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Abstract

This paper presents a stochastic reduced basis approach for predicting the forced response statistics of
mistuned bladed-disk assemblies. In this approach, the system response in the frequency domain is
represented using a linear combination of complex stochastic basis vectors with undermined coefficients.
The terms of the preconditioned stochastic Krylov subspace are used here as basis vectors. Two variants of
the stochastic Bubnov–Galerkin scheme are employed for computing the undetermined terms in the
reduced basis representation, which arise from how the condition for orthogonality between two random
vectors is interpreted. Explicit expressions for the response quantities can then be derived in terms of the
random system parameters, which allow for the possibility of efficiently computing the response statistics in
the post-processing stage. Numerical studies are presented for mistuned cyclic assemblies of mono-coupled
single-mode components. It is demonstrated that the accuracy of the response statistical moments
computed using stochastic reduced basis methods can be orders of magnitude better than classical
perturbation methods.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bladed-disk assemblies represent one of the most commonly encountered and practical
examples of rotationally periodic structures in engineering. There exist a number of
computationally efficient schemes to analyze such perfectly periodic structures since the dynamics
of the entire system can be computed from the analysis of only one typical sector (one blade and
the corresponding portion of the disk) using the theory of cyclic symmetry. Unfortunately, in
practice, small differences in the blades’ structural properties can destroy the perfect cyclic
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symmetry. This problem known as mistuning [1] arises due to the stochastic nature of
manufacturing processes, deviations in material properties, and in-service degradation.
Mistuning is known to have a potentially dramatic effect on the free vibration behavior of

coupled blades, since it can lead to the spatial localization of energy around one or a few blades.
One well-established and important result is that weakly coupled systems are highly sensitive to
mistuning and this sensitivity depends primarily on the ratio of mistuning to interblade coupling
strengths [2,3]. In the case of the forced vibration, mistuning can lead to significant increases in the
amplitudes and stresses of blades compared to their perfectly tuned counterparts [4]. Another
characteristic is the increase in amplitude of the maximum-responding blade at any frequency,
which could result in a significant reduction in fatigue life. Also, moderately weakly coupled
systems are found to be more sensitive than strongly coupled ones through a greater increase in
component response amplitudes [5,6]. A detailed exposition of factors that influence the sensitivity
of disordered periodic systems to mistuning has been presented in the literature, see, for example,
Refs. [7–9].
A driving factor for research on the mistuning problem has been the ever increasing need for

efficient and accurate computational models to predict the existence of rogue blades that exhibit
failure due to excessive stress levels. In order to take into account the influence of mistuning in the
design of bladed-disks assemblies, a large population of blades must be analyzed. This suggests
the application or development of probabilistic analysis procedures, where the blades’ properties
are considered as random variables, see Ref. [1] for a review of recent developments in dynamic
analysis of uncertain systems.
A direct but computationally expensive way to accurately generate the response statistics

remains the expensive Monte Carlo simulation (MCS) method. In this approach, samples of the
uncertain system parameters are generated in accordance with their probability density function
(pdf), and the equations of motion are solved for each realization of these parameters.
Subsequently, the statistics of the response amplitudes, stress and life fatigue can be estimated.
This statistical information about the system response can then be employed to plan and interpret
test results, and also to design systems that are more insensitive to mistuning.
A major disadvantage of simulation techniques is that the computational cost may become

prohibitive, particularly for systems that are required to be analyzed using high-
fidelity finite element models. This has motivated the development of reduced order modelling
techniques [8–13] to make simulation schemes more efficient. However, in this line of approach,
a trade-off must be made between the accuracy of the reduced order model and computational
cost.
Another popular approach to mistuning analysis involves the application of perturbation

techniques to analytically approximate the response statistics [5,7,14–17]. Since perturbation
schemes are computationally very efficient, they can be readily applied to large-scale finite element
models. Further, the resulting explicit expression for the response allows for the possibility of
gaining physical insights into the dynamics of mistuned systems. Hence, these schemes, if
accurate, can allow reliable statistical assessments during the turbomachinery design process.
However, the accuracy of perturbation methods tends to deteriorate significantly for large
coefficients of variation of the random system parameters and increasing frequency of excitation.
In the particular case of mistuned bladed disks, the accuracy depends on the relative magnitudes
of coupling strength, mistuning strength, and the material damping properties.
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The inherent limitations of perturbation methods were illustrated in Ref. [7], where two
perturbation approaches were presented for mistuning analysis. In the first approach, the forced
response amplitude of each component system is obtained directly as a perturbation of the tuned
system. It was found that for strongly coupled systems (i.e., when the ratio of mistuning strength
to coupling is less than or equal to unity), the accuracy deteriorates significantly if the ratio of
mistuning strength to damping ratio is of order greater than one. In the second approach, the
modal properties of the free undamped mistuned system are first approximated using a
perturbation method. Subsequently, a modal analysis is carried out to compute the forced
response of each component system. This approach can be applied to strongly coupled systems
with any damping, but its accuracy depends on the ratio of mistuning strength to coupling
strength. Also, it was found that for weakly coupled systems (i.e., when the ratio of mistuning
strength to coupling is greater than unity), only direct simulation techniques could provide
accurate results for the response statistics.
More recently, Nair and Keane [18,19] introduced a class of stochastic reduced basis methods

(SRBMs) to solve random algebraic equations arising from discretization of linear stochastic
partial differential equations in space, time, and the random dimension of the problem. This
approach essentially involves approximating the random solution process using the terms of the
preconditioned stochastic Krylov subspace as basis vectors. It was shown for a class of problems
that SRBMs can be orders of magnitude more accurate than traditional perturbation methods. A
more detailed exposition of the theoretical underpinnings of SRBMs can be found in Refs. [20,21].
The objective of the present paper is to use SRBMs to develop an efficient numerical scheme for

statistical analysis of the forced response of mistuned bladed disks. In particular, the focus is on
examining the application of SRBMs to statistical analysis of disordered periodic systems. The
main challenge in analyzing disordered periodic systems arises from the fact that small
perturbations in the structural properties can lead to significant changes in the dynamic response.
Note that this class of problems was not investigated in earlier work on SRBMs [18–21].
In the context of the forced response problem, the application of SRBMs leads to a

representation of the frequency response using a linear combination of complex stochastic basis
vectors with undetermined coefficients. Motivated by the theoretical analysis in Refs. [20,21], the
terms of the preconditioned stochastic Krylov subspace are employed as basis vectors. Note that
for the choice of preconditioner used in the present investigation and the random parameteriza-
tion of the system, the basis vectors become equivalent to the terms of the perturbation series.
Subsequently, two variants of the stochastic Bubnov–Galerkin (BG) scheme are presented for
computing the undetermined terms in the reduced basis representation—an exact and a zero order
BG scheme are presented. It is shown that the present approach leads to an explicit expression for
the response as a function of the random system parameters, which enables a complete statistical
characterization of the system response in a computationally efficient fashion.
Extensive numerical studies on a model problem are presented to demonstrate that highly

accurate results can be obtained for the first two statistical moments of the response and the mean
of the maximum blade amplitude. The results obtained using SRBMs are compared with the
classical second order perturbation method (PM2) and benchmark results computed using MCS.
The results clearly demonstrate that SRBMs can be up to orders of magnitude more accurate than
the perturbation method. This paper concludes with an outline of some directions for further
research on SRBMs for dynamic analysis.
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2. Simplified model and equations of motion

The system studied here is a simplified discrete model of continuously shrouded bladed-disk
assemblies [2,5,7]. It consists of a cyclic chain of N masses (each has one grounded spring and
damper) interconnected by identical linear springs representing the interblade coupling. An
advantage of this simple model is that it allows a straightforward modelling and can help in
gaining a preliminary understanding of the computational properties of SRBMs applied to
mistuning problems.
The mass and damping of each blade is considered to be identical and represented by m and c;

respectively. Mistuning is assumed to originate only from the variations among the component
systems’ stiffnesses. The modal stiffness of the ith blade is modelled by ki ¼ k0ð1þ yiÞ; where k0 is
the nominal blade’s stiffness and yi is the random variation in the ith blade stiffness. yi are
assumed to be uncorrelated zero-mean Gaussian random variables with standard deviation s:
Note that for the model problem under consideration, the total number of random variables p

equals the total number of degrees of freedom (d.o.f.) N: LetM; K and C denote the system mass,
stiffness and damping matrices, respectively. Assuming that mistuning affects only the stiffness
matrix K; the equations of motion in the frequency domain can be written in the form

AðhÞqðhÞ ¼ F; ð1Þ

where AðhÞ ¼ �o2Mþ joCþ KðhÞ is the random dynamic stiffness matrix, o is the external
excitation frequency, j ¼

ffiffiffiffiffiffiffi
�1

p
; h ¼ fyig; i ¼ 1;y; p is the vector of p random system parameters,

and qðhÞ is the random displacement response. F is the external excitation vector chosen to be the
engine order excitation force (see, for example, Ref. [7]), i.e., F ¼ FmfejfigT; fi ¼ 2pnði �
1Þ=N; i ¼ 1;y;N; where Fm is the amplitude of the excitation force, fi is the phase angle of
force for the ith blade component and n is the engine order. Note that for simplicity of notation,
the dependence of the dynamic stiffness matrix and the response on the excitation frequency in the
equations that follow are not explicitly indicated.
If K0 is the stiffness matrix of the perfectly tuned system, then KðhÞ can be expanded as

KðhÞ ¼ K0 þ dK ¼ K0 þ
Xp

i¼1

Ki yi; ð2Þ

where dK is the deviation of the stiffness matrix due to mistuning and Ki is a deterministic matrix
related to the baseline tuned structure. Note that this representation is chosen here for the sake of
convenience. When the random system parameters appear non-linearly in the stiffness matrix, a
similar expression can be derived by expanding KðhÞ in terms of orthogonal random polynomials;
see, for example, Ref. [22]. Using Eq. (2), the random dynamic stiffness matrix AðhÞ can be written
as

AðhÞ ¼ A0 þ dA; ð3Þ

where A0 ¼ �o2Mþ joCþ K0 and dA ¼ dK:
Note that for parametric studies of the effects of mistuning on the forced response of the model

problem under consideration, Eq. (1) can be rewritten as follows:

AðhÞqðhÞ ¼ F=m; ð4Þ
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where the random dynamic stiffness matrix in this case is given by

AðhÞ ¼ �o2Iþ joð2zo0ÞIþ o2
0A

und:ðhÞ; ð5Þ

where I is identity matrix, z ¼ c=2
ffiffiffiffiffiffiffiffiffi
k0m

p
is the viscous damping ratio, c is the viscous damping

coefficient, o2
0 ¼ k0=m is the nominal blade natural frequency and

Aund:ðhÞ ¼

1þ 2R2 þ y1 �R2 0 ? �R2

�R2 1þ 2R2 þ y2 �R2 0 0

0 �R2 & & ^

^ & & & �R2

�R2 0 ? �R2 1þ 2R2 þ yN

2
6666664

3
7777775

is the dynamic matrix of the undamped system. R2 ¼ kc=k0 is a non-dimensional interblade
coupling parameter, where kc is the coupling stiffness. Note that yi is a non-dimensional
mistuning parameter. Hence, the same representation of the random dynamic stiffness given in
Eq. (3) can be used, where

A0 ¼ �o2Iþ joð2zo0ÞIþ o2
0

1þ 2R2 �R2 0 ? �R2

�R2 1þ 2R2 �R2 0 0

0 �R2 & & ^

^ & & & �R2

�R2 0 ? �R2 1þ 2R2

2
6666664

3
7777775

and

dA ¼ o2
0

y1
y2

&

&

yN

2
6666664

3
7777775
:

In the next section, for the sake of generality, the stochastic reduced basis representation of the
random displacement response qðhÞ will be derived using Eqs. (1)–(3).

3. Stochastic reduced basis representation

The fundamental idea of SRBMs is to approximate the solution of Eq. (1) using a subspace
spanned by a set of stochastic basis vectors [18,19]. A theoretical justification was recently
presented for employing the terms of the preconditioned stochastic Krylov subspace as basis
vectors, see, for example, Refs. [20,21]. It was shown that the solution of a linear random
algebraic system of equations can be approximated to an arbitrary degree of accuracy using this
set of basis vectors. For the representation of the random stiffness matrix in Eq. (2), and further
by employing the matrix A�1

0 as a preconditioner, it can be shown that the terms of the
preconditioned stochastic Krylov subspace coincides with the perturbation series. This implies
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that the same results can be obtained by using the terms of the perturbation series as stochastic
basis vectors.
In the present study, three basis vectors are used to represent the solution of Eq. (1) as

#qðhÞ ¼
X2
i¼0

xiciðhÞ ¼ WðhÞn; ð6Þ

where W ¼ c0ðhÞc1ðhÞc2ðhÞ

 �

ACN�3 and n ¼ fx0; x1; x2g
TAC3 denote the matrix of complex

stochastic basic vectors and the vector of undetermined coefficients, respectively.
The three terms of the PM2 are chosen as basis vectors. As mentioned earlier, this is equivalent

to employing the first three basis vectors spanning the preconditioned stochastic Krylov subspace.
It is assumed that qðhÞ can be well approximated in the subspace spanned by c0;c1ðhÞ and c2ðhÞ:
The first basis vector c0 is obtained by solving for the frequency response of the tuned system, i.e.,

c0 ¼ A�1
0 F: ð7Þ

The other two basis vectors are given by

c1ðhÞ ¼
Xp

i¼1

@q

@yi

yi ð8Þ

and

c2ðhÞ ¼
Xp

i¼1

Xp

j¼1

@2q

@yi @yj

yiyj: ð9Þ

The response sensitivities appearing in Eqs. (8) and (9) can be computed as

@q

@yi

¼ �A�1
0

@K

@yi

c0 ð10Þ

and

@2q

@yi @yj

¼ A�1
0

@K

@yi

A�1
0

@K

@yj

q0þ
�

@K

@yj

A�1
0

@K

@yi

q0



: ð11Þ

It can be clearly seen from the preceding equations that sensitivity analysis of large-scale systems
across a broad range of excitation frequencies will be computationally expensive. This is because,
at each frequency point of interest, one needs to compute an independent set of stochastic basis
vectors for obtaining the statistics of the response. In other words, the matrix A0 appearing in
Eqs. (7), (10) and (11) needs to be repeatedly inverted at each frequency of interest. This results in
a significant increase in computational cost particularly when the size of the system is large and/or
the response at a large number of frequency points is to be computed. The efficiency of the basis
vector computation procedure can be readily improved by employing the eigenvectors of the
tuned system to approximately compute the sensitivities of q in the modal basis [21].
In the particular case of cyclic structures, A0 is a circulant matrix. Since its eigenvectors coincide

with the eigenvectors of the Fourier matrix E [23] that diagonalizes A0; the basis vectors can be
computed very efficiently. The expression for E is given in Appendix A. When the system
components have multiple d.o.f., A0 is a block-circulant matrix that can be block-diagonalized
using the transformation ðE	#IÞA0ðE#IÞ; where *, # and I denote the complex conjugate
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transpose of a matrix, the Kronecker product and an identity matrix of size equal to that of a
block in A0 (i.e., of a blade-disk sector), respectively. Note that the computation of the sensitivities
of q in the modal domain can be even more efficient if a smaller set of nominal modes is used. This
means that a specific family of modes can be used to arrive at a reduced dynamic stiffness matrix
of the tuned system. Therefore, in the sensitivity computation, for a large number of frequency
points, this reduced matrix of size of the number of selected modes is inverted at a low cost.

4. Computation of undetermined coefficients

To compute the undetermined coefficients in the stochastic reduced basis representation,
stochastic variants of the BG scheme [20] are used. This involves defining a stochastic residual
error vector by substituting Eq. (6) into Eq. (1) gives

rðhÞ ¼ AðhÞWðhÞn � F: ð12Þ

For simplicity of notation, the dependence of c1 and c2 on the random vector h will not be
explicitly shown in the equations that follow. In the BG scheme, the undetermined coefficients are
evaluated by enforcing the condition that rðhÞ is orthogonal to WðhÞ: Two variants of the BG
scheme are presented next for the computation of n; which arises from the way the orthogonality
condition for two random vectors is interpreted.

4.1. Zero order BG scheme

Here the undetermined coefficient vector n is determined by enforcing that the stochastic
residual rðhÞ is orthogonal to WðhÞ in an approximate sense. By considering the inner product of
two random vector functions in the Hilbert space of random variables, the following condition
results:

/W	ðhÞrðhÞS ¼ 0; ð13Þ

where superscript * denotes the complex conjugate transpose and / 
S denotes the ensemble
average. Since Eq. (13) can be interpreted as a zero order condition [20], this formulation is
henceforth referred to as SRBM-BG0. Eq. (13) leads to the following ð3� 3Þ reduced deterministic
system of equations for the coefficients x0; x1 and x2

/W	ðhÞAðhÞWðhÞn � W	ðhÞFS ¼ 0: ð14Þ

The deterministic system of equations to be solved for the vector of undetermined coefficients n
can be written in a compact form as

ASRBM-BG0
n ¼ FSRBM-BG0

; ð15Þ

where ASRBM-BG0
¼ /W	ðhÞAðhÞWðhÞS and FSRBM-BG0

¼ /W	ðhÞFS denote the reduced dynamic
stiffness matrix and the force vector, respectively. Explicit expressions for their elements are given
in Appendix B.
Once the coefficients x0; x1 and x2 are computed by solving the reduced order problem in

Eq. (15), the mean ðm#qÞ and covariance matrix
P

#q

� �
of the system response at each excitation
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frequency can be computed as

ðm#qÞ ¼ /#qS ¼ x0/c0ðhÞSþ x1/c1ðhÞSþ x2/c2ðhÞS ð16Þ

and

X
#q

0
@

1
A ¼ /#qðhÞ#q	ðhÞS ¼ /WðhÞnn	WðhÞ	S ¼

Xp

i¼0

Xp

j¼0

xix
	
j /ciðhÞc

	
j ðhÞS: ð17Þ

Compact expressions for the mean and covariance matrix for the case when the elements of h are
uncorrelated zero-mean Gaussian random variables are given in Appendix C.

4.2. Exact BG scheme

By specifying that the stochastic residual error is orthogonal to the approximating space of
basis vectors with probability one, an alternative formulation can be derived, henceforth referred

Fig. 1. Mean of the first component amplitude as a function of excitation frequency, for R ¼ 0:1; z ¼ 0:01 and

s ¼ 2%: The solid line (—) represents exact results obtained by MCS, the dots represent SRBM-BG, the plusses ðþÞ
represent SRBM-BG0 and the dash–dotted line (–.) represents PM2 results.
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to as SRBM-BG. In contrast to the SRBM-BG0 formulation, this projection scheme leads to
random function models for the undetermined coefficients since the following reduced order
random system of equations has to be solved:

ASRBM-BGn ¼ FSRBM-BG; ð18Þ

where ASRBM-BG ¼ W	ðhÞAðhÞWðhÞ and FSRBM-BG ¼ W	ðhÞF are the reduced order random dynamic
stiffness matrix and the reduced order force vector, respectively.
It can be seen that explicit computation of a random function description of the undetermined

coefficients will involve the symbolic inversion of ASRBM-BG: Note that this is possible here since
only three vectors are used in the reduced basis representation of the random displacement
response qðhÞ: However, since the resulting approximation is a highly non-linear function of the
random system parameters, analytical characterization of the response statistics is no longer
readily possible. Fortunately, MCS schemes can be applied to compute efficiently the response
statistics by sampling the stochastic reduced basis representation with random function models
for the undetermined coefficients.

Fig. 2. Variance of the first component amplitude as a function of excitation frequency, for R ¼ 0:1; z ¼ 0:01 and

s ¼ 2%: The solid line (—) represents exact results obtained by MCS, the dots represent SRBM-BG, the dashed line

ð� �Þ line represents SRBM-BG0 and the dash–dotted line ð�:Þ represents PM2 results.
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5. A note on theoretical aspects

For the sake of completeness, some important theoretical properties of SRBMs which were
derived in Refs. [20,21] are cited. The first result mentioned in the previous section states that the
solution of a linear random algebraic system of equations with a non-singular coefficient matrix
always lie in the stochastic Krylov subspace. This guarantees that nearly exact results can be
computed provided a sufficient number of stochastic basis vectors are deployed in the response
representation. However, the computational cost and memory requirements increase significantly
when the higher order basis vectors are used. Fortunately, for many problems of practical interest,
three basis vectors are sufficient to achieve highly accurate results; see also Section 6.
A desirable feature of any stochastic subspace projection scheme is that some measure of the

error in the approximated solution must converge when the number of basis vectors is increased.
In Ref. [21], it was proved for SRBM-BG0 that the A-norm of the error is mean square
convergent. For the exact BG scheme, it was conjectured that the A-norm of the error converges
in probability. However, these results hold only for Hermitian positive-definite matrices. In the
context of frequency response analysis of linear stochastic structural systems, the coefficient
matrix AðhÞ turns out to be complex symmetric. For such non-Hermitian matrices, convergence

Fig. 3. Mean of the maximum amplitude among the blades across the frequency region of interest, for R ¼ 0:1; z ¼
0:01 and s ¼ 2%: The solid line (—) represents exact results obtained by MCS, the dots represent SRBM-BG and the

dashed line ð� �Þ represents PM2 results.
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results can be established for the L2 norm of the residual only if an oblique stochastic subspace
projection scheme is used. This involves incorporating the Petrov–Galerkin condition that the
residual error is orthogonal to the stochastic subspace AðhÞWðhÞ: Equations similar to those
presented in Appendix B can be readily derived for the reduced order terms when this oblique
stochastic subspace projection scheme is employed, see Ref. [20] for details.
However, in the present study, results are presented only for the orthogonal BG projection

scheme. It is shown that, even though this scheme is not provably optimal for non-Hermitian
matrices, highly accurate results can be obtained for the response statistics.

6. Results and discussions

The methods developed here are applied to a coupled 10-blade assembly. The values used for
the model parameters [24] are given by m ¼ 0:0114 kg and k0 ¼ 430 000N=m (the nominal blade
natural frequency o0 ¼ 6141:6 rad=s). The viscous damping ratio is fixed as z ¼ 0:01: Results are
obtained using both the zero-order and exact BG schemes. The mean and variance of the

Fig. 4. Mean of the first component amplitude as a function of excitation frequency, for R ¼ 0:325; z ¼ 0:01 and

s ¼ 2%: The solid line (—) represents exact results obtained by MCS, the dots represent SRBM-BG, the dashed line

ð� �Þ line represents SRBM-BG0 and the dash–dotted line ð�:Þ represents PM2 results.
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frequency response of a typical d.o.f., i.e., the first blade component are shown. These quantities
are compared to the statistics computed using the PM2 and benchmark results generated by
applying MCS.
Two different values are considered for the mistuning standard deviation: s ¼ 2 % and 5%. For

each case, three different values of the non-dimensional coupling strength parameter are
considered: weak interblade coupling R ¼ 0:1; moderately weak interblade coupling R ¼ 0:325
and strong interblade coupling R ¼ 0:5: The mean maximum amplitude experienced by the
mistuned assemblies across the frequency region of interest are computed for the case of weak
coupling, i.e., R ¼ 0:1: It will therefore be possible to assess the accuracy of results provided by
the proposed methods and their limitations. Note that in all the figures presented, the first two
statistical moments are plotted as functions of the frequency of the first engine order excitation.
Figs. 1 and 2 shows the mean and standard deviation of the first component, obtained by

various methods for s ¼ 2 % and R ¼ 0:1: In contrast to PM2, SRBM-BG and SRBM-BG0 yield
very accurate results for this set of parameters. However, the mean maximum amplitude in the
frequency domain was generated only by SRBM-BG. The results obtained are presented in Fig. 3
and compared with PM2 and MCS. It can be readily observed from the results that PM2 fails to
predict the maximum response statistics, especially at the frequencies clustered around the
nominal natural frequency.

Fig. 5. Variance of the first component amplitude as a function of excitation frequency, for R ¼ 0:325; z ¼ 0:01 and
s ¼ 2%; same legend as in Fig. 4.
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As found in Ref. [7], in the case of weak coupling configuration ðR ¼ 0:1Þ; the perturbation
method gives highly erroneous results when the mistuning parameters are perturbed. To
circumvent this problem, Wei and Pierre proposed a modified perturbation method. In their
approach, the coupling parameter is used as a perturbation quantity rather than the mistuning
parameters. Furthermore, for systems where the ratio of mistuning to coupling s=R2 > Oð1Þ; it
was concluded that only the MCS technique could provide accurate estimates of the response
statistics. Fig. 3 shows that under the same conditions of coupling and mistuning strengths,
SRBM-BG gives highly accurate results.
Figs. 4 and 5 display the mean and standard deviation of the first component amplitudes when

s ¼ 2% and the interblade coupling is moderately weak, i.e., R ¼ 0:325: It can be seen that the
results obtained using SRBM-BG and SRBM-BG0 agree very well with MCS results. In contrast,
PM2 misses the peak mean amplitude and also fails to predict the second moment at different
excitation frequencies; see Fig. 5. When the interblade coupling is strong, i.e., R ¼ 0:5; SRBM-BG
and SRBM-BG0 can still be applied even when the damping ratio is low ðz ¼ 1%Þ: This is
illustrated in Figs. 6 and 7. In contrast to the stochastic reduced basis approach, the traditional
PM2 is valid only for (s=R2pOð1Þ and s=zpOð1Þ:

Fig. 6. Mean of the first component amplitude as a function of excitation frequency, for R ¼ 0:5; z ¼ 0:01 and

s ¼ 2%; same legend as in Fig. 4.
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When the mistuning strength s is increased to 5%, the results for the mean and variance of the
component amplitudes are expected to deteriorate. For R ¼ 0:1; SRBM-BG provides highly
accurate results despite the fact that the coupling is weak and the damping is low. This is displayed
in Figs. 8 and 9. The results also show that SRBM-BG0 misses the higher amplitudes within the
region of clustered resonant frequencies. It appears that this formulation tends to break down for
this level of disorder. It can also be observed that PM2 fails for this case, since the perturbation
series tends to diverge for this parameter setting.
Fig. 10 shows the mean of the maximum amplitude among the blades. It can be seen that while

PM2 clearly over predicts, SRBM-BG gives highly accurate results. Finally, the interblade
coupling is increased to moderately weak ðR ¼ 0:325Þ and strong ðR ¼ 0:5Þ values. The results for
these cases are shown in Figs. 11–14. It is found that, at resonance frequencies, PM2 fails to
predict the statistical properties of the component amplitudes. As observed for the earlier cases,
SRBM-BG yields highly accurate results.
In summary, the numerical results obtained for this example problem clearly demonstrates the

accuracy of SRBMs. In particular, the response statistical moments computed using SRBM-BG
can be orders of magnitude more accurate than the classical perturbation method.

Fig. 7. Variance of the first component amplitude as a function of excitation frequency, for R ¼ 0:5; z ¼ 0:01 and

s ¼ 2%; same legend as in Fig. 4.
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Fig. 8. Mean of the first component amplitude as a function of excitation frequency, for R ¼ 0:1; z ¼ 0:01 and

s ¼ 5%; same legend as in Fig. 4.

Fig. 9. Variance of the first component amplitude as a function of excitation frequency, for R ¼ 0:1; z ¼ 0:01 and

s ¼ 5%; same legend as in Fig. 4.
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Fig. 10. Mean of the maximum amplitude among the blades across the frequency region of interest, for R ¼ 0:1; z ¼
0:01 and s ¼ 5%; same legend as in Fig. 3.

Fig. 11. Mean of the first component amplitude as a function of excitation frequency, for R ¼ 0:325; z ¼ 0:01 and

s ¼ 5%; same legend as in Fig. 4.
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Fig. 12. Variance of the first component amplitude as a function of excitation frequency, for R ¼ 0:325; z ¼ 0:01 and
s ¼ 5%; same legend as in Fig. 4.

Fig. 13. Mean of the first component amplitude as a function of excitation frequency, for R ¼ 0:5; z ¼ 0:01 and

s ¼ 5%; same legend as in Fig. 4.
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7. Concluding remarks

In this paper, a stochastic reduced basis approach is presented for computing the forced
response statistics of mistuned bladed-disk assemblies. The fundamental idea is to approximate
the frequency domain response using the subspace spanned by the first three terms of the
preconditioned stochastic Krylov subspace. For the model problem considered, this is shown to
be equivalent to employing the terms of the perturbation series as stochastic basis vectors.
Subsequently, two stochastic variants of the Bubnov–Galerkin (BG) scheme were presented for
computing the undetermined coefficients in the reduced basis representation. It is shown that this
allows one to arrive at explicit expressions for the system response as a function of the random
system parameters. This, in turn, enables an efficient statistical characterization of the system
response. Some theoretical properties of the BG scheme applied to stochastic processes are also
outlined.
Extensive numerical studies on a model problem are presented to test the range of applicability

of the present approach. The results computed using the stochastic reduced basis methods
(SRBMs) have been compared with the classical second order perturbation method and
benchmark results generated using Monte Carlo simulation. It is shown that SRBMs give
accurate results for the response statistics across a wide range of coupling strength, mistuning
strength, and damping properties. In particular, the results clearly demonstrate that SRBMs can
be orders of magnitude more accurate than the perturbation method, particularly for the mean of
the maximum blade displacement.

Fig. 14. Variance of the first component amplitude as a function of excitation frequency, for R ¼ 0:5; z ¼ 0:01 and

s ¼ 5%; same legend as in Fig. 4.
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Even though, the results presented here are for a simple model problem, SRBMs can be applied
to mistuning analysis of bladed disks analyzed using large-scale finite element models. It also
remains to be seen whether employing the oblique stochastic subspace projection outlined in this
paper can further improve the accuracy of the response statistics.
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Appendix A

Expression of the Fourier matrix of size N:

E ¼
1ffiffiffiffiffi
N

p
1 1 1 ? 1

1 w w2 ? wN�1

1 w2 w4 ? w2ðN�1Þ

^ ^ ^ & ^

1 wN�1 w2ðN�1Þ ? wðN�1ÞðN�1Þ

2
6666664

3
7777775
; w ¼ e2jp=N ; j ¼

ffiffiffiffiffiffiffi
�1

p
: ðA:1Þ

Appendix B

Here, the expressions for the elements of the reduced order matrix ASRBM-BG0
and reduced force

vector FSRBM-BG0
are presented when the elements of h are uncorrelated zero-mean Gaussian

random variables with standard deviation s:

ASRBM-BG0
ð1; 1Þ ¼ c	

0A0c0; ðB:1Þ

ASRBM-BG0
ð1; 2Þ ¼ s2c	

0

Xp

i¼1

@K

@yi

@q

@yi

� �
; ðB:2Þ

ASRBM-BG0
ð1; 3Þ ¼ s2c	

0A0

Xp

i¼1

@2q

@y2i
; ðB:3Þ

ASRBM-BG0
ð2; 1Þ ¼ s2

Xp

i¼1

@q	

@yi

@K

@yi

� �
c0; ðB:4Þ

ASRBM-BG0
ð2; 2Þ ¼ s2

Xp

i¼1

@q	

@yi

A0
@q

@yi

� 

; ðB:5Þ
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ASRBM-BG0
ð2; 3Þ ¼

Xp

i;j;k;l¼1

/yiyjykylS
@q	

@yi

@K

@yj

@2q

@yk@yl

� 

; ðB:6Þ

ASRBM-BG0
ð3; 1Þ ¼ s2

Xp

i¼1

@2q	

@y2i

( )
A0w0; ðB:7Þ

ASRBM-BG0
ð3; 2Þ ¼

Xp

i;j;k;l¼1

/yiyjykylS
@2q	

@yi@yj

@K

@yk

@q

@yl

� 

; ðB:8Þ

ASRBM-BG0
ð3; 3Þ ¼

Xp

i;j;k;l¼1

/yiyjykylS
@2q	

@yi@yj

A0
@2q

@yk @yl

� 
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Note that /yiyjykylS ¼ dijdkl þ dikdjl þ dildjk; where dij is the Kronecker delta function.

FSRBM-BG0
¼ w0 0 s2

Pp
i¼1

@2q

@y2i

( )	

F: ðB:10Þ

Appendix C

Here, we present expressions for the mean ðm#qÞ and covariance
P

#q

� �
of the system response for

the SRBM-BG0 scheme. We consider the case when the elements of h are uncorrelated zero-mean
Gaussian random variables with standard deviation s:
Using Eq. (16), the mean frequency response can be computed as

ðm#qÞ ¼ x0c0 þ x1
Xp

i¼1

@q

@yi

yiþ

*
x2

Xp

i¼1

Xp

j¼1

@2q

@yi@yj

yiyj

+
ðC:1Þ

or

ðm#qÞ ¼ x0c0 þ x2s
2
Xp

i¼1

@2q

@y2i
: ðC:2Þ

Similarly, the covariance of the frequency response can be computed as

X
#q

0
@

1
A ¼ x0x

	
0c0c

	
0 þ s2x0x

	
2c0

Xp

i¼1
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þ s2x1x
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