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Cooperation of Storage Operation 1in a Power
Network with Renewable Generation

Subhash Lakshminarayana, Member, IEEE, Yunjian Xu, Member, IEEE, H. Vincent Poor, Fellow, IEEE and Tony
Q. S. Quek, Senior Member, IEEE

Abstract—In this paper, we seek to properly schedule the
operation of multiple storage devices so as to minimize the
expected total cost (of conventional generation) in a power
network with intermittent renewable generation. Since the power
network constraints make it intractable to compute optimal
storage operation policies through dynamic programming based
approaches, we propose a Lyapunov optimization based online
algorithm (LOPN) which makes decisions based only on the cur-
rent state of the system (i.e., the current demand and renewable
generation). The proposed algorithm is computationally simple
and achieves asymptotic optimality (as the capacity of energy
storage grows large). To improve the performance of the LOPN
algorithm for the case with limited storage capacity, we propose a
Threshold based Energy Storage Management (TESM) algorithm
that utilizes the forecast information (on demand and renewable
generation) over the next a few time slots to make storage
operation decisions. Numerical experiments are conducted on
IEEE 6- and 9-bus test systems to validate the asymptotic
optimality of LOPN and compare the performance of LOPN
and TESM. Numerical results show that TESM significantly
outperforms LOPN when the storage capacity is relatively small.

Index terms— Energy storage, DC power network, Lya-
punov optimization, Look-ahead policy

I. INTRODUCTION

Electricity generation from conventional thermal generators
is one of the most important contributors of global green
house gas emissions [1]. Renewable energy (e.g. solar, wind
etc.) presents a cleaner alternative for electricity generation.
However, it is well known that renewable energy sources
exhibit significant variability and uncertainty, which make it
challenging to integrate renewable generation into power sys-
tems. As a result, growing penetration from renewable energy
generation may lead to significant increase in the requirement
for ramping capacity from conventional generators [2]. Energy
storage devices (e.g., batteries) are environmentally friendly
candidates that can provide flexibility to the system and
mitigate the impact of volatile renewable generations [3].

This work is primarily motivated by the quickly growing
adoption of renewable energy generation and energy storage
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devices in power systems. In 2014, the installed capacity of
wind power in the United States constitutes 17.8 % of total
electricity generation capacity, which contributes 4.44 % of all
generated electrical energy [4]. Indeed, the country is making
steady progress towards the goal of supplying 20% of all U.S.
electric energy with wind generation by 2030 [5]. Many states
of the U.S have also set ambitious targets for energy storage
deployments. For example, the state of California has decided
to procure 1325 MW utility owned energy storage by the end
of 2020, which amounts to 2% of the state’s peak demand [6].

In this work, we study the operation of multiple storage
devices in a power network with significant generation from
intermittent renewable sources (like wind and solar). In each
time slot, the system operator dispatches the output of con-
ventional generators and energy storage devices to meet the
inelastic demand at different buses, subject to (DC) power
network constraints. The system operator faces a complicated
sequential decision making problem under uncertainty (of
system load and renewable generation), with an objective to
minimize the expected total cost of conventional generation.

The topic of energy storage operation has attracted sig-
nificant attention in the recent years. Herein we restrict our
attention to the works that are most relevant to ours. The
scheduling of energy storage systems is studied in [7], [8], [9]
to maximize the joint profit of wind farms and energy storage
systems. As a natural methodology for sequential decision
making under uncertainty, dynamic programming (DP) has
been adopted to study the optimal operation of a single energy
storage device [10], [11], [12], [13], [14], [15], where a variety
of optimal threshold based control policies are characterized
under different settings (on renewable generation, consumer
demand, and electricity prices). The authors of [16], [17]
conduct DP based approaches to estimate the capacity value
of energy storage. It is worth noting that the aforementioned
DP literature has not studied the operation of multiple energy
storage devices subject to power network constraints, which
is the focus of the present paper.

Closer to the present paper, some recent works have applied
the technique of Lyapunov optimization for the management
of energy storage in (a single) consumer’s demand response
[18], [19]. More recently, this technique is applied for the
cooperative operation of multiple energy storage devices [20],
and our prior work [21] further incorporates power network
constraints into the Lyapunov optimization framework. As the
storage capacity approaches infinity, the asymptotic optimality
of Lyapunov optimization based algorithms is established
in the aforementioned works. The key advantage of this



technique lies in the fact that the control decisions can be
easily computed based only on the current state of the system
(e.g., the current storage level and net demand), whereas
the computation of optimal threshold policies (through a DP
approach) could be challenging even for a single storage
device [13], [15].

We note, however, that there are two major drawbacks
in the existing literature that applies Lyapunov optimization
on storage operation. First, existing works [18], [19], [20]
ignore the network power flow (NPF) constraints, i.e., the
Kirchoff’s laws that govern power flows in a network and the
capacity constraints of transmission lines. More importantly,
although Lyapunov optimization based algorithms perform
well when the energy storage capacity is large compared to its
maximum charging/discharging rate, they are suboptimal for
energy storage devices with relatively small capacity. In this
work, we seek to design effective heuristic algorithms that
overcome both of these drawbacks.

A. Summary of Results

The main contributions of this paper are twofold. In the
first part, we propose a Lyapunov optimization based online
algorithm for the operation of multiple energy storage devices
in a power network. The proposed algorithm will be referred
to as the LOPN algorithm in this paper. We show that the time
average cost resulting from the LOPN algorithm is within a
bounded distance from the optimal value. In particular, LOPN
is shown to be asymptotically optimal as the energy storage
capacity grows large. A major drawback of LOPN is that its
performance is suboptimal when storage capacity is relatively
small.

In the second part of the work, we improve the performance
of the LOPN algorithm by utilizing forecast information on
renewable generation and system load over the next a few
time slots. In each time ¢, the proposed Threshold based
Energy Storage Management (TESM) algorithm computes
a “threshold” such that if possible, the storage level will be
preserved above this threshold to meet the potential peak
demand (for conventional generation) in the next few time
slots. If the storage level is far above this threshold, then the
TESM algorithm follows the decision made by LOPN.

The design of TESM algorithm is primarily motivated by the
fact that renewable energy and system load can be forecasted
with pretty high accuracy over a short time horizon. We note
that state-of-the-art load forecasts could achieve high accuracy
[22], [10]. For example, the mean absolute percent error of the
hour-ahead load forecast of CAISO (California Independent
System Operator) stays within 2% of the peak load [23].
Moreover, short term (1 — 12 hour ahead) forecast of wind
generation could also be accurate. For example, the root mean
square error of the day-ahead forecast on wind generation in
Germany has been down to about 6% of the installed capacity
since 2011 [24].

We develop two versions of the TESM algorithm. We first
design what-we-call the TESM-SB algorithm for a single bus
system. We then extend the TESM-SB algorithm to the case
with power network constraints by solving simple optimal
power flow (OPF) problems. The extended version of TESM

algorithm will be referred to as the TESM-PN algorithm
in this paper. Different from the LOPN algorithm, the two
TESM algorithms use the expected net demand (system load
minus renewable generation) over the next a few time slots
to make current storage operation decisions. Numerical results
show that the TESM-SB and TESM-PN algorithms outperform
Lyapunov optimization based online algorithms in both a
single bus case and the IEEE 6-bus test system, especially
when the storage capacity is relatively small. Our numerical
experiments also demonstrate that as the storage capacity
grows large, both the TESM-SB and TESM-PN algorithms
also achieve asymptotic optimality as they result in lower cost
than Lyapunov optimization based online algorithms.

The rest of the paper is organized as follows. We describe
the system model and problem formulation in section IL. In
Section III, we present the Lyapunov optimization framework
for energy storage management in power networks. The TESM
algorithms are presented and discussed in Section IV, for both
the single bus and the power network cases. We summarize
our numerical results in section V. Finally, we make some
brief concluding remarks in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a power network consisting of N buses
(nodes), denoted by the set N = {1,2,..., N}. Let £ denote
the set of transmission lines connecting these buses.

A. Energy Supply and Demand: Every bus 7 harvests X [t]
units of energy from renewable generation during time ¢. In
addition, it also generates G;[t] units of energy from conven-
tional generation. G and G"®* represent the minimum and
maximum conventional power generation capacities at bus 1,
respectively,

GIin < Gylt] < Grex, (1)

L;[t] denotes the inelastic demand at bus 4 in time ¢. We
assume that L;[t] < L; max < oo for every i. The future
demand and renewable generation can be random. The renew-
able generation and load vector {X;[t], L;[t]}, is assumed
to evolve as a finite state irreducible and aperiodic Markov
chain. We let L; nt[t] = L;[t] — X;[t] denote the net demand
at bus ¢ in time ¢, i.e., the difference between local system

load and renewable generation.

B. Energy Storage: Each bus ¢ is equipped with a storage
device with a capacity of E;***. In time ¢, the energy level of
the storage is denoted by F;[t], which evolves as

Ei[t+ 1] = E;[t] + Z]'[t], VieN, )
where Z'[t] = n; o max(Y;[t], 0) + min(Y;[t], 0)/7; gis is the
change in storage level in time ¢. Here, Y;[t] represents the
amount of energy charged into the storage in period ¢ (Y;[t]
is negative if energy is withdrawn from the storage), and
Nich € (0,1], migis € (0,1] are the charging and discharging
efficiency of storage ¢, respectively. Y™ and Y;3{* are the
charging/discharging rate limits of storage i, i.e.,

SV < Vi) < Y, 3)

i,dis



The energy level in storage 4 is bounded by its capacity "%,
0 < Ej[t] < E®, Vt, VieN. “4)

Further, each storage ¢ cannot be over withdrawn, i.e.,

=Yiltl/mias < Eilt], Vi, VieN. ®)
Combining constraints (3) and (5) we have
— min (E [t]7i.dis, nfgf;X) <Yiltl, YVt VYieN. (6)
Similarly, from constraints (3) and (4) we have
Y;[t] < min (Ema};:hEz[t], Z“:ﬁx)7 Vt, VieN. (7)

We naturally have E;"@* > lﬂnc‘fj"m ch and EM& >
Y 4 /miais for every i, ie., the storage capacity is no less
than the maximum charging/discharging rate.
Finally, we define some notation that will be useful later.
We denote the set of buses that have no storage devices (with
Emax = () by N« Note that for every ¢ € Mg, We must

have ymax — ymax — () We let

i,ch ,dis
B = g EPLOEW = min BPY
= min Yiat, o YT = max Vi
Ten® = 3 i, i = L T,

where N\ M, is the set of buses equipped with energy

storage. Note that nf > 0 is bounded away from zero.

C. Power Network Model: In order to model the power
flow P;;[t] on branch (i,j), we adopt the DC power flow
model. We let B; ; denote the negative of the susceptance
of transmission line (i, ), and 6;[t] denote the voltage phase
angle at bus 7 during the time slot . In this paper we adopt
the following set of DC power flow equations [25]:

P jlt] = Bi;(6:[t] — 0;[t]), V(i,4) € L, (8)
Lilt] = Hi[t] - Gilt] + Yi[t] + ) _Pi;[t] =0, Vi € N, (9)
JF#i

Hift] < Xi[t],i € N, [Py[t]] < P, V (i, 5) € £, (10)

where P;** denotes the thermal limit (power transmission
capacity) of the branch (i,7). H;[t] € [0,X;[t]] denotes the
amount of renewable energy injected to bus ¢ in time ¢ (here
we have assumed free disposal of renewable generation). We
will also assume that a feasible dispatch always exists even
without energy storage, i.e., the set of equations (1), (8)-(10)

have a feasible solution if Y;[t] is set to be zero for every i.
D. Cost Model and Problem Formulation: The cost of

conventional generation is denoted by the function C;(G;[t]),
which is assumed to be a quadratic function given as [25]

Ci(Gy[t]) = piGylt] + :G2]t], (11)

where p; and ¢; are constants that depend on the generation
technology at bus ¢. The cost of generation of the renewable
energy is assumed to be zero. Also, we denote ppax =
max;en P; and gmax = MaXien Gi-

The objective of the controller is to design the system
parameters so as to minimize the time average cost of con-
ventional generation within the grid subject to power network
and storage operation constraints:

7 Z e Z o
s.t. Constralnts (1), (2), (6) — (10),
{H,[t), Yilt], Gilt], 6:[t] 17 .

We denote the minimum time average cost of (12) over all
feasible control policies by fuin. The expectation of the
cost function is taken with respect to the randomness of
the renewable energy generation. Problem (12) is essentially
a stochastic dynamic program. Solving this problem using
conventional DP based techniques can be computationally in-
tractable, especially for large-scale power networks. In the next
section, we will apply the technique of Lyapunov optimization
(cf. [26]) to develop a low complexity online algorithm for
Problem (12).

Jmin = min (12)

Variables:

III. LYAPUNOV OPTIMIZATION FOR POWER NETWORKS

In this section, we propose the LOPN (Lyapunov Optimiza-
tion for Power Networks) algorithm that applies Lyapunov
Optimization for storage operation in Power Networks. We
show in Theorem 1 that LOPN is asymptotically optimal, as
the storage capacity increases to infinity.

In order to solve (12) using the technique of Lyapunov
optimization [18], we first introduce a relaxed version of this
problem where we ignore all the constraints associated with
the storage (i.e. the constraints in (4)-(7)):

T-1
o] N
Jmin = min ;goT;E{Zi_lci(Gi[tD} (13)
s.t. hm—ZIEZ" i=1,...,N,

T—oo T
Constralnts (1), (3),(8),(9), (10).

The optimization problem (13) is a relaxed problem of the
original problem in (12). In the relaxed problem, the finite
sized battery has been relaxed with an infinite sized energy
buffer. Further, the first constraint of (13) corresponds to the
stability of a virtual energy buffer that evolves according to
Eq. (2). The optimal value of Problem (13) is denoted by Gpmin-
Note that we must have Gmin < fmin-

In what follows, we solve the relaxed problem (13) using
Lyapunov optimization technique. Next we introduce some
parameters that will be tuned to ensure that the LOPN al-
gorithm designed for the relaxed problem is feasible for the
original problem (12). We first consider the Lyapunov function
associated with the virtual energy queues:

U= 3 (Bl - B,

We now examine the Lyapunov drift associated with WU[t],
which represents the expected change in the Lyapunov func-
tion from one time slot to the other:

Alt] =E[W[t + 1] - W[t] [ E[t]],

(14)



where the expectation is with respect to the random processes
associated with the system, given the energy queue-length
values E[t] = [E4[t],...,En[t]]. Using (2), we prove in
Appendix A that the Lyapunov drift is bounded:

N

Al < Co+E[ Y (Bl - B2 | ElE)]. 15)

i=1
where the expectation is over the possibly randomized action
Z[t], and C} < oo is a constant. We now add a scaled version
of the cost function VE| Zil C;(G;[t])] (where V is control
parameter which will be specified later) to both sides of (15).
Denoting Ay [t] = A[t] + VE[ I, Ci(G,]t])], we obtain

Avlt] < C

N
LB [ — B 201 + VEUGl)] | Bt (16)

i=1

We will refer to Ay [¢] as the modified Lyapunov drift.

According to the theory of Lyapunov optimization [26], the
control decisions during each time slot is chosen to greedily
minimize the bound on the modified Lyapunov drift (i.e., the
right hand side of (16)). The modified Lyapunov drift consists
of two components, the Lyapunov drift term A[t] and a scaled
version of the cost function VZZN:1 C;(G;[t]). Intuitively,
minimizing the Lyapunov drift term alone pushes the queue-
length of the virtual energy queue to a lower value. The second
metric Vzi]\il C;(G;[t]) can be viewed as a penalty term.
The parameter V' represents the trade-off between minimizing
the queue-length drift and minimizing the penalty function. A
higher value of V' gives greater priority to minimizing the cost
during the current time slot, at the expense of increasing the
size of the virtual energy-queue.

We note, however, that the control actions chosen by this
method may not be feasible for the original problem in (12).
Therefore, instead of directly minimizing the right hand side
(RHS) of (16), we minimize its modified version in the
following LOPN algorithm:

N N
min Y (Eift] — ES)ZPE] + VY Ci(Gilt]) (A7)
i=1 =1
N N
+a Z 1,4 z710>Emex + 3 Z L, i)+ 2z71<0
=1 =1

s.t.  Constraints (1), (3), (8),(9), (10),
where the expression 1 4 represents the indicator function:

1 if Ais true,
1a= .
0 otherwise,

and «, 0 are non-negative perturbation terms that are added
to ensure that the LOPN algorithm developed for the relaxed
Problem (13) is feasible for the original Problem (12). The
values of o, § and V are given in the statement of Lemma
1. We will use the superscript = to denote the solution to the
LOPN problem (17).

(18)

Lemma 1. If the parameters o, 3 and V are chosen as
o= (B — EM 4 P Y5 )PV S,
B = Yo min(Y", Yir)/(ni)?,
(pmax + Qmaxyvdsl'f:p) ’
then the decisions made by the LOPN algorithm are feasible
for Problem (12). In particular, we have

—

0< Eift] <E™, t=1,....T—1,

19)
(20)

Vi, (22)
where {m]}f;ll is a sequence of storage levels resulting
from the LOPN algorithm (according to the state evolution
equation (2)), under an arbitrary sample path of realized
renewable generation and system load.

Lemma 1 is proved in Appendix B. Lemma 1 shows that
by suitably tuning the control parameters «, 3 and V, the
LOPN algorithm can be made feasible for the original problem
(12). In the following theorem we establish the asymptotic
optimality of the LOPN algorithm.

Theorem 1. Suppose that the renewable generation and
system load at each bus are independent and identically
distributed (i.i.d.) random variables, and are also mutually
independent across buses in each time slot. The time average
cost function achieved by the LOPN algorithm satisfies

;T2 N - e
im — (G < f . =
i 3 X GG < Tt G @)
where C'is a constant. Further, if lim gew 00 E™ /ES'P = 1,
then the bound limgsuw o, C/V — 0.

Theorem 1 is proved in Appendix C. Theorem 1 shows
that the time average cost resulting from the LOPN algorithm
is within a bounded distance from the optimal value. In
Appendix D, we generalize Theorem 1 to the case with
Markovian renewable generation formulated in Section II.
We note from (21) that the parameter V' depends on the
maximum battery capacity E"P. Theorem 1 shows that if
lim geup 00 B /ESUP = 1, the LOPN algorithm is asymp-
totically optimal as the storage capacity grows large.

Remark IIL.1. The LOPN algorithm is computationally
simple because its decision making is based on only the
current storage level E[t]. We have further shown its asymp-
totic optimality in Theorem 1. However, for energy storage
devices with finite capacity, the LOPN algorithm could be sub-
optimal. For the rest of the paper we attempt to improve the
performance of LOPN by reserving a certain amount of energy
in the storage that may be used to meet the energy demand
in the next a few stages. In the next section, we propose an
alternative online energy storage management algorithm which
will be referred to as the Threshold based Energy Storage
Management (TESM) algorithm. ]

IV. THRESHOLD BASED ENERGY STORAGE MANAGEMENT
(TESM) ALGORITHMS

In this section, we will introduce two versions of the TESM
algorithm for the case without/with power network constraints.



In order to clearly illustrate the main idea of TESM, we first
consider the single bus case in Section IV-A. Then, in Section
IV-B we provide an extension of this algorithm in a more
general setting with power network constraints.

The key improvement of the TESM algorithms over LOPN
is to utilize forecast information on renewable generation
and energy load over a short time horizon to determine a
“threshold” on the storage level that the TESM algorithms
attempt to preserve.! The LOPN algorithm, on the other hand,
does not utilize any forecast information when making storage
operation decisions.

In each time ¢, the proposed TESM algorithms compute a
threshold value (on the storage level) based on the forecast
of the net demand over the next a few time slots. The TESM
algorithms then seek to preserve the storage level above this
threshold to meet the potential peak (net) demand within the
next a few time slots. For the single bus case, the TESM-SB
algorithm will do the following in each time ¢: i) if the storage
level in time ¢ is below the threshold, charge renewable and
conventional generation into the storage up to this threshold;
ii) if the storage level in time ¢ is above the threshold, withdraw
the storage to meet the net demand in time ¢ while maintaining
the storage level above the threshold.

We note that the TESM algorithms have a similar structure
as the optimal threshold policies characterized in the literature
that applies dynamic programming (DP) on the operation
of a single energy storage device [10], [13], [14], [15].
However, unlike DP based approaches, the decisions made by
TESM algorithms can be computed by solving simple one-
shot optimization problem(s); as a result, TESM algorithms
are much less computationally demanding than the optimal
threshold policies that have to be computed through backward
induction using a DP based approach. Further, the TESM-
PN algorithm proposed in Section IV-B could serve as an
effective heuristic policy that coordinates the operation of
multiple storage devices in a power network with random
renewable generation; indeed, no characterization on optimal
storage operation policies has been provided for this setting.

A. TESM-SB Algorithm for Single Bus Systems

Within this subsection, we focus on the single bus case with-
out the power network constraints (8)-(10). We will therefore
drop the subscript ¢ (that was used to denote bus 7 of a power
network) from all notation.

Before describing the TESM-SB algorithm, for the sake
of completeness, we briefly review the LOSB (Lyapunov
Optimization for Single Bus systems) algorithm proposed in
[18], [19]. The LOSB algorithm will be used as a benchmark in
our numerical results on single-bus systems (see Section V-A).
The LOSB algorithm can be derived using an approach similar
to that used for the LOPN algorithm, through establishing and
minimizing a bound on the modified Lyapunov drift (please
refer to [18] for the details). For the rest of the paper we
let ()7 = max{0,-}. In each time slot ¢, the LOSB solves

Note that state-of-the-art load forecasts could achieve high accuracy [22],
[10], [23]. Moreover, the accuracy of short term (1 — 12 hour ahead) forecast
of wind generation could be high, with only a few percent forecast error [24].

the following optimization problem to make storage operation
decisions:

LOSB: min (E[t] —¥)Z"t]+ VsgC(G[t])  (24)
st. max(Y[t],0) — G[t] < (=Lu[t]) T,
min(Y[t],0) + G[t] = (Lnt[t]) T,
=Yg < Y[H] < YR,
where o = E™* — Y, (25)
B — (nenYep™ + Yaie™ /nais)
o= (p+ qV3a™) - 0

Before proceeding to introduce the TESM-SB (single bus)
algorithm, we first provide some intuition behind it.

1) TESM-SB Algorithm - Intuition: Despite the asymptotic
optimality result established in [19] and Theorem 1, the LOSB
and LOPN algorithms are suboptimal when the storage capac-
ity is comparable to the maximum charging/discharging rate,
mainly due to the (possibly highly) suboptimal decisions these
two algorithms make when the energy level in the storage is
low and is comparable to the maximum charging/discharging
rate. The proposed TESM-SB algorithm seeks to improve the
performance of LOSB algorithm by modifying the decisions
LOSB makes when the storage level is relatively low, based
on the forecast information for renewable generation in the
next a few periods (which is usually available in practice).

Recall from (11) that the conventional generation cost is a
quadratic function of the net demand. As a result, to minimize
the total cost it is desirable to have a flat pattern of net demand
as the conventional generation cost in each time slot is convex
in net demand. In contrast to the LOSB algorithm that makes
decisions based only on the current net demand and storage
level, the proposed TESM-SB algorithm utilizes the forecast
on renewable generation and demand for the next a few (711.4)
time slots to determine a level of storage (what-we-call the
threshold) that will be preserved to reduce the high net demand
over the next 711 4 time slots.

The TESM-SB algorithm is formulated in Algorithm 1.

Algorithm 1 (TESM-SB Algorithm). In each time slot t,
compute the control decisions by performing the following
steps:
- Set N[t] =0, R[t] = 0.
cforn=t+1:t+Tp4 do
if E[Lya[n] | L[], X[1]] = (Luaa[t]) " then
N[t] = N[t] + 1.
R[t] = R[t] +E[Lua[n] | L[t], X[t] — (Lue[t])" -
end if
end for
- Define Ryin[t] = min {R[t], N[HY 2 /Nais } -
- if 0 < E[t] < Rminlt] then

N R S

~
S

ch E [t] )

max (Rmin t] — E[t], _Lnel[t])>7
G[t] = (Z"[t)/Nen + Lneelt]) " -

Z71t] = min (na Y, B -



11: else if Ryin[t] < E[t] < Rmin[t] + Y2 /145 then
12: if Lye[t] <0 then

13: ZMt] = min{ng, Y2, E™** — E[t], (— Lue[t]) T},
14: G[t]=0.

15: else

16: Z"t] = —min {n?;ax/ndis, E[t] — Ruminlt],

17: (Lnea[t]) T},
18: G[t] = (Z"[t]ngis + Luult) ™.

19: end if

20: else

21: Follow the LOSB algorithm.

22: end if

2) TESM-SB Algorithm Description: We now provide some
description for the TESM-SB algorithm.

e Steps 1 — 4 count the number of time slots from time
t+ 1 to t + Tpa during which the forecast of the net demand
exceeds the current net demand Ly [t]. N[t] denotes number
of such time slots within the next 71 4 time slots. In Step 35,
RJt] records the sum of the difference between the forecasted
net demand in each of these N[t] time slots and the current
net demand Ly [t].

e In Step 8, the algorithm computes the threshold
Rumin[t], which is the minimum of two quantities: R[t] and
N[t]Ygnax /g, the latter of which is the maximum amount
of energy that could be withdrawn from the storage in the
N|[t] time slots. As we will see in the following, the algorithm
attempts to reserve Rpyn[t] amount of energy in the storage
at the beginning of time ¢ + 1 to reduce the (possible) peak
net demand in the next 71 time slots.

e Steps 9 — 10 consider the case where the storage level
in time ¢ is less than the threshold Rp,y[t]. In this case,
the algorithm attempts to charge the storage up to the level
of Ruin[t]. In Step 10, the algorithm first uses the excess
renewable generation (when L,;[t] is negative), and then the
conventional generation to charge the storage. We note that if
there is much excess renewable generation, the storage level
at the beginning of ¢ + 1 could be higher than R, [t].

e Steps 11 — 18 consider the case when the storage level
is between Ruin[t] and Rumin[t] + YR /n4is. In this case, the
storage is above the threshold Ry, [t] so there is no need to
use conventional generation to charge the storage. If the net
demand is positive in time ¢, the storage will be discharged
to fulfil the demand, while maintaining a storage level no less
than Ry [t].

e Steps 20 — 21 consider the case when the storage level
is greater than Ryuin[t] + Y**. In this case, the energy level
will be above the threshold Ryi,[t] regardless of the charg-
ing/discharging action taken in time ¢. The LOSB algorithm
is implemented.

B. TESM-PN Algorithm for Power Networks

We extend the TESM-SB algorithm to the case with power
network constraints. The new algorithm shares the same foun-
dation as TESM-SB. In what follows we will discuss how
the new TESM-PN (power networks) algorithm mimics the

TESM-SB algorithm step by step. For notational convenience,
we define L[t] = {L;[t]}Y, and X[t] = {X;[t]} V.

Steps 1 — 8 of Algorithm 1 are mimicked by Algorithm
2, which computes the sum of the aggregate net demand (in
excess the current aggregate net demand ). L; ne[t]) across
all the buses for the next 71 o time slots.

Algorithm 2. /: N[t] =0, R[] = 0.
22 forn=t+1:t+ T4 do
3 i 3 ElLigaln] | LIt X)) = (3, Lie[t]) " then
4 N[t] = N[t] + 1,

5.
R[t] = R[t] + ZzE[LGet[n] | L[tLX[tH
- (Zz Lz}net[t])jL .
6: end if
7: end for

8 Rumin[t] = min(R[t], N[t] 32, Y35~ /miais)-

Next, we show how to generalize Steps 9 —21 of Algorithm
1 to incorporate power network constraints.

e Steps 9 — 10 of Algorithm 1 can be mimicked by solving
the following problem:

min  0.5%  Gilt] = > Yi[t]

ZYi[ﬂ < max {Rmin[t] _ ZEi[t]v
=3 Luldl} @70

Constraints (1), (7) — (10). (27d)

(27a)

(27b)

We observe from (27a) that the storage charging operation
(i.e. Y;[t] > 0) reduces the value of the objective function.
As a result, an optimal solution to Problem (27) attempts to
charge the storage up to the an aggregate level of Rpyinlt],
subject to the charging rate constraint in (7) and power network
constraints in (8)-(10). Note that the co-efficient of the term
>; Gi[t] in (27a) is chosen to be in the interval (0, 1) to ensure
that? i) all excess renewable generation is utilized to charge the
storage, and ii) if excess renewable generation is not sufficient
to bring the aggregate level of storage to Ry, [t], then energy
from conventional generation will be used.

e Steps 12 — 14 of Algorithm 1 are mimicked by solving
the following problem:

min 2) " Gilt] - > Yift] (28a)

st. 0<Yi[t], Vi (28b)
+

SVl < (=D Liwalt)) . @80)

Constraints (1), (7) — (10). (284)

2 Although unlikely, the choice the co-efficient associated with the term
>~; Gi[t] may influence the optimal solution(s) to the Problem (27) because
the injection of conventional generation at certain bus(es) may have an impact
on the total amount of renewable generation that could be charged into the
storage. Our numerical results in Section V show that the performance of
TESM-PN is not sensitive to the choice of this co-efficient. Similar arguments
apply to the co-efficients in the objective function of Problem (28).



Here we consider the case where the net demand in time ¢
is non-positive at every bus and the aggregate storage level is
above the threshold Ry, [t]. In this case, optimization problem
(28) attempts to charge as mush as possible excess renewable
generation to the storage devices, subject to the charging rate
and power network constraints. The co-efficient of the term
>, Gi[t] in (28a) is made larger than 1 to ensure that minimum
conventional generation is utilized to charge the storage.

Algorithm 3 (TESM-PN Algorithm). During each time
slot t, compute the control decisions by performing the
following steps:
Follow the steps of Algorithm 2.
if0< El E; [t] < Ruin [t] then

Solve (27) to obtain the control decisions.
else lf Rmin[t] S Zz E’L[t] S Rmin[ ] + Z
then

if L; yei[t] <0 for every i then

max
i,dis /771 dis

5

6: Solve (28) to obtain the control decisions.
7: else

8 Solve (29) to obtain the control decisions.
9: end if

10: else
11: Follow the LOPN algorithm.
12: end if

e Lastly, steps 15 — 18 of Algorithm 1 can be mimicked by
solving the following problem:

min ZY +ZG —ZZH ] (29)
Z Yi[t] > Ruinlt] Z Eilt (29b)
Constramts (1), (6) — (10) (29¢)

Here we consider the case where the net demand in time ¢
is positive at some bus(es) and the aggregate storage level is
above the threshold Ryn[t]. In (29a), the co-efficient of the
term . H;[t] (cf. the definition of H;[t] in (10)) is made less
than —1 to ensure that renewable generation is first used to
fulfil the demand. Constraint (29b) ensures that the aggregate
storage level does not fall below the threshold R, [t] after
discharging the storage to meet the demand. If there is still
positive net demand at some bus(es), conventional generation
is deployed to meet the demand.

The TESM-PN algorithm is formulated in Algorithm 3,
where in Steps 10 — 11 the LOPN algorithm is implemented
if the aggregate storage level in time ¢ + 1 is guaranteed to
exceed the threshold Ry, [t] regardless of the (discharging)
action taken in time f.

V. NUMERICAL RESULTS

In this section, we perform numerical experiments to com-
pare the performance of the proposed algorithms with the
LOSB algorithm (originally proposed in [18], [19]). In Section
V-A, we numerically compare the performance of LOSB and
TESM-SB algorithms in a single bus system. In Sections V-B
and V-C, we compare the performance of LOPN and TESM-
PN on the IEEE 6-bus test system and the IEEE 9-bus test
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Fig. 1: An example of the hourly system load of a day.

system, respectively. In Sections V-A and V-B, we let p = 30
and ¢ = 0.2 in the generation cost function (11); in Section
V-C, we consider a different generation cost function with
p =20 and ¢ = 0.25.

Throughout this section we consider the hourly system load
shown in Figure 1, which has a peak demand of 160 MW and
an average demand of 100 MW. For simplicity, we ignore the
capacity constraint of conventional generation in (1), and let
charging/discharging efficiencies 1; cn = 7;,4is = 1, for every
bus 1.

For each parameter setting we run the tested algorithm for
T = 10000 time slots to compute its time average cost. For
both the TESM-SB and TESM-PN algorithms, the look ahead
interval T} A is set to be 3. In each time ¢, both the TESM-SB
and TESM-PN algorithms use the deterministic demand and
the expected renewable generation (in the next 3 time slots)
to compute the threshold Ry [t].

A. Comparison Between TESM-SB and LOSB Algorithms

We compare the performance of the TESM-SB and LOSB
algorithms under two different parameter settings. In Setting
1, the average renewable generation equals 100% of the
average demand. We generate a sequence of independent and
identically distributed (i.i.d.) Gaussian random variables with
mean value of 100 and standard deviation of 30 to present the
random renewable generation. If the realized random variable
happens to be negative, we will modify it to be zero. The
storage charging/discharging rate limit is held constant at
Ya® = Yuar = Ymax = 10 MWL

For the TESM-SB and LOSB algorithms, we plot their time
average cost (of conventional generation) as a function of the
maximum storage capacity in Figure 2a. We note that TESM-
SB always achieves a lower time average cost than LOSB;
the gain is more significant when the storage capacity E™2*
is relatively low. For example, when E™#* = 30 MWh, there
is approximately 5% cost reduction resulting from TESM-SB.
As the ratio E™a* /Y™2% orows large, the time averaged cost
of LOSB converges to the optimal value [18], [19]. Numerical
results in Fig. 2a show that TESM-SB algorithm also achieves
asymptotically optimality and the performance of these two
algorithms are nearly identical for large storage sizes. These
observations can be explained as follows. With (relatively) low
storage capacity, the energy level in the battery is typically
low. Hence the energy “preserved” by the TESM-SB algo-
rithm based on the forecast information becomes crucial in
reducing peak demand. As a result, the TESM-SB algorithm
outperforms the LOSB algorithm in this regime. In contrast,
with large storage capacity and high renewable generation
penetration, the energy level in the battery is usually high,
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Fig. 2: Time average cost resulting from LOSB and TESM-SB.

and often exceed the threshold levels defined in the TESM-SB
algorithm. As a result, the TESM-SB algorithm usually takes
the same action as LOSB and achieves similar performance
as the LOSB algorithm.

We now consider Setting 2, where the average renew-
able generation equals 60% of the average demand, and the
maximum charging/discharging rate Y ™% scales with storage
capacity with E™a*/Y™ax — 6. We generate a sequence of
1.i.d. Gaussian random variables with mean of 60 and standard
deviation of 20 (that are truncated to be non-negative) to
present renewable generation. The time average costs of LOSB
and TESM-SB are compared in Figure 2b. The performance
gain resulting from TESM-SB increases with the storage
capacity. Since Setting 2 is in the non-asymptotic regime (note
that the ratio E™?* /Y™2 is fixed to 6), both the LOSB and the
TESM-SB algorithms may not achieve asymptotic optimality.
Under the TESM-SB algorithm, larger storage capacity (and
hence larger discharging capacity) provides more flexibility
to flatten the system load profile and helps to reduce the
generation cost; for example, when Ey .« = 200 MWh, the
TESM-SB leads to more than 5% cost reduction compared to
LOSB.

B. Comparison Between TESM-PN and LOPN Algorithms in
an IEEE 6-bus Test System

In this subsection, we compare the performance of the
LOPN and TESM-PN algorithms in an IEEE 6-bus test system
shown in Figure 3 (cf. pp. 104 of [25]). In our simulations,
bus 2 is equipped with a conventional generator with no
capacity limit. Loads are positioned at buses 4 and 5: the
demand at each bus is depicted in Fig. 1. Buses 4 and 6 are
equipped with renewable generators and energy storage with
the same capacity E™*. The renewable generation at bus 4 is
independent of that at bus 6. We will consider the two settings
(on renewable generation and maximum charging/discharging
rates) formulated in Section V-A.

I—> Load

Bus 4

Fig. 3: An IEEE 6-bus test system with renewable generation
and energy storage.
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Fig. 4: Time average cost of LOPN and TESM-PN for an
IEEE 6-bus test system shown in Fig. 3.

We plot the time average cost (of conventional generation)
resulting from LOPN and TESM-PN as a function of the
storage capacity 2™ in Figures 4a and 4b under the Setting
1 and 2, respectively. Again, we observe from Fig. 4a that
the TESM-PN algorithm reduces the cost of LOPN by about
5% when the storage capacity E™®* = 30 MWh. As the
ratio E™a*/Y™Ma% orows large, the time average cost of
LOPN converges to the optimal value (cf. Theorem 1). It
then becomes straightforward from Fig. 4a that TESM-PN
algorithm also achieves asymptotically optimality.

Similar to the single-bus case presented in Fig. 2b, we
observe from Fig. 4b that the performance gap between the
two algorithms increases with the storage capacity. when
Eax = 200 MWh, the TESM-PN results in about 5% cost
reduction compared to LOPN.

C. Comparison Between TESM-PN and LOPN Algorithms in
an IEEE 9-bus Test System

In this subsection, we consider an IEEE 9-bus test system
shown in Fig. 5. In the considered 9-bus power system, buses 1
and 2 are equipped with two identical conventional generators
with p = 20, ¢ = 0.25. Again, we use the demand profile
depicted in Fig. 1 at the load buses 7, 8, and 9. Buses 4, 5 and
9 are equipped with renewable generators and energy storage
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Fig. 6: Time average cost of LOPN and TESM-PN for the
IEEE 9-bus test system shown in Fig. 5.

with the same capacity E™?*. The renewable generation at
different buses are assumed to be mutually independent.

The two subplots of Fig. 6 present the numerical results for
the two different parameter settings considered in Section V-A.
The numerical results presented in Fig. 6 look similar to those
shown in Fig. 2 and Fig. 4. For Setting 1, the maximum charg-
ing/discharging rates do not scale with the maximum storage
capacity, and both the TESM-PN and the LOPN algorithms
achieve asymptotic optimality; when the storage capacity is
relatively small, on the other hand, TESM-PN outperforms
LOPN. For Setting 2, the maximum charging/discharging rates
scale with the maximum storage capacity, and the performance
gap between TESM-PN and LOPN increases with the storage
capacity.

VI. CONCLUSIONS

In this work, we studied the operation of multiple storage
devices in a power network with significant generation from
intermittent renewable sources. We proposed a Lyapunov
optimization based online algorithm — the LOPN algorithm.
We showed that the LOPN algorithm always makes feasible
storage operation decisions subject to DC power network
constraints, and achieves asymptotic optimality as the storage
capacity grows large. To further improve its performance for

the case where the storage capacity is limited, we proposed a
look-ahead policy (the TESM algorithm) that uses the forecast
information (on renewable generation and system load) over
the next 74 time slots to compute a threshold on the
storage level. If possible, the algorithm will keep the storage
level above this threshold to meet the potential peak demand
(for conventional generation) within the next 7y 4 time slots.
Numerical results showed that under all the simulation settings
considered in this work, the TESM algorithm outperforms the
LOSB and LOPN algorithms.
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APPENDIX A : PROOF OF (15)

Recall the evolution of the energy level in the battery as
specified in (2). Subtracting E°"P on both sides of (2), we
obtain

E;[t +1] — E°"° = E,[t] — E°"° + Z]'[t]. (30)
Squaring both sides of the equation (30),
(Bt + 1] — E*"P)?
= (Eft] - B + Z][1)?
= (Eilt] — B*®)? + (Z][t])* + 2(Ei[t] - ™) Z][t]. (31)
Dividing both sides of (31) by 2, we obtain

1 1
2:7E7:t _Esup2 -
S(Bift] - B)2 +

+ (Eilt] — EP) Z]'[t].

LBt +1) - B

; (Z10)?

(32)
Using (3), the term (Z]'[t])? can be bounded as

1 1

S (210 < 5 max ((37Yar 2. (Ve fg)?) 2 Co.

2 K3
(33)
Rearranging (32) and using the bound (33), we obtain
(Bilt +1] - B*P)2 — (B,[t] - B%)? < 4
+ (Eilt] - E*)Z71L]. (34
Summing (34) over ¢ = 1,..., N, and taking the conditional

expectation on both sides given E[t], we obtain the bound in
(19).

APPENDIX B: PROOF OF LEMMA 1

Lemma 1 will be proved in the following two main steps.
Step 1: In this step, we establish the following upper bound
(on storage level) under the LOPN algorithm, i.e.,

—

E;lt] < EP* Vi, VieN. (35)

A key result in Step 1 is to show that for storages located at
bus ¢ € A/ which satisfy

—

EP —mien Y™ < Eilt] < B,

the action taken by the LOPN algorithm can be bounded by

—

0< Z0[H] < EP™ — E,t].

Step 2: In this step, we establish the following lower bound
(on storage level) under the LOPN algorithm, i.e.,

VieN.

—

Et]>0 V¢, (36)

A key result in Step 2 is to show that for storages located at
bus i € A/ which satisfy

0 < Eift] < YG8/ni dis,
the action taken by the LOPN algorithm can be bounded by

—_

Bl <Z <o.

Combining Step 1 and Step 2, we conclude that the storage
levels (resulting from the LOPN algorithm) satisfy

Vt, VieN,

—

0 < Eft] < EM™ (37)

which implies that a solution of the LOPN algorithm is feasible
for the original problem in (12).

A. Proof of Step 1:
Let us partition the set of buses A as follows:

i€ Ny, if B —niaYia < Eilt] < B,

—

i ¢ N1, if Ejft] < B — n; Y00,

(38)

where N7 C N. For a bus i ¢ N7, the energy level during
the next time slot can be bounded as

—

Eilt + 1] < Ei[t] + mienYien™ < B, (39)

where the first inequality is due to the battery charging
constraint and the second one follows from (39). Therefore, we
are only concerned with the batteries located at buses i € N7,
since charging them may violate the upper bound E;***.

In the rest of this subsection, we argue that for every bus i €
M, the control action tﬂk\en by the LOPN algorithm sgtljﬁes
0 < ZM[t] < EP** — E;[t]. This result implies that E;[t] <
E™a for i € N7.

Recall that the LOPN algorithm chooses control actions that
minimize (17). We will prove the above claim by showing
that for buses i € Ny, a control action such that Z]'[t] >
Erax — E;[t] will result in a higher objective value of Eq.
(17) than the action Z'[t] = 0.

We first rewrite the objective of the LOPN algorithm in (17)
as

Y (Eilt) = BV Z[] +V Y CilGilt])

1EN 1EN
a Z L, (+z714)>Emex + B Z g, g+z7<0-  (40)
1€EN 1EN

If Z'[t] > 0, then the energy required for this operation
(charging the storage at bus ¢) can be supplied by one or more
of the following sources:

1. Energy from renewable generation.



2. Energy from conventional generation.
3. Energy from discharging of a battery located at bus k # i.

Note that source 1 incurs zero cost in (40) whereas sources 2
and 3 incur positive cost in the objective function (40), i.e.,

VCL(GRIt]) > 0, for Gp[t] >0, ke N,  (41)
(Bt] — ES**)Z0[t] > 0, for ZI[t] <0, ke N. (42)

Recall that the LOPN algorithm chooses control actions that
minimize (17). Therefore, a necessary condition for the LOPN
algorithm to charge the battery located at bus ¢ € N7 is

(Ei[t] — E*®)Z'[t] + ol <0.

Ei[t)+27[t]>Emax = (43)

In other words, if condition (43) is not satisfied, the control
action of the LOPN algorithm will not charge the battery bus
1, because such an action incur a higher cost than the action
Z't] = 0.

In what follows, we will show that for ¢ € /_./\\/ 1, the condition
(43) is not satisfied whenever EM®* — E;[t] < Z'[t] <

Nich Yy on - First, let us rewrite the indicator function in (18)
as

L&+ 201> B

B {0 if 0 < Z[t] < B — Ej[t], (44)

—

1 if Emx — B[] < Z7[t] < mien Y20,

i,ch

We consider the first case of (44), ie., 0 < Z'[t] <
Emax — E;[t]. We will show that this is a feasible action
under the LOPN algorithm. Note that when 0 < Z![t] <

Emax — E;[t], the expression on the left hand side (LHS) of
(43) can be bounded as

—

(Erl [t} - ESHP)Z’? [t] + OéILE/'LF}FZ? [t]>E2"ax
= (Eilt] - E***)Z][{]
<0, 45)

—

where the last inequality is true since E;[t] < EMa* < ESUP,
Therefore, it is feasible for the LOPN algorithm to choose a
control action such that 0 < Z'[t] < E** — E;[t] fori € N;.

We now consider the second case of (44), ie.,
Erex — Eilt] < Z't] < ;Y 2*. We will show that the
LOPN algorithm does not chgclse’ such an action.

Note that when E[*** — Ei[t] < Z][t] < niaY; 5, the
expression on the LHS of (43) can be bounded as

(Bilt) = B Z01H] + o gy gy o

= (Bilt] - B")Z][t] + o
(@)

> (Bilt] — B )i + a

(b) max max S max

> (B = mianYien — B )Y + a (46)
©

> 0. (47)

—

where inequality (a) is true since E;[t] — E*"P < 0 and

Zt] < mienY™, inequality (b) holds because Ejft] >

B — n; Y, and we show inequality (c) in the fol-
lowing. Substituting for the value of « defined in Lemma 1

in the RHS of (46), we obtain
(B = nienYien™ — E™P)mienYiien™ + o
= (B = mien Y™ = EPP)mi,en Y™
+ (Esup _ Einf =+ ncsklllp}/:t‘lup)nst\llpyv;up

max max Ssu max
> (E™™ = i ch i,ch — E*") 1 cn i,ch

+ (B = EM g YR maYim s (48)
where in (48), we have used the fact that m,Cth‘fgﬁx <

nzllllpygshup and ESYP — Einf + n:}lllpyslup 2 0. Since Ezmax Z
E™ and 3 PYSMP > ;o YUY, Eq. (48) can be simplified

i,ch
as
RHS of (48)
= (B — eI — B 4+ g Y man Vi
> 0.

This proves inequality (c) in (47).

It follows from (47) that condition (43) is violated. Hence,
the LOPN algorithm will not take an action such that
Emax — Bilt] < Z1t] < Nich Y eh -

From the above arguments, we conclude that for every i €
Ni, we have 0 < Z!'[t] < E™** — E;[t], and hence

Eift+1] = Eff) + Z]

—

< Eilt] + B -
— B, (49)

The bounds derived in (45) and (49) imply the desired result
in (35).

Ei[t]

B. Proof of Step 2:

We now prove the lower bound, i.e.,

—

Elt]>0 Vi, VieN. (50)

Again, we partition the set of buses A as
i € N, if Bilt] < Y5 /i, (51)
i ¢ Na, if Eift] > Y% /i g, (52)

where No C N. For every i ¢ N, the storage level in the
next time slot ¢ + 1 can be bounded as

— -

Eilt + 1] > Ej[t] — Y4 /niais > 0, (53)

where the first inequality is due to the storage discharging
constraint and the second one follows from (52). In the rest
of the analysis, we focus on storage at bus i € N>.

Next, we will prove the following statement, which will
enable us WVC the desired result in this step, i.e., for every

ie€Ny, Eift+1]>0.

For a battery located at i € N3, the amount of energy
discharged under the LOPN algorithm is bounded by — E;[t] <
Z't] <O0.

Through a similar approach to that of Subsection A, it can
be shown that for every bus ¢ € N5, a control action such



—

that Z]'[t] < —E;[t] will result in a higher objective value of

—

Eq. (17) than the action Z'[t] = 0. The details of the proof
are omitted for brevity. Since the LOPN algorithm chooses
control /ac\tions Lhit minimize (17), we conclude that for ¢ €
No, —Ei[t] < Z'[t] < 0.

—

APPENDIX C: PROOF OF THEOREM 1

Recall that in order to solve the stochastic optimization
problem (13) using the Lyapunov optimization technique [26],
the control decisions during each time slot is chosen to mini-
mize the bound on the modified Lyapunov drift (i.e. right hand
side (RHS) of (16)). However, in order to ensure feasibility
of the control decisions for the original problem (12), we in-
troduced the perturbation parameters alpg, ()4 77> pmex and
Ble, g+ z71t]<o in (17) while computing the control decisions.

To prove Theorem 1, we will compare the time average
cost resulting from two algorithms: the first algorithm chooses
the action that minimizes the RHS of (16) and the second
algorithm is the LOPN algorithm formulated in (17) (with
perturbation terms in the objective function).

Let us first consider an algorithm under which the control
decisions are chosen to directly minimize the RHS of (16):

LOPN-R: min » (E[t] - E*P)Z]'[t]
ieN
+V ) Ci(Gilt]) (54)
ieN
s.t.  Constraints (1), (3), (8), (9), (10).

The algorithm is abbreviated as LOPN-R (LOPN-relaxed). Let
us denote the solution corresponding to the LOPN-R algorithm

by the superscript -. Further, let us define

froenglt] = Y (Eilt] — ESHP)% +Vy Ci(Gil)

ieEN ieEN
(55)
froelt] = S(El] - B Z][] + V'S Ci(Gilt)).
iEN PEN
(56)

Herein, fropnr[t] is the minimum value of the objective
function of (54) and fropn[t] is the value of the objective
function of (54) with the solution of the LOPN algorithm.

Next, we present an intermediate lemma which will be
useful in the proof for Theorem 1. The following lemma
compares the two cost functions, fropnr[t] and froen[t], for
each time slot .

Lemma 2. The following bound holds for every t:
froenlt] < froenrlt] +Co V't

where Cs is a bounded constant. Further, as E5"P — oo, if
lim geur 00 B/ ESP = 1 then limgeup o0 Co/E5'P = 0.

(57)

Proof. We consider a time ¢t during which both the sets N}
and N3 are empty. It is straightforward to check that in this
case, the control decisions under both the LOPN and LOPN-R
algorithms are exactly the same, and therefore

froen[t] = froenr[t]- (58)

Suppose that the sets N7 and A5 are non-empty. Further,
we are only interested in the time slot ¢ during which

ZMNtl, ZMNt) > 0, i € Ny and Z]'[t], Z'[t] < 0, i € Na.
During these time slots, the control decisions under LOPN
and LOPN-R algorithms may be different, because according
to Lemma 1 we have,

0< ZJ[f] < B™* — B, VieN,  (59)
—E;}t] < Z'[ <0, VieNo.  (60)
whereas
0< Z7[1] < men VI, vieN, (6D
= Y4 /i ais < ZM <0, VieN,. (62)

In rest of the cases, the control decisions under the two
algorithms will be the same. In what follows, we claim that
when the sets N7 and N> are non-empty and E5'° — oo
and limgeup_, o, B J/E®"P = 1, then the control decisions
under LOPN and LOPN-R algorithms will only differ in
Z"Nt], i € Ny and Z][t], i € N>. The control decisions
of the conventional generation (G;[t], G;[t] i € N) will be the
same under the two algorithms. The claim can be justified as
follows: Consider the factors that can cause G;[t] and G;[t] to
be different:

o The charging limits for ¢ € A; under the LOPN and
LOPN-R algorithms in (59) and (61) are different.

— However, in Lemma 3 (which is presented at
the end of this proof), we will show that if
lim gsup s o0 Ei“f/ESulD = 1, then energy from the
conventional generation will not be utilized to charge
the battery located at bus ¢ € A7 under both the
LOPN and LOPN-R algorithms. T herefo%his will
not result in the decisions G;[t] and G;[t] being
different.

o The discharging limits for 4 € N3 under the LOPN and
LOPN-R algorithms in (60) and (62) are different.

— However, recall from the proof of Lemma 1 that
energy will be discharged from the batteries located
at 7 € N only under two conditions: i) The energy
that is discharged must be utilized to charge the
battery located at bus k¥ € A. ii) Energy cannot
be supplied to bus k € N from the renewable/
conventional generation (due to the NPF constraints).
There once again, we can conclude that this will not

—

cause the decisions G;[t] and G;[t] to be different.

From these observations, we can conclude that

Gi[t] = G,;lt] ieN. (63)
We now examine at the difference between gmin [t] and fumin[t]-
First consider the difference between the terms corresponding

to the battery charging/ discharging decisions for i € Nj.



Through a similar approach to that of Appendix A, we can
show that

— IMII(E™ + g PYE™ — B g PYe™
< Y (Eilt] - B (271 - Z7H)
1E€ENT

< NGBS + P Ya — B vars. (64

Next consider the difference between the terms correspond-

ing to i € N. Once again, using arguments similar to

that of Appendix A, we can show that if 73" < 1 and
sup sup sup inf\2

ES (1/ngs” = men) = Yas '/ (nais )? then,

S (Bl - B (2T - Z]]H]) = o.
i€N2
Else if 750 < 1 and E*' (1/n50P — %) < Y29 /(ninf)2,
or if i = n3P =1 then,
— NG [YZP min(YP, V) /(i)

S (Eilt] - B (27T - Z7TE)
i€EN2

(65)

IN

< IN2[H)[Y " min(YE™, YE)/ (ng)®. (66)
Using (63), (64) and (66), we conclude that
—C3 < fropnr[t] — froew[t] < Co Vi, (67)
where
Co = IMI[HI(E™ + g "Y' — EM)niP Y™
+ N[V min(YE™, YEi) / (naiy)?. - (68)
O

In order to complete the proof of Lemma 2, we present
Lemma 3 and its proof in the following:

Lemma 3. Suppose that limpgsuww oo B /ES"P = 1. Under
the LOPN and LOPN-R algorithms, energy from the conven-
tional generation will not be utilized to charge the batteries
located at bus i € N7 (cf. the definition of N7 in Eq. (39)).

Proof. Consider a control decision under which 0 < Y; <
Y™ units of energy from conventional generator is used to
charge battery located at bus ¢ € 7. A necessary condition for
the LOPN and the LOPN-R algorithm to choose this control
action is given by

(Ei[t] — E®"P)nienYi + VCi (L con + Yi) <0, (69)

where £ = 1,...,N and where Lj cn > 0 represents the
amount of energy drawn from the conventional generator for
purposes other than charging the battery located at bus ¢ (e.g.
to satisfy the load etc.). Since FE;[t] > E*™ —n; on Y01 for
i € N7, the LHS of (69) can be bounded as

LHS of (69)
> (B = mianYien — E¥P)nienYi + VCr(Lkcon + Yi)
> (E™ = n; Y — E™)n; Y + VCi(Yi), (70)

where the second inequality follows from the fact that
Ci(Licon +Yi) > Cr(Y;) for Ly con > 0. Substituting the

expression for the cost function Cy () from (11) and V' from
(21) and using the fact that E}"%* > E™  we obtain

(70) > (E™ — i an Y™ = E™P )i anYi
(E* — Yo /o) (prYi + aY?)
(Pmax + Gmax Yy ") '
We focus on the RHS of (71). As E®'P — 00, since
lim geup 00 B /ESP = 1, the RHS of (71) is nonnegative.
Hence, the condition in (69) is not satisfied, and this proves
the result of the lemma. O]

(71)

Proof of Theorem 1

We now proceed to state the following result whose result
will be used in the proof of Theorem 1. Let us focus on the
relaxed problem defined in (13). It can be shown that the
optimal solution to the relaxed problem can be obtained by
a stationary and randomized policy II that achieves

N
E[ Y Ci(GTH)] = g, V. (72
i=1
and satisfies the following constraints:
E[(Z][t))"] =0, VieN, Vit (73)

Pj5lt) = Bi (071t - 07 [t]), V(i,5) €L, V¢,

%,]

Llt] = H'] = G + Y + Y P =0,i € N, ¥,

i
H'[t] < X;[t], VieN, Vt,
G <Gt <GP, VieN, Vt,
— Y < Y[t < Y, VieN, Vi,

- P < PIH) < PO, V(i) € L, Vit

The existence of such a policy can be proved by using the
Caratheodory theorem, through a similar approach to that of
the arguments in [26]; the details are omitted here for brevity.

We are now ready to prove Theorem 1. Recall the bound
on the modified Lyapunov drift derived in (15). Let us rewrite
the bound with the control decisions of the LOPN algorithm
as follows:

AV[t] < 01
t+E [ > B - B ZIH] + VCi(Gilt))] |E[t]}. (74)
1EN

Using the result of Lemma 2 in the RHS of (74), we obtain

Avlt] <Cy+ Oy

+E[ Y [(Bilt] - B 2] + VCi(Gilt))] Bl
ieN
(75)

where C is defined in (68). By definition, the control actions

Z'[t] and G,[t] minimize the RHS of (75) over all feasible
control actions. Choosing any other control action must yield
a lower value of the final term in (75). Comparing it with



the control action chosen according to the stationary and
randomized policy of (72), we obtain
Ayft] <Oy + Cy
+E[ Y (Bl - )27 H)" + VUGl Bl
ieN
= C1 + Co + Vg, (76)

where the result of (76) follows from (72) and (73). Taking the
expectation on both the sides of (76) over E[t], and summing
fromt=0,...,7 — 1, we obtain

E|(T) — \11(0)} + % z_: E [ZN_l cz@ﬁ)]
t=0
< T(Cy + Cs) + TV G, a7

Rearranging the terms and dividing both sides by TV, we
obtain

I e

min 7
- |4 vT (78)
Taking lim T' — oo, since E[¥(0)] < oo, we have
T-1 ~
1 N — C
im — N < T el
A 2 E X C@H] sty 09

where C' = C’l +C’2. Further, since fimin < Gmin, We conclude
that

3 S22 [5 cii)

Further, from the definition of C5 in (68) and the definition
of V in (21), it can be seen that when E*"'P — oo, since
limpeur 0o E™/ES"P = 1, we have C/V = (C14Cs)/V —
0. This proves Theorem 1.

C
< i —.
< fimin + v (80)

APPENDIX D: LOPN ALGORITHM UNDER MARKOVIAN
SYSTEM DYNAMICS

Finally, we generalize the performance bound for the LOPN
algorithm (established in Theorem 1) to the case where the
renewable energy and system load vector {X;[t], L;[t]}Y, is
Markovian.

Theorem 2. Suppose that the renewable energy and system
load vector { X;[t], L;[t]} )Y, evolves according to a finite state
irreducible and aperiodic Markov chain. The following results
hold for the LOPN algorithm.

1. The energy level in the batteries under the LOPN algo-
rithm can be can be bounded as

—

0< Eift] <E™,  i=1,...,N, (81

and the control decisions of the LOPN algorithm are
feasible for problem (12).

2. The time average cost function achieved by the LOPN
algorithm satisfies

i L6 [ c@in) < T oo (2
Jm 73 X GG < co (5.
(52)

where C is the same constant as the one used in Theorem
1, and limpsw_ oo VO(1/V) = K with K being a
constant. Further, if lim gsup_, o Einf/ESup =1, then the
bound CO (1)V) — 0 as E*™ — oo,

Proof. Statement 1 of Theorem 2 follows from Lemma 1.
Recall that Lemma 1 is a sample path result and does not
make any assumptions on the random processes governing
the renewable energy and load (whether i.i.d or Markovian
process). Statement 2 of Theorem 2 can be proved using the
T slot drift technique developed in Theorem 2 of [27]. O
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