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Abstract 1 

 2 
• The LATE ELONGATED HYPOCOTYL (LHY) transcription factor functions as part of the 3 

oscillatory mechanism of the Arabidopsis circadian clock. This paper reports the genome-4 

wide analysis of its binding targets and reveals a role in the control of abscisic acid (ABA) 5 

biosynthesis and downstream responses. 6 

• LHY directly repressed expression of NCED enzymes, which catalyse the rate-limiting 7 

step of ABA biosynthesis. This suggested a mechanism for the circadian control of ABA 8 

accumulation in wild-type plants. Consistent with this hypothesis, ABA accumulated 9 

rhythmically in wild-type plants, peaking in the evening. LHY-overexpressing plants had 10 

reduced levels of ABA under drought stress, whereas loss of function mutants exhibited 11 

an altered rhythm of ABA accumulation.  12 

• LHY also bound the promoter of multiple components of ABA signalling pathways, 13 

suggesting that it may also act to regulate responses downstream of the hormone. LHY 14 

promoted expression of ABA-responsive genes responsible for increased tolerance to 15 

drought and osmotic stress but alleviated the inhibitory effect of ABA on seed germination 16 

and plant growth. 17 

• This study reveals a complex interaction between the circadian clock and ABA pathways, 18 

which is likely to make an important contribution to plant performance under drought and 19 

osmotic stress conditions. 20 

 21 

Plain language summary: 22 

Plant, like animals possess a circadian clock which allows them to adapt their physiology 23 

predictable changes in environment conditions linked to the day-night cycle. We show here that 24 

the circadian clock contributes to drought and osmotic stress tolerance by controlling the 25 

production and plant’s ability to respond to a key stress response hormone, abscisic acid. 26 

 27 

Keywords: Abscisic acid/ Arabidopsis / circadian clock / Chromatin immunoprecipitation / 28 
abiotic stress 29 

 30 

 31 

  32 
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Introduction  33 
 34 

Drought represents a major threat to food security, and salinity imposes limitations on the land 35 

that can be used for agriculture, hence there is considerable interest in developing crops with 36 

improved resilience to these environmental stresses. Recent evidence suggests that the plant 37 

circadian clock contributes to drought and osmotic stress tolerance, and that optimization of its 38 

function represents a potential strategy for crop improvement (Grundy et al., 2015). Thus, plants 39 

with abnormal function of the central oscillator exhibit altered tolerance to drought, osmotic stress, 40 

salinity and cold temperatures (Kant et al.; Nakamichi et al., 2012; Kim et al., 2013; Sanchez-41 

Villarreal et al., 2013; Kolmos et al., 2014; Fornara et al., 2015; Miyazaki et al., 2015).  42 

 The mechanism by which the plant circadian clock contributes to abiotic stress tolerance 43 

is not well understood. However, the expression of multiple oscillator components is altered in 44 

response to heat or cold (Pruneda-Paz et al.; Gould et al., 2006; Legnaioli et al., 2009; Filichkin 45 

et al., 2010; James et al., 2012; Chow et al., 2014; Kolmos et al., 2014; Nagel et al., 2014; Box et 46 

al., 2015), and changes in the amplitude of circadian rhythms in response to cold temperatures 47 

lead to the altered expression of thousands of genes (Bieniawska et al., 2008). This results in 48 

altered growth patterns and may be important for vegetative yield at high temperatures (Box et 49 

al., 2015, Kusakina et al., 2014).  The circadian oscillator was proposed to act as a master 50 

regulator of plant growth, development and physiology, integrating the effects of multiple 51 

environmental signals to influence the overall phenotype of the organism (Sanchez & Kay, 2016). 52 

However, the most immediate contribution of the plant circadian clock is to allow the plant to 53 

anticipate predictable changes in environmental stress conditions, due to the daily rotation of the 54 

earth. 55 

 The plant circadian clock drives the rhythmic expression of many genes involved in abiotic 56 

stress responses. About 40% of cold-responsive genes and 50% of heat and drought-responsive 57 

genes exhibit circadian rhythmicity in Arabidopsis (Bieniawska et al., 2008; Covington et al., 2008; 58 

Mizuno & Yamashino, 2008). Rhythmic expression of abiotic stress-responsive genes was also 59 

reported in soybean and barley (Habte et al., 2014; Marcolino-Gomes et al., 2014). The clock also 60 

ensures that plants respond to environmental stress signal in a manner that is appropriate for the 61 

time of the day (a phenomenon known as “gating”). For example, maximal drought-induced 62 

changes in gene expression are observed at dusk (Wilkins et al., 2010; Kiełbowicz-Matuk et al., 63 

2014), and drought or heat treatments given at different times of the day can also result in 64 

differential expression of distinct sets of genes (Wilkins et al., 2010; Rienth et al., 2014).  65 
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 The circadian clock also controls the production of the stress-response hormone, abscisic 66 

acid (ABA), suggesting that the clock may act to potentiate responses to heat, drought and 67 

osmotic stress during the day by controlling the production of this phytohormone (Lee et al., , 68 

Burschka, 1983 #4483; McAdam et al., 2011), The expression of multiple ABA biosynthetic 69 

enzymes oscillate in Arabidopsis, tomato, maize and sugarcane suggesting rhythmic control at 70 

the level of ABA biosynthesis (Thompson et al., 2000; Covington et al., 2008; Michael et al., 2008; 71 

Fukushima et al., 2009; Khan et al., 2010; Hotta et al., 2013, Mizuno, 2008 #4477). Multiple 72 

components of ABA signaling pathways as well as many ABA responsive transcripts exhibit 73 

circadian regulation (Michael et al., 2008; Mizuno & Yamashino, 2008; Seung et al., 2012; Liu et 74 

al., 2013). ABA also feeds back onto the clock mechanism to influence its function (Hanano et al., 75 

2006). 76 

 The mechanism by which the circadian oscillator drives rhythmic changes in ABA levels 77 

and influences plants’ sensitivity to the hormone remains to be fully elucidated.  The oscillatory 78 

mechanism of the clock is based on a transcriptional-translational feedback loop composed of 79 

three inhibitory steps (Pokhilko et al., 2012; Carré & Veflingstad, 2013). The LATE ELONGATED 80 

HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED-1 (CCA1) transcription factors are 81 

expressed in the early morning (Genoud et al., 1998; Wang & Tobin, 1998) and bind to Evening 82 

Element (EE) motifs (AAAATATCT) in the promoters of PSEUDO-RESPONSE REGULATORS 83 

(PRR) 9, 7, 5 and of PRR1, also known as TIMING OF CAB2 EXPRESSION1, or TOC1 (Harmer 84 

et al., 2000; Matsushika et al., 2000; Strayer et al., 2000; Alabadi et al., 2001; Adams et al., 2015). 85 

As LHY and CCA1 protein levels decline in the afternoon, the PRR proteins are expressed in 86 

successive waves and act to repress LHY and CCA1 transcription until the following morning 87 

(Nakamichi et al., 2012).  This repression is lifted late at night through the action of an Evening 88 

Complex composed of EARLY FLOWERING 3 and 4 (ELF3 and ELF4) and LUX ARRHYTHMO 89 

(LUX, also known as PHYTOCLOCK 1 or PCL1) (Helfer et al., 2011; Nusinow et al., 2011). This 90 

allows expression of LHY and CCA1 transcripts to rise at dawn and the cycle to start again.  91 

  ABA is synthetized from -carotene. The early steps of its biosynthesis, leading to the 92 

production of Xanthoxin, take place the chloroplast. Later steps leading to the production of 93 

abscisic aldehyde and ABA take place in the cytoplasm. The rate-limiting step for ABA 94 

biosynthesis is thought to be the conversion of ABA precursors 9-cis- Violaxanthin or 9-cis-95 

Neoxanthin to Xanthoxin, which is catalyzed by  9‐cis‐epoxycarotenoid dioxygenase (NCED) 96 

enzymes (Thompson et al., 2007). NCED3 is the most highly expressed NCED enzyme in root 97 

and stem tissues. It is highly induced under drought conditions and plays a major role in ABA 98 

production in response to water deficit (Iuchi et al.; Tan et al., 2003; Ruggiero et al., 2004).  99 
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Multiple ABA receptors have been identified (Guo et al., 2011), but downstream signal 100 

transduction pathways have only been elucidated for one family of such proteins, known as 101 

pyrabactin resistance (PYR)‐like (PYL) or regulatory component of ABA receptor (RCAR) (Park 102 

et al., 2009). Binding of ABA to PYL/RCAR receptors results in inactivation of the co-receptor, a 103 

protein phosphatase 2C (PP2C) and to the activation of a specific group of kinases termed SNF1-104 

related kinases 2 or SNRK2 (Ma, Yue et al., 2009; Park et al., 2009). SNRK2 kinases 105 

phosphorylate ABA-responsive transcription factors, which bind ABA-responsive elements 106 

(ABREs) in the promoters of ABA-responsive genes to regulate their expression (Fujii et al., 107 

2009). 108 

Previous work suggested possible mechanisms for the regulation of ABA responses by 109 

the central oscillator. The rhythmic production of ABA was proposed to be controlled by the PRR5, 110 

7, and 9 proteins, because analysis of a triple mutant (prr5,7,9) revealed increased ABA levels 111 

(Fukushima et al., 2009). On the other hand, TOC1 was proposed to suppress ABA signaling by 112 

inhibiting expression of the ABA-binding protein ABAR (also known as CHLH or GUN5). 113 

Consistent with this hypothesis, TOC1-overexpressing plants had widely open stomata 114 

throughout diel cycles and exhibited increased sensitivity to drought, whereas plants with reduced 115 

expression of TOC1 had the opposite phenotype (Legnaioli et al., 2009). However, the function 116 

of ABAR in ABA signalling remains controversial (Hubbard et al., 2010), and the observed effects 117 

of TOC1 on ABA responses may be indirect. One potential mechanism would be through 118 

regulation of LHY and CCA1 expression, as these proteins are known to potentiate ABA-mediated 119 

responses to low temperatures in the morning (Mikkelsen & Thomashow, 2009; Dong et al., 120 

2011).  121 

 Physiological responses downstream of the clock are primarily controlled at the level of 122 

transcription (Adams & Carré, 2011).  Genome-wide analyses of binding sites for TOC1/PRR1, 123 

PRR5, PRR7 and CCA1 previously suggested a role for these proteins in the regulation of abiotic 124 

stress responses (Huang et al., 2012; Nakamichi et al., 2012; Liu et al., 2013; Nagel et al., 2015; 125 

Kamioka et al., 2016). We now report the genome-wide analysis of LHY binding sites, and show 126 

that it directly controls expression of genes associated with ABA biosynthesis and the rhythmic 127 

accumulation of this hormone. Furthermore, LHY regulates the expression of ABA signaling 128 

components and downstream response genes to potentiate some ABA responses while inhibiting 129 

others. 130 

 131 

Materials and Methods:  132 

 133 



 6 

Plant material and growth conditions 134 

The LHY-ox line (Ler ecotype), which overexpresses the LHY protein, the loss of function mutants 135 

lhy-11 and lhy-21 (Ler and Ws ecotypes, respectively) and the transgenic line carrying the 136 

ALCpro::LHY construct were described previously (Schaffer et al., 1998; Mizoguchi et al., 2002; 137 

Hall et al., 2003; Knowles et al., 2008). Seeds were sown on MS-agar plates in the absence of 138 

sucrose and stratified in the dark for 3 days at 4°C, then grown under 12-h photoperiods at 22°C 139 

under 100 μmol m− 2 s− 1 white light unless otherwise stated.  140 

 141 

Chromatin immunoprecipitation (ChIP)  142 

Tissue cross-linking and chromatin extraction was carried out as described by Gendrel et al. 143 

(2002). For each immunoprecipitation, 250 µl of chromatin was added to 2 mls of ChIP dilution 144 

buffer (167 mM NaCl, 16.7 mM Tris-HCl pH8, 1.2 mM EDTA, Triton X-100, 1 mM PMSF and 145 

protease inhibitors) and pre-cleared with protein A Dynabeads (Invitrogen). Samples were 146 

incubated overnight at 4°C with anti-LHY antibody (1:200) (Kim et al., 2003). The immuno-147 

complexes were isolated by incubation with protein A Dynabeads for 2 h at 4°C. The beads were 148 

washed as described (Haring et al., 2007) with the addition of three extra high salt buffer washes. 149 

 DNA to be analysed by quantitative PCR was eluted from protein A beads in the presence 150 

of 10% Chelex according to Nelson et al. (2006). For sequencing purposes, protein A beads were 151 

resuspended in 100 μl of TE and treated with RNase A at 37°C for 20 minutes. SDS was added 152 

to a final concentration of 0.5% and the samples digested with proteinase K for 2 h at 50°C. 8 μl 153 

of 5 M NaCl was added and the samples were incubated overnight at 65°C in order to reverse 154 

cross-links. The DNA was then purified using the MinElute PCR purification kit (Qiagen). 155 

 156 

Deep sequencing of ChIP samples 157 

Library preparation and sequencing was conducted at the University of Utah’s Bioinformatic Core 158 

facility. For ChIP-seq1 35 bp single read were obtained using an Illumina GA II sequencer. For 159 

ChIp-seq 2, 50 bp single reads were obtained using an Illumina HiSeq 2000 sequencer. The 160 

libraries were prepared using the Illumina TruSeq DNA sample prep kit according to the 161 

instructions of the manufacturer. At least 4 independent ChIP samples were pooled for the 162 

generation of each library.  163 

 164 

Analysis of ChIP-seq data 165 

Sequence reads were aligned to the Arabidopsis genome  (TAIR 9 version) using Bowtie 166 

(Langmead et al., 2009). Default settings were used, except that only uniquely mapped reads 167 
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were retained.   Results of the alignment are summarized in Table S1. LHY binding regions were 168 

then identified as genomic regions that showed over-representation of reads in the wild-type ChIP 169 

sample as compared to the input DNA sample (in ChIP-seq 1), or to the lhy-21 mutant ChIP 170 

sample (in ChIP-seq 2). Peak analysis was carried out using the MACS2 software version 171 

2.0.10.20120913 (Zhang et al., 2008) following the recommended procedure for analysing ChIP-172 

seq data for transcription factor binding. The parameter determining the number of duplicates 173 

retained was set to auto (-keep-dup), the q value threshold was set to 0.01 (-q), the genome size 174 

set to dm (-g) and the size of the window for the initial genome scan was set to 200 (-bw). Binding 175 

regions were assigned to closest gene facing away from them. 176 

 177 

Motif analyses 178 

200 bp sequences were retrieved on either side of the center of each binding region, and short 179 

sequence motifs that were over-represented within these sequences relative to the whole genome 180 

were identified using the DREME software in discriminative mode (Bailey, 2011). Control 181 

sequences were composed of 1000 random 400 bp regions from each chromosome. Promoters 182 

were scanned for matches to sequence motifs using FIMO (Grant et al., 2011) and motif matches 183 

to transcription factor binding sites were identified using TOMTOM (Gupta et al., 2007), based on 184 

the Arabidopsis PBM and DAP motif databases  (Franco-Zorrilla et al., 2014; O'Malley et al., 185 

2016). 186 

 187 

Ethanol induction of ALCpro::LHY expression 188 

Seedlings were grown on MS-agar plates for 2 weeks under 12 h-photoperiods before transfer to 189 

continuous light (LL). At the time of induction, 5 ml of ethanol (6% v/v) was added directly to the 190 

roots of the plants to induce expression of the transgene.  191 

 192 

Gene expression analyses 193 

Total RNA was extracted from seedlings using the Plant RNeasy kit (Qiagen) and contaminating 194 

genomic DNA removed by treatment with DNaseI (SIGMA). First-strand cDNA synthesis was 195 

carried out using Revert-aid H-Minus M-MuMLV Reverse transcriptase (Fermentas) and primed 196 

using random DNA hexamers. Quantitative PCR was conducted using a Stratagene MX3005P 197 

detection system (Agilent Technology) and SYBR Green Jumpstart Reagent (SIGMA). 198 

Expression levels were calculated relative to the constitutively expressed gene ACT2 199 

(At3g18780). Alternatively, RNA samples were sent for digital gene expression analysis using a 200 

Nanostring nCounter System (Geiss et al., 2008) at the University Health Network Microarray 201 
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Centre in Toronto and analysed using the probe set described as part of Supplementary Table 202 

S5. Transcript expression levels were normalized relative to the constitutively expressed gene 203 

UBC21 (AT5G25760). 204 

 205 

Gene Ontology (GO)-term analyses 206 

The Biomap output of the Virtual Plant software (Katari et al., 2010) was used to identify functional 207 

categories that were statistically over-represented within the set of LHY regulatory targets as 208 

compared to the whole genome. 209 

 210 

Germination experiments 211 

Seeds for these experiments were produced from plants that were grown and harvested 212 

simultaneously. Seeds were plated onto MS-agar plates containing varying concentrations of ABA 213 

or sorbitol, and stratified for 3 days in constant darkness at 4°C.  Plates were then transferred to 214 

22oC and constant light (50 μmol m-2 s-1) conditions and germination was scored daily based on 215 

radical emergence.  216 

 217 

Plant growth experiments in the presence of ABA 218 

Arabidopsis seeds were sown onto nylon membranes (Sefar) on MS medium, stratified for 3 219 

nights at 4◦C and grown under 12L 12D at 22◦C.  After 10 days, the nylon membranes containing 220 

the seedlings were then transferred to new plates containing varying concentrations of ABA.  221 

Plants were photographed at 7 and 10 days, then daily for the remaining 8 days of the experiment. 222 

Rosette area was then analysed using the rosettR software (Tome et al., 2017). 223 

 224 

ABA quantification by mass spectrometry  225 

Arabidopsis seeds were sown onto soil in 24 well plastic trays. Following stratification at 4◦C for 226 

3 nights in darkness, plants were grown under 16L 8D cycles (100 μmol m−2 s−1 white light), 70% 227 

(RH) at 22◦C. All trays were initially watered every 3 days by soaking in water troughs until the 228 

topsoil appeared damp. After 14 days, drought condition trays were no longer watered. After a 229 

further 10 days, rosette samples were harvested and flash frozen. Samples were homogenised 230 

by adding two chilled 3 mm glass beads (Lenz) to each sample before loading into an MM300 231 

Tissue Lyser (Retsch) and shaking for 1 minute at 30Hz. 400 μl of extraction buffer, (10% MeOH 232 

and 1% acetic acid (v/v), Fisher Scientific OptimaTMLC/MS grade components, containing the 233 

labelled ABA standard Abscisic acid-d6 (Chiron)) was added to 10 mg of tissue. Samples were 234 

placed on ice for 30 minutes then centrifuged at 10,000 x g  at 4◦C for 10 minutes. The supernatant 235 
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was removed and placed in a new microfuge tube. The pellet was extracted again using 400 μl 236 

of extraction buffer without labelled standard. After centrifugation, the supernatant was removed 237 

and combined with the previous supernatant which resulted in a total volume of 800 μl. Extraction 238 

blanks (no plant tissue) and solvent blanks (no plant tissue or labelled standard) were also created 239 

as controls. 15 μl of each sample was then loaded onto a Xevo TQ-S UPLC-MS/MS system 240 

(Waters) and analysed by HPLC-electrospray ionisation/MS-MS. Chromatographic separation 241 

was performed using a C18 100 mm x 2.0 mm column (Acquity), at 35◦C. Machine optimisation, 242 

collision energies, solvent gradients and other operation details were performed as described in 243 

Forcat et al. (2008). Samples were analysed in technical triplicate with a solvent blank run 244 

between each sample to prevent carry-over of compounds. Extraction blanks were run 245 

systematically throughout the sample list to ensure there was no contamination between samples. 246 

Data was acquired and analysed using the MassLynx suite (Waters).  247 

 248 

Results and discussion 249 

Genome-wide identification of LHY binding regions 250 

We used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to 251 

identify genome-wide binding regions for the LHY transcription factor. ChIP was carried out using 252 

a polyclonal antibody to the full-length LHY protein, which gave highly significant enrichment for 253 

the known binding target TOC1 from wild-type extracts, as compared to lhy-21 mutant extracts 254 

(Fig. 1a). Samples for sequencing were harvested from plants that were grown under 12L 12D 255 

cycles for 10 days then transferred to constant light. Tissue was collected 26 hours after the last 256 

dark to light transition, corresponding to the peak of LHY protein accumulation (Kim et al., 2003; 257 

Adams et al., 2015) and maximum ChIP enrichment for TOC1, ELF4 and PRR7 promoter 258 

sequences (Fig. 1b, arrow). Two experiments were carried out. The first (ChIP-seq 1) comparing 259 

wild-type (Col) ChIP samples to wild-type input DNA. The second (ChIP-seq 2) comparing wild-260 

type and knock-out mutant (lhy-21) samples (Fig. 1c). ChIP-seq 2 effectively controlled for 261 

potential cross-reactivity of the antibody with LHY-related proteins, but reduced the sensitivity of 262 

detection for a number of known LHY targets, due to residual peaks identified at these locations 263 

(as illustrated for ELF3 in Fig. 1c, and for other clock-related loci in Fig. S1). For example, FKF1, 264 

CBF1 and TOC1 sequences were ranked first, second and third in ChIP-seq 1 based on their q-265 

values for over-representation relative to the control sample, but were ranked 1823, 2998 and 266 

4128 in ChIP-seq 2. Nevertheless, we reasoned that sequences that were identified in both 267 

experiments would identify high confidence binding targets for LHY.  268 
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A summary of the read alignment and peak detection process is provided in Table S1, and 269 

a full list of LHY binding sites identified in both experiments based on false-discovery rate-270 

corrected p vales (q-values) less that 0.01 is provided in Table S2. In order to identify putative 271 

regulatory targets for LHY, each of these binding sites was annotated according to the closest 272 

downstream gene. Alternatively, when located in a genic region, it was allocated to that gene. 273 

Sets of high confidence LHY binding targets were then defined based on conservative q-value 274 

thresholds of 10-10 for ChIP-seq 1, and 10-20 for ChIP-seq 2, corresponding to strong peaks of 275 

read enrichment. 722 loci were identified in both sets and are thereafter designated as “confirmed 276 

targets” (Fig. 1d; Table S2). This included many established LHY binding targets, such as the 277 

core clock components ELF3, ELF4, PRR5, PRR7, PRR9 and LHY itself (Adams et al., 2015). 278 

However, these criteria excluded the known binding targets TOC1, LUX or CCA1, because TOC1 279 

and CCA1 were associated with relatively high q values in ChIP-seq 2 (10-15 and 10-14, 280 

respectively), and because LUX was not identified as a binding target in ChIP-seq 1 (Table 1). 281 

This suggests that many of the genes identified in either in ChIP-seq 1 or in ChIP-seq 2 with less 282 

significant q-values are also binding targets for LHY.  283 

 284 

Characterisation of LHY binding sites 285 

As expected for a transcription factor, 72% of confirmed LHY binding regions were located within 286 

500 bp of the transcriptional start site (TSS) of a gene (Fig. 2a). Of those, 90% were located 287 

upstream of the TSS and 10% in the 5’-untranslated region of the gene.  288 

In order to investigate the circadian expression pattern of LHY binding targets, data were 289 

retrieved from the Diurnal database (Mockler et al., 2007) based on experiments carried out in 290 

constant light conditions (Edwards et al., 2006). Consistent with the rhythmic binding of the LHY 291 

protein to its target loci (Fig. 1b), 53 % of high confidence LHY binding targets were found to 292 

exhibit rhythmic expression patterns in constant light, as compared to 23% genome-wide (Table 293 

S3). Genes that peaked in the evening (from 8 till 14 h after subjective dawn) were over-294 

represented, and genes expressed at other times of the day were under-represented relative to 295 

the genome-wide set of rhythmically expressed genes (Fig. 2b, Table S4). As previously 296 

described for CCA1 (Nagel et al., 2015), a large fraction (46%) of confirmed LHY binding targets 297 

did not exhibit rhythmic expression in constant light, suggesting that the clock may also act via 298 

LHY to regulate non-rhythmic processes.  299 

A de novo search for short sequence motifs that were significantly over-represented within 300 

LHY-binding regions identified the Evening Element (EE: AAATATCT or AGATATTT) as the most 301 

highly represented motif (Fig. 1c). The EE, previously shown to bind LHY and the related 302 
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transcription factor CCA1 in gel-shift assays, was only found in 383 out of 1000 top-ranking 303 

binding regions examined, suggesting that LHY may also be recruited to target promoters through 304 

interactions with other transcription factors, as previously demonstrated at the LHY and CCA1 305 

promoters (Adams et al., 2015). Additional motifs within LHY binding regions included the 306 

sequences AAAG, which may bind the cycling DOF factors CDF1, 2 and 3 to modulate the timing 307 

of rhythmic gene expression (Imaizumi et al., 2005); TGGGCC which is a binding site for TCP 308 

transcription factors and may also mediate the effect of rhythmic transcription factors such as 309 

TCP21/CHE (Pruneda-Paz et al., 2009); and C/GACGTGG, which functions as an Abscisic Acid 310 

Regulated Element (ABRE) and may act to regulate their level of expression in response to ABA 311 

(Hattori et al., 2002). 312 

 313 

Comparison with CCA1 binding targets 314 

LHY and CCA1 are almost identical within their DNA-binding domains and are thought to have 315 

largely redundant roles as part of the circadian oscillator (Carré & Kim, 2002; Mizoguchi et al., 316 

2002). Comparisons between the set of 722 confirmed LHY  targets and the 1306 and 439 high 317 

confidence CCA1 binding loci identified by Nagel et al. (2015) and Kamioka et al. (2016) identified 318 

400 and 193 genes in common, respectively (Fig. S2a). 150 genes were common to all 3 datasets. 319 

This confirmed that LHY and CCA1 have overlapping sets of binding targets, but also suggested 320 

potential differences in specificity. Consistent with this hypothesis, analyses of LHY- and CCA1-321 

specific target promoters identified different over-represented motifs (Fig. S2b). While the EE 322 

motif was highly over-represented in both set of promoters, the ABRE motif was only over-323 

represented in LHY-specific target promoters. 177 matches to the ABRE were identified based 324 

on p<0.0001 within a test set of 315 LHY-specific targets, but only 68 were identified within the 325 

same number of CCA1-specific promoters (Fig. S2d). The most closely related over-represented 326 

motif within CCA1-specific targets was A(C/T)ACGT. Comparison with known transcription factor 327 

binding motifs identified matches to two NAC transcription factor binding sites, ATAF1 and NAC55 328 

(Franco-Zorrilla et al., 2014; O'Malley et al., 2016). These results suggest that LHY may have a 329 

specific role to regulate ABA responses through interaction with ABA-responsive transcription 330 

factors. 331 

 332 

Confirmation of regulatory interactions 333 

In order to test whether the binding interactions identified were good evidence for regulatory 334 

interactions, we analysed changes in expression levels of 98 loci, 2 h after induction of an ethanol-335 

responsive LHY transgene (ALCpro::LHY) (Knowles et al., 2008). Transcripts to be monitored 336 
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were selected to include LHY targets with a wide range of ChIP-seq q values (10-260 to 10-4 in 337 

ChIP-seq 1; 10-125 to 10-6 in ChIP-seq 2) and rhythmic expression patterns (arrhythmic genes, and 338 

rhythmic genes with phases ranging from 0-23), as well as control, non-target loci. As we expected 339 

that responses to LHY-induction might be time of day-dependent, the experiment was repeated 340 

at 4-hour intervals over the duration of the circadian cycle. Results are summarized in Table 2 341 

and the full dataset is available as Table S5. 72% of confirmed regulatory targets (50 out 69) were 342 

repressed in response to ALCpro::LHY induction, showing that LHY functions primarily as an 343 

inhibitor of transcription. 15 out of 18 genes that were only identified in ChIP-seq 2 were also 344 

repressed, suggesting that these may also be functional regulatory targets. For many genes, the 345 

effect of LHY induction was only observed at specific times of the day, indicating that their 346 

regulation by LHY was gated.  347 

 348 

Functional characterisation of LHY binding targets 349 

In order to get clues to the range of processes that may regulated by LHY, a gene ontology (GO)-350 

term over-representation analysis was carried out based on confirmed binding targets (Table 3 351 

and Table S6). This revealed binding of LHY to genes associated with circadian rhythms and 352 

photoperiodic responses, listed in Table 1. Genomic targets also included components of light 353 

response pathways, such as the blue light photoreceptors CRYPTOCHROME 2 and 354 

PHOTOTROPIN and the light-responsive transcription factor PHYTOCHROME-INTERACTING 4 355 

(PIF4) (Ahmad et al., 1998; Christie et al., 1999; Huq & Quail, 2002). In addition, LHY was found 356 

upstream of many genes associated with responses to biotic and abiotic stress. This included the 357 

transcriptional regulators COLD-BINDING FACTOR (CBF) 1,2, 3, 4 and COLD-REGULATED 358 

(COR) 27, which play key roles in responses to low temperatures (Gilmour et al., 1998; Mikkelsen 359 

& Thomashow, 2009), and DEHYDRATION RESPONSIVE ELEMENT BINDING (DREB) 2A, B 360 

and C which mediate responses to drought and salinity (Liu et al., 1998), and JAZ proteins, which 361 

function as negative regulators of jasmonic acid responses and regulate responses to drought 362 

and extremes of temperatures (Chini et al., 2007; Zhao et al., 2016).  363 

Genes involved in ABA responses were highly over-represented in the dataset, suggesting 364 

another mechanism by which LHY might regulate environmental stress responses (Fig. 3, Table 365 

S7). Confirmed LHY targets included two regulatory subunits of ABA receptors, PYL7/RCAR2 366 

and PYL8/RCAR3 (Ma, Y. et al., 2009; Park et al., 2009), five protein phosphatase co-receptors, 367 

PP2C/HAI2, PP2CG1, PP2CA, ABI1 and ABI2 (Park et al., 2009; Antoni et al., 2012), the 368 

downstream protein kinases, SNRK2.2 and SNRK2.3 (Boudsocq et al., 2004), the ABA-369 

responsive transcription factors ABI3, ABI5 and ATHB6 (Giraudat et al., 1992; Himmelbach et al., 370 
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2002; Lopez-Molina et al., 2002) and the negative regulator of ABI5 function, AFP3 (Lopez-Molina 371 

et al., 2003). Further elements of ABA signaling pathways and several enzymes involved in the 372 

ABA biosynthesis pathways were identified in only one ChIP-seq experiment. Several of these 373 

genomic targets were confirmed in ChIP-PCR experiments and in-vitro genomic DNA pull-down 374 

experiments (Fig. S3 and S4), including the protein phosphatases ABI1 and ABI2, which act to 375 

repress the pathway in the absence of ABA (Leung et al.; Gosti et al.).  We therefore investigated 376 

the effect of LHY on expression of these binding targets, as well as on ABA accumulation and 377 

downstream responses. 378 

 379 
LHY inhibits ABA biosynthesis  380 

Expression of NCED 3 was strongly repressed in LHY-overexpressing plants (LHY-ox, Fig. 4a), 381 

suggesting that LHY may negatively regulate ABA accumulation. This was confirmed by testing 382 

the effect of overexpression and loss of function of LHY on ABA levels under drought.  In wild-383 

type plants, ABA accumulation was rhythmic under drought conditions, and peaked in the evening 384 

approximately 12 hours after subjective dawn (Fig. 4b). The phase of this rhythm was advanced 385 

in the loss of function mutant lhy-11, as expected for an oscillation that is under the circadian 386 

control in Arabidopsis (Mizoguchi et al., 2002). On the other hand, ABA levels were markedly 387 

reduced and arrhythmic in LHY-ox plants. These results suggest a model for the circadian control 388 

of ABA accumulation under drought conditions, in which inhibition of NCED gene expression by 389 

LHY results in reduced accumulation of ABA in the morning. 390 

 391 

Mis-expression of LHY results in altered responses to exogenous ABA 392 

The expression of multiple components of ABA signal transduction pathways was altered 393 

following AlcPro::LHY induction (Fig. 5). Expression of the negative regulators of ABA responses, 394 

ABI1 and ABI2 was reduced relative to control plants within two hours of ethanol treatment, 395 

suggesting that LHY might act to promote ABA responses by relieving the inhibition of the of ABA 396 

signaling pathway. However, this hypothesis was contradicted by the repression of a number of 397 

positive regulators of ABA responses, including the SNRK2.2 kinase and the ABA responsive 398 

transcription factors ABF1, ATAIB, ATHB5 and ATHB6, and the induction of a negative regulator, 399 

AFP3.  400 

 To investigate the net effect of LHY on ABA-mediated abiotic stress responses, we 401 

therefore tested the effect of LHY overexpression or loss of function on the well-characterised  402 

ABA responsive genes, DESSICATION RESPONSIVE PROTEIN 29A (RD29A) and LOW-403 

TEMPERATURE INDUCED -30 (LTI30)  (Yamaguchi-Shinozaki & Shinozaki, 1994; Shi et al., 404 
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2015). Expression of both genes was induced 4 h after spraying plants with 10 μM ABA (Fig. 6a). 405 

This induction was suppressed in lhy-11 plants and enhanced in the subjective night in LHY-ox 406 

plants, indicating that LHY acts to promote these ABA responses. Responses to osmotic stress, 407 

which induce the production of endogenous ABA, were consistent with these findings. LHY-ox 408 

plants exhibited elevated expression of ABA-responsive genes RD29A, LTI30, LATE 409 

EMBRYOGENESIS ABUNDANT (LEA) and ABA-RESPONSIVE PROTEIN (ABR) in the 410 

presence of 100 mM sorbitol (Fig. S5), suggesting that LHY also acts under physiologically-411 

relevant conditions to potentiate this ABA-dependent stress response. As none of these genes 412 

was identified as a genomic target for LHY in ChIP-seq experiments, and RD29A expression was 413 

slightly inhibited, rather than induced, in response to induction of the ALCpro::LHY transgene (Fig. 414 

S6), sensitization of these genes to exogenous ABA and to sorbitol is likely to result from 415 

enhanced signaling through the core ABA response pathway. LHY inhibits the expression of the 416 

ABI1 and ABI2 protein phosphatases, which function as regulatory subunits of the ABA receptors 417 

(PYR/PYLs) and repress downstream responses in the absence of ABA. We propose that 418 

repression of ABI1 and ABI2 transcription by LHY ensures high amplitude induction of RD29A 419 

and LTI30 transcription, by lowering the threshold for activation of the signaling pathway by ABA.  420 

 We also tested the effect of exogenous ABA on germination and seedling growth. Wild-421 

type seeds plated on media containing ABA exhibited delayed germination. While LHY 422 

overexpression or loss of function did not affect germination under control conditions, in the 423 

presence of ABA the germination delay was less pronounced with LHY-ox seed, whereas lhy-11 424 

seed completely failed to germinate (Fig. 6b). Hypersensitivity to osmotic and salt-inhibition of 425 

germination was previously reported for the lhy-12 and lhy/cca1 double mutant (Kant et al., 2008). 426 

Consistent with this observation, we found that germination of the lhy-11 mutant was impaired 427 

under osmotic stress, whereas LHY-overexpression resulted in improved seed germination (Fig. 428 

S7). Altogether, these results suggest that LHY may act to mitigate the inhibitory effect of ABA on 429 

seed germination. 430 

 The observation that LHY potentiates the effect of ABA on RD29A and LTI30 expression 431 

but antagonizes its effect on germination may reflect the different stages of development at which 432 

these experiments were carried out. LHY may affect ABA responses differently in seeds as 433 

compared to 7-day old seedlings. However, LHY-overexpression also attenuated the inhibitory 434 

effect of ABA on growth in 10-day old plants (Fig. 6c).  Similar results were obtained when plants 435 

were exposed to salt or to drought conditions, which induce the production of endogenous ABA 436 

(Fig. S8 and S9). While the smaller surface area of LHY-ox rosettes may contribute to their 437 
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superior performance under conditions due to reduced water loss, this does not explain their  438 

ability to maintain growth on agar plates containing ABA.   439 

 In conclusion, these data suggest that the LHY transcription factor plays a complex role in 440 

the modulation of ABA biosynthesis and ABA responses. LHY drives the rhythmic accumulation 441 

of ABA, ensuring peak accumulation of the phytohormone at dusk when water deficit is most 442 

severe in leaves (Caldeira et al., 2014). This may have an anticipatory function, enabling plants 443 

to activate drought-tolerance processes at the time when they are predictably needed. LHY also 444 

acts to potentiate responses to ABA in the morning, which may ensure high amplitude responses 445 

to unexpectedly hot or dry conditions in the day-time. LHY also regulates expression of ABA-446 

responsive genes in a direct manner, and this may explain the suppression of specific ABA 447 

responses such as germination and growth inhibition. This work reveals an intricate coupling 448 

between the circadian clock and ABA pathways, which is likely to make an important contribution 449 

to plant performance under drought and osmotic stress conditions. 450 
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 774 

Fig. legends 775 

Fig. 1. Genome-wide identification of LHY binding sites in Arabidopsis thaliana. (a). Quality 776 

assessment of ChIP samples used for sequencing in ChIP-seq 2. Enrichment for a known target 777 

sequence of LHY (TOC1) was determined by quantitative PCR and compared to a control locus 778 

(ACTIN). Data are means and standard deviations at least from 5 independent experimental 779 

replicates for wild-type (Ws) and lhy-21 mutant samples, respectively. (b) ChIP-PCR analysis of 780 

wild-type samples harvested at different times of the day. Plants were grown under 12L12D cycles 781 

then transferred to constant light at time zero. White and hatched bars above the chart indicate 782 

subjective days and nights, respectively. Enrichment for TOC1, ELF4, PRR7 promoter and ACTIN 783 

3’UTR sequences was determined relative to input DNA samples (c) Comparison of results from 784 

both ChIP-seq experiments at the ELF3 locus (ATG29530). Note that the q-values reported here 785 

are distinct from those reported in Table 1 and Table S2, because they indicate local 786 

overrepresentation rather than overrepresentation over the binding region as a whole. Reads 787 

mapped to the forward strand are shown in red, those to the reverse strand in blue. ChIP-seq 2 788 

results for other clock-related loci are shown in Fig. S1. (d) Comparison of binding targets 789 

identified in ChIP-seq 1 and ChIP-seq 2, based on q-value thresholds of 10-10 and 10-20, 790 

respectively.  791 

 792 
Fig. 2: Characterisation of LHY binding sites in Arabidopsis. (a) Position of 1000 highest 793 

ranking peaks in ChIP-seq 2 relative to transcriptional start sites. (b)  Histogram showing the 794 

proportion of rhythmic LHY binding targets that peak at different phases of the circadian cycle as 795 

compared to the genome-wide set of rhythmically expressed genes. Data for confirmed LHY 796 

binding targets were retrieved from the Diurnal database (Mockler et al., 2007), using the constant 797 

light, LL23 dataset (Edwards et al., 2006) and a correlation coefficient cut-off of 0.8. White and 798 

hatched bars above the chart indicate subjective days and nights, respectively, and * and & 799 

indicate p values for over- and under-representation, respectively relative to the genome-wide set 800 

of rhythmic genes, determined using a hypergeometric test (* and &,  p<0.05; ** and &&,  p<0.01; 801 

*** and &&& p<0.001). (c) Motifs identified from the 1000 highest ranking peaks in ChIP-seq 2. 802 

Sequences are shown as positional weight matrices (PWMs) where the height of each letter 803 

represents the probability of having the corresponding base at that position. 804 

 805 
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Fig. 3. Binding of LHY to components of ABA biosynthesis and signalling pathways. The 806 

diagram illustrates the mechanism underlying transcriptional responses to ABA in Arabidopsis. 807 

Pointed and blunt arrows indicate activatory and inhibitory interactions, respectively. Expression 808 

of ABA-responsive genes is driven by a number of ABA-responsive transcription factors, which 809 

are activated by phosphorylation by SNRK2 kinases. In the absence of ABA the pathway is 810 

repressed through the action of protein phosphatases (PP2As family) which inactivate SNRK2s 811 

by dephosphorylation. ABA binding to its receptors (the PYL/RCAR family) results in inhibition of 812 

PP2As, and activation of SNRK kinases and of downstream transcription factors. The genes listed 813 

at each step of the pathway indicate components that were identified as binding targets for LHY. 814 

Normal fonts indicate binding targets identified in a single ChIP-seq experiment and bold fonts 815 

indicate binding confirmed either by ChIP-seq or by ChIP-PCR. Corresponding data are provided 816 

in Table S7, Figs. S3 and S4 817 

 818 
Fig.  4. LHY regulates ABA accumulation. (a) NCED3 transcript levels in wild-type, lhy-11 and 819 

LHY-ox seedlings (grey, white and black bars, respectively). Arabidopsis plants were grown for 7 820 

days under 12L12D cycles on MS-agar plates before transfer to constant light. Tissue was 821 

harvested either 3 or 15 hours after dawn. Transcript levels were determined by quantitative RT-822 

PCR and expressed relative to ACTIN. (b) Overexpression of LHY results in reduced ABA levels 823 

under drought conditions. lhy-11, LHY-ox and wild-type seedlings were grown in a randomised 824 

configuration on soil and entrained to 16L8D cycles. Plants received water every third day for the 825 

first 14 days, then watering was withheld entirely from the drought set for the next 10 days. 826 

Rosette samples were then harvested at 3-hour intervals across a 24-hour period for ABA 827 

quantification. Data represents the mean from technical triplicates for a pooled sample of 2 828 

biological replicates. White and black bars above the chart indicate days and nights, respectively. 829 

Error bars indicate standard errors. * and + indicate p-values from t-tests comparing LHY-ox and 830 

lhy-11 to the wild type, respectively (* and +,  p<0.05; **,  p<0.01; ***, p<0.001). 831 

 832 

Fig. 5. Induction of LHY expression from the ALCpro::LHY transgene results in altered 833 

expression of multiple components of ABA signaling pathways.  Wild-type Arabidopsis 834 

plants carrying the ALCpro::LHY transgene were grown under 12L12D light-dark cycles then 835 

transferred to constant light at the start of the experiment. Expression of ALCpro::LHY  was 836 

induced using 6% ethanol (v/v). Different sets of plants were treated at 4-hour intervals over the 837 

duration of one circadian cycle, and tissue was harvested 2 hours later. mRNA levels were 838 

determined either using Nanostring technology and normalized relative to UBC12 (a,d,j) or by 839 
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quantitative PCR and normalized to ACTIN (b,c,e,f,g,h). Times indicate when the tissue was 840 

harvested.  Data from ALCpro::LHY plants (filled bars ) were compared to data from wild-type 841 

plants (white bars).  Data shown in panels a, d, j are means and standard deviations from two 842 

independent biological replicates. Data shown in other panels are mean and standard errors of 843 

technical triplicates for a single experiment. * indicates p <0.05, ** p<0.01 and *** p<0.001 as 844 

determined by t-tests. 845 

 846 

Fig. 6. Mis-expression of LHY results in altered responses to ABA.  (a) Induction of RD29A 847 

and LTI30 expression by ABA in wild-type, lhy-11 and LHY-ox plants (grey, white and black bars, 848 

respectively). Arabidopsis plants were grown under light-dark cycles for 7 days then transferred 849 

to constant light at time zero. At each time point a set of plants was sprayed with 25 μM ABA or 850 

vehicle (methanol) and tissue was harvested after 3 hours for RNA extraction. Times indicate 851 

when the tissue was harvested. Transcript levels were determined by quantitative PCR and were 852 

calculated relative to ACTIN. Data represents the mean of technical triplicates for a single 853 

experiment, with error bars showing standard errors. Results were consistent across 3 854 

independent experiments. (b) Germination of wild-type, lhy-11 and LHY-ox seeds  (grey, white 855 

and black symbols, respectively) in the presence of 2 μM ABA. Data represents the mean 856 

percentage of germination from 3 independent progenies from individual plants and error bars 857 

indicate standard deviations. * and + indicate p-values from t-tests comparing LHY-ox and lhy-11 858 

to the wild type, respectively (* and +,  p<0.05; **and ++,  p<0.01; ***and +++, p<0.001). (c) Effect 859 

of exogenous ABA on seedling growth. Seedlings were grown under 12L 12D cycles on MS-agar 860 

plants. At the time indicated by the vertical dashed line, plants were transferred to fresh plates 861 

with or without ABA (10 μM). Aerial photographs were taken daily for rosette size measurements. 862 

Data represents the means from 192 plants across 2 independent experiments, and error bars 863 

indicate standard deviations. Asterisks indicate p-values from t-tests comparing the experimental 864 

treatment to the control condition at each time point (* p<0.05; ** p<0.01; *** p<0.001).  865 



 
Table 1. Binding of LHY to the promoters of circadian clock-associated genes in Arabidopsis. 

    -log10(q-values)* 

Gene name Gene ID 
ChIP-seq 
1 

ChIP-seq 
2 

LHY AT1G01060 29 56 

CCA1 AT2G46830 61 14 

PRR9 AT2G46790 93 81 

PRR7 AT5G02810 99 35 

PRR5 AT5G24470 78 64 

PRR1/TOC1 AT5G61380 182 15 

LUX/PCL1 AT3G46640 N/A 67 

BOA/NOX AT5G59570 127 85 

ELF3 AT2G25930 63 91 

ELF4 AT2G40080 107 31 

GI AT1G22770 162 47 

RVE6 AT5G52660 N/A 30 

LNK1 AT5G64170 N/A 13 

LNK2 AT3G54500 27 24 

CHE/TCP21 AT5G08330 77 135 

LWD2 AT3G26640 N/A 41 

FKF1 AT1G68050 260 38 

CDF1 AT5G62430 22 102 

CDF2 AT5G39660 N/A 128 

CKB4 AT5G52660 N/A 30 

JMJD5 AT5G52660 N/A 30 

*when multiple peaks were present upstream of a gene,  
q values given correspond to the most significant. 
 
 
Table 2. Regulatory function of LHY binding interactions in Arabidopsis. The functionality of LHY 
binding interactions was tested by assaying changes in expression of LHY binding targets upon 
induction of the ALCpro::LHY transgene. “Unconfirmed targets” indicates genes that were 
identified in only one of the two ChIP-seq experiments. “Induced” or “repressed” indicate 
increases or decreases in expression levels detected at one or more time points.  “Other” indicates 
increased expression at some time points and decreased at others.  
 

Numbers no effect negative positive other total 

confirmed LHY targets 8 50 6 5 69 

unconfirmed LHY targets 3 15 0 1 19 

non LHY-targets 2 2 5 1 10 
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Table 3. GO-term over-representation analysis of high confidence LHY binding targets in 
Arabidopsis. 
 

 
Number 
of 
genes 

Observed 
Frequency 

Number 
of genes 

Expected 
Frequency 

p-value 

 

Responses to light 
        

response to light stimulus 48 8.20% 450 2.30% 7.15E-11 

response to red light 10 1.70% 54 0.30% 0.000385 

response to UV 9 1.50% 66 0.30% 0.00533 

response to blue light 8 1.40% 52 0.30% 0.00545 

response to far red light 7 1.20% 42 0.20% 0.00798 

circadian rhythm 13 2.20% 48 0.20% 1.01E-06 
Biotic and abiotic stress 
responses       

response to cold 34 5.80% 264 1.30% 1.21E-09 

heat acclimation 5 0.90% 14 0.10% 0.00328 

response to water deprivation 25 4.30% 196 1% 5.52E-07 

response to osmotic stress 30 5.10% 413 2.10% 0.000425 

response to salt stress 28 4.80% 387 2% 0.000804 

response to wounding 14 2.40% 137 0.70% 0.00264 

response to biotic stimulus 36 6.20% 582 3% 0.00134 

response to fungus 19 3.20% 159 0.80% 3.32E-05 

Hormone responses      

response to abscisic acid stimulus 26 4.40% 317 1.60% 0.000241 
response to jasmonic acid 
stimulus 17 2.90% 152 0.80% 0.000241 

response to gibberellin stimulus 14 2.40% 112 0.60% 0.000447 

response to ethylene stimulus 15 2.60% 130 0.70% 0.000522 

response to auxin stimulus 21 3.60% 250 1.30% 0.00104 
regulation of post-embryonic 
development 15 2.60% 174 0.90% 0.00682 

 
 
  



 27 

Supplementary information 

Fig. S1. Graphical representation of LHY ChIP-Seq data at the promoters of clock-associated 

genes. 

Fig. S2. Comparison between LHY and CCA1 binding targets. 

Fig. S3. ChIP-PCR confirmation of LHY binding to the promoters of the ABI1, ABI2, ABI5, AFP3, 

ATHB6 and SnRK2.2 genes . 

Fig. S4. In vitro confirmation of LHY binding to the ABI1, ABF3 and SNRK2.2 promoters. 

 Fig. S5. Effect of LHY overexpression and loss of function on expression of ABA-responsive 

genes under osmotic stress conditions. 

Fig. S6. Effect of ethanol-induction of the ALCpro::LHY transgene on expression of RD29A. 

Fig. S7. Effect of overexpression and loss of function of LHY on seed germination under osmotic 

stress. 

Fig. S8. Effect of LHY overexpression and loss of function on plant growth under severe drought. 

Fig. S9. Effect of LHY overexpression and loss of function on plant growth under mild drought 

and salinity.  

Table S1. Summary of the ChIP-seq alignment process.  

Table S2.  LHY binding targets identified by ChIP-seq. 

Table S3. Rhythmicity of high confidence LHY binding targets in constant light.   

Table S4. Phase distribution of confirmed LHY binding targets. 

Table S5. Gene expression changes in response to ethanol induction of the ALCpro::LHY 

transgene.  

Table S6.  GO-term analysis of LHY binding targets. 

Table S7. Binding of LHY and CCA1 to elements of ABA biosynthesis and signalling pathways. 
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