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Zusammenfassung 
Jedem biologischen Prozess wohnt eine Zufallskomponente inne. Während der Genexpression 

entsteht „Rauschen“ durch stochastische Fluktuationen und Schwankungen in der Anzahl und Aktivität 

der involvierten Expressionsmaschinerie. Daraus resultiert, dass sich Zellen einer genetisch identischen 

Population in der Zahl ihrer Proteine unterscheiden, was sich negativ auf biologische Prozesse 

auswirken kann. Evolutionär hat die Natur auf Mechanismen selektiert, die Rauschen vermindern und 

der zellulären Fitness zugutekommen. Die meisten synthetisch-biologischen genetischen Schaltkreise 

und Signaltransduktionswege verfügen allerdings nicht über Systeme, die Genexpressionsrauschen 

regulieren, wodurch ihre Funktionalität limitiert werden kann. 

In der vorliegenden Studie beschreiben wir ein synthetisches System zur Kontrolle von 

Genexpressionsrauschen in der Hefe Saccharomyces cerevisiae. Die präsentierten Daten wurden zum 

Großteil mittels Durchflusszytometrie aufgenommen mit einer Messkonfiguration, welche wir zuvor 

auf minimales unspezifisches biologisches und technisches Rauschen optimiert haben. Das von uns 

entwickelte System ermöglicht es die Variation in der Expression eines Zielgens einzustellen, indem 

dessen Transkriptionsrate und mRNA-Degradationsrate gesteuert werden. Dafür verwenden wir 

induzierbare Promotor- und Ribozym-Sequenzen. Messungen in denen wir einen Unterschied im 

Genexpressionsrauschen eines Fluoreszenzreporters um bis zu 300 % einstellen, demonstrieren die 

Funktionalität unseres Systems. Wir bewerten die Leistungsfähigkeit unseres „Noise Tuners“ indem 

wir ihn mit semi-synthetischen Systemen vergleichen, deren mRNA-Degradationsrate durch native 

Hefe-Terminatoren gesteuert wird. 

Wir verwenden ein analytisches Modell, welches Genexpression mit der Verteilung von 

Proteinkonzentrationen auf Populationsebene verbindet. Auf der Basis dieses Modells betreiben wir 

stochastische Simulationen, die die experimentellen Ergebnisse reproduzieren und einen tieferen 

Einblick in die zugrundeliegenden Mechanismen erlauben: Im gegebenen Parameterbereich wird der 

Grad des Rauschens von der Transkriptionsrate definiert, wohingegen die Expressionsniveaus sowohl 

von der Transkriptionsrate wie auch der mRNA-Degradationsrate gesteuert werden. 

Mit der Entwicklung des Noise Tuners verfolgen wir zwei Ziele: Zum einen die Reduktion von 

Genexpressionsrauschen in Systemen, in denen es sich als schädlich erweist; zum anderen wollen wir 

ihn als Werkzeug etablieren um den Einfluss von Rauschen in komplexeren Systemen zu untersuchen. 

Dazu testen wir den Noise Tuner für verschiedene Gene des Signaltransduktionswegs für die sexuelle 

Paarung in S. cerevisiae, einem Modellsignalweg für synthetisch-biologische Studien. Angewandt auf 

verschiedene Gene zeigen wir, dass der Noise Tuner das Rauschen in der Aktivität des 

Signaltransduktionswegs kontrollieren kann. 

Eine detaillierte Analyse zum negativen Regulator SST2 zeigt Unterschiede in der Variabilität des 

Signaltransduktionswegs von bis zu 50 %. Wir zeigen die physiologische Relevanz dieser Veränderung 

durch verbesserte Informationsweiterleitung, wenn SST2-Rauschen herabreguliert ist. Darüber hinaus 

untersuchen wir die Morphologien von ca. 10.000 Hefezellen und zeigen, dass Zellen mit niedrigem 

SST2-Rauschen bei Stimulation des Signalwegs präziser mit dem Paarungs-Phänotyp reagieren als 

Zellen mit verrauschter SST2-Genexpression.  

Des Weiteren untersuchten wir, ob die hier beschriebene und erfolgreich getestete Strategie zur 

Kontrolle von Variabilität in der Genexpression auch in natürlichen Genen gezeigt werden kann. Dazu 
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wählten wir fünf Gene der Hefe aus, für die wir auf Basis publizierter Daten extrem hohe bzw. niedrige 

mRNA-Degradationsraten berechnet hatten. Wir nutzen die entsprechenden Promotoren und 

Terminatoren dieser Gene um das Genexpressionsrauschen in einem Reportergen zu messen und 

konnten einen generellen Trend feststellen für niedriges Rauschen bei hoher Transkriptions- und 

mRNA-Degradationsrate und genauso den umgekehrten Trend für hohes Rauschen bei niedrigen 

Raten. Für die zwei Gene mit der extremsten (hohen bzw. niedrigen) Variabilität konnten wir zudem 

Hinweise finden, die der Hypothese entsprechen, das Genexpressionsrauschen mit bestimmten 

Genfunktionen verknüpft ist. 

In der vorliegenden Arbeit zeigen wir die Entwicklung, Konstruktion und erfolgreiche Anwendung eines 

synthetischen Werkzeugs zur Kontrolle des Expressionsrauschens von Genen. Die vorgestellten 

Ergebnisse illustrieren den Einfluss den das Genexpressionsrauschen einer individuellen Komponente 

eines Signaltransduktionswegs auf dessen Leistungsfähigkeit haben kann; wir zeigen aber auch, wie 

dieser Einfluss kontrolliert werden kann. Wir empfehlen, dass generelle Design-Prinzipien für niedrige 

Variabilität in der Genexpression - wie die hier vorgestellte Methode - verwendet werden um die 

Leistungsfähigkeit synthetischer Netzwerke zu verbessern. 
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Summary 
A certain level of randomness is inherent to every biological process, causing individual cells in a 

clonally identical population to vary in the number of protein molecules. This variation that was termed 

gene expression noise arises from stochastic fluctuations and the variability of numbers and states of 

the involved expression machinery. Noise causes suboptimal protein concentrations, which can 

negatively affect biological processes. Nature has selected for noise-reducing mechanisms when they 

benefit cellular fitness. Most synthetic genetic circuits and signaling pathways, however, lack systems 

that control gene expression noise, which can reduce their functionality.  

Here, we report the construction of a synthetic noise tuning system in Saccharomyces cerevisiae. We 

present data acquired by flow cytometry, using a measurement setup that we optimized for minimal 

nonspecific biological and technical variations. The system we developed allows the tuning of 

expression noise of a target gene using externally added small molecules to control the transcription 

rate via inducible promoters and the mRNA degradation rate via inducible ribozyme sequences. We 

demonstrate the functionality of the noise tuner by achieving up to 3-fold noise differences in the 

expression of a fluorescence reporter gene. We benchmarked the performance of the noise tuner by 

comparing it to semi-synthetic systems with fixed mRNA degradation rates, mediated by native yeast 

terminators.  

Stochastic simulations of an analytical model that links gene expression to population-level 

distributions of protein numbers were used to reproduce the experimental findings and revealed the 

mechanisms underlying the observations: In the given parameter space, noise was mainly affected by 

the transcription rate, whereas the mean expression was governed by both, the transcription rate and 

the translational burst size defined by the mRNA degradation rate. 

The objective of the development of the noise tuner was twofold: the first goal was to reduce gene 

expression noise in contexts where it proves to be detrimental. The second goal was to establish the 

noise tuner as a tool to investigate the influence of noise in complex networks. We applied the noise 

tuner to different genes in the yeast mating pathway, a model signal transduction pathway and the 

basis for numerous studies in the field of synthetic biology. We determined that the noise tuner, when 

applied to different genes of the pathway resulted in detectable changes in pathway noise. 

Detailed analysis of the negative pathway regulator gene SST2 set to either high or low noise resulted 

in up to 50 % difference in pathway noise between the two settings. We demonstrated that the low 

noise setting of SST2 expression lead to improved information transmission through the pathway. 

Categorization of cell morphologies during stimulation with mating pheromone suggested a more 

precise, switch-like response in the low-noise SST2 cells. 

To investigate whether noise tuning principle we describe here was also applicable to native genes, we 

selected five yeast genes with reportedly extreme mRNA production and degradation rates. We used 

the corresponding promoters and terminators to drive the expression of a reporter gene to observe a 

general trend towards low noise for genes with high transcription and mRNA degradation rates and 

vice versa. The results of a gene ontology analysis of the two most extreme cases supported a 

hypothesis that noise levels are linked to protein function. 

In this thesis we report the design, construction and successful application of a synthetic noise tuner. 

Our results illustrate the impact of gene expression noise of individual components on pathway 
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performance – but we also show that this can be controlled. We suggest that design principles for low-

noise gene expression, such as those presented in this thesis, should be taken into account for the 

synthetic modification and de novo design of signal transduction pathways and other networks. 
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Abbreviations 
a.u. Arbitrary units 

ATP Adenosine triphosphate 

bp Base pair 

ddH2O Double-distilled water 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleoside triphosphate 

FP Fluorescence protein 

GTP/GDP Guanosine tri-/ diphosphate 

mNG mNeongreen 

mRNA Messenger RNA 

nt Nucleotide 

PCR Polymerase chain reaction 

PEG Polyethylene glycol 

PRG Pheromone response gene 

RNA Ribonucleic acid 

rpm Revolutions per minute 

SD Standard deviation 

UTR Untranslated region 
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1 Introduction 
This work focuses on a molecular tool that we have developed to control gene expression noise in 

yeast. The following pages explain how noise can be measured using single-cell techniques, which 

underlying mechanisms cause noise, and the known existing mechanisms by which noise can be 

controlled. A strategy to control gene expression noise will be described which employs the regulation 

of the transcription rate and the mRNA degradation rate. Lastly, noise will be discussed in the context 

of biological networks, using the yeast mating pathway as a model for signal transduction. 

1.1 Gene expression noise 
Living organisms share the remarkable capability to act deterministically at the macro level despite 

fluctuations at the micro level. From microorganisms to mammals, this characteristic is found 

throughout all domains of life: At any given time, thousands of random molecular processes occur 

within a cell. Still, the cell is capable of spatial and temporal organization, signaling and response to 

stimuli, homeostasis, and the other characteristics of life. How this randomness can be controlled and 

its sources and consequences are subjects of ongoing research. 

For a long time, this randomness (we refer to it henceforth as noise) was ignored because 

measurements were mostly done “in bulk” and individual fluctuations were averaged out using the 

statistics of large numbers. The development of techniques to measure properties of single cells, such 

as flow cytometry, enabled the analysis of cell-to-cell variations in large populations of cells. 

Furthermore, the emergence of Synthetic Biology has advanced research on gene expression noise, 

based on the observation that synthetic genetic circuits show large fluctuations in their behavior (1). 

One central notion of noise research is that on the level of individual cells, small numbers of molecules 

can play a crucial role for cellular function. Perhaps the most prominent example of such a molecule is 

DNA, which is present in only one to a few copies per cell and is the very basis for the process of gene 

expression that gives rise to a certain phenotype. Early noise research has shown that even in a clonally 

identical population of cells, the expression of individual genes differs from one cell to another (2). This 

gene expression noise results in diverse phenotypes that can be observed in microorganisms (see e.g. 

2) as well as higher organisms (3), as illustrated in Figure 1. 

 

Figure 1: Phenotypic consequences of gene expression noise. The fingerprints of identical twins exhibit different patterns 
(adapted from 3). 

This thesis will focus on the characterization and control of gene expression noise in the yeast 

Saccharomyces cerevisiae, one of the most extensively studied unicellular eukaryotes. S. cerevisiae has 

been a model organism for the analysis of eukaryotic gene expression and its regulation, e.g. by 

heterochromatin remodeling (4, 5) and mRNA processing (6, 7, 8, 9). Moreover, yeast strains represent 

capable hosts for the recombinant production of value chemicals (e.g. 10) and are employed as 

biosensors (e.g. 11). The deep understanding of the regulation of genes and the wide variety of 
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biotechnological applications makes S. cerevisiae an excellent organism to study gene expression 

noise.  

1.2 Determining the noise in a system 
Noise can be determined by measuring a range of cellular variables, using single-cell level techniques 

and the extent of variability can be expressed in different numbers. Here, we focus on flow cytometry 

measurements of populations expressing fluorescent reporter genes which are analyzed by calculating 

the moments of the corresponding distributions (e.g. mean and variance). 

1.2.1 Fluorescent proteins 

Noise is typically measured on the protein level. Proteins are the main effector molecules that mediate 

cellular functions. Thus, measuring protein heterogeneity gives the most insight into the expression 

capacity of a cell and its physiology. Their ease of use and the development of fast single-cell 

fluorescence measurement techniques (see section 1.2.2) have made fluorescent proteins (FPs) the 

main objects for gene expression noise analysis.  

Independent of the color, all FPs share a similar structure with the chromophore being formed by three 

amino acid residues that are shielded by a barrel-like shape formed by beta sheets (12). FPs with the 

desired properties have to be chosen based on the aim of the experiment and the experimental and 

biological setup. The main properties that have to be considered are the excitation and emission 

spectra and the brightness. 

The chromophore of a FP is only excitable with light in a certain range of wavelengths. A photon within 

this range can be absorbed to excite the chromophore which then can emit a photon with lower energy 

(i.e. higher wavelength) than the absorbed photon. This difference in wavelengths is referred to as 

Stokes shift and causes the difference between excitation and emission spectra in fluorescence 

measurements (see Figure 55 in the methods section). 

Bright FPs increase the signal-to-noise ratio and allow high sensitivity. Brightness is defined by two 

parameters: The extinction coefficient and the quantum yield. The extinction coefficient is a metric for 

how well the fluorescent protein attenuates light of a certain wavelength, i.e. how much light it 

absorbs. The quantum yield describes how many photons of fluorescence light are emitted from the 

protein per photon from the excitation light source (12). 

To allow the expression and measurement of more than one fluorescence reporter, the excitation and 

emission spectra of the FPs have to be well interspaced and separated. To measure in a heterologous 

host such as yeast, fluorescent reporter genes are usually codon optimized. In this process, some 

codons in the original sequence are changed so that the codons of the gene correspond to the tRNA 

abundance of the heterologous host organism. 

1.2.2 Flow cytometry 

Noise measurements are challenged by the fact that all involved processes are subject to randomness. 

That does not only involve the cellular processes but also the selected measurement technique, in this 

case, flow cytometry. The resulting technical noise becomes part of the total noise that is measured 

and cannot readily be distinguished from the biological noise unless it has been estimated on the basis 

of experimental data (see e.g. Figure 23 in the results section). 



Introduction 

8 
 

Flow cytometers consist of a fluidics, optics and electronics part. Technical parameters at the optics 

and electronics level can be chosen to optimize the acquisition and to minimize technical noise. This is 

general best practice to improve signal-to-noise in measurements. For noise analysis it is even more 

crucial because here, not only is the signal is supposed to be distinguishable from the noise but also 

one source of noise is supposed to be distinguishable from a separate source of noise. 

In flow cytometry, laser beams hit the cells and create two types of signals. In the first, the laser is 

either diffracted in the forward or the side direction, creating forward (FSC) or side scatter signals 

(SSC), which are affected by the size and the inner granularity of the cells. Photons from the laser can 

also be absorbed by the cells which are then emitted as photons of lower energy (see section 1.2.1). 

These fluorescence signals scale with the concentration of fluorophores in the cell. Adjusting the laser 

power can be a potential parameter to optimize the measurement (see Figure 21 in the results 

section). 

Unlike the diffracted signal, the fluorescence light emitted from the sample is not emitted in a single 

wavelength but in a spectrum of wavelengths. In order to analyze this complex signal, it is split into 

different frequency bands to be collected by the appropriate detector that translates signals into an 

electronic current. For this purpose, the filtered parts of the spectrum are transmitted to 

photomultiplier tubes (PMTs). Voltages are applied to regulate the strength of the electronic current. 

These PMT voltages are important technical parameters that can be adjusted to optimize flow 

cytometry measurements (see Figure 22 in the results section). 

1.2.3 Noise calculation 

Single-cell measurement techniques such as flow cytometry are a prerequisite for the analysis of 

cellular variation. This is due to the fact that in order to calculate the variation, apart from the first 

moment (mean, µ) also the second moment of the distribution (variance, σ2) has to be known. The 

square root of the variance is the standard deviation σ which, divided by the mean of a distribution 

gives the coefficient of variation (CV). The CV is commonly used to describe gene expression noise or 

the amount of cell-to-cell heterogeneity in a population. Normalization of the standard deviation to 

the mean is necessary to take into account that the variation scales with the mean (see section 1.3.2).  

The mean and CV are common statistical estimators. In measurements of biological parameters, 

however, data often contain outliers. For that reason, it can be useful to employ alternative metrics 

for noise that are more robust towards extreme values. The median of a distribution is the middle 

value, separating the lower from the higher half of the distribution. By this definition, outliers have a 

smaller impact on the median as compared to the mean. The absolute deviation of the median can be 

calculated for every data point in the distribution, creating a second set of values. The median of this 

second dataset is the median absolute deviation (MAD), which again is impacted only marginally by 

outliers. To use the MAD as a consistent estimator of the standard deviation of normal distributions, 

it is scaled with the factor 0.6745 (because for normal distributions 𝑀𝐴𝐷 ≈ 0.6745𝜎). The MAD 

normalized by the median gives a robust version of the coefficient of variation (rCV).  
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1.3 Sources of biological noise 
The biological sources of noise can be discriminated into an intrinsic and an extrinsic component which 

will be discussed in the following sections. 

1.3.1 Intrinsic and extrinsic noise 

Gene-specific or intrinsic noise describes the stochasticity in the expression of individual genes (Figure 

2, left side). This accounts for the inherent randomness of the chemical reactions, binding events, and 

micro-fluctuations that occur e.g. during promoter activation, transcription and translation of an 

individual gene. RNA polymerase for instance can be recruited to a specific promoter by transcription 

factors that bind to specific cis-regulatory elements in the DNA. This process depends on the grade of 

condensation of the DNA in that locus, transcription factor-DNA binding affinity, and how well RNA 

polymerase is recruited by the transcription factor. Further randomness during transcription can be 

introduced by RNA polymerase stalling (6). Stochastic processes on the transcriptional level include 

mRNA maturation and degradation. Translational efficiency is also subject to fluctuations, e.g. due to 

stochastic tRNA binding and availability. 

These and further factors lead to transcription and translation occurring in random bursts: Once a 

promoter is accessible and the transcription machinery is recruited, many transcripts can be 

synthesized in a short period of time, creating temporal peaks in mRNA concentration. Transcriptional 

bursts are in turn passed on to the translational level because the produced mRNA molecules are the 

template for many rapid rounds of translation, leading to many proteins being produced from few 

transcripts. The measured noise partly depends on how many molecules are produced per burst (burst 

size) and how often these bursts occur in a given timeframe (burst frequency). Big, infrequent bursts 

create more noise than small, frequent bursts (13). 
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Figure 2: Factors contributing to intrinsic and extrinsic noise. Intrinsic noise (left) is gene-specific and includes the stochasticity 
of all rates involved in gene expression. Extrinsic noise (right) comprises global differences between one cell and another. Both 
categories of noise add up to the total observed noise in the concentration of a protein (adapted from 14). 

Extrinsic noise refers to differences between clonal cells which cause variation in gene expression 

capacity that affects all genes of a cell globally (Figure 2, right side). Especially on solid medium, cells 

in a population can be affected by differential availability of nutrients. For instance, cells on the edge 

of a colony have a higher local concentration of nutrients than cells in the center. As a result, cells with 

more nutrients available have a more active gene expression. Unequal partitioning can also play a role 

for cell-to-cell differences in expression, especially in the case of Saccharomyces cerevisiae, which 

divides by budding, creating a much smaller daughter cell with the same set of genes but lower 

numbers of polymerases and ribosomes to express them. Generally, the cell size scales with the overall 

transcription and translation output (15). Extrinsic noise has also been explained by changes in 

transcriptional activity in different stages of the cell cycle (16). 

1.3.2 Discriminating intrinsic from extrinsic noise 

Extrinsic and intrinsic noise can be determined and distinguished experimentally. The first method to 

describe intrinsic and extrinsic sources as orthogonal contributors to the total observed noise was 

published by Elowitz and colleagues in 2002. Two identically regulated fluorescence reporter genes 

were introduced into Escherichia coli and the fluorescence intensities were measured by flow 

cytometry (2). The intensities of the two fluorescent reporters are plotted against each other. Extrinsic 

noise is defined as the correlated variation of those reporters (Figure 3 B and C, top panel and middle 

panel, respectively). A hypothetical population exhibiting only extrinsic noise would differ only in 

absolute, but not relative fluorescence intensity. Intrinsic noise is defined as the uncorrelated variation 

of the two reporters that introduces differences in the expression of the reporters in individual cells 
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(Figure 3 B and C, bottom panel and left panel, respectively). Thus, the cells do not only differ in 

absolute amounts of protein molecules but also in relative amounts, so that at a given time a cell can 

contain more of one reporter than of the other.  

 

Figure 3: Intrinsic and extrinsic noise measured in a dual-reporter assay. (A) Fluorescence microscopic image of E. coli cells 
harboring two different but identically controlled fluorescent reporter genes. (B) Differences in brightness and color are caused 
by fluctuations that are correlated (top panel) or uncorrelated (bottom panel). (C) Hypothetical scatter plots of cells exhibiting 
only intrinsic (left panel) or extrinsic noise (middle panel), and the combination of both as it can be measured in a dual-reporter 
assay (right panel, adapted from 17) 

For yeast experiments, another method can be used to discriminate intrinsic from extrinsic noise, 

which takes advantage of the fact that FSC and SSC signals from flow cytometry experiments are good 

predictors for the gene expression capacity. For this method, termed reduced gate size analysis (18), 

FSC and SSC are plotted for a population of cells and a subset of the population is defined by drawing 

a circular gate around it. Cells within the gate share more similar FSC and SSC values with each other 

than with cells outside of the gate. The phenotypic differences, defined by the variation of FSC and SSC 

values in the subset become smaller as the radius of the gate is reduced. When the noise of the 

fluorescence intensities is plotted for subsets of the population with decreasing gate radii, the values 

converge towards a noise level that corresponds to the contributions of intrinsic and technical sources 

of noise (Figure 4). The difference in noise between the reduced gate and the full gate corresponds to 

the extrinsic noise evoked by phenotypic differences of the cells.  

 

Figure 4: Reduced gate size analysis. Two examples of strains with differentially regulated fluorescence reporter genes. 
Whereas intrinsic noise (purple) does not change with gate radius, the extrinsic noise (blue) converges to a minimum when 
cells have sufficient phenotypic similarity (adapted from 19). 
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The necessary number of acquired cells has to be sufficiently high for the reduced gate size analysis. 

Otherwise, if the gate size is reduced beyond a critical point, the sample size is too small to yield 

meaningful values. 

The contributions of intrinsic and extrinsic noise to the total noise depend on the mean expression 

level. It was found that at low mean expression, intrinsic noise makes a bigger contribution to total 

noise, whereas at high means, extrinsic noise is dominant (20). Generally, when a process such as gene 

expression occurs with a constant probability in time (Poissonian probability distribution), the 

coefficient of variation scales with the inverse of the square root of the mean protein abundance 

(Figure 5).  

 

Figure 5: General mean/ noise relationship. In Poissonian distributions, the mean µ equals the variance σ2, so that  

𝐶𝑉 =
𝜎

𝜇
=

1

√𝜇
, meaning that the noise (Y-axis) scales with the inverse square root of the mean protein abundance p (X-axis).  

This can also be observed experimentally and is a major reason why the noise of two genes/ states/ 

timepoints etc. have to be compared with regard to similar mean expression. 

1.4 Noise control 
The correlation of mean and noise suggests that high expression rates are beneficial as low noise would 

be achieved. However, many genes have to be expressed at an evolutionary conserved optimal level 

with fitness deficits for the cell if the protein concentration deviates too far from this optimum (21). 

The same is true for synthetic circuits: metabolic pathways, for instance, employ a set of enzymes that, 

in a multi-step process, produce secondary metabolites. Overexpression of these enzymes has been 

shown to result in suboptimal yields. This can be explained by the high expression burden on the cells 

as well as, depending on the pathway, accumulation of toxic intermediates (22, 23). Low noise at the 

optimal mean is vital for the performance of metabolic, genetic, and signaling circuits. This section will 

cover strategies by which mean expression can be decoupled from expression variation to allow noise 

control. 

Even at the same mean, noise levels of native genes can differ largely from one another. It is an 

accepted view, that the variation of native proteins reflects a tradeoff of costs and benefits of noise 

control in that particular gene. High variability in gene expression has been shown to be beneficial for 

the cells in some contexts or for certain genes. Noisy stress response genes are suggested to increase 

adaptability of a population of cells when environmental conditions change e.g. a subpopulation that 

deviated a lot from the mean expression might have an advantage because it can facilitate a faster 

stress response. Noisiness in stress-response genes can thus be a trait that is selected for to favor 

heterogeneous populations. (24) For most genes, however, expression noise reduces cellular fitness 
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(25) and is generally counter-selected (26). Low noise is beneficial for the cell in the majority of genes, 

including those involved in homeostasis, cell cycle control, and protein synthesis (18). The different 

strategies that are observed in nature and that are employed by researchers to control variation in 

gene expression will be discussed in the following section. 

A strategy to decouple mean from noise has been the subject of several studies. Their aim was to 

independently control the expression and activity of an upstream inducible regulator of the target 

gene (27, 28, 29, 30). In these cases, low expression of the regulator increases its noise and thus, the 

noise in the transcription of the target gene. To adjust the expression of the target gene for different 

concentrations of regulator proteins, different levels of inducer molecules are used, that bind to the 

regulator and change its affinity to the promoter of the target gene (31). 

Other studies suggest that instead of regulating an inducer protein, noise can be effectively controlled 

via the basic rate constants of gene expression. In the simplest model of gene expression, the steady 

state level of a protein is governed by the rate constants of four processes: transcription, mRNA 

degradation, translation, and protein degradation. Thus, to achieve a desired concentration of 

proteins, two strategies can be used: The gene is transcribed at a high rate but transcripts have a low 

translation rate. This leads to many mRNA molecules that are translated rarely or not at all. The second 

strategy is that genes are transcribed at a low rate but the translation rate is high. In this case, only 

few transcripts are made but they are translated multiple times (Figure 6). Stochastic modeling of 

intrinsic/ gene-specific noise in these two cases show that the first case creates lower variation of 

protein concentration over time than the second case because stochasticity at the transcription level 

is averaged out due to a higher number of transcripts (32). This concept is universal but has been 

shown to be specifically pronounced in eukaryotes, where transcription can be particular noisy due to 

stronger transcriptional bursts that occur caused by heterochromatin remodeling (3). 

 

Figure 6: Two strategies by which expression rates of individual genes change noise at the same mean. (A) High transcription 
and low translation rates filter out stochasticity of transcription and lead to small variation of the protein concentration over 
time. (B) Low transcription and high translation rates amplify transcriptional stochasticity and lead to big fluctuations of the 
protein concentration over time (adapted from 17). 

This mechanisms was use to artificially control gene expression noise in yeast, using an inducible 

promoter to set the transcription rate combined with GFP in two different codon variants that 
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conferred different translation efficiencies. High translation efficiencies were shown to amplify 

transcriptional noise (27). Another study showed that the mRNA stability conferred by different native 

yeast terminator regions scaled with the transcriptional burst size of fluorescence reporter gene 

expression (33). 

Fraser and colleagues used available whole genome data for yeast mRNA transcription and 

degradation rates, as well as translation rates to estimate the noise of genes based on the above 

model. They hypothesized that noise should be especially low in essential genes and those genes that 

encode subunits of multiprotein complexes. They found that the calculated noise in those genes was 

low due to high transcription rates and low mRNA stability and/ or translation rates (34). 

Noise control that acts on mRNA level has been suggested to be the most effective strategy (35) and 

also produces low wastage rates, meaning low metabolic burden on the cells (36). The following 

section will elaborate on the means to control steady state mRNA levels using inducible genetic 

elements, namely promoters and terminators. 

1.5 Synthetic control of mRNA levels 

1.5.1 Inducible promoters 

In the native context, inducible promoters allow cells to react to environmental signals (toxins or 

nutrients) by direct interaction with a mediator (activator or repressor) that in turn changes its binding 

affinity to an operator site to regulate the expression of a target gene. One example of this is the 

regulation of tetracycline resistance by tetracycline-controlled transcriptional activation in Escherichia 

coli. Molecules of the antibiotic tetracycline bind to the repressor TetR, which in turn is released from 

Tet operator sites (TetO) to allow transcription of the exporter TetA. This system, thus, mediates 

resistance by export of tetracycline only on demand when tetracycline is present. 

 

Figure 7: The Tet-ON expression system. Left: Reverse tetracycline trans-activators are constitutively expressed. Proteins 
consist of a DNA binding domain (white), an inducer binding domain (light gray), and an activation domain (black). Right: 
Upon binding to doxycycline (white circles), the reverse tetracycline trans-activator (rtTA) binds to the TetO sites in the 
proximal promoter (black squares) and recruits components of the transcription machinery to the core promoter (adapted 
from 37). 

The tetracycline-controlled gene expression system has been adapted and modified for yeast and 

higher eukaryotes (38). Fusing activator domains to TetR in yeast created a tetracycline trans-activator 

(tTA, 39) and mutagenesis of tTA yielded a variant with reversed characteristics: rtTA binds to the TetO 

sites to activate transcription (40). Added tetracycline, or its derivate doxycycline, binds to the rtTA 

and triggers a conformational change that increases the binding affinity of rtTA to the TetO sites. 

Binding of rtTA to the DNA initiates transcription. Different versions of tetracycline-responsive 

promoters have been developed. Variation of the number of TetO sites has been shown to influence 

absolute expression and leakiness (41). 
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1.5.2 Inducible ribozymes 

Downstream adjacent to the open reading frame, the 3’ untranslated region (3’ UTR) and the 

terminator are located. The corresponding sequences can overlap partly, which makes it useful to 

broadly define the combinations of both elements as “terminator region”. 

Terminator regions affect gene expression through transcriptional termination and post-

transcriptional regulation. During transcriptional termination poly(A) signals and GU-rich sequences in 

the pre-mRNA determine the site for mRNA cleavage and subsequent polyadenylation. On the post-

transcriptional level, the part of the terminator region encoding the 3’ UTR plays a role in regulating 

mRNA degradation rate and translation rate. Regulatory proteins can bind to motifs in the 3’ UTR to 

repress translation or flag the mRNA for degradation (42) or to stabilize the transcript (43). 

Native terminator regions can be employed to increase mRNA and protein yields (44). A comparison 

of over 5000 sequences inserted downstream of a fluorescent reporter gene showed that native 

terminator regions confer a 70-fold range of expression levels in yeast (45). A study on expression-

enhancing terminators found that they primarily act by increasing mRNA stability (46). 

Similar to the approaches to develop artificial, well defined promoter systems, different efforts are 

being made to standardize and functionalize terminators in yeast for improved controllability and 

performance. Synthetic yeast terminators of less than 100 nt have been developed that contain a single 

poly(A) signal and the minimum number of necessary elements for efficient termination that confer 

an expression level similar to or stronger than a commonly used native terminator (47). 

Riboswitches are a class of genetic regulatory elements which consist of RNA sequences that are 

typically found within the UTRs of genes. Riboswitches contain an aptamer domain that binds a 

metabolite, triggering a conformational change that affects gene expression by attenuating 

transcriptional termination or changing translation efficiency (48). Inducible ribozymes are a class of 

riboswitches that exhibit a nuclease activity which, upon metabolite binding to the aptamer, can be 

activated or disrupted. Such a construct embedded into the 3’ UTR of a mature eukaryotic mRNA can 

be used to tune transcript stability: through its autocatalytic activity, part of the mRNA containing the 

ribozyme and the poly(A) tail is cleaved off from the part containing the ORF. Without a poly(A) tail 

that protects the transcript from exonucleolytic decay, the ORF is rapidly digested by the mRNA 

degradation machinery. As a result, the steady state of protein concentration is reduced (49). 
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Figure 8: Design of an inducible ribozyme. After transcription, the ribozyme sequence folds into a secondary structure with an 
autocatalytic cleavage function, resulting in a strand break within the sequence (red arrow), dissociation of the poly(A) tail 
and subsequent rapid decay of the mRNA. Inducible ribozymes have been developed to bind to the secondary structure and 
induce a shift in the stem loop that disrupts the autocatalytic function. The mRNA is stabilized and has a higher probability of 
being translated (image adapted from 49). 

The above examples of inducible genetic elements to control mRNA levels are the basis for the gene 

expression noise tuning systems presented in results section 2.2 of this thesis. 

1.6 Noise in signal transduction pathways 
Gene expression noise can impact the variability of the network or physiological process that the gene 

product is part of. In that respect, it is particularly crucial to consider noise in processes that involve 

the conveyance of information. Information is typically transmitted either in genetic circuits or signal 

transduction pathways (50). As opposed to genetic circuits, signal transduction pathways act on the 

level of protein activity, allowing information to be passed on faster as compared to transcriptional 

activation. Ultimately, the output of a signal transduction pathway can act on gene expression and 

thus, can modulate genetic circuits. The following sections describe general principles of signal 

transduction pathways, using the example of the Saccharomyces cerevisiae mating pathway. 

Furthermore, it will be elucidated which role noise plays in such pathways. 

1.6.1 Signal transduction pathways 

Signal transduction pathways allow cells to rapidly process environmental signals and initiate an 

appropriate response. These biochemical networks relay the information to downstream effectors 

which can modulate gene expression to ensure fitness. Signal transduction pathways are studied in a 

wide variety of organisms to understand information flow from external stimuli upstream to the 

corresponding downstream effects, such as the modulation of gene expression. The signals are 

typically being transduced by phosphorylation. Kinases phosphorylate a substrate protein by 

transferring a phosphate group from a donor (usually adenosine triphosphate, ATP). Phosphorylation 

triggers a conformational change in the target protein’s structure, activating or deactivating it, or 

otherwise changing its function. Phosphatases can release phosphate groups from the substrate 

protein to bring the protein back to its original state. 

Mitogen-activated protein kinase (MAPK) cascades are sequences of phosphorylation events. In this 

process, a kinase activates another kinase by phosphorylation, which in turn activates another kinase. 

MAPK cascades are conserved in all eukaryotes from yeast to human as a central integration module 
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for cellular information processing. The cascade topology allows it to amplify and insulate signals and 

to improve the signal-to-noise ratio (51). The mating pathway of the yeast Saccharomyces cerevisiae 

is a model MAPK signal transduction pathway that processes an external stimulus to make a cell fate 

decision crucial for cellular fitness. The next section describes the S. cerevisiae life cycle and the 

topology and function of the mating pathway. 

1.6.2 The yeast life cycle 

Saccharomyces cerevisiae cells can exist in a haploid or a diploid form. Haploid cells can have either of 

two mating types, MATa or MATα, that differ in one locus (mating type locus). MATa and MATα cells, 

as well as diploids, undergo a mitotic life cycle. Haploid cells sense pheromones secreted by the 

opposite mating type and initiate a mating response. Depending on the pheromone concentration, 

cells undergo drastic morphological changes to prepare for cell fusion. In the process, cells adopt a 

unipolar budding pattern (52) along the gradient towards the highest pheromone concentration (53) 

before the cell cycle is synchronized by cell cycle arrest in G1 phase. At higher pheromone 

concentrations, the cells undergo morphological changes, become elongated and increase in volume 

by chemotropic growth towards the pheromone source. Cells that sense pheromone concentrations 

that indicate a mating partner is in close proximity develop a protrusion (shmoo) to achieve physical 

contact and ultimately fuse with a cell of the opposite mating type to form a diploid (Figure 9).  

 

Figure 9: MATa cells (white and green) sense pheromone (red) secreted by MATα cell (black). Cells respond to different 
pheromone concentrations with different morphogenesis: Axial budding when no pheromone is present, pseudohyphal and 
chemotropic growth at intermediate pheromone concentrations, and the shmooing phenotype at high levels of pheromone. 
Shade of green indicates mating pathway activity (adapted from 54). 

The decision to mate poses a risk to the facultatively sexual S. cerevisiae cells. Successful sexual 

reproduction is an evolutionary advantage but it comes at a cost for the cells: During the mating 

response the cell wall integrity is reduced and cells lose time to proliferate due to the cell cycle arrest. 

In addition to that, expressing the components of the mating pathway and the pheromone response 

genes is a metabolic burden to the cell. This indicates a fitness trade-off between growth rate and 

mating efficiency (55). Accurate sensing of sexual partners is crucial and explains why yeast has evolved 

to sense the ratio of potential mating partners to competitors (54) and to track even very shallow 

gradients of pheromone to increase mating efficiency (56). 

1.6.3 The yeast mating pathway 

The molecules activating the mating pathway are the small peptide pheromones α factor (secreted by 

MATα cells) and a factor (secreted by MATa cells). Pheromones bind to G protein-coupled receptors 

(GPCRs) on the surface of yeast cells of the opposite mating type (Ste2 and Ste3 for MATa and MATα, 

respectively). Upon ligand binding, the receptor Ste2 undergoes a conformational change that allows 

it to replace guanosine diphosphate (GDP) with guanosine triphosphate (GTP) in Gpa1p, the α-subunit 

of the G protein. This causes a conformational change that dissociates the Gβγ complex (Ste4-Ste18).  

The Gβγ complex associates with the scaffolding protein Ste5 and serves as an adapter for the kinase 

Ste20 to phosphorylate Ste11. This initiates the MAPK cascade during which Ste11 (a MAPKK kinase) 

phosphorylates Ste7 (a MAPK kinase), which in turn phosphorylates the MAP kinase Fus3. The cascade 
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is acted out while all involved kinases are attached to the Ste5 scaffold. Binding to Ste5 increases the 

phosphorylation rate of Fus3 by Ste7 (57) but scaffold proteins also prevent signal leakage: Ste11, for 

instance, is a component in both, the mating pathway and the high osmolarity / glycerol (HOG) 

pathway. Ste5 channels Ste11 activity towards a mating response, isolating the pathways from one 

another (58). 

When phosphorylated, the MAPK Fus3 dissociates from Ste5 and translocates into the nucleus where 

it activates the transcription factor Ste12, which in turn activates expression of ca. 200 pathway 

response genes (PRGs). One of these encodes the cell cycle inhibitor Far1, which induces polarized 

growth and cell cycle arrest in G1 phase (59). 

Among the activated genes are also components of the pathway itself, such as FUS3, resulting in an 

autocatalytic positive reinforcement of pathway activity. Positive feedback loops can convert the 

graded pathway response into a switch-like cell cycle response to allow an “all or nothing” decision 

once a threshold pheromone concentration has been reached. 

Ste12 also upregulates expression of negative feedback regulators such as the phosphatase Msg5 and 

the GTPase-activating protein Sst2. Negative feedback can increase the dynamic range of the pathway 

and prevents random activation as well as prolonged activity, which can lead to cell death (60). Msg5 

targets Fus3 to allow adaptation of the pathway response (61). SST2 was the first gene identified to 

regulate G protein signaling (62). Sst2 accelerates hydrolysis of GTP to GDP to downregulate activity of 

the Gα subunit Gpa1p. Typical for negative feedback regulators, Sst2 also reduces pathway noise (63, 

64). 

 

Figure 10: Important components of the yeast mating pathway. Alpha factor binds to Ste2 on a MATa cell, leading to the 
release of the α subunit of the G protein from the β/γ subunits (Gβγ). Gβγ then recruits the kinase Ste20. A primary substrate 
of Ste20 is the MAPKKK Ste11, which upon phosphorylation by Ste20 phosphorylates Ste7, which in turn phosphorylates Fus3. 
The MAPK cascade is facilitated by the scaffolding protein Ste5. Active Fus3 phosphorylates the transcription factor Ste20 
which induces ca. 200 pheromone response genes (PRG). Among those are the negative feedback regulators Msg5 and Sst2 
that act downstream and upstream in the pathway, respectively. Fluorescence reporter genes (here mNeongreen, mNG), 
driven by a PRG promoter can be used as reporter of pathway activity. 
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1.6.4 Pathway noise versus gene expression noise 

The concept of intrinsic and extrinsic noise described in section 1.3 can be applied to the expression of 

pathway output (i.e. pheromone response genes) and to the signal transduction itself (Table 1). 

Pathway variability caused by intrinsic factors are termed transmission noise. These are the stochastic 

fluctuations that determine whether or not a signal is transmitted from one pathway component to 

another; for example, whether or not a phosphate group is transferred from ATP to Ste7, catalyzed by 

Ste11. Correspondingly, stochastic fluctuations in expression cause intrinsic gene expression noise. 

Extrinsic factors of pathway noise are governed by the number, location and activity of pathway 

components. These determine whether or not a pathway component is available to help transmit the 

signal. For instance, if the number of Ste5 scaffolding proteins is too low, the signal cannot be 

transmitted efficiently through the MAPK cascade. This extrinsic pathway noise limits the capacity with 

which cells can transmit signals. Correspondingly, extrinsic gene expression noise limits the expression 

capacity (65). 

Table 1: A signaling pathway response can be subdivided into a pathway subsystem and a gene expression subsystem. The 
measured noise in a pathway reporter is the combination of intrinsic and extrinsic noise from the two subsystems (definitions 
based on 65). 

Subsystems \ sources 
of variation 

Intrinsic factors  
(stochastic fluctuations) 

Extrinsic factors (Cell-to-cell differences in number, 
location and activity of involved molecules) 

Pathway Transmission noise 
(Intrinsic pathway noise) 

Extrinsic pathway noise  
(→ pathway capacity) 

Gene expression Intrinsic gene expression 
noise 

Extrinsic gene expression noise  
(→ expression capacity) 

 

In this noise model, which takes the pathway variability into account, the measured noise of a pathway 

output is a combination of the intrinsic and extrinsic factors of pathway noise and gene expression 

noise. Genes that are regulated similarly share substantial parts of their variation (66), indicating that 

the capacity of the upstream regulatory pathway is a major contributor to the noise in the observed 

output. 

The yeast mating pathway has been the basis for a growing number of synthetic signaling circuits. 

Pathway components have been altered in several ways to change pathway response dynamics (67, 

68). Cell fate control was achieved using synthetic control systems (69). Rewiring of pathway 

components can be used to change the pathway output altogether (70). 

Engineered mating pathways have been used to develop artificial quorum sensing (71) and altered 

social behaviors (72). Synthetic pathway variants have been developed for unicellular (73) and 

multicellular (74) memory devices and for biological computation in multicellular networks (75). 

Additionally, different approaches highlight the use of the mating pathway for biosensing, e.g. by 

coupling it to heterologously expressed mammalian GPCRs to identify ligands (11, 76, 77). 

Synthetic alterations of the mating pathway come along with disturbances of the evolutionarily 

optimized pathway topology. Controlling the noise in critical pathway components can improve the 

performance of the desired pathway function. 
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1.7 Aim of this thesis 
Synthetic biology has brought about a large variety of synthetic networks, including genetic circuits 

and signal transduction pathways with artificial inputs and outputs. The unicellular eukaryote 

Saccharomyces cerevisiae has been a model platform for the development of such networks, due to 

the immense knowledge of its genetics and cell biology and the availability of well-characterized 

genetic control elements. Unlike native systems, synthetic networks lack parts or all of the control 

mechanisms that allow functionality despite the noise that is inherent in all involved processes. 

External tuning of the expression noise of a network gene provides a good approach to ensure accurate 

concentrations of components that are critical for network performance. Tuning gene expression noise 

means that the variation of protein concentration has to be decoupled from the mean protein 

concentration. Studies suggest that noise control is most effective and metabolically cheap when 

executed on the transcript level (36, 35). 

The first aim of this thesis was to develop a robust measurement platform with minimal nonspecific 

biological and technical noise (results, section 2.1). This is a prerequisite for the analysis: Distinguishing 

a signal from noise is not sufficient in this context, in fact, the measurement system has to enable the 

distinction of one source of noise from another source of noise. 

The second aim was to develop a system in yeast that allowed external tuning of gene expression noise 

by orthogonally controlling the transcription rate via inducible promoters and the mRNA degradation 

rate via inducible ribozymes (results, section 2.2). This proof-of-concept system should be capable of 

decoupling mean and noise of a fluorescence reporter gene in the same expression range as native 

genetic regulatory elements. It should allow noise tuning at a desired mean expression to either reduce 

noise when necessary, or as an analysis tool to investigate the impact of gene expression noise on 

entire pathways. 

Next, we wanted to test the developed system in a complex network, namely the yeast mating 

pathway (results, section 2.3) to find out if our noise tuner, applied to individual pathway components, 

was capable of altering pathway noise and correspondingly, pathway precision. 

Finally, we wanted to assess experimentally if the described strategy for gene expression noise control 

was employed by native yeast promoters and terminators (results, section 2.4) and if this was in 

accordance with existing hypotheses that established a link of the noise level of a gene to its function. 
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2 Results 

2.1 Development of a low-noise measurement platform 
In order to measure noise with high sensitivity, the measurement system has to be optimized to 

prevent nonspecific noise from masking the sources of variation that are intended to be detected. We 

chose multiple noise-reducing approaches covering different aspects of the measurement. Biological 

noise was reduced by changing genetic elements or the genetic context and technical noise was 

estimated by screening parameters of the flow cytometer. Measurements were done with single-, 

dual-, or triple-reporter strains. An example of noisiness in raw data of a dual-reporter strain 

measurement is shown in Figure 11. 

 

Figure 11: Example fluorescence microscopy image of cells from a dual-reporter strain harboring identically regulated mCherry 
and mNeongreen genes. Differences in brightness and color of the cells indicates different sources of noise. 

We chose mTurquoise2, mNeongreen and mCherry as fluorescence reporters because they have low 

sequence similarity (see supplemental figures). This is an important feature to consider to reduce the 

risk of homologous recombination, which Saccharomyces cerevisiae does very efficiently. Low 

sequence homology should thus improve genomic integrity and reduce artifacts that otherwise might 

affect noise measurements. 
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2.1.1 Optimizing biological parameters 

To increase expression from the Tet promoters even at low promoter activity, we replaced the original 

CYC1 5’ UTR with the strong ACT1 5’ UTR (78). Single-reporter yeast strains harboring either one of the 

two promoter variants driving mCherry or mNeongreen expression were measured with the fully 

induced Tet-ON system (Figure 12, for details on the Tet-ON system see Figure 7).  

 

Figure 12: Impact of 5‘ UTRs on reporter expression. Flow cytometry analysis of four single-reporter strains harboring either 
mNeongreen (left) or mCherry (right) driven by fully induced (100 ng/µL) Tet promoters. Fluorescence intensities (raw data) 
are given in arbitrary units (a.u.). Error bars indicate standard deviation of ca. 10,000 measured cells. 

The ACT1 5’ UTR showed improved expression by ca. 50% for mNeongreen and a more than 10-fold 

increase in mCherry expression. The remarkably large difference in fold-change increase is possibly 

caused by interactions between the 5’ UTR with the open reading frame. It has been shown before 

that the effect of 5’ UTR sequences on expression levels is context-specific: The expression strength 

conferred by a 5’ UTR for a fluorescence reporter gene showed only weak correlation with the 

expression obtained for the same 5’ UTR with a different fluorescence reporter gene (79). 

The fluorescence reporter genes in this study are all genomically integrated. To test the influence of 

the integration site and the relative genomic positioning of two fluorescence reporter genes on gene 

expression noise, we constructed dual-reporter strains harboring the reporter genes either in the same 

locus or in two different loci on separate chromosomes (Figure 13). For the single-locus approach we 

integrated a cassette of converging mNeongreen and mCherry genes into the his3 locus, which is 

commonly used for integration. For the two-loci approach we used the same parental yeast strain but 

made two subsequent integrations. This time only mCherry was integrated into the his3 locus while 

mNeongreen was integrated into another commonly used integration site, the ura3 locus.  

First, we assessed whether the two different loci conferred different gene expression noise by 

comparing the robust CVs of mNeongreen integrated into the two different loci. We found that both 

loci conferred to similar noise levels in the reporter gene expression. mCherry, expressed from the 

same locus in both strains, served as a control and as expected exhibited similar noise in both strains 

(Figure 13, bottom left panel).  
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Next, we calculated the intrinsic noise 𝜂𝑖𝑛𝑡
2  and the extrinsic noise 𝜂𝑒𝑥𝑡

2  (see materials and methods, 

section 4.10.1) to estimate how much of the variation in the two strains was correlated and how much 

was uncorrelated between the reporters. The strains showed similar extrinsic noise but varied largely 

in their intrinsic noise with the single locus approach leading to a 4-fold reduction in uncorrelated 

variation (Figure 13, bottom right panel). 

 

Figure 13: Effects of the integration loci on gene expression noise: Top: Two strategies to build a dual-reporter strain. Two 
fluorescence reporter genes, driven by identical TetO7 promoters and ADH1 terminators were either integrated into a single 
locus or into two different loci on separate chromosomes. Bottom left panel: Isolated analysis of the two reporter genes by 
plotting the robust CV of mNeongreen and mCherry for both strains. ura3 and his3 loci exhibit similar noise levels. Bottom 
right panel: Calculation of intrinsic and extrinsic noise for both strains. Single integration into his3 locus reduces uncorrelated 
(intrinsic) noise 4-fold while correlated (extrinsic) noise remains unaffected. Noise calculation according to (2). Tet promoter 
induction with 100 ng/µL doxycycline. Calculations were done with raw, not normalized fluorescence intensity data. 

These findings emphasize the impact of the relative genomic distance on uncorrelated noise between 

those genes. Our results hint that it is in fact the physical separation of the genes which creates intrinsic 

noise. It appears that the rare probabilistic events of mRNA production are correlated for genes in 

close proximity, possibly because the transcription of one gene increases the likelihood of the other 

gene being transcribed, since RNA polymerase is already present in the locus and/ or the chromatin 

structure is open. 
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We established a third fluorescence reporter to be used as an internal control for the overall gene 

expression capacity of a cell. As the originally obtained mTurquoise2 gene exhibited fluorescence levels 

close to auto-fluorescence, a codon-optimized mTurquoise2 sequence, supplied by Alexander Anders, 

was tested instead (Figure 14). Both strains - one harboring the original, one harboring the codon-

optimized gene - were driven by identical GPD promoter and terminator sequences, integrated into 

the same locus of the same parental strain. 

 

Figure 14: Codon optimization of mTurquoise2 open reading frame. Bars show mean of medians of fluorescence intensity 
normalized to the FSC-A signal. Error bars show mean of MADs of fluorescence intensity for three biological replicates. 

The codon-optimized gene variant exhibited a more than 100-fold increased fluorescence compared 

to the original sequence. Codon optimization algorithms typically match the codon usage of the DNA 

sequence to the codon bias of the host organism’s genome and exclude rare codons. To retain amino 

acid identity, usually only the third base in a triplet is changed (“wobble base”). Alignment of both 

sequences showed 69.4 % sequence identity, indicating that almost all wobble bases had been 

replaced. A sequence alignment is shown in section 6.2. The new sequence had a GC content of 34 % 

compared to 62 % in the original sequence. It is possible that in the case of the original mTurquoise2 

sequence, one or several extremely rare codons prevented translation almost entirely. Only the codon-

optimized version was used for subsequent experiments with mTurquoise2. 

2.1.2 Optimizing measurement parameters 

To ensure reproducibility, noise measurements (as most other experiments) should be performed with 

cells growing in exponential phase where the growth rate is constant. Given that yeast cultures are 

inoculated with the same number of cells, spectrophotometric measurements can be used to estimate 

the growth rate based on the optical density (OD). For high-throughput studies, such as those 

described in this thesis, OD measurements of every sample become experimentally challenging. We 

wanted to develop a high-throughput method to estimate growth rate based solely on flow cytometric 

data that would make additional time- and resource-consuming OD measurements unnecessary.  
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We prepared dilutions of a dense yeast culture and measured them by spectrophotometry and flow 

cytometry to assess whether the events per microliter of culture volume recorded by the flow 

cytometer correlated with the OD measurements (Figure 15). The number of cells per volume 

measured by flow cytometry correlated well with the OD over the entire linear range of the 

spectrophotometer. This shows that no additional OD measurements are necessary: If cultures are 

inoculated to the same initial concentration of cells, the growth rate at a given timepoint can be 

estimated from the concentration of cells calculated from the event per second and the flow rate of 

the cytometer. 

 

Figure 15: Correlation of events per microliter measured by flow cytometry with optical density measured with a 
spectrophotometer. Events/ µL were calculated from the recorded time points of acquired events and the sample flow rate. A 
coefficient of determination R2 close to 1 indicates high correlation between OD and events/ µL. Error bars indicate standard 
deviation from the mean of three individual flow cytometry measurements. 

Using those findings, we performed time course flow cytometry experiments with cells inoculated from 

stationary overnight cultures. The Saccharomyces cerevisiae strains we used in our experiments 

typically produce two distinct populations that can be distinguished in the forward scatter area (FSC-

A) and width (FSC-W) channels as shown in Figure 16. We call the cells producing a peak at lower FSC-

W values the singlet population and the cells producing a peak at higher FSC-W values the doublet 

population. We observed that the ratio of singlets to doublets changed over the time course of the 

experiment. 

 

Figure 16: Two morphological distinct populations of yeast cells change their ratio during time course experiments. Example 
histograms of the FSC-W signal acquired at three different time points of the experiment. At inoculation and at the end point 
measurement the following day, the low-FSC-W population produces a bigger peak than 5:12 hours after inoculation from 
stationary phase. 
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To test the efficiency of the flow cytometer for the measurement of yeast growth kinetics we acquired 

the events per second and the FSC signals of a culture over a time course of 24 hours. The events per 

microliter calculated for different time points after inoculation yielded a highly reproducible growth 

curve and showed that growth kinetics can be measured by flow cytometry. Plotting the ratio of the 

doublets to all cells shows a maximum in mid-exponential phase, suggesting the doublet ratio is growth 

rate dependent.  

 

Figure 17: Growth kinetics measured by flow cytometry. Events per microliter measured at different time points after 
inoculation (black, left Y-axis). Ratio of cells in doublet gate is given as the percentage of total cells (orange, right Y-axis). Error 
bars indicate standard deviation of three biological replicates.  

The high ratio of doublets in mid-exponential phase suggests that the two distinct peaks observed 

could be due to morphological changes during the cell cycle that occur when a daughter cell is formed 

during budding.  

To test whether the doublet population indeed consists of cells that are attached to each other we 

exposed exponentially growing yeast cells to sonication and measured the ratio of doublets. The 

assumption was that late-stage buds could be detached from the mother cells by the ultrasound 

waves. Indeed, we observed a more than 50% drop of the doublet population (Figure 18) and a 

corresponding rise of the singlet population. 

 

Figure 18: Dispersion of cell doublets. The ratio of doublets dropped sharply when cells were sonicated with increasing 
amplitude. Percentage of amplitude refers to an arbitrary scale from the manufacturer of the sonicator. 
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We assume that the doublet population is in fact a mixture of aggregated cells and budding cells. 

Aggregation would explain why even in stationary phase we observed a doublet population. 

Aggregated cells and late-stage buds can be dispersed whereas early buds are not yet fully separated 

from the mother cells, which is why they cannot be dispersed, which explains why we do not observe 

the doublet ratio dropping to zero. 

To assess whether cells would recover the doublet characteristic, we dispersed an exponentially 

growing yeast culture by sonication with 60 % amplitude and measured the doublet ratio over a period 

of 60 minutes in 5-minute-intervals. Within the measurement time, the ratio of doublets tripled (Figure 

19), indicating that sonicated cells continued to aggregate and/ or bud. 

 

Figure 19: Recovery of doublets after sonication. Cells from a single tube were measured at different time points after 
sonication. During the course of the experiment, cells were kept at room temperature without shaking. 

Sonication of yeast cultures is common practice to disperse cells prior to flow cytometric 

measurements. Here we show that, although it efficiently reduces the doublet population, sonication 

is not well suited to create more homogeneous populations for high-throughput experiments with up 

to 96 samples per measurement and runtimes of up to ca. one hour. 
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We further investigated whether gating of Saccharomyces cerevisiae populations according to their 

forward scatter signal could reduce noise. This would be the case e.g. if appropriate gating isolated 

cells of similar morphologies that corresponded to the same cell cycle stages, which correlate with 

gene expression rates, and therefore also noise (16). To assess to which extent gating of 

morphologically similar cells can be used to reduce variation, we analyzed a dual-reporter strain with 

fully induced mCherry and mNeongreen expression. Comparison of intrinsic and extrinsic noise of the 

total population with the gated population showed no difference in intrinsic noise but reduction of 

extrinsic noise by more than 80% for the gated singlets (Figure 20). 

 

Figure 20: Gating of subpopulations reduces extrinsic noise. Left: Intrinsic and extrinsic noise for ungated (blue) and gated 
(red) population. Noise values were calculated according to (2). Right: Scatter plots of mCherry (X-axis) and mNeongreen (Y-
axis) for ungated (top panel) and gated cells (bottom panel). Calculations based on raw, not normalized fluorescence 
intensities. 

Gating of singlets shows a similar effect as the reduced gate size analysis introduced in section 1.3.2 

and determined in subsequent results. Selecting a homogeneous subpopulation based on phenotypical 

parameters reduces extrinsic noise but has only marginal effect on intrinsic noise. 
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We further assessed whether nonspecific noise could be reduced by adjusting parameters of the flow 

cytometer. Fully induced mNeongreen fluorescence compared at 50 mW and 100 mW laser power, 

adjusted to the same median via the PMT voltages, resulted in similar CV values. In the tested 

parameter space, noise thus does not change with the laser power. The default laser power for the 

subsequent experiments was set to the default setting (100 mW to detect mNeongreen and mCherry, 

75 mW to detect mTurquoise2). 

 

Figure 21: Noise analysis at 50 mW and 100 mW laser power for the measurement of mNeongreen. In a median expression 
range between 6 and 12 arbitrary units, laser powers of 50 or 100 mW do not change noise. PMT voltages were adjusted to 
allow similar median at low and high laser power. The robust CV was calculated from FSC-normalized mNeongreen 
fluorescence intensities. 

To test the influence of the PMT voltages of the flow cytometer on the measured noise, we measured 

the fluorescence in a yeast strain with fully induced mNeongreen expression (100 ng/µL doxycycline). 

Prior to the measurement, we adjusted the voltages in the PMTs such that an uninduced control strain 

would give a low, medium, or high median fluorescence signal. The voltages used for the PMTs can be 

found in the appendix (section 6.1, Table 8). We found overall only small differences in measured noise, 

with the medium settings resulting in the lowest values, 10 % less than the low settings (Figure 22). 

Subsequent experiments were performed with the medium PMT settings. 

 

Figure 22: Noise-dependence on PMT voltages. Robust coefficients of variation are shown for mNeongreen fluorescence 
intensities normalized to the respective forward scatter signal. Medium PMT voltages result in slightly lower noise than high 
and low voltages. 
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The laser power and PMT tests indicated that changing instrument parameters did not affect the noise 

measurements to a big part, which suggests that technical noise introduced by the instrument was 

generally low. To estimate the lower limit of noise that could be achieved with flow cytometric 

measurements, we measured fluorescent beads of a defined, uniform size but different surface 

densities of a fluorophore, creating different fluorescence intensities. Figure 23 compares the 

calculated noise for a given median fluorescence to the theoretical minimum according to the noise/ 

mean relationship discussed in section 1.3.2. The measurements were done for the blue laser (488 nm) 

that we used in other experiments to acquire mNeongreen fluorescence. 

 

Figure 23: Left panel: Robust coefficient of variation of beads with different, distinct fluorescence intensities. Theoretically 
expected noise was calculated as the inverse of the square root of the median fluorescence (dashed line). Right panel: 
Scatterplot of the FSC signal from the beads against their fluorescence intensities. The colors from the dots in the left panel 
correspond to the colors of the populations in the scatterplot. 

Uniform bead sizes at different fluorescence intensities were confirmed for excitation with the 

cytometer’s blue laser. Above a median intensity of ca. 600 arbitrary units, the experimental rCV 

converges with the theoretical rCV, indicating that technical noise of the flow cytometer is low. At the 

highest intensity, the fluorescent beads exhibited a robust coefficient of variation around 0.025. The 

lowest rCV of a yeast sample presented in this thesis was about four times higher, illustrating that 

biological noise is by far the main contributor in the experiments shown. Below ca. 600 arbitrary units, 

the rCV values deviate from the theoretical calculation, indicating either the increased influence of 

technical noise or low, and thus, more stochastic coating of the beads with the fluorophore that we 

measured.  

The scatterplot in Figure 23 shows high overlap of beads with supposedly different but low 

fluorescence intensities. This points towards another consideration for noise measurements, which is 

accurate subtraction of auto-fluorescence. Auto-fluorescence, is the part of the signal that does not 

correspond to the fluorescence reporter but other molecules in the cell. The recorded signal is the sum 

of the reporter signal and the auto-fluorescence. If the background is not subtracted, rCV calculations 

can yield artificially low values due to normalization of the MAD to an artificially high median. The left 

panel in Figure 24 shows an example of overlapping fluorescence intensity distributions for a 

population without mNeongreen gene (red) and a population with lowly expressed mNeongreen 

(green).  
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It is common practice to subtract the mean value of the auto-fluorescence 〈𝑎〉 from all values 𝑖 of the 

signal 𝑠𝑖. For 𝑠𝑖 < 〈𝑎〉, this results in negative fluorescence intensities that have to be excluded or set 

to zero (Figure 24, middle panel). Instead, for each signal value 𝑠𝑖, we subtract a value 𝑎𝑖  that was 

picked randomly from the auto-fluorescence probability distribution given that 𝑎𝑖 ≤ 𝑠𝑖. Thus, the 

smallest possible value after subtraction is 0 (Figure 24, right panel). 

 

Figure 24: Comparison of two background subtraction strategies. Left panel: Fluorescence distribution of a yeast strain not 
harboring mNeongreen in red and a yeast strain with low mNeongreen induction in green. Middle panel: Same data subtracted 
by the median auto-fluorescence value. Right panel: Distribution after applying the subtraction method developed by Seán 
Murray. 

This approach, developed in our lab by Seán Murray, takes into account that the auto-fluorescence of 

cells differs and that a cell’s auto-fluorescence can never be bigger than the measured signal. We note 

the limitation of this method for very low signals that have high overlap with the auto-fluorescence 

distribution. Otherwise, however, this method results in a rapid and accurate auto-fluorescence 

subtraction. Here, accurate refers to agreement between the original signal and the reconstituted 

original signal obtained by convolving the corrected distribution with the auto-fluorescence 

distribution. 

2.1.3 Optimizing analysis 

Normalization of acquired fluorescence data is crucial because it can filter out nonspecific sources of 

variation, e.g. sources that are not directly related to gene expression. We tested two approaches for 

normalization of raw fluorescence data (Figure 25). 

 

Figure 25: Comparison of normalization techniques for a triple-reporter strain. Scatter plot of fluorescence signals of mCherry 
and mNeongreen either as raw data (left), fluorescence normalized to the forward scatter signal (middle) or normalized to 
the constitutive mTurquoise2 expression control module (right). Values for intrinsic and extrinsic noise are given in the 
scatterplots. Adjacent histograms show the distributions of the individual reporters with their respective robust CVs. Axes in 
the middle and right scatterplot are scaled to approximately match the size of the left distribution. The ratio of the axes is 
identical in all three scatterplots and all are in linear scale. Fluorescence intensities in arbitrary units. 
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Dividing the raw data by the FSC signal (see section 1.2.2) reduced extrinsic noise by 57%. However, 

normalizing to an internal reporter for the expression capacity of the cell (i.e. the constitutively 

expressed mTurquoise2 gene) reduced extrinsic noise by 92%. The high absolute values for intrinsic 

noise cannot be explained conclusively, but the relative change is rather small (5 % and 7 % reduction 

for FSC-normalization and mTurquoise2-normalization, respectively), so that we conclude that 

normalization has only a negligible effect on intrinsic noise. Regarding the FSC-normalized distributions 

for mNeongreen and mCherry, we find that despite the overall reduced noise compared to the raw 

data, an additional source of heterogeneity seems to be introduced that creates two peaks. That might 

be explained by the distinct singlet and doublet distributions that we observe in the FSC channels but 

was not further investigated. 

We performed a reduced gate size analysis on the raw and normalized datasets to assess how it 

compared to the dual reporter assay. As described in the introduction, the reduced gate size analysis 

takes advantage of the observation that phenotypic differences in the FSC/ SSC channels correspond 

to extrinsic noise. Cells in the full gate (radius 1) display the total noise. Reducing the gate size (here: 

up to radius 0.1) reduces the phenotypic heterogeneity and thus, the extrinsic noise. The difference in 

rCV between the full gate and the reduced gate radius corresponds to the extrinsic noise. The results 

are well in accordance with the results above: The raw data (blue lines in Figure 26) show a difference 

in rCV of 0.14 and 0.12 for mNeongreen and mCherry, respectively. The FSC-normalized data (yellow 

lines) show a difference of 0.05 and 0.07. The mTurquoise2-normalized data show virtually no extrinsic 

noise. The robust coefficients of variation converge to similar values for all datasets, which shows that 

the different normalization techniques only filter out extrinsic noise and lead to the only minor changes 

in intrinsic noise observed in Figure 25. 

 

Figure 26: Reduced gate size analysis of differently normalized fluorescence data. X-axis indicates normalized gate radius with 
1 corresponding to a gate that contains all measured cells. Y-axis shows rCVs for mNeongreen and mCherry (left and right 
panel, respectively) at different gate radii. Extrinsic noise is filtered out by reducing the gate radius. Raw (not normalized) data 
(blue) exhibits more extrinsic noise than cells normalized to FSC-A (yellow). Cells normalized to mTurquoise2 show no extrinsic 
noise. 

The reduced gate size analysis allowed an analysis of intrinsic and extrinsic noise that was qualitatively 

similar to the analysis by the dual reporter assay. Since it requires only one reporter, reducing the 

effort for cloning and transformation, we constructed strains with only a mNeongreen reporter (plus 

the mTurquoise2 expression control) for subsequent experiments. 
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The results presented in this section illustrate that extrinsic noise in part depends on biological 

differences between cells but is also largely influenced by sample handling and data analysis. To 

measure effects of different expression modes on the noise in individual genes (see following sections), 

we aimed for minimal influence of variability that was not specific to those genes. Normalization to 

the general expression capacity of each individual cell proved to be very effective in reducing extrinsic 

noise and made gating of singlets or any other preselection of subsets of cells unnecessary. 

  



Results 

34 
 

2.2 Proof-of-concept of a noise tuner 
To decouple gene expression noise from the mean expression of a reporter gene, we characterized the 

behavior of different inducible promoters and terminators. For transcription rate control we used the 

well-established Tet-ON system (Figure 7) with TetO7 promoters (seven Tet operator sites, hereafter 

called “Tet promoter”). Some of the experiments were performed using TetO2 promoters (two Tet 

operator sites), as stated specifically in the following text. Tet promoters were induced with 

doxycycline (dox). Transcript stability was controlled using inducible ribozymes that can be either 

activated or deactivated by the small molecule theophylline (theo). We used different concentrations 

of doxycycline and theophylline to change the modes of expression and calculated the gene expression 

noise. 

2.2.1 Characterization of ribozyme induction 

We used previously published inducible ribozymes as tools to regulate gene expression via the mRNA 

degradation rate. Using these sequences, we wanted to enable expression control on the post-

transcriptional level in addition to the transcriptional control mediated by the Tet promoter. By 

exerting control on both levels of gene expression, we aimed to build a synthetic system for noise 

tuning that employed the strategies introduced in section 1.4. 

Inducible ribozyme sequences with different characteristics (49) were tested in the 3’ UTRs of 

mNeongreen genes driven by Tet promoters. We inserted the synthetic minimal terminator T(Synth27) 

(47) 3’ of each ribozyme sequence. Two ribozymes (L2b8-t47: “Ribo 1” and L2b8-a1-t41: “Ribo 2”) have 

their autocatalytic cleavage function inhibited when binding theophylline. One ribozyme (L2bOFF1-

a14: “Ribo 3”) activates cleavage upon theophylline binding. The Ribo 1 strain showed 13-fold, Ribo 2 

showed 14-fold induction; Ribo 3 showed a 2.7-fold decrease in expression (Figure 27). 

 

Figure 27: mNeongreen intensities for genes with different stabilized and destabilized ribozymes. Strains were induced with 
64 ng/μL doxycycline and 0 mM (-) or 25.6 mM (+) theophylline overnight and in a day culture grown to mid-exponential 
phase. Fluorescence data was normalized to mTurquoise2 expression. Error bars indicate the MAD of ca. 10,000 cells. 

The control construct contains a ribozyme with a scrambled core sequence that has no autocatalytic 

cleavage function. The reduced expression of the active ribozymes compared to the control indicates 

some cleavage activity even if the construct is turned off. Due to the low inducibility and high leakiness 

in the off-state, we did not continue working with Ribo 3 and focused on the two Theo-ON systems. 
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Histograms of the induction of those three strains and a strain harboring only the synthetic terminator 

sequence T(Synth27) are shown in Figure 28.  

 

Figure 28: Fluorescence distributions of yeast strains harboring mNeongreen driven by a Tet promoter and different terminator 
regions. T(Synth27) is a synthetic minimal terminator that was cloned behind all ribozyme constructs. Constructs were induced 
with 0 (-) or 64 ng/μL (+) doxycycline and 0 mM (-) or 25.6 mM (+) theophylline overnight and in a day culture grown to 
exponential phase. Colors in the top left insert correspond to histogram colors. 

The distributions of mNeongreen fluorescence intensities show, as above, similar fold changes for the 

two Theo-ON systems but differences in the strains with destabilized (- theo) mRNA. Whereas the 

distribution of the destabilized Ribo 1 construct was shaped like a low-mean on-state, the distribution 

of the destabilized Ribo 2 construct resembled the off-state (Figure 28, bottom left and right panels, 

respectively). This unexpected finding might be explained by the absolute activity ranges of the two 

ribozymes. While the stabilizing effect of theophylline is similar in both, Ribo 1 and Ribo 2, the lower 

absolute expression conferred by Ribo 2 results practically in an almost complete shutdown of 

expression. 

2.2.2 Simultaneous control of transcription rate and mRNA degradation rate 

The main goal of this project was to decouple gene expression noise from the mean expression by 

orthogonally tuning the transcription rate via doxycycline and the mRNA degradation rate via 

theophylline. To evaluate which combinations of doxycycline and theophylline concentrations resulted 

in similar expression rates, we induced mNeongreen expression over a range of different 

concentrations of both inducers and calculated the median and robust CV for each combination. Each 
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of the experiments described in the following section contains data of ca. 3 million cells and up to 64 

different combinations of inducer concentrations. 

To get the most informative view of our results, we integrated the information for median and noise 

as functions of the inducer concentrations into a single plot (see e.g. Figure 29 and Figure 31). Each 

square in those heatmaps represents an individual flow cytometric measurement of 50,000 yeast cells. 

The color of the squares indicates the robust CV that corresponds to the fluorescence distribution of 

that measurement. The lines on the heatmap are interpolations of the corresponding median 

expression levels of the distributions. Changes in color along a line (i.e. increase of decrease of the 

robust CV along a fixed median) would indicate decoupling between absolute expression and noise. 

We did this experiment first for the control ribozyme to confirm that different theophylline 

concentrations did not markedly change expression levels at a given doxycycline concentration if the 

ribozyme was inactive (Figure 29). 

 

Figure 29: Noise heatmap for the ribozyme control strain induced with combinations of different dox/ theo concentrations. 
Colors indicate noise as the robust CV, given by the color scale on the right. The numbered lines indicate median mNeongreen 
expression normalized to the internal mTurquoise2 expression control. As expected for the theo-unresponsive control, both 
the noise and the median expression scale only with the dox concentration. High (25.6 mM) concentration of theo resulted in 
a reduced median expression. 

Apart from the highest concentration used (25.6 mM), theophylline showed no effect on the 

mNeongreen expression. The fluorescence intensities scaled exclusively with the doxycycline levels. As 

expected, the noise scaled inversely with the gene expression, with the lowest noise at the highest 

fluorescence intensity. The fluorescence signal of the internal expression control, the constitutively 

expressed mTurquoise2 gene, was unaffected by the inducer concentration in terms of both, median 

expression (Supplementary Figure 5) and noise (Supplementary Figure 6). 

To assess whether the decreased median expression at high theophylline concentrations was an 

artifact caused by a general impairment of the cellular physiology, we measured the growth of yeast 

cultures at different theophylline concentrations. For this we calculated the events recorded by the 
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flow cytometer per microliter of sample for all samples of a given theophylline concentration (Figure 

30). We found that the events/ µL were in a stable range between 4000 and 5000, which corresponds 

to an optical density between 0.5 and 0.6 (see Figure 15). The only exception was the highest 

theophylline concentration, where the cell density dropped below 3500 events/ µL. This reduction in 

cell growth at 25.6 mM theophylline is significant (p < 0.02 in two-sided t-tests for pairwise comparison 

with all other theophylline concentrations). 

 

Figure 30: Effect of theophylline concentration on cell growth. LD medium with different concentrations of theophylline was 
inoculated with a yeast overnight culture to an initial OD of 0.05 and grown for 6 hours at 30 °C with shaking. Concentration 
of cells (events/ µL) of theophylline-induced cells was comparable to the uninduced sample (4000 to 5000) for all theophylline 
concentrations except the highest (25.6 mM). Error bars indicate the standard deviation of eight yeast cultures that were 
induced with different doxycycline concentrations from 0 to 16 ng/ µL as shown in Figure 29. 

We conclude that at 25.6 mM, where the concentration is close to its limit of solubility in aqueous 

solutions, theophylline appears to have a detrimental effect on cell growth. This concentration was 

therefore omitted from subsequent experiments. 

After establishing appropriate experimental parameters and a comprehensive protocol for data 

visualization to measure expression levels and noise, we performed experiments similar to that in 

Figure 29 for the two active ribozymes Ribo 1 and Ribo 2 (Figure 31 A and B, respectively). As expected, 

the median fluorescence intensity was maximized at the highest concentrations of both inducer 

molecules where the transcription rate is high and the mRNA degradation rate is low, leading to high 

steady-state mRNA concentrations and consequently high protein concentrations.  

Surprisingly, the robust CV measured with both systems scaled with the doxycycline concentration but 

the theophylline concentration had almost no effect on it. As a result, the rCV heatmaps in Figure 31 

are qualitatively similar to the control heatmap in Figure 30. We note that the observed noise is 

reduced drastically over a small range of doxycycline induction. We observed this switching from a 

high-noise regime to a low-noise regime in the two constructs with active ribozymes as well as the 

control construct.  

Accordingly, we found that when we follow a fixed median expression line in Figure 31, we can cross 

from the high noise regime to the low noise regime, indicating a decoupling of the mean and the noise. 

Taken together, these results show that we could successfully develop a desired noise tuning system.  
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Figure 31: Noise heatmaps of mNeongreen expression with the Ribo 1 construct (A) and the Ribo 2 construct (B). Each square 
corresponds to a unique combination of theophylline (X-axis) and doxycycline concentrations (Y-axis). The colors of the squares 
correspond to the noise of the respective measurement, given as robust coefficient of variation of the mNeongreen expression. 
The rCV range is given by a color scale next to the heatmaps on the right. The lines on the heatmaps correspond to the median 
expression of mNeongreen normalized to the mTurquoise2 expression capacity control. Both heatmaps show that at an 
appropriate median expression, the noise measured from the PTetO7-mNeongreen-Ribozyme constructs can be tuned up to 3-
fold range.  
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It is noticeable that the low noise regime is reached at different doxycycline concentrations and thus, 

different transcription rates for the two noise tuning systems shown above. This shows that the mRNA 

degradation rate does have an impact on noise insomuch as the different ribozymes confer different 

absolute expression levels (as shown in Figure 27) and the general mean-noise relationship discussed 

in Figure 5 does still apply. At higher absolute expression levels conferred by Ribo 1 we observe fewer 

noise as compared to Ribo 2. However, if similar median expression levels are compared, the noise is 

comparable in both systems. 

From the results in Figure 31 we derive two strategies by which a particular median fluorescence 

intensity can be achieved: Strategy 1 employs low transcription rate (low doxycycline concentration) 

and low mRNA degradation rate (high theophylline concentration). Few mRNA molecules are present 

but they have a long half-life, so that each molecule is being translated very often. At low transcription 

rates, however, production of an mRNA molecule is a stochastic process and this noisiness on the 

transcript level is passed on to the protein level. Strategy 2 employs high transcription and mRNA 

degradation rates. Many mRNA molecules are produced but they have a short half-life, so that 

individual transcripts are rarely translated before being degraded. At high transcription rate, mRNA 

production is less stochastic so that less noise is being passed on to the protein level. The two strategies 

differ in their mRNA turnover and thus, in the energy required. Strategy 1 is noisier but energetically 

cheap, whereas strategy 2 is less noisy but requires more energy. 

Both Theo-ON systems (Ribo 1 and Ribo 2) showed gene expression noise tuning capabilities for a 

fluorescence reporter gene in combination with an inducible TetO7 promoter. Due to the tighter off-

state (see Figure 27), we proceeded with the Ribo 2 construct for all subsequent ribozyme 

experiments. In the following sections, constructs that regulate expression noise of a gene of interest 

via TetO7 promoter and Ribo 2 will be referred to as “noise tuner”. 

To gain more insight from the expression responses of individual populations at different combinations 

of inducer concentrations, we selected distributions from the noise tuner measurements described in 

Figure 31 B with similar median expression but different noise for pairwise comparison. Figure 32 

shows two examples; one at low and one at high expression. Populations that reach a given mean 

expression with higher doxycycline and lower theophylline concentration express the reporter gene 

more homogeneously with higher peaks and less spread towards lower or higher extreme values. 
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Figure 32: Example distributions of the mNeongreen noise tuner with similar median expression but different noise settings. 
Populations with higher dox and lower theo (red) exhibit lower expression heterogeneity than populations with lower dox and 
higher theo (blue). Insets indicate the compared populations from Figure 31 B. Colors of the dots in insets correspond to 
histogram colors. 

To discern which sources of noise are affected by the two different expression strategies (high dox/ 

low theo and low dox/ high theo) we performed a reduced gate size analysis to estimate the 

contribution of extrinsic noise to the total observed noise (see section 1.3.2 for a description of the 

method). Figure 33 shows the reduced gate size analysis for the two examples in Figure 32. The 

extrinsic noise corresponds to the difference in robust CV between the full gate radius and the reduced 

gate radius (here: 0.1).  

 

Figure 33: The noise tuner changes intrinsic variability. The radius of a circular gate around the median forward (FSC-A) and 
side scatter (SSC-A) is decreased to comprise only cells with similar FSC-A/ SSC-A values to filter out the extrinsic contribution 
of the observed noise. Background-subtracted raw data is shown with full lines; background-subtracted data normalized to 
the expression capacity control is shown with dashed lines. Samples shown here correspond to the examples in Figure 32. 

The amount of extrinsic noise in the raw data was generally low. Data normalized to the expression 

capacity control (constitutive mTurquoise2 gene) showed no reduction of noise for reduced gate size, 

indicating again that extrinsic noise is filtered out efficiently. Assuming that technical noise is negligible 
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(see Figure 23), we note that the main factors that are changed between high and low noise settings 

of the noise tuner are intrinsic, as we would expect for gene-specific manipulation of expression. 

To test the influence of the promoter strength on the noise tuning capabilities, we exchanged the 

TetO7 promoter for a TetO2 promoter with two instead of seven Tet operator sites for rtTA to bind. 

Noise did not change significantly when a given median expression was either achieved with high dox 

and low theo or vice versa (Figure 34). 

 

Figure 34: Median and rCV for 64 different combinations of theophylline and doxycycline concentrations of a yeast strain with 
mNeongreen driven by PTetO2 and Ribo 2. Colors indicate noise, given as robust coefficient of variation (color scale on the right) 
for individual populations measured by flow cytometry. Lines indicate identical median normalized fluorescence signal, 
interpolated from the measured data. 

The PTetO2 variant exhibited overall much lower expression and did not leave the noisy regime of gene 

expression that we had observed previously at rCV values below ca. 0.4. This indicates that noise tuning 

by this strategy requires a sufficiently strong promoter. 

2.2.3 Benchmarking of the noise tuner 

The experiments described in Figure 31 and Figure 34 indicate that the noise tuning capabilities depend 

on the parameter space that is defined by the properties of the promoter and the terminator region 

used. The Tet-ON system is commonly used to induce expression, but less so the synthetic sequence 

comprising Ribo 2 and the T(synth27) terminator. To employ the noise tuner not only for the regulation 

of a fluorescence reporter gene, but also to tune noise in genes with a variety of functions and 

expression levels, we wanted to estimate whether the noise tuner operated in a similar mean and 

noise range as was conferred by native terminator regions. 

We benchmarked the range of the noise tuner’s expression and variability against other strains 

harboring the same PTetO7-mNeongreen construct but different native yeast terminator sequences. For 

this comparison we selected terminators from the literature that had been reported to confer 

extremely high or low expression of a fluorescence reporter gene (45). 
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Figure 35: Comparison of the noise tuner with similar constructs harboring native terminators. The stabilized or destabilized 
Ribo 2 construct and strains with either strong native terminators (T(TPS1), T(ADH1)) or weak native terminators (T(FZF1), 
T(GIC1)) according to (45) were induced with different doxycycline concentrations. Dose-response curves of mNeongreen are 
shown in the left panel. Corresponding noise, given as the robust CV, is plotted against the median mNeongreen intensity in 
the right panel. Ribo 2 was induced with either 0 mM or 12.8 mM theophylline (“+ theo”). 

The noise tuner showed expression in the lower range of expression achieved using native 3’ UTRs 

(Figure 35, left). The mean-noise relationship was comparable to the native constructs (Figure 35, 

right). The results show that changing 3’ UTRs of native sequences can have a similar effect on gene 

expression and noise as stabilizing or destabilizing the synthetic construct. At high expression, the 

native terminator regions conferred even less noise than the noise tuner. We further explored noise 

control via native control elements in section 3.4. 

2.2.4 Stochastic simulation of the noise tuner 

To further examine the mechanisms behind the observation that doxycycline and theophylline 

regulate mean expression and expression noise differently, we turned to the theoretical results of 

Shahrezaei and Swain on the distribution of protein copy numbers (80). Assuming that the protein 

lifetime is much larger than the mRNA lifetime, they found that the steady state number of molecules 

in the cell follows a negative binomial distribution (see materials and methods, section 4.11). 

Furthermore, they found that this distribution depends on only two parameters: 𝑎 =
𝑣0

𝑑1
, where 𝑣0 is 

the mRNA transcription rate and 𝑑1is the protein degradation rate; and 𝑏 =
𝑣1

𝑑0
, where 𝑣1 is the 

translation rate and 𝑑0 is the mRNA degradation rate (see Figure 36).  

 

Figure 36: The basic probability rates of gene expression. Steady state mRNA concentration depends on transcription 
probability v0 and mRNA degradation probability d0 per unit time. Protein concentration depends on translation probability v1 
and protein degradation probability d1 per unit time (adapted from 80). 

The parameter 𝑏 is known as the translational burst size – the average number of proteins translated 

per mRNA, while 𝑎 can be interpreted in a similar way as the average number mRNA transcribed during 
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the lifetime of a single protein. These theoretical findings assume a two-stage model of gene 

expression, wherein the protein steady-state is governed by transcription and translation only, and 

does not factor in heterochromatin remodeling.  

The mean of the distribution is 

𝜇 = 𝑎 ∙ 𝑏 

while its coefficient of variation is 

𝐶𝑉 =
1

√𝑎
(√1 +

1

𝑏
). 

We note that if the burst size 𝑏 ≫ 1 then the term in brackets in above equation converges towards 

1. In that case, the CV depends only on the parameter 𝑎, i.e. it does depend on the translation rate or 

the mRNA degradation rate. Large 𝑏 implies that many proteins are produced from few mRNAs which 

is a likely assumption (see e.g. 81 and 82). 

As the independence of the CV of the burst size was not investigated by the authors in (80), we decided 

to perform stochastic simulations to confirm this result and determine if we could reproduce the 

experimental observations in a biologically reasonable parameter space. We found that simulations of 

the two-stage model were in well accordance with the experimental results. While the mean protein 

number was maximized when both, 𝑎 and 𝑏, were high, the CV scaled with 𝑎 and only weakly with 𝑏 

(Figure 37). 

 

Figure 37: Stochastic modeling of mean and CV of steady state protein number as function of 𝑎 and 𝑏. Lines indicate same 
protein number, colors indicate coefficient of variation (color scale on the right). Scaling of the 𝑎 and 𝑏 axes is chosen to 
correspond to the dose-response of doxycycline and theophylline, respectively. See methods for parameter values. 

This observation is consistent with the experimental data (Figure 31 B): The doxycycline-induced 

promoter activity enters into 𝑎 via the mRNA transcription rate 𝑣0, while theophylline-induced mRNA 
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stability enters into 𝑏 via the mRNA degradation rate 𝑑0. Thus, increasing the transcription rate 

increases 𝑎 while decreasing the mRNA degradation rate increases 𝑏. 

Summing up this results section, we have shown experimental evidence for the successful construction 

of a gene expression noise tuner that employs the orthogonal control of the transcription rate and the 

mRNA degradation rate to decouple the median expression from the expression variation. The noise 

tuner operates at the lower bound of expression conferred by native terminator regions, in a 

parameter space where noise mainly stems from stochastic promoter activity and the transcript 

stability is changed to adjust the median expression level. 

  



Results 

45 
 

2.3 Noise tuning in a signaling pathway 
Genes and the proteins they encode do not act in isolation but interact in complex networks. 

Depending on the network topology, the gene function, protein number and other factors, gene 

expression noise of individual components can have a smaller or bigger impact on the network’s 

robustness and its reliable function. We used the noise tuner to investigate effects of noise for five 

different genes of the yeast mating pathway, as shown schematically in Figure 38. This analysis 

effectively probes noise sensitivity / robustness of the mating pathway. 

 

Figure 38: Overview of the pathway genes whose expression were controlled by the noise tuning system. A detailed description 
of the yeast mating pathway is given in section 1.6.3.  

Similar to the proof-of-concept noise tuner described in the previous section, the experimental 

procedures included the orthogonal expression control of pathway genes with doxycycline and 

theophylline. Again, we aimed to set the gene expression noise at a given expression by using different 

transcription rates and mRNA degradation rates. We constructed yeast strains that had the native 

promoter and terminator of a pathway gene replaced with our inducible elements in the native gene 

locus and induced them with a range of doxycycline concentrations with either destabilized (- theo) or 

stabilized (+ theo) mRNAs. The promoter replacements had been done by Alexander Anders for 

previous experiments. 

The following results show flow cytometric analyses of normalized mNeongreen measurements, 

similar to the results presented in the previous section. A notable experimental and conceptual 

difference, however, is that the mNeongreen reporter gene was placed under the control of the 

pathway response promoter P(Fus1). The measured mNeongreen fluorescence intensity, thus, reflects 

pathway activity (“pathway reporter”, see Figure 10 in the introduction). The strains also contained 

the constitutively expressed mTurquoise2 gene to filter out extrinsic noise. We expected that induced 

changes in our strains which resulted in differences in the noise of the pathway reporter reflected the 

intrinsic gene expression noise plus the intrinsic pathway noise. 

In order to measure fluorescence from the pathway reporter, we had to stimulate the mating pathway. 

We induced a mating response by incubating haploid MATa cells with purified α pheromone for three 
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hours, choosing pheromone concentrations in the dynamic response range. We included a wildtype 

(parental) strain in the measurements to estimate the mean expression and noise under native control 

for a given pheromone concentration (Figure 39). 

 

Figure 39: Pathway activity (left panel) and pathway noise (right panel) three hours after stimulation of a wildtype yeast strain 
with different pheromone concentrations. We define the pathway activity as the fluorescence measured from an mNeongreen 
reporter gene that is controlled by a pathway response promoter (see main text). We define pathway noise as the robust 
coefficient of variation measured from the pathway reporter. Fluorescence values are normalized to an internal constitutively 
expressed mTurquoise2 expression capacity control.  

The wildtype measurements are intended to serve as a general orientation for the expected ranges of 

the pathway activity and the noise at a given pheromone concentration. The primary focus was, 

however, the comparison of different doxycycline and theophylline levels in the noise tuning strains. 

From the results we could make primarily two types of observations for each tested gene: 

1) We could assess for which genes the noise tuner can be employed to change the pathway activity. 

If changes in gene expression via doxycycline and theophylline are reflected by changes in the pathway 

activity, that shows that the noise tuner works in this context. 

2) We could observe whether the noise tuner, when applied to individual genes, can change pathway 

noise. If changes in pathway noise occur that correspond to the expected changes in expression noise 

of the targeted gene, that shows that the induced noise propagates through the pathway. 

The following sections sum up these two kinds of observations for the five mating pathway genes 

shown in Figure 38. First, the results will be shown for the pathway receptor Ste2, scaffolding protein 

Ste5 and the MAPK Fus3. Then more detailed results will be shown for the negative pathway regulators 

Msg5 and Sst2. 
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2.3.1 Ste2 

Ste2 is the seven-transmembrane domain G protein coupled receptor of MATa cells that binds α 

pheromone. Ste2 is itself upregulated by the pathway (83). Signaling via Ste2 is terminated by ligand-

induced receptor endocytosis (84). We induced the expression of STE2 via doxycycline and 

theophylline and stimulated the pathway with 1.39 nM pheromone. As expected, the pathway showed 

increasing activity at higher concentrations of doxycycline. Depending on the doxycycline 

concentration, adding theophylline increased pathway activity between 11 % and 25 % (Figure 40, left 

panel). At a given median fluorescence, yeast cells without theophylline exhibited slightly lower 

pathway noise (Figure 40, right panel). 

 

Figure 40: Pathway activity for different STE2 regulation conditions. STE2 was induced over a range from 0 to 8 ng/µL 
doxycycline and either without theophylline (red dots) or with 10 mM theophylline (blue dots). Left panel: Doxycycline dose 
and corresponding mNeongreen pathway reporter response. A slightly higher pathway response can be achieved when 
theophylline is added. Right panel: Pathway noise, given as rCV, at different median expression levels. Median and rCV of the 
wildtype are indicated with a black X. 

The curve progression in the left panel in Figure 40 indicates that higher dox concentrations could 

further increase pathway activity. As Supplementary Figure 8 shows, STE2 is expressed at very high 

transcription rates. 
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2.3.2 Ste5 

STE5 encodes a scaffold protein for the MAPK cascade to facilitate efficient signaling. We stimulated a 

yeast strain with STE5 controlled by our noise tuner with 1.39 nM pheromone and measured the 

pathway activity for different doxycycline concentrations, with or without theophylline. The left panel 

in Figure 41 shows pathway induction over the entire dynamic range, mediated by the induced 

expression of STE5. Adding theophylline resulted in an increase in pathway activity to up to 2.5-fold 

over the activity with destabilized STE5 transcripts. Absolute differences in fluorescence output were 

highest in the dynamic range of the pathway response. 

 

Figure 41: Pathway activity and pathway noise for the STE5-noise tuner. Measurement parameters and description as in Figure 
40. 

Based on the observations made for the proof-of-concept noise tuner (Figure 31 B), the critical 

transcription rates for the transition between the high and the low noise regime are achieved with 

doxycycline concentrations between approximately 1 and 4 ng/µL. This appears to be within the 

dynamic range of the pathway activity when STE5 expression is controlled. In this range, however, the 

pathway noise was similar for yeast cells treated with theophylline and untreated cells (Figure 41, right 

panel), indicating that noise differences were not propagated through the pathway. At wildtype 

expression, STE5-regulation resulted in similar noise as the wildtype. 
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2.3.3 Fus3 

Fus3 is the MAPK of the yeast mating pathway. As for STE5, FUS3 expression was induced by increasing 

the transcription rate via doxycycline and this was mirrored by a corresponding increase in pathway 

activity in cells stimulated with 1.39 nM pheromone. Theophylline regulation of FUS3 showed only a 

marginal increase of pathway activity in the dynamic range. We suspect that this could be due to a 

limited ability of theophylline to stabilize the transcript. This could be the case if e.g. the FUS3 coding 

sequence contains elements that destabilize the mRNA. Doxycycline concentrations above 2 ng/ µL led 

to reduced pathway activity of the theophylline-treated cells but not the untreated cells (Figure 42, 

left panel).  

 

Figure 42: Pathway activity and pathway noise for a yeast strain with FUS3 noise tuner. Measurement parameters and 
description as in Figure 40. 

Theophylline also showed no significant influence on the mean-noise relationship of the fluorescence 

signals from the pathway reporter (Figure 42, right panel). The strain with our noise tuner reaches rCV 

values similar to the wildtype at comparable median expression. 
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2.3.4 Msg5 

MSG5 encodes a downstream negative feedback regulator of the pathway. Msg5 directly interacts with 

the MAPK Fus3 and dephosphorylates it, resulting in lower pathway activity at increased MSG5 

expression. The pathway activity was further reduced by up to 50 % when the growth medium 

contained theophylline, indicating that MSG5 transcripts were successfully stabilized and Msg5 protein 

levels were increased (Figure 43, left panel).  

 

Figure 43: Pathway activity and pathway noise for the MSG5-noise tuner. MSG5 was induced over a range from 0 to 2 ng/µL 
doxycycline and either without theophylline (red dots) or with 12.8 mM theophylline (blue dots). Cells were stimulated with 
1.39 nM pheromone. Left panel: Doxycycline dose and corresponding mNeongreen pathway reporter response. Right panel: 
Pathway noise, given as robust CV, for corresponding median mNeongreen expression. Black X denotes wildtype expression 
and noise. These and the upcoming measurements in this section were made with reduced PMT voltage for mTurquoise2 
detection, hence the increased normalized fluorescence compared to the previous figures. 

The MSG5 noise tuner strain showed significantly higher noise than the wildtype (Figure 43, right 

panel). Analyzing the transcription rate and mRNA degradation rate of MSG5 from published data, we 

found that both rates were at the upper limit that was observed for yeast genes in the respective range 

of steady-state mRNA levels (Supplementary Figure 8). This indicates that the native MSG5 might 

already employ the low noise expression strategy that we described for our noise tuner in section 2.2.  

The right panel in Figure 43 shows pathway noise differences between cells with and without 

theophylline at high MSG5 expression/ low pathway activity. These results prompted us to perform 

further experiments to assess whether noise in MSG5 expression would impact the pathway response 

towards pheromone. Saccharomyces cerevisiae cells adjust their mating behavior (mating pathway 

activity and cell morphology) in accordance to the pheromone concentration that the cells sense (see 

Figure 9), which might be affected by noisy MSG5 expression. 

To evaluate this, we first had to find doxycycline/ theophylline combinations that produced similar 

median expression levels in the MSG5 noise tuner strain. From further experiments (data not shown) 

we concluded that 4 ng/µL dox without theo and 2 ng/µL dox with 12.8 mM theo showed appropriate 

median fluorescence intensities. We refer to them as low- and high-noise MSG5 settings, respectively. 
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Cells set to low or high MSG5 noise were stimulated with a range of pheromone concentrations to 

induce the full range of pheromone responses from sub-shmooing to full stimulation.  

 

Figure 44: Pheromone response for cells with MSG5 expression either set to low noise (4 ng/µL doxycycline, red) or high noise 
(2 ng/µL doxycycline and 12.8 mM theophylline, blue). Left panel: Pheromone dose response shows similar dynamics for both 
settings. Right panel: Low noise MSG5 setting results in lower pathway noise over the entire range of pheromone induction. 
All values derived from mTurquoise2-normalized fluorescence intensities.  

For both noise settings, cells showed very similar pheromone responses and the typical switch-like 

pathway activation at high pheromone concentrations (left panel in Figure 44). We calculated the 

robust coefficient of variation for all data points and found that the cells set to low MSG5 expression 

noise indeed exhibited slightly less variability over the entire range of pheromone stimulation (right 

panel in Figure 44), indicating that MSG5 expression noise did indeed affect pathway noise, albeit only 

to a small extent.  
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2.3.5 Sst2 

We tested the capabilities of the noise tuning system to control SST2 and in turn, change pathway 

expression and noise. Sst2 is a GTPase accelerating protein that acts upstream in the mating pathway 

and attenuates signaling. Sst2 has been described as pathway noise suppressor, making it a promising 

candidate for our noise modulation studies (64). 

Regulation of SST2 expression by doxycycline and theophylline had a strong effect on the pathway 

response. Because Sst2 is a negative regulator, pathway activity is reduced with increased SST2 

expression (Figure 45, left panel). When SST2 transcription was induced, the pathway showed more 

than 7-fold repression when SST2 mRNA was stabilized, as compared to 1.3-fold repression when no 

theophylline was added.  

 

Figure 45: Pathway activity for different SST2 regulation conditions. The SST2 noise tuner was induced over a range from 0 to 
4 ng/µL doxycycline and either without theophylline (red dots) or with 12.8 mM theophylline (blue dots). Cells were stimulated 
with 2.47 nM pheromone. Left panel: Doxycycline dose and corresponding mNeongreen pathway reporter response. Right 
panel: Pathway noise, given as rCV, for corresponding median expression. Black X denotes wildtype expression and noise. 
These measurements were made with reduced PMT voltage for mTurquoise2 detection, hence the increased normalized 
fluorescence. 

Over the entire expression range cells with destabilized SST2 transcripts exhibited lower pathway noise 

than those with stabilized SST2 transcripts (Figure 45, right panel). Following up on these initial results 

for the SST2 noise tuner, we screened a wider range of doxycycline and theophylline concentrations 

to regulate SST2 expression and analyzed the pathway activity and the pathway noise. Figure 46 shows 

the results plotted as noise heatmap, similar as for the proof-of-concept noise control constructs in 

Figure 31. We observed noise tunability at intermediate pathway activity, around 2.0 to 2.5 arbitrary 

units.  
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Figure 46: Noise heatmap for mating pathway activity when SST2 is regulated with different combinations of dox/ theo 
concentrations. Pathway noise is tunable via SST2 at intermediate pathway activity. Colors indicate robust coefficient of 
variation of the pathway reporter. Lines indicate median pathway reporter fluorescence intensity in arbitrary units. Cells were 
stimulated with 2.47 nM pheromone. 

The results above show that the SST2 noise tuner is capable of accurate control of mating pathway 

activity and the corresponding pathway variation. Based on the good inducibility of the pathway by 

controlling SST2 expression with both inducers, we focused our efforts on SST2 as a model to 

demonstrate the impact of gene expression noise of a single pathway component on the overall 

pathway performance, using the noise tuner.  

As for MSG5, we screened dox/ theo combinations that resulted in a similar pheromone dose-

response. The SST2 noise tuner driven by the inducible Tet promoter and the inducible ribozyme 

terminator was grown with destabilized (0 mM theophylline) and stabilized (10 mM theophylline) 3’ 

UTR with varying concentrations of doxycycline. Cells were stimulated over the entire pheromone 

response range and the pathway response was measured by flow cytometry. We found that cultures 

induced with 1 ng/ μl dox and 10 mM theo produced similar dose response curves as cultures induced 

with 8.5 ng/ μl and 0 mM theo (Figure 47). We will refer to these combinations of inducer 

concentrations as high-noise and low-noise setting, respectively. 
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Figure 47: Dose-response curves of low and high noise SST2 strains for different levels of pheromone stimulation. Left panel: 
Low noise setting with SST2 expression induced with 8.5 ng/ μl and 0 mM theophylline. Right panel: High noise setting with 
SST2 induced with 1 ng/ μl dox and 10 mM theophylline. Black lines in boxes indicate median normalized fluorescence intensity 
of the population. Bottom and top of boxes indicate 25th and 75th percentiles, respectively. Whisker length is set to 50% of box 
length. Outliers not shown. 

We calculated the robust coefficient of variation for all data points and plotted the values as a function 

of the pathway activity (Figure 48). At low pathway activity we observed ca. 50 % noise difference 

between strains with SST2 set to high expression noise and strains with SST2 set to low expression 

noise. The low noise setting results in less pathway variation over a wide range of pheromone 

concentrations. Pathway noise values for high and low SST2 expression noise converge when the 

pathway activity is saturated (normalized median fluorescence intensity of ca. 0.35). 

 

Figure 48: Mean-noise relationship of the pathway reporter output for SST2 set to either high noise (blue) or low noise (red). 
Low noise SST2 results in lower pathway noise over the entire range of pathway activity. Dots indicate different stimulation 
with pheromone. 

We selected individual data points from low and high noise settings at similar median expression and 

compared the distributions. The SST2 noise tuner set to low noise resulted in slightly sharper and less 
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skewed peaks over the entire range of pheromone concentrations. Examples of distributions are 

shown in Supplementary Figure 9. 

Next, we assessed whether the differences in pathway noise affected the cells’ ability to integrate the 

input signal and compute an appropriate output. We calculated the mutual information between 

windows of four adjacent pheromone concentrations and the fluorescence intensities of individual 

cells that were stimulated with either of those concentrations (for details see materials and methods, 

section 4.10). We found that when the SST2-noise tuner was set to low noise, the signal transduction 

was improved by up to 50 % compared to the high-noise setting (Figure 49). The most precise 

information transmission was observed in the dynamic range of the pathway (ca. 0.15 to 0.3 a.u.). 

Once the pathway is saturated (0.35 a.u.), no information about the pheromone concentration can be 

inferred from the pathway activity and the mutual information drops to 0.  

 

Figure 49: Mutual information of input (pheromone) and output (fluorescence intensity) from the datasets in Figure 47. Higher 
mutual information indicates a more precise signal transduction. When the SST2-noise tuner is set to low noise, the pathway 
shows up to 50 % increased information transmission. 

In Saccharomyces cerevisiae the mating pathway response correlates with distinct phenotypes (Figure 

9). To find out whether the change in pathway noise also had an impact on the morphology of the cells 

at different pheromone concentrations, we acquired microscopy images of low and high SST2 

expression noise at different pheromone concentrations. Figure 50 shows example microscopy images 

of predominantly unstimulated, chemotropic, and shmooing cells. 



Results 

56 
 

 

Figure 50: Three distinct phenotypes during mating response. Microscopy images of yeast cells after stimulation with different 
pheromone concentrations. At 0 nM pheromone, the cells retain the unstimulated phenotype (left). Cells respond with 
chemotropic growth at intermediate pheromone concentrations (middle). At high pheromone concentration, cells develop 
mating protrusions (shmooing, right). 

In a blinded experiment, individual cells were classified into three categories: Unstimulated, 

chemotropic, and shmooing. The classification was done based on time-lapse movies for a total of ca. 

9800 cells (see Materials and Methods, section 4.13). We counted the number of cells per category 

and microscopy image and calculated the ratio of the three phenotypes for different pheromone 

concentrations (Figure 51).  

 

Figure 51: Ratio of unstimulated, chemotropic, and shmooing phenotypes at different pheromone concentrations. When the 
SST2 noise tuner was set to low noise, cells respond switch-like with the shmooing phenotype (orange bars, left panel). For the 
high-noise setting, the shmooing phenotype is developed more gradually (right panel). 

We found differences in the ratios of phenotypes dependent on SST2 expression noise. When the SST2 

noise tuner was set to low noise, cells developed the shmooing phenotype more switch-like than cells 

with the high noise setting.  

Taken together, the results obtained for SST2 show that the noise tuner developed in this study can 

have a strong impact on pathway activity and pathway noise. Moreover, we have shown here that 

different expression settings mediated by our noise tuning system have a physiologically relevant 

effect on the pathway precision, which we demonstrated by changes in signal transmission and the 

phenotypical response to the pathway input. 
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2.4 Noise control via expression rates in native genes 
We screened the literature for native yeast genes with extreme mRNA production or degradation rates 

to find out whether they could be employed to adjust expression variability similar to our noise tuner. 

We used data of mRNA synthesis rates and mRNA half-lives of yeast genes (85) to calculate the mRNA 

decay rate and the steady-state mRNA copy number per cell. With this we identified genes that reach 

a given steady-state mRNA level by extremely high or extremely low mRNA decay rates. Figure 52 

shows the result of the analysis for 3788 yeast genes. 

 

Figure 52: Analysis of extreme mRNA decay rates at a given steady state mRNA concentration. Calculations based on mRNA 
half-lives and mRNA synthesis rates from (85). Each of the 3788 dots represents a yeast gene. The full red line is an 
extrapolation of the mean decay rate at a given mRNA concentration. Genes separated from the mean by a dashed line were 
defined as outliers with either extremely high (e.g. BUR6 and ORM2) or extremely low mRNA decay rate (e.g. TDH1, HSP26, 
and HOR2) at a given steady state mRNA concentration. Only genes with a log10 steady state mRNA concentration below 3 
are plotted. 

From the data we selected the five genes with extreme mRNA decay rates highlighted in Figure 52 for 

further experimental analysis. The mRNA synthesis rate v0, mRNA decay rate d0 and the steady state 

mRNA number 𝜇 =
𝑣0

𝑑0
 of those genes are given in Table 2.  
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Table 2: mRNA synthesis rate v0, mRNA decay rate d0 and the steady state mRNA number µ of five yeast genes with extreme 
d0. BUR6 and ORM2 reach a given mRNA steady-state by high synthesis and decay rates, HSP26, TDH1 and HOR2 by low 
synthesis and decay rates. Calculations based on reported values from (85). 

Gene v0 (min-1) d0 (min-1) µ 

BUR6 84.49 0.208 407 

ORM2 74.82 0.300 249 

HSP26 0.19 0.003 63 

TDH1 5.76 0.006 919 

HOR2 3.68 0.013 281 

According to these calculations and the observations made for our noise tuner construct, which can 

employ a high-noise and a low-noise strategy to reach a desired expression level, we hypothesized that 

BUR6 and ORM2 should have rather low gene expression noise, while TDH1, HOR2 and especially 

HSP26 should have high gene expression noise.  

We constructed yeast strains harboring mNeongreen driven by the promoter/ terminator pairs of the 

five gene candidates in Table 2. Promoters and terminator regions were defined as the 500 bp 

upstream and downstream of the ORF, respectively. Median and noise of mNeongreen intensities of 

these strains were measured by flow cytometry and compared to the median-noise space that could 

be set by the noise tuner (Figure 53).  

 

Figure 53: Median-noise space of the mNeongreen noise tuner compared to native regulation. Dots indicate the median and 
robust CV of mNeongreen driven by native yeast promoter/ terminator pairs from five different genes. The light-red area 
indicates the median/ rCV space that can be set by the noise tuner. Error bars indicate standard deviation of three biological 
replicates. The median fluorescence intensity was normalized to the constitutively expressed mTurquoise2 module. 
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We found that the noise tuner covered the median-noise values of four of the five genes. The BUR6 

promoter/ terminator pair was an exception because at its mean it conferred slightly lower noise than 

could be achieved by the noise tuner. The mRNA production and degradation rates in Table 2 correlate 

for the most part with the measured protein noise in Figure 53. High rates (BUR6 and ORM2) lead to 

low variation at a given median protein concentration. Low rates (TDH1 and HSP26) result in high 

protein noise at a given median. The HOR2 promoter and terminator pair is an exception, conferring 

relatively low noise despite low mRNA production and degradation rates. In terms of median 

expression, the measured fluorescence intensities only partly reflect the mRNA steady state numbers, 

e.g. for TDH1 which has the highest calculated steady state mRNA number and also the highest 

fluorescence intensity in this experiment. Notably, the noise tuner showed potential to reduce the 

noise for three of the five promoter-terminator combinations tested (TDH1, HSP26, HOR2).  

To evaluate how much of the noise could be attributed to gene-specific variation, we again performed 

a reduced gate size analysis (Figure 54). For all five genes we found only minor contribution of extrinsic 

noise to the total observed variation.  

 

Figure 54: Reduced gate size analysis to measure extrinsic contribution to noise for mNeongreen driven by five different native 
promoter/ terminator pairs. Raw data shown in full lines, normalized fluorescence normalized to internal mTurquoise2 control 
shown in dashed lines. Extrinsic noise can be estimated from the rCV values of the full gate radius to the reduced gate radius. 

As for the noise tuner, this suggests that most of the observed noise is intrinsic and thus, is created by 

gene-specific regulation, such as regulation of transcription rate and mRNA degradation rate. 

We wanted to find out whether our calculations and experimental observations of the native 

promoter/ terminator pairs could be linked to protein function. For this we studied the literature for 

the biological functions of the two extreme cases on the noise spectrum, BUR6 and HSP26.  
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The BUR6 promoter and terminator conferred extremely low mNeongreen expression noise, slightly 

lower even than what we could achieve with our synthetic mNeongreen noise tuner. BUR6 is an 

essential gene and its gene product is a subunit of a heterodimeric transcription factor. The 

heterodimer is a transcriptional regulator that represses the basal transcription machinery (86). Noise 

has been hypothesized to be detrimental in genes whose deletion is lethal and those that encode 

subunits of multiprotein complexes (34). Corresponding to this theory, we found that BUR6 expression 

exhibits low noise. Moreover, our experiments indicate that BUR6 expression follows the low-noise 

strategy described in this thesis, mediated by its promoter and terminator sequence. 

HSP26 expression is at the other extreme of the noise spectrum, with very low transcription and mRNA 

degradation rates. Hsp26, as the name suggests, is a heat-shock protein with a chaperone function 

(87). Expression of the non-essential HSP26 gene is induced under different stressors including heat 

shock and salt shock (88). Stress response genes have been suggested to exhibit noisy expression as a 

bet-hedging strategy which allows clonally identical cells to cover a large dynamic range of protein 

concentrations, resulting in subpopulations with increased fitness when environmental conditions 

change (18). Here, we reported experiments for HSP26 which indicate that this bet-hedging strategy 

can be naturally utilized by setting the transcription and mRNA degradation rates of the stress-

response gene; the same mechanisms that we employ for the high-noise setting of our noise tuner. 

To sum up, we have shown experimentally that yeast genes can exhibit extremely high or low 

variability in their expression, which is mediated by the promoter and terminator regions and that the 

resulting noise is in line with existing hypotheses that make a connection between gene expression 

noise and certain gene functions. 
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3 Discussion 

3.1 Noise-optimized measurement systems 
Each part and process involved in experimental measurements is subject to noise. We call these 

sources of noise “nonspecific” to distinguish them from the variation that we can specifically control 

via the noise tuner. In order to reliably distinguish even small differences in controllable noise, we 

characterized the sources of nonspecific noise and minimized them by changing biological parameters, 

measurement parameters or data processing. 

Optimizing biological parameters 

We exchanged the 5’ UTR in our reporter genes to increase expression and thus achieve a better 

separation from the auto-fluorescence signal, resulting in a 50 % increase in mNeongreen expression 

and a ca. 10-fold increase in mCherry expression (Figure 12). We explain the large difference in 

expression gain by context-dependent effects, mediated by the different open reading frames of 

mNeongreen and mCherry. This is a common observation which hampers attempts to standardize 

genetic parts in the field of yeast synthetic biology. Modularity of genetic elements in eukaryotes is 

only maintained to a certain extent and is very much context-specific. Approaches to predict 

expression strength for different (native or synthetic) 5’ UTRs have shown to be accurate for a given 

ORF but showed only limited success when the 5’ UTRs were combined with a different ORF that the 

algorithm was not trained for (79, 89).  

We employed mTurquoise2 as additional fluorescence reporter for the expression capacity of 

individual cells. Initially, however, the fluorescence was almost undetectable which is why we used 

codon-optimization to increase expression (Figure 14). This strongly increased fluorescence intensities 

and allowed us to make reliable measurements with triple-reporter strains. For the codon 

optimization, over 30 % of the original primary sequence was changed (see supplementary figures). 

We observe that the two loci we used for integration of fluorescent reporter genes mCherry and 

mNeongreen are qualitatively similar in terms of their noise (Figure 13). This is not necessarily what 

one would expect, since considerable variation in expression noise from different chromosomal 

locations has been reported (90). This makes the large difference in intrinsic noise measured with the 

one-locus and the two-loci approach even more striking: Integration of mCherry and mNeongreen into 

the same locus resulted in 4-fold reduced intrinsic noise compared to when mNeongreen was 

integrated into a different locus. One reason for this might be heterochromatin remodeling, which is 

likely to be uncorrelated in different loci. Another possible reason which has been hypothesized is 

spatially inhomogeneous distribution of regulators which can create uncorrelated variations when the 

two genes are situated in different positions in the nucleus (91). If genes are located in close physical 

proximity to each other, noise that arises from the recruitment of transcription factors should be 

mitigated. If this is the underlying reason for reduced intrinsic noise in the same locus, we would expect 

the Tet operator sites to act as a sink for the activator protein rtTA. Correspondingly, we would expect 

a higher local concentration of rtTA when both Tet promoters are situated in the same locus, which 

should result in higher gene expression. Indeed, we find that mCherry fluorescence is increased by 37% 

when mNeongreen is expressed from the same locus (Supplementary Figure 10). This finding 

represents a nice example for context-dependent expression and might be a potential strategy for 

synthetic expression increase, by placing additional cis-elements in close proximity to a gene of interest 

to serve as a sink for transcription factors. The influence of relative genomic localization has practical 
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implications: Genes whose products are required in a fixed stoichiometry (e.g. subunits of the same 

protein complex or enzymes in the same production pathway) should be integrated into the same 

locus to reduce intrinsic noise. 

Optimizing measurement parameters 

Growth kinetics measured by flow cytometry allowed us to observe an increase in the doublet 

population that peaked at maximum growth rate. Doublets are a common observation in flow 

cytometry and are explained by aggregated cells that pass the laser beams at the same time, creating 

artificially high fluorescence values. For that reason, doublets are usually gated out and excluded from 

further analysis. Here we observe a correlation between doublets and growth rate for Saccharomyces 

cerevisiae that indicates that part of the doublets are not random aggregates but budding cells (Figure 

17). This could be confirmed e.g. by cell sorting of singlets and doublets and subsequent microscopy 

to observe budding. 

Sonication lead to a decrease of the doublet population, but only by 50 percent (Figure 18). We assume 

that the successfully dispersed cells are mainly aggregates with weak cell surface interaction and that 

the cells that remain in the doublet population are mother cells that are still covalently attached to 

their daughter cells. For the purpose of our high-throughput experiments we found that sonication 

was not applicable because of the fast regeneration of doublets after dispersion (Figure 19). 

Normalization to the expression capacity, as discussed below, turned out to be a more efficient way to 

control for cell-to-cell variation and rendered gating of singlets unnecessary. 

Subtraction of auto-fluorescence is crucial for the noise calculation, especially at low expression levels. 

Auto-fluorescence adds to the reporter signal, leading to a higher median fluorescence intensity, which 

in turn leads to calculation of artificially low rCV values. A commonly used method for auto-

fluorescence removal is to simply subtract the mean or median fluorescence of a control strain without 

the reporter gene. While this might be accurate enough when the measured samples exhibit 

fluorescence that is well separated from auto-fluorescence, it has major limitations at intensities that 

overlap with auto-fluorescence, creating artificial negative values. Gene expression noise, as shown in 

this thesis and in numerous other studies cited, is more pronounced at low steady-state protein levels 

where protein production occurs by rare stochastic expression events. This makes noise analysis at low 

expression levels particularly interesting but unfortunately it also makes auto-fluorescence a particular 

nuisance. We report here an auto-fluorescence subtraction method that alleviates the limitations of 

noise measurements at low expression levels (Figure 24). The algorithm, devised in our lab by Seán 

Murray, makes two very logical assumptions: Firstly, we assume that the auto-fluorescence probability 

distributions in the negative control and the tested strains are the same. This is likely to be the case, 

since the negative control we use is usually the parental strain. Secondly, we assume that the auto-

fluorescence can never be bigger than the measured signal. This assumption simply states that 

fluorescence attributed to a reporter gene cannot be negative. The described algorithm is a statistical 

method that cannot determine the actual auto-fluorescence of a cell, meaning that while it is 

unfeasible on the level of individual cells, it produces good results for sufficiently large datasets. 

Optimizing analysis 

To discriminate between intrinsic and extrinsic noise, we employ two different methods: The dual 

reporter assay, as introduced by Elowitz and colleagues (2), and the reduced gate size analysis used by 

Newman and colleagues (18). To the knowledge of the author of this thesis, these two methods have 
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never been compared directly, which is however important because both methods have benefits and 

drawbacks. The dual reporter assay requires a more sophisticated biological setup because two 

fluorescence genes have to be genomically integrated, plus ideally a third one should be included as 

control. This requires additional time and effort to construct strains. Moreover, the assumption is 

made that the two reporters are regulated identically, which might not always be true, because the 

genetic context, such as the controlled open reading frame, can influence expression. The reduced 

gate size analysis on the other hand requires only one reporter and thus, can be readily applied to 

already existing fluorescence reporter strains. If the number of available cells is limited, however, this 

is not the method of choice. By reducing the gate size, the number of analyzed cells is further reduced 

and beyond a critical limit it will generate unreliable values for the coefficient of variation. Moreover, 

the reduced gate size analysis can only be used to estimate the contribution of the extrinsic noise to 

the total noise; more specifically, only the fraction of extrinsic noise that can be accounted for by the 

forward and side scatter signals. The remaining noise contains intrinsic as well as technical noise 

factors, which cannot be readily distinguished. This limitation can be circumvented when the technical 

noise can be estimated, which we did in this thesis by measuring fluorescent beads and testing the 

laser power and PMT voltages of the flow cytometer (Figure 21, Figure 22, and Figure 23). The reduced 

gate size method proves useful for the analysis of noise in budding yeast because most of the noise is 

caused by parameters that are described by the forward and side scatter signals, with the cell size 

being the main factor, presumably. For other organisms with a more homogeneous size distribution 

the amount of extrinsic noise that can be filtered out by this method might be smaller. 

We use η2 and the (robust) CV as parameters for the noise in dual- or single reporter assays, 

respectively. Mathematically, CV2 and η2 both describe the normalized variance, meaning the size of 

protein fluctuations compared to the mean protein concentration. In noise research η2 is used 

conventionally when the signals are further deconvoluted mathematically into an extrinsic (𝜂𝑒𝑥𝑡
2 ) and 

an intrinsic term (𝜂𝑖𝑛𝑡
2 ), which is described in more detail in (92). We find that intrinsic noise is largely 

of biological nature, changing only with biological parameters, such as the integration locus or (as we 

show in this thesis) the transcription and mRNA degradation rates of a gene. Extrinsic noise on the 

other hand is a more diffuse concept which is affected by biological parameters as well as data 

processing. Due to its “catchall nature” (17) the mechanisms of extrinsic noise are difficult to analyze. 

However, for the purpose of the experiments presented in this thesis the focus lay on the control of 

gene-specific, intrinsic factors of noise. For that reason, in our analysis pipeline we decided to filter out 

extrinsic noise as efficiently as possible, which made deconvolution of signals into their intrinsic and 

extrinsic components largely unnecessary.  

Normalization to an internal control of the expression capacity, in this thesis the constitutively 

expressed mTurquoise2 gene, proved to be remarkably efficient for filtering out extrinsic noise. This 

was most apparent in a dual-reporter assay in which extrinsic noise was compared in raw data and 

mTurquoise2-normalized data, the latter showing almost no extrinsic noise (Figure 25 and Figure 26). 

Efficient noise filtering improves the quality of the results presented here, as it reduces the risk that 

other sources of noise mask the gene expression noise that we want to measure. There is a caveat, 

however, regarding the mating pathway experiments that we performed later on: Pheromone 

stimulation triggered an increased expression of the GPD promoter-driven mTurquoise2 gene. 

Supplementary Figure 7 shows that the expression of the control gene is increased twofold over the 

range of the pheromone stimulation. This illustrates that a promoter which is considered constitutive 

under one condition might still exhibit altered expression levels under a different condition.  
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3.2 Synthetic control of gene expression noise 
The central achievement reported in this thesis is the development of a system that is capable of tuning 

gene expression noise. To the knowledge of the author, the noise tuner presented here is currently 

the only system that allows external direct control of the noise associated with principal steps of the 

central dogma of molecular biology. The noise tuner is a device consisting of two parts: An inducible 

promoter for transcription rate control and an inducible ribozyme for mRNA degradation rate control. 

It employs two inputs, doxycycline and theophylline, to generate a single output with a new property: 

The capability to decouple mean expression from its noise. In that respect, what we report here is an 

example for a phenomenon termed emergence. Emergent properties such as the mean-noise 

decoupling arise out of the properties of the parts that make up the device and are qualitatively novel 

and irreducible with respect to them. The parts of the noise tuner (promoter and ribozyme) have 

properties that, when combined, create a device that can decouple mean from noise, although the 

individual parts are incapable of mean-noise decoupling. 

In the introduction we briefly described another strategy for mean-noise decoupling via external 

inducers, published in (30) and based on (27). Their strategy utilizes a two-input one-output approach 

to tune the abundance and the activity of a transcriptional regulator controlling expression of a 

reporter gene. The authors report different noise levels but similar mean for two settings: Low-

abundant, highly active transcriptional regulator proteins created high noise and highly abundant 

transcriptional regulators that had low activity created low noise. While this system might prove useful 

to analyze the consequences of additional noise in a cellular process, it is not suitable to reduce noise 

in that process. We propose our noise tuner as a complementary approach that is more suitable when 

the goal is to reduce gene expression noise. While a direct comparison of the noise values was not 

possible because the raw data was unavailable, we argue that their low-noise setting corresponds to 

our high-noise setting: Both involve a highly expressed regulator that controls the transcription rate of 

a reporter gene. In our case this is the reverse tetracycline trans-activator (rtTA), driven by a strong 

constitutive promoter which produces low variation in the target gene (93). In our noise tuning system, 

as opposed to (30), we can further decrease noise also by upregulating rtTA activity, thus, reducing 

variability by stochastic binding of rarely activated rtTA proteins. When we choose high rtTA activity 

(high dox), we adjust the expression downstream by destabilizing the mRNA (low theo) to allow 

comparable mean expression levels.  

mRNA stability control with inducible ribozymes 

To control the mRNA stability, we built rationally designed terminator regions consisting of two parts: 

an inducible ribozyme and a synthetic terminator sequence that contains motifs that are sufficient for 

efficient termination (47). The combined sequences have a length of about 200 nt, which lies within 

the typical length of S. cerevisiae terminator regions (including the length of the 3’ UTR, 94). The 

relative ease of combining those two elements to create a functionalized terminator region indicates 

the possibility for further functionalized terminator regions with desired properties, such as adjusted 

translational efficiency (42) or spatial control of expression (95) by including the corresponding 

sequence motifs into the terminator region. 

To evaluate the performance of the inducible ribozymes, we focused on two key parameters of genetic 

control elements: the basal expression and the dynamic range of the controlled gene. Both of the 

tested Theo-ON systems (i.e. ribozymes that activate gene expression when theophylline is added) 

showed a comparable fold change (13- and 14-fold for Ribo 1 and Ribo 2, respectively; Figure 27). Due 
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to differences in the basal expression, the two ribozymes differ in their absolute expression range. 

Which one to choose for expression control depends on the individual application. Ribozymes that 

confer low basal expression could prove useful in combination with e.g. toxic genes that require a 

complete shutoff of expression under certain conditions. A limitation of both ribozymes is clearly the 

high concentration of theophylline (mM range), that is required to deactivate the endonuclease 

activity of the ribozymes tested here. We tested theophylline concentrations of up to 25.6 mM, while 

the solubility limit of theophylline in aqueous solutions is 40 mM. As a result, theophylline powder had 

to be dissolved directly into the medium for each experiment, instead of using highly concentrated 

stock solutions, with the potential risk of reduced reproducibility. Additionally, high theophylline 

concentrations resulted in growth defects (Figure 30) so that in later experiments the maximum 

concentration used was confined to 12.8 mM. The dose response curves suggest that higher 

concentrations of theophylline could stabilize the ribozymes even further but due to the drawbacks of 

poor solubility and growth defects we cannot reach saturating concentrations.  

Decoupling mean from noise 

By combining an inducible promoter with an inducible ribozyme, we essentially built an AND-gate that 

requires doxycycline and theophylline to produce a signal. We harnessed the dynamic ranges that we 

could achieve for the transcription rate and the mRNA degradation rate to select concentrations of the 

two inducers that result in similar mean expression. As predicted from theoretical considerations (32), 

we were successful in decoupling absolute expression levels from the noise in gene expression. 

Somewhat surprisingly, however, we found that the mRNA degradation rate had almost no effect at 

all on the noise (Figure 31). This shows that, while stochasticity in transcription is the main contributor 

to noise, the process of mRNA degradation is not stochastic. One possible explanation for this 

observation is that mRNA degradation is a general process governed by the ubiquitous mRNA 

degradation machinery that breaks down transcript molecules efficiently and fast once the transcript 

is deadenylated (96). 

We show that the noise tuner predominantly controls the intrinsic component of the observed noise, 

which is what is to be expected for gene-specific modulation of expression (Figure 33). Perhaps more 

noteworthy is the observation that in our experiments intrinsic and not extrinsic noise is clearly the 

dominant component. We note that this observation is in contrast to some reports that show 

dominant extrinsic noise in yeast (e.g. 3, 97). One explanation could be the differences in data 

processing. We show here that extrinsic (but not intrinsic) noise measured by flow cytometry is 

sensitive to normalization and gating. No standard procedures exist in the field of noise research so 

that results from different publications can rarely be compared directly. Moreover, as opposed to most 

other studies that investigate noise, our noise tuner operates at the lower bound of protein 

abundance. At lower abundance, intrinsic noise becomes more dominant (20). Entire classes of 

functionally important proteins are expressed at low abundances, including transcription factors (98). 

This shows the large potential of the noise tuner for noise reduction in synthetic genetic circuits. 

We show the limits of the noise tuner by exchanging the promoter. In contrast to the TetO7 promoter, 

a promoter variant with only two Tet operator sites does not show the mean-noise decoupling 

characteristic (Figure 34). We suspect that the TetO2 promoter recruits RNA polymerase more 

stochastically and is simply less efficient, so that expression never reaches the levels necessary to 

transition into the low-noise regime.  
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Model and stochastic simulation of the noise tuner 

To further explore the experimental finding that noise depends on doxycycline but not theophylline, 

we employed an analytical model that allows us to describe mean and noise by only two parameters 

𝑎 and 𝑏. In simplified terms, the doxycycline concentration, which controls the transcription rate 𝑣0, 

is a proxy for 𝑎 and the theophylline concentration, which controls the mRNA lifetime 𝑑0
−1, is a proxy 

for 𝑏. Mathematically, the mean protein abundance is the product of 𝑎 and 𝑏, so that e.g. reducing 𝑎 

by half and doubling the value of 𝑏 results in the same mean. Correspondingly, if we do the same 

exercise for the experimental data within the linear dose-response ranges of doxycycline and 

theophylline, we reach approximately the same median fluorescence intensity.  

The most notable finding we make based on these theoretical considerations is that the CV as a 

measure of noise scales with the inverse square root of 𝑎 and is independent of 𝑏 if the latter is large. 

The assumption that 𝑏 ≫ 1 implies that many protein molecules are being produced from one mRNA 

molecule. This is supported by previous studies that estimate values for 𝑏 between 20 and several 

hundred molecules (99 and 100, respectively). In the respective parameter space, noise is caused by 

large amounts of proteins created from few, stochastically produced mRNA molecules at low promoter 

activity (or: low doxycycline concentrations). The stochastic simulation of the model is in good 

agreement with the experimental results (Figure 31 B and Figure 37). 

The model implies that our experimental approach is only one of four different possible strategies to 

decouple mean from noise via expression rate control. The essential point is to control the parameters 

𝑎 and 𝑏, which in this study is done via 𝑣0 and 𝑑0, respectively. The theory predicts that the same could 

be achieved by simultaneous control of 𝑎 via the protein degradation rate 𝑑1 and 𝑏 via the translation 

rate 𝑣1. The other two possibilities are the simultaneous control of 𝑣0 and 𝑣1 and the simultaneous 

control of 𝑑0 with 𝑑1. We argue that of those four potential strategies our system embodies the 

preferred approach for mainly two reasons: Firstly, the good availability and documentation of 

inducible promoters and ribozymes makes the control of the transcription rate and mRNA degradation 

rate the preferred choice for experimenters. Secondly, we argue that keeping the control on 

(post)transcriptional level is energetically cheaper for the cells than mean and noise tuning on protein 

level, because the pool of molecules that have to be produced and/ or degraded is much smaller. 

mRNA abundances in yeast range typically from close to zero to 100 copies per cell (101), while 

proteins are present in up to 1 million copies (98). 

Applicability of the noise tuner 

As mentioned in the results section, we note that the different noise settings that can be achieved with 

our system come along with different energy requirements. Low noise through high transcription and 

mRNA degradation rates results in a high mRNA turnover which requires more energy than the high-

noise setting that has a low mRNA turnover. Apart from detrimental growth at extreme theophylline 

concentrations we did not observe a correlation between low noise and reduced growth.  

For the use in synthetic pathways one will have to test on a case-by-case basis if the benefits of low 

noise outweigh the increased energy requirements of maintaining a high mRNA turnover. This will 

depend on the pathway topology and the involved network motifs, the abundance of the protein of 

interest and other factors. Of course, it also depends on how the benefits are defined: For the 

development of a synthetic biosensory pathway, high specificity and sensitivity are the overarching 

goals. To achieve that, the increased energy consumption for the low-noise expression of critical 
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components is a small price to pay. For the example of the yeast mating pathway we have shown that 

the noise tuner is capable of improving sensory performance when it is applied to critical pathway 

components, which will be discussed in detail in the next section. 

For other synthetic applications, e.g. metabolic pathways, benefits might be defined as increased 

product yield. Here, higher mRNA turnovers of enzymes involved in the pathway might be more crucial 

as that would divert energy away from the biosynthesis of the product. To the knowledge of the 

author, there are currently no published studies that specifically investigate the effect of expression 

noise of genes encoding metabolic enzymes on product yields in synthetic metabolic pathways. There 

are indications, however, that gene expression noise of flux-limiting metabolic enzymes is propagated 

into the metabolic fluxes in native pathways (recently reviewed in 102). 

3.3 Synthetic control of pathway noise 
We built the noise tuner with two applications in mind. On the one hand, we aimed to achieve noise 

reduction to improve homogeneous expression in a population for a variety of applications, e.g. in the 

field of metabolic engineering. On the other hand, we wanted to use it as a device to test the 

robustness of pathways towards noisiness of individual components. This could be instrumental for 

the identification of noise-critical components and noise propagation through a pathway. 

There are various reasons why we chose the yeast mating pathway as our model to test the potential 

applications of the noise tuner. Firstly, it is one of the signaling pathways that have been described 

most thoroughly. Detailed knowledge about individual pathway components, interactions, and in 

some cases even expression noise is available. Secondly, as described in the introduction, the mating 

pathway has developed into a model pathway for synthetic biology, which we see as a likely field of 

application for the noise tuner. Moreover, the pathway has two well-defined readouts: a fluorescence 

reporter driven by a widely used pathway response promoter (see e.g. 54, 67, 73) and the distinct 

morphologies (unstimulated, chemotropic, shmooing) that correlate with the level of pheromone 

stimulation. Lastly, unlike many other sensory systems the mating pathway induces radical changes 

that affect the cell as a whole, including cell cycle arrest and partial cell wall disassembly at the mating 

protrusion. The high costs and high benefits of the pathway activation suggest that the accurate 

regulation of the pathway activity and the pathway noise is crucial. Hence, we expected that in such a 

pathway, changing the expression noise of a critical component could create a detectable change in 

the noise of the pathway output.  

Regarding the setup of the described experiments, there are two further remarks. Firstly, the pathway 

reporter signal (mNeongreen controlled by pathway response promoter P(Fus1)) does not reflect 

purely the pathway noise but also the gene expression noise of the reporter itself. This noise, however, 

should be identical for all tested strains and conditions. Secondly, it is an indirect reporter. As opposed 

to the proof-of-concept experiments described before, we did not acquire direct expression data of 

the genes we intended to regulate. This would have been possible in principle by genetic fusion of the 

gene of interest to a fluorescence reporter. Genetic fusions, however, can have the disadvantage of 

obstructing protein function and might not be detectable for genes with low expression. 

We tested the noise tuner for five selected pathway components that represent the main functions of 

the pathway from signal sensing (Ste2) and signal transmission (Ste5, Fus3) to response regulation 

(Msg5, Sst2). We analyzed strains that harbored the corresponding genes in the native locus but were 

controlled by a Tet promoter and an inducible ribozyme. The pathway genes were expressed with 
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different transcription rates and with their mRNAs either stabilized with theophylline or destabilized. 

For each component, we expected to observe one of three scenarios: 

1) Theophylline has no effect on pathway activity and pathway noise. This indicates that no 

transcript stabilization can be achieved, possibly because the coding sequence of the mRNA 

contains elements that confer instability. Correspondingly we would expect no changes in 

pathway noise. 

2) Adding theophylline changes pathway activity but no changes in pathway noise are observed. 

This indicates that the transcript can be stabilized, resulting in increased expression and higher 

or lower pathway activity for positive and negative regulators, respectively. No change in 

pathway noise can have two reasons: (A) The critical transcription rates to pass the threshold 

between the high and the low noise regime (approx. 1 to 4 ng/µL doxycycline) lie outside of 

the dynamic range of the pathway response. If for example the pathway activity is already 

saturated at doxycycline concentrations that are below the threshold, we would not expect 

differences in pathway noise when stabilizing the transcript. The same is true if pathway 

activity can only be achieved with doxycycline concentrations well above the threshold. In both 

cases the noise tuner would have to be changed to a device with a more suitable dynamic 

range. (B) If the noise tuning range of the pathway component matches the dynamic range of 

the pathway activity but still no change in pathway noise can be observed, then this would 

mean that expression noise of the target gene is filtered out in the subsequent steps of the 

signal transduction. 

3) The noise tuner changes pathway activity as well as pathway noise. As for scenario 2, this 

shows that gene expression noise control via the noise tuner is possible. It also shows that 

fluctuations in the target gene expression are propagated to the measured output of the 

pathway, indicating the role of the gene for phenotypic robustness. The term ‘phenotypic 

stabilizer’ has been proposed for genes that are critical for robustness (103). 

We observe all three scenarios with the five genes we tested. Applying the noise tuner to the mating 

pathway’s MAP kinase Fus3 shows no impact on pathway activity (Figure 42), which we can explain 

with scenario 1. The noise tuner is not able to increase the stability of the transcript. The scaffold 

protein Ste5 shows the characteristics of scenario 2 with increased expression but no change in 

pathway noise when the STE5 mRNA is stabilized (Figure 41). The dynamic range of the pathway 

activity lies within a doxycycline range where we would expect noise tuning to be possible, so it seems 

likely that the expression noise of STE5 is filtered out by the pathway. One possible explanation for this 

is post-translational regulation of the Ste5 proteins via translocation. Ste5 in naïve cells resides 

primarily in the nucleus and upon pheromone stimulation are translocated to the mating protrusion 

(104). Compartmentalization of Ste5 might lead to localized abundances of proteins that are so high 

that individual translational bursts are efficiently buffered. 

In scenario 3 the pathway output is susceptible to gene expression noise in individual genes. We 

observe this to a small extent for the pathway receptor Ste2 and the phosphatase Msg5, and to a 

bigger extent for the GTPase-activating protein Sst2. While for STE2 the limited experimental data do 

not allow a final conclusion, reduced expression noise in MSG5 and SST2 showed reduced pathway 

noise over a wide range of pheromone stimulation levels (Figure 44 and Figure 47). Notably, while for 

the other three tested genes we reach wildtype noise levels, for MSG5 and SST2 controlled by the noise 

tuner we generally observe higher pathway noise. We explain this by the nature of the network motifs 

that these two genes represent in the native pathway: As negative feedback regulators their 
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expression is upregulated with pheromone leading to noise suppression in the wildtype. In our noise 

tuning strains, however, the native promoter is replaced by a Tet promoter which disrupts the 

feedback and thus, the noise suppression. In the case of SST2 this might also be the reason for a less 

switch-like response to pheromone compared to the wildtype response.  

The GTPase-activating protein Sst2 is critical to suppresses noise in the mating pathway response (64) 

and accordingly showed strong relative differences in pathway noise (Figure 48). These differences 

correlate with the amount of information that can be conveyed through the pathway. The mutual 

information between the input and output signals is a key metric for the accuracy of a signaling 

pathway. A 50 % difference, as we observe for low- and high-noise SST2 settings (Figure 49), could 

make the difference between an accurate shmooing response and an inaccurate response, either by 

shmooing prematurely or shmooing too late. In the dynamic range of the pathway, the increased ability 

to resolve inputs enables low-noise SST2 cells to make a switch-like mating decision, indicating 

relatively high pathway precision.  

Taken together, we show here that the noise tuner, when applied to phenotypic stabilizers such as 

SST2, is indeed capable of adjusting pathway noise with a substantial effect on pathway precision. 

Thus, regarding the broader applicability of the noise tuner, an important question is: How common 

are phenotypic stabilizers? In terms of network motifs, negative autoregulation and negative feedback 

loops have been reported to act as stabilizers (105). Thus, pathway noise might be affected when genes 

that comprise these network motifs are noisier. This is in accordance with our findings that show that 

noise in MSG5 and SST2 expression affects pathway noise. 

It has also been reported that components that are further upstream in the network can have a 

stronger effect on output noise. Noise in upstream regulators of synthetic genetic circuits showed a 

larger impact on the output noise than noise in downstream elements. Moreover, output noise was 

shown to scale with the length of the cascade (106). In signaling pathways, upstream elements 

determined the limit of signal information transduction capacity (107). This is also reflected by our 

finding that from all five tested genes, SST2 noise had the strongest effect on pathway noise. These 

observations indicate that upstream regulators would be good candidates for noise tuning if no other 

relevant information on pathway components is available. 

More mating pathway genes would have to be tested to allow a general statement on pathway 

topology and the gene expression noise of individual components. However, one general observation 

that we made is that with none of the five components tested did we achieve the strong noise control 

that we reached for the proof-of-concept strains (up to 3-fold noise tuning). Either this means that we 

have been unfortunate when choosing the candidate genes to test the noise tuner, or, more likely, the 

pathway has inherent mechanisms to buffer noise from individual components. 

These findings suggest that noise could become an emerging hurdle for synthetic pathways which are 

increasing in size and complexity. Optimizing synthetic pathways for low noise has been largely 

overlooked so far, indicating a great potential for noise tuning. A first step to alert researchers in 

metabolic engineering and synthetic biology to the issue of gene expression noise would be to 

characterize large libraries of genetic control elements not only according to absolute gene expression 

but also to investigate the gene expression noise that arises from different combinations of promoters 

and terminators. 
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3.4 Noise tuning via expression rates: A strategy employed in nature? 
The previous parts describe the design, construction and testing of a synthetic noise tuner. In the final 

set of experiments that we performed within the scope of this thesis, we investigated whether similar 

noise differences can be observed in native genetic control elements that confer different transcription 

and mRNA degradation rates. 

The transcription and mRNA degradation rates can vary largely among yeast genes, even at the same 

steady-state mRNA concentration, and it has been shown that these rates can be dynamically 

regulated (85). The literature suggests that there is indeed selective pressure for some genes to be 

more or less noisy (e.g. 25, 108). The question remains if nature employs expression rate control to 

adjust noise levels in a similar fashion as we present it here for the noise tuner. Theoretical 

considerations have suggested this by showing that high transcription and mRNA degradation rates 

correlate with genes that were hypothesized to require low-noise expression (34). To the knowledge 

of the author, this has previously not been investigated experimentally.  

In our experimental setup we defined native promoter and terminator regions from genes with 

reportedly extreme transcription and mRNA degradation rates and used them to control the 

expression of a fluorescence reporter gene outside of the original genomic locus. We assume that the 

transcription rate is mainly governed by the promoter and the mRNA degradation rate is mainly 

governed by the 5’ and 3’ untranslated regions, encoded in what we defined as the promoter and 

terminator regions, respectively. As mentioned before in this thesis, such an experimental approach is 

limited by potential context-dependent effects in the expression of the native gene or 

(post)transcriptional regulatory properties of the native coding sequence. Despite these limitations we 

could observe the expected trend towards high or low noise for four out of our five candidates (Figure 

53). For the two extreme cases, BUR6 on the low-noise end and HSP26 on the high-noise end, these 

observations supported the hypothesis that links noise to gene function. 

BUR6 encodes a transcription factor participating in the formation of the preinitiation complex. It is an 

essential gene, making it likely that strong deviations from the optimal Bur6 abundance could have 

detrimental effects on a cell. Moreover, as a subunit of a heterodimer Bur6 levels should preferably be 

in a 1:1 ratio with its binding partner Ncb2. Noisy expression would result in one of the two subunits 

being in excess, which essentially would mean a waste of the resources that went into producing it. 

Noteworthily, based on the results in (85) we calculated that NCB2 is expressed with above average 

transcription and mRNA degradation rates as well, indicating that NCB2 noise is controlled in a similar 

fashion as BUR6 noise (data not shown).  

On the opposite extreme we found that the HSP26 promoter and terminator conferred high expression 

noise of the reporter gene. HSP26 encodes a chaperone that prevents aggregation of unfolded 

proteins. Our observation is in accordance with the hypothesis that stress response genes are selected 

for high noise, creating a phenotypic heterogeneity that serves for bet-hedging in a clonal population 

of cells. For such genes it could be assumed that noise control is dynamic, with high noise for bet-

hedging when environmental stress is absent and low noise for an efficient response when a stressor 

is present. Preliminary results show that in the construct with PHSP26 and THSP26 driving mNeongreen 

expression, noise is reduced upon addition of salt (data not shown). This hints to a mechanism where 

cells can transiently adjust gene expression noise in response to the environment, by tuning 

transcription and mRNA degradation rates according to react to stress.  
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This is an interesting notion to consider in the context of any sort of single-cell experiment that 

compares protein abundances under different treated and untreated conditions. Potentially, a number 

of physiologically relevant changes remain undetected because they occur on the level of protein 

variance without significant effects on mean protein abundance. In that respect it might be worthwhile 

to (re)analyze such data. 

3.5 Conclusion and outlook 
The noise tuner was developed using a measurement platform tested for minimal technical variation 

and an analysis pipeline that can filter out extrinsic noise almost entirely. We report the successful 

design, construction and testing of two versions of the noise tuner, capable of changing noise up to 3-

fold. The mechanism is based on the differential contributions of the transcription rate and the mRNA 

degradation rate to the mean expression and the expression noise. The noise tuner was built with the 

intention to 1) reduce noise if necessary and 2) to allow noise control over a wide range to use it as a 

tool to investigate pathway robustness. Applied to a phenotypic stabilizer, the noise tuner allowed 

alterations of the precision of the mating pathway response, which we show through changes in the 

information transmission and the phenotypic response to pathway stimulation.  

Our small study on noise from native yeast promoters and terminators should be expanded. It would 

be useful to characterize entire libraries of promoters and terminators according to the mean and 

noise they create in a reporter gene. The results could be compared with the mean and noise that 

would be expected from transcription and mRNA degradation rates of the corresponding genes. The 

results from such a study would inform about what properties to look for when selecting promoters 

and terminator regions for the expression of a gene of interest with a desired noise profile. 

Looking further into the regulation of HSP26 will give insights into whether yeast cells are able to 

reshape noise dynamically using the proposed strategy of transcription and mRNA degradation rate 

control via the promoter and terminator region. For improved detection of dynamic changes, a 

destabilized fluorescence reporter should be used in conjunction with PHSP26 and THSP26. It should also 

be tested if a strain with a low-noise promoter/ terminator pair for HSP26 exhibits a different growth 

rate under stress conditions in a competition assay against wildtype HSP26. 

Regarding gene expression control more generally, we assume that further functionalized synthetic 

terminator regions will improve expression systems. Functionalization does not stop at tuning of the 

degradation rate. There are binding motifs that change translation efficiency or facilitate translocation 

of the mRNA. Various applications for such terminator regions can be imagined, e.g. yeast production 

strains that have the synthesis of a value chemical downregulated by an inhibitor that has its mRNA 

translocated to the bud tip, so that inhibitor concentration is high in daughter cells but low in mother 

cells. This could allow mother cells to spend more energy on production whereas daughter cells first 

increase their cell volume and only start production when they first bud off a new daughter cell. 

Furthermore, it would be interesting to see how the noise tuner performs in a synthetic pathway. We 

assume that synthetic pathways could benefit most from our system, since they typically lack the 

(known and unknown) noise control mechanisms of native pathways. The yeast Saccharomyces 

cerevisiae is a main chassis for synthetic metabolic pathways to produce numerous value chemicals 

(109). Engineered metabolic pathways that produce value chemicals have been reported to suffer from 

flux imbalances, leading to excessive intermediates and/ or the accumulation of pathway components 

(22). Different strategies have been developed for pathway balancing, including a range of methods to 
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optimize expression levels of metabolic enzymes, but – to the knowledge of the author – only in the 

context of absolute expression and not expression noise. The noise tuner could be applied to the 

expression of the enzymes in such a synthetic metabolic pathway to answer the question whether 

reducing expression noise can reduce the accumulation of intermediates and increase the product 

yield.  

Generally, we expect the focus on noise optimization to increase along with the number and 

complexity of synthetic networks that are being developed for numerous applications. This work 

highlights the importance of noise control in individual genes as well as entire pathways and offers a 

tool to externally tune the variation in gene expression in such networks. 
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4 Materials and Methods 

4.1 Chemicals and consumables 
All chemicals and consumables used in this thesis are listed in the appendix (section 6.4). 

4.1.1 Growth media 

Luria broth (LB) medium 
 10 g Bacto tryptone 
 5 g Bacto yeast extract 
 5 g NaCl 
ddH2O added to a total volume of 1L. Adjusted with NaOH to pH 7. 100 µg/mL ampicillin was added 
for antibiotic selection. 
   
LB plates 
 1 L LB medium 
 15 g Agar 
100 µg/mL ampicillin was added for antibiotic selection. 
   
SOC medium (super optimal broth with catabolite repression) 
 20 g Bacto tryptone 
 5 g Bacto yeast extract 
 4.8 g Magnesium sulfate 
 3.6 g Glucose 
 0.5 g NaCl 
 0.186 g KCl 
ddH2O added to a total volume of 1L. 
   
Yeast peptone dextrose (YPD) medium 
 50 g YPD powder 
ddH2O added to a total volume of 1L. 
   
YPD plates 
 1 L YPD liquid medium 
 15 g Agar 
For antibiotic selection, one of the following was added: 500 µg/mL G418 (geneticin, KanMX 
marker), 200 µg/mL Hygromycin B (HPH marker), 100 µg/mL clonNAT (nourseothricin, NAT marker) 
   
Synthetic defined (SD) medium 
 6.9 g YNB 
 790 mg Appropriate amino acid dropout mix 
 20 g Glucose 
ddH2O added to a total volume of 1L. 
   
Low fluorescent SD medium (LD) 
 6.9 g YNB LoFlo 
 790 mg Appropriate amino acid dropout mix 
 20 g Glucose 
ddH2O added to a total volume of 1L. 
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SD dropout plates 
 1 L SD medium 
 15 g Agar 
SD dropout medium was used, lacking either histidine, uracil, leucine or tryptophan. 

 

4.1.2 Buffers and stock solutions 

LiAc solution 10x (1M, pH 7.5) 
 20.4 g LiAc dihydrate 
 180 mL ddH2O 
Adjust to pH 7.5 with 10 % acetic acid. Add ddH2O to 200 mL. 
   
Tris-HCl solution 10x (100 mM, pH 8) 
 12.1 g Tris HCl 
 900 mL ddH2O 
Adjust to pH 8 with concentrated HCl. Add ddH2O to 1 L. 
   
EDTA solution 10x (10 mM, pH 8) 
 2.92 g EDTA 
 900 mL ddH2O 
Adjust to pH 8 with 1 M NaOH. Add ddH2O to 1 L. 
   
PLAG solution for competent yeast cells 
 4 mL PEG4000 
 1 mL LiAc solution 1 M 
 1 mL Tris-HCl 100 mM 
 1 mL EDTA 10 mM 
 1.5 mL Glycerol 
 1.5 mL ddH2O 
   
TAE buffer (50x) for gel electrophoresis 
 242 g Tris base 
 57.1 g Glacial acetic acid 
 100 mL EDTA (0.5M, pH 8) 
ddH2O added to a total volume of 1L. 
   
Antibiotic stock solutions 
Ampicillin 1000x 100 mg/mL in ddH2O 
Hygromycin B 250x 50 mg/mL in ddH2O 
G418 200x 100 mg/mL in ddH2O 
clonNAT 1000x 100 mg/mL in ddH2O 
   
Other stock solutions 
Doxycycline 100x 10 mg/mL in ddH2O 
α pheromone 100x 1875 nM in LD 
Casein 100x 200 mM in LD 
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4.1.3 Reaction kits 

GeneJET DNA Purification Kit, ThermoFisher Scientific, Dreieich 

GeneJET Plasmid Miniprep Kit, ThermoFisher Scientific, Dreieich 

GeneJET Gel Extraction Kit, ThermoFisher Scientific, Dreieich 

Gibson Assembly Master Mix, New England Biolabs, Frankfurt am Main 

The kits were used according to the guidelines given by the manufacturers. 

4.2 Yeast strains 
Saccharomyces cerevisiae strains used in this thesis are listed in Table 3. All strains are derived from 

the haploid MATa strain SEY6210a (MATa leu2-3,112 ura3-52 his3∆200 trp1∆901 lys2-801 suc2∆9). 

Mating pathway reporter strains are derived from yAA328 (Alexander Anders). Strains used for 

optimization of the measurements and those used to characterize the gene expression noise tuners 

contain reporter cassettes in well-defined loci (URA3, HIS3, LEU2, TRP1, LYS2). Strains that were used 

to tune expression noise of mating pathway genes were modified in the respective native loci.  

Table 3: Yeast strains used in this work. 

Strain Genotype Reference 

yAA321 LYS2::rtTA mfα2Δ::hphNT1 mfα1Δ::klTRP1 bar1Δ::natNT A. Anders 

yAA322 LYS2::rtTA mfα2Δ::[ PTetO7-5’ ACT1-mCherry- TADH1:HIS3] 

mfα1Δ::klTRP1 bar1Δ::natNT 

A. Anders 

yAA328 LYS2::rtTA mfα2Δ::[PTetO7-5’ ACT1-mCherry-TADH1:HIS3] mfα1Δ::klTRP1 

leu2Δ::[PGPD-mTurquoise2-TGPD:CgLEU2] bar1Δ::[PFUS1-

mNeongreen-TFUS1:URA3] 

A. Anders 

yMFM001 lys2-801Δ::HPH This study 

yMFM003 his3-Δ200::[PTet-mNeongreen-TADH1 HIS3] This study 

yMFM006 trp1-Δ901::[PTet-mCherry-TADH1 TRP1] This study 

yMFM008 ura3-52::[PTet-mNeongreen-TADH1 URA3] This study 

yMFM010 ura3-52::[PTet-mCherry-TADH1 HPH] This study 

yMFM011 his3-Δ200::[PTet-mNeongreen-TADH1 PTet-mCherry-TADH1 URA3] This study 

yMFM012 leu2-3,112::[PGPD-mTurquoise2-TADH1 LEU2] This study 

yMFM023 his3-Δ200::[PTet-mNeongreen-TADH1 PTet-mCherry-TADH1 TRP1] This study 

yMFM025 his3-Δ200::[PTet-mNeongreen-TGIC1 PTet-mCherry-TADH1 URA3] This study 

yMFM027 his3-Δ200::[PTet-mNeongreen-TFZF1 PTet-mCherry-TADH1 URA3] This study 
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yMFM028 his3-Δ200::[PTet-mNeongreen-TTPS1 PTet-mCherry-TADH1 URA3] This study 

yMFM029 his3-Δ200::[PTet-mNeongreen-TsTRSV PTet-mCherry-TADH1 URA3] This study 

yMFM030 his3-Δ200::[PTet-mNeongreen-TL2b8-t47 PTet-mCherry-TADH1 URA3] This study 

yMFM031 his3-Δ200::[PTet-mNeongreen-TL2b8-a1-t47 PTet-mCherry-TADH1 URA3] This study 

yMFM032 his3-Δ200::[PTet-mNeongreen-TL2bOFF1-a141-a14 PTet-mCherry-TADH1 

URA3] 

This study 

yMFM034 leu2-3,112::[PGPD-yomTurquoise2-TGPD LEU2] This study 

yMFM034 leu2-3,112::[PGPD-yomTurquoise2-TGPD LEU2] This study 

yMFM035 leu2-3,112::[PGPD-yomTurquoise2-TGPD LEU2] This study 

yMFM036 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TADH1 HIS3] This study 

yMFM037 trp1-Δ901::[PTet-5'UTR(ACT1)-mNeongreen-TADH1 TRP1] This study 

yMFM038 his3-Δ200::[PTet-5'UTR(ACT1)-mCherry-TADH1 HIS3] This study 

yMFM039 trp1-Δ901::[PTet-5'UTR(ACT1)-mCherry-TADH1 TRP1] This study 

yMFM042 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TADH1 PTet-5'UTR(ACT1)-mCherry-

TADH1 URA3] 

This study 

yMFM043 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TADH1 PTet-5'UTR(ACT1)-mCherry-

TADH1 URA3] 

This study 

YMFM046 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TL2b-OFF1-a14-T(Synth27) HIS3] This study 

YMFM047 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TSynth27 HIS3] This study 

YMFM048 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TsTRSV HIS3] This study 

YMFM049 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TL2b8-t47-T(Synth27) HIS3] This study 

YMFM050 his3-Δ200::[PTet-5'UTR(ACT1)-mNeongreen-TL2b8-a1-t41-T(Synth27) HIS3] This study 

YMFM054 TMSG5::[TL2b8-a1-t41-T(Synth27) NAT] This study 

YMFM058 TFUS3::[TL2b8-a1-t41-T(Synth27) NAT] This study 

YMFM060 TSTE2::[TL2b8-a1-t41-T(Synth27) NAT] This study 

YMFM070 PSTE5::[PTetO7-5'ACT1 KAN] This study 

YMFM074 TSST2::[TL2b8-a1-t41-T(Synth27) NAT] This study 

YMFM079 PTetO7-ACT1-mNeongreen::[PTetO2-CYC1 KAN] This study 
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YMFM101 TL2b8-a1-t41-T(Synth27)::[TFZF1 KAN] This study 

YMFM102 TL2b8-a1-t41-T(Synth27)::[TGIC1 KAN] This study 

YMFM103 TL2b8-a1-t41-T(Synth27)::[TTPS1 KAN] This study 

YMFM104 TL2b8-a1-t41-T(Synth27)::[TADH1 KAN] This study 

YMFM106 his3-Δ200::[PTDH1-mNeongreen-TTDH1 HIS3] This study 

YMFM107 his3-Δ200::[PHSP26-mNeongreen-THSP26 HIS3] This study 

YMFM109 his3-Δ200::[PHOR2-mNeongreen-THOR2 HIS3] This study 

YMFM111 his3-Δ200::[PBUR6-mNeongreen-TBUR6 HIS3] This study 

YMFM115 his3-Δ200::[PORM2-mNeongreen-TORM2 HIS3] This study 

 

4.3 Plasmids 
Two sorts of plasmids were used in this thesis to construct new yeast strains: Reporter plasmids contain 

entire fluorescence reporter cassettes, flanked by homology regions for genomic integration. Tagging 

plasmids contain promoter or terminator sequences, flanked by standard motifs (110) to attach 

homology arms via overlap PCR. All plasmids used in this thesis are described in Table 4. All plasmids 

contain an ori sequence that enables replication in Escherichia coli cells and an ampicillin resistance 

cassette as selection marker. 

Table 4: Plasmids used in this work. 

Plasmid Description Source 

pAA151 In vivo tagging plasmid with TetO2-CYC1 promoter A. Anders 

pAA207 In vivo tagging plasmid with FZF1 terminator A. Anders 

pAA208 In vivo tagging plasmid with GIC1 terminator A. Anders 

pAA209 In vivo tagging plasmid with TPS1 terminator A. Anders 

pAA263 In vivo tagging plasmid with TetO7-ACT1 promoter A. Anders 

pMFM001 HIS3-integrative plasmid with mNeongreen driven by TetO7 CYC1 
promoter 

This study 

pMFM007 TRP1-integrative plasmid with mCherry driven by CYC1 TetO7 promoter This study 

pMFM009 HIS3-integratvie plasmid with mNeongreen driven by TetO7 promoter for 
dual-reporter assay in two loci 

This study 

pMFM010 URA3-integrative plasmid with mCherry driven by TetO7 promoter for 
dual reporter assay in two loci 

This study 

pMFM011 HIS3-integrative plasmid with converging mNeongreen and mCherry 
genes driven by TetO7 promoters for dual reporter assay in one locus 

This study 

pMFM017 LEU2-integrative plasmid with mTurquoise2 driven by GPD promoter This study 

pMFM022 URA3-integrative plasmid with mNeongreen driven by TetO7 promoter This study 

pMFM027 LEU2-integrative plasmid with codon-optimized mTurquoise2 driven by 
GPD promoter 

This study 

pMFM034 HIS3-integrative plasmid with mNeongreen driven by TetO7 promoter This study 

pMFM035 HIS3-integrative plasmid with mNeongreen driven by TetO7 ACT1 
promoter 

This study 
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pMFM036 HIS3-integrative plasmid with mCherry driven by TetO7 ACT1 promoter This study 

pMFM037 TRP1-integrative plasmid with mCherry driven by TetO7 ACT1 promoter This study 

pMFM038 HIS3-integrative plasmid with converging mNeongreen and mCherry 
genes driven by TetO7 ACT1 promoters for dual reporter assays 

This study 

pMFM042 HIS3-integrative plasmid with mNeongreen driven with TetO7 ACT1 
promoter and T(Synth27) terminator 

This study 

pMFM044 HIS3-integrative plasmid with mNeongreen driven with TetO7 ACT1 
promoter and L2bOFF1-a14 ribozyme and T(Synth27) terminator 

This study 

pMFM046 HIS3-integrative plasmid with mNeongreen driven with TetO7 ACT1 
promoter and sTRSV control ribozyme and T(Synth27) terminator 

This study 

pMFM047 HIS3-integrative plasmid with mNeongreen driven with TetO7 ACT1 
promoter and L2b8-t47 ribozyme and T(Synth27) terminator 

This study 

pMFM048 HIS3-integrative plasmid with mNeongreen driven with TetO7 ACT1 
promoter and L2b8-a1-t41 ribozyme and T(Synth27) terminator 

This study 

pMFM058 In vivo tagging plasmid with L2b8-a1-t41 ribozyme and T(Synth27) 
terminator 

This study 

pMFM065 In vivo tagging plasmid with ADH1 terminator This study 

pMFM071 HIS3-integrative plasmid with mNeongreen driven by TDH1 promoter and 
terminator 

This study 

pMFM072 HIS3-integrative plasmid with mNeongreen driven by HSP26 promoter 
and terminator 

This study 

pMFM074 HIS3-integrative plasmid with mNeongreen driven by HOR2 promoter 
and terminator 

This study 

pMFM076 HIS3-integrative plasmid with mNeongreen driven by BUR6 promoter and 
terminator 

This study 

pMFM080 HIS3-integrative plasmid with mNeongreen driven by ORM2 promoter 
and terminator 

This study 

 

4.4 Molecular cloning 

4.4.1 Primers 

Primers used for sequencing, attachment of flanking homology sequences and to create cloning 

fragments are listed in Table 5. 

Table 5: Primers used in this work. 

Primer name Sequence (5' to 3') Source 

AA159 CGAGCTCGAATTCATCG A. Anders 

AA231 CACTAACGACGAAAGACCTCAAGAAACTCATTTGGAACGAAATATTTAGT
CGTACGCTGCAGGTCGAC 

A. Anders 

AA249 TTATACCGAAGGTCACGAAATTACTTTTTCAAAGCCGTAAATTTTGATCAA
TCGATGAATTCGAGCTCG 

A. Anders 

AA301 GTTTGAACTACAAGGAAATAAGGCAGAGAAAAAGAAAGGAAAATAATAT
GCGTACGCTGCAGGTCGAC 

A. Anders 

AA302 ATATGTATACATTGTTCTTCGGGTTGATATTTTAATGATAATGATGGCTAAT
CGATGAATTCGAGCTCG 

A. Anders 

AA307 GCCCGCATTTTTAATTCTTGTATCATAAATTCAAAAATTATATTATATCAAT
CGATGAATTCGAGCTCG 

A. Anders 

AA382 ATAGCAAAGAAACCGTAAATTTGGACGTAACTGAAGATGATAAACAAAA
GCGTACGCTGCAGGTCGAC 

A. Anders 
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AA383 CTGTGTATATACTTTGTCGATAATAAGGTGTACCCTGCTTGCTACGTTTAAT
CGATGAATTCGAGCTCG 

A. Anders 

AA385 GTCTTATAGAGAGCGGTAATAACAACTGTCCCCTCCATATGGATTATATAC
GTACGCTGCAGGTCGAC 

A. Anders 

AA386 TGGCGGGATGCTTTCTTTTTATTATTGCATAAAATTTAGTGTATACTCTAAT
CGATGAATTCGAGCTCG 

A. Anders 

AA393 TGGACAACGAATCAATATCTACTGCCCCGGAACAGATGATGTTTCTTCCTC
GTACGCTGCAGGTCGAC 

A. Anders 

AA394 CCTGCAGATCTGATAGTCATAAAGATTCTTTTGGGAGATGCTGTCCCTTAA
TCGATGAATTCGAGCTCG 

A. Anders 

AA395 TTGAGGTAGATACCAATCGAAGGTCCGATAAAAACCTTCCAGATGCAACC
CGTACGCTGCAGGTCGAC 

A. Anders 

AA481 AATAGTAGCGGAAGCGATAGTAATACATTTGGTAGCGATAAGTGCACATG
CGTACGCTGCAGGTCGAC 

A. Anders 

AA491 CTGAGGCGTTATAGGTTCAATTTGGTAATTAAAGATAGAGTTGTAAGATG
CGTACGCTGCAGGTCGAC 

A. Anders 

AA493 CCGCGCTAAAAAAGGAAGATACAGGATACAGCGGAAACAACTTTTAAAT
GCGTACGCTGCAGGTCGAC 

A. Anders 

AA495 TTTCCTTTAAGAGCAGGATATAAGCCATCAAGTTTCTGAAAATCAAAATGC
GTACGCTGCAGGTCGAC 

A. Anders 

AA553 AGGACTGTTTGTGCAATTGTACCTGAAGATGAGTAAGACTCTCAATGAAA
ATCGATGAATTCGAGCTCG 

A. Anders 

MFM009 CCATCTACGCCATAGCATCAATGGGCCCTAATTCGCGCCACTTC This study 

MFM010 GGGCCCATTGATGCTATGGCGTAGATGGCTTTGCCTTCGTTTATCTTGCC This study 

MFM011 CGTATCCGATACCTACGACTGAGGATCCAGATCTGTTTAGCTTGCCTC This study 

MFM012 GGATCCTCAGTCGTAGGTATCGGATACGCCACACAATTATAAGCAAAGGG This study 

MFM013 GGATTGCTACCAACGAACTCCGCTAGCCCACACAATTATAAGCAAAGGG This study 

MFM014 GCTAGCGGAGTTCGTTGGTAGCAATCCCATCGATGAATTCGAGCTCG This study 

MFM015 CTATGCGATACTAGCTCAGTCTAGAGACACCGATTATTTAAAGCTGC This study 

MFM016 TCTAGACTGAGCTAGTATCGCATAGTAATTCGCGCCACTTCTAAATAAGC This study 

MFM017 GGATTGCTACCAACGAACTCCGCTAGCTTGACTGCGCTGGCGAAGCATG This study 

MFM018 TCTAGACTGAGCTAGTATCGCATAGCAAAGCCGAATCCACCACGGTC This study 

MFM020 CGTATCCGATACCTACGACTGAGGATCCCTTCGTACGCTGCAGGTCGAC This study 

MFM107 TTTGTTTGTTTATGTGTGTTTATTCG This study 

MFM108 GAGCTCTTATTTGTATAACTCATCC This study 

MFM109 GGATGAGTTATACAAATAAGAGCTCGTGAATTTACTTTAAATCTTGC This study 

MFM110 CGAATAAACACACATAAACAAACAAAATGGTTAGAGTCTCTAAAGGCGAA
GAATTG 

This study 

MFM113 CAAAGCCGAATCCACCAC This study 

MFM115 GTTCGTTTCCCGATACATGC This study 

MFM116 CCACCGAAGTCGGTGATG This study 

MFM117 GCATGTATCGGGAAACGAACCAGTTCGAGTTTATCATTATCAATAC This study 

MFM118 CAGCATCACCGACTTCGGTGGTATATGTTATCTTATCTTGGCGCGTAC This study 

MFM123 TGTTAATTCAGTAAATTTTCGATCTTGG This study 

MFM125 GATCGAAAATTTACTGAATTAACAATGGTTTCTAAGGGTGAAGAAGAC This study 

MFM126 AATTCGTATATAATTTAGCTATTTGCTTAACCCATAACGTCAGTGAAAGC This study 

MFM127 GATCGAAAATTTACTGAATTAACAATGGTGAGCAAGGGCGAGG This study 

MFM128 AATTCGTATATAATTTAGCTATTTGCTTAGCCGCCGGTGGAGTGGCG This study 

MFM129 GCAAATAGCTAAATTATATACGAATTAATATTATG This study 

MFM149 CTAGAAATAAAGAGTATCATCTTTCAAAGACACCGATTATTTAAAGCTGC This study 
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MFM150 ACAGTTATATATATATATATATATATATATACCACCCACTCGAGCGCGCCTA
GGTTAACCCATAACGTCAGTGAAAG 

This study 

MFM161 GCCTTAATTAACCCGGGGATCCTTTGAAAGATGATACTCTTTATTTCTAGA
CAG 

This study 

MFM166 GGATCCCCGGGTTAATTAAGGCGTGAGTAAGGAAAGAGTGAGGAACTAT
C 

This study 

MFM167 GTCGTCAAGAGTGGTACCCATGCTAGCTGTTTTATATTTGTTGTAAAAAGT
AGATAATTACTTCC 

This study 

MFM168 GCATGCCCTGCCCCTAACCATGGAGCTTTTGATTAAGCCTTCTAGTCC This study 

MFM169 GATATCATCGATGAATTCGAGCTCGATACATGGGTGACCAAAAGAGCG This study 

MFM170 ATGGGTACCACTCTTGACGAC This study 

MFM171 TTAGGGGCAGGGCATGC This study 

MFM172 CACAGCAACTTGATTACAC This study 

MFM173 GAACATCGATGCCTTCAC This study 

MFM174 GATGGCGATCTGTAGAAG This study 

MFM184 CAGACGTATACAAAGATGCTAGCGCTTTAATAGAAATCCAAGAAAAGTGC
CGTACGCTGCAGGTCGAC 

This study 

MFM185 ACTGTTTGTGCAATTGTACCTGAAGATGAGTAAGACTCTCAATGAAATTAA
TCGATGAATTCGAGCTCG 

This study 

MFM186 TGCTACAGGAGAGGTAAATG This study 

MFM187 CTTCGAAGAATATACTAAAAAATGAGCAGGCAAGATAAACGAAGGCAAA
GCGTACGCTGCAGGTCGAC 

This study 

MFM189 GCTTACTGCTTTTTTCTTCCCAAGATCGAAAATTTACTGAATTAACAATGCG
TACGCTGCAGGTCGAC 

This study 

MFM193 ATATACACATGTATATATATCGTATGCTGCAGCTTTAAATAATCGGTGTCA
TCGATGAATTCGAGCTCG 

This study 

MFM216 AATTGAACTTCAAGGAATGGCAAAAGGCTTTCACTGACGTTATGGGTTAA
CGTACGCTGCAGGTCGAC 

This study 

MFM223 CGTGGTGGATTCGGCTTTGGGAATAGGATATGCGACGAAGAC This study 

MFM224 GTCTTCTTCACCCTTAGAAACCATTTTGTTTTGTGTGTAAATTTAGTGAAGT
AC 

This study 

MFM225 GCTTTCACTGACGTTATGGGTTAAATAAAGCAATCTTGATGAGGATAATG This study 

MFM226 GCAGCTTTAAATAATCGGTGTCTTCTTAGTATATATATACTGCTCAAGGGC This study 

MFM227 CGTGGTGGATTCGGCTTTGGCAGCAGCAACTCCGTGTG This study 

MFM228 GTCTTCTTCACCCTTAGAAACCATGTTAATTTGTTTAGTTTGTTTGTTTGCTT
TTTTG 

This study 

MFM229 GCTTTCACTGACGTTATGGGTTAAAGTGACCTGGCTCTATAGTGTTG This study 

MFM230 GCAGCTTTAAATAATCGGTGTCTTCAATACAAAAACTCGATTCTAATCGG This study 

MFM235 CGTGGTGGATTCGGCTTTGTCTCAAGTATTTTGGCACCTCGC This study 

MFM236 GTCTTCTTCACCCTTAGAAACCATTCCGAATATTGTTTTTATTGTTTTATGTT
TTTCC 

This study 

MFM237 GCTTTCACTGACGTTATGGGTTAATCCTCTAAAATCGAACATATTTGAGTA
ATAATTC 

This study 

MFM238 GCAGCTTTAAATAATCGGTGTCTTCTTTACTAGAAATTAAATTTTAATCCGT
TGTG 

This study 

MFM243 CGTGGTGGATTCGGCTTTGGATTATTTTTCTTTTAATCAACTTTTTCGGATA
TCG 

This study 

MFM244 GTCTTCTTCACCCTTAGAAACCATTAAGAATGTAGTGATGAGTACTGTAAC
TGG 

This study 

MFM245 GCTTTCACTGACGTTATGGGTTAAGCAGAACGGGGCGATGTAAC This study 

MFM246 GCAGCTTTAAATAATCGGTGTCAGAATCCTCGAGCTAGCCCTTC This study 
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MFM259 CGTGGTGGATTCGGCTTTGGATTAAATTTAGGGTCCCCGGC This study 

MFM260 GTCTTCTTCACCCTTAGAAACCATGATGAAACTGTTTCTTATGCGTTTTTAT
AATG 

This study 

MFM261 GCTTTCACTGACGTTATGGGTTAATTGGCTCTGCCTATACGCATATATG This study 

MFM262 GCAGCTTTAAATAATCGGTGTCAGAGAATATAAAGAAAGATGATGATGTA
AGGTATAC 

This study 

MFM271 TGGTTTCTTCAGAAACAACGGTG This study 
 

4.4.2 Polymerase Chain Reaction (PCR) 

Three PCR protocols and polymerases were used in this study for different purposes.  

PCR to create DNA fragments for cloning 
Reaction mix: 
 10 µL 5X Phusion HF buffer (NEB) 
 2.5 µL  Forward primer (10 µM) 
 2.5 µL Reverse primer (10 µM) 
 1 µL dNTPs(10 mM) 
 1 µL Template DNA (1 to 10 ng/µL) 
 0.5 µL Phusion DNA polymerase (NEB) 
 32.5 µL ddH2O 
   
Thermocycler settings: 
 30 s 98 °C 

30 cycles [ 

10 s 98 °C 
30 s Tm + 3 °C 

30 s / kb 72 °C 

 5 min 72 °C 
 hold 8 °C 
   
Colony PCR to identify positive transformants 
Reaction mix: 
 10 µL MangoMix (Taq polymerase master mix, Bioline) 
 1 µL  Forward primer (10 µM) 
 1 µL Reverse primer (10 µM) 
 8 µL ddH2O 
   
Thermocycler settings: 
 5 min 95 °C 

30 cycles [ 

30 s 95 °C 
30 s Tm – 5 °C 

1 min / kb 72 °C 

 5 min 72 °C 
 hold 8 °C 
   
GXL PCR to create fragments for in vivo tagging 
Reaction mix: 
 10 µL PrimeSTAR GXL Buffer (Takara) 
 1 µL dNTPs (10 mM) 
 1 µL Forward primer (10 µM) 
 1 µL Reverse primer (10 µM) 
 1 µL Template DNA (1 to 10 ng/µL) 
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 1 µL PrimeSTAR GXL DNA Polymerase (Takara) 
 35 µL ddH2O 
   
Thermocycler settings: 

30 cycles [ 

10 s 98 °C 
15 s 55 °C 

1 min / kb 68 °C 

 hold 8 °C 
 

PCRs were performed in peqSTAR thermocyclers (PEQLAB). Produced fragments were analyzed by gel 

electrophoresis with TAE gels containing 1 % agarose. DNA fragments were purified either with the 

GeneJET PCR Purification Kit or from gel slices with the GeneJET Gel Extraction Kit. 

4.4.3 Gibson Assembly 

Gibson assembly was used to create plasmids from up to four DNA fragments created by Phusion PCR. 

Fragments had flanking sequences of 15 to 25 bp homologous to each other. The reaction was 

performed according to the manufacturer’s protocol. Essentially, we calculated the molar mass of 100 

ng of the backbone DNA fragment and the masses of insert DNA fragments in a molar ratio of 2:1 or 

3:1 to the backbone, depending on insert length. The corresponding volumes of PCR-purified DNA 

fragments were transferred to a 1.5 mL tube on ice and ddH2O was added to a total volume of 10 µL. 

The total molar mass of fragments was between 0.02 pmol and 1 pmol. 10 µL of Gibson Assembly 

Master Mix (NEB) was added and reaction mix was transferred to a heat block preheated to 50 °C and 

incubated for 1 hour. 1 µL of a 1:4 dilution of the reaction mixture in ddH2O was used for 

transformation.  

4.4.4 Restriction-Ligation Cloning 

Classic cloning based on restriction and ligation was used when appropriate cut-sites were present or 

when sequences were cloned that created stable secondary structures, such as the ribozyme 

sequences. Restriction digestion was also used to linearize plasmids for genomic integration (PmeI) 

and to remove methylated template plasmid DNA from PCRs (DpnI). The restriction enzymes used in 

this study are AvrII, DpnI, NotI, PmeI, PspOMI, and XhoI and were all purchased from New England 

Biolabs in their high-fidelity (HF) version, wherever available. All enzymes had 100 % activity in 

CutSmart buffer (NEB) and were heat-inactivatable at 65 °C with the exception of AvrII.  

Restriction digestion 
 1 µg DNA 
 2 µL CutSmart buffer 
 0.5 µL Restriction enzyme 1 
 0.5 µL Restriction enzyme 2 
 To 20 µL ddH2O 

 

Reagents were mixed in a 1.5 mL tube and incubated on a heat block at 37 °C for 1 hour, followed by 

heat-inactivation at 65 °C for 20 min.  

To prevent re-ligation of backbone fragments with their inserts, digested backbone DNA was either 

gel-extracted or treated with phosphatase to dephosphorylate the restriction sites.  
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Phosphatase treatment of backbone digest 
 17 µL Digestion reaction 
 2 µL Antarctic phosphatase reaction buffer (NEB) 
 1 µL Antarctic phosphatase (NEB) 

 

The reaction mixture was incubated at 37 °C for 30 min.  

Assembly of restricted DNA fragments was done with T4 DNA Ligase purchased from ThermoFisher 

Scientific.  

Ligation 
 0.02 pmol Digested backbone DNA 
 0.06 pmol Digested insert DNA 
 2 µL T4 DNA Ligase Buffer (ThermoFisher Scientific) 
 1 µL 5 % PEG4000 
 0.5 µL T4 DNA Ligase (ThermoFisher Scientific) 
 To 20 µL ddH2O 

 

Reaction mixture was incubated for 1 hour at room temperature. 1 µL of the ligation mixture was used 

for transformation. 

4.4.5 Electrocompetent E. coli cells 

Highly efficient electrocompetent E. coli cells were prepared according to (111). Briefly, 200 µL of E. 

coli NEB Turbo cell suspension was grown to an OD between 0.4 and 0.6 in LB medium, chilled on ice 

water and pelleted by centrifugation. The supernatant was discarded and the pellet resuspended in 40 

mL ice-cold ddH2O. The cell suspension was transferred into two 50 mL tubes. 10 mL of ice-cold high-

density solution containing 20% glycerol and 1.5 % mannitol were added to each of the two tubes to 

form a second layer below the cell suspension. Tubes were centrifugated with 2000 g at 4 °C for 15 

min. The layer of cells that formed during centrifugation was removed, resuspended in 200 µL of the 

ice-cold glycerol/ mannitol solution and aliquoted into 1.5 mL tubes with 50 µL per tube. Cells were 

then either used directly for electroporation or frozen in liquid nitrogen prior to storage at -80 °C. 

4.4.6 E. coli transformation 

50 µL of electrocompetent cells were mixed with 1 to 5 µL DNA and transferred into a pre-chilled 

electroporation cuvette on ice. The cuvette was placed into a MicroPulser electroporator (BIO-RAD). 

After the electric pulse, cells were recovered in 950 µL SOC medium pre-heated to 37 °C and incubated 

for one hour prior to plating on appropriate medium and incubation over night at 37 °C. 

4.5 Yeast strain development 
All yeast strains described in this thesis were built by genomic integration of linear DNA sequences 

derived from plasmids. Plasmids contained no yeast ori to prevent them from being proliferated. 

4.5.1 Competent yeast cells 

Heat shock competent yeast cells were prepared by growing an overnight culture in YPD and 

inoculating 50 mL YPD medium in an Erlenmeyer flask to an initial OD of 0.05. The day culture was 

grown at 30 °C and 200 rpm shaking to an OD between 0.8 and 1. Cell suspension was transferred into 

a 50 mL plastic tube and centrifuged at 4000 rpm for 2 minutes at room temperature. The supernatant 

was discarded and the cell pellet was resuspended in 2 mL PLAG solution. 200 µL denatured salmon 
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sperm DNA were added and 200 µL aliquots of the cell suspension were transferred into chilled 1.5 mL 

tubes. Aliquots were either immediately used for transformation or frozen at -80 °C. 

4.5.2 Genomic integration 

All genes and genetic elements were integrated genomically by transforming linear DNA with flanking 

sequences that are homologous to the desired integration locus in the genome. For integration of 

reporter genes, linear DNA derived from PmeI-digested plasmids containing the desired genes and 

homology regions (ca. 200 bp). For promoter and terminator exchanges, linear DNA derived from PCR 

fragments created with primers that had overhangs (50 nt) homologous to the desired locus. 

20 µL of linear DNA were incubated with an aliquot of competent yeast cells at 35 °C with shaking for 

1 to 2 hours. Cells were shifted to 42 °C without shaking for 15 minutes and then plated on the 

appropriate agar plates to select for prototrophic cells. For antibiotic resistance selection, cells were 

incubated in 5 mL YPD for at least 2 hours prior to plating on the appropriate antibiotic agar plates. 

After two days, colonies were re-streaked onto selective agar and single colonies from those plates 

were streaked onto YPD agar. 

Colonies from the YPD plate were used to inoculate a YPD overnight culture (200 rpm, 30 °C). For long-

term storage of strains, 1 mL of the overnight culture was mixed with 500 µL 60 % glycerol in a cryo 

tube and stored at -80 °C. 

4.6 Growth conditions 
All experiments were performed with cells grown in low fluorescent synthetic defined media (LD). Cells 

were inoculated from single colonies and grown at 30°C with shaking over night for at least 16 hours. 

Day cultures were inoculated to an initial OD of 0.05 and grown at 30°C with shaking for 5 to 6 hours 

to an OD between 0.4 and 0.8 prior to the measurement. For mating pathway stimulation experiments, 

media was supplied with 2 μM casein (Sigma-Aldrich) and cells were grown to at least OD 0.2 prior to 

stimulation with pheromone. Single timepoint measurements were conducted 3 hours after addition 

of α-pheromone (Sigma-Aldrich). For time course experiments, data was acquired immediately after 

pheromone stimulation to up to 12 hours after stimulation. 

For strains harboring genes controlled by Tet promoters and inducible ribozymes, doxycycline and 

theophylline were added to the final concentrations as indicated in the results section. Due to the low 

solubility in aqueous solutions, LD containing theophylline was prepared by adding the appropriate 

amount of theophylline powder directly to the media. 

4.7 Fluorescent proteins 
Table 6 lists the properties of the three fluorescent proteins that have been used to acquire the data 

presented in this thesis. mTurquoise2 is a third-generation cyan variant of the original GFP from 

Aequorea victoria, with extremely high quantum yield (112). mNeongreen emits light in the green to 

yellow spectrum and is derived from LanYFP, a yellow fluorescent protein found in the fish 

Branchiostoma lanceolatum. To create the monomeric mNeongreen, 21 substitutions were introduced 

into LanYFP through a directed evolution approach (113). mCherry is a monomeric red-fluorescent 

variant of DsRed, originally isolated from the anemone Discosoma. mCherry was modified for 

increased photostability and excitation coefficient (114). 
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Table 6: Properties of fluorescent proteins used in this thesis. Exmax: Maximum of excitation spectrum; Emmax: Maximum of 
emission spectrum; EC: Extinction coefficient; QY: Quantum yield. Maturation times (time to half-maximum fluorescence) are 
not indicated because values were either not reported or measured in other organisms than yeast. 

Fluorescence 
protein 

Source 
organism 

Exmax 
(nm) 

Emmax

(nm) 
EC  
(mM-1·cm-1) 

QY Reference 

mTurquoise2 Aequorea  
victoria 

434 474 30 0.93 Goedhardt et al. 2012 

mNeongreen Branchiostoma  
lanceolatum 

506 517 116 0.80 Shaner et al. 2013 

mCherry Discosoma sp. 
 

587 610 72 0.22 Shaner et al. 2004 

 

4.8 Flow cytometry 
The main part of the data presented in this thesis has been acquired using a Fortessa Special Order 

flow cytometer (BD Biosciences), which allows rapid measurements (up to 10,000 cells per second) of 

multiple parameters with minimal sample preparation. Through the sample injection port, a cell 

suspension is either aspirated from a tube or a 96-well plate from a high-throughput sampler. From 

the sample injection port, the cells pass into the flow cell. Here, sheath fluid is added through a second 

input and the suspension is pressed through a nozzle. In this process termed hydrodynamic focusing, 

cells are aligned in single file before they pass the laser beam(s). Fluorescence and refracted light are 

channeled towards the detectors and split into ranges of wavelengths. This is done using a system of 

filters with different properties. Band pass filters only pass a certain window of the spectrum. Short 

pass filters block light above a certain wavelength so that only shorter wavelengths can pass. The 

opposite is true for long pass filters. Dichroic filters split the light according to wavelength: A dichroic 

long pass filter will e.g. pass light above 600 nm but will reflect light below 600 nm. These filters are 

organized in a setup that allows isolation of fluorescent signals that are expected from e.g. different 

FPs in a sample. 

Figure 55 shows a setup of lasers and filters that has been used in the experiments described in this 

thesis.  
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Figure 55: Excitation spectra (dashed lines) and emission spectra (full peaks) for fluorescent proteins. Laser wavelengths are 
indicated with vertical lines; boxes indicate acquisition filters. Top: mTurquoise2 (blue) is excited at 445 nm. The mTurquoise2 
fluorescence signal is acquired in a 15-nm window around 470 nm. Middle: mNeongreen is excited at 488 nm and fluorescence 
is acquired in a 30-nm window around 530 nm. Bottom: mCherry is excited at 561 nm and fluorescence signals are acquired 
in a 20-nm band around 610 nm. Adapted from the BD Biosciences spectrum viewer (www.bdbiosciences.com/us/s/ 
spectrumviewer, accessed 14.01.2018) 

A photon inside a PMT hits a photocathode which then ejects a primary electron. This electron in turn 

is accelerated towards another electrode, termed dynode. When it hits the dynode, more electrons 

are ejected, which are accelerated towards the next dynode. The process continues until enough 

secondary electrons are ejected to create a measurable current that is picked up at the anode at the 

end of the tube.  

Gating of the cells can be done in real-time. If not otherwise stated, one gate was applied that excluded 

events that hit the upper and lower detector limits. 50,000 cells were analyzed unless otherwise stated. 

4.9 Microscopy 
Microscopic images were acquired with a wide-field microscope (Olympus MT20) equipped with a 

150W mercury-xenon lamp, a motorized stage, a 40x dry objective (Olympus UPLSAPO N/A=0.95) and 

a EM-CCD camera (Hamamatsu C9100). mNeongreen fluorescence was acquired using a 474/23 

excitation filter and a 525/45 emission filter, mCherry signal with 562/40 and 641/75 filters, and 

mTurquoise2 with 434/17 and 480/40 filters. Cell suspensions were transferred to a 96-well glass-

bottom plate (Greiner Bio-One) coated with concanavalin A (Sigma-Aldrich) and centrifuged for 1 min 

at 4000 rpm to attach the cells to the bottom of the wells. Image acquisition was started immediately 

after alpha-factor addition and repeated periodically at defined time intervals over the course of 

several hours.  

4.10 Calculation of intrinsic and extrinsic noise 
For most experiments presented in this thesis, we calculated the robust CV as a measure of noise (see 

main text). To distinguish between intrinsic and extrinsic noise in dual-reporter strains, we used the 

mathematical method originally proposed by Elowitz and colleagues (2). For experiments with strains 

that harbored only one fluorescent noise reporter, we used the reduced gate size method as described 

by Newman and colleagues (18). 



Materials and Methods 

87 
 

4.10.1 Dual reporter assay 

For a measurement of two fluorescence intensities 𝑥 and 𝑦 in a cell, the total normalized variance is 

given as the sum of extrinsic and intrinsic normalized variance, or 

𝜂𝑡𝑜𝑡
2 = 𝜂𝑒𝑥𝑡

2 + 𝜂𝑖𝑛𝑡
2  

where the intrinsic component is 

𝜂𝑖𝑛𝑡
2 =

〈(𝑥 − 𝑦)2〉

2〈𝑥〉〈𝑦〉
 

and the extrinsic component is 

𝜂𝑒𝑥𝑡
2 =

〈𝑥𝑦〉 − 〈𝑥〉〈𝑦〉

〈𝑥〉〈𝑦〉
 

Taking the square root gives the corresponding noise values for 𝜂𝑒𝑥𝑡 and 𝜂𝑖𝑛𝑡. 

4.10.2 Reduced gate size analysis 

The analysis was performed as described in the main text. The center of the gate was defined as the 

centroid of the population. Robust CVs were calculated for different gate radii using a script written in 

MATLAB (MathWorks).  

4.11 Stochastic simulation 
The simulation is based on the analytical model for two-stage gene expression developed by 

Shahrezaei and Swain (80). The model describes the probability distribution of protein numbers in a 

population of cells, based on the underlying probabilities of mRNA synthesis 𝑣0, mRNA degradation 

𝑑0, protein synthesis 𝑣1 and protein degradation (𝑑1, see Figure 36 in the results section). Given the 

assumption that the protein lifetime is much longer than the lifetime of a transcript (
𝑑0

𝑑1
= 𝛾 ≫ 1), a 

probability distribution can be derived for the protein number 𝑛 at a given time: 

𝑃𝑛 =
Γ(𝑎 + 𝑛)

Γ(𝑛 + 1)Γ(𝑎)
(

𝑏

1 + 𝑏
)

𝑛

(1 −
𝑏

1 + 𝑏
)

𝑎

 

where the production and degradation probabilities are reformulated as mRNA production per protein 

lifetime 𝑎 =
𝑣0

𝑑1
 and the translational burst size 𝑏 =

𝑣1

𝑑0
. Γ() denotes the gamma function to take non-

integer values into account. 

To confirm that the CV becomes independent of the translational burst size 𝑏 as long as 𝑏 ≫ 1, we 

performed stochastic simulations of the four processes above using the Gillespie formulism (115) as 

was also done by Sharezaei and Swain. We fixed the protein half-life to be two hours, which is a 

conservative estimate based on of GFP data (116), resulting in the protein degradation rate 𝑑1 =
log 2

7200
 

s-1. We varied the parameter 𝑎, thereby achieving a corresponding range in values of the mRNA 

synthesis rate 𝑣0. Up to a normalization, the set of values for 𝑎 and  𝑏 were chosen by non-negative 

matrix factorization (using the function nnmf in MATLAB) of the matrix of experimental median 

fluorescent values (Figure 31 B). Since the mean is given theoretically by 𝑎𝑏, this provides a conversion 

from the doxycycline and theophylline concentrations used in the experiment to (up to a factor) the 

corresponding 𝑎 and 𝑏 values. The normalization factors were chosen to match the experimental range 
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of rCV and to give reasonable values for the mean number of molecules and the burst size. Finally, the 

protein synthesis rate was fixed 𝑣1 = 0.11 s-1 such that the range of mRNA half-lives fell within the 

biologically expected range (minutes). 

The resultant values were 

𝑎 = (1 1.32 2.33 7.23 18.53 30.06 36.82 40.80), 

𝑏 = (10 12 13.98 18.09 25.32 38.43 58.18 79.48), 

which corresponded to mRNA synthesis rates (in units of hour-1) of 

𝑣0 = (0.35 0.46 0.81 2.5 6.42 10.42 12.76 14.14) 

and mRNA half-lives (in units of mins) of 

log 2

𝑑0
= (1.05 1.26 1.47 1.90 2.66 4.04 6.11 8.35). 

Simulations were performed using these values and the properties of the steady-state protein 

distribution were compared to the experimental result (Figure 31 B and Figure 37). 

4.12 Calculation of mutual information 
Mutual information describes how much information (in bits) from an input distribution (here: 

pheromone concentrations) can be inferred from an output distribution (here: fluorescence 

intensities). In the experiments described in this thesis only the output distribution is known 

(continuous data sets of fluorescence intensities), whereas the input can only be described by discrete 

values (20 pheromone concentrations ranging from 0 nM to 18.75 nM). We used the formula derived 

in (117) to calculate mutual information 𝐼 between a discrete dataset 𝑋 and a continuous dataset 𝑌: 

𝐼(𝑋, 𝑌) = ∑ ∫ 𝑙𝑜𝑔
𝜇(𝑥, 𝑦)

𝑝(𝑥)𝜇(𝑦)
𝑑𝑦

𝑥

 

with the discrete probability function 𝑝(𝑥) and the continuous densities 𝜇(𝑥, 𝑦) and 𝜇(𝑦). We 

calculated 𝐼(𝑋, 𝑌) for a moving window of four experimental subsets of subsequent pheromone 

concentrations, considering pheromone/ fluorescence data of 45,000 cells for each subset. For the 20 

pheromone concentrations tested, we end up with 17 values for mutual information (first window: 1 

to 4; last window: 17 to 20). We note that the absolute values of mutual information calculated is 

somewhat arbitrary as it depends heavily on the number of different inputs measured: A high-

resolution dose-response with many input pheromone concentrations contains only little mutual 

information when adjacent concentrations are compared. In contrast, when only off- and on-state of 

the pathway are compared ( 0 nM and 18.75 nM pheromone) the mutual information would be very 

high but would not allow qualitative distinctions between the high-noise and the low-noise setting. 

4.13 Morphology analysis 
Between 100 and 300 cells per noise setting and pheromone concentration were categorized. 

Categorization was not based on morphologies at a fixed timepoint but on changes in morphology over 

time (typically 8 hours) after pheromone stimulation. Including this information allowed classification 

of cells not only by size and shape but also by behavior. Table 7 lists the categories and predictors that 

were defined prior to the analysis. 
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Table 7: Parameters for classification of yeast mating phenotypes. 

 Unstimulated cells Chemotropic cells Shmooing cells 

Size Small Big Intermediate 

Shape Round Elongated Pear-like 

Behavior Bud and divide Unidirectional increase 
in size. Do not bud and 
divide. 

Develop one or more 
pointy protrusions. Do 
not increase in size. Do 
not bud and divide 

 

To reduce bias, the analysis was done blinded with original filenames of the time-lapse movies replaced 

by random numbers. 

4.14 Software 
Acquisition of flow cytometric data and initial gating was done using the FACSDIVA software by BD 

Biosciences. For visualization of raw data and export of .fcs files to .csv files we used the FlowJo 

software (BD Biosciences). Crude flow cytometric data processing was done with MS Excel (Microsoft). 

Data normalization, reduced gate size analysis, stochastic simulations, and calculation of mutual 

information were done in MATLAB (Mathworks). 

Acquisition of microscopic images was done with the NIS-Elements Advanced Research Software 

(Nikon). Analysis of time-lapse movies was done with R (R Foundation) and ImageJ (NIH). 

Adobe Illustrator was used to design figures and cartoons. 

Sequence alignments were done using MAFFT multiple sequence alignment software version 7. (118) 
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6 Supplementary information 

6.1 Supplementary table 
Table 8: Voltages used to test PMT noise as described in section 2.1.2. 488 nm laser wavelength and the 530/30 filter 
correspond to mNeongreen settings. 561 nm laser with 610/20 filter correspond to mCherry settings. 

 488 nm laser with 
530/30 filter 

561 nm laser with 
610/20 filter 

 Voltage Median FI Voltage Median FI 

“low” 215 3 365 3 

“medium” 245 10 436 10 

“high” 340 100 590 102 
 

6.2 Sequence alignments 
Due to S. cerevisiae’s capability to do efficient homologous recombination, genomic integrity can be 

reduced if genes with similar sequences are genomically integrated. This could be the case e.g. when 

fluorescence reporters are used that all derive from GFP and differ in only few base pairs to change 

the excitation and emission spectra of the protein. In this study, we used fluorescent reporter genes 

from three different originals hosts. The following sequence alignments illustrate the low sequence 

identity between those genes. Supplementary Figure 1 shows the sequences of the original 

mTurquoise2 gene aligned to our codon-optimized version. 
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Supplementary Figure 1: Sequence alignment of codon-optimized mTurquoise2 open reading frame (blue) and original 
mTurquoise2 sequence (red). Red background behind bases indicates mismatch. Sequence alignment was done using MAFFT 
multiple sequence alignment software (118). 
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Supplementary Figure 2: Sequence alignment of mNeongreen (green) and mCherry (blue) open reading frames. Red 
background behind bases indicates mismatch. Sequence alignment was done using MAFFT multiple sequence alignment 
software (118). 
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Supplementary Figure 3: Sequence alignment of mCherry (blue) and the codon-optimized mTurquoise2 version (turquoise). 
Red background behind bases indicates mismatch. Sequence alignment was done using MAFFT multiple sequence alignment 
software (118). 
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Supplementary Figure 4: Sequence alignment of codon-optimized mTurquoise2 (turquoise) and mNeongreen (green) open 
reading frames. Red background behind bases indicates mismatch. Sequence alignment was done using MAFFT multiple 
sequence alignment software (118). 
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6.3 Supplementary figures 
The fluorescence and noise of the constitutive mTurquoise2 reporter was analyze to assure that the 

expression capacity control was not affected by doxycycline and theophylline.  

 

Supplementary Figure 5: Mean fluorescence intensities of mTurquoise2 control module for 8-by-8 matrix of doxycycline and 
theophylline concentrations. Mean fluorescence intensities in arbitrary units are given on the color scale on the right.  

We found that even at high theophylline levels, mTurquoise2 expression showed no change. The 

observed growth defect that resulted in reduced signal from the blue laser (mNeongreen excitation) 

showed no effect on the signal from the blue-violet laser (mTurquoise2 excitation). Generally, the 

expression is in a very narrow range.  

The corresponding expression noise of mTurquoise2 showed constant low noise (CV of ca. 0.3) with no 

changes when doxycycline or theophylline levels were altered. 

 

Supplementary Figure 6: Noise, given as CV of mTurquoise2 control in sTRSV strain. Color scale corresponds to the typical 
range of CVs measured in this study 
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Expression of the mTurquoise2 control was also analyzed for mating pathway noise experiments. We 

found that expression increased by 2-fold with increasing pheromone concentration, indicating that 

the GPD promoter and/ or terminator is slightly responsive to pheromone 

 

Supplementary Figure 7: Expression of constitutive control mTurquoise2 increases over a 2-fold range with increasing 
pheromone concentration. 

 

The mRNA synthesis and degradation rates as a function of the steady state mRNA level were 

calculated from data acquired by Miller and colleagues. The rates follow the expected correlation for 

higher steady state levels when the transcription rate is high and/ or the degradation rate low. The 

data was used to analyze how the rates of pathway genes at a given steady state compare to the 

average at that steady state. 

 

Supplementary Figure 8: Synthesis and decay rates of yeast transcripts. Mating pathway genes discussed in this thesis are 
highlighted. The pathway receptor STE2 exhibits high mRNA steady-state levels mediated by high transcription rates. The 
negative feedback regulator Msg5 shows mRNA synthesis and decay rates at the upper limits for the given steady-state mRNA 
levels. Values were calculated from data obtained in (85). 

We compared histograms of normalized pathway output for the SST2 noise tuning strain, either set to 

high or low SST2 expression noise. The low-noise distribution exhibits less spread and a higher peak 
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over the entire mean expression range, but the differences to the high-noise distribution are smaller 

as compared to the proof-of-concept strain. 

 

Supplementary Figure 9: Pathway reporter histograms at different pheromone stimulation levels. Red and blue distributions 
correspond to low- and high-noise setting, respectively. Robust CVs of the distributions are given in the respective colors. 

Actively transcribed genes in close physical proximity seem to increase expression of a target gene. 

Additionally to exhibiting 4-fold lower noise when expressed in the same locus, we also found that 

mCherry was expressed 37 % stronger when mNeongreen was expressed from the same locus, 

compared to being expressed from a different locus (Supplementary Figure 10). 

 

Supplementary Figure 10: mCherry expression governed by a TetO7 promoter increases when mNeongreen driven by the same 
TetO7 promoter is expressed from the same locus (his3) as compared to mNeongreen expression from a different locus (ura3). 
Error bar indicates standard deviation of four biological replicates. “Different locus” measurement was measured with only 
one biological replicate. 
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6.4 Chemicals and consumables 

Chemical Supplier 

Agarose Roth 

Alpha pheromone Sigma-Aldrich 

Amino acid mix Formedium 

Ampicillin sodium salt Roth 

Bacto agar BD Biosciences 

Bacto tryptone BD Biosciences 

Bacto yeast extract BD Biosciences 

Casein sodium salt Sigma-Aldrich 

ClonNAT Sigma-Aldrich 

Concanavalin A Sigma-Aldrich 

Doxycycline Sigma-Aldrich 

EDTA Roth 

Ethanol Roth 

G418 Sigma-Aldrich 

Glacial acetic acid Roth 

Glucose Sigma-Aldrich 

Glycerol Roth 

HCl Roth 

Hygromycin B Formedium 

KCl Roth 

Lithium acetate dihydrate Sigma-Aldrich 

Magnesium sulfate Sigma-Aldrich 

Mannitol Sigma-Aldrich 

NaCl Roth 

NaOH Roth 

PEG4000 Sigma-Aldrich 

Salmon sperm DNA ThermoFisher 

Theophylline Sigma-Aldrich 

Tris base Roth 

Tris HCl Roth 

YNB (yeast nitrogen base) Formedium 

YNB LoFlo Formedium 

YPD powder Roth 
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