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Abstract  1 

Previous human genetic studies, based on sampling small numbers of 2 

populations, have supported a recent Out-of-Africa dispersal model with minor 3 

additional input from archaic humans. Here, we present a novel dataset of 379 4 

high-coverage human genomes from 125 populations worldwide. The 5 

combination of high spatial and genomic coverage enabled us to refine current 6 

knowledge of continent-wide patterns of heterozygosity, long- and short-7 

distance gene flow, archaic admixture, and changes in effective population size. 8 

Compared to Eurasians, the examined Papuan genomes show an excess of highly 9 

derived modern human haplotypes and deeper split times from Africans. This is 10 

compatible with an early and largely extinct expansion of modern humans Out-11 

of-Africa. This is also indicated by the Western Asian fossil record and the recent 12 

discovery of modern human and Neanderthal admixture 100,000 years ago, 13 

which significantly predates the main Out-of-Africa expansion of modern 14 

humans. Our tests of positive and balancing selection highlight a number of new 15 

metabolism- and immunity-related loci as candidates for local adaptation. 16 

  17 
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Introduction 1 

 2 

Previous genome-wide sequencing efforts have aimed at characterizing 3 

common variants in the human genome by targeting moderate numbers of 4 

geographically distinct populations and combining genotyping, low-coverage 5 

whole-genome and exome sequencing data1,2. High-coverage whole-genome 6 

sequence studies have so far been limited to focusing on specific populations3 7 

and geographic regions4-7, or targeted at specific diseases, e.g. cancer8. 8 

Nevertheless, the availability of high-resolution genomic data has led to the 9 

development of new methodologies for inferring population history9-13 and 10 

refuelled the debate on the mutation rate in humans14. From these initial studies, 11 

the unprecedented potential of high-coverage genomic data to reveal 12 

geographically specific patterns of genetic diversity has become evident. Here, 13 

we present a new dataset of high-coverage human genomes from nearly 150 14 

populations distributed worldwide. This comprehensive population sample, 15 

which, among others, includes new samples from Siberia, Island Southeast Asia 16 

and Papua New Guinea, allows us to infer human demographic history in finer 17 

detail and to investigate signatures of natural selection. We estimate split times 18 

among populations, test how the different populations conform to the model of a 19 

single expansion out of Africa with archaic admixture (OoA), and assess patterns 20 

of neutral and adaptive variation associated with different environments. 21 

Data description. Our worldwide panel of 483 high-coverage human 22 

genomes from 148 populations includes 379 new genomes from 125 populations 23 

(Figure 1) (Table S1.7-I). All genomes were sequenced by Complete Genomics 24 

Inc. and mapped, called and phased using the same bioinformatic pipeline, 25 

thereby minimizing platform and processing bias conflicts (Supplementary 26 

Section 1.1). We maximised the number of groups in this study by limiting the 27 

number of individuals to three for most populations. Existing SNP-chip 28 

information was used in most cases to choose unrelated individuals and to avoid 29 

cases of recent admixture between geographically distant populations. For 30 

demographic inferences, we combined previously published and new sequences 31 

to generate a geographically balanced sample (Figure 1, Diversity Set, N=447). 32 

For selection scan analysis, we focussed on well-covered geographic regions, 33 
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combining a subset of the Diversity Set with published sequences (Figure 1, 1 

Selection Set, N = 396, Supplementary Section 1.7).  2 

The current view on the peopling of Eurasia. The timing and route of 3 

human movements out of Africa, as well as the degree to which migrating 4 

populations interbred with archaic humans during their expansion across 5 

Eurasia, have been the subject of considerable debate over the past two 6 

decades15. Fossil evidence demonstrates that Homo sapiens was present in 7 

Levant between ca. 120-70 kya16. This colonization has, however, been viewed as 8 

a failed expansion OoA17. Nevertheless craniometrical studies of African and 9 

Asian populations18 and fossil data from eastern Asia15, including the very recent 10 

reports of human remains in China from before 80 kya19, admit the possibility of 11 

an early dispersal. Moreover, archaeological finds in Arabia and South Asia 12 

indicate the presence of human populations in ameliorated environments 13 

between 125 and 75 kya15. Previous genetic analyses of living populations have 14 

revealed a steady decline in genetic diversity with distance from Africa, which is 15 

consistent with a serial founder event model20-22.  16 

Ancient DNA (aDNA) sequencing has further contributed to our 17 

understanding of the peopling of Eurasia and revealed admixture with at least 18 

two archaic human lineages. Neanderthals have left a genetic signature in all 19 

non-Africans from around 55 kya23, while admixture with Denisova was largely 20 

restricted to the ancestors of modern Papuan and Australian populations24. In 21 

addition aDNA from modern humans indicates population structuring and turnover, 22 

but little additional archaic admixture, in Eurasia over the last 35-45 thousand 23 

years25-27. Overall, these findings provide support for a model28,29 by which the 24 

vast majority of human genetic diversity outside Africa derives from a single 25 

dispersal event that was followed by admixture with archaic humans23,29.  26 

 27 

Results 28 

 29 

Population structure in Eurasia. We used ADMIXTURE 30 to infer 30 

genetic structure and admixture patterns in our Diversity Set (Figure 1 for K=8 31 

and K=14, Supplementary Sections 2.1.1-2 for Ks=2-14). Western Eurasia is 32 

characterised by two predominant genetic clusters, whilst the much less 33 
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populous Siberia shows evidence of three differentiated clusters (Figure 1, 1 

K=14), consistent with previous reports31. Island Southeast Asia also exhibits 2 

high population structuring. Both these latter two regions have histories of small 3 

effective population densities (Figure S2.2.3-I, as inferred by MSMC10), which 4 

increase genetic drift and local differentiation.  5 

We compared the haplotype similarity of our samples using fineSTRUCTURE32. 6 

This shows that our sampling strategy retains the power to identify population 7 

structure at fine resolution. We inferred 106 genetically distinct populations 8 

forming 12 major regional clusters, corresponding well to the 148 self-identified 9 

population labels. This clustering is based on an individual level measure of 10 

haplotype similarity, which is sensitive to small and recent genetic 11 

differentiation, and forms the basis for the groupings used in the scans of natural 12 

selection. 13 

 14 

The importance of geography. The dense geographic coverage of our 15 

samples allowed us to investigate the importance of geographic barriers in 16 

shaping gene flow. We did so by interpolating genetic variation spatially, 17 

focussing on measures of pairwise similarity between genomes in pairs of 18 

populations (Supplementary Section 2.2.2). We considered several similarity 19 

measures (Supplementary Section 2.2.2) and report gradients of allele 20 

frequencies in Figure 2. We validated the approach using isolation by distance 21 

patterns across major gradients and migration surfaces reconstructed using 22 

EEMS33. The main features are the East-West Eurasian split near the Ural 23 

Mountains, and the Tibetan plateau, as expected. To formally link these patterns 24 

to geographic features, we quantified the effects of elevation, temperature, and 25 

precipitation on genetic gradients while controlling for pairwise geographic 26 

distances (Supplementary section 2.2.2). This analysis identifies precipitation 27 

and elevation as environmental variables that correlate most strongly with the 28 

genetic gradients estimated from allele frequencies (inset of Figure 2).  29 

Differentiation in Eurasia after the expansion out of Africa. We 30 

observe the well-documented decrease in the number of heterozygous sites per 31 

genome as a function of distance from East Africa (Figure 1); a pattern consistent 32 

with a model of serial founder events during the peopling of Eurasia20,21.  33 
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While this pattern is relatively smooth, there are a number of discontinuities that 1 

potentially highlight geographic regions that acted as barriers during the 2 

expansion. Such discontinuities can be visualised by plotting the outgroup f3 3 

statistic13,34 in the form f3(X, Y; Yoruba), which here measures shared drift 4 

between non-African populations X and Y from Yoruba as an African outgroup 5 

(Supplementary Section 2.2.6, Figures S2.2.6-I-II). We tested all possible 6 

combinations of X and Y within our Diversity Set and 25 published aDNA 7 

genomes. While recapitulating the main groupings inferred by ADMIXTURE and 8 

fineSTRUCTURE, the outgroup f3 statistic also flags populations that have 9 

experienced additional drift. For example, the f3 values are similar for 10 

comparisons within Caucasus populations and between populations from 11 

Europe and Caucasus. The f3 values for comparisons within Europe, however, are 12 

significantly higher. These findings are consistent with a simple model of 13 

population splits within the Caucasus dating to approximately the same time as 14 

the split between European and Caucasus populations35. 15 

An excess of old haplotypes in Sahul. Our fineSTRUCTURE analysis 16 

highlights an excess of shorter African haplotypes in Papuans, as well as 17 

Philippine Negritos, compared to all other non-African populations. This pattern 18 

remains after correcting for potential confounders such as phasing errors and 19 

sampling bias (Figure S2.2.1-VII, Supplementary Section 2.2.1). A natural 20 

interpretation from population genetics theory is that these shorter shared 21 

haplotypes reflect an older population split36.  22 

We further investigated whether Sahul populations differ from other Eurasian 23 

populations by estimating population splits using MSMC10. We focussed on 23 24 

populations (Supplementary Figure 2.2.3-II), chosen to represent major genetic 25 

groups (Supplementary Section 2.2.3) and used a novel method to predict all 26 

pairwise split times (Methods, Supplementary Figure 2.2.3-III). The split of all 27 

mainland Eurasian populations from Yorubans consistently appears as a gradual 28 

process with a median time ~75 kya (Table S2.2.3-I, Figure 3A). Importantly, 29 

Papuans are an exception to this broad picture, showing a deeper median split 30 

time from Yoruba at around 90 kya; a conclusion robust to phasing artefacts (See 31 

Methods). The Papuan-Eurasian MSMC split time of ~40 kya is slightly older 32 

(Figure S2.2.3-III) than splits between West Eurasian and East Asian populations 33 
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(~30 kya). The Papuan split times from Yoruban and Eurasian are incompatible 1 

with a simple bifurcating population tree model, implying that modern Papuan 2 

individuals are admixed between different topologies. Some of their genome is 3 

an outgroup to most modern Africans and Eurasians, while the rest of their 4 

genome shares a history with Eurasia. 5 

Ancient or modern introgression in Sahul? At least two main models 6 

could account for Sahul populations having older split dates from Africa than 7 

mainland Eurasians in our sample: 8 

a) Admixture in Sahul with an archaic human population that split from modern 9 

humans either before or at the same time as did Denisova and Neanderthal. This 10 

introgressing population could potentially have diverged from the available 11 

aDNA samples more than 350 kya. 12 

b) Admixture in Sahul with a modern human population (xOoA) that left Africa 13 

well after the split between modern humans and Neanderthals, but before the 14 

main expansion of modern humans in Eurasia (main OoA). 15 

We performed a large number of tests to distinguish these scenarios. Because the 16 

introgressing lineage has not been observed with aDNA, standard methods are 17 

limited in their ability to distinguish between these hypotheses. Our approach 18 

therefore relies on building multiple lines of evidence using haplotype-based 19 

MSMC and fineSTRUCTURE comparisons. The two hypotheses are not mutually 20 

exclusive and we can only hope to identify the source of the strongest 21 

contribution. 22 

Single site statistics cannot identify the source of introgression. We 23 

first tried traditional statistical approaches, most notably Patterson’s D 24 

statistic13,23, which we applied to all possible tree relationships between our 25 

samples from Africa, Sahul and Eurasia (Figure S2.2.7-I). The best-supported 26 

topology among those tested shows a contribution to the Sahul genome from a 27 

population (xOoA) that diverged early from West Africans, Baka and Mbuti. This 28 

predates the separation of the ancestors of the modern Africans and Eurasians in 29 

our dataset (topology 3 in Figure S2.2.7-I) as previously proposed37. However, 30 

when including the documented Denisova admixture into the analysis38 and 31 

allowing Denisova introgressed segments to have strongly (350 kya) diverged 32 

from the observed Denisova genome, the D-based test could not discriminate 33 
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between a putative xOoA and the Denisova genomic components 1 

(Supplementary Section S2.2.7). 2 

We also counted non-African Alleles (nAAs), i.e. derived alleles present outside 3 

Africa, but absent in Africans and also archaic humans (Altai Neanderthal and 4 

Denisova genomes) (Figure S2.2.7-II). When compared to Eurasians, both Sahul, 5 

including two admixed Australian Aborigine genomes, and Philippine Negrito 6 

samples do show an excess of nAAs. This is independent of potential 7 

demographic confounders, such as inbreeding or drift (Figure S2.2.7-III). Again, 8 

the excess of nAAs could be explained by admixture with xOoA, which had more 9 

time to accumulate such alleles. However, simulations show that, when allowing 10 

sufficient within-Denisova divergence time, archaic introgression could generate 11 

the same pattern. In this case, we fail to fully mask the derived alleles in Papuans 12 

originating from the introgressing Denisova by relying only on a single Denisova 13 

sample (Figure S2.2.7-IV). Our D-based and nAAs results and related simulations 14 

show empirically that these kind of single site statistics lack the power to 15 

discriminate between the hypothesised scenarios: either Denisova introgression 16 

or a xOoA scenario would result in an increase of non-African derived alleles in 17 

Papuans. The extent of such increase, at the genome-wide level, is a function of 18 

the admixture proportion and divergence time of the introgressing population 19 

from the main human lineage. Therefore, two admixture events with unknown 20 

proportions and time depth are equally able to explain the data and cannot be 21 

disentangled by single site statistics alone. 22 

Haplotype-based analyses indicate an early modern human 23 

expansion signature in Sahul. Using a previously published method39, we 24 

located and masked putatively introgressed Denisova haplotypes from the 25 

genomes of Papuans. We also tried symmetrically phasing Papuans and 26 

Eurasians (see Methods) to evaluate the contribution of phasing errors to the 27 

observed shift in MSMC split dates. Neither modification (Figure 3A, 28 

Supplementary Section 2.2.9, Table S2.2.9-I) changed the estimated split time 29 

(based on MSMC) between Africans and Papuans, suggesting that Denisova 30 

admixture or phasing artefacts are not the main driver of this pattern (See 31 

Methods, Supplementary Section 2.2.8, Figure S.2.2.8-I, Table 2.2.8-I). We further 32 

tested the possible role of Denisova admixture by extensive coalescent 33 
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simulations (Figures S2.2.8-I-II). Without assuming an implausibly large 1 

contribution from a Denisova-like population, we could not simulate the large 2 

Papuan-African and Papuan-Eurasian split times inferred from the data. 3 

Assuming that MSMC dates behave linearly under admixture, the results also 4 

indicate that the hypothesised xOoA lineage may have split from most Africans 5 

as early as 120 kya. This assumption is validated in Supplementary Section 2.2.4 6 

by checking that split dates behave as a mixture in known admixture events. 7 

However, for very old divergences the linearity does not hold true as we 8 

demonstrate in Supplementary Section 2.2.8. Here we show with additional 9 

simulations that the observed shift in the African-Papuan MSMC split curve can 10 

be qualitatively reproduced when including a 4% genomic component that 11 

diverged 120 kya from the main human lineage within Papuans, but that a 12 

similar quantity of Denisova admixture does not produce any significant effect 13 

(Figure S2.2.8-III). Together with the previous simulations, this favours a small 14 

presence of xOoA lineages rather than Denisova admixture alone as the likely 15 

cause of the observed deep African-Papuan split.   16 

We further tested our hypothesised xOoA model by focussing on genomic 17 

regions in Papuans that have African ancestry not found in other Eurasian 18 

populations. We reran fineSTRUCTURE on an “ancient diversity panel”, a subset 19 

of the Diversity Set with the addition of the Denisova, Altai Neanderthal and the 20 

Human Ancestral Genome sequences2, with sites that are heterozygous in 21 

archaic humans removed. FineSTRUCTURE infers chunks of the genome that 22 

have a single inferred most recent common ancestor (MRCA). An MRCA between 23 

different populations occurs either because the lineage first coalesces before two 24 

populations split, or because of a more recent introgression event. Papuan 25 

genomic chunks that have an African MRCA assignment in the sample, like the 26 

genome-wide nAAs results above, had an elevated level of non-African derived 27 

alleles compared to such chunks in Eurasians. They therefore have an older 28 

mean coalescence time with our African samples, as would be expected if 29 

Papuans contained genetic contributions from a xOoA lineage. 30 

On the other hand there may also be a deep divergence between the 31 

sampled Denisova and the one introgressing into modern humans. We were 32 

hence concerned that some introgressed archaic haplotypes have an MRCA with 33 
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Africans due to coalescence in the ancestral population, and hence are assigned 1 

to be African. However, we can resolve the age and hence origin of these chunks 2 

by their sequence similarity with modern Africans. To account for the archaic 3 

introgression we modelled these genomic portions as a mixture of chunks 4 

assigned African or Denisova in Eurasians, as well as chunks assigned Denisova 5 

in Papuans. Chunks are modelled (see Methods) in terms of the distribution of 6 

length and mutation rate, which is characterised in terms of the density of non-7 

African derived alleles, which are nAAs that are fixed ancestral in our Africans. 8 

This approach captures lineages that coalesce before the 9 

human/Denisova split since the properties of these chunks should not depend on 10 

the population they were found in, and since Eurasians (specifically Europeans) 11 

have not experienced Denisova admixture. By this way we could disentangle the 12 

various introgressing lineages by looking at their mutation density. From the 13 

discrepancy between the distribution of Papuan chunks assigned to Africans and 14 

the fitted distribution (Figure 3B-D) we can identify the characteristics of xOoA 15 

chunks (Supplementary Section 2.2.10). Including a xOoA component was 16 

necessary to account for the number of short chunks with “moderate” mutation 17 

density, i.e. higher than Eurasian chunks assigned African but significantly lower 18 

than those assigned Denisova in either Eurasians or Papuans. Inferred xOoA 19 

chunks have 1.5 times more nAAs than that observed in chunks assigned to be 20 

Eurasian, compared to 4 times for chunks assigned to be Denisova. These 21 

proportions can be interpreted as a relative mean time to the most recent 22 

common ancestor, implying a xOoA-Africa split 1.5 times older than the main 23 

OoA, consistent with our MSMC findings (Supplementary Section 2.2.4). 24 

We went on to estimate the proportion of xOoA in Papuan chunks 25 

assigned as both Eurasian (0.1%, 95% CI 0-2.6) and Papuan (4%, 95% CI 2.9-4.5) 26 

(Supplementary Section 2.2.10), by using the estimated mutation density in 27 

xOoA. To do this we used the same mixture model as above (additionally 28 

considering Eurasian chunks assigned to be Eurasian) to obtain a xOoA-free 29 

prediction. When this predicted too few mutations, we assumed that the 30 

difference is due to the xOoA admixture. Adding up the contributions from all 31 

assignments of chunks leads to a genome-wide estimate of 1.9% xOoA (95% CI 32 

1.5-3.3) in Papuans.  33 
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Our results consistently point towards a predominantly modern human 1 

source for the abundance of alleles found in Papuans that are absent in Africans 2 

and are derived according to the ancestral human sequence. It follows that the 3 

genome of modern Papuans is best described as consisting of two human 4 

components. The predominant component is an early split from the major 5 

migration out of Africa that colonized Eurasia while the lesser component is 6 

derived from an earlier, otherwise extinct, dispersal. 7 

 8 

Adaptation outside Africa 9 

 10 

Humans faced a number of ecological challenges as they encountered new 11 

environments outside Africa. To study the nature and extent of any resultant 12 

adaptation, we explored the distribution of functional variants among 13 

populations, performed tests of purifying, balancing and positive selection and, 14 

finally, identified loci that showed the highest allelic differentiation among 15 

groups (Supplementary Section 3). It is important to emphasise that our 16 

sampling strategy may be underpowered to detect certain types of selection. 17 

Despite this, strong signals are present in the data.  18 

Relationship to other findings. The results of our positive selection 19 

tests corroborated the identification of a number of selective sweeps that are 20 

well supported by functional evidence (Table S3.3.4-I), suggesting that, 21 

regardless of our sample pooling strategy, our dataset is able to detect region-22 

specific signals of haplotype homozygosity and allelic differentiation. Our tests 23 

for purifying selection are also consistent with previous studies2,40,41, in terms of 24 

both the lack of differential purifying selection between Africans and non-25 

Africans, as well as the distribution of alleles across frequency classes and 26 

populations (Supplementary Section 3.1, Figure S3.1-I,II; Table S3.1-IV,VI).  27 

Novel findings. Our results show novel signals of purifying, balancing 28 

and positive selection. With regard to purifying selection, we report evidence for 29 

significant differences in the strength of selection in systematically defined 30 

phenotype-related sets of genes. We infer more purifying selection in Africans in 31 

genes involved in pigmentation (bootstrapping p value for RX/Y-scores < 0.05 ) 32 

(Figure S3.5-II) and immune response against viruses (p < 0.05), whilst more 33 
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purifying selection was indicated on olfactory receptor genes in Asians (p < 0.01 1 

in the Southeast Asia Island population, p < 0.05 in the Southeast Asia Mainland, 2 

South American and Northeast Siberia populations)  (Table S3.1.1-II). A genome-3 

wide scan for ancient balancing selection in populations grouped into 12 4 

geographical regions according to their genetic clustering (Supplementary 5 

Section 3.2) revealed a significant enrichment (false discovery rate q-value < 6 

0.01) for antigen processing/presentation, antigen binding, and MHC and 7 

membrane component genes (Tables S3.3.2-I-III). The HLA (HLA-C)-associated 8 

gene (BTNL2) was the top candidate in eight of 12 geographic regions (Table 9 

S3.3.1-I).  10 

Our positive selection scans and variant-based analyses (Supplementary 11 

Sections 3.2 and 3.2) revealed many novel signals, especially in the less-studied 12 

populations, a subset of which is highlighted in Table 1. Benefiting from the 13 

availability of high resolution sequencing information, we were also able to 14 

identify new potentially causal variants in both novel and previously-detected 15 

positive selection signals. 16 

Given the geographic distribution of our samples, we were particularly 17 

interested in assessing whether genes associated with phenotypes highly-18 

correlated to local environmental features, such as temperature, UV exposure, 19 

diet, and pathogen load, are systematically overrepresented in the signals of 20 

positive selection in the sampled populations (Supplementary Section 3.4; Tables 21 

S3.5-I-VI). All categories reported as enriched have chi-square p-values less than 22 

0.01. We observed that genomic regions containing pigmentation-related genes 23 

were overrepresented in some of our positive selection tests in West Eurasian 24 

populations (Table S3.5-I), while those containing genes relating to 25 

thermoregulation were enriched, albeit for different genes, in Africans and 26 

Central Siberians (Table S3.5-II). Unlike Khrameeva and colleagues42, we do not 27 

observe an enrichment of fatty acid metabolism (or specifically lipid catabolism) 28 

genes in the positive selection tests for our European samples. We do, however, 29 

observe enrichment of such genes in Island Southeast Asian and Central Siberian 30 

populations (Table S3.5-IV, Figure S3.5-IV).  31 

With regard to immunity, we found enrichment of bacterial immunity genomic 32 

windows in Island Southeast Asians (Table S3.5-V), which was lost after the 33 
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exclusion of Philippine Negritos from the tests, suggesting that the observation 1 

partially reflects elevated selection in these hunter-gatherer groups. 2 

Furthermore, both western Asian and the South Asian groups showed significant 3 

enrichment in innate immune response annotations based on Tajima's D statistic 4 

(Table S3.5-VI, Figure S3.5-V), which was the only category that showed any 5 

enrichment by that test. This is consistent with selection represented by these 6 

signatures being older than those detected by the haplotype homozygosity tests. 7 

The fact that most innate immunity signals are shared between at least two 8 

populations supports this interpretation.  9 

 10 

Discussion 11 

 12 

A valuable resource. The collection of worldwide high-coverage 13 

genomes presented here has allowed us to: (i) provide a finer resolution 14 

description of human genetic diversity; (ii) identify the genetic trace of a so-far 15 

unidentified component in Sahul populations; and (iii) increase the number of 16 

candidate genome regions that have been subjected to distinct selective 17 

pressures on physiological processes. The latter is key to unravelling our 18 

adaptation history. The data and inferences presented here provide the 19 

groundwork to refine hypotheses about human evolution that are essential to 20 

the understanding of modern patterns of genetic diversity, disease vulnerability 21 

and distribution. 22 

Methodological difficulties. Existing methods based on single-site 23 

analyses seemed unable to resolve our hypotheses about Sahul and could not be 24 

used to distinguish between a small fraction of ancient admixture and a larger 25 

fraction of more recent admixture. The power of these approaches in practice 26 

depends on appropriate ancient samples being available. The behaviour of 27 

haplotype-based inference approaches are relatively poorly characterised and 28 

there is no formal inferential framework available to address our hypotheses. 29 

However, haplotypes preserve more information on our evolution as they can 30 

persist for long periods in finite populations43  at lengths that are detectable with 31 

sequence variation data (Supplementary Section 2.2.13). They allow us to 32 

calibrate drift by considering the rate of non-African alleles accumulated in 33 
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segments of known length, providing us with a way to estimate the age of splits 1 

from Africa. 2 

A further confounder is that detecting Denisova and Neanderthal introgression 3 

mostly relies on matching to the aDNA data available, which may be a poor proxy 4 

for the actual introgressed DNA. Other possible confounders could involve a 5 

shorter generation time in Papuan and Philippine Negrito populations44, 6 

different recombination processes, or alternative demographic histories that 7 

have not been investigated here. We therefore strongly encourage the 8 

development of new model-based approaches that can explain the haplotype 9 

patterns described here. 10 

Evidence for an earlier exit out of Africa? Our estimate of the split 11 

between African and Eurasians is in broad agreement with previous reports 12 

based on mtDNA and Y chromosome45-47 and full genome sequencing data5,10, 13 

and is consistent with a major OoA expansion (likely through the Levant5 and/or 14 

Arabia15) after that date. Other methods rescaled to the lower mutation rate used 15 

here14 suggest slightly older dates for that split28,48. A recent IBS tract sharing-16 

based method11, when similarly rescaled, yields a remarkably similar split time 17 

of ~80 kya. 18 

Our analyses, however, provide clear evidence that the Sahul populations 19 

sampled here, and possibly other populations from the region that were not 20 

included in our study design, possess an additional genetic signal of 21 

introgression from an uncharacterised hominin. We used a series of tests to try 22 

to identify whether this hominin came from a) an archaic lineage or b) an earlier 23 

out-of-Africa, modern human branch. Current single-site approaches could not 24 

distinguish these hypotheses, but our haplotype-based approaches all point 25 

towards a small amount of admixture (at least 2%) from an earlier modern 26 

human dispersal out-of-Africa around 120 kya (Figure 4) whose genetic 27 

signature has not been identified in any other extant population. We also show 28 

(see Methods) that this is not at odds with evidence that show that Sahul shares 29 

Y chromosome and mtDNA lineages with Eurasians, as there is a high probability 30 

that older Y and mtDNA lineages would be lost as a result of random genetic 31 

drift, as was also argued by Groucutt and others colleagues15,49. 32 
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The inferred xOoA split time (~120 kya) corresponds with fossil and 1 

archaeological evidence for an early expansion of Homo sapiens from Africa15,19. 2 

Furthermore, Kuhlwilm and colleagues50 recently identified modern human 3 

admixture into the Altai Neanderthal before 100 kya. This is consistent with 4 

modern human presence outside of Africa well before the main OoA expansion 5 

after 75 kya. Further studies will confirm if the xOoA we propose here and the 6 

early modern humans that admixed with ancestors of Altai Neanderthals were 7 

part of the same early expansion out of Africa. Similarly, we are agnostic to the 8 

geographic extent of such an early event. Indeed, archaeological evidence for 9 

modern human colonization of Sahul is no earlier than ca. 60-50 kya51,  and 10 

perhaps as late as ca. 47 kya52. The preponderance of genomic evidence, in fact, 11 

indicates that early human expansions did not leave detectable genetic traces in 12 

most contemporary Eurasian populations, perhaps as a consequence of 13 

substantial population replacements, as indicated by aDNA from Oase, 14 

Romania53. Climatic changes over the last 120 thousand years, including glacial 15 

advances and significant fluctuations of wet and dry environmental cycles, likely 16 

influenced population structure across Eurasia54, perhaps leading to lineage 17 

extinctions and regional extirpations. The unexpected genetic traces of xOoA in 18 

Papuans, shown here for the first time, suggest that unravelling the evolutionary 19 

history of our own species will require the recovery of aDNA from additional 20 

fossils, and further archaeological investigations in under-explored regions of 21 

Eurasia. 22 

 23 

Data availability 24 

The newly sequenced genomes were deposited in the ENA archive under 25 

accession number ENAXXXX and are also freely available through the Estonian 26 

Biocentre website (www.ebc.ee/free_data). 27 
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Figure and Table Legends 1 

 2 

Table 1 Subset of novel positive selection Findings in our 12 macro-regional 3 
groups defined using fineSTRUCTURE. 4 
 5 
Figure 1 Panel A: Map of samples location highlighting Diversity/Selection Set; 6 
Panel B: ADMIXTURE plot (K=8 and 14) which relates general visual inspection 7 
of genetic structure to studied populations and their region of origin; Panel C: 8 
Sample level heterozygosity is plotted against distance from Addis Ababa. The 9 
trend line represents only non-African samples. The inset shows the waypoints 10 
used to arrive at the distance in kilometres for each sample. 11 
 12 
Figure 2 Spatial visualisation of genetic barriers inferred from genome-wide 13 
genetic distances, quantified as the magnitude of the gradient of spatially 14 
interpolated allele frequencies (value denoted by colour bar; grey areas have 15 
been land during the last glacial maximum but are currently under water).  Here 16 
we used a novel spatial kernel smoothing method based on the matrix of 17 
pairwise average heterozygosity. Inset: partial correlation between magnitude 18 
of genetic gradients and combinations of different geographic factors, elevation 19 
(E), temperature (T) and precipitation (P), for genetic gradients from 20 
fineSTRUCTURE (red) and allele frequencies (blue). This analysis (see 21 
Supplementary Section 2.2.2 for details) shows that despite the large number of 22 
prehistoric movements across Eurasia, genetic differences within this region 23 
have been strongly shaped by physical barriers such as mountain ranges, 24 
deserts, and open water (such as the Wallace line). 25 
 26 
Figure 3 Panel A: MSMC split times plot. The Yoruba-Eurasia split curve shows 27 
the mean of all Eurasian genomes against one Yoruba genome. The grey area 28 
represents top and bottom 5% of runs. We chose a Koinanbe genome as 29 
representative of the Sahul populations.  Panels B-D: Decomposition of the 30 
ChromoPainter inferred African chunks in Papuans. Panel B: Semi-parametric 31 
decomposition of the joint distribution of chunk lengths and non-African derived 32 
allele rate per SNP, showing the relative proportion of chunks in K=20 33 
components of the distribution, ordered by non-African derived allele rate, 34 
relative to the overall proportion of chunks in each component. The four datasets 35 
produced by considering (African/Denisova) chunks in (Europeans/Papuans) 36 
are shown with our inferred "extra Out-of-Africa xOoA" component. Panel C: The 37 
reconstruction of African chunks in Papuans using a mixture of the other data 38 
(red) and adding the xOoA component (black). Panel D: The properties of the 39 
components in terms of non-African derived allele rate, on which the 40 
components are ordered, and length. 41 

 42 

Figure 4 A subway map figure illustrating, as suggested by the novel results 43 
presented here, the model of an early, extinct Out-of-Africa (xOoA) entering the 44 
genome of Sahul populations at their arrival in the region. Given the overall small 45 
genomic contribution of this event to the genome of modern Sahul, we could not 46 
determine whether the documented Denisova admixture (question marks) and 47 
putative multiple Neanderthal admixtures took place along this extinct OoA.  48 
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Methods 1 

Data Preparation: In the final dataset, we retained only one second 2 

(Australians, to make use of all the available samples)- and five third-degree 3 

relatives pairs (Table S1.7-I). All genomes were annotated against the Ensembl 4 

GRCh37 database and compared to dbSNP Human Build 141 and Phase 1 of the 5 

1000 Genomes Project dataset2 (Supplementary Sections 1.1-6). We found 6 

10,212,117 new SNPs, 401,911 of which were exonic. As expected from our 7 

sampling scheme, existing lists of variable sites have been extended mostly by 8 

the Siberian, South-East Asian and South Asian genomes, which contribute 9 

89,836 (22.4%), 63,964 (15.9%) and 40,758 (10.1%) of the new exonic variants 10 

detected in this study.  11 

Compared to the genome-wide average, we see fewer heterozygous sites on 12 

chromosomes 1 and 2, and an excess on chromosomes 16, 19 and 21. This 13 

pattern is independent of simple potential confounders, such as rough estimates 14 

of recombination activity and gene density (Supplementary Section 1.8), and 15 

mirrors the inter-chromosomal differences in divergence from chimpanzee55, 16 

suggesting large-scale differences in mutation rates among chromosomes. We 17 

confirmed this general pattern using 1000Genomes Project data (Supplementary 18 

Section 1.8). 19 

 20 

Geographic gradient analyses. We used a Gaussian kernel smoothing 21 

(based on the shortest distance on land to each sample) to interpolate genetic 22 

patterns across space. Averaging over all markers, we obtained an expression for 23 

the mean square gradient of allele frequencies in terms of the matrix of genetic 24 

distance between pairs of samples (Supplementary Section 2.2.2). This provides 25 

a simple way to identify spatial regions that contribute strongly to genetic 26 

differences between samples, and can be used, in principle, for any measure of 27 

genetic difference (for fineSTRUCTURE data, we used negative shared haplotype 28 

length as a measure of differentiation). 29 

 30 

To quantify the link between the magnitude of genetic gradients (from 31 

fineSTRUCTURE and allele frequency data) and geographic factors, we fitted a 32 

generalised linear model to the sum of genetic magnitude gradients on the 33 
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shortest paths between samples to elevation, minimum quarterly temperature, 1 

and annual precipitation summed in the same way, controlling for path length 2 

and spatial random effects (Supplementary Section 2.2.2), and calculated partial 3 

correlations between genetic gradient magnitudes and geographic factors. 4 

 5 

Finestructure Analysis. FineSTRUCTURE32 was run as described in 6 

Supplementary Section S2.2.1. Within the 106 genetically distinct genetic groups, 7 

labels were typically genetically homogeneous - 113 of the 148 population labels 8 

(76%) were assigned to only one ‘genetic cluster’. Similarly, genetic clusters 9 

were typically specific to a label, with 66 of the 106 ‘genetic clusters’ (62%) 10 

containing only one population label. 11 

Correction for phasing errors: To check whether phasing errors could produce 12 

the shorter Papuan chunks, we focussed on regions of the genome that had an 13 

extended (>500Kb) run of homozygosity.  We ran ChromoPainter for each 14 

individual on only these regions, meaning each individual was only painted 15 

where it had been perfectly phased.  This did not change the qualitative features 16 

(Supplementary Section 2.2.1). 17 

Removal of similar samples: Papuans are genetically distinct from other 18 

populations due to tens of thousands of years of isolation. We wanted to check 19 

whether African chunk lengths were biased by the inclusion of a large number of 20 

relatively homogeneous Eurasians with few Papuans. To do this we repeated the 21 

N=447 painting allowing only donors from dissimilar populations, including only 22 

individuals who donated <2% of a genome in the main painting. This did not 23 

change the qualitative chunk length features (Supplementary Section 2.2.1). 24 

Inclusion of ancient samples: We ran our smaller individual panel with (N=109) 25 

and without (N=106) ancient samples (Denisova, Neanderthal and ancestral 26 

human). This did not change the qualitative chunk length features 27 

(Supplementary Section 2.2.1). 28 

 29 

MSMC, Denisova masking, simulations of alternative scenarios and 30 

assessment of phasing robustness. Genetic split times were initially calculated 31 

following the standard MSMC procedure10, and subsequently modified as 32 

follows. To estimate the effect of archaic admixture, putative Denisova 33 
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haplotypes were identified in Papuans using a previously published method39 1 

and masked from all the analysed genomes. Particularly, whether a putative 2 

archaic haplotype was found in heterozygous or homozygous state within the 3 

chosen Papuan genome, the “affected” locus was inserted into the MSMC mask 4 

files and, hence, removed from the analysis. 5 

We note that a fraction of the Denisova and Neanderthal contributions to the 6 

Papuan genomes may be indistinguishable, due to the shared evolutionary 7 

history of these two archaic populations. As a result, some of the removed 8 

“Denisova” haplotypes may have actually entered the genome of Papuans 9 

through Neanderthal. Regardless of this, our exercise successfully shows that  10 

the MSMC split time estimates are not affected by the documented presence of 11 

archaic genomic component (whether coming entirely from Denisova or partially 12 

shared with Neanderthal). 13 

We further excluded the role of Denisova admixture in explaining the deeper 14 

African-Papuan MSMC split times through coalescent simulations (using ms to 15 

generate 30 chromosomes of 5 Mbp each, and simulating each scenario 30 16 

times). These showed that the addition of 4% Denisova lineages to the Papuan 17 

genomes does not change the MSMC results, while the addition of 4% xOoA 18 

lineages recreates the qualitative shift observed in the empirical data. 19 

Phasing artefacts were also taken into account as putative confounders of the 20 

MSMC split time estimates. We re-run MSMC after re-phasing one Estonian, one 21 

Papuan and 20 West African and Pygmies genomes in a single experiment. By 22 

this way we ruled out potential artefacts stemming from the excess of Eurasian 23 

over Sahul samples during the phasing process. Both the archaic and phasing 24 

corrections yielded the same split time as of the standard MSMC runs. 25 

 26 

Emulation of all pairwise MSMC split times. We confirmed that none of 27 

the other populations behaved as an outlier from those identified in the N=22 28 

full pairwise analysis by estimating the MSMC split times between all pairs. We 29 

chose 9 representative populations (including Papuan, Yoruba and Baka) from 30 

the 22, and compared each of the 447 diversity panel genomes to them.  We 31 

learn a model for each individual  not in our panel, 32 

 for , 33 
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where the positive mixture weights  sum to 1 and are otherwise learned from 1 

the  observations which we have data under quadratic loss. We can 2 

then predict the unobserved values 3 

 

Examination of this matrix (Supplementary Section S2.2.3, Table S2.2.3-III) 4 

implies no other populations are expected to have unusual MSMC split times 5 

from Africa. 6 

 7 

Mixture model for African haplotypes in Papuans. Obtaining 8 

haplotypes from painting: We define as African or Archaic chunk in Eurasians or 9 

Papuans a genomic locus spanning at least 1000bp, and showing SNPs that were 10 

assigned by chromopainter a 50% chance of copying from either an African or 11 

Archaic genome, respectively. For each chunk we then calculated the number of 12 

non-African mutations, defined as sites found in derived state in a given chunk 13 

and in ancestral state in all of the African genomes included in the present study.  14 

Modelling: We used a non-parametric model for the joint distribution of length 15 

and non-African derived allele mutation rate of chunks.  We fit K (=20) 16 

components to the joint distribution. Each component has a characteristic length 17 

, variability  and mutation rate . A chunk of length  with  such 18 

mutations from component  has the following distribution: 19 

, , ~log-Normal( , ) 

Binomial(  

This model for chunk lengths is motivated by the extreme age of the split times 20 

we seek to model. Recent splits would lead to an exponential distribution of 21 

haplotype lengths. However, due to haplotype fixation caused by finite 22 

population size, very old splits have finite (non-zero) haplotype lengths. 23 

Additionally, the data are left-censored since we cannot reliably detect chunks 24 

that are very short. We note that whilst this makes a single component a 25 

reasonable fit to the data, as K increases the specific choice becomes less 26 

important.  27 

We then impose the prior  and use the Expectation-28 

Maximization algorithm to estimate the mixture proportions  29 
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along with the maximum likelihood parameter estimates . We do this 1 

for the four combinations of African (AFR) and Denisova (DEN) chunks found in 2 

Papuans (PNG) or Europeans (EUR), in order to learn the parameters.  3 

Supplementary Section S2.2.10 describes this in more detail. We then describe 4 

the distribution of chunks for each class  of chunk in terms of the expected 5 

proportion of chunks found in each component,  6 
′

′  where ′ , 7 

where  is the number of chunks of class .   is a vector of the proportions 8 

from each of the  components. 9 

 10 

Single-out-of-Africa model: We fit African chunks in Papuans as a mixture of the 11 

others in a second layer of mixture modelling:  12 

 

where  sum to 1.  This is straightforward to fit. 13 

 14 

xOoA model:  We jointly estimate an additional component  and the 15 

mixture contributions  under the mixture  16 

 

This is non-trivial to fit. We use a penalisation scheme to simultaneously ensure 17 

we a) obtain a valid mixture for , b) give a prediction  that is also a valid 18 

mixture, c) leave little signal in the residuals, and d) obtain a good fit. Cross-19 

validation is used to obtain the optimal penalisation parameters (  and ) with 20 

the loss function: 21 

loss  

where   are the residuals in each component, 22 

 (for a valid mixture) and  (for requirement c, good 23 

solutions will have similar residuals across components). The loss is minimised 24 

via standard optimization techniques. Supplementary Section S2.2.10 details 25 

how initial values are found and explores the robustness of the solution to 26 
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changes in A and B - the results do not change qualitatively for reasonable 1 

choices of these parameters, and the mixtures are valid to within numerical 2 

error. 3 

Genome-wide xOoA estimation:  We used the estimated xOoA derived allele 4 

mutation rate estimate  to estimate the xOoA contribution in haplotypes 5 

classed as Eurasian or Papuan by ChromoPainter. First we obtained estimates of 6 

 and  using the single out-of-Africa model above, additionally 7 

allowing a EUR.EUR contribution. We then estimate  using the observed 8 

mutation rate  and that predicted under the mixture model  by rearranging 9 

the mixture: 10 

 

Estimates less than zero are set to 0. The genome wide estimate is obtained by 11 

weighting each  by the proportion of the genome that was painted with that donor. 12 

Neanderthal and Denisova chunks were assumed to be proxied by PNG.DEN (0% xOoA 13 

by assumption); African chunks by PNG.AFR; Papuan and Australian by PNG.PNG and all 14 

other chunks by PNG.EUR.  We obtain confidence intervals by bootstrap resampling of 15 

haplotypes for each donor/recipient pair. 16 

 17 

Y chromosome and mtDNA haplopgroup analysis. The presence of an 18 

extinct xOoA trace in the genome of modern Papuans may seem at odds with 19 

analyses of mtDNA and Y chromosome phylogenies, which point to a single, 20 

recent origin for all non-African lineages (mtDNA L3, which gives rise to all 21 

mtDNA lineages outside Africa has been dated at ~70 kya,45,46). However, 22 

uniparental markers inform on a small fraction of our genetic history, and a 23 

single origin for all non-African lineages does not exclude multiple waves OoA 24 

from a shared common ancestor. We show analytically (Supplementary Section 25 

2.2.12) that, if the xOoA entered the Papuan genome >40 kya, their mtDNA and Y 26 

lineages could have been lost by genetic drift even assuming an initial xOoA 27 

mixing component of up to 35%. Similar findings have been reported recently15. 28 

  29 
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Table 1 Eurasian subset of variants highlighted by positive selection  tests 
            

Gene SNP 
Variant 

Type Test Population Phenotype 
FADS2 rs2524296 intronic di Wsi Fatty acid desaturation 

ZNF646 rs749670 missense dDAF,DIND CSi Lipid metabolism, bile synthesis 
PPARA rs6008197 missense iHS,nSL,TD,DIND SoA Lipid metabolism 
GANC rs8024732 missense iHS,DIND SoA Carbohydrate metabolism 

PKDREJ rs6519993 missense iHS,nSL,TD,DIND SoA Sperm-Receptor, kidney disease 
CSMD1  rs7816731 non-coding di Wsi Blood pressure 
LYPD3 rs117823872 non-coding di Wsi Wound healing

POU2F3 rs882856 missense dDAF WEu Wound healing 
B9D1 rs4924987 missense dDAF EEu Ciliogenesis

PCDH15 rs4935502 missense dDAF CSi Ciliogenesis 
TMEM216 rs10897158 missense dDAF Wsi Ciliogenesis

PLCB2 rs936212 missense dDAF NSi Ciliogenesis 
MYO18B rs2236005 missense dDAF SeI Motor activity 

FLNB rs12632456 missense dDAF SeI Motor activity 
TTN rs10497520 missense dDAF MiE Motor activity 

Note the abbreviations of the population group names are according to Table S2.2 

iHS,nSL, or TD, indicates that the variant is a from a top 1% window by that test for the indicated population. 
DIND indicates that the variant is significantly (>5SD) above the neutral background by the DIND test (See 
Supplementary Section 3) 
di indicates that the variant was in the top 12 of the most highly divergent SNVs by the di score in each of the 
twelve population groups (See Supplementary Section 3)
dDAF indicates that the variant was in the top 20 most highly differentiated SNPs in its class in a given 
comparison (See Supplementary Section 3)
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