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»’Drink up.’ He added, perfectly factually: ’The world’s about to end.’ [. . . ] ’This must
be Thursday,’ said Arthur to himself, sinking low over his beer, ’I never could get the

hang of Thursdays.’«

Dialog between Ford Prefect and Arthur Dent,
in ’The Hitchhikers Guide to the Galaxy’ by Douglas Adams.
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Kurzzusammenfassung

Das Coupled-Cluster-Verfahren zählt zu den am häu�gsten angewandten und ef-
�zientesten Korrelationsverfahren in der Quantenchemie. Insbesondere die CCSD(T)-
Näherung, in der der Cluster-Operator auf Einfach- und Zweifachsubstitutionen (Singles
und Doubles) der Referenzdeterminante beschränkt wird und die störungstheoretis-
che Dreifachanregungsenergie (Triples) addiert wird, ist zum Standard der Quanten-
chemie geworden. Allerdings beschränkt sich diese Methode aufgrund ihrer ungünsti-
gen Skalierung (N7, wobei N der Anzahl der Basisfunktionen entspricht) auf vergleich-
sweise kleine Systeme. Für die volle Behandlung der Dreifachanregungen skaliert der
Rechenaufwand bereits mit N8, für jeden weiteren Anregungsgrad erhöht sich der Expo-
nent um weitere zwei.

Durch diese Arbeit soll es möglich werden, die Rechenzeit für beliebige Anregungs-
grade im Falle geschlossener Elektronenschalen zumindest um einen mit steigendem An-
regungsgrad wachsenden Faktor zu reduzieren. Hierzu wird davon ausgegangen, dass
der Raumteil jeweils zweier Spinorbitale gleich ist, sodass in den Anregungen die beiden
möglichen Spinzustände gleich behandelt werden können. Während die dadurch entste-
henden Restriktionen für die Cluster-Amplituden im CCSD noch durch einfache Spininte-
gration konstruiert werden können, müssen die Einschränkungen für höhere Anregungen
über die Betrachtung der Raumorbitalanregungsoperatoren Ê hergeleitet werden.

Im ersten Teil der Arbeit wird ein allgemeines Schema zur Konstruktion der spingemit-
telten Cluster-Amplituden und Projektionsgleichungen zu deren numerischer Bestimmung
entwickelt, das über die CCSD-Näherung hinaus geht. Der zweite Teil der Arbeit besteht
aus der Implementierung der Ergebnisse des ersten Teils in einen schon bestehenden ef-
�zienten CC-Programmcode.





Abstract

The Coupled-Cluster (CC) method is one of the most popular and e�cient correlation
methods in quantum chemistry. Especially the CCSD(T) approximation, which includes
single and double excitations by means of the application of the cluster operator to a
reference determinant and triple excitations via a perturbative treatment, has become a
standard tool in quantum chemical applications. However, the method is restricted to
relatively small system sizes due to its unfavourable scaling (N7, where N is the number
of basis functions applied). For the full treatment of triple excitations the scaling advances
to N8 and every further excitation level increases the exponent by two.

The goal of this work is to reduce the calculation time for closed shell systems at least
by a factor growing with the excitation level for arbitrary truncation levels. This is done
by restricting the spatial parts of the spin orbitals and thus treat pairs of spin orbitals on
the same footing. The restrictions can be easily constructed for the CCSD model by spin
integration. The derivation of the restrictions arising in higher excited case will be done
employing the spatial orbital excitation operators Ê.

In the �rst part of this work an algorithm is derived that is capable of the derivation
of the energy and amplitude equations for arbitrary excitation levels. In the second part
an implementation of this algorithm is presented.
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1.4 Technical and Notational Remarks . . . . . . . . . . . . . . . . . . 15

1.1 Historical Notes

The coupled cluster (CC) method was invented by Coester and Kümmel [1, 2] in the
late 1950s as a method for nuclear physics. However, the inventors regarded their method
as inapplicable in their �eld. In 1966 �ížek [3, 4, 5] introduced the CC theory in quantum
chemistry as coupled pair many electron theory (CPMET).

1.1.1 The Coupled Pair Many Electron Theory

In his ansatz �ížek applied an exponential wave operator including all powers of double
substitution operators, by means of its Taylor expansion, to the ground state Slater-
determinant and evaluated algebraic equations in terms of powers of the coe�cients (am-
plitudes) of the substituted determinants. In his approach he employed both the spin
orbital and the spatial orbital framework.

1.2 State of the Art in Coupled Cluster Theory

Despite its high computational complexity coupled cluster theory emerged into a widely
used tool for computational chemists [6, 7, 8]. In particular truncated versions of the
theory, namely coupled cluster singles and doubles (CCSD) and its perturbationally aug-
mented form (CCSD(T)) [9], have become popular and are implemented in many ab
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initio electronic structure program codes such as MOLPRO [10], MOLCAS [11] or TUR-
BOMOLE [12].

Especially the CCSD(T) ansatz emerged as the gold standard of quantum chemistry
for energies as well as properties including dipole moments, gradients [13] or chemical
shifts for nuclear magnetic resonance spectroscopy [14, 15, 16, 17].

1.2.1 Truncated Versions of the Theory

A hierarchy of methods with increasing accuracy and complexity has evolved in the past.
The truncation of the cluster operator at di�erent substitution levels leads to a series of
methods which produce energies that converge to the full con�guration interaction (FCI)
limit in a very fast way (i.e. substantially faster than the con�guration interaction series
of methods). Implementations for various truncation levels are known, such as CCSDT
[18, 19, 20], CCSDTQ [21] and CCSDTQP [22, 23].

Due to the high complexity of both the derivation as well as the solution of the
algebraic equations de�ned by the setup of the CC ansatz, implementations often restrict
themselves to truncated versions of the theory. The program package MOLPRO for
example can only handle up to double excitations in the cluster operator. Even triple
excitations are handled on a perturbational level only. Up to now, the author is aware of
only a few codes capable of the generation and solution of general order coupled cluster
equations with the correct scaling [24, 25, 26, 27, 28, 29].

1.2.2 Multi Reference Generalizations of the Theory

In contrast to the con�guration interaction (CI) method1, a multi reference genraliztion of
the coupled cluster ansatz is neither straightforward nor unique and mainly two di�erent
classes of approaches have been developed. The �rst one is the valence universal method
of Mukherjee and co-workers [30, 31, 32, 33, 34], the second one is the state universal
approach of Jeziorski and Monkhorst [35, 36, 37, 38, 39, 40], which at the moment
has a huge number of so-called state speci�c variants [41, 42, 43, 44].

Both original ansätze showed to be not very accurate, since in their working equa-
tions the expansion coe�cients (amplitudes) are shared for several states. This leads to
a smaller �exibility of the wavefunction per state. Furthermore, especially for many ref-
erence states the possibility of diverging cluster operators is given, commonly known as
the intruder state problem.

These are the reasons for the development of the state speci�c ansätze mentioned
above. However, research in this �eld is still in progress. Presently, the author is not aware
of a genuine multi reference coupled cluster ansatz that is truly satisfactory, meaning a
method combining the properties of the single reference coupled cluster ansatz with a true
generalization to more than one reference wavefunction.

1The con�guration interaction method employs a linear expansion of the wavefunction in the many
particle basis set. For details see sec. 2.2.2.1.
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1.3 Scope of This Work

The following section contains an overview over the goals of this work. It has mainly
two aspects, namely a theoretical and an implementational, which will be dealt with
separately. A �nal chapter will discuss the numerical testing of the concepts and the
implementation presented.

Table 1.1: Construction of triples amplitudes from linear combinations of spin indepen-
dent amplitudes. Calculation via a linear equation system employing the blue colored
amplitudes. The amplitudes are taken from a CCSDT calculation of the Li2 molecule at
an interatomic distance of 3.5 a.u. employing a 6-31Gp basis set [45].

Amplitude Determinant Ê-Operator Combination

0.00001534 |1̄2̄3̄456� 0.000025286 Ê�
1 |0�

-0.00000980 |1̄2̄34̄56� -0.000001483 Ê�
2 |0�

-0.00000112 |1̄2̄345̄6� 0.000030452 Ê�
3 |0�

-0.00000443 |1̄2̄3456̄�
-0.00001528 |1̄23̄4̄56� -0.000008973 Ê�

4 |0�
0.00000012 |1̄23̄45̄6� -0.000018799 Ê�

5 |0�
-0.00000018 |1̄23̄456̄�
0.00001074 |1̄234̄5̄6�
0.00001434 |1̄234̄56̄�
-0.00000973 |1̄2345̄6̄�
0.00000973 |12̄3̄4̄56�
-0.00001434 |12̄3̄45̄6�
-0.00001074 |12̄3̄456̄�
0.00000018 |12̄34̄5̄6�
-0.00000012 |12̄34̄56̄�
0.00001528 |12̄345̄6̄�
0.00000443 |123̄4̄5̄6�
0.00000112 |123̄4̄56̄�
0.00000980 |123̄45̄6̄�
-0.00001534 |1234̄5̄6̄�

1.3.1 Motivation

There are many e�cient coupled cluster implementations existing already. Most of these
implementations include at most doubles substitutions (and perturbational triples). The
probably fastest implementation of a closed shell CCSD code at the moment is included
in the MOLPRO program package.
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Table 1.2: Independent operators and number of singlet spin functions for di�erent
excitation levels and numbers of open shells.

level open shells #�̂ �̂-operators #�̂ f(N,S = 0)

1-fold 2 2 �̂ai 1 1
2-fold 0 1 �̂aaii 1 1

2 2 �̂abii 1 1
4 6 �̂abij , �̂

ab
ji 2 2

3-fold 2 2 �̂aabiij , �̂
aab
jii 2 1

4 6 �̂aabijk , �̂
aab
kij , �̂

aab
jki 3 2

6 �̂abciik , �̂
abc
kii , �̂

abc
iki 3 2

6 20 P (ij)
�
�̂abcijk , �̂

abc
kij , �̂

abc
jki

�
6 5

...
...

...
...

...
...

n-fold 2(n� k)
�
2(n�k)
n�k

�
(n� k)! 1

1+n�k

�
2(n�k)
n�k

�

It is however noteworthy that no implementation of a closed shell spin independent
coupled cluster code for arbitrary substitution levels exists, but very recently Stanton
and Gauss reported the implementation of spin intependent versions of CCSDT and
CCSDTQ [46, 47]. It is the scope of this work to develop an algebraic term simpli�ca-
tion capable of the derivation of spin independent coupled cluster equations for arbitrary
substitution levels.

Upon inspection of the amplitudes (i.e. the expansion coe�cients in the many body
basis set) obtained from a spin orbital coupled cluster program applied to a closed shell
reference (tab. 1.1), it is clear that a lot of memory and time could be saved by the
application of a spin independent code. Table 1.1 shows that e.g. the twenty spin orbital
based amplitudes, resulting from a spin orbital based calculation of the Lithium dimer, can
be constructed out of �ve spin independent non-redundant amplitudes only (originating
from the application of the orthogonalized spin independent operators Ê�

i in the CC
framework). This implies that the size of this part of the amplitude tensor as well as the
residual tensor is in the spin independent case only one fourth of the original size. This
results in an reduction in computational time of an even greater magnitude.

It is obvious that the ratio between the number of spin orbital based amplitudes and
spin independent amplitudes grows with the maximal substitution level since the number
of linear independent spin eigenfunctions does not grow as rapidly as the number of
primitive spin functions as well as the number of substitution operators (see also tab.
1.2).
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Table 1.3: Typesetting of mathematical objects throughout this work.

Object Symbol
Scalar d

Vector �d

Matrix D

Quantum Mechanical Operator d̂

Mathematical Operator d
Field/Linear Space D(or )

(Lie-)Algebra d(or D)

1.3.2 Theoretical Aspects

In the theoretical part of this work an alternative algebraic term simpli�cation for coupled
cluster type expectation values that has been developed is described. This new method
relies on well known commutator relations for second quantized substitution operators
and employs their characteristics as members of a Lie algebra.

1.3.3 Implementational Aspects

For the implementation of the algebraic term simpli�cation several parts of the Quantum
Objects Library (QOL, a program package used and developed by our group, initiated by
Hanrath) had to be modi�ed. Additionally, many new concepts and classes had to be
implemented from scratch.

1.4 Technical and Notational Remarks

Throughout this work a consistent notation will be used. Scalar and vector (additionally
marked by an over-rightarrow) quantities as well as quantum mechanical operators (ad-
ditionally marked by a hat) are typeset in italic, matrices are typeset in boldface font.
Mathematical operators, such as the di�erential operator, are typeset in an upright font.

Additionally there are several algebraic structures that have their own type: Fields
and sometimes linear spaces are typeset in blackboard font whereas groups and algebras,
especially Lie algebras, are typeset in fracture font.

It should be noted that, despite not full�lling the criteria for a linear space, basis sets
are commonly called spaces in the literature. This notation will be adopted in this work
and thus basis sets are also typed in blackboard font for convenience.

Many, more or less convenient, �xed notations for distinct objects in many body
theory have evolved in literature over time. In this work most of these conventions will
be adapted. Table 1.4 gives an overview over the most common conventions.

It should be noted that lower case symbols refer to one particle quantities while upper
case symbols refer to many particle quantities, e.g. |�� for a spatial orbital and |�� for a
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Table 1.4: Conventions for the notation of special objects in many body theory.

Object Notation/Symbol

Hamiltonian Ĥ

Laplacian �

Lagrangian L
Spin orbital �

Spatial Orbital �

Occupied Orbital Indices i, j, . . .

Virtual Orbital Indices a, b, . . .

Arbitrary Orbital Indices p, q, . . .

Space of Occupied Orbitals
Space of Virtual Orbitals
Entire Space of Orbitals = �
Slater Determinant |��

-Ground State |�0�
-Substituted |�ab...

ij... �
Correlated Wavefunction |�method�
Con�guration Interaction Coe�cientsa) cab...ij...

Coupled Cluster amplitudesa) tab...ij...

One Particle Operator Matrix Element �p|f |q� or f q
p

Two Particle Operator Matrix Elementa) �pq|v|rs� or vrspq
General Substitution Operator �̂rs...

pq...

Spin Orbital Substitution Operator �̂ rs...pq...

Spatial Substitution Operator �̂rs...pq...

Spin Orbital Compound Operator T̂

Spatial Orbital Compound Operator Ê
a) Symmetry issues concerning the indices of the many particle operator matrix elements are discussed
when necessary. In general no special symmetry is assumed for the matrix elements.

Slater determinant. This rule applies only for symbols where a di�erentiation between
the one and many body cases is necessary.

Finally, in chapter four a notation distinguishing between spin and spatial orbital
indices is introduced. In this notation � and beta spin oprbital indices are described by
under- and overbars, respectively. A detailed introduction to this notation is postponed
to the beginning of chapter four.
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This chapter contains a description of the central problem of quantum chemistry,
i.e. the many body interaction of electrons in the potential provided by the positive
charge of atomic nuclei [48]. After the description of the problem, the wavefunction based
approach to the approximate solution of this problem is discussed. Herein the focus will
lie on the description of electronic correlation methods, mainly con�guration interaction
and coupled cluster. The discussion of the coupled cluster formalism then leads to the
main topic of this work, namely the setup of an algebraic framework for the derivation of
spin independent coupled cluster equations.

The concepts described in this chapter are well known and included in many popular
quantum chemistry textbooks, e.g. [49, 50, 51, 52, 53, 54].
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2.1 The Electronic Structure Problem

The main problem electronic structure theory has to deal with is the pairwise repulsive
electrostatic interaction of electrons. Approximations addressing this challenge will be
formally described in the following sections.

2.1.1 The Schrödinger Equation

The quantum mechanical description of a system (assumed stationary over time) in a
non-relativistic framework is provided by the time independent Schrödinger equation
2.1 [55, 56, 57, 58]:

Ĥ� = E� . (2.1)

Herein the wavefunction � describes the considered system, Ĥ the Hamiltonian, con-
taining operators for its kinetic and potential energy and E the energy of a valid state of
the system.

Since the kinetic energy operator contains second derivatives of the wavefunction with
respect to particle coordinates, the Schrödinger equation has to be considered a partial
di�erential equation of second order.

2.1.2 The Electronic Hamiltonian

The nuclei of a polyatomic system can be seen as quasi-stationary entities due to their
mass which is at least three orders of magnitude greater than that of an electron. This
results, assuming an evenly distributed kinetic energy, in a much smaller velocity and
subsequently only a marginal contribution to the kinetic energy.

According to this analysis, �rst carried out by Born and Oppenheimer [59], a major
simpli�cation of the Hamiltonian can be achieved by neglecting the kinetic energy oper-
ators regarding the nuclei. Furthermore the potential energy arising from the repulsion
between nuclei can be evaluated via the classical Coulomb law by insertion of their �xed
positions.

The preceding discussion gives rise to an electronic Hamiltonian Ĥel as described in
eq. 2.21,

Ĥel = �1

2

�
i

�i �
�
iI

ZI

riI
+
�
i<j

1

rij
, (2.2)

where i, j are indices for electrons and I is the index for nuclei. ZI is the charge of nucleus
I and r is the distance of two particles. The Laplace operator �i is de�ned by

1Throughout this work the convention of atomic units is used. In this framework, many constants
occuring in quantum theory are set to unit values, e.g. � = e = me = a0 = 4��0 = 1.
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�i = ��2
i =

�2

�x2
i

+
�2

�y2i
+

�2

�z2i
, (2.3)

where

�ri = (xi, yi, zi) (2.4)

is the position vector of particle i.

2.1.3 Electron Correlation

Considering the last term of the electronic Hamiltonian in eq. 2.2, usually referred to as
the inter-electronic Coulomb interaction, it is clear that the movement of the electrons
is correlated.2 A similar e�ect is known in the physics of planetary movement, where the
motion of di�erent planets is coupled via the gravitational law3. Closed form solutions to
both problems are only existent for a few well conditioned cases, e.g. the coupled motion
of two particles, the motion of one particle in a central spherical symmetric potential, and
certain cases involving three particles with speci�c boundary conditions.

On the other hand, it can be shown that an analytical solution to the problem exists
in form of a converging power series [60]. Even before this remarkable result it was an
established procedure to expand the approximate wavefunction into a linear combination
of basis functions. The following sections will give an overview over the most popular
approaches of this type.

2.2 Wavefunction Based Approaches

Wavefunction based approaches approximate the exact wavefunction in a basis of suited
analytical functions. In contrast, there are (semi-)empirical models which adjust certain
quantities occuring in the calculation of a system (e.g. integrals) to experimental data.
This type of approach will not be considered in this work.

2.2.1 The Independent Particle Model

As a crude �rst approximation it is possible to partition the electronic Hamiltonian into
a sum of e�ective4 one particle operators ĥi:

Ĥel =
�
i

ĥi . (2.5)

2In the sense of mathematical correlation, i.e. the position of an electron is a function of the position
of the other electrons. For correlation in Löwdin’s sense cf. section 3.2.2.

3In fact the potentials of electrostatic as well as gravitational interaction show the same r�1 depen-
dency .

4i.e. these operators may well be in�uenced by the structure of the other single particle wave-functions,
cf. section 2.2.1.2.
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It can be shown by simple algebraic manipulations that the eigenfunction of such an
operator must be a product of eigenfunctions to the individual one particle operators.
This product is known as the Hartree product of the one particle functions. The one
particle functions involved in this expansion are usually referred to as spin orbitals:

�i : R
3 × S � C

(�x,�) �� �i(�x,�) , (2.6)

where �x are the spatial and � is the spin coordinate of the particle (S := {�, �}).

2.2.1.1 Slater Determinants

There are two severe drawbacks of this single product wavefunction ansatz regarding the
nature of electrons. First of all, as any elementary particles, electrons are indistinguish-
able, which the product wavefunction does not account for. The second drawback is due to
the fermionic nature of the electrons. This requires the wavefunction to be antisymmetric
with respect to the interchange of a pair of electrons. The only normalized, completely
antisymmetric, n-linear form over a vector space (spanned by n orbitals) turns out to be
the determinant (cf. e.g. [61], sec. 4.2). Thus, the wavefunction should be written as a
so called Slater determinant [62]:

|�� = 1�
n!

det(�i(j))i,j=1,...,n . (2.7)

Herein �i denotes the ith spin-orbital and j is the coordinate vector of the jth electron.
Another, more formal way of writing a Slater determinant is

|�� =
�
n!A

n�
i

�i(i) , (2.8)

where A is the antisymmetrizer, an idempotent operator de�ned by

A =
1

n!

�
P̂i�Sn

(�1)p(P̂i)P̂i . (2.9)

The P̂i are the permutation operators of n particles operating on the particle index. This
variant in notation is commonly known as the Leibniz expansion rule for determinants.

Since the determinant includes all permutations of the particle coordinates, one can
easily see that the indistinguishability of the electrons in the probability density is now
ful�lled. The parity p(P̂i) of the ith permutation guarantees a sign change of the deter-
minant when two electron coordinates are interchanged5.

Since now the physical requirements for a non-interacting system of electrons are
satis�ed, the Slater determinant is a common starting point for electronic structure
calculations.

5This is in close analogy to the sign change of the determinant of a usual n × n-matrix when two
columns are swapped.
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2.2.1.2 Hartree-Fock Approach

The Hartree-Fock approach [63, 64] results from minimizing the expectation value of
the electronic Hamiltonian with respect to the variation of the spin orbitals in a single
Slater determinant:

E[{|�i�}] := ��|Ĥel|��
��|��

!
= min . (2.10)

When additionally the constraint is considered that the spin orbitals are required to stay
orthonormal the problem leads to the minimization of the Lagrangian:

L[{|�i�}] = E[{|�i�}] +
�
ij

�ij(�ij � ��i|�j�) . (2.11)

Solving this variational problem in the basis which diagonalizes � = (�ij)i,j=1,...,n leads to a
set of integro-di�erential equations, one for each spin-orbital. These equations are called
canonical Hartree-Fock equations:

f̂ |�i� = �i|�i� (2.12)

with

f̂ = ĥ+
1

2

N�
j=1

�
Ĵj � K̂j

�
(2.13)

and

ĥ = �1

2

�
i

�i �
�
iI

Zi

riI
, (2.14)

Ĵj|�i(1)� = ��j(2)|r�1
12 |�j(2)�|�i(1)� , (2.15)

K̂j|�i(1) = ��j(2)|r�1
12 |�i(2)�|�j(1)� . (2.16)

The operators Ĵj and K̂j are called Coulomb and exchange operators, respectively. While
the Coulomb operator models a sort of averaged electronic repulsion, the exchange op-
erator has no classical analogue. However, when the indices i and j coincide the exchange
operator cancels exactly the contribution of the Coulomb operator. This is, the interac-
tion of an electron with itself is naturally cancelled. From the above equations 2.15 and
2.16 it becomes clear that the integro-di�erential equation for each spin orbital depends
on all other spin orbitals. This requires the solution to be of an iterative type, since the
equations depend on their own solutions. The iterative solution is often referred to as self
consistent �eld (SCF) procedure, since a �nal solution has to be stationary with respect
to an application of the Fock operator f̂ .
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Since an analytical solution of the Hartree-Fock equations is not feasible in most
cases, the spatial part of spin orbitals are normally expanded as a linear combination of
analytical basis functions {�m}, i.e.:

|�i� = |�i�
�
m

cmi|�m� . (2.17)

Inserting this ansatz into eq. 2.12 and projection onto the basis functions yields�
m

cmi ��n|f̂ |�m�� �	 

=:Fnm

= �i
�
m

cmi ��n|�m�� �	 

=:Snm

�i,n, (2.18)

which can be cast into a generalized matrix eigenvalue problem:

FC = SC� . (2.19)

This formulation of the problem is called the Roothaan-Hall matrix formalism [65, 66].
The entries of the diagonal matrix � are the orbital energies and the corresponding columns
of C contain the expansion coe�cients of the spin orbitals.

2.2.1.3 Restricted Hartree-Fock

Inserting the de�nitions of the Fock operator 2.13 and the scalar product6 into the de�-
nition for the Fock matrix elements given in equations 2.18 yields a rather cumbersome
but instructive equation system:

Fnm =

�
R3×S

��
nĥ�md�d�

+
1

2

�
R3×S

�
R3×S

��
n(1)�

�
m(2)

1

r12
�n(1)�m(2)d�1d�1d�2d�2

� 1

2

�
R3×S

�
R3×S

��
n(1)�

�
m(2)

1

r12
�m(1)�n(2)d�1d�1d�2d�2 . (2.20)

Considering the closed shell case of pairs of spin orbitals sharing a common spatial part,
i.e.

�j(i) =

�
�j(i)·�(i)

or �j(i)· 	(i) , (2.21)

eq. 2.20 splits up into four parts, each dealing with one of the four primitive spin combi-
nations

(�n,�m) � {(�,�), (�, 	), (	,�), (	, 	)} (2.22)

6The scalar product in the one particle space is the standard scalar product on the Lebesgue space
L2(R3 × S � C) of square integrable complex valued functions.
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in the orbitals �n and �m. The spin integration now yields a factor of two in the one
particle part and factors of four and two in the coulomb and exchange operators, respec-
tively. This leads to a modi�ed version of eq. 2.13 with the summation restricted to
spatial indices:

f̂ = 2ĥ+

N/2�
j=1

�
2Ĵj � K̂j

�
. (2.23)

2.2.2 Many-Body Expansion of the Wavefunction

It is usually possible to gain more than 99% of the electronic energy within the Hartree-
Fock approximation. Unfortunately the energy di�erences observed in chemical reactions
are in general substantially smaller than one percent of the total electronic energy. There-
fore, it is necessary to augment the Hartree-Fock method with suitable so-called corre-
lation methods. The idea of correlation methods is to expand the wavefunction into a basis
of Slater determinants. Thus the term many body expansion refers to an expansion in
a set of many electron functions.

The occupied and virtual orbitals of a Hartree-Fock calculation are a suitable start
for the setup of a many particle basis. By successively substituting occupied orbitals in
the ground state Slater determinant by virtual orbitals, a hierarchy of di�erent many
body functions can be obtained:

BMB = {�0,�
a
i ,�

ab
ij , . . . } . (2.24)

2.2.2.1 Linear Expansion: Con�guration Interaction

The most straightforward way of the expansion of the wavefunction in a many electron
basis is the linear expansion. Given the many particle basis 2.24 the expansion can be
written as

|�CI� = |�0�+
�
ia

cai |�a
i �+


1

2!

�2 �
ijab

cabij |�ab
ij �+ . . . , (2.25)

where the abbreviation CI stands for con�guration interaction, which is the name of this
ansatz. Usually the coe�cients cab...ij... are determined via the solution of an eigenvalue prob-
lem (eq. 2.29) obtained by insertion of the wavefunction ansatz into the Schrödinger
equation and projection onto the many body basis functions (eq. 2.27):

Ĥ|�CI� = Ẽ(|�CI�+ |�error�) |��X | �X (2.26)

� ��X |Ĥ|
�
Y

cY�Y � = Ẽ(��X |
�
Y

cY�Y �+ ��X |�error�) . (2.27)

Forcing the projection of the error wavefunction to be zero, one arrives at�
Y

cY ��X |Ĥ|�Y � = Ẽ
�
Y

cY ��X |�Y � �X , (2.28)
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which can �nally be cast into a generalized matrix eigenvalue equation form:

H�c = ẼS�c , (2.29)

where HXY = ��X |Ĥ|�Y � and SXY = ��X |�Y �. It should be noted that for orthonormal
sets of spin orbitals the matrix S collapses to the identity matrix, simlifying the problem
to a casual eigenvalue problem.

2.2.2.2 Full CI and Truncated CI Versions

The size of the occupied and virtual spaces obtained from the preceding independent par-
ticle method determine the size of the con�guration interaction Hamiltonian and overlap
matrices. The size of the many body basis set is given by:

#BMB =


#

n

�
, (2.30)

where n is the number of electrons. Even though the CI-matrices are normally sparse,
it is clear from the factorially increasing size of BMB that only calculations for a small
number of basis functions are feasible. Due to this the so-called full CI ansatz (meaning
that Ĥ is represented in the full many particle basis set) was used only for high accuracy
benchmark calculations on small systems up to now. It should be noted that very recently
several frameworks have been developed that employ the statistical Monte-Carlo method
in full CI calculations on larger systems with encouraging success (see e.g. [67]).

Nevertheless truncated CI methods are widely used for several decades now in quan-
tum chemistry. These methods rely on a truncated version of equation 2.25, where,
for example, only the up to doubly substituted part of the many particle basis set
BMB,SD = {�0,�

a
i ,�

ab
ij } is used to represent the Hamiltonian. In the spirit of this trunca-

tion, a hierarchy of methods with increasing accuracy can be obtained (CI up to singles
substitutions CIS7, CI up to doubles substitutions CISD, CISDT, . . . ).

Finally, it should be noted that even for truncated CI methods it is not common
practice to solve the entire eigenvalue problem. Since the solution of the eigenvalue
problem requires a matrix inversion (computationally scaling as N3) or a similar process
and normally only the lowest eigenvalue (i.e. the ground state energy) is sought, it is
reasonable to employ numerical recipes that were developed for this task only, e.g. the
Davidson algorithm [68], which scales as N2.

7For a canonical closed shell or unrestricted Hartree-Fock reference determinant Brillouin’s the-
orem states that there is no interaction between singly substituted determinants and the reference via
the Hamiltonian. Thus CIS does not improve the independent particle model. It is therefore not used
for ground state calculations.
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Figure 2.1: Scheme of a CIS calculation of a system of two independent hydrogen
molecules in contrast to two separate CIS calculations of the individual fragments.

2.2.3 Size Consistency and the Product Expansion

The CI ansatz has several very important features such as an conceptually easy setup,
variationallity8 and several extensions to more general theories, dealing with excited states
(CIS), non-single determinant references (multi-reference CI, MRCI) and also nuclear
movement (vibrational CI, VCI). Despite this, it also has (in all of its variants excluding
full CI) a severe drawback, namely its lack of size consistency and size extensivity.

Size consistency is a property that describes the qualitatively right dissociation into
non-interacting systems (e.g. several molecules at in�nite distances). For non-interacting
systems it is trivially clear that the Hamiltonian should be a plain sum of the Hamiltonians
of the individual subsystems. Thus, the total wavefunction has to be an antisymmetrized
product of the individual wavefunctions and the energy should behave additively.

As can be seen in �gure 2.1 the CIS method does not meet these requirements for a
system of non-interacting hydrogen molecules. The product wavefunction of the individual
CIS calculations contains doubly substituted determinants that do not show up in the CIS

8i.e. resulting from a variational ansatz, the CI energy is an upper bound for the exact energy of the
system concidered.
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calculation of the complete system. Obviously at least one of the drawbacks of the CI
method is the lack of product substitutions in the wavefunction.

A possible workaround to this problem is to include product substitutions via a product
expansion of the wavefunction as introduced in eq. 2.31:

|�� =
�
i

(1 + Ĉi)|�0� , (2.31)

where the Ĉi operators transform the reference function into the substituted determi-
nants included in the (truncated) many particle basis set. As the number of individual
coe�cients in the expansion does not increase with respect to the linear expansion, it is
clear that for an increasing level of truncation the wavefunction converges to the full CI
wavefunction.

Fortunately, this is not the only favorable feature of the product ansatz. It can be
shown that the ansatz is size consistent as well as size extensive, a property introduced in
the next chapter. For commuting and nilpotent substitution operators the product ansatz
can alternatively be written as an operator exponential:

�
i

(1 + Ĉi)|�0� = exp

��
i

Ĉi

�
|�0� . (2.32)

This exponential ansatz is a characteristic of the coupled cluster method discussed in the
next chapter.

2.2.4 Algebraic Properties of the Expansion Coe�cients

The expansion coe�cients occuring in the coupled cluster framework are normally called
amplitudes. In order to distinguish them from the CI coe�cients, the symbol t has been
introduced for their representation, alongside the symbols T̂ and �̂ for the cluster and
substitution operators, respectively.

Although it is possible to �nd algebraic relations between the quantities occuring in
CI and coupled cluster, the newly introduced symbols represent more than just a cosmetic
change. It can be shown that the sets of coe�cients occuring in CI and CC equations
have di�erent statistical properties. Perhaps the most striking di�erence is their scaling
behaviour with respect to the system size, leading to size extensive equations for the
coupled cluster ansatz while the truncated con�guration interaction method lacks this
property. Furthermore in the coupled cluster framework, the amplitudes are size intensive,
which leads to a linear scaling of the energy with the system size.
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3.1 Introduction

3.1.1 The Coupled Cluster Wavefunction

The basic idea of coupled cluster theory is the exponential ansatz for the wavefunction
[1, 2]:

|�CC� = exp(T̂ )|�0� . (3.1)

Herein the reference wavefunction |�0� is the ground state Slater determinant obtained
via a single particle method (in most cases |�0� corresponds to the Hartree-Fock
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wavefunction). The excitation operator T̂ is de�ned as follows:

T̂ =
�
n

T̂n (3.2)

=
�
n

ta1...ani1...in
�̂a1...ani1...in

. (3.3)

The tensor entries t are the variables that have to be determined in an actual CC-
calculation and the substitution operators

�̂a1...ani1...in
= â†an . . . â

†
a1
âi1 . . . âin (3.4)

are de�ned via the second quantized [69, 48, 70] annihilation and creation operators, âp
and â†q, respectively.

It can be shown that the exponential ansatz 3.1 is equivalent to the product expan-
sion mentioned in the previous chapter (cf. eq. 2.31), assuming special circumstances.
Hence the drawback of size inconsistency is overcome by an exponential de�nition of the
wavefunction and a suitable determination of the expansion coe�cients.

3.1.2 The Projected Schrödinger Equation

The insertion of eq. 3.1 into the Schrödinger equation yields

ĤeT̂ |�0� = Ẽ
�
eT̂ |�0�+ |�error�

�
. (3.5)

From this equation an energy decoupled set of equations can be obtained by multiplication
with e�T̂ from the left and projection upon the reference and excited determinants:

��X |e�T̂ ĤeT̂ |�0� = Ẽ
�
��X |e�T̂ eT̂ |�0�+ |�error�

�
(3.6)

� ��X |e�T̂ ĤeT̂ |�0� = �X0Ẽ , (3.7)

where the orthonormality of the Slater-determinants was employed, the projection of
the error was forced to be zero and non-overlapping sets of occupied and virtual orbitals
were assumed.

The projection upon the reference determinant (X = 0 in eq. 3.7) is called the energy
equation, since it is the only equation the energy is still contained in. The remaining
equations are called amplitude equations, since they are employed for the determination
of the expansion coe�cients (amplitudes) occuring in the equations. It is noteworthy that
the solution of this equation system does not correspond to the solution of an eigenvalue
problem anymore, and that it is not variational anymore. In fact, the amplitude equations
form a system of non linear equations that is normally solved by �xpoint iteration pro-
cedure. After convergence, the coe�cients of the excitation operators in T̂ can inserted
into the energy equation to obtain the solution for the energy.
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3.1.3 Size Extensivity

In addition to the feature of size consistency introduced in the last chapter there is also
a concept of size extensivity. While size consistency ensures the right scaling of the
correlation energy with the system size of non-interacting fragments, size extensivity deals
with interacting systems.

From a phenomenological point of view it is clear that the correlation energy should
scale proportionally to the system size (i.e. should be an extensive property). The de�-
nition of the extensivity is the following:

lim
N��

Ecorr(N ·A)
N

= const , (3.8)

where a system of interacting and equal subsystems A is considered.
It is noteworthy that e.g. the CID approach fails to reproduce this scaling, but rather

scales as
�
N in the limit of large system sizes (see [54] p. 14f).

3.2 Algebraic Framework

3.2.1 The Concept of Normal Order

The de�nition of second quantized annihilation and creation operators reveals the e�ect
of their action upon the real vacuum state | �:

âx| � = � |â†x = 0, x � {i, j, . . . , a, b, . . . } . (3.9)

Upon introduction of the ground state Slater determinant as a reference vacuum state
(also called Fermi-vacuum) |�0� = |i1 . . . in�, the following somehow similar relations can
be obtained:

âak |�0� = ��0|â†ak = 0, ak � (3.10)

and â†ik |�0� = ��0|âik = 0, ik � . (3.11)

It is clear from the inspection of eq. 3.9 that any expectation value of a string of second
quantized operators regarding the true vacuum must vanish, if all creation operators are
placed to the left of all annihilation operators. Such a string of operators is called normal
ordered.

From the basic anti-commutation relations

[âp, âq]+ = [â†p, â
†
q]+ = 0 (3.12)

and [âp, â
†
q]+ = [â†p, âq]+ = �pq . (3.13)

of second quantized operators a normal ordered pair of operators can be obtained by the
following transformation (the asterisk replaces the dagger and non-dagger variants of the
operators):

{â�pâ�q}N = [â�p, â
�
q]+ � â�pâ

�
q , (3.14)
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where { }N is the normal ordered operator string and [ , ]+ is the anti-commutator. The
expectation value of any pair of operators is then given by

� |â�pâ�q| � = � |[â�p, â�q]+| � � � |{â�pâ�q}N | � (3.15)
= � |[â�p, â�q]+| � . (3.16)

This type of operation is called a contraction because the anti-commutation relations
for operator pairs yield scalar values. Thus in summary the rules for the contraction

operation (symbolized by a staple shaped line " " joining the two operators) can be
written as follows:

â�pâ
�
q = â�pâ

�
q � {â�pâ�q}N . (3.17)

In other words, any pair of operators can be written as the sum of the normal ordered
string and its contraction (which is obviously normal ordered):

â�pâ
�
q = {â�pâ�q}N + {â�pâ�q}N . (3.18)

An expression for operator strings of arbitrary length known as Wick’s theorem [71] can
be derived in an inductive way (see e.g. [54], p. 70f for a sketch of the proof):

ABC . . .XY Z = {ABC . . .XY Z}N +
�

singles

{ABC . . .XY Z}N

+
�

doubles

{ABC . . .XY Z}N

+ . . . . (3.19)

3.2.1.1 Particle-Hole Formalism

From the inspection of the reference determinant

|�0� =
�
i�

â†i | � , (3.20)

it is clear that all creation operators occuring in its de�nition have to be shifted to the
left of any annihilation operator applied to the reference. Both the application of the
anticommutation rules 3.12, 3.13 and the application of Wick’s theorem would be very
clumsy in this framework. In particular, the e�ort to be taken to convert an expression
to its normal ordered form would be dependent on the number of electrons present in the
system considered.

For the reasons mentioned above it is convenient to re-de�ne the concept of normal
order. To achieve a particle number independent framework, it is required for a normal
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ordered string of operators that all creation operators of occupied orbitals (holes) are
placed on the right hand side of all hole annihilators and that all creators of virtual
orbitals (particles) are placed on the left hand side of all particle annihilators. Due to
this de�nition every particle number conserving normal ordered string of operators acting
on the reference determinant will yield a zero result, since the right most operator either
destroys a virtual orbital or creates an occupied one (see eqs. 3.10 and 3.11).

However, the re-de�nition of normal ordering has a drawback. Since now the normal
ordering depends on the nature of the orbital indices, the contraction process also shows
this dependency. One can derive the contraction rules for normal ordered (with respect
to the Fermi vacuum) operator strings to be:

{â†pâq} = �pq� (3.21)

and {âpâ†q} = �pq� . (3.22)
(3.23)

Contractions between creators only and annihilators only vanish, because these strings
are normal ordered already.

Thus, the price to pay for the particle independence of the contraction process is
the necessity to distinguish between contractions in the occupied and virtual spaces,
respectively. Nevertheless, for a convenient and universal framework, this drawback is
of minor importance. In the following the term normal order will always refer to the
re-de�nition given in this section.

3.2.1.2 The Normal Ordered Hamiltonian

According to the rules of the second quantization framework the electronic Hamiltonian
(cf. eq. 2.2) can be written as

sqĤel. =
�
pq

hq
pâ

†
qâp +

1

2

�
prqs

vqsprâ
†
sâ

†
qâpâr , (3.24)

wherein hq
p = �q|ĥ|p� is the matrix element of the one particle part of the Hamiltonian

(i.e. the kinetic energy term of the electrons and the electron nuclei interaction term) and
vqspr = �qs|v̂|pr� is the matrix element of the electron-electron interaction (i.e. v̂ = r�1

12 ).
The factor of one half in front of the two particle part of 3.24 is due to particle symmetry
in v̂ and ensures that every interaction is counted once only.

For the sake of convenience the one particle and two particle parts of the Hamiltonian
will be recast into their normal ordered form individually. This will be done via Wick’s
theorem eq. 3.19.

Two particle part It is convenient to discuss the two particle part in the beginning,
since its normal ordering reveals e�ective one particle operators which can be included
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into the ordering process of the one particle operator. The normal ordered form of the
two particle part of the Hamiltonian according to Wick’s theorem contains up to doubly
contracted terms:

â†sâ
†
qâpâr = {â†sâ†qâpâr}N + {â†sâ†qâpâr}N + {â†sâ†qâpâr}N + {â†sâ†qâpâr}N

+ {â†sâ†qâpâr}N + {â†sâ†qâpâr}N + {â†sâ†qâpâr}N , (3.25)

which can be evaluated by application of the antisymmetry of the normal ordering and
by contraction:

â†sâ
†
qâpâr = {â†sâ†qâpâr}N + �rs� {â†qâp}N � �rq� {â†sâp}N � �ps� {â†qâr}N

+ �pq� {â†sâr}N + �rs� �pq� � �rq� �ps� . (3.26)

Due to the arbitrary choice of summation indices the second and �fth and the third and
fourth terms coincide, respectively:

â†sâ
†
qâpâr = {â†sâ†qâpâr}N + 2�rs� {â†qâp}N � 2�rq� {â†sâp}N

+ �rs� �pq� � �rq� �ps� . (3.27)

The two particle part can now be written in the following way:
1

2

�
prqs

vqsprâ
†
sâ

†
qâpâr =

1

2

�
prqs

vqspr{â†sâ†qâpâr}N +
�
ipq

(vqipi � viqpi){â†qâp}N

+
1

2

�
ij

�
vijij � vjiij

�
. (3.28)

The contractions reveal a one particle and a scalar part in the two particle part of the
Hamiltonian. It is convenient to discuss the one particle part together with the original
one particle part of the Hamiltonian. This requires a substitution:

hq
p � hq

p +
�
i

(vqipi � viqpi) =: f q
p . (3.29)

One Particle Part The application of Wick’s theorem to the one particle part of the
Hamiltonian yields

�
pq

f q
p â

†
qâp =

�
pq

f q
p{â†qâp}N +

�
pq

f q
p{â†qâp}N (3.30)

=
�
pq

f q
p{â†qâp}N +

�
pq

f q
p �pq� . (3.31)

Thus it is possible to separate the one particle part into a fully normal ordered and a fully
contracted (meaning scalar) part:

f̂ = f̂N +
�
i

f i
i . (3.32)
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3.2.2 The Baker-Campbell-Hausdorff Expansion

After the procedure of normal ordering of the second quantized Hamiltonian the projected
coupled cluster equations can be rewritten in terms of normal ordered and scalar parts of
the Hamiltonian:

��X |e�T̂ (ĤN + EHF)e
T̂ |�0� = �0XE (3.33)

� ��X |e�T̂ ĤNe
T̂ |�0� = �0X (E � EHF)� �	 


=Ecorr

. (3.34)

The quantity Ecorr = E�EHF is the correlation energy in Löwdin’s sense. The similarity
transformed normal ordered Hamiltonian will be further investigated in the following.

A well known relation for operators which obey certain commutator relations (see
section 4.3) is the so called Baker-Campbell-Hausdorff formula [72, 73, 74] (also
known as Hadamard’s lemma) 3.35 which expands a similarity transformed operator
into a series of nested commutators:

e�B̂ÂeB̂ =
��
i=0

1

i!
[. . . [��	

i times

Â , B̂] . . . , B̂]� �	 

i times

. (3.35)

This in principle in�nite series has the property to truncate naturally for the coupled
cluster equations. This is due to the maximal rank of the Hamiltonian which determines
the maximal number of substitution operators that can be connected to it. Since the two-
particle part of the normal ordered Hamiltonian contains four operators, the Hamiltonian
can be connected to at most four substitution operators. The expansion of the similarity
transformed Hamiltonian thus takes the following form:

e�T̂ ĤNe
T̂ = ĤN + [ĤN , T̂ ] +

1

2
[[ĤN , T̂ ], T̂ ]

+
1

6
[[[Ĥ, T̂ ], T̂ ], T̂ ] +

1

24
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ] . (3.36)

The last step in the term simpli�cation consists of the evaluation of the terms in the
nested commutator expansion and projections thereof via Wick’s theorem for normal
ordered operator products, eq. 3.37:

{ABC . . . }N{XY Z . . . }N = {ABC . . .XY Z . . . }N

+
�

singles

{ABC . . .XY Z . . . }N

+
�

doubles

{ABC . . .XY Z . . . }N

+ . . . . (3.37)
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Please note that contractions of operators which belong to the same initial product do
not occur. It is also noteworthy that due to the Fermi vacuum expectation value only
fully contracted terms can contribute to the coupled cluster equations.

For reasons of clarity a short example of the term simpli�cation will be given. A
singles projection term of the Fock operator will be chosen. A left arrow will indicate a
"contributes to" relation:

��A
I |e�T̂ ĤNe

T̂ |�0� �� 1

4
â†I âA[F̂N , T̂2] . (3.38)

A single term of this commutator can be written as:

â†I âA[F̂N , T̂1] ��
�
pqia

f q
p t

a
i â

†
I âA{â†qâp}N â†aâi (3.39)

��
�
pqia

f q
p t

a
i {â†I âA}N{â†qâp}N{â†aâi}N . (3.40)

In the last transformation it was employed that excitation operators as well as de-
excitation operators are already normal ordered. Now one fully contracted term of Wick’s
theorem 3.37 will be chosen:

{â†I âA}N{â†qâp}N{â†aâi}N �� {â†I âAâ†qâpâ†aâi}N (3.41)
�� �Ii�Aq�pa . (3.42)

The Kronecker symbols indicate that the indices I,A and p are contracted with i,q and
a, respectively. Due to that the summation over p and q vanishes and one term of the
singles projection can be broken down to yield

��A
I |e�T̂ ĤNe

T̂ |�0� ��
�
ia

fA
a t

a
I . (3.43)

3.3 Diagrammatic Approach to Coupled Cluster The-
ory

Since their introduction the Goldstone diagrams [75, 76, 77, 78, 79] have played an
important role in many body theory. The basic idea behind these diagrams is to represent
messy formulae in a more striking and human readable form.

3.3.1 De�nitions

Coupled cluster diagrams basically consist of the fragments shown in table 3.1. For ex-
ample the one particle part of the Hamiltonian consists of four diagrams each of which
depicts one of the possible index combinations (i, j), (i, a), (a, i) or (a, b). The corre-
sponding diagrams are augmented by a cross that represents the f̂ -operator (see �g. 3.1).
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Table 3.1: Fragments occurring in coupled cluster Goldstone diagrams.

Diagram fragment Fragment name Functionality
Cluster line Depicts a cluster operator T̂

Interaction line Depicts a part of the Hamiltonian

Particle line Depicts a particle (virtual orbital)

Hole line Depicts a hole (occupied orbital)

Incoming line Depicts an annihilator

Outgoing line Depicts a creator

Once the elementary diagram components are de�ned the Wick contractions of op-
erator strings can easily be depicted by joining the lines that represent the contracted
indices (as shown in �g 3.2).

�
ab

f b
a{â†bâa}N

�
ia

f i
a{â†i âa}N

�
ia

fa
i {â†aâi}N

�
ij

f j
i {â†j âa}i

Figure 3.1: Picture of the diagrams contributing to the Fock operator.

For reasons of beauty and a fast detection of the scaling behaviour, a double contrac-
tion of indices that originate at the same vertex on both operators is depicted as a loop.
The loop on the right hand side of �gure 3.2 originates in the contraction of both of the
indices of the Fock operator with both indices of the T̂1 operator. Please note that upon
contraction of the indices one summation on the left hand side and two summations on
the right hand side collapse.

The Fermi vacuum expectation value ensures that only fully contracted terms can
contribute to the coupled cluster equations. It is thus obvious that the term on the right
hand side of �gure 3.2 can contribute to the coupled cluster energy equation while the term
on the left hand side has to be contracted to another pair of second quantized operators to
yield a non vanishing term after the application of the Fermi vacuum expectation value.
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�� or ��

�
iabc

f b
at

c
i{â†bâaâ†câi}N ��

�
iab

f b
at

a
i {â†bâi} or

�
ijab

f i
at

b
j{â†i âaâ†bâj}N ��

�
ia

f i
at

a
i

Figure 3.2: Two possible contractions of the Fock operator with a single substitution
operator.

3.3.2 Precontracted Diagrams

One corollary of the non existing contractions within a single product in Wick’s second
theorem is that precontracted diagrams (i.e. diagrams connecting indices associated to
one single operator) do not occur. However, this is not the total truth. It is only due
to the preceding normal ordering of the two particle part of the Hamiltonian that those
diagrams do not explicitly show up. The normal ordering step produces precontracted
diagrams that are afterwards assigned to the one particle part of the Hamiltonian and the
reference energy. It is this step that reveals a part of the power of the concept of normal
order. A large number of precontracted diagrams (and thus many algebraic terms) are
excluded from the discussion of the coupled cluster equations by normal ordering and
subsequent gathering of similar terms. The contributions of the two particle part to the
Fock operator in terms of precontracted diagrams are shown in �gure 3.3.

3.3.3 Generation of the Coupled Cluster Equations Employing
Diagrams

Up to now the discussion of diagrams has been rather basic. There are of course certain
rules for forward and backward translation of algebraic equations and Goldstone dia-
grams. For a detailed discussion of the derivation and application of the translation rules,
see e.g. [54]. The rules and transformations will be investigated employing an example
doubles substitution term in the following:

��AB
IJ |e�T̂ ĤeT̂ |�0� �

�
ijab

vabij t
a
i t

A
j t

Bb
IJ . (3.44)

The rules for the generation of diagrams are summarized below:

1. Construction of the lines representing the operators involved in the term, e.g. a
cluster line for T̂2 or an interaction line for V̂ ,
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+ + ��

�
pq

hq
p{â†qâp}N +

�
ipq

vqiip{â†qâp}N +
�
ipq

viqip{â†qâp}N ��
�
pq

f q
p{â†qâp}N

Figure 3.3: Scheme of the two-particle contributions to the Fock operator in dia-
grammatic notation. Please note that these diagrams are only representatives, since the
uncontracted edges are not yet de�ned to be particles or holes.

2. Assignment of hole and/or particle lines to the vertices of the cluster/interaction
lines according to the space the individual indices belong to,

3. Joining the hole/particle lines with common indices,

4. Transformation of double contractions of indices on the same vertices to loops,

5. Final cleanup.

� i a j

A

b

I B J

�
ijab

vabij t
a
i t

A
j t

Bb
IJ

Figure 3.4: Example of a doubles projection diagram of the two particle part of the
normal ordered Hamiltonian.

The rules for the back transformation from diagrams to algebraic terms are more
elaborate. One has to account for the pre-factors and signs of the terms from the topology
of the connection of vertices. In the following a scheme for the back transformation will
be given:
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1. Assignment of tensor variable names to the cluster/interaction lines,

2. Assignment of index names to the particular connections according to the space the
individual particle/hole line belongs to,

3. Distribution of the index names to the tensor symbols,

4. Generation of a pre-factor a via a = 2(#equiv vertices+#equiv internal lines),

5. Generation of a sign s via s = (�1)(#holes�#loops).

6. Summation over contracted indices.

3.4 Spin Independent Coupled Cluster in the Litera-
ture

The idea of a spin independent version of the working equations came up immediately at
the beginning of coupled cluster theory in quantum chemistry. In several publications,
�ížek and Paldus [3, 4, 5] derived the working equations of spin free as well as spin or-
bital based coupled cluster doubles (originally called CPMET: Coupled pair many electron
theory).

They did so by means of skeletons, predecessors of the nowadays very common coupled
cluster diagrams. �ížek claims that the spin free variant of the working equations can be
derived by omitting the maximum loop rule and application of a weighting factor of two
for every loop occuring in the diagrams. However, it is not fully clear from his publication
if he restricts himself to the CCD approximation or states a general rule.

For the relatively simple case of coupled cluster doubles his rule of thumb, nevertheless,
can easily be understood by applying spin integration to the spin orbital terms.

3.4.1 Diagrammatic Approaches

The �rst reported implementation of a spin free coupled cluster routine including single
and double substitutions is probably the one of Bartlett et al. [9]. In their publication
the authors derive working equations via Goldstone diagrams.

The diagrammatic idea was probably exploited most in the work of Paldus [80,
81, 82, 83]. He proposed many variants of coupled cluster type methods for di�erent spin
multiplicities and spin states via the combination of spatial diagrams (called skeletons) and
spin diagrams. For example the skeleton of the double excitation T̂2 has to be combined
with three spin diagrams representing the three possibilities to generate a spin conserving
excitation (in the spin orbital case). Of course this yields far more fully contracted terms
in the working equations due to the higher �exibility in the combination of the spin
diagrams.
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The idea of skeletons and spin diagrams was also exploited for the derivation of CCSD
and CCSDT equations [13, 84, 85, 86] and extended very recently by Matthews, Stan-
ton and Gauss [46] to derive CCSDT and CCSDTQ working equations in a spin free
framework. They also report the implementation of the spin independent equations [47]
in the CFOUR [87] program package.

3.4.2 Algebraic Approaches

For the, in contrast to higher substituted versions, relatively simple CCSD approximation
many implementations exist up to now. Nearly every common quantum chemistry pro-
gram package, including GAUSSIAN [88], TURBOMOLE [12], MOLPRO [10], MOLCAS
[11] and many others, has a CCSD (and often also the perturbatively extended CCSD(T))
module. However, the up to date fastest implementation of a spin free version of CCSD
is probably the one contained in MOLPRO suggested and implemented by Werner and
coworkers [89]. It features a matrix based storage of the integral, amplitude, intermediate
and residual tensors, respectively. This, despite having an unfavorable sparse storage of
the tensor quantities, leads to a very e�cient contraction algorithm.

The actual derivation of the working equations was most likely done via the evaluation
of Wick’s theorem for spin independent substitution operator strings. While this can
easily be done for CCSD, the factorial increase of fully contracted terms limits the direct
evaluation of Wick’s theorem to low orders of substitution (i.e. CCSDTQ equations
take about a day on a modern desktop computer to be derived). It is also noteworthy
that in addition to its unfavorable scaling with the number of second quantized operators
in an operator string the simpli�cation of the CC equations via Wick’s theorem in the
spin free case bears another complexity. Due to the de�nition of the spin independent
substitution operators as a sum of a pure �-spin term and a pure �-spin term, the number
of operator strings to be evaluated after expansion of the products increases by a number
of two for each single substitution operator involved. This combination of a factorial and
an exponential scaling behavior truly restricts the application of Wick’s theorem to very
small examples. As an example the term

RAB
IJ �� ��AB

IJ |[[[V̂N , T̂2], T̂1], T̂1]|�0� (3.45)

will be discussed. In the simpli�ed CCSD equations the contribution of this term restricts
itself to ten (four, if implicitely antisymmetrized) tensor products, although the evaluation
via Wicks theorem includes a maximum of 752 terms. For the spin independent case
this number of terms has to be multiplied by 28 yielding almost 200000 terms.

There are two further points to consider when talking about the working equations.
First of all, due to the fact that Wick’s theorem only accounts for operator strings and
does not employ possible symmetries on the tensor quantities associated, the indices of
arising terms have to be brought into a canonical order and the equations re-simpli�ed
to achieve a compact notation in the equation system. As a second point one has to
consider a (partial) factorization of the equations to yield an optimal scaling (e.g. N6
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vs. N8 for factorized in contrast to unfactorized CCSD working equations). Due to
these complications the working equations are hard coded in many quantum chemistry
packages. This circumvents the bottleneck of re-deriving and factoring out the equations
for every run of the module.
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4.1 De�nitions and Notational Remarks

For reasons of clarity, in the following, spin orbital indices will be denoted with under- and
overbars for � and � spin functions, respectively. The same convention will be applied
to the one particle spaces. If the nature of the spin function is not distinguished in the
formula, spin orbitals will be identi�ed with a tilde. So the following conventions hold:

i, j, · · · � , a, b, · · · � , p, q, · · · � (4.1)

i, j, · · · � , a, b, · · · � , p, q, · · · � (4.2)

ĩ, j̃, · · · � ˜, ã, b̃, · · · � ˜, p̃, q̃, · · · � ˜ (4.3)

The description of the coupled cluster method is based on the application of substitution
operators �̂ q̃p̃ or �̂qp on a single determinant reference wavefunction. These operators can
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be depicted as (scaled) projection operators as follows:

�̂ q̃p̃ =
n�

i=1

|�q̃(i)���p̃(i)|tq̃p̃ (4.4)

and �̂qp =
n�

i=1

|�q(i)���p(i)|sqp , (4.5)

where the symbol � represents spin orbitals while � represents spatial orbitals. The sum
over the electron indices ensures that the (spin-)orbital p is replaced by q in every product
contained in the determinant. The compound operators occuring in the coupled cluster
equations as exponents, are de�ned as:

T̂ =
�
i

ti�̂i, and Ê =
�
i

ei�̂i . (4.6)

The spatial orbital substitution operators �̂qp (often called unitary group generators in
the literature) can be expressed as the sum of two spin-orbital substitution operators:

�̂qp = �̂
q
p + �̂ qp . (4.7)

To make use of the concept of second quantization, equation 4.7 can be employed to
express the spatial orbital substitution operators in terms of annihilators and creators:

�̂qp = â†qâp + â†qâp . (4.8)

It is possible to de�ne a concept of normal order also for the spatial orbital substitution
operators. A string of these substitution operators will be called normal ordered if all
addends in its expansion into spin orbital annihilation and creation operators are normal
ordered, e.g.:

{�̂qp, �̂sr} = {â†qâpâ†sâr}+ {â†qâpâ†sâr}+ {â†qâpâ†sâr}+ {â†qâpâ†qâp} (4.9)

Many of the formulae presented in this chapter, however, apply to spin orbital as well
as spatial orbital substitution operators. In the following, in these equations the variable
� will be used for operators and � for orbitals:

�̂q
p � {�̂ q̃p̃ , �̂qp} . (4.10)

In a similar fashion to the de�nition of the single particle substitution operators higher
order operators can be de�ned. A particular care has to be given to the possibility of
coinciding indices, as these can lead to hidden single substitutions. A double substitution
operator has thus to written as:

�̂rs
pq =

n�
k,l=1

|�s(l)�|�r(k)���q(k)|��p(l)| �
n�

k=1

|�s(k)���p(k)| (4.11)

= �̂r
p�̂

s
q � 	rq�̂

s
p . (4.12)

Subtraction of the permuted operator �̂sr
qp yields a commutator relation that will be

exploited in the derivation of the term simpli�cation:

[�̂r
p, �̂

s
q ] = 	ps�̂

r
q � 	qr�̂

s
p . (4.13)
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4.1.1 Remark on the Name Unitary Group Generators

The name Unitary Group Generators [90, 91] most likely emerged out of a misunder-
standing. It refers to the application of the so called unitary group generators (in terms
of in�nitesimal generators of U(n), i.e. members of the Lie algebra u(n)) �̂qp = â†aâi+ â†aâi
to the reference determinant.

In fact, the operators mentioned are not members of u(n) in general. The standard
representation of the unitary Lie algebra is the embedding in the linear space of n ×
n-matrices, where u(n) forms the subspace of skew-hermitian matrices. However, the
operators �̂qp are, by no means, skew-hermitian.

Since the exponential of a skew-hermitian matrix is unitary (as can easily be proven
by explicit calculation) the transformation

Ĥ � = e�ÊĤeÊ, (4.14)

|�� = eÊ|�0� (4.15)

would not a�ect the norm of the wavefunction. This would imply that the coupled cluster
wavefunction would be normalized (as it is in general known not to be).

Nevertheless, it is possible to construct the two skew-hermitian operators (cf. [92] eq.
4.2.8)

�̂+ =
i�
2
(�̂qp + �̂pq ) (4.16)

and

�̂� =
1�
2
(�̂qp � �̂pq ) (4.17)

as complex linear combinations [93]. However, these operators always combine excitations
with de-excitations and vice versa, which leads to an in�nite expansion when employing
the BCH-Formula.

Discussions on truncated versions (i.e. correct to a given order of perturbation theory)
of a unitary coupled cluster (UCC) theory employing scaled variants of the operators �̂�
from above were given by Bartlett et al. [94, 95].

4.2 Normal Ordering of Substitution Operators

Since pure excitation operators as well as pure de-excitations are in normal order with
respect to the Fermi vacuum already, special attention has to be payed regarding the op-
erators included in the hamiltonian. In the process described below, the spin independent
second quantized operators will be employed. The results for the spin orbital operators
are well known and also can be obtained by considering the all-� terms below only.
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For the one particle part of the hamiltonian the substitution operator can be written
as:

�̂qp = â†qâp + â†qâp = {â†qâp}+ �pq� + {â†qâp}+ �pq� , (4.18)

where Wicks theorem was employed. Replacing spin indices with spatial indices on the
right hand side one obtains

�̂qp = {�̂qp}+ 2�pq� . (4.19)

Inserting this result in the complete expression for the one particle part yields:

ĥ =
�
pq

hq
p{�̂qp}+ 2

�
i

hi
i . (4.20)

Please note that due to normal ordering, contractions between p and q are not allowed
anymore.

The expression for the two particle operator reads

�̂qspr = �̂qp�̂
s
r � �ps�̂

q
r (4.21)

= (â†qâp + â†qâp)(â
†
sâr + â†sâr)� �ps(â

†
qâr + â†qâr) (4.22)

= â†qâpâ
†
sâr + â†qâpâ

†
sâr + â†qâpâ

†
sâr + â†qâpâ

†
sâr � �psâ

†
qâr � �psâ

†
qâr . (4.23)

Using Wick’s �rst theorem, eq. 4.23 can be recast in normal order as

�̂qspr ={â†qâpâ†sâr}+ �ps� {â†qâr}+ �qr� {âpâ†s}+ �rs� {â†qâp}+ �pq� {â†sâr}
+ �pq� �rs� + �qr� �ps� + {â†qâpâ†sâr}+ �ps�˜{â†qâr}+ �qr�˜{âpâ†s}
+ �rs� {â†qâp}+ �pq� {â†sâr}+ �pq� �rs� + �qr�˜�ps�˜ + {â†qâpâ†sâr}
+ �ps�˜{â†qâr}+ �qr�˜{âpâ†s}+ �rs� {â†qâp}+ �pq� {â†sâr}+ �pq� �rs�

+ �qr�˜�ps�˜ + {â†qâpâ†sâr}+ �ps� {â†qâr}+ �qr� {âpâ†s}+ �rs� {â†qâp}
+ �pq� {â†sâr}+ �pq� �rs� + �qr� �ps� � �ps{â†qâr} � �ps�qr�

� �ps{â†qâr} � �ps�qr� . (4.24)

After eliminating the spin-opposite index combinations in the Kronecker symbols,
eq. 4.24 reads

�̂qspr ={â†qâpâ†sâr}+ �ps� {â†qâr}+ �qr� {âpâ†s}+ �rs� {â†qâp}+ �pq� {â†sâr}
+ �pq� �rs� + �qr� �ps� + {â†qâpâ†sâr}+ �rs� {â†qâp}+ �pq� {â†sâr}
+ �pq� �rs� + {â†qâpâ†sâr}+ �rs� {â†qâp}+ �pq� {â†sâr}+ �pq� �rs�

+ {â†qâpâ†sâr}+ �ps� {â†qâr}+ �qr� {âpâ†s}+ �rs� {â†qâp}+ �pq� {â†sâr}
+ �pq� �rs� + �qr� �ps� � �ps{â†qâr} � �ps�qr� � �ps{â†qâr}
� �ps�qr� . (4.25)
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Assuming ˜ � ˜ = � allows for taking di�erences of the colored parts in eq. 4.25, as e.g.
�.p̃q̃�˜ � �p̃q̃ = �p̃q̃�˜ for non overlapping sets of occupied and virtual orbitals,

�̂qspr ={â†qâpâ†sâr}+ �ps� {â†qâr}+ �qr� {âpâ†s}+ �rs� {â†qâp}+ �pq� {â†sâr}
+ �pq� �rs� + �qr� �ps� + {â†qâpâ†sâr}+ �rs� {â†qâp}+ �pq� {â†sâr}
+ �pq� �rs� + {â†qâpâ†sâr}+ �rs� {â†qâp}+ �pq� {â†sâr}+ �pq� �rs�

+ {â†qâpâ†sâr}+ �ps� {â†qâr}+ �qr� {âpâ†s}+ �rs� {â†qâp}+ �pq� {â†sâr}
+ �pq� �rs� � �ps� �qr� . (4.26)

At �rst, the uncontracted terms of the last equation will be investigated. It turns out that
they can be factorized into a product of substitutions. One obtains the normal ordered
two particle part of the hamiltonian:

V̂N =
1

2

�
pqrs

vqspr{�̂qp�̂sr}, (4.27)

where the prefactor of one half stems from the particle symmetry.
Turning to the singly contracted terms one faces two contraction patterns: Contrac-

tions of p and q (or by interchanging dummy indices, r and s) and contractions of p and
r (or again, q and s). Gathering these terms individually and using the antisymmetry of
normal ordered operator strings, one obtains an e�ective one particle operator:

2Ĵ � K̂ =
1

2

�
ipq

(4viqip � 2vqiip){�̂qp} (4.28)

=
�
ipq

(2viqip � vqiip){�̂qp} . (4.29)

This operator is combined with the non-scalar part of eq. 4.20 to yield the normal ordered
Fock operator:

F̂N =
�
pg

�
hq
p +

�
i

2viqip � vqiip

�
� �	 


fq
p

{�̂qp} . (4.30)

It is remarkable that the integral part in eq. 4.30 exactly resembles the restricted HF
integrals.

As a last step the scalar part of the normal ordered two particle operator will be
investigated. Again two contraction patterns1 are observed. Substituting spin orbital by
spatial orbital indices and gathering terms yields

2J �K =
1

2

�
ij

�
4vijij � 2vjiij

�
(4.31)

=
�
ij

�
2vijij � vjiij

�
. (4.32)

1i.e. contractions with and without crossings.
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This result will be combined with the scalar part of eq. 4.20. As a result one obtains the
restricted HF energy expression

ERHF = 2
�
i

hi
i +

�
ij

�
2vijij � vjiij

�
. (4.33)

Following the investigation above the hamiltonian can be partitioned in the following way:

Ĥ = F̂N + V̂N + E(R)HF . (4.34)

It is now proven that the spin orbital and the spin independent hamiltonians show the
same partitioning in normal ordered parts and scalar parts, where of course the integrals
and energies have to be taken from the suited one particle method.

While this partition is known for the spin orbital case for a long time and can be found
in several textbooks a similar derivation for the spin independent case is not known to
the author2.

4.3 Commutator Based Term Simpli�cation Frame-
work

In the last section the standard approach to the term simpli�cation via Wick’s theorems
was focused. It is possible to formulate an alternative term simpli�cation based on com-
mutator relations for second quantized substitution operators. This concept will be the
main topic of the following section. For convenience, a closed shell single reference wave-
function (e.g. a RHF ground state determinant) is assumed throughout the discussion in
this section.

4.3.1 Spatial Orbital Substitution Operators in Wick’s Theorem

To make use of the concept of second quantization, equation 4.7 can be employed to
express the spatial orbital substitution operators in terms of annihilators and creators:

�̂qp = â†qâp + â†qâp . (4.35)

In principle it is now possible to apply the concept of normal order and subsequently
Wick’s theorems to simplify expressions involving spatial orbital substitution operators.
However, inspection of the relation between the spatial orbital substitution operators and
the second quantized creators and annihilators reveals that for every substitution the
number of terms that have to be brought in normal order and then to be contracted
increases by a factor of two3.

2Despite the fact that it is very useful and probably also needed for the derivation of the coupled
cluster working equations that are already implemented in common quantum chemistry software.

3Obviously this factor arises from the fact that �̂qp is the sum of two spin orbital substitution operators.
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As a simple example a part of the CCSD doubles projections will be considered:

��AB
IJ |e�Ê2V̂Ne

Ê2 |�0� �� �
�0

���̂IA�̂JB �̂qp�̂sr �̂ai �̂bj �0

�
. (4.36)

In the right hand side term six single orbital substitution operators arise (the fact that
multiple orbital substitution operators can be decomposed will be discussed below) lead-
ing to 26 = 64 products of annihilators and creators. An alternative to the standard
approach of term simpli�cation is needed to damp the e�ect of the splitting of the or-
bitals substitution operators into two addends.

4.3.2 Evaluation of Nested Commutator Expressions

In this section a few, for themselves rather simple, formulae will be investigated that
together form the algebraic framework developed in this work.

First of all, as already pointed out, the space of single substitution operators is closed
under the action of the commutator, i.e.

[ , ] : {�q
p} × {�q

p} �� {�q
p} (4.37)

is a well de�ned, bilinear and antisymmetric map. Due to this the number of single
substituters in a term decreases by one for each commutator expression involved according
to

[�̂q
p, �̂

s
r ] = �ps�̂

q
r � �rq�̂

s
p . (I)

This is, in fact, the commutator analogue to the contraction operation exploited in Wick’s
theorem.

In order to apply the reduction of the number of operators, the commutators have
to be brought in a special form. Since only a formula for commutators containing two
single substituters is available, an expansion of commutators of products is needed. This
expansion formula can easily be derived and proven by induction:

[Â, B̂1 . . . B̂n] =
n�

k=1

B̂1 . . . B̂k�1[Â, B̂k]B̂k+1 . . . B̂n . (II)

A combination of eqs. 4.37 and II to an example term yields:

[�̂q
p, �̂

a1
i1
�̂a2
i2
. . . �̂an

in
] =

n�
k=1

�̂a1
i1
. . . �̂

ak�1

ik�1
[�̂q

p, �
ak
ik
]�̂

ak+1

ik+1
. . . �̂an

in
(4.38)

=
n�

k=1

�pak �̂
a1
i1
. . . �̂

ak�1

ik�1
�̂q
ik
�̂
ak+1

ik+1
. . . �̂an

in

�
n�

k=1

�ikq�̂
a1
i1
. . . �̂

ak�1

ik�1
�̂ak
p �̂

ak+1

ik+1
. . . �̂an

in
. (4.39)
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It turns out that a straightforward application of these two rules is not su�cient for
a full simpli�cation of the operator strings as can be seen from the previous equation.
Additional rules for the generation of new commutator expressions are needed.

Since in the linked form of coupled cluster, all expressions are evaluated as Fermi
vacuum expectation values, the following two equations hold:

��0|�̂a
p �̂

s
q . . . �0� = 0 (4.40)

and

��0| . . . �̂q
p�̂

s
a �0� = 0 . (4.41)

This is due to the fact that in the upper equation a particle creator acts on the bra
state while in the lower equation a particle annihilator acts on the ket state. When the
permuted products of the above expressions is subtracted (and the sign is inverted) one
obtains:

���0|�̂a
p �̂

s
q . . . �0�+ ��0|�̂s

q �̂
a
p . . . �0� = �|�̂s

q �̂
a
p . . . �0� (4.42)

and

���0|�0 . . . �̂
q
p�̂

s
a �0�+ ��0| . . . �̂s

a�̂
q
p �0� = ��0| . . . �̂s

a�̂
q
p �0� , (4.43)

or equivalently written as commutator expressions:

��0|[�̂s
q , �̂

a
p ] . . . �0� = ��0|�̂s

q �̂
a
p . . . �0� (IIIa)

and

��0| . . . [�̂s
a, �

q
p] �0� = ��0| . . . �̂s

a�̂
q
p �0� . (IIIb)

The last two equations now represent a rule to substitute suited operator products by
commutator expressions.

By means of the eqs. I, II, IIa and IIb an algorithm for the term simpli�cation can
be derived. Since the algorithm will be discussed in detail in the following chapter, only
a short note on its work�ow will be given here. Starting from a nested commutator
expression (as e.g. the BCH formula) an expansion emloying eq. II is applied. The
iterative application of eq. I on the resulting expression itself generates equations whithout
any commutators, but involving shorter operator strings. After this step new commutators
are generated by means of eqs. IIIa or IIIb. The overal procedure is repeated until there
is no change in the expression anymore. Examples for the application of this algorithm
are given in the next section alongside diagrammatic representations.
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Figure 4.1: Diagrammatic representation of the initial expansion step of the algebraic
term simpli�cation.

4.3.3 Diagrammatic Representation

The algebraic term simpli�cation presented can also be reformulated employing coupled
cluster diagrams. A striking feature of the approach is that one can start from diagram
fragments depicting the operators to be contracted. A commutator of operators will be
depicted by a dotted polygonal line surrounding the operators, which is divided into two
regions representing the left and right hand side entries of the commutator, respectively.
From this starting point the diagram connections are built up step by step.

4.3.3.1 Example Involving Triple Excitations

In the diagrammatic version the commutators connecting certain operator strings are
depicted by dotted polygons surrounding these. The polygons are subdivided by a dotted
line that separates the two positions in the commutator (cf. �g. 4.1, left hand side).

The example depicted here has the algebraic form of a double projection of a commu-
tator of the Fock operator and a triple excitation (the tensor quantities associated to the
operators have been omittet, please note that lower case indices are to be summed over):

�
�0

���D̂2

�
F̂N , T̂3

�
�0

�
=

1

6

�
�0

���̂I
A�̂

J
B

�
�̂q
p, �̂

a
i �̂

b
j �̂

c
k

�
�0

�
. (4.44)

The expansion of the commutator presented in eq. 4.44 according to eq. II in principle
yields three terms. The focus in this discussion will be laid upon the following term:�
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j
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�̂q
p, �̂

c
k

�
�0

�
, (4.45)
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as depicted on the right hand side of �g. 4.1. The commutator polygon in this �gure
now only includes the right hand side part of the T̂3 operator fragment. Of course, the
remaining two terms are to be depicted with the innermost polygon including the middle
and the left parts only, respectively. The evaluation of the commutator expression yields
two possible contraction patterns:�

�0

���D̂2

�
F̂N , T̂3

�
�0

�
�� 1

6

�
�0

���̂I
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J
B�̂

a
i �̂

b
j

�
�pc�̂

q
k � �kq�̂

c
p

�
�0

�
. (4.46)

The following discussion will concentrate on the further evaluation of the particle con-
traction: �

�0

���D̂2

�
F̂N , T̂3

�
�0
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�� 1

6
�pc

�
�0

���̂I
A�̂
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a
i �̂

b
j �̂

q
k �0

�
. (4.47)

In eq. 4.47 a new nested commutator expression can be generated according to eq. IIIa,
yielding (cf. also �g. 4.2):�

�0

���D̂2

�
F̂N , T̂3
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��[[�̂I
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J
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a
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b
j ]�̂

q
k �0

�
. (4.48)

Eq. IIIa was chosen for the commutator generation only as a matter of taste. Alternatively
one could also generate new commutators employing the projections, leaving the �nal
result unaltered.

The next step is again a simple expansion by means of eq. II resulting in four terms
including only single substitution operator commutators:�
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. (4.49)

The second term of this expansion is depicted in �g. 4.3 in a diagrammatic way.4

Upon closer inspection of �g. 4.3 one can see that the polygons depicting the com-
mutators now include only single pairs of particle and hole lines, which is the graphical
analogue to the fact that the innermost commutators contain single substitution opera-
tors only. It is now possible to employ eq. 4.37 to reduce the number of substituters and
simultaneously contract two vertices in every polygon. The result of this action is given
by:�
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(4.50)

� 1
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b
A)(�Ba�̂

J
i � �iJ �̂

a
B)�̂

q
k �0

�
. (4.51)

4For reasons of tensor symmetry the third term shares the depicted diagram. The algebraic coincidence
of the two terms becomes clear upon a i � j, a � b exchange.
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Figure 4.2: Diagrammatic representation of an already singly contracted term turning
up as an intermediate.

The second term in the �rst factor of the previous equation vanishes due to an upper left
particle creator. The remaining two terms read:�
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The second term of eq. 4.52 can again be transformed into a commutator expression, but,
involving the due to mismatching indices uncontractable commutator [�̂I

j , �̂
a
B], it clearly

vanishes.
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Figure 4.3: Diagrammatic representation of an intermediate term containing two non-
nested commutators.
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Figure 4.4: Diagrammatic representation of a fully contracted term.

The �nal step in term simpli�cation is the evaluation of the remaining uncontracted
substitution operators. A special attention has to be paid to the occurring spin integration
factors arising.

For every single substitution operator upon contraction, a prefactor of as has to be
inserted, which is one in the spin orbital picture and two for the spatial orbital picture
due to the two possible matching spin combinations, namely ��� and ���. This results
in the �nal fully contracted term
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or in a tensor sum of product manner:
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The diagrammatic representation of this term can be seen in �g. 4.4.

4.3.3.2 A Note on Tensor Symmetries

A fact that could already be seen in the derivation of the normal ordered hamiltonian
in the spatial orbital picture is the special symmetry of the tensor quantities in this
framework. It is, however, easier to discuss this feature in a diagrammatic context. As an
example for the di�erent symmetry properties of spin and spatial orbital picture tensor
quantities the term
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will be investigated. Its expansion into commutators involving only single substituters
yields four terms, namely:�
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The �rst of these terms obviously vanishes in the Fermi vacuum expectation value, while
the last term can be written as a triply nested commutator via eq. IIIb:�
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The �rst of the three remaining terms can be expanded as follows:
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The �rst and last term of this equation vanish upon expansion because of contractions
between particles and holes or generation of a particle creator as upper left index. The
further evaluation thus simpli�es to:
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The second term of 4.58 can be written as:
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where the last term can be written as its commutator analogue:

1

2

�
�0

��[�̂I
A, �̂

a
i ][�̂

q
p, �̂

b
j ] �0

�
=

1

2
�Aa�pb

�
�0

���̂I
i �̂

q
j �0

�
� 1

2
�Aa�jq

�
�0

��[�̂I
i , �̂

b
p] �0

�
(4.65)

=
1

2
�Aa�pb

�
�0

���̂I
i �̂

q
j �0

�
+

1

2
�Aa�jq

�
�0

���̂b
i �0

�
(4.66)

=
1

2
�Aa�pb

�
�0

���̂I
i �̂

q
j �0

�
. (4.67)

In a similar fashion the third term yields:

1

2

�
�0

��[�̂q
p, �̂

a
i ][�̂

I
A, �̂

b
j ] �0

�
=

1

2
�pa�Ab

�
�0

���̂q
i �̂

I
j �0

�
. (4.68)

After a �nal Wick contraction of the remaining operators one obtains:
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where as � {1, 2} is a spin integration factor for the spin orbital and the spin free picture,
respectively.

The last step is to translate the contractions, now in form of Kronecker symbol
products, into the corresponding tensor equation (with canonical dummy indices):
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For the spin orbital picture the two terms coincide due to tensor antisymmetry, whereas
for the spin free picture antisymmetry does not hold. One obtains two distinct terms, the
�rst one weighted by a factor of two and the second one represented by a maximum loop
rule violating diagram (cf. �g 4.5).
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Figure 4.5: Weighted and maximum loop rule violating diagrams for the singles projec-
tion of [F̂N , T̂2].

4.3.3.3 Note on the Applicability to the CI Problem

The (truncated) con�guration interaction problem is normally dealt with in a matrix
algebra representation. However, it is also possible to represent the substitutions in
their second quantized form to yield an equation system, which does not contain the
commutator structure present in the Baker-Campbell-Hausdorff expansion occuring
in the coupled cluster framework. The equation system reads:

��0|D̂†
n(ĤN � E)(1 + Ĉk) �0� = 0, �k,n�{0,1,...,ntrunc} , (4.71)

where ntrunc is the truncation order and D̂†
0 = Ĉ0 = Î are the identity operators.

In the second quantized representation the energy is dealt with as a simple rank zero
tensor in the working equations. The algebraic term simpli�cation via Wick’s theorem,
as well as the presented approach, can still be applied to the formal CI equations due to
their similarity to the coupled cluster equations. Formally, the di�erence is only in the
missing neccessity to apply the BCH expansion to the similarity transformed hamiltonian.
This fact causes absolutely no di�erence in the application of Wick’s theorem.

In the commutator evaluation approach presented in this work, it is convenient not to
start with a commutator expansion step, but rather, at �rst generate suitable commutator
expressions. In the following discussion, the right hand side of
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2Ĉ2 �0� (4.73)

will be dealt with in the CID approximation. Explicitly written in terms of second quan-
tized substituters, it reads:
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The tensor quantities will be omitted in the following discussion as usual. One arrives at
the following term to be simpli�ed:
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The last term obviously vanishes as well as the hole-hole contractions in the �rst factors
of the second and third terms. This leads to the expression:
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In the �st term of this equation only one contraction remains for each operator due to
the non-overlapping particle and hole spaces. Expansion of all commutators leads to:
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After the expansion, new commutator expressions in the resulting terms can be sought.
The third and �fth terms are not further contractable, while the fourth and sixth terms
generate commutators with mismatching indices for contraction (and thus vanish). The
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new expression containing commutators can be written as:�
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The �nal Wick contraction yields�
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with the spin integration factor as, which results in the following tensor equation:
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It is, of course, noteworthy that the above simpli�cation yields a tensor that is dis-
connected from the summed indices occurring in the tensor contraction of E. This is a
characteristic property of the CI problem. The tensor quantities in the coupled cluster
method are always connected to fragments of the hamiltonian via summed indices.

Nevertheless, the discussion from above shows that the term simpli�cation method
presented in this work still holds for the simpli�cation of the terms occuring in the con-
�guration interaction ansatz.

4.3.3.4 Summary

In the preceding sections the term simpli�cation derived was discussed using example
terms. Several properties of the method could be pointed out.

First of all, the contraction via commutator expressions always yields two terms which,
in a diagram, stand for particle-particle and hole-hole contractions, respectively. This is
a very instructive picture, since it illustrates that there are always two possibilities to
contract two vertices of diagram fragments. This generates two paths in a diagram with
anti-parallel directions. This feature could also be interpreted as a kind of particle-hole
symmetry of the system considered.

Via the contraction of two vertices a new, extended, vertex is created in a diagram
corresponding to a substitution operator that shares all properties with an ordinary vertex.
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Thus, vertices and extended vertices can be treated on exactly the same footing.5

Finally it should be pointed out that the derived term simpli�cation has a natural
resemblance to the step-by-step construction of diagrams. For every pair of vertices
one can choose two distinct contraction patterns, namely particle-particle and hole-hole.
According to the diagrammatic sign rules these two possibilities generate terms with
di�erent sign. The expansion of products mentioned earlier somehow corresponds to
the choice of the vertex to be contracted. Impossible contraction patterns vanish in the
algebraic formulation due to particle-hole contractions, upper left particle creators or
lower right particle annihilators.

5Which is exactly what is done for the e�ective one particle part of the normal ordered hamiltonian.
Precontracted parts of the two particle operator are condensed, together with the original one particle
part, into the cross in the normal ordered Fock operator diagram.



Chapter 5

Implementation

Contents
5.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Status Quo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Design Concepts and Realization . . . . . . . . . . . . . . . . . . . 64

5.3.1 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Expression Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2.1 The expand() Command . . . . . . . . . . . . . . . . . . . 65

5.3.2.2 The sortProducts() Command . . . . . . . . . . . . . . . 66

5.3.2.3 The collect() Command . . . . . . . . . . . . . . . . . . 66

5.3.3 The ExpressionListCommutator Class . . . . . . . . . . . . . . . . . 66

5.3.3.1 Tree Structures . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3.2 Algebraic Term Simpli�cation . . . . . . . . . . . . . . . . 68

5.3.4 Polymorphism Implementation . . . . . . . . . . . . . . . . . . . . . 69

5.4 Input and Output Syntax . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Syntax for Compound Operator Expressions . . . . . . . . . . . . . . 71

5.4.1.1 Canonical Syntax for Commutator Expressions . . . . . . . 71

5.4.2 Output Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.2.1 Example Program Outputs . . . . . . . . . . . . . . . . . . 71

5.5 The SICluster Term Simpli�cation Program . . . . . . . . . . . . 73

5.5.1 The evaluateSingleCommutators Function . . . . . . . . . . . . . . 75

5.5.2 The generateNewCommutators Function . . . . . . . . . . . . . . . . 76

5.6 Computational Demand . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.1 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6.2.1 Projection Levels . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6.2.2 Position of Product Operators . . . . . . . . . . . . . . . . 83

5.6.2.3 Commutator Depth . . . . . . . . . . . . . . . . . . . . . . 83



60 Chapter 5. Implementation

5.1 General Considerations

The implementation of the algebraic term simpli�cation has been done in the framework
of the Quantum Objects Library (QOL), initiated by Hanrath and developed and main-
tained in the Cologne Quantum Chemistry Group. The QOL program package is written
in the C++ language and designed to be as abstract as possible to deal with a vast �eld
of related problems while keeping the numerical evaluation highly e�cient.

As a program package it includes many di�erent applications such as an integral rou-
tine, a (two-component) Hartree-Fock and modules that can perform (multi reference)
con�guration intraction and coupled cluster calculations for arbitrary excitation levels.

5.1.1 Status Quo

In the QOL program package a mainly statically typed1 term simpli�cation was included
prior to this work. The dynamic part of the term simpli�cation restricted itself to the
evaluation of compound operator expressions such as the evaluation of exponentials or
powers of operators. This is due to the fact that all (compound) operators involved in the
evaluation of coupled cluster type equations, especially including powers of normal ordered
operators, can be rewritten in terms of sums of products of second quantized operators.
The dynamic term simpli�cation thus, despite being of a rather involved implementational
complexity, acted on symbolical operators only.

In the following a short example will be discussed. A common expression in the
evaluation of coupled cluster type equations is the power of an operator multiplied by a
sum of operators:

(F̂N + V̂N)· T̂ 2
2 . (5.1)

This expression can be evaluated in a few steps to yield a simple sum of products:

(F̂N + V̂N)· T̂ 2
2 = F̂N · T̂ 2

2 + V̂N · T̂ 2
2 (5.2)

= F̂N · T̂2· T̂2 + V̂N · T̂2· T̂2 . (5.3)

The last line of the preceeding equation can be substituted by products of annihilation and
creation operators in order to evaluate the expression employing Wick’s second theorem.
At this stage the structure of the expressions remains �xed until the evaluation is complete.
The expression can always be described by a sum of products of elementary objects, such
as tensor quantities, annihilation or creation operators or Kronecker symbols. Thus
the evaluation of Wick’s theorem can be depicted by the following work�ow:

Consequently the major part of the evaluation of the above expression consists of the
manipulation of static objects.

1Static in this context has to be understood as an hard coded algorithm without the necessity to
identify objects or structures at runtime.
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��
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t/v/f {â . . . }N t/v/f

Figure 5.1: Scheme of the static term simpli�cation included in the QOL: (l.h.s.) Work-
�ow diagram for the term simpli�cation employing Wick’s theorem and subsequent term
collection, (r.h.s.) �xed tree structure of the expressions occuring in the static term simpli-
�cation. Please note that the expression leafs are of di�erent types during the evaluation.
In the tree above only the initial expression is depicted.

The evaluation of static expressions has several advantages, among which are simplicity
of as well written and compiled code, speed and readability. Nevertheless a static term
simpli�cation is not applicable to the algebraic framework presented in this work.

5.2 Basic Algorithm

The starting point for the algorithm implemented is the result of the evaluation of the
Baker-Campbell-Hausdorff expansion of the similarity transformed hamiltonian:

��0|e�ÊĤeÊ �0� = ��0|Ĥ �0�� �	 

E(R)HF

+��0|[Ĥ,Ê] �0�+ . . . . (5.4)

In a normal ordered framework the �rst term on the right hand side obviously vanishes
due to missing contractions.

Subsequently, the products of single substituters contained in the commutator expan-
sion are expressed as a sum over products containing commutators of single substituters
only:
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During the further evaluation, the commutator expressions are reduced to contractions
and single substitution operators:
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b
j �0� . (5.6)

This step of the term simpli�cation is done recursively (corresponding to the innermost
loop in listing 5.1). The innermost commutator expression is evaluated followed by an ex-
pansion of the commutator exploiting bi-linearity. If the resulting expression still contains
commutators of single substituters the procedure is applied again.

After the expression does not change anymore, a series of new commutators is gener-
ated if possible:

�is��0|�̂q
p�̂

a
r �̂

b
j �0� = �is��0|[[�̂q

p, �̂
a
r ], �̂

b
j ] �0� . (5.7)

Due to the fact that all possible new commutator relations can be generated at once this
procedure is called only once in every loop. Still it has to be distinguished between the
generation of projection commutators (involving operators with lower particle annihila-
tors) and excitation commutators (involving operators with upper particle creators). This
is a crucial point in commutator generation because the simultaneous generation of both
types of commutators is not canonical, e.g.:

�̂I
A�̂

q
p�̂

a
i = [�̂I

A, �̂
q
p�̂

a
i ] (5.8)

= [�̂I
A�̂

q
p, �̂

a
i ] . (5.9)

Although the result is not a�ected by this phenomenon, it is inconvenient to include
arbitrary orderings into the algorithm. As it is su�cient to �rst evaluate all possible
projection contractions and then all possible excitation contractions, the switch in the
predicate passed to the commutator generation is done only once.

At this step, the algorithm returns to the commutator reduction according to eq. 5.6
again, until the resulting expression is stationary.

The �nal step of the algorithm consists of the translation of the fully reduced expression
into a sum of tensor symbols. Herein, the remaining single substitution operators are
contracted via Wick’s theorem (with pre-factors according to spin integration):

��0|e�T̂ ĤeT̂ �0� � 1

4

�
ĩj̃ãb̃

vãb̃
ĩj̃
tãb̃
ĩj̃

��� spin orbitals (5.10)

or ��0|e�ÊĤeÊ �0� �
�
ijab

vabij t
ab
ij

��� spatial orbitals (5.11)

The spin integration factor can be easily derived to be one in the spin orbital picture and
2nop in the spin free case, with nop being the number of remaining single substituters.
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Listing 5.1: Algorithm for the term simpli�cation. Please note that technical details
have been transferred to pseudo-code for convenience.

1

2 int main() {
3

4 string input;
5 cin >> input;
6

7 Expression expr(input);
8 expr.expand ();
9

10 Expression.expandHigherOrderOperators ();
11 expr.expand ();
12

13 for (bool projection=true ,false)
14 {
15 do {
16 do {
17 expr.expandSingleCommutators ();
18 expr.expand ();
19 }
20 while (expr changed);
21

22 expr.generateNewCommutators(projection);
23 expr.expand ();
24 }
25 while (expr changed);
26 }
27

28 TensorSymbolsSum tss(expr);
29

30 cout << tss << endl;
31 }

The algorithm presented in listing 5.1 in a rather crude way is the starting point for
the design of the implementation.

During every call of the subroutines, e.g. expand(), the nature of the Expression
passed is evaluated. In most cases an ExpressionLeaf is returned, which invokes a rather
easy handling. If the position of the ExpressionLeaf is in the beginning or the end of
an operator string, it is checked if it can be dynamic_casted into a single substitution
operator. After that it is evaluated if one of the indices cre() or ann() leads to a vanishing
Fermi vacuum expectation value.

For the case of ExpressionList or ExpressionListCommutator an iteration over the
components is invoked.
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5.3 Design Concepts and Realization

This section will mainly consist of a description of the dynamic expression handling in the
QOL. The dynamic part of the code is also used in the spin orbital based implemention
prior to this work, where it only applies to the evaluation of arbitrary expressions of the
compound operators and not to the actual contraction part.

5.3.1 Polymorphism

The concept of polymorphism describes the implementation of an abstract data structure
from which several subtypes are derived. The abstract data type often is represented by
a class containing virtual functions that are speci�ed for each subtype individually.

While it is often not needed to actually instantiate an object of the base class type, it
is very useful to operate with pointers to the base class, as on dereferencing of the pointer
the true data type (i.e. an instantiation of a subclass object) is returned.

Given the case that a pointer to the base class is constructed from a pointer to a
subclass, the polymorphic structure still allows the call of a member function that is
virtual in the base class and the action descibed in the subclass’ de�nition is invoked.

The above mentioned properties lead to the ability to only specify the actual data
type in a dereferencing step. Due to this many parts of the program code can be written
in an abstract way not knowing the actual data type. This of course leads to much more
compact source code and a huge amount of �exibility.

It is for example possible to expand the class structure by another subtype of the
abstract base class without any changes in the part of the code that deals with the actual
evaluation.

5.3.2 Expression Handling

There are two classes derived from the base class ExpressionBase, namely
ExpressionList and ExpressionLeaf (see �g. 5.2). The �rst one of these classes is
designed to contain sums or products of algebraic expressions2 while the latter one con-
tains only terms that can or should not be evaluated further in a dynamic manner.

There are several crucial member functions included in these two classes (and of course
the base class ExpressionBase as virtual member functions). These member functions
which are named expand(), sortProducts(), and collect() are discussed in detail
below.

However, it should be mentioned for convenience that ExpressionLists split up into
two types. These are namely ExpressionList::Product and ExpressionList::Sum. It
is noteworthy that the addition of objects is always considered to be commutative and thus
usually instantiated by a type derived from std::map<Field, Object> while products
have an intrinsic order (due to possible non commutative behavior) and are consequently

2Which by themselves can contain sums or products.
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Expression

-_exprBase: ExpressionBase *

T:

Field:

ExpressionBase

T:

Field:

ExpressionLeaf

+<<const>> expand(): Expression

T:

Field:

ExpressionList

+<<const>> expand(): Expression

T:

Field:

ExpressionListCommutator

+<<const>> expand(): Expression

T:

Field:

Figure 5.2: UML class diagram for the dynamic expression handling as used in this
work.

constructed as derived classes of std::vector<Object>. This leads to the necessity of a
sortProducts() command in case of commuting objects. For the case of non commuting
objects the sortProducts() command reduces to a return *this statement.

5.3.2.1 The expand() Command

The expand() command is the most complex one of the member functions of the
Expression class. This is mainly due to its recursive structure. It makes excessive
use of the shared aggregated structure of the dynamic term simpli�cation. Obviously for
an Expression of type Expression_Leaf an expansion is unnecessary. The expand()
command returns a pointer to ExpressionBase instead. The more interesting case is the
evaluation of objects of ExpressionList type.

Here a subdivision of sum and product objects is needed as a �rst step. After this
product like objects have to be distributed among the addends of the occurring summed
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objects corresponding to the distributive law. Since both of these object types can possibly
consist of objects of both types the evaluation has to be recursive. This procedure ensures
the evaluation of low level sums and products before evaluating the higher level terms.
As a short example the expansion of the following expression in the (commuting and
distributive) variables a, b and c will be given:

ac2 + (ca+ b)· c expand()�� ac2 + cac+ bc . (5.12)

5.3.2.2 The sortProducts() Command

It is convenient for commuting objects to sort any expression in a lexicographical order. In
order to achieve this �rst of all a commuting table for any object involved is constructed.
These commuting tables are static and type speci�c objects and thus created for all
object types possibly involved in the evaluation of an expression while compiling. The
commuting tables will be dealt with in the introduction of the object types necessary for
this work.

The expand() command, as mentioned above, is constructed in a recursive manner
which allows a call of sortProducts() at every level of the expression evaluation. Thus
the sortProducts() function is simpler in construction since any expression passed to it
is already fully expanded into basic objects (i.e. sums of products of ExpressionLeafs).

Since the sortProducts() function mainly consists of a call of std::sort() a simple
example of its action on the result of eq. 5.12 should su�ce:

ac2 + cac+ bc
sortProducts()�� ac2 + acc+ bc . (5.13)

5.3.2.3 The collect() Command

The collection of terms in a sum is in principle straightforward and is dealt with via
the std::map<Field, Object> structure of sums. Due to this the main task of the
collect() command is the symbolic conversion of adjacent equal objects in products to
a power representation. An example of the action of the collect() command is given
below:

ac2 + acc+ bc
collect()�� 2ac2 + bc . (5.14)

5.3.3 The ExpressionListCommutator Class

Commutator expressions in general do not only lack commutativity but also associativity.
Keeping this fact in mind it is clear that this kind of expression cannot be represented in
the spirit of ExpressionList and needs a seperate class.
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Thus the task of implementing commutators into the existing QOL structure is the
generation of a new object type ExpressionListCommutator that behaves distributive,
non-commutative and non-associative, e.g. in general it is:

A
�
B,C

� �= �
A,B]C . (5.15)

Thus a canonical form of writing commutator expressions has to be agreed on. The
two problems mentioned above will in the following be discussed with respect to the
design of the class ExpressionListCommutator which is derived from ExpressionBase
(as can be seen in �g. 5.2) and std::list<Object>. The derivation of the new class
from ExpressionBase is mainly due to technical considerations. The dynamic framework
discussed so far is of an implementational complexity that guarantees absolute �exibility
in the expressions inserted to it, meaning that a completely new design of the framework
would lead to a loss of this �exibility for the tasks that are already performed in this
framework (e.g. generation of coupled cluster working equations, evaluation of powers of
the hamiltonian).

As already mentioned above the ExpressionListCommutator class is publicly derived
from the standard template library (STL) class std::list<Object>. This design allows to
make extensive use of the std::list<Object> member functions push_back(Object o),
insert(Object o, iterator i), erase(iterator i) and clear() for the extension,
manipulation and deletion of commutator expressions.

Additionally the std::list<Object> structure resembles the tree like structure of
the expressions involved in a natural way. For example the insert(Object o, iterator
i) command is capable of inserting a whole sublist into the original list while operating
on the iterator structure of std::list<Object> only and thus avoiding time consuming
copy operations.

Furthermore the size() command can be expoited for a fast identi�cation of non-
equal expressions.

A similar design pattern has already been implemented for the ExpressionList sub-
type. Please note that for this type (subdivided into sums and products) the usage of
associativity makes the representation even more powerful.

Nevertheless the previously described classes only provide the algorithmic backbone of
the term simpli�cation. The task of �lling the abstract classes with actual data structures
resembling second quantized operators has still to be discussed.

5.3.3.1 Tree Structures

In the last section the focus laid on the structure of the individual commands implemented
in the Expression class as member functions. However, their real power is only visible
when combined. A glance of the work-�ow of these member functions has been given with
the simple example considered above. A real example of course consists of several nested
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objects of the above mentioned types. The key design concept becomes visible only for a
more involved example like the following one:

ab(c+ de) + ced(a+ bc) = ab ced

��	

level 2

(c+ de��	

level 3� �	 


level 2

)

� �	 

level 1

+

��	

level 2

(a+ bc��	

level 3� �	 


level 2� �	 

level 1

)

� �	 

level 0

. (5.16)

The call of expand() recognizes a sum as the uppermost level (’level 0’) and recursively
calls itself on the products contained (’level 1’). The �rst action of the term simpli�cation
starts at ’level 2’ where sortProducts() rearranges the term ced to cde in case of given
commutativity. As nothing has to be evaluated and/or sorted within the brackets on
’level 2’, expand() applies the distributive law yielding:

ab(c+ de) + ced(a+ bc) = abc+ abde+ ceda+ cedbc . (5.17)

Since multiplication of a term with another one is de�ned as an inplace operation the
terms of eq. 5.17 are now the components of ExpressionList and thus sorted:

ab(c+ de) + ced(a+ bc) = abc+ abde+ acde+ bccde . (5.18)

At this stage of simpli�cation collect() ensures the power representation of the last
term. The term simpli�cation �nishes with the following result:

ab(c+ de) + ced(a+ bc) = abc+ abde+ acde+ bc2de . (5.19)

5.3.3.2 Algebraic Term Simpli�cation

For the handling of arbitrarily nested expressions a tree like structure as in Fig. 5.3 is
considered. For this example the algebraic term is given by:

[[A,B·C] , D] . (5.20)

After expansion of this term a sum of four products of nested commutators is gained (cf.
eq. 5.21 and �g. 5.4):

[[A,B] , D] ·C + [A,B] · [C,D] + [B,D] · [A,C] + B· [[A,C] , D] . (5.21)

Once the operator expression is in the shape of eq. 5.21 the nested commutator
expressions can be replaced by their contracted versions, e.g.:

[�̂q
p, �̂

s
r ] = �ps�̂

q
r � �rq�̂

s
p . (5.22)

Now the expression does not contain any commutator parts any more, therefore new
commutator relations have to be sought. This is done by replacing suited product terms
by their commutator analogues as in

�̂p
i �̂

a
q = [�̂p

i , �̂
a
q ] . (5.23)
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[ , ]

A * D

B C

Figure 5.3: Tree representation of a nested expression before simpli�cation.

+

* * * *

[ , ] C

A B D
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A B C D

[ , ] [ , ]

B D A C

B [ , ]

A C D

Figure 5.4: Tree representation of a nested expression after simpli�cation.

5.3.4 Polymorphism Implementation

In order to actually �ll the abstract evaluation algorithm with data types a polymorphic
inheritance scheme was employed. The structure of this implementation is discussed in
the following (cf. also �g. 5.5).

In the term simpli�cation program the concept of subtype polymorphism has
been implemented in a two step procedure. First of all, the actual data types
SISingleSubstituter, SISubstituter and Kronecker give rise to inherited classes that
are also subclasses of an abstract class called SQPolymorphPrimitive.

The class SQPolymorphPrimitive is again derived from Compound-
Operator::Polymorph which is a member class of CompoundOperator. The latter
is the actual speci�cation of the template used in the expression evaluation.

The algebraic evaluation takes place employing the CompoundOperator_Expression
which binds the templates T and Field to the types CompoundOperator and
RationalNumber, respectively. This means that the abstract algorithm discussed
before (see sec. 5.3.2) is now applied to an object holding a pointer to
CompoundOperator::Polymorph, which can be dereferced to yield any of the actual data
types.
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Figure 5.5: UML class diagram for the main dependencies in the dynamic term simpli-
�cation.
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5.4 Input and Output Syntax

5.4.1 Syntax for Compound Operator Expressions

The input of compound operator expressions was only modi�ed marginally. For products
and sums of expressions an intuitive syntax has already been implemented as follows:

��0|(F̂N + V̂N)· T̂2 �0� � expr(FV((FN+VN)*T(2))). (5.24)

The acronym FV in eq. 5.24 resembles the Fermi vacuum expectation value.

5.4.1.1 Canonical Syntax for Commutator Expressions

The arbitrariness in the depiction of commutator expressions due to their lack of associa-
tivity was already discussed above. For implementational purposes a left aligned nested
commutator order was chosen. This has to be understood as follows:

��0|[[[V̂N , T̂1], T̂1], T̂1] �0� � expr(FV(VN|T(1)|T(1)|T(1))). (5.25)

Please note that the usage of the "|" operator overrides the de�nition of the binary "or"
relation.

5.4.2 Output Syntax

For the output procedure two variants have been implemented. First of all there is a
standard XML output operator, which is compatible with the QOL’s own XML to LATEX
converter. Every sample output discussed below was given in the concatenated manner
of XML. Additionally for every type involved in the term simpli�cation a seperate XML
tag has been written alongside a XML to LATEX translation.

In a similar fashion the GraphViz, or dot, output has been designed. Every class in-
volved in the dynamic term simpli�cation includes its own output type for the GraphViz’s
dot2tex routine. According to this design tree like structures (as in �gs. 5.3 and 5.4) can
be visualized, although due to the term complexity mainly for debugging purposes.

5.4.2.1 Example Program Outputs

In order to show the work �ow of the term simpli�cation implemented two example
program outputs are given below. The outputs are similar in terms of evaluating the same
symbolic operator expression. Facing this example, one can see that there is no increase
in complexity for spin independent expressions in this type of term simpli�cation.

As a �rst example the evaluation of the symbolic operator expression

RÃ
Ĩ

��
�
�0

����̂ ĨÃ[�̂ q̃p̃ , �̂ ãb̃ĩj̃ ] �0

�
(5.26)
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Figure 5.6: Program Output for spin orbitals.
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is considered in the spin orbital framework (cf. �g. 5.6). The individual generation and
evaluation steps are included in order to easily follow the evaluation.

It should be noted that the very last step (the condensation of the Kronecker
symbols into a tensor contraction) was done by hand. In principle the presented program
is capable of the transformation involved in this step, as long as tensor symmetries are nor
considered. Thus, the presented program would have generated four individual terms, two
of which are related by simultaneous permutation of upper and lower indices, respectively.

Exactly the same simpli�ction has been applied to the spin independent operator
expression

RA
I �� �

�0

���̂IA[�̂qp, �̂abij ] �0

�
. (5.27)

As can be seen from �g. 5.7, the evaluation steps do not di�er from the spin or-
bital based evaluation. Only the very last step3 di�ers from the spin orbital evaluation
presented in the preceding �gure.

5.5 The SICluster Term Simpli�cation Program

After the discussion of the implementational details of the expression handling and the
polymorphic design of the data structures the focus will now lie on the actual term sim-
pli�cation program already introduced schematically in listing 5.1.

The linear program design of listing 5.1 has been hidden in nested function calls in
the actual implementation. This has been done for reasons of clarity and readability. The
main function can be written as simple as:

1 int main() {
2

3 LastUsedSQIndex lui , lui2;
4 CompoundOperator_Expression coexpr(D(2,lui2)*(V(lui2)|E(2,lui)|E(2,lui))

);
5 TensorSymbols_Sum <SQIndex , false > tss;
6

7 Expr2tss(coexpr , tss);
8 cout << tss << endl;
9 }

In lines three to �ve the necessary objects are constructed, where the LastUsedSQIndex
variables are used for index naming purposes only. The actual term simpli�cation is called
in line seven.

3Also done by hand in this case, but implemented to be done automatically. The only di�erence to the
presented result is the occurance of four terms since tensor symmetry upon simultaneous permutation of
annihilator and creator indices is not implemented.
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Figure 5.7: Program output for spatial orbitals.
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The Expr2tss function mainly converts a dynamic expression into the static
type TensorSymbols_Sum<SQIndex, false>. However, while converting, the function
algebraivEvaluation(CompoundOperator_Expression & coexpr) is called, as can be
seen in the following code snippet:

1 void Expr2tss(CompoundOperator_Expression & coexpr , TensorSymbols_Sum <
SQIndex , false > & tss)

2 {
3 clean(coexpr);
4 vector <RationalNumber > prefactors;
5

6 /* gather prefactors */
7 { ... }
8

9 /* gather addends of ExpressionList in std::list of addends */
10 { ...
11

12 if (addends.size()==0)
13 tss += prefactors [0]* algebraicEvaluation(coexpr);
14

15 int it=0;
16 /* iterate over addends of ExpressionList */
17 for ( auto i=addends.begin () ; i!= addends.end() ; ++i, ++it)
18 {
19 CompoundOperator_Expression expr (**i);
20 tss += prefactors[it]* algebraicEvaluation(expr);
21 }
22 }
23 }

The algebraicEvaluation(CompoundOperator_Expression & coexpr) function is
the actual place of iteration corresponding to lines 23-35 in the algorithm of listing 5.1.
In summary this nesting of functions reduces the code still to be discussed to the functions
evaluateSingleCommutators and generateNewCommutators.

5.5.1 The evaluateSingleCommutators Function

In the �rst step of the evaluation all commutator expressions containing ExpressionLeafs
as their �rst two components are gathered in an instance of list<Expression *>:

1 void ExpandSingleCommutators(CompoundOperator_Expression & coexpr)
2 {
3 coexpr.clean ();
4 /* gather all commutator expressions of leafs in a list */
5 list <Expression <CompoundOperator , RationalNumber > *> comms (...);
6 ...
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This list is the base for the subsequent iteration. Via several statements of the form

1 if (ObjectType * pp = dynamic_cast <ObjectType * >((** comms_iterator).
exprBase ()))

it is tested if the objects at position comms_iterator and the next one are of type
ExpressionLeaf and then of type SISingleSubstituterPolymorph, which is necessary
for their contraction.

If the conditions are full�lled the nature of the indices contained in the two objects is
investigated. For matching indices the return object

1 CompoundOperator_Expression diff=Expression ::zero();

is updated as follows:

1 if (/* [e_p^a,e_i^q] or [e_p^i,e_a^q]*/)
2 diff=CompoundOperator_Expression(kron(p,q)*op({a,i}));
3 else if (/*[e_a^p,e_q^i] or [e_i^p,e_q^a]*/)
4 diff = -CompoundOperator_Expression(kron(p,q)*op({i,a}));
5 else /* [e_p^q,e_r^s]*/
6 {
7 diff =CompoundOperator_Expression(kron(p,s)*op(r,q));
8 diff -= CompoundOperator_Expression(kron(r,q)*op(p,s));
9 }

The curly braces in lines two and four have to be read as the suiting index combination.
In the actual code, there is another level of di�erentiation between the two possibiltities
occuring in line one and three, respectively.

After this step, the commutator expression has to be brought into canonical form
again. This is done by the construction of a new nested commutator of lower order
containing diff as its �rst element. The former list element is then replaced by the new
commutator expression.

In this fashion all lowest order commutators are evaluated and replaced by their ex-
pansion. The iterative call of the evaluateSingleCommutators until they yield stable
expressions guarantees the full evaluation of all commutators.

5.5.2 The generateNewCommutators Function

In order to identify possibilities for a commutator generation, the
generateNewCommutators function has to run over every factor in every product
contained in the expression and check if it is of ExpressionLeaf type:
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1 void GenerateNewCommutators(CompoundOperator_Expression & coexpr , bool
Projection)

2 {
3

4 /* gather all ExpressionList :: Product in a list */
5 list <Expression <CompoundOperator , RationalNumber > *> prods (...);
6

7 /* iterate over list */
8 for ( auto factors=prods.begin () ; factors != prods.end() ; ++i )
9 {

10 /* iterate over product */
11 for (auto j=factors ->begin (); j!=factors ->end(); ++j)
12 {
13 /* check if factor is ExpressionLeaf */
14 if (ExpressionLeaf <CompoundOperator , RationalNumber > * pos=

dynamic_cast <ExpressionLeaf <CompoundOperator , RationalNumber >
*>((j->first).exprBase ()))

15 { ...

Arriving at line 15, there are two possibilities, either the factor is of KroneckerPo-
lymorph or of SISingleSubstituterPolymorph type. In the �rst case not much has to be
done. The KroneckerPolymorph objects are stored in a product that has to be attached
in the end. The latter case is more involved, and again two cases have to be distinguished,
depending on the value of the bool Projection �ag.

For the Projection==false case, new commutators are generated for the excitation
operators. For this purpose, all non-excitation operators are stored into a product (lines
3-12 in the following code snippet) until the �rst excitation is identi�ed. Then a new
commutator expression is generated out of the product and the excitation operator (lines
13 and 14).

1 if (! Projection)
2 {
3 if (v->idxCre ().type().isHole ())
4 {
5 if (oper_count ==0)
6 {
7 oper_comm =op(v->idxAnn (), v->idxCre ());
8 ++ oper_count;
9 }

10 else
11 oper_comm *= op(v->idxAnn (), v->idxCre ());
12 }
13 else if ((v->idxCre ().type().isParticle ()) && !(v->idxCre ().type().

isHole ()) && oper_count != 0)
14 oper_comm = (oper_comm |(op(v->idxAnn (), v->idxCre ())));
15 }

Since the iteration runs over all factors a system of nested commutators is generated.
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The case of Projection=true is similar in many respects. However, since in general the
projection operators are located in the front of an operator product, they are gathered in
a std::vector<Expression *> and the generation of the nested commutator expression
is postponed to the end of the iteration:

1 if (Projection)
2 {
3 ...
4 for (auto f=oper_dag.begin (); f!= oper_dag.end(); ++f)
5 oper_comm= -(oper_comm| Expression <CompoundOperator ,

RationalNumber >(f->exprBase ()->clone ()));
6 ...
7 }

The minus sign in line �ve of the above code snippet is due to the canonical order
of the commutator expression. Since the projection operators generate new commutators
from the left, in each step the commutator has to be explicitly turned around and the
resulting sign is attached.

In the end of the commutator generation some vanishing cases are dealt with. The
details of these cases are rather technical and are omitted from the discussion.

5.6 Computational Demand

In this section the computational demand of the presented algebraic term simpli�cation
will be discussed with respect to the computational demand of a straightforward imple-
mentation of Wick’s theorem. Despite the recent development and implementation of a
fast Wick contraction engine exploiting tensor antisymmetry by Hanrath [96] a com-
parison with this implementation seems to be a bit unfair. This is due to the special
nature of tensor symmetry in the spin independent framework.

5.6.1 Theoretical Considerations

In the following the number of terms occurring at a certain stage of the term simpli�cation
will be discussed. There are two main reasons for an increasing number of terms during
the algebraic evaluation.

Firstly every commutator of single substitution operators is written as a di�erence of
single substituters multiplied by a Kronecker delta. This leads to a doubling of the
number of terms for the evaluation of the innermost commutators after expanding the
term via the bi-linearity of the commutator operation. E. g. the nested commutator
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Due to the discussion of this example (and neglecting the fact that several of the above
terms vanish due to reasons of non overlapping sets of orbitals and annihilation or creation
of unoccupied or occupied orbitals, respectively) it is obvious that the evaluation of nested
commutator expressions of single substitution operator generates a total of 2nnest terms,
where nnest is the depth of the nested commutator.

Secondly every commutator of product expressions is expanded into a sum of products
with one factor being a commutator itself. Given the example�
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one can easily obtain the expanded expression�
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In the preceding example it can be seen that a product of two factors inside a simple
commutator yields two individual terms involving commutators of single substituters only.
In a similar fashion products involving nprod terms yields exactly nprod of these terms in
the innermost commutator.

It is now interesting to investigate how these two mechanisms of expansion work
together. In the implemented algorithm they are designed as function calls following
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each other. Given an arbitrary expression in the evaluation of nested commutators the
expansion of product terms is called �rst, generating commutator expressions involving
single substituters only. When the expansion of these terms is completed, the nested
commutators are evaluated. This leads to the fact that the number of terms generated
is directly related to the commutator depth via n = A· 2nnest . The pre-factor A is a
function of the number of factors involved in each commutator, scaled by the depth the
product occurs in. For the investigation of the nature of A the following examples will be
considered:

��0|[(F̂N + V̂N), T̂1] �0� , (ex1)

��0|[[(F̂N + V̂N), T̂1], T̂1] �0� . (ex2)

It is clear that the number of terms in the Fock operator part is given by the commutator
depth only, since there are no products of single substituters involved. Thus the discussion
will concentrate on the following parts of the example expressions:

��0|[V̂N , T̂1] �0� , (ex1’)

��0|[[V̂N , T̂1], T̂1] �0� . (ex2’)

The �rst one of these examples obviously decomposes into the sum of two terms (following
closely the second rule from above). The only interesting term remaining is the interde-
pendence of nested commutators and product terms occurring in eq. (ex2’). According to
the algorithm implemented this equation will be decomposed into two terms of the form:
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Of course, the two terms occurring in eq. 5.37 are expanded further because of the
products occurring in the commutator expressions. This leads to the following equation:
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The resulting terms can be dealt with on the basis of nested commutator expressions,
leading to an increase of the number of terms by a factor of four for each expectation
value. This results in an increase of the number of terms by a factor of sixteen, while
the product expansion is responsible for two times a factor of two and the commutator
evaluation contributes a factor of four. It is easily recognizable that the contribution of
a product term to the total number of terms depends on the depth in terms of nested
commutators the product occurs in.
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In summary a product occurring inside a nested commutator expression has a recog-
nizable e�ect on the number of terms. As stated in the example above the number of terms
doubles for each level of commutator expressions if a product of two single substituters is
involved.

Another example is discussed in the following, involving a threefold substitution:
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Evaluation of the above expression by means of an expansion of the products contained
yields nine terms, namely:
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According to the previous discussion the number of terms scales as follows:

n = 2nnest ·
�

op�{op}
nd

op , (5.42)

where d is the depth the corresponding operator occurres in in terms of nested commuta-
tors and {op} is the set of operators occuring in the expression.

5.6.2 Measurements

In the following section several measurements of computational demand of the presented
term simpli�cation in contrast to a straightforward implementation of Wick’s theorem
are presented and discussed.

5.6.2.1 Projection Levels

Despite the high computational demand of both methods it has been possible to study
the e�ect of increasing projection levels employing the terms�

�0

���D̂†
n[[V̂N , T̂2], T̂2] �0

�
, n � {2, 3, 4} . (5.43)
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Table 5.1: Total CPU time and maximum number of terms involved in the simpli�cation
of three di�erent projections of the doubly nested commutator of the normal ordered two
particle part of the hamiltonian with double excitations. Please note that the times and
term numbers for the evaluation of Wick’s theorem are scaled by the number of single
substituters.

Term CPU time / s Maximum term number
Commutators Wick Commutators Wick

D̂†
2[[V̂N , T̂2], T̂2] 70.04 9.70 5366 151552

D̂†
3[[V̂N , T̂2], T̂2] 630.25 380.21 41316 3833856

D̂†
4[[V̂N , T̂2], T̂2] 2739.91 8231.60 208080 63700992

Table 5.2: Timing analysis for a single module run. The results for Wick’s theorem are
obtained from table 5.1 with a scaling factor of 2�nop .

Term CPU time / s Ratio
Commutators Wick

D̂†
2[[V̂N , T̂2], T̂2] 70.04 0.037891 1848.50

D̂†
3[[V̂N , T̂2], T̂2] 630.25 0.74260 848.71

D̂†
4[[V̂N , T̂2], T̂2] 2739.91 8.038 340.84

The results are presented in table 5.1. In order to compare the two methods for the case
of spin free operators, the timing and term number results for the Wick contractions
were obtained via 2nop runs of the contraction module, where nop is the number of single
substitution operators involved.

It is noteworthy, that the presented term simpli�cation overtakes the contraction via
Wick’s theorem during the transition from doubles to triples projections.

This fact could be assigned to the unfortunate additional scaling factor in the evalu-
ation of the spin independent version of the Wick contraction. However, the unscaled
results in table 5.2 reveal a constantly decreasing quotient between the times letting each
module run only once4. In fact, an exponential extrapolation of the quotient suggests
that the alternative algebraic approach overtakes a single run of the Wick contraction
module in the vicinity of nop = 20. Unfortunately, operator strings that large can by far
not be evaluated with both implementations.

4The time for a single run of the Wick module the timings obtained were divided by the number of
runs. This leads to a decrease of noise due to overheads and other factors.
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Table 5.3: Dependency of the maximal number of terms on altering the position of a
two particle substitution. The timing for the Wick module was scaled by a factor of 28

in order to reduce noise and ensure comparability.

Term CPU time / s Maximum term number
Commutators Wick Commutators Wick

D̂†
2[[V̂N , T̂2], T̂1], T̂1] 18.7698 11.3918 1504 752

D̂†
2[[V̂N , T̂1], T̂2], T̂1] 18.7256 11.2317 1504 752

D̂†
2[[V̂N , T̂1], T̂1], T̂2] 18.7810 11.3284 1504 752

5.6.2.2 Position of Product Operators

The next analysis concentrates on the position of a T̂2 operator within a nested commu-
tator. As discussed in the previous section, the position of the T̂2 operator should a�ect
the performance of the commutator evaluation. Surprisingly, this is not the case in the
actual timings in table 5.3. The number of maximal terms during the simpli�cation stays
constant while the computational time varies within a neglectable range.

A possible explanation for this phenomenon could be that in the �rst expansion step
most of the terms generated by the expansion of the product term vanish due to upper
left particle creator operators. In fact, closer inspection reveals that the number of terms
after the �rst expansion step is almost constant.

Table 5.4: Comparison of the timing analyses for 100 module runs employing nested
commutator expressions.

Term CPU time / s Ratio
Commutators Wick

D̂†
2[[V̂N , T̂1] 10.254 0.021 490.66

D̂†
2[[V̂N , T̂1], T̂1] 36.004 0.250 144.19

D̂†
2[[[V̂N , T̂1], T̂1], T̂1] 97.305 1.621 60.04

D̂†
2[[[[V̂N , T̂1], T̂1], T̂1], T̂1] 118.674 4.562 26.01

5.6.2.3 Commutator Depth

The e�ect of the nesting depth of commutator expressions on the evaluation time has
been investigated employing the following example terms:�

�0

���D̂†
2[. . . [V̂N , T̂1] . . . , T̂1] �0

�
. (5.44)
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The depth of the expressions ranged from singly nested to quadruply nested commutators.
The results of the timing analysis are presented in tab. 5.4.

It can be seen that again Wick’s theorem by far outperforms the presented method.
However, as already pointed out before, the ratio of the evaluation times decreases for
increasing operator numbers. Thus, it is possible that the performance of the commutator
based term simpli�cation could be better for than that of Wick’s theorem for large
operator numbers.
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Conclusion

This work investigated the development of an algebraic term simpli�cation scheme for
arbitrary excitation levels in single reference coupled cluster theory. It consisted of both
the derivation and the implementation of a term simpli�cation algorithm.

It turned out that the derivation of the coupled cluster working equations via Wick’s
theorem su�ers from a very unfavourable scaling, at least in the case of spin independent
operators. On the basis of this fact a more general form of manipulating second quantized
operators was sought.

Employing the commutation relations that as well spin orbital as also spatial orbital
substitution operators obey, a term simpli�cation scheme was developed that distinguishes
between the two operator types only at the very last contraction step. All other steps
in the presented method are of a general form, i.e. independent of the nature of the
operators involved.

An algorithm for the term simpli�cation could be derived that has an iterative char-
acter and relies on the evaluation and subsequent generation of commutator expressions.
The evaluation steps reduce the size of an operator string by one at least and generate
contractions (i.e. collapsing summations) between indices contained in di�erent substitu-
tion operators. Application of this scheme to an operator expression until a stable result is
reached yields the fully contracted terms known from the evaluation of Wick’s theorem.

The algorithm presented could be implemented into the Quantum Objects Library
program package developed in the Cologne Quantum Chemistry Group. It makes excessive
use of dynamic programming concepts. This has the advantage that arbitrarily nested
expressions can be dealt with as the type evaluation occurs at runtime of the program.
However, the price to pay for this generality of the program is a large overhead due to
the fact that all type speci�cations and identi�cations have to occur at runtime.

Timing analyses have shown that for the test cases concidered the implemented algo-
rithm could hardly compete with a straightforward implementation of Wick’s theorem.
Nevertheless, the analyses also suggest that for larger operator strings the presented algo-
rithm could possibly outperform the Wick contraction algorithm. Especially in the case
of spin independent operators one can be fairly optimistic. As the commutator based
term simpli�cation does not change its scaling behaviour in this case, the relative e�-
ciency with respect to Wick’s theorem rises dramatically with the size of the operator
string to be evaluated.

It should be noted that the term simpli�cation presented is not complete, as there are
still many redundant terms (by means of index symmetries) are generated. To overcome
this issue, one would have to implement an identi�cation algorithm for the redundancies.
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Maybe the most e�cient way to identify the redundant terms is to translate the terms
to their diagrammatic representation, canonicalize the diagrams and translate back. This
type of algorithm is already implemented in the QOL for the spin orbital case. However,
a generalization to the symmetry properties of the spin independent tensor quantities is
a highly non-trivial task.
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