm in 

wild-type mice and that DIO disrupts this rhythm, causing impaired regulation of 

energy metabolism. Furthermore, we provide strong evidence that HFD-induced leptin 

resistance is a temporary phenomenon and occurs only at specific intervals during the 

24-h cycle. These intervals seem to be decisive for the detrimental effects of HFD on 

metabolic health. 
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Figures 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure legends 

Figure 1: Experiments 1 and 2. A) Representative coronal brain sections with highest 

and lowest pSTAT3-ir cell numbers for mice fed LFD or HFD and treated with i.p. 

vehicle or leptin and B) quantified pSTAT3-immunoreactive cells in the ARC of mice 

at the respective time points, representing the circadian rhythm of hypothalamic leptin 

sensitivity. Rhythmicity is represented by a fourth order polynomial nonlinear 

regression curve. C) Leptin-induced reduction in caloric intake after injections at ZT0 

and ZT12 after 4 hours and D) after 24 hours relative to vehicle-treated mice with the 

same dietary background (= baseline). *, P ≤ .05; **, P ≤ .01; ***, P ≤ .001 reveal 

significance between vehicle- and leptin-treated mice with the same dietary 

background. 

Figure 2: Experiment 1. 24-hour rhythms of circulating metabolic markers in mice fed 

LFD or HFD and treated with i.p. vehicle or leptin. A) serum leptin concentrations, B) 

serum insulin concentrations and C) serum glucose concentrations. Rhythmicity is 

represented by a fourth order polynomial nonlinear regression curve. *, P ≤ .05; **, 

P ≤ .01; ***, P ≤ .001 reveal significance between mice fed LFD and mice fed HFD, ] 

indicates significance at all time points. 

Figure 3: Experiment 3. Body weight trajectory of mice fed LFD and HFD ad libitum 

and TRF mice throughout the experiment. *, P ≤ .05 reveals significance between mice 

fed LFD ad libitum and HFD ad libitum; #, P ≤ .05 between LFD ad libitum and all 

TRF groups; %, P ≤ .05 between HFD ad libitum and TRF3–9, TRF15–21 and TRF21–

3; $, P ≤ .05 between HFD ad libitum and all TRF groups. 

Figure 4: Experiment 3. Metabolic measurements in mice fed LFD and HFD ad 

libitum and TRF mice binned into 6-hour intervals. A) Caloric intake, B) locomotor 

activity, C) oxygen consumption per g body weight and D) energy expenditure per g 

body weight. Statistical information shown with A, B, C, D depicts comparisons within 

each TRF group only, while comparisons between mice fed LFD ad libitum and HFD 

ad libitum are depicted by asterisk (*).*, P ≤ .05; **, P ≤ .01; ***, P ≤ .001. 

Figure 5: Experiment 3. Circulating metabolic markers in mice fed LFD and HFD ad 

libitum and TRF mice. A. Plasma leptin concentrations and B. plasma insulin 

concentrations. *, P ≤ .05. 
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Supplementary Figures 

 

Suppl. Figure 1 
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Suppl. Figure 2 
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Suppl. Figure 3 
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Suppl. Figure 4 
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Supplementary figure legends 

Suppl. Figure 1: Experimental designs of this study. A. Experiment 1. Mice received 

low fat-diet (LFD) or high fat-diet (HFD) for four weeks. They were then fasted for 24 

hours before being injected with either leptin or vehicle prior to perfusions. Mice were 

perfused at ZT0, ZT3, ZT6, ZT9, ZT12, ZT15, ZT18 or ZT21 (n = 4). Blood was 

collected to analyse circulating metabolic markers and immunohistochemistry was 

performed to assess the number of pSTAT3 (Tyr705)-ir cells at each time point. B. 

Experiment 2. Mice fed LFD and HFD were fasted for 24 hours and received a single 

ip injection of either leptin or vehicle at either ZT0 or ZT12. Mice were re-fed after 

injections and food intake as well as body weight change were monitored for 24 hours 

(n = 6–10). C. Experiment 3. Two groups of mice had ad libitum access to either LFD 

or HFD throughout the entire experiment, whereas four other groups had time-

restricted access to HFD for six hours each day, either from ZT3 – ZT9, ZT9 – ZT15, 

ZT15 – ZT21 or ZT21 – ZT3. Metabolic parameters were recorded using metabolic 

cages (n = 8). At the end of the experiment mice were fasted for 18 hours followed by 

i.p. injections of either leptin or vehicle prior to perfusions. Blood was collected to 

analyse circulating metabolic markers (n = 4). 

Suppl. Figure 2: Experiment 3. Metabolic measurements in mice fed LFD and HFD ad 

libitum and TRF mice summed over 24 hours. A) Caloric intake, B) locomotor activity, 

C) oxygen consumption and D) energy expenditure.  

Suppl. Figure 3: Experiment 3. Metabolic measurements in mice fed LFD and HFD ad 

libitum and TRF mice binned into 6-hour intervals. A) Oxygen consumption and B) 

energy expenditure. Statistical information shown with A, B, C, D depicts comparisons 

within each TRF group only, while comparisons between mice fed LFD ad libitum and 

HFD ad libitum are depicted by asterisk (*). *, P ≤ .05; **, P ≤ .01; ***, P ≤ .001.  

Suppl. Figure 4: Experiment 3. Body weight-corrected metabolic measurements in 

mice fed LFD and HFD ad libitum and TRF mice summed over 24 hours. A) Oxygen 

consumption per g body weight and B) energy expenditure per g body weight. 
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Abstract 

Metabolic syndrome and Alzheimer´s disease are two major health issues of our 

modern society causing an extraordinary financial burden for the world´s healthcare 

systems. In past decades a tight link between the pathologies of obesity and type 2 

diabetes and more recently between type 2 diabetes and Alzheimer’s disease was 

discovered. This review focuses on central insulin resistance, altered glycogen synthase 

kinase 3β signalling and central inflammation as common features of the three 

metabolic disorders and how pathological changes in one disease can contribute to the 

development of another.  Furthermore, we discuss the role of circadian disruptions in 

the development and progress of metabolic derangements and vice versa. Based on the 

shared features, combined therapeutic interventions will be discussed briefly.  

 

Metabolic Disorders and the Circadian Clock 

Since 1975, the worldwide prevalence of obesity has nearly trebled, accompanied by a 

dramatic increase of type 2 diabetes (T2D), which is predicted to affect 629 million 

people by 2045 [1, 2]. A large body of evidence links diet-induced obesity (DIO) to the 

development of other metabolic diseases such as T2D and Alzheimer’s disease (AD). 

Over the last decades, these disorders became more prevalent, causing a high financial 

burden for health systems and impacting quality of life. More recently, the essential 

role of the brain in the pathogenesis of these metabolic diseases has been highlighted. 

Common hallmarks of DIO, T2D and AD are central insulin resistance, altered 

glycogen synthase kinase 3β (GSK3β) (see Glossary) signalling as well as central 

inflammation. In this review, we discuss the shared molecular derangements that 

underlie these pathologies and focus on the connection between energy metabolism and 

circadian rhythms. In our modern society, these internal timekeeping systems become 

disrupted due to lifestyle changes and technological advances, including social jetlag, 

transmeridian travel, night shift work and constant exposure to bright artificial light 

sources. Here, we describe how circadian disruptions are associated with the 

development of metabolic derangements in both rodents and humans, as well as the 

efficacy of fasting regimens, such as time-restricted feeding (TRF), as a therapeutic 

intervention to reinstate metabolic health. Finally, we highlight future challenges and 

open questions in this field of research. 
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Obesity, Type 2 Diabetes and Alzheimer’s Disease: Three Distinct Diseases With 

Similar Aetiology? 

a) Neuroendocrine Pathways in the Regulation of Energy Homeostasis 

In both rodents and humans, DIO is characterised by a marked increase in circulating 

leptin levels, which are proportional to the amount of white adipose tissue. Although 

there is some evidence for ongoing leptin activity in obesity, in that a leptin antagonist 

can increase food intake and body weight in DIO mice [3], in common forms of obesity 

in humans and mice hyperleptinemia as well as administration of exogenous leptin are 

ineffective to properly mediate the hormone’s catabolic and anorexigenic effects in the 

hypothalamic arcuate nucleus (ARC), a key brain region for the regulation of energy 

homeostasis. This phenomenon was termed central leptin resistance. 

Furthermore, low grade systemic and central inflammation are associated with obesity 

[4] and increased activity of pro-inflammatory pathways in the hypothalamus has been 

linked to the development of DIO [5, 6]. By central inhibition of the inhibitor of 

nuclear factor-κB kinase β (IKKβ)/nuclear factor-κ-light-chain-enhancer of B-cells 

(NF-κB) pathway, the involvement of this pro-inflammatory pathway in the 

development of hypothalamic leptin resistance during DIO was demonstrated in mice 

[5]. A possible link between both pathways is the suppressor of cytokine signalling 3 

(SOCS3), which is a potent inhibitor of leptin signalling as well as a prominent target 

of the NF-κB signalling cascade [7]. In line with this, we showed that gene-therapeutic 

inhibition of IKKβ/NF-κB signalling in the ARC led to reduced socs3 gene expression 

[5]. Although this finding suggests that central inflammation might be a causative 

factor in the development of leptin resistance further research is required to identify the 

origin of leptin resistance. 

The occurrence of T2D correlates strongly with obesity [8]. Leptin resistance during 

DIO, a lack leptin secretion in leptin deficient patients or mice (Lepob/ob mouse) or 

mutations in the receptor (Lepdb/db mouse) is accompanied by hyperglycaemia and 

hyperinsulinemia. In certain cases leptin can be used as a replacement therapy for 

insulin and leptin is more potent at regulating glucose homeostasis than at regulating 

body weight [9]. In a leptin deficient patient it could be demonstrated that leptin 

replacement re-established insulin function in the hypothalamus [10]. Collectively, 
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these findings provide evidence that functional leptin action is crucial for functional 

insulin signalling.  

Molecularly, leptin administration leads to elevated activation of insulin receptor 

substrate 1 (IRS1) and we could show that it alters phosphorylation of IRS1 at Ser612 

and Ser307 [11], resulting in activation of the phosphoinositide 3-kinases (PI3K) - 

protein kinase B (AKT) pathway. Interestingly, pharmacological inhibition of 

hypothalamic GSK3β was shown to have similar effects on the activation of 

intracellular PI3K-AKT signalling [12]. GSK3β is a key enzyme of the WNT pathway, 

which was recently shown to play an important role in the neuroendocrine control of 

energy metabolism [13-15]. Canonical WNT signal transduction leads to the 

inactivation of GSK3β [16]. Leptin injections in rodents were indeed shown to activate 

the WNT pathway and inhibit GSK3β in leptin-deficient obese mice [14, 17]. GSK3β is 

a potent inhibitor of insulin signal transduction. Therefore, the inhibition of GSK3β by 

leptin possibly via the WNT pathway might be the explanation for leptin-induced 

sensitisation of insulin signalling. The disruption of insulin signalling in the brain, 

which is essential for the regulation of glucose homeostasis, leads to central insulin 

resistance and ultimately results in the development of T2D [18]. T2D is characterized 

by chronically elevated blood glucose concentrations, attenuated insulin sensitivity and 

hyperinsulinemia in the early stages, leading to the death of pancreatic β-cells during 

the manifestation of the disease [19]. Common complications in many patients 

suffering from T2D involve neuropathy due to pathologically elevated blood glucose as 

well as neurodegeneration. In this regard, midlife obesity as well as pathological 

changes in the brain, such as central insulin resistance and central inflammation, moved 

into the focus of AD research as risk factors for the development of sporadic AD (90% 

or more cases of AD). 

 

b) Neuroendocrine Disruptions in the Development of Alzheimer’s Disease 

AD is the most common cause of dementia. Underlying the pathology of AD are the 

progressive loss of synapses and neuronal death, resulting in cognitive decline and 

memory loss. Extracellular amyloid plaques (Aβ), caused by alternative severing of the 

amyloid precursor protein (APP) by the enzymes β-secretase 1 (BACE1) and γ-

secretase, as well as intraneuronal neurofibrillary tangles (NFTs) consisting of hyper-
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phosphorylated and aggregated tau protein, are the two traditional hallmarks of this 

disease [20]. 

Leptin was shown to exhibit neuroprotective and neurotrophic properties in different 

AD mouse models. In primary neuronal cultures as well as in APP/PS1 mice leptin was 

able to reduce tau phosphorylation and improve Aβ related pathologies [21, 22]. 

Additionally, subcutaneous leptin supplementation for 8 weeks reduced total brain Aβ 

in a transgenic mouse model of AD [23]. In line with deteriorated leptin signal 

transduction in DIO, impaired learning and memory performances and compromised 

working memory was demonstrated in DIO rodent models shortly after their diet was 

switched to a high-fat diet with 60% kcal from fat (HFD) [24]. High levels of 

cholesterol, present in obesity, further stimulate the alternative processing of APP and 

thus promote Aβ production and aggregation in vivo and in vitro [25].  

Another common feature of both DIO and AD is central inflammation, contributing to 

both pathologies in manifold ways [26]. In this regard, TLR-4-mediated 

PTEN/PI3K/AKT/NF-κB signalling was proposed as a link between DIO, T2D and AD 

[27, 28]. Basal NF-κB signalling can promote neuronal survival and regeneration, 

whereas sustained inflammation is associated with increased Aβ deposition and 

pathological tissue damage [27, 28]. 

Highlighting the profound role of impaired insulin signalling in the development and 

progression of AD, the term type 3 diabetes was proposed by Steen and colleagues in 

2005 [29]. Insulin receptors (IR) are expressed in many brain areas by neurons and glial 

cells with high abundance in the hypothalamus and hippocampus, where they regulate 

neuronal survival and differentiation, cytoskeletal rearrangements, neuronal plasticity, 

neurotransmitter release, gene expression, protein synthesis as well as central and 

whole-body energy homeostasis [30]. Ex vivo studies in post-mortem brains from non-

diabetic elderly with and without AD provided strong evidence for central insulin 

resistance as a prominent feature of the neurodegenerative disease. Talbot and 

colleagues stimulated post-mortem hippocampal tissue samples with physiological 

doses of insulin and revealed a reduced phosphorylation of IR, IRS1, AKT and GSK3β 

in AD patients in comparison to age-matched healthy controls, indicating a decreased 

action of the hormone [31]. Furthermore, these aberrations were correlated positively 

with Aβ load and the extent of tau phosphorylation as well as negatively with cognition 
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and memory scores of patients [31]. Additionally, decreases in gene expression and 

protein levels of insulin pathway molecules such as insulin, IR and IRS1 were observed 

[29]. Furthermore, insulin signal transduction was shown to be negatively correlated 

with aging and the pathogenesis of AD due to declining hormone levels in the CSF and 

decreased binding capacity of insulin to its receptor [32]. In line with those results, 

insulin-mediated gene expression declines with AD progression.  

Since glucose is the main energy source of the brain, the disturbances in glucose 

homeostasis caused by deteriorated central insulin signalling lead to a “starvation state” 

of the brain and thus to oxidative stress and cell death. Even though the uptake of 

glucose into the brain and into neurons is mediated by insulin-independent GLUT-3 

and GLUT-1 glucose transporters, respectively, a direct association between insulin 

resistance and a reduction in brain glucose metabolism was demonstrated by 

fluorodeoxyglucose (FDG) positron emission tomography (PET) in AD patients [33]. 

Accordingly, reduced glucose uptake in the brain measured by PET is an early and 

accurate indicator of neurodegeneration in humans and goes along with the severity of 

cognitive decline and memory impairments. Age-dependent impairments in central 

glucose homeostasis can also be observed in mouse models of AD [34]. Here, 

decreased brain glucose levels are associated with accelerated disease progression and 

GLUT-1 deficiency in endothelial cells was shown to enhance neuronal atrophy, Aβ 

plaque formation and cognitive impairments. In turn, overexpression of GLUT-1 

improved neurodegeneration and behavioural alterations in a fruit fly model of AD 

[35]. 

However, the negative effects of diminished insulin pathway activation are not only 

due to direct effects on energy metabolism, but also to changes in the regulation of 

important downstream pathways and molecules. A direct link between central insulin 

action and cognitive function was demonstrated by studies that depleted insulin 

receptors in the brain or inhibited central insulin signalling in rodents, causing profound 

cognitive impairments and AD-like molecular and biochemical changes [36, 37]. 

Insulin exhibits anti-apoptotic and anti-inflammatory properties via inhibition of 

Forkhead box O (FOXO), Bcl-2-associated death promoter (BAD), GSK3β and NF-κB 

pathways. In the case of insulin deficiency, these detrimental pathways remain 

activated, causing central inflammation and apoptosis. Moreover, the formation of 

cytotoxic Aβ plaques and of hyperphosphorylated tau aggregates is promoted on 
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different levels. On a transcriptional level, insulin is involved in the regulation of tau 

and APP expression, causing elevated levels of APP and decreased levels of tau mRNA 

in post-mortem AD brains [29]. Since functional insulin signalling is also essential for 

the trafficking of Aβ peptides from their production site in the trans-Golgi network to 

the plasma membrane, for secretion and degradation via insulin-degrading enzymes 

(IDE), disturbed insulin signalling leads to reduced Aβ clearance [38]. IDE expression 

and membrane localisation are induced by insulin stimulation in cultured astrocytes, 

where insulin facilitates the degradation of exogenous Aβ [39]. In turn, Aβ oligomers 

inhibit IRS1 through activation of the JNK pathway, decrease the binding affinity of 

insulin, reduce IR surface expression and interfere with PI3K-mediated activation of 

AKT, thereby exacerbating insulin signal transduction [40].  

Furthermore, GSK3β, which is inhibited by the insulin pathway, can phosphorylate tau 

at multiple sites, promoting the aggregation of hyper-phosphorylated tau and causing 

the formation of NFTs [41]. Eventually, this leads to a disruption of intraneuronal 

transport mechanisms, the collapse of the cytoskeletal structures, neurite retraction and 

the loss of synaptic connections.  

 

c) Antidiabetic Drugs in the Treatment of Alzheimer’s Disease 

Based on the shared features between T2D and AD, it is not surprising that antidiabetic 

drugs not only improve symptoms of T2D but also exhibit positive effects in AD 

patients. Recent studies showed promising results in rodent models and several drugs 

have been tested in clinical trials in AD patients. The most prominent treatment linking 

T2D to AD is intranasally administered insulin. In patients with mild cognitive 

impairment and AD, both acute and chronic treatment improved memory and plasma 

Aβ 40/42 ratio [42, 43]. Various other diabetes medications were tested in animal 

models of AD. Promising results were demonstrated for glucagon-like peptide-1 

receptor agonists (GLP-1RA), dipeptidyl peptidase-4 inhibitors, metformin and 

thiazolidinediones. Systemic GLP-1RA administration in rodents and non-human 

primates, for instance, greatly improved numerous markers of memory function, 

neuronal survival, insulin signalling and inflammation. Additionally, hippocampal Aβ 

load and tau pathology were reduced [44-46]. So far, only a limited number of 

controlled studies with yet inconclusive outcomes were conducted in humans. 
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The Circadian Clock in Health and Disease 

a) Reciprocal Regulation of the Circadian Clock and Energy Metabolism 

The importance of the circadian clock in the control of whole body energy metabolism 

has been demonstrated in numerous studies over the last decade [47]. Considerable 

progress in this field has derived from lesions of the suprachiasmatic nucleus (SCN) 

and studies conducted in transgenic rodent models. For example, SCN-lesioning in 

mice leads to the absence of a circadian rhythmicity in oxygen consumption, food 

intake and activity, together with an increase in body weight and fat mass, as well as 

hepatic insulin resistance [48]. Furthermore, a missense mutation in the murine clock 

gene evokes loss of rhythmic expression of key metabolic genes in liver, skeletal 

muscle and pancreas, resulting in disruption of glucose and lipid homeostasis and an 

obese phenotype [49, 50]. Deletion of the bmal1 gene in pancreatic β-cells results in a 

diabetic phenotype with insulin deficiency, impaired glucose tolerance and 

hyperglycemia [49].  

In humans, chronic circadian misalignment has been shown to evoke symptoms of 

metabolic syndrome. Continuous shift-work and social jet lag lead to decreased insulin 

sensitivity and impaired glucose tolerance, both indicators of type 2 diabetes, as well as 

increased body mass index and symptoms of cardiovascular disease [51-53]. Mice 

exposed to chronic circadian disruptions in the form of repeated jet lags display 

reduced hypothalamic leptin sensitivity and increased body weight [54], illustrating a 

potential explanation for the eminent correlation between circadian misalignment and 

the development of obesity as described in humans and rodents.  

Circadian rhythms and clock gene expression are altered simultaneously in states of 

metabolic derailment. DIO leads to arrhythmic patterns of locomotor activity, food 

intake and clock gene expression [55, 56]. One possible explanation for the correlation 

of circadian misalignments and obesity derives from the close interplay between 

circadian and inflammatory processes. For instance cytokines and other immune 

mediators are under direct control of circadian rhythms in a broad variety of tissues [57, 

58]. CRY ablation leads to constitutive activation of the pro-inflammatory transcription 

factor NF-κB [59], whereas the heterodimerisation of CLOCK and BMAL-1 results in 

rhythmic repression of pro-inflammatory gene expression [60]. Thus, altered 
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inflammatory activity as a consequence of disrupted circadian clock rhythms might be 

a crucial factor for obesity and related co-morbidities. 

A unique involvement of the ARC in the generation of feeding rhythms has been 

demonstrated by ARC-targeted ablation of leptin sensitive neurons in rats, resulting in 

an obese phenotype as well as impaired feeding rhythms, whereas this was not the case 

in other hypothalamic areas [61]. Recently, hypothalamic AgRP/NPY neurons were 

identified to be a crucial component of an SCN-independent, food-entrained oscillator 

[62]. 

The interaction between circadian rhythmicity and energy metabolism is further 

highlighted by the finding that rhythmic genomic binding and thus transcriptional 

activity of the CLOCK/BMAL1 complex is directly regulated by the cellular energy 

status. The reduced forms of the nicotinamide adenine dinucleotide (NAD) redox 

cofactors, NAD(H) and NADP(H), enhance the DNA binding of the heterodimeric 

complex, whereas the oxidised forms, NAD(+) and NADP(+), inhibit its binding [63]. 

Furthermore, rhythmic levels of NAD(+) activate the NAD(+)-dependent protein 

deacetylase sirtuin 1 (SIRT1), which oscillates and binds CLOCK/BMAL1 

heterodimers in a circadian manner, thereby facilitating the degradation of PER2 and 

directly regulating circadian output [64]. These results demonstrate how cellular energy 

metabolism directly regulates the circadian clockwork machinery.  

 

b) Circadian Disruptions in Alzheimer’s Disease 

Beside metabolic derangements, disruptions in circadian rhythms are associated with a 

number of different diseases such as cancer, mood disorders and also AD. In fruit fly 

and rodent models, mutations or knock-outs of the clock genes bmal1 and period cause 

an accelerated aging phenotype characterised by an earlier decline in cognitive 

functions, a high rate of oxidative tissue damage and an overall shorter life-span [65, 

66].  

 

The influence of the pathology of AD on circadian rhythms was already observed 

decades ago. More recently it became clear that circadian disturbances are one of the 

earliest symptoms of AD and often they precede the onset of cognitive and motor 
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symptoms by years [67]. AD patients exhibit abnormal behavioural rhythms such as 

disturbed sleep/wake cycles and emotional imbalances. While nocturnal sleep becomes 

more and more fragmented, night-time activity and daytime sleepiness intensify in 

these patients [68, 69]. This is accompanied by the ‘sundown syndrome’ that describes 

a state of increased distress, emotional volatility and aggression in the evening. 

Physiological and biochemical processes such as hormone release patterns or anti-

oxidative defence rhythms are also changed [70]. The hormone melatonin, which is 

produced by the pineal gland, is involved in the entrainment of circadian rhythms in the 

SCN and acts as an effective free radical scavenger. In healthy individuals its release 

peaks during night-time and is suppressed by daylight. However, in AD patients and 

individuals with pre-clinical cognitive symptoms of dementia melatonin levels are 

reduced and its rhythmic oscillation is flattened [70, 71]. Further circadian 

abnormalities were detected in the core body temperature rhythm, which is delayed and 

its amplitude decreased [72]. In line with these results, post-mortem AD brains display 

a severe loss of hypothalamic tissue, including SCN cells and lowered melatonin 

receptor (MT1) levels [73]. 

Recent studies in animal models of AD indicate changes in the rhythmic expression 

patterns of the clock genes bmal1, per1 and cry1 in the brain. Although bmal1 

expression remains rhythmic in several brain regions and peripheral tissues, the 

temporal phase relationship between different areas seems to vary in comparison to 

healthy controls [69]. Additionally, the bmal1, per1 and cry1 mRNA rhythmicity is lost 

in cells of the pineal gland [74]. Regarding the pathology of AD, presilin-2 expression 

is regulated by CLOCK/BMAL1 heterodimers on a transcriptional and post-

transcriptional level in peripheral tissue [75]. Mutations in presilin-2 are associated 

with the development and Aβ pathology of familial, early-onset AD.  

A direct link between desynchronised body clocks and the Aβ pathology was recently 

shown in different cell culture and mouse models. The treatment of human skin 

fibroblast, human A172 glioma cells as well as primary cortical and hippocampal 

mouse neurons with physiological concentrations of Aβ1–42 peptides caused a 

dampening in metabolic ATP level oscillations and mitochondrial respiration rhythms 

leading to increased oxidative stress in those cells [76]. In turn, the disruption of 

circadian rhythmicity either globally or locally in the brain, achieved by the deletion of 

the clock gene bmal1 in a β-amyloidosis mouse model, exposed a direct effect of 
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central circadian disruptions on daily Aβ fluctuations in the hippocampal interstitial 

fluid, promoting Aβ plaques deposition [77]. Furthermore, a global bmal1 deletion 

resulted in elevated apoe expression in the brain parenchyma and the formation of 

fibrillary plaques [77]. 

The number of circadian abnormalities in AD and metabolic syndrome leads inevitably 

to the question whether circadian disruptions are the cause or consequence of the 

pathogenesis of AD and other neurodegenerative diseases. So far, this question cannot 

be answered easily even though there is some evidence that changes in the master clock 

deteriorate rather than initiate pathological processes in AD [78].  

 

c) Time-Restricted Feeding as a Therapeutic Intervention to Combat 

Circadian Disruptions and Metabolic Diseases 

Considering the close relationship between circadian clocks and energy homeostasis, 

behavioural interventions, such as fasting regimens, to combat the consequences of 

disrupted rhythms and metabolism appear as a favourable tool. Intriguingly, fasting and 

caloric restriction (CR) protocols increase SIRT1 activity in the hypothalamus as well 

as the periphery [79]. SIRT1 possesses potent anti-inflammatory capacities and was 

shown to improve metabolic health by its ability to interact with a variety of 

transcription factors that control energy homeostasis [79]. These findings offer an 

explanation for the beneficial effects of intermittent fasting (IF) and time-restricted 

feeding (TRF) on the detrimental consequences of DIO and related metabolic disorders. 

TRF is a form of IF wherein food intake is restricted to specified hours each day. In a 

broad variety of species from fruit flies to mice and humans, CR and TRF lead to an 

extension of lifespan, promote weight loss, prevent the development of metabolic 

diseases and/or reduce levels of pro-inflammatory cytokines [80-82]. Recent studies 

suggest that the beneficial effects of TRF strongly depend on the timing of food intake. 

Time-restricted access to HFD during the active (dark) phase of mice prevents body 

weight gain, hyperinsulinemia, glucose intolerance and systemic inflammation, 

whereas mice with access to HFD both ad libitum and exclusively during their inactive 

(light) phase develop metabolic disorders, even when caloric intake is identical [56, 

81]. Timing of food intake is such a strong circadian entrainment cue that TRF of HFD 

can restore the expression phase of the hepatic clock genes Clock and Cry1 and phase-
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advance the expression of Bmal1, Per1/2, Cry2, amongst others, compared with mice 

fed HFD ad libitum [83]. These findings suggest that TRF can be employed as a 

behavioural intervention strategy to counteract the detrimental effects of obesity and/or 

circadian disruptions.  

In line with this, circadian-focussed therapies were suggested to improve the symptoms 

of AD. These interventions, including bright light therapy and timed administration of 

melatonin resulted in inconsistent outcomes, thus their benefit is still controversial [84-

87]. Studies to determine the therapeutic effects of food as a time cue to resynchronise 

peripheral clocks are underway. Restricting meal times to certain hours of the day may 

be a promising long-term strategy to combat metabolic disease. 

 

Conclusion 

The brain plays a crucial role in the development of obesity, T2D and AD and 

disruptions of neuroendocrine signalling cascades deteriorate metabolic health. Central 

insulin resistance, altered GSK3β signalling and an increase in inflammatory processes 

are shared hallmarks of these metabolic diseases. The development of one of these 

disorders can therefore facilitate further metabolic derangement. Furthermore, the close 

regulatory relationship between energy metabolism as well as cognitive health and the 

circadian clock identifies circadian disruptions as a major risk factor in the 

development of obesity, T2D and AD. Accordingly, TRF regimens are an efficient 

therapeutic intervention to re-entrain disrupted circadian rhythms as well as metabolic 

health. 
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Appendix 

The pathogenesis of Alzheimer´s disease 

Clinically, Alzheimer´s disease (AD) is characterised by an initially mild impairment in 

memory, especially concerning word- and recent event recollection. With the 

progression of AD symptoms worsen gradually and individuals undergo a severe 

decline in cognitive abilities accompanied by neurological symptoms and behavioural 

changes. These range from difficulties to complete familiar tasks to pronounced 

disorientation and confusion about time, location and events and difficulties to speak, 

swallow or walk [88]. 

The brains of AD patients are characterised by manifold histopathological changes. The 

most prominent and most studied features are amyloid β plaques and neurofibrillary 

tangles, which have been the gold standard for diagnosis for decades [20]. Aβ peptides 

originate from the alternative processing of the amyloid precursor protein (APP) by β- 

and γ-secretases, yielding in 38-43 amino acid long, hydrophobic peptides, which are 

prone to aggregation into soluble Aβ oligomers or extracellular amyloid plaques [20]. 

The isoforms Aβ40 and Aβ42 are most common in AD, whereas Aβ42 is considered to 

have the highest hydrophobicity and toxicity. Since Aβ42 production is enhanced on 

the expenses of Aβ40 synthesis, the plasma Aβ42/Aβ40 ratio serves as a reliable 

biomarker to predict brain depositions [89]. The brain Aβ load is further increased in 

AD by a reduction in Aβ degrading enzymes, a decrease in the brain clearing rate and 

an increase in the brain uptake of soluble Aβ oligomers via multi-ligand advanced 

glycation end products receptors (RAGE). Additionally, interaction of RAGE with Aβ 

causes activation of pro-inflammatory signalling in endothelial cells of the blood-brain-

barrier, which in turn leads to endothelial apoptosis and a decrease in cerebral blood 

flow rate [90]. This effect of Aβ might contribute to the neurovascular changes 

overserved in AD. The second prominent pathological feature of the brain in AD are 

intracellular neurofibrillary tangles, consisting of abnormal phosphorylated tau protein. 

Tau phosphorylation in different sites is thereby mediated by a variety of kinases 

involved in manifold pathways such as GSK3β [20]. Hyper-phosphorylation of tau 

causes its translocation into the somatodendritic area and its aggregation, thus, causing 

the break-down of cytoskeletal structures and a disruption of intracellular transport and 

signal transduction in neurons [20]. Further pathological brain features are oxidative 
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stress due to excessive reactive oxygen species (ROS) production, a disturbed calcium 

homeostasis and alterations in neurotransmitter signalling caused by changes in 

neurotransmitter release, its clearing from the synaptic cleft and receptor expression. 

All these molecular alterations lead to a loss of synapses and finally to neuronal death 

[91]. 

Interestingly, histopathological changes in the brain precede cognitive symptoms by 

decades, emphasizing the importance for new screening methods to detect early 

molecular changes. Currently, diagnoses are made by clinical and neuropsychological 

tests. Neuroimaging in form of computer tomography (CT) and magnetic resonance 

imaging (MRI) is not sufficient to diagnose AD and can only be used to exclude other 

brain diseases such as strokes or tumours. Therefore, there is a need for new imaging 

techniques to diagnose AD. Amyloid-β positron-emission tomography (PET) imaging 

and the measurement of amyloid-β in cerebrospinal fluid can estimate the Aβ burden of 

a patient, however these techniques are very expensive and laborious [92]. Recently 

structural and functional MRI and PET studies measuring cerebral metabolism 

provided promising results even in pre-symptomatic stages of AD [33]. A new blood 

test developed by Nakamura and colleagues, measuring the APP/Aβ42 and the 

Aβ40/Aβ42 ratios in blood, still in preliminary stages, may provide a feasible and less 

expensive alternative to neuroimaging [93]. 

 

Type 3 diabetes 

Central insulin resistance can have a high impact on the histopathological changes seen 

in AD brains due to impaired glucose uptake and utilisation and altered signal 

transduction as described in the main text. Accordingly, patients suffering from T2D 

have a 50-65% higher risk to develop AD and other forms of dementia [94]. 

Emphasising the similarities between both diseases, the term type 3 diabetes was 

coined for patients suffering from both medical conditions, T2D and AD/dementia. 

Common molecular features of both diseases, beside central insulin resistance, are the 

occurrence of amyloidogenic protein aggregates in the brain and/or pancreas, increased 

pro-inflammatory signalling, severe oxidative stress, neurodegeneration, microvascular 

changes and an advanced production of glycation end-products. 
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Glossary 

 Circadian rhythms: endogenously generated rhythms with a free-running period of 

approximately 24 hours, meaning they persist under constant conditions. Circadian 

rhythms are entrainable by external cues (“Zeitgebers”). In mammals, light is the 

primary Zeitgeber, resulting in a 24-hour oscillation of physiological and 

behavioural rhythms. Time of food intake is another prominent Zeitgeber. 

 Glycogen synthase kinase 3β (GSK3β): GSK3β is a proline-directed 

serine/threonine protein kinase that is ubiquitously expressed and constitutively 

active. GSK3β activity is controlled by phosphorylation at different sites. The major 

inhibitory phosphorylation site is Ser9. This inhibitory phosphorylation is mediated 

by different kinases and pathways amongst which the insulin pathway-related kinase 

AKT is most prominent. GSK3β is also involved in the regulation of oxidative 

stress, apoptosis and gene transcription. The latter is mediated by the GSK3β 

regulation of diverse co-/transcription factors such as NF-κB, STAT3 or β-catenin. 

An over-activation of GSK3β is implicated in several diseases, including T2D, AD 

and other neurodegenerative disorders, inflammation, cancer and cardiovascular 

diseases. 

 Suprachiasmatic nucleus: Located in the anterior hypothalamus, the SCN is the 

central master pacemaker of mammalian circadian rhythms. The main role of the 

SCN is the synchronisation of peripheral circadian clocks, which are present in 

virtually all tissues, to ensure a tranquil coordination between physiological and 

behavioural processes.   

 Time-restricted feeding: A feeding regimen in which food intake is restricted to a 

specified period each day, followed by an extended period of food deprivation. TRF 

does not necessarily imply a reduction in caloric intake, but beneficial outcomes on 

metabolic health are dependent on the circadian timing of caloric intake. 
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Trends 

 On the molecular level obesity, T2D and AD share common features such as 

central insulin resistance, chronic low-grade inflammation and altered GSK3 

signalling.  

 Several antidiabetic drugs showed positive effects in AD patients underpinning 

the molecular similarities of both diseases.  

 Recent studies emphasize the circadian clock as an important player in whole 

body energy metabolism. Circadian rhythms and clock gene expression are 

altered in states of metabolic derailment and disruptions in circadian rhythms 

are associated with a number of different diseases including T2D and AD 

 Considering the close relationship between circadian clocks and energy 

homeostasis, behavioural interventions, such as fasting regimens, to combat the 

consequences of disrupted rhythms and metabolism appear as a favourable tool 

 

Outstanding Questions 

 How important is the timing of meals for the synchronization of the master 

clock and do abnormal eating patterns lead to a disruption of circadian rhythms?  

 Are neuroendocrine pathways, which control energy metabolism, regulated in a 

circadian manner in the brain? 

 Are central insulin resistance, altered GSK3 signalling and chronic low-grade 

inflammation accompanying symptoms of a disrupted clock?   

 Are circadian disruptions the cause or consequence of the pathogenesis of AD 

and other neurodegenerative diseases? Recent evidence suggests that circadian 

disruptions deteriorate rather than initiate pathological processes in AD but little 

is known about the underlying mechanisms. 

 Can IF/TRF restore a misalignment of the circadian clock and thereby 

alleviate/reverse metabolic derangements and what are the molecular 

mechanisms?  
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Figure 1. Insulin and leptin signalling in the brain. Insulin, secreted by pancreatic β-

cells, crosses the blood brain barrier and binds to IR expressed by neurons. Upon 

binding of insulin to IR its intrinsic tyrosine kinase domain phosphorylates IRS1. 

Activated IRS1 phosphorylates PI3K leading to downstream activation of AKT. 

Activated AKT exhibits pleiotropic effects, most importantly controlling FOXO and 

GSK3β thereby regulating key processes such as cell survival, proliferation and 

metabolic adaptions. The adipokine leptin controls energy homeostasis and body 

weight primarily by targeting orexigenic as well as anorexigenic neurons in the 

hypothalamus. Binding of leptin to LepRb leads to an activation of JAK2 resulting in a 

phosphorylation of the three intracellular receptor tyrosine residues Tyr985, Tyr1077 and 

Tyr1138. The phosphorylation of Tyr1138 causes the recruitment of STAT3. STAT3 is 

subsequently phosphorylated by JAK2 at the phosphorylation site Tyr705, which leads 

to homodimerization and nuclear translocation of STAT3. In the nucleus, STAT3 acts 

as a transcription factor and induces target gene expression, including SOCS3. SOCS3 

initiates a negative feedback loop inhibiting JAK2 activation thereby decreasing leptin 

action. In addition to its fundamental effects on body weight via the JAK2/STAT3 

pathway, leptin also inactivates GSK3β, linking leptin signalling to various metabolic 

processes. Glycogen synthase kinase 3β (GSK3β), insulin receptor (IR), insulin 

receptor substrate 1 (IRS1), Janus kinase 2 (JAK2), phosphoinositide 3-kinases (PI3K), 

protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3), 

suppressor of cytokine signalling 3 (SOCS3). 
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Figure 2. Regulation of cell autonomous circadian rhythms. The master pacemaker 

of circadian rhythm is the central circadian clock that resides in the SCN of the 

hypothalamus and synchronizes peripheral clocks in the body. On the molecular level, 

circadian rhythms are driven by a cell autonomous transcriptional translational 

feedback loop that occurs in virtually all cells. The positive arm of the mammalian 

circadian clock consists of the clock proteins CLOCK and BMAL1, which 

heterodimerize and bind to E-box regions in promotors of the clock genes cry 1/2 and 

per 1-3 initiating their transcription. Additionally, CLOCK/BMAL1 induces rev-erbα 

and rorα/β gene expression. The negative arm is represented by CRY, PER and REV-

ERBα. CRY/PER heterodimers, translocate into the nucleus and repress the binding of 

the CLOCK/BMAL1 complex to target promotor regions thereby inhibiting their own 

transcription. Furthermore, REV-ERBα negatively regulates bmal1 expression, while 

RORα/β induces its expression. CLOCK/BMAL1 is directly regulated by NAD(H) and 

NADP(H), which enhance the transcriptional activity of the complex. Their oxidised 

forms, NAD(+) and NADP(+), inhibit CLOCK/BMAL1 binding to the DNA. 

Furthermore, SIRT1 oscillates and binds CLOCK/BMAL1 heterodimers in a circadian 

manner, facilitating the degradation of PER2 and directly regulating circadian rhythms. 

Another regulatory mechanism for this rhythmic machinery is represented by the 

cytosolic enzymes CK1 and GSK3β, which label CRY and PER for degradation. This 

transcriptional translational feedback loop is repeated approximately once every 24 

hours. Brain and muscle ARNT-like protein 1 (BMAL1), casein kinases (CK1), 

circadian locomotor output cycles kaput (CLOCK), cryptochrome (CRY), glycogen 

synthase kinase 3β (GSK3β), nicotinamide adenine dinucleotide redox cofactors 
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(NAD/NADP), period (PER), reverse erythoblastoma (REV-ERB), retinoid orphan 

receptor (ROR), suprachiasmatic nucleus (SCN), sirtuin 1 (SIRT1). 
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Figure 3 (Key Figure). Obesity, type 2 diabetes and Alzheimer´s disease are tightly 

linked disorders with obesity being a major risk factor for the development of T2D and 

AD. Impaired glucose homeostasis in T2D also increases the risk for the development 

of sporadic AD. Pathological changes such as insulin resistance, altered GSK3β 

signalling and central inflammation are common features of all three diseases. Recent 

research could also provide evidence, that a disruption of the circadian clock can 

further promote the progression of all three disorders. Alzheimer´s disease (AD), 

glycogen synthase kinase 3β (GSK3β), type 2 diabetes (T2D). 
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