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CONCENTRATION OF THE INTRINSIC VOLUMES OF A CONVEX BODY

MARTIN LOTZ, MICHAEL B. MCCOY, IVAN NOURDIN, GIOVANNI PECCATI, AND JOEL A. TROPP

Abstract. The intrinsic volumes are measures of the content of a convex body. This paper applies
probabilistic and information-theoretic methods to study the sequence of intrinsic volumes. The main
result states that the intrinsic volume sequence concentrates sharply around a specific index, called the
central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an
appropriately scaled cube has the intrinsic volume sequence with maximum entropy.

1. Introduction and Main Results

Intrinsic volumes are the fundamental measures of content for a convex body. Some of the most
celebrated results in convex geometry describe the properties of the intrinsic volumes and their
interrelationships. In this paper, we identify several new properties of the sequence of intrinsic volumes
by exploiting recent results from information theory and geometric functional analysis. In particular,
we establish that the mass of the intrinsic volume sequence concentrates sharply around a specific
index, which we call the central intrinsic volume. We also demonstrate that a scaled cube has the
maximum-entropy distribution of intrinsic volumes among all convex bodies with a fixed central
intrinsic volume.

1.1. Convex Bodies and Volume. For each natural number m, the Euclidean space Rm is equipped
with the `2 norm ‖·‖, the associated inner product, and the canonical orthonormal basis. The origin of
Rm is written as 0m.

Throughout the paper, n denotes a fixed natural number. A convex body in Rn is a compact and
convex subset, possibly empty. Throughout this paper, K will denote a nonempty convex body in Rn.
The dimension of the convex body, dimK, is the dimension of the affine hull of K; the dimension takes
values in the range {0, 1, 2, . . . , n}. When K has dimension j, we define the j-dimensional volume
Volj(K) to be the Lebesgue measure of K, computed relative to its affine hull. If K is 0-dimensional
(i.e., a single point), then Vol0(K) = 1.

For sets C ⊂ Rn and D ⊂ Rm, we define the orthogonal direct product

C× D := {(x,y) ∈ Rn+m : x ∈ C and y ∈ D}.

To be precise, the concatenation (x,y) ∈ Rn+m places x ∈ Rn in the first n coordinates and y ∈ Rm in
the remaining (n−m) coordinates. In particular, K× {0m} is the natural embedding of K into Rn+m.

Several convex bodies merit special notation. The unit-volume cube is the set Qn := [0, 1]n ⊂ Rn.
We write Bn := {x ∈ Rn : ‖x‖ ≤ 1} for the Euclidean unit ball. The volume κn and the surface area
ωn of the Euclidean ball are given by the formulas

κn := Voln(Bn) =
πn/2

Γ(1 + n/2)
and ωn := nκn =

2πn/2

Γ(n/2)
. (1.1)

As usual, Γ denotes the gamma function.
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1.2. The Intrinsic Volumes. In this section, we introduce the intrinsic volumes, their properties, and
connections to other geometric functionals. A good reference for this material is [Sch14]. Intrinsic
volumes are basic tools in stochastic and integral geometry [SW08], and they appear in the study of
random fields [AT07].

We begin with a geometrically intuitive definition.

Definition 1.1 (Intrinsic Volumes). For each index j = 0, 1, 2, . . . , n, let Pj ∈ Rn×n be the orthogonal
projector onto a fixed j-dimensional subspace of Rn. Draw a rotation matrix Q ∈ Rn×n uniformly at
random (from the Haar measure on the compact, homogeneous group of n× n orthogonal matrices
with determinant one). The intrinsic volumes of the nonempty convex body K ⊂ Rn are the quantities

Vj(K) :=

(
n

j

)
κn

κjκn−j
EQ

[
Volj(PjQK)

]
. (1.2)

We write E for expectation and EX for expectation with respect to a specific random variable X. The
intrinsic volumes of the empty set are identically zero: Vj(∅) = 0 for each index j.

Up to scaling, the jth intrinsic volume is the average volume of a projection of the convex body onto
a j-dimensional subspace, chosen uniformly at random. Following Federer [Fed59], we have chosen
the normalization in (1.2) to remove the dependence on the dimension in which the convex body is
embedded. McMullen [McM75] introduced the term “intrinsic volumes”. In her work, Chevet [Che76]
called Vj the j-ième épaisseur or the “jth thickness”.

Example 1.2 (The Euclidean Ball). We can easily calculate the intrinsic volumes of the Euclidean unit
ball because each projection is simply a Euclidean unit ball of lower dimension. Thus,

Vj(Bn) =

(
n

j

)
κn
κn−j

for j = 0, 1, 2, . . . , n.

Example 1.3 (The Cube). We can also determine the intrinsic volumes of a cube:

Vj(Qn) =

(
n

j

)
for j = 0, 1, 2, . . . , n.

See Section 5 for the details of the calculation. A classic reference is [San04, pp. 224–227].

1.2.1. Geometric Functionals. The intrinsic volumes are closely related to familiar geometric functionals.
The intrinsic volume V0 is called the Euler characteristic; it takes the value zero for the empty set
and the value one for each nonempty convex body. The intrinsic volume V1 is proportional to the
mean width, scaled so that V1([0, 1]× {0n−1}) = 1. Meanwhile, Vn−1 is half the surface area, and Vn
coincides with the ordinary volume measure, Voln.

1.2.2. Properties. The intrinsic volumes satisfy many important properties. Let C,K ⊂ Rn be nonempty
convex bodies. For each index j = 0, 1, 2, . . . , n, the intrinsic volume Vj is...

(1) Nonnegative: Vj(K) ≥ 0.
(2) Monotone: C ⊂ K implies Vj(C) ≤ Vj(K).
(3) Homogeneous: Vj(λK) = λjVj(K) for each λ ≥ 0.
(4) Invariant: Vj(TK) = Vj(K) for each proper rigid motion T . That is, T acts by rotation and

translation.
(5) Intrinsic: Vj(K) = Vj(K× {0m}) for each natural number m.
(6) A Valuation: Vj(∅) = 0. If C ∪ K is also a convex body, then

Vj(C ∩ K) + Vj(C ∪ K) = Vj(C) + Vj(K).

(7) Continuous: If Km → K in the Hausdorff metric, then Vj(Km)→ Vj(K).
With sufficient energy, one may derive all of these facts directly from Definition 1.1. See the books [KR97,
San04, Gru07, SW08, Sch14] for further information about intrinsic volumes and related matters.
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1.2.3. Hadwiger’s Characterization Theorems. Hadwiger [Had51, Had52, Had57] proved several wonder-
ful theorems that characterize the intrinsic volumes. To state these results, we need a short definition.
A valuation F on Rn is simple if F (K) = 0 whenever dimK < n.

Fact 1.4 (Uniqueness of Volume). Suppose that F is a simple, invariant, continuous valuation on convex
bodies in Rn. Then F is a scalar multiple of the intrinsic volume Vn.

Fact 1.5 (The Basis of Intrinsic Volumes). Suppose that F is an invariant, continuous valuation on convex
bodies in Rn. Then F is a linear combination of the intrinsic volumes V0, V1, V2, . . . , Vn.

Together, these theorems demonstrate the fundamental importance of intrinsic volumes in convex
geometry. They also construct a bridge to the field of integral geometry, which provides explicit
formulas for geometric functionals defined by integrating over geometric groups (e.g., the family of
proper rigid motions).

1.2.4. Quermassintegrals. With a different normalization, the mean projection volume appearing in (1.2)
is also known as a quermassintegral. The relationship between the quermassintegrals and the intrinsic
volumes is (

n

j

)
W

(n)
j (K) := κjVn−j(K) for j = 0, 1, 2, . . . , n.

The notation reflects the fact that the quermassintegralW (n)
j depends on the ambient dimension n,

while the intrinsic volume does not.

1.3. The Intrinsic Volume Random Variable. In view of Example 1.3, we see that the intrinsic volume
sequence of the cube Qn is sharply peaked (around index n/2). Example 1.2 shows that intrinsic
volumes of the Euclidean ball Bn drop off quickly (starting around index

√
2πn). This observation

motivates us to ask whether the intrinsic volumes of a general convex body also exhibit some type of
concentration.

It is natural to apply probabilistic methods to address this question. To that end, we first need to
normalize the intrinsic volumes to construct a probability distribution.

Definition 1.6 (Normalized Intrinsic Volumes). The total intrinsic volume of the convex body K, also
known as the Wills functional [Wil73, Had75, McM75], is the quantity

W (K) :=
∑n

j=0
Vj(K). (1.3)

The normalized intrinsic volumes compose the sequence

Ṽj(K) :=
Vj(K)

W (K)
for j = 0, 1, 2, . . . , n.

In particular, the sequence {Ṽj(K) : j = 0, 1, 2, . . . , n} forms a probability distribution.

In spite of the similarity of notation, the total intrinsic volume W should not be confused with a
quermassintegral.

We may now construct a random variable that reflects the distribution of the intrinsic volumes of a
convex body.

Definition 1.7 (Intrinsic Volume Random Variable). The intrinsic volume random variable ZK associated
with a convex body K takes nonnegative integer values according to the distribution

P {ZK = j} = Ṽj(K) for j = 0, 1, 2, . . . , n. (1.4)

The mean of the intrinsic volume random variable plays a special role in the analysis, so we exalt it
with its own name and notation.
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Definition 1.8 (Central Intrinsic Volume). The central intrinsic volume of the convex body K is the
quantity

∆(K) := EZK =
∑n

j=0
j · Ṽj(K). (1.5)

Equivalently, the central intrinsic volume is the centroid of the sequence of intrinsic volumes.

Since the intrinsic volume sequence of a convex body K ⊂ Rn is supported on {0, 1, 2, . . . , n}, it
is immediate that the central intrinsic volume satisfies ∆(K) ∈ [0, n]. The extreme n is unattainable
(because a nonempty convex body has Euler characteristic V0(K) = 1). But it is easy to construct
examples that achieve values across the rest of the range.

Example 1.9 (The Scaled Cube). Fix s ∈ [0,∞). Using Example 1.3 and the homogeneity of intrinsic
volumes, we see that total intrinsic volume of the scaled cube is

W (sQn) =
∑n

j=0

(
n

j

)
· sj = (1 + s)n.

The central intrinsic volume of the scaled cube is

∆(sQn) =
1

(1 + s)n

∑n

j=0
j ·
(
n

j

)
· sj =

∑n

j=0
j ·
(
n

j

)
·
(

s

1 + s

)j (
1− s

1 + s

)n−j
=

ns

1 + s
.

We recognize the mean of the random variable Bin(s/(1 + s), n) to reach the last identity. Note that
the quantity ∆(sQn) = ns/(1 + s) sweeps through the interval [0, n) as we vary s ∈ [0,∞).

Example 1.10 (Large Sets). More generally, we can compute the limits of the normalized intrinsic
volumes of a growing set:

lim
s→∞

Ṽj(sK)→ 0 for j < dimK;

lim
s→∞

Ṽj(sK)→ 1 for j = dimK.

This point follows from the homogeneity of intrinsic volumes, noted in Section 1.2.2.

1.4. Concentration of Intrinsic Volumes. Our main result states that the intrinsic volume random
variable concentrates sharply around the central intrinsic volume.

Theorem 1.11 (Concentration of Intrinsic Volumes). Let K ⊂ Rn be a nonempty convex body with
intrinsic volume random variable ZK. The variance satisfies

Var[ZK] ≤ 4n.

Furthermore, in the range 0 ≤ t ≤
√
n, we have the tail inequality

P
{
|ZK − EZK| ≥ t

√
n
}
≤ 2e−3t

2/28.

To prove this theorem, we first convert questions about the intrinsic volume random variable into
questions about metric geometry (Section 2). We reinterpret the metric geometry formulations in terms
of the information content of a log-concave probability density. Then we can control the variance
(Section 3) and concentration properties (Section 4) of the intrinsic volume random variable using the
analogous results for the information content random variable.

A general probability distribution on {0, 1, 2, . . . , n} can have variance higher than n2/3. In contrast,
the intrinsic volume random variable has variance no greater than 4n. Moreover, the intrinsic volume
random variable behaves, at worst, like a normal random variable with mean EZK and variance less
than 5n. Thus, most of the mass of the intrinsic volume sequence is concentrated on an interval of
about O(

√
n) indices.

Looking back to Example 1.3, concerning the unit-volume cube Qn, we see that Theorem 1.11 gives a
qualitatively accurate description of the intrinsic volume sequence. On the other hand, the bounds for
scaled cubes sQn can be quite poor; see Section 5.3.
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1.5. Concentration of Conic Intrinsic Volumes. Theorem 1.11 and its proof parallel recent develop-
ments in the theory of conic intrinsic volumes, which appear in the papers [ALMT14, MT14a, GNP17].
Using the concentration of conic intrinsic volumes, we were able to establish that random config-
urations of convex cones exhibit striking phase transitions; these facts have applications in signal
processing [McC13, MT14b, ALMT14, MT17]. We are confident that extending the ideas in the current
paper will help us discover new phase transition phenomena in Euclidean integral geometry.

1.6. Maximum-Entropy Convex Bodies. The probabilistic approach to the intrinsic volume sequence
suggests other questions to investigate. For instance, we can study the entropy of the intrinsic volume
random variable, which reflects the dispersion of the intrinsic volume sequence.

Definition 1.12 (Intrinsic Entropy). Let K ⊂ Rn be a nonempty convex body. The intrinsic entropy of
K is the entropy of the intrinsic volume random variable ZK:

IntEnt(K) := Ent[ZK] = −
∑n

j=0
Ṽj(K) · log Ṽj(K).

We have the following extremal result.

Theorem 1.13 (Cubes Have Maximum Entropy). Fix the ambient space Rn, and let d ∈ [0, n). There is a
scaled cube whose central intrinsic volume equals d:

∆(sd,nQn) = d when sd,n =
d

n− d
.

Among convex bodies with central intrinsic volume d, the scaled cube sd,nQn has the maximum intrinsic
entropy. Among all convex bodies, the unit-volume cube has the maximum intrinsic entropy. In symbols,

max{IntEnt(K) : ∆(K) = d} = IntEnt(sd,nQn) ≤ IntEnt(Qn).

The maximum takes place over all nonempty convex bodies K ⊂ Rn.

The proof of Theorem 1.13 also depends on recent results from information theory, as well as some
deep properties of the intrinsic volume sequence. This analysis appears in Section 6.

Theorem 1.13 joins a long procession of results on the extremal properties of the cube. In particular,
the cube solves the (affine) reverse isoperimetric problem for symmetric convex bodies [Bal91]. That
is, every symmetric convex body K ⊂ Rn has an affine image whose volume is one and whose surface
area is not greater than 2n, the surface area of Qn. See Section 1.7.2 for an equivalent statement.

Remark 1.14 (Minimum Entropy). The convex body consisting of a single point x0 ∈ Rn has the
minimum intrinsic entropy: IntEnt({x0}) = 0. Very large convex bodies also have negligible entropy:

lim
s→∞

IntEnt(sK) = 0 for each nonempty convex body K ⊂ Rn.

The limit is a consequence of Example 1.10.

1.7. Other Inequalities for Intrinsic Volumes. The classic literature on convex geometry contains a
number of prominent inequalities relating the intrinsic volumes, and this topic continues to arouse
interest. This section offers a short overview of the main results of this type. Our presentation is
influenced by [McM91, PPV17]. See [Sch14, Chap. 7] for a comprehensive treatment.

Remark 1.15 (Unrelated work). Although the title of the paper [AS16] includes the phrase “concen-
tration of intrinsic volumes,” the meaning is quite different. Indeed, the focus of that work is to
study hyperplane arrangements via the intrinsic volumes of a random sequence associated with the
arrangement.
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1.7.1. Ultra-Log-Concavity. The Alexandrov–Fenchel inequality (AFI) is a profound result on the behavior
of mixed volumes; see [Sch14, Sec. 7.3] or [SH18]. We can specialize the AFI from mixed volumes to
the particular case of quermassintegrals. In this instance, the AFI states that the quermassintegrals of a
convex body K ⊂ Rn compose a log-concave sequence:

W
(n)
j (K)2 ≥W (n)

j+1(K) ·W (n)
j−1(K) for j = 1, 2, 3, . . . , n− 1. (1.6)

As Chevet [Che76] and McMullen [McM91] independently observed, the log-concavity (1.6) of the
quermassintegral sequence implies that the intrinsic volumes form an ultra-log-concave (ULC) sequence:

j · Vj(K)2 ≥ (j + 1) · Vj+1(K) · Vj−1(K) for j = 1, 2, 3, . . . , n− 1. (1.7)

Gurvits [Gur09], citing Shephard [She60], points out that every (finitely supported) ULC sequence
coincides with the intrinsic volumes of a convex body. These facts play a key role in the proof
of Theorem 1.13. For more information on log-concavity and ultra-log-concavity, see the survey
article [SW14].

From (1.7), Chevet and McMullen both deduce that all of the intrinsic volumes are controlled by the
first one, and they derive an estimate for the total intrinsic volume:

Vj(K) ≤ 1

j!
V1(K)j for j = 1, 2, 3, . . . , n, hence W (K) ≤ eV1(K).

This estimate implies some growth and decay properties of the intrinsic volume sequence. An interesting
application appears in Vitale’s paper [Vit96], which derives concentration for the supremum of a
Gaussian process from the foregoing bound on the total intrinsic volume.

It is possible to establish a concentration result for intrinsic volumes as a direct consequence of (1.7).
Indeed, it is intuitive that a ULC sequence should concentrate around its centroid. This point follows
from Caputo et al. [CDPP09, Sec. 3.2], which transcribes the usual semigroup proof of a log-Sobolev
inequality to the discrete setting. When applied to intrinsic volumes, this method gives concentration
on the scale of the mean width V1(K) of the convex body K. This result captures a phenomenon
different from Theorem 1.11, where the scale for the concentration is the dimension n.

1.7.2. Isoperimetric Ratios. Another classical consequence of the AFI is a sequence of comparisons for
the isoperimetric ratios of the volume of a convex body K ⊂ Rn, relative to the Euclidean ball Bn:(

Vn(K)

Vn(Bn)

)1/n

≤
(
Vn−1(K)

Vn−1(Bn)

)1/(n−1)
≤ · · · ≤ V1(K)

V1(Bn)
. (1.8)

The first inequality is the isoperimetric inequality, and the inequality between Vn and V1 is called
Urysohn’s inequality [Sch14, Sec. 7.2]. Isoperimetric ratios play a prominent role in asymptotic convex
geometry; for example, see [Pis89, Bal97, AAGM15].

Some of the inequalities in (1.8) can be inverted by applying affine transformations. For example,
Ball’s reverse isoperimetric inequality [Bal91] states that K admits an affine image K̂ for which(

Vn−1(K̂)

Vn−1(Bn)

)1/(n−1)

≤ constn ·

(
Vn(K̂)

Vn(Bn)

)1/n

.

The sharp value for the constant is known; equality holds when K is a simplex. If we restrict our
attention to symmetric convex bodies, then the cube is extremal.

The recent paper [PPV17] of Paouris et al. contains a more complete, but less precise, set of reversals.
Suppose that K is a symmetric convex body. Then there is a parameter β? := β?(K) for which

V1(K)

V1(Bn)
≤

[
1 + const ·

(
β?j log

(
e

jβ?

))1/2
]
·
(
Vj(K)

Vj(Bn)

)1/j

for j = 1, 2, 3, . . . , const/β?. (1.9)
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The constants here are universal but unspecified. This result implies that the prefix of the sequence of
isoperimetric ratios is roughly constant. The result (1.9) leaves open the question about the behavior of
the sequence beyond the distinguished point.

It would be interesting to reconcile the work of Paouris et al. [PPV17] with Theorem 1.11. In particular,
it is unclear whether the isoperimetric ratios remain constant, or whether they exhibit some type of
phase transition. We believe that our techniques have implications for this question.

2. Steiner’s Formula and Distance Integrals

The first step in our program is to convert questions about the intrinsic volume random variable into
questions in metric geometry. We can accomplish this goal using Steiner’s formula, which links the
intrinsic volumes of a convex body to its expansion properties. We reinterpret Steiner’s formula as a
distance integral, and we use this result to compute moments of the intrinsic volume random variable.
This technique, which appears to be novel, drives our approach.

2.1. Steiner’s Formula. The Minkowski sum of a nonempty convex body and a Euclidean ball is called
a parallel body. Steiner’s formula gives an explicit expansion for the volume of the parallel body in
terms of the intrinsic volumes of the convex body.

Fact 2.1 (Steiner’s Formula). Let K ⊂ Rn be a nonempty convex body. For each λ ≥ 0,

Voln(K + λBn) =
∑n

j=0
λn−jκn−jVj(K).

In other words, the volume of the parallel body is a polynomial function of the expansion radius.
Moreover, the coefficients depend only on the intrinsic volumes of the convex body. The proof of Fact 2.1
is fairly easy; see [Sch14, Gru07].

Remark 2.2 (Steiner and Kubota). Steiner’s formula can be used to define the intrinsic volumes. The
definition we have given in (1.2) is usually called Kubota’s formula; it can be derived as a consequence
of Fact 2.1 and Cauchy’s formula for surface area. For example, see [AAGM15, Sec. B.5].

2.2. Distance Integrals. The parallel body can also be expressed as the set of points within a fixed
distance of the convex body. This observation motivates us to introduce the distance to a convex set.

Definition 2.3 (Distance to a Convex Body). The distance to a nonempty convex body K is the function

dist(x,K) := min
{
‖y − x‖ : y ∈ K

}
where x ∈ Rn.

It is not hard to show that the distance, dist(·,K), and its square, dist2(·,K), are both convex functions.
Here is an alternative statement of Steiner’s formula in terms of distance integrals [Had75].

Proposition 2.4 (Distance Integrals). Let K ⊂ Rn be a nonempty convex body. Let f : R+ → R be an
absolutely integrable function. Provided that the integrals on the right-hand side converge,∫

Rn
f(dist(x,K)) dx = f(0) · Vn(K) +

∑n−1

j=0

(
ωn−j

∫ ∞
0

f(r) · rn−j−1 dr

)
· Vj(K).

This result is equivalent to Fact 2.1.

Proof. For r > 0, Steiner’s formula gives an expression for the volume of the locus of points within
distance r of the convex body:

Voln{x ∈ Rn : dist(x,K) ≤ r} =
∑n

j=0
rn−jκn−jVj(K).

The rate of change in this volume satisfies
d

dr
Voln{x ∈ Rn : dist(x,K) ≤ r} =

∑n−1

j=0
rn−j−1ωn−jVj(K). (2.1)

We have used the relation (1.1) that ωn−j = (n− j)κn−j .
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Let µ] be the push-forward of the Lebesgue measure on Rn to R+ by the function dist(·;K). That is,

µ](A) := Voln{x ∈ Rn : dist(x;K) ∈ A} for each Borel set A ⊂ R+.

This measure clearly satisfies µ]({0}) = Vn(K). Beyond that, when 0 < a < b,

µ]((a, b]) = Voln{x ∈ Rn : a < dist(x;K) ≤ b}
= Voln{x ∈ Rn : dist(x;K) ≤ b} −Voln{x ∈ Rn : dist(x;K) ≤ a}

=

∫ b

a

d

dr
Voln{x ∈ Rn : dist(x;K) ≤ r} dr.

Therefore, by definition of the push-forward,∫
Rn
f(dist(x;K)) dx =

∫
R+

f(r) dµ](r)

= f(0) · Vn(K) +

∫ ∞
0

f(r) · d

dr
Voln{x ∈ Rn : dist(x;K) ≤ r}dr.

Introduce (2.1) into the last display to arrive at the result. �

2.3. Moments of the Intrinsic Volume Sequence. We can compute moments (i.e., linear functionals)
of the sequence of intrinsic volumes by varying the function f in Proposition 2.4. To that end, it is
helpful to make another change of variables.

Corollary 2.5 (Distance Integrals II). Let K ⊂ Rn be a nonempty convex body. Let g : R+ → R be an
absolutely integrable function. Provided the integrals on the right-hand side converge,∫

Rn
g(π dist2(x,K)) · e−π dist2(x,K) dx

= g(0) · Vn(K) +
∑n−1

j=0

(
1

Γ((n− j)/2)

∫ ∞
0

g(r) · r−1+(n−j)/2e−r dr

)
· Vj(K).

Proof. Set f(r) = g(πr2) · e−πr2 in Proposition 2.4 and invoke (1.1). �

We are now prepared to compute some specific moments of the intrinsic volume sequence by making
special choices of g in Corollary 2.5.

Example 2.6 (Total Intrinsic Volume). Consider the case where g(r) = 1. We obtain the appealing
formula ∫

Rn
e−π dist2(x,K) dx =

∑n

j=0
Vj(K) = W (K).

The total intrinsic volumeW (K) was defined in (1.3). This identity appears in [Had75, McM75].

Example 2.7 (Central Intrinsic Volume). The choice g(r) = 2r/W (K) yields

1

W (K)

∫
Rn

2π dist2(x,K) · e−π dist2(x,K) dx =
1

W (K)

∑n

j=0
(n− j) · Vj(K) = n− EZK.

We have recognized the total intrinsic volume (1.3) and the central intrinsic volume (1.5).

Example 2.8 (Generating Functions). We can also develop an expression for the generating function
of the intrinsic volume sequence by selecting g(r) = e(1−λ

2)r. Thus,∫
Rn

e−λ
2π dist2(x,K) dx = λ−n

∑n

j=0
λjVj(K). (2.2)

This expression is valid for all λ > 0. See [Had75] or [SW08, Lem. 14.2.1].
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We can reframe the relation (2.2) in terms of the moment generating function of the intrinsic volume
random variable ZK. To do so, we make the change of variables λ = eθ and divide by the total intrinsic
volumeW (K):

E eθ(ZK−n) =
1

W (K)

∫
Rn

e−e
2θπ dist2(x,K) dx. (2.3)

This expression remains valid for all θ ∈ R.

Remark 2.9 (Other Moments). In fact, we can compute any moment of the intrinsic volume sequence
by selecting an appropriate function f in Proposition 2.4. Corollary 2.5 is designed to produce gamma
integrals. Beta integrals also arise naturally and lead to other striking relations. For instance,∫

Rn

dx

(1 + λ dist(x,K))n+1
= κnλ

−n
∑n

j=0
λj

Vj(K)

Vj(Bn)
for λ > 0.

The intrinsic volumes of the Euclidean ball are computed in Example 1.2. Isoperimetric ratios appear
naturally in convex geometry (see Section 1.7.2), so this type of result may have independent interest.

3. Variance of the Intrinsic Volume Random Variable

Let us embark on our study of the intrinsic volume random variable. The main result of this section
states that the variance of the intrinsic volume random variable is significantly smaller than its range.
This is a more precise version of the variance bound in Theorem 1.11.

Theorem 3.1 (Variance of the Intrinsic Volume Random Variable). Let K ⊂ Rn be a nonempty convex
body with intrinsic volume random variable ZK. We have the inequalities

Var[ZK] ≤ 2(n+ EZK) ≤ 4n.

The proof of Theorem 3.1 occupies the rest of this section. We make a connection between the
distance integrals from Section 2 and the information content of a log-concave probability measure. By
using recent results on the variance of information, we can develop bounds for the distance integrals.
These results, in turn, yield bounds on the variance of the intrinsic volume random variable. A closely
related argument, appearing in Section 4, produces exponential concentration.

Remark 3.2 (An Alternative Argument). Theorem 3.1 can be sharpened using variance inequalities for
log-concave densities. Indeed, it holds that

Var[ZK] ≤ 2(n− EZK).

To prove this claim, we apply the Brascamp–Lieb inequality [BL76, Thm. 4.1] to a perturbation of
the log-concave density (3.4) described below. It is not clear whether similar ideas lead to normal
concentration (because the density is not strongly log-concave), so we have chosen to omit this
development.

3.1. The Varentropy of a Log-Concave Distribution. First, we outline some facts from information
theory about the information content in a log-concave random variable. Let µ : Rn → R+ be a
log-concave probability density; that is, a probability density that satisfies the inequalities

µ(τx + (1− τ)y) ≥ µ(x)τµ(y)1−τ for x,y ∈ Rn and τ ∈ [0, 1].

We define the information content Iµ of a random point drawn from the density µ to be the random
variable

Iµ := − logµ(y) where y ∼ µ. (3.1)
The symbol ∼ means “has the distribution.” The terminology is motivated by the operational
interpretation of the information content of a discrete random variable as the number of bits required
to represent a random realization using a code with minimal average length [BM11].
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The expected information content E Iµ is usually known as the entropy of the distribution µ. The
varentropy of the distribution is the variance of information content:

VarEnt[µ] := Var[Iµ] = E (Iµ − E Iµ)2. (3.2)

Here and elsewhere, nonlinear functions bind before the expectation.
Bobkov & Madiman [BM11] showed that the varentropy of a log-concave distribution on Rn is not

greater than a constant multiple of n. Other researchers quickly determined the optimal constant.
The following result was obtained independently by Nguyen [Ngu13] and by Wang [Wan14] in their
doctoral dissertations.

Fact 3.3 (Varentropy of a Log-Concave Distribution). Let µ : Rn → R+ be a log-concave probability
density. Then

VarEnt[µ] ≤ n.

See Fradelizi et al. [FMW16] for more background and a discussion of this result.
For future reference, note that the varentropy and related quantities exhibit a simple scale invariance.

Consider the shifted information content

Icµ := − log(cµ(y)) where c > 0 and y ∼ µ.

It follows from the definition that

Icµ − E Icµ = Iµ − E Iµ for each c > 0. (3.3)

In particular, Var[Icµ] = Var[Iµ].

3.2. A Log-Concave Density. Next, we observe that the central intrinsic volume is related to the
information content of a log-concave density. For a nonempty convex body K ⊂ Rn, define

µK(x) :=
1

W (K)
e−π dist2(x,K) for x ∈ Rn. (3.4)

The density µK is log-concave because the squared distance to a convex body is a convex function. The
calculation in Example 2.6 ensures that µK is a probability density.

Introduce the (shifted) information content random variable associated with K:

HK := − log(W (K) · µK(y)) = π dist2(y,K) where y ∼ µK. (3.5)

Up to the presence of the factorW (K), the random variable HK is the information content of a random
draw from the distribution µK. In view of (3.2) and (3.3),

Var[HK] = Var[IµK ] = VarEnt[µK]. (3.6)

More generally, all central moments and cumulants of HK coincide with the corresponding central
moments and cumulants of IµK:

E f(HK − EHK) = E f(IµK − E IµK). (3.7)

This expression is valid for any function f : R→ R such that the expectations exist.

3.3. Information Content and Intrinsic Volumes. We are now prepared to connect the moments of
the intrinsic volume random variable ZK with the moments of the information content random variable
HK. These representations allow us to transfer results about information content into data about the
intrinsic volumes.

Using the notation from the last section, Example 2.7 gives a relation between the expectations:

EZK = n− 2EHK. (3.8)

The next result provides a similar relationship between the variances.
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Proposition 3.4 (Variance of the Intrinsic Volume Random Variable). Let K ⊂ Rn be a nonempty convex
body with intrinsic volume random variable ZK and information content random variable HK. We have
the variance identity

Var[ZK] = 4 (Var[HK]− EHK).

Proof. Apply Corollary 2.5 with the function g(r) = 4r2/W (K) to obtain

4EH2
K =

1

W (K)

∫
Rn

4π2 dist4(x,K) · e−π dist2(x,K) dx

=
1

W (K)

∑n−1

j=0
(n− j)((n− j) + 2) · Vj(K)

= E(n− ZK)2 + 2E[n− ZK]

= Var[n− ZK] + (E[n− ZK])2 + 2E[n− ZK]

= Var[ZK] + 4(EHK)2 + 4EHK.

We have used the definition (1.4) of the intrinsic volume random variable to express the sum as an
expectation. In the last step, we used the relation (3.8) twice to pass to the random variable HK.
Finally, rearrange the display to complete the proof. �

3.4. Proof of Theorem 3.1. We may now establish the main result of this section. Proposition 3.4
yields

Var[ZK] = 4 (Var[HK]− EHK) = 4 VarEnt[µK]− 2(n− EZK) ≤ 2n+ 2EZK ≤ 4n.

We have invoked (3.6) to replace the variance of HK with the varentropy and (3.8) to replace EHK

by the central intrinsic volume EZK. The inequality is a consequence of Fact 3.3, which controls the
varentropy of the log-concave density µK. We obtain the final bound by noting that EZK ≤ n.

Here is an alternative approach to the final bound that highlights the role of the varentropy:

Var[ZK] ≤ 4 Var[HK] = 4 VarEnt[µK] ≤ 4n.

The first inequality follows from Proposition 3.4, and the second inequality is Fact 3.3.

4. Concentration of the Intrinsic Volume Random Variable

The square root of the variance of the intrinsic volume random variable ZK gives the scale for
fluctuations about the mean. These fluctuations have size O(

√
n), which is much smaller than the O(n)

range of the random variable. This observation motivates us to investigate the concentration properties
of ZK. In this section, we develop a refined version of the tail bound from Theorem 1.11.

Theorem 4.1 (Tail Bounds for Intrinsic Volumes). Let K ⊂ Rn be a nonempty convex body with intrinsic
volume random variable ZK. For all t ≥ 0, we have the inequalities

P {ZK − EZK ≥ t} ≤ exp

{
−(n+ EZK) · ψ∗

(
t

n+ EZK

)}
;

P {ZK − EZK ≤ −t} ≤ exp

{
−(n+ EZK) · ψ∗

(
−t

n+ EZK

)}
.

The function ψ∗(s) := ((1 + s) log(1 + s)− s)/2 for s > −1.

The proof of this result follows the same pattern as the argument from Theorem 3.1. In Section 4.5,
we derive Theorem 4.1 as an immediate consequence.
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4.1. Moment Generating Function of the Information Content. In addition to the variance, one
may study other moments of the information content random variable. In particular, bounds for the
moment generating function (mgf) of the centered information content lead to exponential tail bounds
for the information content. Bobkov & Madiman [BM11] proved the first result in this direction. More
recently, Fradelizi et al. [FMW16] have obtained the optimal bound.

Fact 4.2 (Information Content Mgf). Let µ : Rn → R+ be a log-concave probability density. For β < 1,

E eβ(Iµ−E Iµ) ≤ enϕ(β),

where ϕ(s) := −s− log(1− s) for s < 1. The information content random variable Iµ is defined in (3.1).

4.2. Information Content and Intrinsic Volumes. We extract concentration inequalities for the
intrinsic volume random variable ZK by studying its (centered) exponential moments. Define

mK(θ) := E eθ(ZK−EZK) for θ ∈ R.

The first step in the argument is to represent the mgf in terms of the information content random
variable HK defined in (3.5).

Proposition 4.3 (Mgf of Intrinsic Volume Random Variable). Let K ⊂ Rn be a nonempty convex body
with intrinsic volume random variable ZK and information content random variable HK. For θ ∈ R,

mK(θ) = e−ϕ(β)EHK · E eβ(HK−EHK) where β := 1− e2θ.

The function ϕ is defined in Fact 4.2.

Proof. The formula (2.3) from Example 2.8 yields the identity

E eθ(ZK−n) =
1

W (K)

∫
Rn

e(1−e
2θ)·π dist2(x,K) · e−π dist2(x,K) dx = E e(1−e

2θ)HK .

We can transfer this result to obtain another representation for mK. First, use the identity (3.8) to
replace EZK with EHK. Then invoke the last display to reach

mK(θ) = E eθ(ZK−EZK) = e2θ EHK E eθ(ZK−n)

= e2θ EHK E e(1−e
2θ)HK

= e(1+2θ−e2θ)EHK E e(1−e
2θ)(HK−EHK) = e(β+log(1−β))EHK E eβ(HK−EHK).

In the last step, we have made the change of variables β = 1− e2θ. Finally, identify the value −ϕ(β) in
the first exponent. �

4.3. A Bound for the Mgf. We are now prepared to bound the mgf mK. This result will lead directly
to concentration of the intrinsic volume random variable.

Proposition 4.4 (A Bound for the Mgf). Let K ⊂ Rn be a nonempty convex body with intrinsic volume
random variable ZK. For θ ∈ R,

mK(θ) ≤ eψ(θ)(n+EZK),

where ψ(s) := (e2s − 2s− 1)/2 for s ∈ R.

Proof. For the parameter β = 1− e2θ, Proposition 4.3 yields

mK(θ) = e−ϕ(β)EHK E eβ(HK−EHK)

= e−ϕ(β)EHK E eβ(IµK−E IµK )

≤ e−ϕ(β)EHK · enϕ(β)

= e−ϕ(β)(n−EZK)/2 · enϕ(β) = eϕ(β)(n+EZK)/2.
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To reach the second line, we use the equivalence (3.7) for the central moments. The inequality is
Fact 4.2, the mgf bound for the information content IµK of the log-concave density µK. Afterward, we
invoke (3.8) to pass from the information content random variable HK to the intrinsic volume random
variable ZK. The next step is algebraic. The result follows when we return from the variable β to the
variable θ, leading to the appearance of the function ψ. �

4.4. Proof of Theorem 4.1. The Laplace transform method, combined with the mgf bound from
Proposition 4.4, produces Bennett-type inequalities for the intrinsic volume random variable. In brief,

P {ZK − EZK ≥ t} ≤ inf
θ>0

e−θt ·mK(θ)

≤ inf
θ>0

e−θt+ψ(θ)(n+EZK) = exp

{
−(n+ EZK) · ψ∗

(
t

n+ EZK

)}
.

The Fenchel–Legendre conjugate ψ∗ of the function ψ has the explicit form given in the statement of
Theorem 4.1. The lower tail bound follows from the same argument.

4.5. Proof of Theorem 1.11. The concentration inequality in the main result, Theorem 4.1, follows
when we weaken the inequalities obtained in the last section. Comparing derivatives, we can verify
that ψ∗(s) ≥ (s2/4)/(1 + s/3) for all s > −1. For the interesting range, 0 ≤ t ≤ n, we have

P {ZK − EZK ≥ t} ≤ exp

{
−t2/4

n+ EZK + t/3

}
;

P {ZK − EZK ≤ −t} ≤ exp

{
−t2/4

n+ EZK − t/3

}
.

We may combine this pair of inequalities into a single bound:

P {|ZK − EZK| ≥ t} ≤ 2 exp

(
−t2/4

n+ EZK + t/3

)
.

Make the estimate EZK ≤ n, and bound the denominator using t ≤ n. This completes the argument.

5. Example: Rectangular Parallelotopes

In this section, we work out the intrinsic volume sequence of a rectangular parallelotope. This
computation involves the generating function of the intrinsic volume sequence. Because of its elegance,
we develop this method in more depth than we need to treat the example at hand.

5.1. Generating Functions and Intrinsic Volumes. To begin, we collect some useful information
about the properties of the generating function of the intrinsic volumes.

Definition 5.1 (Intrinsic Volume Generating Function). The generating function of the intrinsic volumes
of the convex body K is the polynomial

GK(λ) :=
∑n

j=0
λjVj(K) = W (λK) for λ > 0.

We can use the generating function to read off some information about a convex body, including the
total intrinsic volume and the central intrinsic volume. This is a standard result [Wil94, Sec. 4.1], so
we omit the elementary argument.

Proposition 5.2 (Properties of the Generating Function). For each nonempty convex body K ⊂ Rn,

W (K) = GK(1) and ∆(K) =
G′K(1)

GK(1)
= (logGK)′(1).

As usual, the prime ′ denotes a derivative.
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It is usually challenging to compute the intrinsic volumes of a convex body, but the following fact
allows us to make short work of some examples.

Fact 5.3 (Direct Products). Let C ⊂ Rn1 and K ⊂ Rn2 be nonempty convex bodies. The generating
function of the intrinsic volumes of the convex body C× K ⊂ Rn1+n2 takes the form

GC×K(λ) = GC(λ) ·GK(λ).

For completeness, we include a short proof inspired by Hadwiger [Had75]; see [SW08, Lem. 14.2.1].

Proof. Abbreviate n := n1 + n2. For a point x ∈ Rn, write x = (x1,x2) where xi ∈ Rni . Then

dist2(x,C× K) = dist2(x1,C) + dist2(x2,K).

Invoke the formula (2.2) from Example 2.8 for the generating function of the intrinsic volumes (three
times!). For λ > 0,

λ−n
∑n

j=0
λjVj(C× K) =

∫
Rn

e−λ
2π dist2(x,C×K) dx

=

∫
Rn1

∫
Rn2

e−λ
2π dist2(x1,C) · e−λ2π dist2(x2,K) dx1 dx2

=
(
λ−n1

∑n1

j=0
λjVj(C)

)(
λ−n2

∑n2

j=0
λjVj(K)

)
.

Cancel the leading factors of λ to complete the argument. �

As a corollary, we can derive an expression for the central intrinsic volume of a direct product.

Corollary 5.4 (Central Intrinsic Volume of a Product). Let C ⊂ Rn1 and K ⊂ Rn2 be nonempty convex
bodies. Then

∆(C× K) = ∆(C) + ∆(K).

Proof. According to Proposition 5.2 and Fact 5.3,

∆(C× K) = (logGC×K)′(1) = (log(GCGK))′(1)

= (logGC + logGK)′(1) = (logGC)′(1) + (logGK)′(1) = ∆(C) + ∆(K).

This is what we needed to show. �

5.2. Intrinsic Volumes of a Rectangular Parallelotope. Using Fact 5.3, we quickly compute the
intrinsic volumes and related statistics for a rectangular parallelotope.

Proposition 5.5 (Rectangular Parallelotopes). For parameters s1, s2, . . . , sn ≥ 0, construct the rectan-
gular parallelotope

P := [0, s1]× [0, s2]× · · · × [0, sn] ⊂ Rn.
The generating function for the intrinsic volumes of the parallelotope P satisfies

GP(λ) =
∏n

i=1
(1 + λsi).

In particular, Vj(K) = ej(s1, . . . , sn), where ej denotes the jth elementary symmetric function. The total
intrinsic volume and central intrinsic volume satisfy

W (P) =
∏n

i=1
(1 + si) and ∆(P) =

∑n

i=1

si
1 + si

.

Proof. Let s ≥ 0. By direct calculation from Definition 1.1, the intrinsic volumes of the interval
[0, s] ⊂ R1 are V0([0, s]) = 1 and V1([0, s]) = s. Thus,

G[0,s](λ) =
∑1

j=0
λjVj([0, s]) = 1 + λs.
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Fact 5.3 implies that the generating function for the intrinsic volumes of the parallelotope P is

GP(λ) :=
∑n

j=0
λjVj(P) =

∏n

i=0
(1 + λsi).

We immediately obtain formulas for the total intrinsic volume and the central intrinsic volume from
Proposition 5.2. Alternatively, we can compute the central intrinsic volume of an interval [0, s] and use
Corollary 5.4 to extend this result to the parallelotope P. �

5.3. Intrinsic Volumes of a Cube. As an immediate consequence of Proposition 5.5, we obtain a clean
result on the intrinsic volumes of a scaled cube.

Corollary 5.6 (Cubes). Let Qn ⊂ Rn be the unit cube. For s ≥ 0, the normalized intrinsic volumes of
the scaled cube sQn coincide with a binomial distribution. For each j = 0, 1, 2, . . . , n,

Ṽj(sQn) =

(
n

j

)
· pj(1− p)n−j where p =

s

1 + s
.

In particular, the central intrinsic volume of the scaled cube is

∆(sQn) = np =
ns

1 + s
.

Corollary 5.6 plays a starring role in our analysis of the intrinsic volume sequences that attain the
maximum entropy.

We can also use Corollary 5.6 to test our results on the variance and concentration properties of the
intrinsic volume sequence by comparing them with exact computations for the cube. Fix a number
s ≥ 0, and let p = s/(1 + s). Then

Var[ZsQn ] = np(1− p) =
ns

(1 + s)2
.

Meanwhile, Theorem 3.1 gives the upper bound

Var[ZsQn ] ≤ 2(n+ np) =
2n(1 + 2s)

1 + s
.

For s = 1, the ratio of the upper bound to the exact variance is 12. For s ≈ 0 and s → ∞, the ratio
becomes arbitrarily large. Similarly, Theorem 4.1 gives a qualitatively good description for s = 1, but
its predictions are far less accurate for small and large s. There remains more work to do!

6. Maximum-Entropy Distributions of Intrinsic Volumes

We have been using probabilistic methods to study the intrinsic volumes of a convex body, and
we have seen that the intrinsic volume sequence is concentrated, as reflected in the variance bound
(Theorem 3.1) and the exponential tail bounds (Theorem 4.1). Therefore, it is natural to consider other
measures of the dispersion of the sequence. We recall Definition 1.12, of the intrinsic entropy, which is
the entropy of the normalized intrinsic volume sequence. This concept turns out to be interesting.

In this section, we will establish Theorem 1.13. This result states that, among all convex bodies with
a fixed central intrinsic volume, a scaled cube has the largest entropy. Moreover, the unit-volume cube
has the largest intrinsic entropy among all convex bodies in a fixed dimension. We prove this theorem
using some recent observations from information theory.

6.1. Ultra-Log-Concavity and Convex Bodies. The key step in proving Theorem 1.13 is to draw a
connection between convex bodies and ultra-log-concave sequences. We begin with an important
definition.
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Definition 6.1 (Ultra-Log-Concave Sequence). A nonnegative sequence {aj : j = 0, 1, 2, . . . } is called
ultra-log-concave, briefly ULC, if it satisfies the relations

j · a2j ≥ (j + 1) · aj+1aj−1 for j = 1, 2, 3, . . . .

It is equivalent to say that the sequence {j! aj : j = 0, 1, 2, . . . } is log-concave.

Among all finitely supported ULC probability distributions, the binomial distributions have the
maximum entropy. This result was obtained by Yaming Yu [Yu08] using methods developed by Oliver
Johnson [Joh07] for studying the maximum-entropy properties of Poisson distributions.

Fact 6.2 (Binomial Distributions Maximize Entropy). Let p ∈ [0, 1], and fix a natural number n. Among
all ULC probability distributions with mean pn that are supported on {0, 1, 2, . . . , n}, the binomial
distribution Bin(p, n) has the maximum entropy.

These facts are relevant to our discussion because the intrinsic volumes of a convex body form an
ultra-log-concave sequence.

Fact 6.3 (Intrinsic Volumes are ULC). A probability distribution supported on {0, 1, 2, . . . , n} is ULC if
and only if it coincides with the normalized intrinsic volumes of a nonempty convex body in Rn.

The forward direction in Fact 6.3 is obtained from an explicit example; see the paper of Gurvits [Gur09,
Rem. 2.4], which refers to earlier work by Shephard [She60]. The reverse direction is a consequence
of the Alexandrov–Fenchel inequality [Sch14, Sec. 7.3]; see the papers by Shephard [She60] and
McMullen [McM91].

Remark 6.4 (ULC via Geometry). In light of Fact 6.3, properties of intrinsic volume sequences translate
into properties about all ULC sequences. For instance, Gurvits [Gur09] used Fact 5.3 and Fact 6.3
to prove that the convolution of two ULC sequences is ULC. Likewise, the results in this paper yield
weak bounds on the variance and concentration properties of ULC probability distributions. It seems
plausible that mining this vein will yield more treasure.

6.2. Proof of Theorem 1.13. With this information at hand, we quickly establish the main result of the
section. Recall that Qn denotes the unit-volume cube in Rn. Let K ⊂ Rn be a nonempty convex body.
Define the number p ∈ [0, 1) by the relation pn = ∆(K). According to Corollary 5.6, the scaled cube
sQn satisfies

∆(sQn) = pn = ∆(K) when s =
p

1− p
.

Fact 6.3 ensures that the normalized intrinsic volume sequence of the convex body K is a ULC probability
distribution supported on {0, 1, 2, . . . , n}. Since EZK = ∆(K) = pn, Fact 6.2 now delivers

IntEnt(K) = Ent[ZK] ≤ Ent[Bin(p, n)] = Ent[ZsQn ] = IntEnt(sQn).

We have used Corollary 5.6 again to see that ZsQn ∼ Bin(p, n). The remaining identities are simply the
definition of the intrinsic entropy. In other words, the scaled cube has the maximum intrinsic entropy
among all convex bodies that share the same central intrinsic volume.

It remains to show that the unit-volume cube has maximum intrinsic entropy among all convex
bodies. Continuing the analysis in the last display, we find that

IntEnt(K) ≤ Ent[Bin(p, n)] ≤ Ent[Bin(1/2, n)] = Ent[ZQn ] = IntEnt(Qn).

Indeed, among the binomial distributions Bin(p, n) for p ∈ [0, 1], the maximum entropy distribution is
Bin(1/2, n). But this is the distribution of ZQn , the intrinsic volume random variable of the unit cube
Qn. This observation implies the remaining claim in Theorem 1.13.
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