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Abstract: Extraction of motifs from biological sequences is among the 

frontier research issues in bioinformatics, with sequential patterns 

mining becoming one of the most important computational techniques 

in this area. A number of applications motivate the search for more 

structured patterns and concurrent protein motif mining is considered 

here. This paper builds on the concept of structural relation patterns and 

applies the Concurrent Sequential Patterns (ConSP) mining approach to 

biological databases. Specifically, an original method is presented using 

support vectors as the data structure for the extraction of novel patterns 

in protein sequences. Data modelling is pursued to represent the more 

interesting concurrent patterns visually. Experiments with real-world 

protein datasets from the UniProt and NCBI databases highlight the 

applicability of the ConSP methodology in protein data mining and 

modelling. The results show the potential for knowledge discovery in 

the field of protein structure identification. A pilot experiment extends 

the methodology to DNA sequences to indicate a future direction. 

 

Keywords: Data analytics, bioinformatics, sequential patterns post-

processing, structural relations, concurrent vector method, graphical 

modelling, biological databases, protein motif mining, DNA sequences, 

knowledge discovery 
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1   Introduction 

 
Pattern discovery has become a significant research area in bioinformatics, where 

the frequent occurrence of patterns in biosequences usually indicates that the 

sequences are biologically related and provide insight into biological process, 

cause of disease and evolution of life. One way of analysing the sequences is to 

group them into families with each family being a set of sequences which are 

believed to be related – evolutionarily, structurally or functionally [1]. A motif 

can be considered as a nucleotide or amino acid sequence pattern that is 

widespread and has a biological significance. Automatic extraction of motifs 

from biological sequences is therefore an important research problem in the study 

of molecular biology. Through the identification of protein sequence motifs 
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computationally, an unknown sequence can be classified into its predicted 

protein family for further biological analysis [2]. 

There are two main approaches for extracting knowledge from sequence data: 

one is to compare newly acquired data with already (manually) annotated data 

under the assumption that data similarity implies functional similarity. The 

second approach mines the data for frequently occurring patterns [3]. For the 

problem of mining patterns from biological datasets, the input is given as a set of 

related sequences and the goal is to find a set of patterns that are common to all 

or mostly all of the sequences in the dataset. Sequential patterns mining methods 

have been pursued in the literature to help determine the kinds of proteins that are 

likely to occur frequently in sequences [4]. The mining and modelling of frequent 

sequential patterns (such as motifs) that occur in many biosequences from a 

given database (i.e. DNA or protein sequences) could be essential to the 

interpretation and engineering of the biological data. The discovery of motifs in 

DNA and protein sequences is a much explored yet still developing research area 

[5,6,7,8,9]. 

With the successful development of efficient and scalable algorithms for 

mining frequent patterns from biological sequences, it is natural to extend the 

scope through post-processing and visualisation. There are various relationships 

among motifs and the study of this can lead to the discovery of significant but 

hidden patterns. Based on sequence databases, Structural Relation Patterns (SRP) 

mining aims to find and represent more complex information which can include 

concurrent patterns, exclusive patterns and iterative patterns [10]. All of these 

structures may have corresponding applications in motif identification and so the 

methodology was applied in the bioinformatics area [11], in particular for the 

analysis of protein sequences. The development of effective Concurrent 

Sequential Patterns (ConSP) mining techniques in the context of sequence motifs 

could help to determine those proteins that are likely to co-occur in target 

samples. Such data analytics and subsequent graphical modelling would facilitate 

the discovery of groups of proteins as well as the visualisation of interactions and 

relationships among them. 

The remainder of this paper proceeds as follows: some related work is 

highlighted in section 2 to provide relevant background on sequential patterns 

mining from biological data as well as to establish the concept of concurrent 

sequential patterns in protein databases. In section 3, following a framework for 

protein data mining, the emphasis is on tailoring the ConSP mining approach to 

this domain – the Concurrent Vector method is presented with a worked example 

to illustrate its application. The corresponding approach to ConSP modelling and 

knowledge representation for protein data is described by the end of the same 

section. An experimental evaluation using well-known protein databases is given 

in section 4, which showcases the effectiveness of ConSP mining at generating 

new and interesting results as well as the potential of protein data modelling for 

visualisation. The work is then extended to DNA sequences through a pilot 

experiment, which indicates a future direction. The paper draws to a close by 

summarising and making brief conclusions. 
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2   Frequent Patterns Mining in Bioinformatics 

 
To provide some background and further motivation, the nature of the biological 
data will be addressed first with the focus on mining patterns from protein 
sequences. This section will conclude with a discussion of post sequential 
patterns mining for structural features in this context. 

2.1 Sequential Patterns Mining from Biological Databases 

Biosequences are the primary sequences of DNA, RNA and protein molecules, 

and they represent the most basic type of biological information [12]. These 

sequences typically have a very small alphabet, i.e. 4 for DNA sequences and 20 

for protein sequences, and many short patterns can occur in most sequences. The 

goal of pattern discovery in the latter domain is to find new and previously 

unknown patterns that are common to (or match) all or most of the sequences in 

the protein dataset. 

A motif is an abstraction over a set of recurring patterns observed in a dataset 

and it captures the essential features shared by a set of similar or related objects. 

In the context of biological sequence analysis, a motif is a region or portion of 

protein or DNA/RNA sequences that has specific structure and significant 

function. Protein motifs have been divided into four categories: sequence motifs, 

sequence-structure motifs, structure motifs and structure-sequence motifs [13]. 

Sequence motifs are linear strings of amino acid residues with an implicit 

topological ordering and they are the most commonly encountered motif type in 

molecular biology. The discovery of sequence motifs can be formulated as the 

problem of finding short segments that occur frequently among a set of long 

protein sequences and therefore sequential patterns mining has become one of the 

important techniques in protein analysis. 

Based on the traditional sequential patterns mining algorithms, Wang et al. 

proposed the SP-index algorithm to find the longest sequential patterns with gaps 

of arbitrary size [7]. The algorithm considers the characteristics of bioinformatics 

and contains two phases: the segment phase searches for frequent segments 

containing no gaps and generates base segments, which are then used to find the 

longest patterns in the pattern phase. The second phase can be time-consuming if 

there are many unnecessary segments in the first phase. To avoid the 

disadvantages of the SP-index algorithm, the Bit-Pattern-based (BP) approach 

has been proposed to mine sequential patterns in a protein database [5]. In this 

method, protein sequences are transformed into bit patterns first. Then by 

applying various bit operations (i.e. AND, OR, shifting and masking) on those bit 

patterns, the BP algorithm can find frequent segments and the longest sequential 

patterns. Biological datasets from the National Center for Biotechnology 

Information (http://www.ncbi.nlm.nih.gov) have been used to evaluate both the 

SP-index and BP approaches. 

Motivated by the need to mine protein transmembrane helix features for 

protein sequence classification, the sequential patterns mining algorithm SPAM 
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has been modified to consider gaps and regular expression constraints [14]. The 

computational challenges for the motif extraction problem are two-fold: one is to 

design an efficient algorithm to enumerate the frequent motifs, and the other is to 

statistically validate the extracted motifs and report the significant ones [15].  

EXMOTIF has been introduced to extract structured motifs within one or 

multiple biological sequences, which allow variable length gaps between simple 

motif components [9]. And a protein sequential patterns mining algorithm called 

BioPM uses a projection based on frequent prefixes to mine motifs, instead of 

considering all the possible sub-sequences [8]. 

Exarchos et al. presented a method based on protein sequence analysis and 

classification [6]. Specifically, sequential patterns mining was used for 

classification of proteins into folds highlighting the important role of data mining 

in bioinformatics. A group of protein sequences taken from the Protein Data 

Bank has been used to validate the proposed approach [16]. Gupta and Han 

reviewed applications of pattern discovery using sequential data mining in [4] 

which also covers predicting protein sequence functions, analysis of gene 

expression data, protein fold recognition and protein family detection. 

Two of the key challenges in protein motif analysis are motif finding and 

representation [17]. Most of the above mining methods focus on the discovery of 

frequent sub-sequences; however, finding recurring structural features among 

protein sequences is important in bioinformatics. This motivates consideration of 

the authors’ previous work on structural relation patterns mining and modelling 

[10]. 

2.2 Post-processing for Structural Relations in Protein Sequences 

Structural Relation Patterns have been introduced to extend the search for 

complex patterns often hidden behind large sequences of data. In the context of 

frequent patterns mining, the focus of attention in the SRP family has been on 

mining concurrent sequential patterns, where the approach to graph-based 

modelling has proved to be illuminating. 

Due to the characteristics of protein databases, where each protein is a linear 

sequence made up of smaller constituent molecules called amino acids, the 

following notation is required: let  = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, 

R, S, T, V, W, Y} be a set of 20 items (e.g. amino acids). A sequence is an 

ordered list of items in this domain which can be written as X = <x1 x2 … xp>, 

where xj (1≤j≤p). X is contained in sequence X' = <x1' x2' … xq'> if pq and xj 

= xk' for all j, 1≤j≤p and corresponding k, 1≤k≤q. 

A protein sequence database (PSDB) is defined as a set {S1, S2, …, Sn}, where 

each Sr (1≤r≤n) is a sequence of amino acid items. The support in PSDB of any 

given sequence S is the fraction/percentage of sequences in the database that 

contain S, i.e. sup(S) = |{Sr: SSr}|/n, where |…| denotes the number of 

sequences. Given a fraction minsup (0minsup1) as the minimum support 

threshold, S is called a sequential pattern in PSDB if sup(S)≥minsup. 
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Example 1 Table 1 shows a sample protein sequence database PSDB = 

{<AHGAT>, <SASHTAT>, <HAHNAST>, <ANHATNT>} and the set of 

sequential patterns mined with a minsup of 50%. This will be used as a running 

worked example for illustration throughout the paper. 

Sequential patterns mining discovers a set of patterns from a given PSDB 

under a user-specified minsup. A sequential pattern is called a maximal sequence 

if it is not contained in any other sequential pattern. All patterns marked within 

the boxes in Table 1 are maximal sequences. 

Most sequential patterns mining methods extract the complete set of 

sequential patterns and, in many cases, a large set of sequential patterns is neither 

intuitive nor necessarily very easy to understand or use. This motivates the search 

for ordering relationships which can better summarise the sequential patterns, leading 

to the advent of concurrent and exclusive patterns. 

Let , β be two of the sequential patterns mined from PSDB with minimum 

support threshold minsup and assume that , β are not contained in each other. 

With regard to a particular data sequence SPSDB, sequential patterns  and β 

have a concurrent relationship if and only if both of them have occurred in S, i.e. 

(S)(βS) is true. This is represented by [+β]S, where the notation ‘+’ 

represents the concurrent relationship. The degree of concurrency can thus be 

defined below. 

Definition 1 The concurrence of sequential patterns  and β is defined as the 

fraction of data sequences that contains both of the sequential patterns. This is 

denoted by concurrence(,β) = |{Sk:(Sk)(βSk)}|/n, where SkPSDB, 1≤k≤n 

and n is the total number of data sequences. 

The user-specified minimum support threshold, minsup has been used as the 

frequency measurement for mining frequent itemsets and sequential patterns. 

Another fractional value, the minimum concurrence threshold, mincon 

Table 1. Sequential patterns from a sample protein database 

      Protein Seq Sequential Patterns supported by each Sequence (SuppSP), minsup=50% 

S1 <AHGAT> A,H,T,AA,AH,AT,HA,HT,AAT,AHA,AHT,HAT,AHAT 

S2 <SASHTAT> A,H,T,S,AA,AH,AT,AS,HA,HT,TT,ST,AAT,AHA,AHT,ATT,AST,HAT,HTT,AHAT,AHTT 

S3 <HAHNAST> A,H,T,S,N,AA,AH,AT,AS,AN,HA,HT,HN,ST,NA,NT,AAT,AHA,AHT,AHN,AST,ANA,ANT,

HAT,HAN,HNT,NAT,AHAT,AHNT,ANAT,HANT 

S4 <ANHATNT> A,H,T,N,AA,AH,AT,AN,HA,HT,HN,TT,NA,NT,AAT,AHA,AHT,AHN,ATT,ANA,ANT,HAT,

HAN,HTT,HNT,NAT,AHAT, AHTT,AHNT,ANAT,HANT 
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(0<mincon≤minsup≤1) is introduced below to check the concurrent relationships 

of sequential patterns. 

Definition 2 Let mincon be the user-specified minimum concurrence. If 

concurrence(,β)mincon is satisfied, then  and β are called a concurrent 

sequential patterns pair. This is represented by ConSP = [+β], where there is no 

particular order, i.e. [+β] = [β+]. 

Consider PSDB = {<AHGAT>,<SASHTAT>,<HAHNAST>,<ANHATNT>} 

from Example 1 and assume a mincon of 50%. For the maximal sequential 

patterns pair AST and AHAT shown in bold in Table 1, according to Definition 1, 

concurrence(AST,AHAT) = 2/4 = 50%. Therefore, they constitute a concurrent 

sequential patterns pair given by ConSP = [AST+AHAT]. 

Extending the concurrent relationship to three sequential patterns , β and  

motivates the notation [+β+]S, equivalent to (S)(βS)(S). And, more 

generally, if {sp1, sp2, …, spr} is a set of r sequential patterns mined under 

minsup, then [sp1+sp2+…+ spr]S represents r sequential patterns which are 

concurrent with respect to data sequence S. 

Furthermore, the concurrent sequential patterns represented by ConSPk = 

[a1+a2+…+ak] are contained in ConSPk+m = [b1+b2+…+bk+m] if aibj for all i, 

1≤i≤k and corresponding j, 1≤j≤(k+m). This is denoted by ConSPkConSPk+m. 

Concurrent sequential patterns are called maximal ConSPs if they are not 

contained in any other concurrent patterns. 
Continuing with Example 1 and Table 1, data sequences S3=<HAHNAST> 

and S4=<ANHATNT> support all the sequential patterns AHAT, AHNT, ANAT 

and HANT, with concurrence (AHAT, AHNT, ANAT, HANT) = 2/4 = 50%. 

Therefore, they constitute another maximal concurrent pattern given by ConSP4 

= [AHAT+AHNT+ANAT+HANT]. 

Considering the same setting as above, sequential patterns  and β have an 

exclusive relationship if and only if one of them has occurred in S but not both, 

i.e. ((S)(βS))((S)(βS)) is true. It is denoted by [–β]S, where 

the notation ‘–’ represents the exclusive relationship. 

Definition 3 The exclusion of sequential patterns , β is defined as the fraction of 

data sequences that contains just one of  or β, i.e. exclusion(,β)= 

|{Sk:((Sk)(βSk))((Sk)(βSk))}|/n, where SkPSDB and 1≤k≤n. 

Another fractional value, the minimum exclusion threshold 

(0<minexc≤minsup≤1) is introduced below to check the exclusive relationships 

of sequential patterns. 

Definition 4 Let minexc be the user-specified minimum exclusion. If 

exclusion(,β)minexc is satisfied, then  and β are called an exclusive 

sequential patterns pair, represented by ESP = [–β], where [–β] = [β–]. 
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For the sequential patterns pair AH and AS shown double-underlined in Table 

1, according to Definition 3 exclusion(AH,AS) = 2/4 = 50%, so they constitute 

exclusive sequential patterns. 

Extending the exclusive relationship to three sequential patterns , β and  

motivates the notation [–β–]S, that is ((S)(βS)(S))((S) 

(βS)(S))((S)(βS)(S)). More generally, as before with 

concurrence, [sp1–sp2–…–spr]S represents r sequential patterns which are exclusive 

with respect to data sequence S. 

Another member of the structural relation patterns family, a sequential pattern 

sp is called an iterative pattern if it appears within the same data sequence at 

least n times (n≥2) and at most m times (m≥n). The expression <{sp}
m

n > denotes 

the iterative pattern, where m and n represent the upper and lower iteration 

bounds respectively of patterns appearing in a data sequence. If an iterative 

pattern has no upper iteration bound, then the parameter m is not required. 

Having introduced concurrent, exclusive and iterative patterns, the following 

unifies these patterns within an over-arching definition. 

Definition 5 A Structural Relation Pattern (SRP) is a general designation of 

patterns consisting of sequential patterns, concurrent patterns, exclusive patterns, 

iterative patterns and their composition. That is, a concurrent pattern is an SRP. 

Similarly, an exclusive pattern is an SRP. Furthermore, the concurrent, exclusive 

or iterative combination of structural relation patterns constitutes new SRPs. 

 

3   Concurrent Sequential Patterns Mining and Modelling 

 
The original method to mine concurrent sequential patterns was proposed by 

using general sequence databases as the input, performing traditional sequential 

patterns mining and then post-processing the results. Protein data mining tailored 

to the context of bioinformatics was introduced in [11] and the corresponding 

Concurrent Vector method (ConVect) will be described here through its support 

vector/matrix-based ConSP mining approach, which uses the additional 

parameter minlen to specify the minimum length of sequential patterns sought. It 

aims to find potentially interesting ConSPs which are common to all (or mostly 

all) known protein sequences of a family. The ultimate focus is on visualising 

concurrent sequential patterns using graph-based modelling for knowledge 

representation. 

3.1 Protein Data Mining Framework 

Fig. 1 presents a framework for mining concurrent sequential patterns from 

protein sequences, which has four stages: Data Pre-processing, Sequential 

Patterns Mining, ConSP Mining and ConSP Modelling. First, depending on the 

nature of the biological database, pre-processing involves different types of task 

such as searching, retrieval and transformation. Second, frequently-occurring 
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patterns are sought through sequential patterns mining techniques which can be 

parameterised by minsup and minlen. The ConSP mining method then takes the 

results further by post-processing the sequential patterns under mincon≤minsup. 

Finally, the ConSP modelling stage aims to construct a graphical representation 

for the concurrent patterns. 

Considering the boxed area in Fig. 1 from right to left, the initial cycle of 

concurrent pattern discovery is pursued through ConSP mining. The general 

approach here for choosing parameters is to apply a mincon threshold which is 

close to minsup while keeping minlen as long as possible, where the intention is 

to avoid a large number of sequential patterns too short for this context. If the 

patterns evaluated are perceived to be interesting, then ConSP modelling can 

proceed and the process completes for the parameters at this level; otherwise, 

another cycle commences based either on progressive ConSP mining or repeat 

sequential patterns mining. This corresponds respectively to incremental 

reduction of mincon, while the number of concurrent patterns remains countable, 

or a suitable change to the minsup/minlen combination. 

3.2 ConVect Method and ConSP Generation 

Given the sequence database PSDB = {S1, S2, …, Sn} and mined sequential 

patterns SP={sp1, sp2, …, spm}, a compact data structure or support vector, 

SeqVect(spi) is defined in [11] for every sequential pattern spi (1im) as: 

SeqVect(spi) =  n21 ...vvv , 

Data            

Pre-processing

Concurrent 

Sequential Patterns

ConSP-

Graph
+ +

ConSP 

Modelling

No

Protein 
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Patterns Mining

minsup, minlen 

mincon
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Fig. 1. Concurrent sequential patterns mining framework for protein databases. 



   

 

   

   

 

   

   

 

   

   J. Lu et al.    
 

    

 

 

   

   

 

   

   

 

   

       
 

where vr=1 (1rn) if sequential pattern spi (1im) is contained in data 

sequence Sr (1rn), i.e. spiSr; otherwise vr=0. For example, for the PSDB = 

{<AHGAT>, <SASHTAT>, <HAHNAST>, <ANHATNT>} in Table 1 and 

sequential patterns AST and AHAT, SeqVect(AST)=[0110] and 

SeqVect(AHAT)=[1111]. 

Putting all of these vectors together forms columns of support vectors, 

SeqVect(SP) in two dimensions with sequential patterns spi (1im) determining 

the binary entries vri corresponding to data sequences Sr (1rn) across the rows 

of a matrix. Considering the intersection of two support vectors for spi and spj 

(1im, 1jm, ij) respectively, denoted by SeqVect(spi)SeqVect(spj) 

=  n21 ...vvv , vr=1 (1rn) if both SeqVect(spi)=1 and SeqVect(spj)=1 in their r
th
 

rows; otherwise vr=0. 

Counting the total number of entries in the resulting vector which have value 

“1” gives a measure of the support of both sequential patterns across PSDB, 

denoted by: 

w=Count(SeqVect(spi)SeqVect(spj)). 

If w/n≥mincon, then spi and spj constitute a ConSP = [spi+spj].  

The concept of a support vector and matrix can be extended therefore to a 

group of sequential patterns which will potentially make up a ConSP. The 

support vector of the concurrent sequential pattern ConSPs = [α1+α2+…+αs] is 

defined as: 

ConVect(ConSPs) =  n21 ...vvv , 

where vr=1 (1rn) if ConSPsSr; otherwise vr=0. 

Similarly, putting all the support vectors for ConSPs together forms the 

columns of a support matrix, ConVect(ConSP) with respective concurrent 

sequential patterns determining the binary entries corresponding to data 

sequences across rows. If the intersection of ConSP = [spi+spj] with another 

sequential pattern spk (1km, ki, kj) is considered, then: 

 ConVect(ConSP)SeqVect(spk) =  n21 ...vvv , 

where vr=1 (1rn) if both ConVect(ConSP)=1 and SeqVect(spk)=1 in their r
th
 

rows; otherwise vr=0. 

Counting the total number of “1” entries in the resulting vector again gives: 

 w=Count(ConVect(ConSP)SeqVect(spk)). 

If w/n≥mincon, then spk provides another concurrent sequential pattern which can 

be added to the existing result, such that ConSP = ConSP{spk} = [spi+spj+spk]. 

The Concurrent Vector method for mining ConSPs is divided into three 

phases in [11]. The approach will be described in detail here using the sample 
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protein database from Example 1 for illustration: PSDB = {<AHGAT>, 

<SASHTAT>, <HAHNAST>, <ANHATNT>}. 

Phase 1 Mining Sequential Patterns and Building Support Vectors. First 

traditional sequential patterns mining discovers the frequently-occurring patterns 

from a given protein database under a user-specified minsup. For those with at 

least the specified minimum sequence length, minlen, the set of sub/super-

sequences is determined for each pattern and the corresponding support matrix 

SeqVect(SP) formed across all patterns. From Table 1 there are 5 sequential 

patterns of minimum length 4 forming the columns and 4 protein data sequences 

forming rows, with results as shown in Table 2. 

Phase 2 Concurrent Sequential Patterns Generation. As follows:  

A. Taking respective sequential patterns spi (1im-1) from SP in turn to provide 

the initial seed-sequence, the next sequential pattern spj (i<jm) is sought which 

can constitute an initial ConSP = [spi+spj], so long as: 

Count(SeqVect(spi)SeqVect(spj))/n≥mincon. 

In this case, spi and spj can form a new seed-sequence for further ConSP 

checking.  

B. Taking the next seed-sequence and corresponding ConSP as input, another spk 

is sought which contributes to forming an expanded ConSP{spk}, if: 

Count(ConVect(ConSP)SeqVect(spk))/n≥mincon. 

In this eventuality, spk will be consolidated into the seed-sequence and so on.  

C. Revert back to B to determine whether any further sequential patterns can be 

added to the intermediate ConSP in hand, until all combinations have been 

checked. 

Example 2 Given SP={AHAT, AHTT, AHNT, ANAT, HANT} from Table 2. 

Table 2. A support matrix example 

 AHAT  AHTT  AHNT  ANAT  HANT 

S1 1  0  0  0  0 

S2 1  1  0  0  0 

S3 1  0  1  1  1 

S4 1  1  1  1  1 
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1) Consider AHAT for the initial seed and take each of the next sequential 

patterns (i.e. AHTT, AHNT, ANAT and HANT) in turn to form the possible 

ConSPs. 

1.1) in the case of AHTT: 

Count(SeqVect(AHAT)SeqVect(AHTT))= 

Count([1111][0101])=Count([0101])=2; 

i.e. concurrence(AHAT,AHTT)=2/4=50%≥mincon, so the first prospective 

ConSP_1=[AHAT+AHTT].  

Using {AHAT, AHTT} as a seed-sequence and going through the rest of the 

sequential patterns in turn, i.e. AHNT, ANAT and HANT, none of these will 

satisfy the minimum concurrence condition. Therefore the ConSP result when 

taking AHAT as the initial seed remains the same, i.e. ConSP_1=[AHAT 

+AHTT]. 

1.2) in the case of AHNT: 

Count(SeqVect(AHAT)SeqVect(AHNT))= 

Count([1111][0011])=Count([0011])=2; 

i.e. concurrence(AHAT,AHNT)=2/4=50%≥mincon, so a second prospective 

ConSP_2=[AHAT+AHNT] can be used as a seed-sequence to go through the rest 

of the sequential patterns in turn, i.e. ANAT and HANT. For example, in the case 

of ANAT: 

Count(ConVect(ConSP_2)SeqVect(ANAT))= 

Count([0011][0011])=Count([0011])=2. 

Therefore, ANAT can be included to form an extended 

ConSP_2=[AHAT+AHNT+ANAT]. And considering the last sequential pattern 

HANT as a candidate for further potential concurrence gives: 

Count(ConVect(ConSP_2)SeqVect(HANT))= 

Count([0011][0011])=Count([0011])=2. 

So, the final ConSP_2=[AHAT+AHNT+ANAT+HANT] can be generated. 

1.3) in the case of ANAT and HANT, by the same token the concurrent 

patterns ConSP_3=[AHAT+ANAT+HANT] and ConSP_4=[AHAT+HANT] can 

be deduced. 

2) Following the above major iteration, taking AHTT as the next initial seed and 

considering each of the remaining sequential patterns to form an initial ConSP, 
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there are no other valid combinations to pair up concurrently under the given 

mincon. 

3) Using AHNT next as the initial seed, the remaining sequential patterns are 

considered in turn and contribute to forming the fifth concurrent pattern 

ConSP_5=[AHNT+ANAT+HANT]. 

4) And when using the penultimate sequential pattern ANAT as the initial seed, 

an additional concurrent sequential pattern can be found as 

ConSP_6=[ANAT+HANT] and the process completes. 

Therefore, in summary, the concurrent sequential patterns generated from this 

phase are: 

ConSP_1=[AHAT+AHTT] 

ConSP_2=[AHAT+AHNT+ANAT+HANT] 

ConSP_3=[AHAT+ANAT+HANT] 

ConSP_4=[AHAT+HANT] 

ConSP_5=[AHNT+ANAT+HANT] 

ConSP_6=[ANAT+HANT]. 

Phase 3 Concurrent Sequential Patterns Optimisation. Maximal ConSPs can be 

obtained by deleting those concurrent sequential patterns which are contained by 

other ConSPs, then deleting the sequential patterns in particular ConSPs (in turn) 

which are contained by other sequential patterns within the same ConSP. 
For example, ConSP_3, ConSP_4, ConSP_5 and ConSP_6 from the above list 

are all contained within ConSP_2=[AHAT+AHNT+ANAT+HANT]. This means 
that the final maximal concurrent patterns are given by: 
ConSP_1=[AHAT+AHTT] and ConSP_2=[AHAT+AHNT+ANAT+HANT]. 

3.3 Graphical Representation 

The use of graphical models in data mining that explore the inherent relationships 

among sequential patterns has already been presented for modelling concurrent 

sequential patterns [10]. It is adapted here to the bioinformatics domain to 

convey complex structural features, where every node of the graph represents an 

amino acid residue in a protein. Edges that connect pairs of residues indicate their 

adjacent relationship in the motifs. 

The Concurrent Sequential Patterns Graph (ConSP-Graph) modelling 

approach is illustrated through a worked example: using ConSP-Graph 

construction to model the highest level ConSP4=[AHAT+AHNT+ANAT 

+HANT] from Example 2. 

Step 1. Initialisation. Determine the longest sequential patterns in ConSP4 and in 

this example they are all the same length, therefore represent one of them by a 

directed graph G – e.g. AHAT – see Fig. 2(i). 
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Step 2. Construction. For the next available sequential pattern, AHNT in ConSP4, 

find any common prefix preS with G – this is AH; and find any common postfix 

postS – this is T. Taking out preS and postS from AHNT, the remaining part 

elemS = N can be represented by a directed graph G'. Add a directed edge from 

the last node of preS in G (i.e. H) to the first node of G' (i.e. N). Also add a 

directed edge from the last node of G' (i.e. N) to the first node of postS (i.e. T). 

The result of this step is the graph shown in Fig. 2(ii), where dotted lines 

represent new edges in the transitional model. 

Step 3. Iteration. For the remaining sequential patterns in turn, i.e. ANAT and 
HANT, construct new graphs in a similar manner. Fig. 2(iii) shows the graph 
after adding sequential pattern ANAT while Fig. 2(iv) provides the ultimate 
representation of ConSP4 from this method. 

 

4   Experiments with Biological Databases 

 
The empirical analysis of the Concurrent Vector method was performed on real-
world datasets to test its effectiveness as well as to further illustrate the process 
of protein data mining. Data pre-processing precedes traditional sequential 
patterns mining in each case, whereupon ConSP mining is invoked using those 
SPs with a specified minlen. Results are summarised and a range of interesting 
graphs produced, which are arguably the most stimulating for the higher level 
ConSPs generated. A pilot experiment is then conducted to extend the 
methodology to DNA sequences. 

4.1 Biological Data and Pre-processing 

Biological databases can be broadly divided into sequence and structure 

databases. Sequence databases are applicable to both nucleic acid sequences and 

protein sequences, whereas structure databases are applicable to proteins only. 

Furthermore, protein sequence databases are classified as primary, composite and 

secondary depending on the content stored in them. Primary databases (e.g. 

SWISS-PROT and PIR) contain protein sequences as ‘raw’ data. Composite 

databases such as NCBI compile their sequence data from the primary sequence 

databases and filter them to retain only the non-redundant sequences. Secondary 
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Fig. 2. Modelling of ConSP4=[AHAT+AHNT+ANAT+HANT]. 
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databases (e.g. PROSITE and Pfam) contain the results of analysis from the 

primary sources, such as conserved and signature sequences.  

The Universal Protein Resource (UniProt) is the world's most comprehensive 

catalogue of information on proteins. It is a central repository of protein sequence 

and function created by joining the information contained in SWISS-PROT, 

TrEMBL and PIR (UniProt Consortium, 2013). UniProtKB is the central hub for 

the collection of functional information on proteins with accurate, consistent and 

rich annotation. It consists of two sections: a section containing manually-

annotated records with information extracted from the literature and curator-

evaluated computational analysis (UniProtKB/Swiss-Prot), and a section with 

computationally-analysed records that await full manual annotation 

(UniProtKB/TrEMBL). Three datasets are extracted from this primary database 

for the experiments. 

The National Center for Biotechnology Information accepts all submitted 

sequences and does not check whether the sequence is accurate or not – three 

datasets are extracted from this composite database for evaluation. Pfam is a 

secondary database of protein families, where families are sets of protein regions 

that share a significant degree of sequence similarity, thereby suggesting 

homology [18]. PROSITE consists of a large collection of biologically 

meaningful signatures described as patterns or profiles [19] which are common to 

all or nearly all of the members of the family – experiments using this secondary 

database are shown in [11]. 

It is necessary to transform the real-world biological sequences into a format 

suitable for sequential patterns mining (e.g. using PrefixSpan [20]). Table 3 

shows a sample of protein sequences in the standard bioinformatics FASTA 

format, a text-based format for nucleotide sequences or peptide sequences, in 

which nucleotides or amino acids are represented using single-letter codes. A 

sequence in FASTA format begins with a single-line description, followed by 

lines of sequence data. The description line is distinguished from the sequence 

data by a greater-than (">") symbol in the first column. The word following the 

">" symbol is the identifier of the sequence and the rest of the line is the 

description. The sequence ends if another line starting with a ">" appears; this 

indicates the start of another sequence. Pre-processing will eliminate the 

Table 3. Sample protein sequences 

>tr|T4ZID4|T4ZID4_PEPDI DNA polymerase III polC-type family protein (Fragment) OS=Peptoclostridium difficile CD127 

GN=QEG_1158 PE=4 SV=1 

MESIKEYLDKLEINNSGLGKQLKEVYINRVVYFKEDKIVYFYLTSKDIVSHELLDKFKEEL 

>tr|T3HSB1|T3HSB1_PEPDC DNA polymerase III polC-type family protein (Fragment) OS=Peptoclostridium difficile (strain CD196) 

GN=QGC_1137 PE=4 SV=1 

MESIKEYLDKLEINNSGLGKQLKEVYINRVVYFKEDKIVYFYLTSKDIVSHELLDKFKEELMYKLDYFK 

>tr|G6RJ44|G6RJ44_STREE DNA polymerase III PolC-type domain protein OS=Streptococcus pneumoniae GA17971 

GN=SPAR52_0014 PE=4 SV=1 
MTRKEANKATALVGGIPEKGVTKHTNILVVGEQDWRVVGTDGLSSKMKKAQTLLEKGQDIEIMTENDFIRLLEE 
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description line and keep all the sequences as input for initial sequential patterns 

mining. 

The Concurrent Vector method has been implemented in C++ and all 

experiments have been conducted on a 2.5GHz Intel Core i5 processor with 4GB 

main memory running under MS Windows 7. 

 4.2 Protein Sequences from Primary Databases 

The first experiment concerns the SNAKE_TOXIN dataset from the UniProtKB 

database, a family of eukaryotic and viral DNA binding proteins consisting of 

cytotoxins, neurotoxins and venom peptides. This bio-dataset is not uncommon 

in sequential patterns mining experiments – it is dense and can generate many 

sequential patterns with a medium support threshold [21]. There are 400 

reviewed sequences (i.e. manually annotated entries) with an average length of 

76. 
Table 4 shows the total number of SPs and ConSPs found on this dataset with 

various combinations of minlen and mincon=minsup. As minsup decreases, the 
number of patterns increases, sufficient that it becomes necessary to increase 
minlen to focus on a smaller number of more important patterns. It is worth 
noting that there is no ConSP when minlen=13 for mincon=100-95%. 

Fig. 3 shows the graphical distribution of sequential patterns and ConSP 

mining results across the range of minsup, mincon and minlen values. There are 

too many patterns to be that useful in general as the thresholds decrease. This 

trend prevails even for mincon=minsup=90% – however, when minlen=13, there 

are 4 ConSPs found from the 18 sequential patterns with the highest level a 

single ConSP3. 
Fig. 4 shows the comparison of SP mining and ConSP mining in terms of the 

minimum length of sequential patterns across different mincon=minsup values. It 
is worth adding that, for example when minlen=11, the highest levels discovered 
are ConSP2, ConSP4, ConSP5, ConSP10 and ConSP18 corresponding to 
incremental thresholds decreasing from 99% to 95%. 

Table 4. ConSP mining results summary for SNAKE_TOXIN dataset 

mincon= 

minsup 

minlen=9 minlen=10 minlen=11 minlen=12 

∑SP ∑ConSP ∑SP ∑ConSP ∑SP ∑ConSP ∑SP ∑ConSP 

100% 8 1 1 0 0 0 0 0 

99% 106 16 29 7 4 1 0 0 

98% 284 114 84 35 15 5 1 0 

97% 661 704 198 106 39 20 4 0 

96% 940 2623 357 467 87 57 10 9 

95% 1396 8220 549 1416 173 207 35 9 
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As shown in Fig. 4(a)-(c), for each minlen setting, there is potentially a 
turning point where the total number of ConSPs exceeds the number of SPs. In 
the protein data mining domain, the purpose is not to find a large volume of 
patterns – it is more to discover those ConSPs which are common to all (i.e. 
mincon=100%) or nearly all (e.g. 90%minconminsup<100%) of the members 
of the family – this broad strategy is applied in the rest of the experiments. Fig. 
4(d) does not follow the trend shown from (a) to (c), i.e. under the setting 
minlen=12. However it is worth mentioning that, for the nine ConSPs when 
mincon=minsup=96%, the highest level is a ConSP3; when mincon=minsup is 

1

10

100

1000

10000

100 99 98 97 96 95

N
o

. 
o

f 
S

eq
u

en
ti

a
l 

P
a

tt
er

n
s

minsup(%)

minlen=9 minlen=10

minlen=11 minlen=12

1

10

100

1000

10000

100 99 98 97 96 95

N
o

. 
o
f 

C
o

n
S

P
s

mincon=minsup(%)

minlen=9 minlen=10

minlen=11 minlen=12

 
Fig. 3. Pattern distributions from mining SNAKE_TOXIN dataset. 
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Fig. 4. Comparison between SPs and ConSPs from mining SNAKE_TOXIN dataset. 
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reduced to 95%, the highest level becomes a ConSP5, reflecting the increased 
complexity of the nine concurrent patterns at this threshold. 

The second dataset from UniProtKB is ‘Elastase Pig’ which contains 33 

protein sequences with an average length of 274 – experimental results have been 

reported in Table 5. Due to the limited number of protein sequences here, some 

mining results are the same under the various settings. For example when 

mincon=minsup is between 100~98%, experiments have found two sequential 

patterns with minlen=4 and both of them are concurrent; when mincon=minsup is 

between 96~94%, one ConSP19 is found from the 27 sequential patterns at the 

minimum sequence length of 7. 

Reducing mincon and minsup down to 92%, while increasing minlen to 10, all 

6 sequential patterns are concurrent to form a single ConSP6. And, as minsup 

decreases to 90%, minlen can be increased further to yield a ConSP4 at the 

highest level. A sample ConSP-Graph is illustrated in Fig. 5, where the 

concurrent protein sub-sequences in this family start either with amino acid “P” 

or “C” while converging on “P” at the end. 

A third dataset is extracted from UniProtKB by using the condition 

Organism=‘Eubacterium’, where there are 276 reviewed sequences with an 

average length of 290. Table 6 shows the total number of SPs and ConSPs found 

from this dataset with various combinations of minsup, minlen and mincon. 

Ostensibly, there are too many patterns to be that useful as the thresholds 

decrease to 95%. 

Table 5. ConSP mining results from ‘Elastase Pig’ dataset 

mincon=minsup minlen SP ConSP Highest Level ConSP 

100% 4 2 1 1 ConSP2 

98% 4 2 1 1 ConSP2 

96% 7 27 1 1 ConSP19 

94% 7 27 1 1 ConSP19 

92% 10 6 1 1 ConSP6 

90% 11 7 2 1 ConSP4 
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Fig. 5. An example of ConSP6 modelling from ‘Elastase Pig’ (mincon=minsup=92%, 

minlen=10). 
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The shaded part of the table shows the comparison of SP mining and ConSP 

mining in terms of a minimum length of nine for sequential patterns across 

different mincon=minsup values. A turning point is first reached under 

mincon=minsup=96%, where the total number of ConSPs exceeds the number of 

SPs. Moreover, when the threshold is taken down to 95%, the number of patterns 

begins to increase exponentially when minlen=9. 
Setting minlen=10 there is no ConSP at all when mincon=minsup=95%; 

however, concurrent patterns can be discovered when mincon is decreased, as 
can be seen in the lower section of Table 6. Furthermore, when mincon=89%, all 
9 sequential patterns are concurrent and the single ConSP9 can be modelled as in 
Fig. 6. It shows that the protein sub-sequences in this family share a common 
amino acid “M” at the start and all bar one sequence finish up with “K”. 

Table 6. ConSP mining results summary for ‘Eubacterium’ dataset 

minsup mincon minlen SP ConSP Highest Level ConSP 

100% 100% 2 4 0 - 

99% 99% 7 13 4 1 ConSP8 

98% 98% 8 425 22 1 ConSP12 

97% 97% 9 20 1 1 ConSP2 

96% 96% 9 274 355 1 ConSP7 

95% 95% 9 1293 4336 2 ConSP9 

95% 95% 10 9 0 - 

 93%   19 1 ConSP4 

 91%   12 6 ConSP5 

 89%   1 1 ConSP9 
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Fig. 6. An example of ConSP9 modelling from ‘Eubacterium’ (minsup=95%, 

mincon=89%, minlen=10). 
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It is demonstrated here that appropriate increasing of minlen in conjunction 
with incremental reduction of mincon<minsup can connect all of the sequential 
patterns structurally at these relatively high threshold levels. 

4.3 Protein Sequences from Composite Datasets 

The first experiment from the NCBI Protein Database is initiated by searching for 

Protein Name=‘Integrin’, where this dataset contains 726 protein sequences with 

an average length of 522. Integrins are transmembrane receptors that are the 

bridges for cell-cell and cell-extracellular matrix interactions – the experiments 

are reported in Table 7. 

The experiments have been conducted based on decreasing minsup while 

optimising the minimum length of sequential patterns, minlen. Initially, when 

minsup=100% and minlen=4, there is one sequential pattern only. Setting 

mincon=minsup=99% and increasing minlen to 6, there are 173 sequential 

patterns and 108 ConSPs. Reducing mincon and minsup incrementally down to 

95%, when minlen=12 there are 720 sequential patterns and 380 ConSPs, with 

the highest level a ConSP14 – this is modelled by the ConSP-Graph in Fig. 7. It 

shows that the protein sub-sequences in this family share a common amino acid 

“N” at the start and all sequences finish up with “L”. 

Table 7. ConSP mining results from ‘Integrin’ dataset 

mincon=minsup minlen SP ConSP Highest Level ConSP 

100% 4 1 0 - 

99% 6 173 108 1 ConSP12 

98% 8 244 140 1 ConSP10 

97% 10 379 377 1 ConSP10 

96% 11 344 282 1 ConSP10 

95% 12 720 380 1 ConSP14 
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Fig. 7. An example of ConSP14 modelling from ‘Integrin’ (mincon=minsup=95%, 

minlen=12). 
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Datasets can also be extracted from NCBI by using the conjunction of several 

conditions, e.g. (1) Search Databases=‘Protein’, then (2) Organism=‘Human’ 

with (3) sequence length ranging from 100 to 200. Table 8 shows the total 

number of sequences in the dataset under different protein length settings. 

Choosing the sequence length to be 150 here, then there are 678 protein 

sequences. The experiments conducted on this particular dataset are reported in 

Table 9 across a range of minsup/minlen values and various mincon. 

For example, experiments with mincon=minsup=100% have found nine 

sequential patterns when minlen=4, therefore all of them make up the single 

ConSP9. Reducing minsup and naturally increasing minlen, e.g. for 

mincon=minsup=99% and minlen=6, there are 34 sequential patterns and 24 

ConSPs. Taking minsup down further to 95% and retaining minlen=8, the extent 

of patterns discovered increases and the turning point is reached for ConSPs. 

When mincon is now reduced to 94%, 1711 concurrent patterns have been found 

– while this is rather too large a number, one of the three highest level ConSP7 at 

this parameter setting has been selected as representative and shown in Fig. 8. 

Table 8. Protein datasets under different settings 

Dataset Name                                           Organism=‘Human’ 

Protein Sequence 

Length 
100 120 140 150 160 180 200 

Total No. of Sequences 3850 2476 1101 678 848 762 728 

 

Table 9. ConSP mining results from ‘Human’ dataset with sequence 

length=150 

minsup mincon minlen SP ConSP Highest Level ConSP 

100% 100% 4 9 1 1 ConSP9 

99% 99% 6 34 24 2 ConSP4 

98% 98% 7 37 15 15 ConSP2 

97% 97% 8 4 0 - 

96%   2 2 ConSP2 

96% 96% 8 44 12 12 ConSP2 

95% 95% 8 146 233 7 ConSP4 

94% 1711 3 ConSP7 

 92%   8690 1 ConSP13 

 90%   9150 1 ConSP14 
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Thereafter the number of ConSPs increases significantly and modelling is no 

longer pursued. 

The final dataset is obtained from NCBI using the search condition Protein 

Name=‘Cold Shock’ and selecting the DNA Binding Domain Protein from the 

list. This dataset contains 3505 sequences with an average length of 102. Table 

10 shows that there are no sequential patterns found under 

mincon=minsup=100%. Reducing minsup and increasing minlen, e.g. for 

mincon=minsup=99% and minlen=9, there are 99 sequential patterns and 104 

ConSPs. Continuing the now customary reduction of thresholds leads to the 

shaded area in Table 10: there are 14 sequential patterns of length 15 and seven 

concurrent patterns can be discovered when mincon=minsup=94%, with the 

highest level a ConSP4. 
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Fig. 8. An example of ConSP7 modelling from ‘Human’ with sequence length of 150 

(minsup=95%, mincon=94%, minlen=8). 

Table 10. ConSP mining results from ‘Cold_Shock’ dataset 

minsup mincon minlen SP ConSP Highest Level ConSP 

100% 100% 1 0 0 - 

99% 99% 9 99 104 2 ConSP10 

98% 98% 11 174 238 2 ConSP6 

97% 97% 13 6 1 1 ConSP3 

96% 96% 14 7 1 1 ConSP3 

95% 95% 14 122 203 1 ConSP14 

95% 95% 15 2 0 - 

94% 1 1 ConSP2 

94% 94% 15 14 7 1 ConSP4 

 92% 30 6 ConSP7 

 90% 9 1 ConSP12 

 88% 1 1 ConSP14 
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Reducing mincon incrementally down to 88%, all of the sequential patterns 

are then concurrent to form the ConSP14. This is modelled by the ConSP-Graph 

in Fig. 9. 

It can be seen here that complex relationships are represented at relatively 

high threshold levels which could lead to protein structure identification of some 

biological significance. 

4.4 Extension to DNA Sequences 

It is also possible to consider using the ConSP methodology for discovery of 

motifs from DNA sequences and, on the theoretical side, the same framework 

could be applied. However, in the context of DNA, the average length of 

sequences is generally much greater than proteins with only four possible items 

A, C, G and T – representing the four nucleotide bases of a DNA strand. An 

example is given below before a pilot experiment is presented based on a breast 

cancer dataset. 

Example 3 Given a small DNA sequence database DSDB={<GAGGAGA>, 

<AGATATGCTTAGAG>,<ACTGAGGTAGA>,<ATTGAGCTT>}. When 

mincon=minsup=100%, there are 11 sequential patterns but none of them are 

concurrent; decreasing to mincon=minsup=75%, there are 87 sequential patterns 

and two concurrent patterns, e.g. ConSP6 = [ACTT+AGAGT+ATAGT+ATGAG 

+ATTAG+ATTGA]. Decreasing further to mincon=minsup=50%, there are three 

ConSPs from the 411 sequential patterns. For instance, ConSP7=[ACTAGAG+ 

ACTTAGA+AGAGGAG+AGAGTAGA+ATAGGAG+ATAGTAGA+ATGAG

AG]. 
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Fig. 9. An example of ConSP14 modelling from ‘Cold_Shock’ (minsup=94%, 

mincon=88%, minlen=15). 
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The dataset used for the experiment comprises real-life DNA sequences 

extracted by using the advanced search technique provided by NCBI: (1) Search 

Databases=‘Nucleotide’, (2) Organism=‘Human’, (3) All Fields=‘Breast Cancer’ 

with (4) sequence lengths from 60 to 70. There are 1156 sequences for this 

setting – a selection of results is reported in Table 11. 

Compared with the experiments for protein sequences, overall the highest 

level of ConSP found in DNA sequences appears relatively low. In Table 11, 

apart from when mincon=minsup=100% where all 9 sequential patterns make up 

one ConSP9, most of the other results are at the ConSP2 and ConSP3 level. 

ConSP5 and ConSP6 can be found, but only when the total number of ConSPs is 

large, e.g. for mincon=minsup=97% (minlen=10) and mincon=minsup=95% 

(minlen=11).  

However, when mincon=minsup=94% and minlen=12, there are 33 sequential 

patterns and no ConSPs. Incremental reduction of mincon<minsup generates 

more promising results, e.g. when mincon=90% there are 438 ConSPs, where the 

three highest level ConSP6 have been modelled in Fig. 10.  

There are only four nucleotide bases for DNA sequences and this causes more 

repetition of the items compared with ConSP mining in proteins. It is worth 

noting that only three are present here, with the “C” not featuring in the 

concurrent examples above. Nonetheless the ConSP-Graphs are interesting to an 

Table 11. ConSP mining results from ‘Breast Cancer’ DNA dataset with sequence 

lengths=60~70 

minsup mincon minlen SP ConSP Highest Level ConSP 

100% 100% 5 9 1 1 ConSP9 

99% 99% 9 34 5 5 ConSP2 

98% 98% 10 54 6 6 ConSP2 

97% 97% 10 1162 2901 5 ConSP6 

97% 97% 11 4 0 - 

96% 96% 11 182 22 22 ConSP2 

95% 95% 11 1398 1510 2 ConSP5 

95% 95% 12 0 0 - 

94% 94% 12 33 0 - 

93% 10 10 ConSP2 

92% 122 13 ConSP3 

91% 375 3 ConSP5 

90% 438 3 ConSP6 

92% 92% 12 1901 641 25 ConSP3 

90% 90% 13 84 0 - 
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extent and there is potential for further investigation of the Concurrent Vector 

method applied to DNA. 

 

5   Conclusions 

 
A novel protein mining framework has been proposed which incorporates 
traditional sequential patterns mining parameterised by minsup and minlen before 
checking for concurrent relationships within the mincon threshold. The 
Concurrent Vector method has been illustrated through worked examples and put 
through its paces with experiments which aim to discover sub-sequences 
common to all or nearly all of the proteins. This brings a need not only to operate 
at high percentage thresholds for minsup, but also to optimise minlen so that the 
number of patterns remains countable. Moreover, there is a corresponding 
requirement for mincon to be close enough to minsup while adding value to 
knowledge representation. 

The experimental results from primary and composite biological databases 
demonstrate the feasibility and effectiveness of the data mining and modelling 
techniques, which identify connectivity and integration across real protein sub-
sequences. In particular, higher level ConSPs can be discovered for suitable 
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Fig. 10. Three examples of ConSP6 modelling from ‘Breast Cancer’ DNA (minsup=94%, 

mincon=90%, minlen=12). 
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minsup/minlen combinations by tuning mincon<minsup to generate a smaller 
number of more structured patterns. The visualisation of concurrent protein 
motifs may contribute towards further understanding of the inherent meaning 
attached to such biological data. 

The methodology can be extended to DNA sequences and a pilot experiment 
has been conducted to illuminate the way forward. While there is more work to 
be done here, the applicability of the ConSP mining approach has been revealed 
and will be the subject of future research. 
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