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Abstract 

Glucocorticoid-induced secondary osteoporosis is the most predictable side-effect of this 

anti-inflammatory. One of the main mechanisms by which glucocorticoids achieve such 

deleterious outcome in bone is by antagonizing Wnt/β-catenin signalling. Sclerostin, encoded 

by Sost gene, is the main negative regulator of the pro-formative and anti-resorptive role of 

the Wnt signaling pathway in the skeleton. We hypothesized that the partial inactivation of 

sclerostin function by genetic manipulation will rescue the osteopenia induced by high 

endogenous glucocorticoid levels. Sost-deficient mice were crossed with an established 

mouse model of excess glucocorticoids and the effects on bone mass and structure were 

evaluated. Sost haploinsufficiency did not rescue the low bone mass induced by high 

glucocorticoids.  Intriguingly, the critical manifestation of Sost-deficiency combined with 

glucocorticoid excess was sporadic, sudden, unprovoked, and non-convulsive death. Detailed 

histopathological analysis in a wide range of tissues identified peracute haemopericardium 

and cardiac tamponade to be the cause. These preclinical studies reveal outcomes with direct 

relevance to ongoing clinical trials exploring the use of anti-sclerostin antibodies as a 

treatment for osteoporosis. They particularly highlight a potential for increased 

cardiovascular risk and may inform improved stratification of patients that might otherwise 

benefit from anti-sclerostin antibody treatment.  
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Introduction 

Glucocorticoids (GCs) are anti-inflammatory molecules synthesized and secreted by the 

adrenal glands that exert significant influence on the physiological functioning of several 

systems including adaptation to stress, metabolism, and regulation of immune responses.  The 

signalling axis of GC consists of the hypothalamic-pituitary-adrenal axis influenced by many 

factors including neuroinflammation, physical stress, circadian rhythm, and negative 

feedback. GCs are used in the treatment of various diseases, such as asthma, rheumatoid 

arthritis, and systemic lupus erythematosus 1-4 with many reported side effects 5, 6. 

Significantly, GC-induced osteoporosis (GIO) is the most predictable side effect and the 

commonest cause of secondary osteoporosis leading to increased fracture risk in 30% to 50% 

of patients receiving GCs 5-9.  Thus, there remains a significant unmet clinical need for the 

development of therapies to prevent and/or treat GIO.   

 

The central feature in the pathogenesis of GIO is the suppression of bone formation. Previous 

studies suggest that GCs decrease the number and function of osteoblasts via a reduction in 

osteoblastogenesis and impairment in osteoblastic differentiation and maturation 10, 11. This 

consequently favors adipogenesis, most likely dictated by up-regulation of peroxisome 

proliferator–activated receptor γ 2 (PPARγ2), leading to increased bone marrow adiposity 12-

15. In addition, GCs decrease osteoblast viability and activity, ultimately leading to a 

reduction in bone mass and compromised bone structure 11. Osteocytes are the other key 

players in GIO since GCs induce their apoptosis 16-18. This is likely achieved via the GC-

mediated disruption of the osteocyte-lacunar-canalicular network, essential for osteocyte 

viability and maintenance of the bone’s material properties 11. These changes may explain the 

impairment of the biomechanical properties in the surrounding bone 16 and account for the 

loss of bone strength that occurs before the loss of BMD 19.  
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One of the mechanisms by which GCs drive bone loss is via inhibition of the Wnt/β-catenin 

signalling pathway 15, 20-22, critical for the differentiation of mesenchymal cells toward mature 

osteoblasts, bone formation, and mechanoadaptive responses 11, 16, 23, 24. A natural antagonist 

of Wnt signalling, sclerostin (Sost gene product), predominantly secreted by osteocytes is a 

potent inhibitor of osteoblastic mineralization 25-27. Thus its deficiency provokes marked 

increases in bone mass achieved via a range of targets 28-39, without any significant impact on 

osteocyte differentiation 40, 41.   

 

Several studies have reported contradictory results on the relationship between GC excess 

and sclerostin 42-46. Previous studies have reported that in vivo anti-sclerostin antibody 

treatment prevents the reduction in bone mass and strength induced by GC excess 42, 43. 

Despite these established links between sclerostin levels and the prevention of GC-induced 

changes in bone mass, there remains controversy regarding how these links impact human 

patients, in which there have been discordant reports of decreased serum sclerostin in patients 

following one week of GC treatment, and increased serum sclerostin at later time points 44. 

Similar disparities in the levels of sclerostin are also seen in GC-related disease states, where 

both increased and decreased levels are reported in patients with excess GC 45, 46. The reasons 

for these contradictory observations on the relationship between sclerostin and excess 

glucocorticoids are unclear, raising the question whether modulation of sclerostin function 

indeed counteracts the deleterious effect of endogenously-raised GC levels on bone mass and 

strength. 

 

We tested this possibility by determining whether genetically-determined sclerostin 

deficiency was capable of rescuing the compromised bone mass that occurs with GC excess. 

To address this question, sclerostin-deficient mice were crossed with an established mouse 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

5 
 

model of GC excess due to an N-ethyl-N-nitrosourea–induced mutation in corticotropin-

releasing hormone (Crh) 47 and the effects on bone mass and structure were evaluated along 

with detailed histopathological analysis in a wide range of tissues. Our preclinical findings 

are relevant to ongoing clinical trials in which serious fatal cardiovascular adverse events 

were reported in patients receiving anti-sclerostin antibody. They particularly highlight a 

potential need for patient stratification to help realize the potential benefit of such treatment. 

 

Materials and Methods 

Animals 

Frozen sperm from a male Sost knockout (KO) mouse in the C57BL/6NTac background was 

purchased from the Knockout Mouse Project Repository at the University of California 

Davis, CA, and used to fertilize ova from C57BL/6J wild-type (WT) mice as described 

previously 40; hetero/haplozygosity was confirmed by genotyping. The mouse model for 

excessive circulating GC concentrations was a gift from Medical Research Council 

(Oxfordshire, UK) and was generated in C57BL/6J mice by an N-ethyl-N-nitrosourea–

induced mutation in corticotropin-releasing hormone (Crh) at -120 bp of the promoter region 

resulting in a gain-of-function mutation (Crh+/-120) and mated with C3H/HeH as described 

previously 47.  Female Sost homozygous KO (Sost-/-) mice were crossed with male Crh+/-120 to 

produce Sost-Crh+/-120 (Sost heterozygous/Crh heterozygous) and Sost+/- mice. Mice were 

housed in polypropylene cages under 12 h light/dark cycle at 21 ± 2°C with free access to 

Rat/Mouse One maintenance diet (Special Diet Services, Witham UK) and water ad libitum. 

The studies used only male mice throughout. All procedures complied with UK Animals 

(Scientific Procedures) Act 1986, were approved by the Royal Veterinary College’s Ethics 

committee, and followed ARRIVE guidelines 48. 
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X-ray microcomputed tomography (µCT) 

In vivo scanning of the entire right tibia at one month of age under 2% isoflurane-induced 

anesthesia and post-mortem at 2 months of age were achieved using a Skyscan 1176 X-ray 

microcomputed tomography machine (Skyscan, Kontich, Belgium). The X-ray tube was 

operated at 40kV, 600µA, with a voxel size of 9µm, an exposure of 2000ms and a rotation 

step of 0.800 degrees. The radiation dose from the µCT scanning was estimated to be 

approximately 500 mGy for each scan, which has been proved to cause no significant effect 

on bone adaptations 49. Slices were reconstructed using NRecon1.6; trabecular and whole 

bone analysis was performed as described previously 24. For morphometric trabecular 

analysis appearance of the trabecular ‘bridge’ connecting the two primary spongiosa bone 

‘islands’ was set as a reference point for analysis of proximal tibia metaphyseal trabecular 

bone; 5% of the total bone length from this point (towards diaphysis) was used.  For cortical 

analysis; following segmentation, alignment and removal of fibula, a minimum threshold was 

used in “Slice Geometry” to calculate mass: cross-sectional area (CSA), mean cross-sectional 

thickness (Cs.Th), second moment of area around minor axis (Imin), second moment of area 

around major axis (Imax), and predicted resistance to torsion (J) along a central 70% portion of 

the entire tibia length excluding regions that contained trabecular bone.  

 

Histological analysis 

Tibia, heart, lungs, liver, spleen, kidneys, and brain were fixed in 4% formaldehyde (from 

paraformaldehyde Alfa Aesar Inc., Ward Hill, MA) and stored in 70% EtOH prior to routine 

processing into paraffin and production of slides sectioned at 4µm and stained with 

hematoxylin and eosin. Stained slides were evaluated by a board-certified Veterinary 

Pathologist (EH at The Francis Crick Institute, London, UK) 50. Total numbers of animals 

examined were: Sost+/+ WT (n = 4), Sost+/- heterozygous KO (n = 7), Sost-/- homozygous KO 
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(n = 4), Crh+/+ WT (n = 4), Crh+/-120 heterozygous KO (n = 4), and Sost-Crh+/-120 heterozygous 

(n = 5).  In addition, Sost-Crh+/-120 (n=3) which spontaneously died were stored in 70% EtOH 

and examined histologically. Hearts from these animals were examined using multiple step 

levels and extensive sectioning throughout the block.  

 

Statistical analyses   

These were performed using “R”, version 3.1.1 (R Foundation for Statistical Computing, 

Vienna, Austria; http://www.r-project.org; last accessed August 29, 2018). Measurements 

were summarized as means ± SEM. Linear model (two-way analysis of variance) was used to 

determine the effects of age (one and two months) and genotype (Sost heterozygous and 

homozygous as well as Crh heterozygous and double Sost-Crh heterozygous and their 

corresponding WT littermates) and their interaction on all phenotypic measurements.  

Bonferroni post-hoc correction was performed for whole bone measurements. The statistical 

significance level was set at 5%. 

 

Results 

Sost haploinsufficiency does not rescue compromised bone mass induced by excessive 

GC 

The designed studies tested whether genetically-determined Sost deficiency rescues low bone 

mass induced by excessive GC in vivo. Trabecular bone was analyzed and the entire tibial 

cortex was analyzed proximodistally in a non-biased fashion at 1 and 2 months of age. Both 

age and genotype independently affected the cortical cross-sectional area (CSA) and 

significant interaction was evident between age and genotype along the entire tibial length 

(Fig. 1A-B). The detailed post-hoc analyses at one month of age revealed, as expected, 

significantly higher CSA in Sost homozygous KO (Sost-/-) compared to Sost+/+WT mice (Fig. 
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1A-B) as well Sost-/- compared with Sost+/- along the entire tibia; unexpectedly lower cortical 

CSA was observed in restricted regions of the tibia in Sost+/- compared with Sost+/+WT 

littermates (Fig. 1A-B). At two months of age, CSA was significantly higher in Sost+/- 

compared with Sost+/+WT between 15% to 85% of the length and also in Sost-/- compared 

with Sost +/+WT and Sost+/- across the entire tibial cortex. 

 

Analysis of mice with excessive endogenous GCs at one month of age failed to find any 

significant differences in cortical CSA at any location along the tibia in WT Crh (Crh+/+WT), 

heterozygous Crh (Crh+/-120), or mice heterozygous for both Crh and Sost (Sost-Crh+/-120) 

(Fig. 1A-B). In contrast, in mice aged two months, CSA was, as expected, significantly lower 

in Crh+/-120 compared with Crh+/+WT and also lower in Sost-Crh+/-120 compared with Crh+/+ 

between ~25% to 85% of the tibial length. Intriguingly, no significant rescue in the reduction 

of CSA was observed at any location in tibia from Sost-Crh+/-120 mice compared with Crh+/-

120. Evaluation of J, a measure of predicted resistance to torsion, showed identical trends 

indicating that Sost haploinsufficiency also fails to rescue GC-induced decreases in the tibia’s 

architectural strength (Supplemental Figure S1A-B).  Further interrogation of cortical bone 

revealed that mean cortical cross-sectional thickness (Supplemental Figure S2), second area 

around minor axis (Supplemental Figure S3), and around major axis (Supplemental Figure 

S4) also indicate that Sost haploinsufficiency failed to rescue Crh+/-120 induced compromise in 

cortical bone mass and architecture. Our evaluation of age-related changes in the WT mice of 

both Sost-/- (C57BL/6NTac/ C57BL/6J) and Crh+/-120 (C57BL/6J/ C3H/HeH) backgrounds 

revealed greater growth kinetics within the latter, between one and two months of age, 

suggesting that there is ample scope for any effects of the combined genetic manipulation to 

be realized (Supplemental Figure S5). 
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In addition to microCT analysis of cortical bone, tibial trabecular bone were analyzed. 

Percent bone volume (BV/TV) was significantly greater in mice lacking both copies of Sost 

(Sost-/-), while a trend which did not reach levels of statistical significance was observed for 

enhanced BV/TV in mice lacking a single copy (Sost+/-, Fig. 2A).  This elevation of BV/TV 

in Sost-/- mice was linked with enhanced bone volume (BV), trabecular number (Tb.N), and 

thickness (Tb.Th), and lower trabecular separation; neither of these parameters alone reached 

statistical significance (Fig. 2A). The analysis also showed a trend for lower trabecular 

BV/TV in mice with excess glucocorticoids (Crh+/-120) and no significant modification of 

BV/TV in Sost-Crh+/-120 mice (Fig. 2A). In agreement with the microCT data, detailed 

histological evaluation of tibia structure revealed thicker cortices in tibiae from mice lacking 

either one (Sost+/-) or both copies (Sost-/-) of functional Sost compared with tibia from 

Sost+/+WT mice (Fig. 2B-G).  Thinner cortices were also observed in Crh+/-120 mutant mice 

compared with tibiae from their Crh+/+WT littermates. In agreement with 3D quantification, 

tibiae from mice harboring both Sost+/- and Crh+/-120 (Sost-Crh+/-120) were similar to Crh+/-120, 

indicating a failure of Sost+/- to rescue the effects of GC excess on bone mass (Fig. 2E-G). 

Together, the detailed comparison of bone by both histology and microCT revealed at two 

months of age that: i) both hetero- and homozygous Sost-deficient mice exhibit significantly 

greater bone mass and predicted strength; ii) heterozygous Crh mutation leads to a 

compromised bone mass and strength and, iii) Sost haploinsufficiency fails to rescue the 

compromised bone mass produced by excess GCs. 

 

Combined Sost haploinsufficiency and Crh+/-120 related GC excess provoke peracute 

lethal cardiac tamponade  

In the studies examining potential rescue of excess GC-related low bone mass by deletion of 

a single Sost allele, sudden, unprovoked, non-convulsive death of ~10% of total Sost-Crh+/- 
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offspring was observed between one to two month of age. No such incidences occurred in 

either Crh+/-120, Sost-/- or their respective WT littermates.  To identify the cause of this sudden 

death, a comprehensive histopathological examination of multiple tissues from all mouse 

strains was performed using H&E staining, which was scored using a semi-quantitative 

grading system. Examination of the brain, kidney, liver, lung, and spleen showed no signs of 

overt pathology in Sost+/+WT, Sost+/-, Sost-/-, Crh+/+WT or Crh+/-120, or Sost-Crh+/-120 mice in 

which a propensity for sudden death was observed. 

 

Intriguingly, evaluation of heart tissue in Sost-Crh+/-120 mice with sudden death revealed all to 

have hemopericardium with a markedly expanded pericardial space containing a large 

number of densely packed, homogenously distributed erythrocytes and compression of the 

right ventricular (Fig. 3A) and right atrial lumen (Fig. 3B) in all mice which suffered from 

sudden death.  Therefore, the cause of sudden death in these animals is considered to be due 

to peracute haemopericardium leading to cardiac tamponade. Hearts were examined at 

multiple step levels through the tissue to try to ascertain the origin of the hemorrhage; 

however, none could be identified. No significant findings were observed in the hearts of the 

remainder of the Sost-Crh+/-120 mice, or in any of the Sost+/+WT, Sost+/-, Sost-/-, Crh+/+WT, 

and Crh+/-120 mice. 

 

Discussion 

Osteopenia due to excess GC mainly involves a decrease in bone formation, secondary to the 

effects on the activity and viability of osteoblasts and osteocytes, which ultimately leads to an 

impairment in bone strength. One of the main mechanisms by which GCs achieve such 

deleterious outcome in bone is by antagonizing Wnt/β-catenin signalling. Sclerostin, the 

product of the Sost gene, is the main negative regulator of the Wnt pathway in the skeleton. 
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Thus, sclerostin normally acts to suppress the pro-formative and anti-resorptive role of the 

Wnt signaling pathway. Herein, the hypothesis that the partial inactivation of sclerostin 

function by genetic manipulation will be capable of rescuing the low bone mass induced by 

high endogenous GC levels was tested. 

 

In contrast, it was found instead that Sost haploinsufficiency was not capable of rescuing the 

low bone mass induced by high GC. These findings do not agree with previous studies which 

reported that transient anti-sclerostin antibody treatment rescued GC-induced low bone mass 

42, 43. It is possible that these dissimilar observations arise due solely to differences in 

experimental design and analysis. These studies undertook a non-biased analysis of almost 

the entire tibial cortex adjusting for GC-induced divergence in bone length and thus ensure 

comparisons are made at precisely-matched anatomical locations and volumes. Although 

Marenzana et al reported small, significant protective effects of anti-sclerostin antibody 

treatment against an exogenous GC-induced reduction in cortical bone volume at the femur 

mid-shaft, they did not find similar rescue of GC-induced reduction in bone length. The 

methods employed, however, made no apparent correction for this growth retardation, and 

thus measurement of equivalent bone volumes was not ensured 43. An alternative explanation 

is that our studies encompass the developmental effect of excessive GC and Sost 

haploinsufficiency and it remains possible that this may diverge from the outcome of 

transient anti-sclerostin antibody treatment of adult mice which have induced GC excess 42, 43.   

 

Sclerostin has long been considered an effective target for treating osteoporosis. The most 

recent phase III clinical trial of romosozumab (an anti-sclerostin antibody), to our knowledge, 

was however hampered by unforeseen, increased adverse cardiovascular risk 51 resulting in 

refusal to approve this treatment by the Food and Drug Administration.  The finding that a 
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combination of high endogenous GC levels together with Sost haploinsufficiency results in 

sudden death with histopathological, marked haemopericardium, is therefore intriguing.  The 

pericardial space in these mice was found to be markedly enlarged by densely packed 

erythrocytes with compression of the heart lumen, consistent with sudden death from cardiac 

tamponade. 

 

To the authors’ knowledge, cardiac tamponade secondary to spontaneous haemopericardium 

has not been reported before in mice.  In other species, causes of spontaneous 

haemopericardium, occur due to rupture of the intra-pericardial portion of the aorta or 

pulmonary artery, rupture of a coronary vessel, cardiac rupture after an acute myocardial 

infarct or rupture of an atrium secondary to atrial thrombosis, blood dyscrasias, and 

neoplasia. The histological examinations, however, did not localize the site of 

rupture/hemorrhage or reveal an overt underlying pathology. Microscopic examination of the 

heart and major blood vessels in both affected and unaffected animals also failed to disclose 

any possible predisposing lesions such as aneurysm, congenital blood vessel anomaly, or 

cardiac disease. 

 

There are several possible explanations that may clarify the underpinning mechanisms 

whereby sclerostin exerts a regulatory role in the cardiovascular system. Although sclerostin 

is reported to be expressed in the aorta 52-54, neither Sost KO mice in this study or others nor 

human patients with sclerosteosis or van Buchem’s disease due to mutations in the SOST 

gene, exhibit any greater risk of cardiovascular complications 55-58. Furthermore, a case study 

by van Lierop et al reported that glucocorticoid treatment does not lead to adverse 

cardiovascular effects in a van Buchem high bone mass patient with mutation in the SOST 

gene 59. In addition, Sato et al reported that Sost homozygous KO mice treated with 
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glucocorticoids maintain structural and material mechanical properties despite increased 

osteocyte apoptosis and that no cardiovascular complications were reported 60. It is possible 

that differences in our findings to those reported by aforementioned studies can be explained 

by the fact that the excess glucocorticoids present in Crh+/-120 mice during developmental and 

later life-course may affect multiple organs including the cardiovascular system.  

 

Other studies have also reported up-regulation of sclerostin in foci of vascular and valvular 

calcification 61-64. Our detailed histopathological examinations were not able to find any signs 

of calcification in any mice in this study.  This agrees with other animal studies showing that 

sclerostin is unlikely to be involved in vascular mineralization 53, 65.  There is no evidence to 

suggest that sclerostin plays a causal role in cardiovascular disease, rather recent studies have 

reported an association between sclerostin levels and cardiovascular disorders 66-69. The 

precise function of sclerostin in the regulation of the cardiovascular system remains to be 

defined. 

 

A limitation in our studies is the lack of any measured levels of circulatory sclerostin and thus 

it remains to be verified that the Sost genetic haploinsufficiency in our studies is necessarily 

reflected in a change in expression levels. The ‘middle level’ bone phenotype observed in the 

Sost haploinsufficient mice (either in mice with or without the Crh+/-120 mutation) in which 

true heterozygosity was also confirmed by genotyping makes it highly likely that sclerostin 

levels are modified accordingly. The levels might be lower in the Sost-Crh+/-120 mice than in 

Crh+/-120 mice. Another limitation is that whether anti-sclerostin antibody–mediated blockade 

of sclerostin function is equivalent to genetic insufficiency cannot be predicted.  
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Nonetheless, the critical manifestation of Sost-deficiency combined with GC excess in our 

study is sporadic, sudden, unprovoked, and non-convulsive death linked to peracute 

haemopericardium and cardiac tamponade. Tamponade has been linked to many conditions, 

including cancer, uremia, hypothyroidism, and pericarditis, where enlargement of 

pericardium arises gradually 70-73. No evidence for such conditions was found in this study. 

The rapid haemopericardium-related tamponade observed is more consistent with myocardial 

rupture, but this was not found upon detailed pathological examination using multiple step 

levels sectioned throughout the heart. The cause of this tamponade and death in some Sost-

Crh1+/-120 remains unexplained; this is confounded by a lack of any abnormal preceding 

changes evident in their living equivalents; no predisposing lesions, such as aneurysm, focal 

thinning, or disruption of the myocardium or coronary vessels were observed histologically in 

the unaffected animals. It is tempting to speculate upon the likely mechanisms. Experiments 

that explore whether unrestricted Wnt signaling, due to Sost-deficiency, interacts with 

regulators of inflammatory processes, as seen in circumstances such as GC excess, may 

explain such serious adverse cardiovascular events. These findings using mouse pre-clinical 

models, therefore, prompt further studies aimed at deciphering their clinical significance and 

the underpinning molecular mechanisms by which GC-induced osteopenia might be better-

targeted without risk of cardiovascular side-effects.  
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Figure Legends 

Figure 1. Sost haploinsufficiency does not rescue low bone cross-sectional area induced by 

excessive GCs. A: Average cortical cross-sectional area (CSA) of Sost WT (dark blue; 

Sost+/+), Sost heterozygous KO (light blue; Sost+/-), Sost homozygous KO (turquoise; Sost-/-), 

Crh WT (dark red; Crh+/+), Crh heterozygous (orange; Crh+/-120), and double Sost-Crh 

heterozygous (plum; Sost-Crh+/-120) at one and two months of age. B: Graphical heatmap 

representation of statistical significance of the effect of genotype, age, their interactions as 

well as post-hoc analysis along a 15% to 85% portion of the whole tibia length excluding 

proximal and distal metaphyseal bone. Line graphs represent means ± SEM (shadow). Group 

sizes were n = 8. Red P < 0.001, yellow 0.001 ≤ P < 0.01, green 0.01 ≤ P < 0.05, and blue P ≥ 

0.05. 

 

Figure 2. Trabecular bone phenotype of Sost WT (Sost+/+); Sost heterozygous KO (Sost+/-); 

Sost homozygous KO (Sost-/-); Crh WT (Crh+/+); Crh heterozygous (Crh+/-120), and double 

Sost-Crh heterozygous (Sost-Crh+/-120) at two months of age. Ex vivo high-resolution analyses 

of the proximal metaphyseal tibia to determine A: trabecular bone volume (BV), trabecular 

total volume (TV), percent bone volume (BV/TV), trabecular number (Tb.N), trabecular 

thickness (Tb.Th), and trabecular separation (Tb.Sp). B-G: Representative hematoxylin and 

eosin–stained sections of tibia at two months of age.  B: Sost WT (Sost+/+). C: Sost 

heterozygous KO (Sost+/-). D: Sost homozygous KO (Sost-/-). E: Crh WT (Crh+/+). F: Crh 

heterozygous (Crh+/-120). G: Double Sost-Crh heterozygous (Sost-Crh+/-120) with 

corresponding higher magnification demonstrating the structural differences between groups. 

Box-plots represent means ± SEM. Group sizes were n = 8. * P < 0.05. 
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Figure 3. Sost haploinsufficiency together with excessive GCs leads to peracute lethal cardiac 

tamponade. Two representative cases are displayed.  A: Markedly expanded pericardial space 

(dashed line in center panel) with a large number of densely packed, homogenously 

distributed erythrocytes and compressed right ventricular lumen. B: Haemopericardium 

(dashed line in center panel) containing erythrocytes and a compressed right atrial lumen. 
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