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THE EFFECT OF CRYSTAL SYMMETRIES ON THE LOCALITY OF1
SCREW DISLOCATION CORES∗2

JULIAN BRAUN† , MACIEJ BUZE† , AND CHRISTOPH ORTNER†3

Abstract. In linearised continuum elasticity, the elastic strain due to a straight dislocation line4
decays as O(r−1), where r denotes the distance to the defect core. It is shown in [8] that the core5
correction due to nonlinear and discrete (atomistic) effects decays like O(r−2).6

In the present work, we focus on screw dislocations under pure anti-plane shear kinematics. In7
this setting we demonstrate that an improved decay O(r−p), p > 2, of the core correction is obtained8
when crystalline symmetries are fully exploited and possibly a simple and explicit correction of the9
continuum far-field prediction is made.10

This result is interesting in its own right as it demonstrates that, in some cases, continuum11
elasticity gives a much better prediction of the elastic field surrounding a dislocation than expected,12
and moreover has practical implications for atomistic simulation of dislocations cores, which we13
discuss as well.14

Key words. screw dislocations, anti-plane shear, lattice models, regularity, defect core15

AMS subject classifications. 35Q74, 49N60, 70C20, 74B20, 74G10, 74G6516

1. Introduction. Crystalline solids consist of regions of periodic atom arrange-17
ments, which are broken by various types of defects. Crystalline defects can be sepa-18
rated into an elastic far-field which can normally be described by continuum linearised19
elasticity (CLE) and a defect core which is inherently atomistic and determines, for20
example, mobility, formation energy (and hence concentration), and so forth.21

To make this idea concrete, let Λ ⊂ Rd be a crystalline lattice reference configura-22
tion and let u : Λ→ Rd be an equilibrium displacement field under some interaction23
law (see § 2.1). The point of view advanced in [8] is to decompose u = uff + ucore24
where uff is a far-field predictor solving a CLE equation enforcing the presence of the25
defect of interest and ucore is a core corrector. For example, it is shown in [8] that26
for dislocations |Duff(x)| ∼ |x|−1 while |Ducore(x)| . |x|−2 log |x| where D denotes a27
discrete gradient operator. The fast decay of the corrector ucore encodes the “locality”28
of the defect core (relative to the far-field).29

The present work is the first in a series that introduces and developes techniques30
to substantially improve on the CLE far-field description. The overarching goal is31
to derive “higher-order” models for the far-field predictor uff , which yield the same32
asymptotic behaviour as the CLE predictor (i.e., the same far-field boundary condi-33
tion) but a more localised corrector. For example, in the case of a dislocation we seek34
uff such that u = uff +ucore with |Ducore(x)| . |x|−p and p > 2. Constructions of this35
kind have a multitude of applications. They are interesting in their own right in that36
they give improved estimates on the region of validity of continuum mechanics. They37
may also be employed to more effectively construct models for multiple defects along38
the lines of [12]. A key motivation for us is that they yield a new class of boundary39
conditions for atomistic simulations that capture the far-field behaviour more accu-40
rately; this gives rise to improved algorithms for atomistic simulation defects; see § 341
for more detail.42

In the present work, to demonstrate the potential of our approach and outline43
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2 JULIAN BRAUN, MACIEJ BUZE, AND CHRISTOPH ORTNER

some of the key ideas required to carry out this programme, we focus on screw dislo-44
cations under anti-plane shear kinematics, in the cubic, hexagonal, and body-centred-45
cubic (BCC) lattices. The scalar setting, and the ability to exploit specific lattice46
symmetries, simplifies several constructions and proofs.47

In forthcoming papers, in particular [2], we will discuss generalisations to vectorial48
deformations of general straight dislocations without any symmetry assumptions on49
the host crystal. In particular the absence of the symmetries we employ in the present50
work introduces a non-trival coupling between the core and the far-field predictor. The51
general idea that persists is that there is a development u = u0 +u1 + · · ·+un+urem of52
the solution, where the terms u0, u1, . . . , un are given by simpler theories (e.g., linear53
PDEs) and the remainder urem has a higher decay rate.54

Aside from providing a simplified introduction to [2], the present work contains55
results that are interesting in their own right due to the fact that anti-plane models56
of screw dislocations are particular popular in the mathematical analysis literature57
[1, 10, 12, 18] as a model problem for the more complex edge, mixed, and curved58
dislocations. Of particular note about our results here are:59

(1) Rotational and anti-plane reflection symmetries for both the model and the60
equilibrium u yield surprisingly high decay of the core corrector to the CLE predictor;61
see Theorem 2.5. This was numerically observed but unexplained in [12]. The key62
observation to obtain this result is that the CLE predictor satisfies additional PDEs,63
in particular the minimal surface equation, which naturally occurs in higher-order64
expansions of the atomistic forces.65

(2) In a BCC crystal, due to the lack of anti-plane reflection symmetry, a nonlin-66
ear correction to the far-field predictor is required to improve the decay of the core67
corrector. One then expects that the dominant error contribution is the Cauchy–Born68
anti-discretisation error. The results of [3, 6, 16] suggest that the resultant correc-69
tor should decay as O(|x|−3), however exploiting crystal symmetries reveals that the70
Cauchy–Born error is of higher order than expected and one even obtains a corrector71
decay of O(|x|−4).72

In both (1) and (2), due to the high degree of non-convexity in the potential73
energy landscape, the required symmetry on the solution u must be an assumption,74
but cannot in general be proven. However, at least for potential energy minimisers it75
is entirely natural as we argue in Remark 2.4.76

Finally, we remark that our analysis is carried out for short-ranged interatomic77
many-body potentials, however the resulting algorithms are applicable to electronic78
structure models rendering them an efficient and attractive alternative to complex79
and computationally expensive multi-scale schemes e.g, of atomistic/continuum or80
QM/MM type; see [5, 15] and references therein.81

Outline: In Section 2 we describe in details our models and assumptions, and82
state our main results. Here, Section 2.2 is dedicated to the cubic and hexagonal83
lattice, while Section 2.3 discusses the BCC lattice. In Section 3 we present the84
resulting new numerical scheme including a convergence analysis. Our conclusions85
can be found in Section 4. Finally Section 5 contains the proofs of the main results.86

2. Main results.87

2.1. Atomistic model for a screw dislocation. The atomistic reference con-88
figuration for a straight screw dislocation is given by a two-dimensional Bravais lattice89
Λ = AΛZ2, AΛ ∈ R2×2 with det(AΛ) 6= 0. In the present work we will only consider90

This manuscript is for review purposes only.



LOCALITY OF SCREW DISLOCATION CORES 3

the triangular lattice and the square lattice, respectively given by91

AΛ = Atri :=

(
1 1

2

0
√

3
2

)
, AΛ = Aquad :=

(
1 0
0 1

)
.92

The two-dimensional lattice Λ should be thought of as the projection of a three-93
dimensional lattice: In case of an infinite straight dislocation in a three-dimensional94
lattice, the displacements do not depend on the dislocation line direction. Therefore,95
it suffices to consider the projected two-dimensional lattice.96

Our atomistic model, which we specify momentarily, allows for general finite range97
interactions. All lattice directions included in the interaction range are encoded in a98
finite neighbourhood set R ⊂ Λ\{0}, which is fixed throughout. We always assume99
spanZR = Λ and will specify further symmetry assumptions later on.100

We consider an anti-plane displacement field u : Λ → R and define Dρu(x) :=101
u(x+ ρ)− u(x), Du(x) := (Dρu(x))ρ∈R, as well as the discrete divergence operator,102

Div g(x) := −
∑
ρ∈R

gρ(x− ρ)− gρ(x) for any g : Λ→ RR.103

In contrast to that we will always write ∇ and div if we talk about the standard104
(continuum) gradient and divergence of differentiable maps.105

A suitable function space for (relative) displacements is106

Ḣ1 := {u : Λ→ R |Du ∈ `2(Λ)}/R,107

with norm108

‖u‖Ḣ1 :=
(∑
x∈Λ

∣∣Du(x)
∣∣2)1/2

.109

While we have factored out constants to make this a Banach space, we will often use110
the displacement u and its equivalence class [u] interchangeably when there is no risk111
of confusion.112

For analytical purposes, we will also consider the space of compactly supported113
displacements114

Hc := {u : Λ→ R | spt(u) is bounded}.115

Displacement fields containing dislocations do not belong to Ḣ1 and the energy,116
naively written as a sum of local contributions, will be infinite. Following [8, 12] we117
therefore consider energy differences118

(1) E(u) =
∑
x∈Λ

(
V (Dû(x) +Du(x))− V (Dû(x))

)
,119

where û is a chosen far-field predictor that encodes the far-field boundary condition,120
while u ∈ Ḣ1 is a core corrector to the given predictor so that û+ u gives the overall121
displacement. We will minimise E(u) to equilibrate the defective crystal, but this122
requires some preparation first.123

We assume throughout that V ∈ C6(RR,R) is a many-body potential encoding124
the local interactions. Examples of typical site potentials V include Lennard-Jones125
type pair potentials (with cut-off) and EAM potentials; see also Section 2.3 and126
Section 3. With significant additional effort it would be possible to include simple127
quantum chemistry models (e.g. tight binding) within the framework [4]. As discussed128
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4 JULIAN BRAUN, MACIEJ BUZE, AND CHRISTOPH ORTNER

in detail in [4] this leads to a model as diescribed above with potentials V that have129
infinite range and strong decay estimates. To keep the presentation and calculations130
as simple as possible and focus on the topic of symmetry we will not pursue this in131
the current work.132

As Λ is either the square or triangular lattice, which are both invariant under133
certain symmetries, one is tempted to directly translate these symmetries to R and V .134
However, as mentioned above, Λ should be seen as a projection of a three-dimensional135
lattice. Such a projection can add symmetries for the lattice that are not reflected136
in the interaction, since they are not symmetries of the underlying three-dimensional137
model. We will discuss such a case in detail in Section 2.3.138

Because of this, we will only make the following reduced symmetry assumptions139
on R and V throughout. Let QΛ be the rotation by π/2 if Λ = Z2 and the rotation140
by 2π/3 if Λ = AtriZ2. Then we assume that141

(2) QΛR = R and V (A) = V ((AQΛρ)ρ∈R) ∀A ∈ RR.142

Since we only consider a plane orthogonal to the direction of the dislocation line,143
it is natural that the energy does not change if the displacements shifts an atom to144
its equivalent position in the plane above or below. Indeed we assume that there is a145
minimal periodicity p > 0 such that146

V (A) = V (A+ p(δρσ)σ∈R) for all A ∈ RR, ρ ∈ R,147

where δ is the Kronecker delta. The Burgers vector of a screw dislocation is then148
either b = p or b = −p.149

A key conceptual assumption that we require throughout this work is lattice150
stability (or, phonon stability): there exists c0 > 0 such that151

(3) 〈Hu, u〉 ≥ c0‖u‖2Ḣ1 ∀u ∈ Ḣ1,152

where H denote the Hessian of the potential energy evaluated at the homogeneous153
lattice (note that this is different from δ2E(0)),154

〈Hu, v〉 =
∑
x∈Λ

∑
ρ,σ∈R

∇2V (0)ρσDρu(x)Dσv(x), for u, v ∈ Ḣ1.155

The choice of the predictor û in (1) for a specific problem is part of the modelling156
since it determines the far-field behaviour, e.g., it could encode an applied strain.157
Intuitively one can obtain a suitable û by solving a “simpler” model such as continuum158
linearised elasticity (CLE), which one expects to be approximately valid in the far-159
field; see [8] for a formalisation of this procedure.160

Assume, for the time being, that û : R2 → R is smooth away from a defect core161
x̂ ∈ R2 \ Λ. Then, by employing Taylor expansions of both û and of V , we can162
approximate the atomistic force,163

∂E
∂u(x)

∣∣∣
u=0

=
(
−Div∇V (Dû)

)
(x)164

= −cdiv∇W (∇û) +O(∇4û(x)) + h.o.t.s(4)165

= −cdiv(∇2W (0)[∇û]) +O(∇4û) +O(∇2û∇û) + h.o.t.s,166167

where c = detAΛ and W : R2 → R is the Cauchy–Born energy per unit undeformed168
volume, defined by169

(5) W (F ) :=
1

detAΛ
V (F · R),170
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LOCALITY OF SCREW DISLOCATION CORES 5

with the notation (F ·R)ρ = F ·ρ. Moreover, O(∇4û) represents the anti-discretisation171
error (note that the continuum model is now the approximation), O(∇2û∇û) the172
linearisation error and “h.o.t.s” denotes additional terms that will be negligible in173
comparison.174

It is therefore natural to solve a CLE model to obtain a far-field predictor for the175
atomistic defect equilibration problem for an anti-plane screw dislocation. Let x̂ ∈ R2176
denote the dislocation core, then we define the branch cut (slip plane)177

Γ :=
{

(x1, x̂2) ∈ R2 | x1 ≥ x̂1

}
178

and solve (we will see in Corollary 5.4 that under our general assumptions on R and179
V we have ∇2W (0) ∝ Id)180

−∆û = 0 in R2 \ Γ,(6a)181

û(x+)− û(x−) = −b on Γ \ x̂,(6b)182

∂x2
û(x+)− ∂x2

û(x−) = 0 on Γ \ x̂.(6c)183184

The system Eq. (6a)–Eq. (6c) has the well-known solution (cf. [9])185

(7) û(x) =
b

2π
arg(x− x̂),186

where we identify R2 ∼= C and use Γ− x̂ as the branch cut for arg. Note for later use,187
that ∇û ∈ C∞(R2\{0}) and |∇j û| . |x|−j for all j ≥ 0 and x 6= 0.188

As we want to study the effects of symmetry, we will assume throughout that the189
dislocation core x̂ is, respectively, at the center of a triangle or square.190

Having specified the far-field predictor we can now recall properties of the resulting191
variational problem.192

Proposition 2.1. Let û be given by (7), then E defined by (1) on Hc has a unique193
continuous extension E : Ḣ1 → R. Furthermore, E ∈ C6(Ḣ1).194

Proof. This is proven in [8, Lemma 3 and Remark 6].195

Having established that E is well-defined, it is now meaningful to discuss the196
equilibration problem, either energy minimisers197

(8) ū ∈ arg min
Ḣ1
E198

or, more generally, critical points199

δE(ū) = 0.200

Critical points of the energy satisfy the following regularity and decay estimate.201

Theorem 2.2. If [ū] ∈ Ḣ1 is a critical point of E, then there exists ū∞ ∈ R such202
that203

|Dj(ū(x)− ū∞)| . |x|−j−1 log|x|,204

for all |x| large enough and 0 ≤ j ≤ 4.205

Proof. This result is proven in [8, Theorem 5 and Remark 9].206
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6 JULIAN BRAUN, MACIEJ BUZE, AND CHRISTOPH ORTNER

2.2. Anti-plane screw dislocations with mirror symmetry. The corrector207
decay rates in [8] are in general sharp (up to constants and log-factors), however208
the case of anti-plane screw dislocations appears to be an exception: In [12] it is seen209
numerically for a triangular lattice that, if the core is placed at the centre of a triangle,210
one approximately has |Du(x)| ∼ |x|−4 instead of the expected rate |x|−2 log|x|. In211
the present section we relate this observation to several symmetry properties of the212
triangular lattice. We also discuss the square lattice case which shows a different213
behaviour to emphasise the importance of the triangular lattice.214

These two-dimensional models represent a screw-dislocation in a cubic or hexag-215
onal three-dimensional lattice only allowing for anti-plane displacements. In Sec-216
tion 2.3, we will additionally consider a BCC lattice and show how to derive these217
two-dimensional systems from the underlying three-dimensional model.218

We recall that Λ is either the square or triangular lattice which are both invari-219
ant under certain rotational symmetries. Crucially, we consider rotations about the220
dislocation core (not about a lattice site), which are described by the operators221

LΛx := QΛ(x− x̂) + x̂,222

where QΛ denotes a rotation through π/2 if Λ = Z2 and a rotation through 2π/3223
if Λ = AtriZ2. Since we assumed that x̂ lies, respectively, at a center of triangle or224
square this implies LΛΛ = Λ.225

In the present section we additionally assume mirror symmetry with respect to the226
plane orthogonal to the dislocation line, which is encoded in the site energy through227
the assumption228

(9) V (A) = V (−A) for all A ∈ RR.229

The mirror symmetry (9) is already implicit in our general assumptions for the230
square lattice (as it can be decomposed into a point reflection and an in-plane rotation231
by π). But it is an additional assumption for the triangular lattice. Here, it is232
equivalent to strengthen the rotational symmetry to rotations by π/3 instead of just233
2π/3.234

Since A represents an anti-plane displacement gradient Du, the map A 7→ −A235
does not represent a change in frame as it would in a full three-dimensional setting.236
In particular the derivation of V for the BCC case in Section 2.3 shows that (9) is a237
non-trivial restriction on V .238

Indeed, if one derives V from an underlying three-dimensional site potential (see239
Section 2.3 for such a derivation in the case of a BCC lattice), then (9) means pre-240
cisely that the three-dimensional lattice is mirror symmetric with respect to the plane241
orthogonal to the dislocation line. This is quite restrictive and effectively only true242
if the underlying three-dimensional lattice is given as Λ′ = Λ × Z ⊂ R3 which is a243
hexagonal or a cubic lattice for Λ = AtriZ2 or Λ = Z2, respectively.244

In the next section Section 2.3, we will then consider a situation where (9) fails,245
by discussing a 111 screw dislocation in a BCC lattice.246

Recall from (7) that the far-field predictor is given by û(x) = b
2π arg(x− x̂). Since247

we now assume that x̂ is at the centre of a square or triangle, û satisfies248

û(LΛx) =

{
û(x) + b

3 (mod b), triangular lattice,
û(x) + b

4 (mod b), square lattice.
(10)249

250

Motivated by this observation, we specify an analogous symmetry assumption on251
a general displacement.252
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LOCALITY OF SCREW DISLOCATION CORES 7

Definition 2.3 (Inheritance of symmetries). We say that a displacement u in-253
herits the rotational symmetry of û if254

(11) u(LΛx) = u(x) for all x ∈ Λ.255

Remark 2.4. Inheritance of rotational (or other) symmetries would typically fol-256
low from the corresponding symmetries of û,Λ, V and uniqueness of an energy min-257
imiser (up to a global translation and lattice slips). However, due to the severe258
non-convexity of the energy landscape uniqueness cannot be expected in general. As259
an example, note that the line reflection symmetry in the BCC case, discussed in260
Section 2.3, is not necessarily inherited as is shown in [19].261

We can now state the main results of this section. It is particularly noteworthy262
that they depend on the lattice under consideration. On a square lattice the symmetry263
only gives one additional order of decay compared to the decay rates in [8], while on a264
triangular lattice we do indeed show that there are two additional orders of decay as265
observed numerically in [12, Remark 3.7]. While the lattice symmetries in both cases266
lead to isotropic linear elasticity as a first approximation, we will show that higher-267
order terms show anisotropies depending on the underlying lattice (see Lemma 5.2)268
which in turn lead to the different decay rates here. We will confirm this discrepancy269
in numerical tests in Section 3.270

Theorem 2.5 (Decay with Mirror Symmetry). Let Λ ∈ {Z2, AtriZ2} and sup-271
pose Λ, x̂,R, V satisfy all the assumptions from Section 2.1. Furthermore, assume272
V satisfies the mirror symmetry (9). If ū is a critical point of E which inherits the273
rotational symmetry of û, then we have for j = 1, 2 and all |x| large enough274

(12) |Dj ū(x)| . |x|−2−j log|x|,275

if Λ = Z2, and276

(13) |Dj ū(x)| . |x|−3−j277

for the triangular lattice Λ = AtriZ2.278

Remark 2.6. The result is also expected to hold for j ≥ 3 and j = 0 (up to279
subtracting a constant) following ideas in [8]. As we want to focus on other aspects280
and do not want to overburden the proof, this is omitted here.281

Remark 2.7. In the case of a triangular lattice the existence of a critical point u282
has been proven in [12] under restrictions on V . Under further restrictions it is even283
known to be a stable global minimiser. However it is unclear whether the minimizer284
is unique or inherits the symmetry. In Section 3.2, we will give numerical evidence for285
the decay rates in (12) and (13), thus supporting the conjecture that there are energy286
minimisers inheriting the symmetry in these specific models.287

Remark 2.8. We also want to emphasize, that the distinction between the hexag-288
onal and BCC lattices, that is the loss of mirror symmetry in the BCC lattice, was289
missed in [12]. Therefore, the results of [12] do not apply to the BCC case without290
further work.291

Idea of the proof of Theorem 2.5. The full proof can be found in Section 5; here292
we only give a brief idea of the strategy.293

Far from the defect core the equilibrium configuration is close to a homogeneous294
lattice, hence, the linearised problem becomes a good approximation. Therefore, a295

This manuscript is for review purposes only.



8 JULIAN BRAUN, MACIEJ BUZE, AND CHRISTOPH ORTNER

natural quantity to consider is the linear residual296

(14) fu = −Div(∇2V (0)[Du]).297

On the one hand, one can recover ū as a lattice convolution ū = G ∗Λ fū where G is298
the fundamental solution, or Green’s function, of the linear atomistic equations. On299
the other hand, the decay of fū can be estimated by Taylor expansion with the help300
of the nonlinear atomistic equations for û + ū and the continuum linear system for301
û. In this expansion, ∇3V (0) = 0 vanishes due to anti-plane symmetry, while the302
rotational symmetry leads to simple generic forms of higher order terms.303

But even if fū decays rapidly, this does not automatically translate to decay for304
ū = G ∗ fū. Even if fū has compact support ū typically only inherits the decay of G.305
However, we show that, due to rotational symmetry, the first moment of fū vanishes,306
while the second has a very special form. Improved estimates for the decay of fū307
together with vanishing moments then lead to an improved rate of decay of ū.308

The difference between the triangular lattice and the quadratic lattice lies in the309
form of the higher order terms in the expansion of fū. The terms in question are310
given by the atomistic-continuum error of the linear equation and by the nonlinearity311
∇4V (0). For the triangular lattice one finds the leading order expression c1∆2û for the312
linear and c2(g(x)∆û+H(û)) for the nonlinear part, where only the constants c1, c2313
depend on the potentials. Here H is the mean curvature of the graph (x1, x2, û(x))T .314
And the mean curvature vanishes as the graph is a helicoid, a minimal surface. Since315
∆2û = 0, ∆û = 0, and H(û) = 0 all the leading order terms vanish. On the other316
hand, for the quadratic lattice, these terms are nontrivial and do not cancel.317

2.3. Anti-plane screw dislocation in BCC. We turn towards the physically318
more important setting of a straight screw dislocation along the 111 direction in a319
BCC crystal. The three-dimensional BCC lattice can be defined by Λ′′ = Z3 + {0, p},320
with shift p = 1

2 (1, 1, 1)T . A screw dislocation along the 111 direction is obtained by321
taking both dislocation line and Burgers vector parallel to the vector (1, 1, 1)T . If we322
rotate Λ′′ by323

Q =
1√
6

−1 −1 2√
3 −

√
3 0√

2
√

2
√

2

324

and then rescale the lattice by
√

3/2, we obtain the three-dimensional Bravais lattice325

Λ′ =
√

3/2QΛ′′ =

 1 1
2 0

0
√

3
2 0

1
2
√

2
− 1

2
√

2
3

2
√

2

Z3.326

The 111 direction becomes the e3 direction under this transformation, which is con-327
venient for the subsequent discussion.328

Since p = 3
2
√

2
, the Burgers vector is now given by b = ± 3

2
√

2
(corresponding to329

the actual Burgers vector in three dimensions being (0, 0, b)T ). We project the BCC330
lattice Λ′ along the dislocation direction e3 to obtain the triangular lattice331

Λ =
{

(x1, x2)T
∣∣x ∈ Λ′

}
= AtriZ2.332

Note though that these projections correspond to different “heights”, i.e., different333
z-coordinates in Λ′. Indeed, it is helpful to split Λ into the three lattices Λ = Λ1 ∪334
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LOCALITY OF SCREW DISLOCATION CORES 9

Λ2 ∪ Λ3, where335

Λi = vi +

( 3
2

3
2√

3
2 −

√
3

2

)
Z2,336

with v1 = 0, v2 = e1, v3 = ( 1
2 ,
√

3
2 )T . In this notation, one can recover the three-337

dimensional lattice as338

Λ′ =
⋃
i

(
Λi ×

{(
k +

i

3

) 3

2
√

2
: k ∈ Z

})
.339

Fig. 1. Consider the middle green atom in the BCC unit cube (left picture). After projecting
along the 111-direction (the green diagonal), the three green atoms are represented as one, which has
six other-coloured atoms in the unit cube as its nearest-neighbours (middle picture). The different
heights of atomic planes associated with each colour are best seen by projecting the same lattice along
the 112-direction (right picture).

Next, we formally derive an anti-plane interatomic potential as a projection from a340
three-dimensional model. The derivation is only formal as many of the sums appearing341
are infinite if summed over the entire lattice. Indeed, for a deformation y consider342
formally343

E3d(y) =
∑
x∈Λ′

V ′(D′y(x)),344

where D′y(x) = (Dρy(x))ρ∈Λ′ and V ′ : R3×Λ′ → R. Note that, to achieve the pe-345
riodicity of V (slip invariance) V ′ must depend on the entire crystal. However, it346
is convenient to assume that it has a finite cut-off d > 0 such that V ′(A) = V ′(B)347
whenever A,B satisfy Aρ = Bρ for all ρ with |Aρ| < d or |Bρ| < d.348

In contrast to E , E3d acts on deformations instead of displacements. To derive an349
energy on anti-plane displacements, we consider deformations of the form350

yu : Λ′ → R3, yu(x) :=
(
x1, x2, x3 + u(x1, x2)

)T
351

for anti-plane displacements u : Λ→ R. As differences of yu do not depend on x3, the352
same is true for the local energy contributions. Therefore, we can formally renormalise353
the (possibly infinite) energy to354

E3d
norm(u) =

∑
x∈Λ′∩(R2×[0,p))

V ′(D′yu(x)),355

the energy per periodic layer of thickness p. Since |Dρy
u(x)| ≥ |(ρ1, ρ2)|, the local356

energy at any x can only depend on the projected directions R := Λ∩Bd(0)\{0}. We357
can therefore define358

V (Du(x1, x2)) := V ′(D′yu(x)),359
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10 JULIAN BRAUN, MACIEJ BUZE, AND CHRISTOPH ORTNER

for x ∈ Λ′, to obtain E(u) = E3d
norm(yu).360

Of course we assume that V ′ is frame-indifferent, V ′(QA) = V ′(A) for all A361
and Q ∈ O(3). Furthermore, we assume that V ′ is invariant under relabelling of362
atoms (permutation invariance). In particular, this means that V ′ is compatible with363
the lattice symmetries of Λ′: V ′(A) = V ′((A−ρ)ρ∈Λ′) and V ′(A) = V ′((AQ′ρ)ρ∈Λ′),364
where Q′ is the rotation through 2π/3 with axis e3. Λ′ is also invariant under line365

reflection symmetry with respect to the line spanned by a′ = (
√

3
2 ,

1
2 , 0)T . Denoting366

the reflection map by S′ we thus have V ′(A) = V ′((AS′ρ)ρ∈Λ′).367
We can now translate these properties to symmetries of V . Clearly, R = −R and368

QΛR = R. The symmetry properties of V ′ directly imply V (A) = V ((AQΛρ)ρ∈R)369
and V (A) = V ((−A−ρ)ρ∈R) for all A ∈ RR. The slip invariance V (A) = V (A +370
p(δρσ)σ∈R) also follows from permutation invariance of V ′. We have thus obtained371
all the general assumptions that we imposed on V in Section 2.1.372

Additionally, we will exploit the line reflection symmetry. Let a = (
√

3
2 ,

1
2 )T . A373

reflection at the line spanned by a in R2 is given by374

S = a⊗ a− a⊥ ⊗ a⊥ =

(
1
2

√
3

2√
3

2 − 1
2

)
.375

Due to the line reflection symmetry described by S′ as well as frame-indifference with376
Q = S′, we deduce377

(15) SR = R, and V (A) = V ((−ASρ)ρ∈R) .378

We emphasize that Λ′ is not invariant under a rotation by only π/3 around the379
axis e3. This is easily seen, as this rotation maps Λ2 to Λ3 and vice versa. Equivalently,380
it is not invariant under the mirror symmetry x 7→ (x1, x2,−x3)T expressed by (9).381
Therefore, the more specific results from the previous section, Section 2.2, do not382
apply.383

While in the setting of Section 2.2 screw dislocations with Burgers vector b = p384
and b = −p are equivalent, the loss of mirror symmetry in the BCC crystal also385
creates two distinctively different screw dislocations, the so-called easy and hard core.386
In particular, they have a different core structure; see e.g. [13].387

The improved decay rates we obtained in Section 2.2 no longer hold up either.388
Indeed, one can see in numerical calculations, see Section 3, that the |x|−2 bound on389
the decay of the strains is sharp (up to logarithmic terms and constants).390

Our aim now, as announced in the Introduction, is to develop a new far-field391
predictor so that the corresponding corrector recovers the higher |x|−4 accuracy of392
the more symmetric case. A natural first idea is to replace CLE with the Cauchy–393
Born nonlinear elasticity equation, however, these are not easy to solve analytically.394
Instead, we expand the solution u = û+u1+u2+. . . hoping for ∇ju2 � ∇ju1 � ∇j û,395
which yields396

div∇W (∇u) ∼ div∇2W (0)∇û397

+ div
(
∇2W (0)∇u1 +

1

2
∇3W (0)[∇û,∇û]

)
398

+ div
(
∇2W (0)∇u2 +∇3W (0)[∇û,∇u1] +∇4W (0)[∇û,∇û,∇û]

)
+ . . . .399

400

The atomistic-continuum error is typically expected to be of comparable size as401
the last terms. But, as the projected lattice is still a triangular lattice, many of the402
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arguments discussed in Section 2.2 still apply and the highest order of this error as403
well as the term ∇4W (0)[∇û,∇û,∇û] vanish. However, we now have ∇3W (0) 6= 0404
making the remaining terms non-trivial. We can thus obtain the first two corrections405
to û by solving the linear PDEs406

−div∇2W (0)∇u1 =
1

2
div
(
∇3W (0)[∇û,∇û]

)
,(16a)407

−div∇2W (0)∇u2 = div
(
∇3W (0)[∇û,∇u1]

)
(16b)408

409

on R2\{0}.410
Due to Corollaries 5.4 and 5.5 below, exploiting the rotational crystalline sym-411

metry, we can simplify them as412

−clin∆u1 = cquad

(
∂11û− ∂22û
−2∂12û

)
· ∇û,(17a)413

−clin∆u2 = cquad

((
∂11u1 − ∂22u1

−2∂12u1

)
· ∇û+

(
∂11û− ∂22û
−2∂12û

)
· ∇u1

)
.(17b)414

415

where416

clin =
1

2
tr∇2W (0), and417

cquad =
1

4
(∇3W (0)111 − 3∇3W (0)122).418

419420

In polar coordinates, x = x̂+ r(cosϕ, sinϕ)T , using the fact that û = b
2π arg(x−421

x̂) = b
2πϕ, Eq. (17a) becomes422

−∆u1 =
cquadb

2

clin2π2

cos(3ϕ)

r3
,423

from which we readily infer that one possible solution is424

(18) u1(x+ x̂) =
cquadb

2

clin16π2

cos(3ϕ)

r
=

cquadb
2

clin16π2

x3
1 − 3x1x

2
2

|x|4 .425

Similarly, inserting û and u1 into Eq. (17b) yields426

−∆u2 =
c2quadb

3

c2lin4π3

sin(6ϕ)

r4
,427

for which a solution is given by428

(19) u2(x+ x̂) =
c2quadb

3

c2lin128π3

sin(6ϕ)

r2
=

c2quadb
3

c2lin128π3

6x5
1x2 − 20x3

1x
3
2 + 6x1x

5
2

|x|8 .429

While there are many more solutions for both problems, we will choose these430
specific ones as they satisfy the decay estimates431

(20) |∇jui| . |x|−i−j432

and the rotational symmetry ui(LQx) = ui(x). With the solutions u1 and u2 obtained,433
respectively, in (18) and (19) we obtain the following result.434
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Theorem 2.9 (BCC). Let Λ = AtriZ2 and suppose Λ, x̂,R, V satisfy all the as-435
sumptions from Section 2.1. Furthermore, assume R and V satisfy the line reflection436
symmetry (15). Consider a critical point ū of (1) that inherits the rotational symme-437
try of û. Then we can write ū = u1 + u2 + ūrem where u1 and u2 are given by (18)438
and (19) and the remainder ūrem satisfies the decay estimates439

(21) |Dj ūrem(x)| . |x|−j−3 log|x|,440

for j = 1, 2 and all |x| large enough.441

Remark 2.10. As discussed in the introduction, our new predictor û + u1 + u2442
does not just result in O(|x|−3) accuracy for the strain which one might expect from443
the general expansion idea or from well-established results about the Cauchy-Born444
anti-discretisation error. The actual accuracy is one order higher, i.e., O(|x|−4).445

Remark 2.11. Since |Dju1(x)| . |x|−j−1, without log-factors, Theorem 2.9 im-446
proves the result of Theorem 2.2 to447 ∣∣Dj ū(x)

∣∣ . |x|−j−1, j = 1, 2.448

3. Numerical approximation.449

3.1. Supercell approximation. A central motivation for the present work are450
the poor convergence rates of standard supercell approximations for the defect equi-451
libration problem (8) established in [8]. We can now exploit the theoretical results452
from Section 2 to construct boundary conditions that give rise to new supercell ap-453
proximations. These have improved rates of convergence without any corresponding454
increase in computational complexity.455

We begin by defining a generalised energy-difference functional in a predictor-456
corrector form457

E(upred;u) :=
∑
x∈Λ

V
(
Dupred(x) +Du(x)

)
− V

(
Dupred(x)

)
,458

for upred ∈ û+ Ḣ1, u ∈ Ḣ1.459460

Then, the generalised variational problem461

(22) ũ ∈ arg min
{
E(upred;u) |u ∈ Ḣ1

}
462

is equivalent to (8), via the identity upred + ũ = û+ ū.463
We now note as in [8] that the supercell approximation on a domain BR ∩ Λ ⊂464

ΩR ⊂ Λ with boundary condition upred on Λ \ ΩR can be written as a Galerkin465
approximation466

ũR ∈ arg min
{
E(upred;u) |u ∈ H0(ΩR)

}
,(23)467

where H0(ΩR) := {v ∈ Hc | v = 0 in Λ \ ΩR}.468469

Using generic properties of Galerkin approximations we obtain the following ap-470
proximation error estimate.471

Theorem 3.1. Let ũ be a strongly stable solution (cf. [8]) to (22), i.e. satisfying472

δ2
uE(upred; ũ)[v, v] ≥ λ‖v‖2Ḣ1 ,473
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for all v ∈ Hc and a λ > 0. If ũ further satisfies474

|Dũ(x)| . |x|−s logr |x|,475

for some s > 1, r ∈ {0, 1}, then there exist C,R0 > 0 such that, for all R > R0 there476
exists a stable solution ũR to (23) satisfying477

(24) ‖ũR − ũ‖Ḣ1 ≤ CR−s+1 logr(R).478

Proof. The existence of a solution ũR, for R sufficiently large, can be proven as in479
[7, Theorem 2.4] (the case upred = û) and the equivalence of (22) with (8). Moreover,480
following the proof of [8, Theorem 6] verbatim we obtain481

‖ũR − ũ‖Ḣ1 . ‖ũ‖Ḣ1(Λ\BR/2).482
483

We then apply the assumption that |Dũ(x)| . |x|−s logr |x| to arrive at the desired484
error estimate,485

‖ũR − ũ‖Ḣ1 .

( ∑
x∈Λ\BR/2

|Dũ(x)|2
)1/2

.
(∫ ∞

R
3

t1−2s log2r(t) dt
) 1

2

. R1−s logr(R).

486

3.2. Numerical examples with mirror symmetry. To test the results from487
Section 2.2 we consider a toy model involving nearest-neighbour pair interaction,488

V (Du(x)) =
∑
ρ∈R

ψ(Dρu(x)), ψ(r) = sin2(πr),489

which is 1-periodic, i.e., p = 1. We investigate the three cases490
(i) symmetric square:491

Λ = Z2, R = {±e1,±e2}, x̂ =

(
1
2
1
2

)
;492

(ii) symmetric triangular:493

Λ = AtriZ2, R =

{
±
(

1
0

)
,±
( 1

2√
3

2

)
,±
(− 1

2√
3

2

)}
, x̂ =

( 1
2√
3

6

)
;494

(iii) asymmetric triangular: as in (ii), but with x̂ =

(
1
4
1
8

)
.495

The cases (i) and (ii) satisfy all conditions of Theorem 2.5 while (iii) fails the crucial496
symmetry assumptions. In particular, at least up to logarithmic terms, our theory497
predicts |Dū(x)| . |x|−3 for (i), |Dū(x)| . |x|−4 for (ii), and |Dū(x)| . |x|−2 for (iii).498
Due to Theorem 3.1 this corresponds to ‖ũR − ũ‖Ḣ1 being O(R−2), O(R−3), and499
O(R−1), respectively. To compute equilibria we employ a standard Newton scheme,500
terminated at an `∞-residual of 10−8. In Figure 2 we plot both the decay of the501
correctors, confirming the predictions of Theorem 2.5, and the approximation error502
in the supercell approximation against the domain size R, confirming the prediction503
of Theorem 3.1.504

Remark 3.2. An asymmetric square case (that is as in (i) but with x̂ =
(

1
3 ,

1
3

)
)505

has also been considered and the results are as expected by our theory and thus are506
qualitatively equivalent to (iii). Therefore we do not include them in the figures to507
retain clarity. It does however further emphasise the role of symmetry in the problem.508
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Fig. 2. Left: Decay of |Dū| for the square and triangular lattices, with and without rotational
symmetry. Transparent dots denote data points (|x|, |Du(x)|), solid curves their envelopes. We ob-
serve the improved decay rates r−3 and r−4, proven in Theorem 2.5, when the dislocation core is
chosen as a high symmetry point.
Right: Rates of convergence of the supercell approximation (23) in the three cases specified in Sec-
tion 3.2. We observe the improved rates of convergence in the high symmetry cases as predicted by
Theorem 3.1.

3.3. Numerical example in BCC Tungsten. To confirm the result of Sec-509
tion 2.3, we consider a Finnis–Sinclair type model (EAM model) for BCC Tungsten510
(W), where the 3D site energy for a deformation y is of the form511

V ′(D′y) = −
( ∑
σ∈Λ′

ρ
(
|Dσy|

))1/2

+
∑
σ∈Λ′

φ
(
|Dσy|

)
,512

and the electron density ρ and pair repulsion φ are obtained from [19]. The pro-513
jected anti-plane model is then constructed as described in Section 2.3. The supercell514
model (23) is solved to within an `∞ residual of 10−6 using a preconditioned LBFGS515
algorithm [17].516

We investigate two test cases, the easy dislocation core (negatively oriented) and517
the hard dislocation core (positively oriented), cf. [13]. For each case, following518
Section 2.3, we consider three different predictors:519

(i) standard linearised elasticity predictor (0th order), i.e., upred = û;520
(ii) 1st order correction, i.e. upred = û+ u1;521
(iii) 2nd order correction, i.e. upred = û+ u1 + u2,522

with û given in (7) and u1, u2, respectively, in (18) and (19).523
In Figures 3 and 4 on the left-hand side we display the decay of the correctors for,524

respectively, the hard (positive) and easy (negative) dislocation cores, confirming the525
prediction of Theorem 2.9. On the right-hand side we plot the corresponding approx-526
imation errors in the supercell approximation against the domain size R, confirming527
the prediction of Theorem 3.1.528

4. Conclusion. We have developed a range of results establishing finer proper-529
ties of the elastic far-field generated by a screw dislocation in anti-plane shear kine-530
matics. Of particular note is the role that crystalline symmetries play in obtaining531
either cancellation (screw and square lattice) or simple and explicit representations532
of the leading order terms of this elastic far-field. As a key application we showed533
how these results can be exploited to obtain boundary conditions with significantly534
improved convergence rates in terms of computational cell size.535

Crucial to these results is the idea that solutions inherit the symmetries from the536
setting of the problem. While the validity of this assumption is likely very difficult to537
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ū
R
‖ `

2

∼ R−1

∼ R−2

∼ R−30th order

1st order

2nd order

Fig. 3. Left: Decay of |Dū| for a BCC easy core screw dislocation with standard and improved
far-field predictors; cf. Section 3.3. Transparent dots denote data points (|x|, |Du(x)|), solid curves
their envelopes. The numerically observed improved decay for higher-order predictors is consistent
with Theorem 2.9.
Right: Rates of convergence of the supercell approximation (23) to the BCC easy core screw dislo-
cation, employing the standard as well as higher-order far-field predictors. The improved rates of
convergence due to the faster decay of the corrector solutions are consistent with Theorem 3.1.
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Fig. 4. Left: Decay of |Dū| for a BCC hard core screw dislocation with standard and improved
far-field predictors; cf. Section 3.3. Transparent dots denote data points (|x|, |Du(x)|), solid curves
their envelopes. The numerically observed improved decay for higher-order predictors is consistent
with Theorem 2.9.
Right: Rates of convergence of the supercell approximation (23) to the BCC hard core screw dislo-
cation, employing the standard as well as higher-order far-field predictors. The improved rates of
convergence due to the faster decay of the corrector solutions are consistent with Theorem 3.1.

be proven without prohibitively restrictive assumptions on the interatomic interaction,538
our numerical tests, show-casing the improved rates of decay of the core correctors539
and resulting improved convergence rates, indicate that in these cases the inheritance540
of symmetry is indeed reasonable. In particular, our results clearly explain the origin541
of these improved rates.542

The general ideas that we outlined in this paper set the scene for an in-depth543
study of the elastic far-field for a large variety of defect types, fully vectorial models,544
and more general crystalline solids. The resulting derivation of higher-order boundary545
conditions promises to yield simple, efficient as well as highly accurate new algorithms546
to simulate crystalline defects.547

5. Proofs.548

5.1. Auxiliary results about symmetry. We prove the main results through549
a number of lemmas, starting with the following observations about how symmetry550
simplifies the tensors appearing in the development of the forces. This includes, but551
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is not limited to the tensors ∇2W (0) ∈ R2×2 = (R2)⊗2, ∇3W (0) ∈ (R2)⊗3, and552
∇4W (0) ∈ (R2)⊗4.553

Let m ∈ N, A ∈ (R2)⊗m and B ∈ R2×2 then the tensor B⊗mA ∈ (R2)⊗m is, as554
usual, defined by555

(B⊗mA)l1...lm :=
∑

k∈{1,2}m
Ak1...km

m∏
i=1

Bliki .556

As before let Q be a matrix representing either a rotation by π/2 (in the case Λ = Z2)557
or a rotation by 2π/3 (in the case Λ = AtriZ2). That is,558

Q =

(
0 −1
1 0

)
or Q =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
.559

More generally, let Q ∈ R2×2 with QN = Id for some N ∈ N, N ≥ 1, and QTQ = Id.560
Our specific cases are included as N = 4 and N = 3. We then define561

PA =
1

N

N−1∑
M=0

(QM )⊗mA.562

Consider the standard scalar product for tensors,563

A : B =

2∑
k1,...,km=1

Ak1...kmBk1...km .564

Then we have the following lemma.565

Lemma 5.1. P is the orthogonal projector onto the Q-invariant tensors566

{A : Q⊗mA = A}.567

Proof. One readily checks that Q⊗m((QM )⊗mA) = (QM+1)⊗mA. Using also568
QN = Id one immediately obtains Q⊗mPA = PA. Therefore, P 2 = P . Since569
(QM )T = Q−M = QN−M , we also see that P is self-adjoint. Hence, P is an orthogonal570
projection onto a subspace of {A : Q⊗mA = A}. But if Q⊗mA = A then clearly571
PA = A, which concludes the proof.572

Lemma 5.1 will prove highly useful: Explicitly calculating P now allows us to573
characterise the rotationally invariant tensors.574

To simplify that calculation further, we also define the symmetric part by575

(symA)l1...lm =
1

m!

∑
ϕ∈Sm

Aϕ(l1)...ϕ(lm),576

where Sm is the group of all permutations on m numbers. For all A we define577

PsymA := P symA = symPA.578

Let us calculate these projections and thus the invariant spaces for the cases we579
encounter in our proof later.580

For a simple notation of three-tensors and four-tensors in the following we will581
write Eijk = ei ⊗ ej ⊗ ek and Eijkl = ei ⊗ ej ⊗ ek ⊗ el where {e1, e2} represents the582
standard base of R2.583
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Lemma 5.2. (a) For m = 2 and N ≥ 3,584

PsymA = 1
2 tr(A) Id, i.e., {A : Q⊗2A = A, symA = A} = span Id .585

(b) For m = 3 and N = 3,586

PsymA = 1
4 (E111 − 3 symE122)(A111 − 3 symA122)587

+ 1
4 (E222 − 3 symE112)(A222 − 3 symA112),588

i.e., {A : Q⊗3A = A, symA = A} = span{E111 − 3 symE122, E222 − 3 symE112}.589590

(c) For m = 4 and N = 3,591

(PsymA)abcd = 1
8

(
δabδcd + δacδbd + δadδbc

)
(A1111 + 2 symA1122 +A2222),592

i.e., {A : Q⊗4A = A, symA = A} = span
{
E1111 + E2222 + 2 symE1122

}
.593594

Proof. (a) We have (Q⊗Q)A = A if and only if QAQT = A. For symmetric A,595
we can diagonalize A = RDRT with some rotation R and a diagonal matrix D. But596
then QAQT = A is equivalent to QDQT = D. This is the case precisely if D = c Id or597
Q ∈ {± Id}. Since we excluded the latter option we find {A : (Q⊗Q)A = A} = IdR598
as claimed.599
(b) This statement is more involved and notably depends on N . Therefore a general600
argument as in (a) cannot work. One way of obtaining the result is to calculate the601
projector explicitly. By linearity, it suffices to consider A = σ ⊗ ρ ⊗ τ . In this case,602
Q⊗mA = Qσ ⊗Qρ⊗Qτ . We get603

3(P (σ ⊗ ρ⊗ τ))111 = σ1ρ1τ1 + (− 1
2σ1 −

√
3

2 σ2)(− 1
2ρ1 −

√
3

2 ρ2)(− 1
2τ1 −

√
3

2 τ2)604

+ (− 1
2σ1 +

√
3

2 σ2)(− 1
2ρ1 +

√
3

2 ρ2)(− 1
2τ1 +

√
3

2 τ2)605

= 3
4

(
σ1ρ1τ1 − σ1ρ2τ2 − σ2ρ1τ2 − σ2ρ2τ1

)
,606

3(P (σ ⊗ ρ⊗ τ))222 = σ2ρ2τ2 + (
√

3
2 σ1 − 1

2σ2)(
√

3
2 ρ1 − 1

2ρ2)(
√

3
2 τ1 − 1

2τ2)607

+ (−
√

3
2 σ1 − 1

2σ2)(−
√

3
2 ρ1 − 1

2ρ2)(−
√

3
2 τ1 − 1

2τ2)608

= 3
4

(
σ2ρ2τ2 − σ1ρ1τ2 − σ1ρ2τ1 − σ2ρ1τ1

)
,609

3(P (σ ⊗ ρ⊗ τ))112 = σ1ρ1τ2 + (− 1
2σ1 −

√
3

2 σ2)(− 1
2ρ1 −

√
3

2 ρ2)(
√

3
2 τ1 − 1

2τ2)610

+ (− 1
2σ1 +

√
3

2 σ2)(− 1
2ρ1 +

√
3

2 ρ2)(−
√

3
2 τ1 − 1

2τ2)611

= 3
4

(
− σ2ρ2τ2 + σ1ρ1τ2 + σ1ρ2τ1 + σ2ρ1τ1

)
, and612

3(P (σ ⊗ ρ⊗ τ))122 = σ1ρ2τ2 + (− 1
2σ1 −

√
3

2 σ2)(
√

3
2 ρ1 − 1

2ρ2)(
√

3
2 τ1 − 1

2τ2)613

+ (− 1
2σ1 +

√
3

2 σ2)(−
√

3
2 ρ1 − 1

2ρ2)(−
√

3
2 τ1 − 1

2τ2)614

= 3
4

(
− σ1ρ1τ1 + σ1ρ2τ2 + σ2ρ1τ2 + σ2ρ2τ1

)
.615616

This concludes (b).617
(c) Again, this statement depends on N , so we will calculate the projector explicitly.618
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Similar as before, it suffices to consider A = π ⊗ σ ⊗ ρ⊗ τ . We find619

3(PA)1111 = π1σ1ρ1τ1620

+ (− 1
2π1 −

√
3

2 π2)(− 1
2σ1 −

√
3

2 σ2)(− 1
2ρ1 −

√
3

2 ρ2)(− 1
2τ1 −

√
3

2 τ2)621

+ (− 1
2π1 +

√
3

2 π2)(− 1
2σ1 +

√
3

2 σ2)(− 1
2ρ1 +

√
3

2 ρ2)(− 1
2τ1 +

√
3

2 τ2)622

= 9
8 (π1σ1ρ1τ1 + π2σ2ρ2τ2) + 3

8

(
π1σ1ρ2τ2 + π1σ2ρ1τ2623

+ π1σ2ρ2τ1 + π2σ1ρ1τ2 + π2σ1ρ2τ1 + π2σ2ρ1τ1
)

and624

3(PA)2222 = π2σ2ρ2τ2625

+ (
√

3
2 π1 − 1

2π2)(
√

3
2 σ1 − 1

2σ2)(
√

3
2 ρ1 − 1

2ρ2)(
√

3
2 τ1 − 1

2τ2)626

+ (−
√

3
2 π1 − 1

2π2)(−
√

3
2 σ1 − 1

2σ2)(−
√

3
2 ρ1 − 1

2ρ2)(−
√

3
2 τ1 − 1

2τ2)627

= 9
8 (π1σ1ρ1τ1 + π2σ2ρ2τ2) + 3

8

(
π1σ1ρ2τ2 + π1σ2ρ1τ2628

+ π1σ2ρ2τ1 + π2σ1ρ1τ2 + π2σ1ρ2τ1 + π2σ2ρ1τ1
)
.629630

By interchanging π, σ, ρ, τ , the even mixed terms can be reduced to calculating just631

3(PA)1122 = π1σ1ρ2τ2632

+ (− 1
2π1 −

√
3

2 π2)(− 1
2σ1 −

√
3

2 σ2)(
√

3
2 ρ1 − 1

2ρ2)(
√

3
2 τ1 − 1

2τ2)633

+ (− 1
2π1 +

√
3

2 π2)(− 1
2σ1 +

√
3

2 σ2)(−
√

3
2 ρ1 − 1

2ρ2)(−
√

3
2 τ1 − 1

2τ2)634

= 9
8 (π1σ1ρ2τ2 + π2σ2ρ1τ1) + 3

8

(
π1σ1ρ1τ1 + π2σ2ρ2τ2635

− π1σ2ρ2τ1 − π2σ1ρ1τ2 − π2σ1ρ2τ1 − π1σ2ρ1τ2
)
.636637

For the symmetric part, these formulae simplify to638

(P symA)1111 = (P symA)2222639

= 3(P symA)1122640

= 3
8 (π1σ1ρ1τ1 + π2σ2ρ2τ2) + 6

8 sym(π ⊗ σ ⊗ ρ⊗ τ)1122,641642

Furthermore,643

3(PA)1112 = π1σ1ρ1τ2644

+ (− 1
2π1 −

√
3

2 π2)(− 1
2σ1 −

√
3

2 σ2)(− 1
2ρ1 −

√
3

2 ρ2)(
√

3
2 τ1 − 1

2τ2)645

+ (− 1
2π1 +

√
3

2 π2)(− 1
2σ1 +

√
3

2 σ2)(− 1
2ρ1 +

√
3

2 ρ2)(−
√

3
2 τ1 − 1

2τ2)646

= 9
8 (π1σ1ρ1τ2 − π2σ2ρ2τ1) + 3

8

(
π2σ2ρ1τ2 + π2σ1ρ2τ2647

+ π1σ2ρ2τ2 − π1σ1ρ2τ1 − π2σ1ρ1τ1 − π2σ1ρ1τ1
)
,648649

which implies (P symA)1112 = 0. In the same spirit one finds (P symA)1222 = 0.650

Additionally, the result for m = N = 3 simplifies further if we add line reflection651

symmetry. As in Section 2.3, let a = (
√

3
2 ,

1
2 )T and652

S = a⊗ a− a⊥ ⊗ a⊥ =

(
1
2

√
3

2√
3

2 − 1
2

)
.653

Lemma 5.3. For m = 3 and N = 3 one has654

{A : Q⊗3A = A, symA = A,S⊗3A = −A} = span{E111 − 3 symE122}.655
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Proof. Let A be a tensor with Q⊗3A = A, symA = A, and S⊗3A = −A. Ac-656
cording to Lemma 5.2, A = c1(E111 − 3 symE122) + c2(E222 − 3 symE112). Addi-657
tionally, S⊗3A = −A implies A[Sa, Sa, Sa] = −A[a, a, a]. But with Sa = a we have658
A[a, a, a] = 0; that is,659

0 = c1( 3
√

3
8 − 3

√
3

8 ) + c2( 1
8 − 3 3

8 ),660

which implies c2 = 0. With the same calculation one also sees the reverse, i.e., that661
E222 − 3 symE112 does indeed satisfy the reflection symmetry.662

Among other applications later on in the analysis, Lemmas 5.2 and 5.3 can be663
used for the following two corollaries. As a first corollary, we recover a classical664
result about isotropic linear elasticity (compare, e.g., [14] for the analogous three-665
dimensional case).666

Corollary 5.4. In the setting of Section 2.1, for W given by (5), one finds667
∇2W (0) = clin Id, for some clin > 0, and therefore668

−div(∇2W (0)[∇u]) = −clin∆u669

Proof. According to (5) W (F ) = 1
detAΛ

V (F · R), hence we have670

∇2W (0) =
1

detAΛ

∑
ρ,σ∈R

∇2V (0)ρσρ⊗ σ.671

We further notice that due to the rotational symmetry of R and V , (2), we have672
∇2V (0)ρσ = ∇2V (0)QρQσ, hence we can equivalently write673

∇2W (0) =
1

detAΛ

∑
ρ,σ∈R

∇2V (0)ρσQρ⊗Qσ.674

In particular,675
∇2W (0) ∈ {A ∈ R2×2 : (Q⊗Q)A = A}.676

It is also clear that ∇2W (0) is symmetric, thus677

Psym∇2W (0) = ∇2W (0)678

and so we invoke Lemma 5.2 to conclude that679

∇2W (0) =

 1

2 detAΛ

∑
ρ,σ∈R

∇2V (0)ρσρ · σ

 Id =: clin Id .680

Since lattice stability implies Legendre-Hadamard stability of the Cauchy-Born limit681
[11, 3], it follows that clin > 0.682

As a second corollary, we can even identify the lowest order nonlinearity.683

Corollary 5.5. In the setting of Section 2.1 assuming additionally the line re-684
flection symmetry (15), for W given by (5), one finds ∇3W (0) = cquad(E111 −685
3 symE122), for some cquad ∈ R, and therefore686

div(∇3W (0)[∇u,∇v]) = cquad

((
∂11v − ∂22v
−2∂12v

)
· ∇u+

(
∂11u− ∂22u
−2∂12u

)
· ∇v

)
.687
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20 JULIAN BRAUN, MACIEJ BUZE, AND CHRISTOPH ORTNER

Proof. As W (F ) = 1
detAΛ

V (F · R), we have688

∇3W (0) =
1

detAΛ

∑
ρ,σ,τ∈R

∇3V (0)ρστρ⊗ σ ⊗ τ.689

Further, due to the rotational symmetry of R and V , (2), we have ∇3V (0)ρστ =690
∇3V (0)QρQσQτ , hence we can equivalently write691

∇3W (0) =
1

detAΛ

∑
ρ,σ,τ∈R

∇3V (0)ρστQρ⊗Qσ ⊗Qτ.692

Furthermore, the line reflection symmetry (15) implies∇3V (0)ρστ = −∇3V (0)SρSσSτ ,693
which translates to694

∇3W (0) = − 1

detAΛ

∑
ρ,σ,τ∈R

∇3V (0)ρστSρ⊗ Sσ ⊗ Sτ.695

Combining these observations, we find696

∇3W (0) ∈
{
A : A = symA,Q⊗3A = A,S⊗3A = −A

}
,697

and invoking Lemma 5.2, we therefore deduce that698

∇3W (0) =
( 1

4 detAΛ

∑
ρ,σ,τ∈R

∇3V (0)ρστ (ρ1σ1τ1 − ρ1σ2τ2 − ρ2σ1τ2 − ρ2σ2τ1)
)

699

· (E111 − 3 symE122)700

=: cquad(E111 − 3 symE122).701702

Finally, the identity703

div((E111 − 3 symE122)[∇u,∇v]) =

(
∂11v − ∂22v
−2∂12v

)
· ∇u+

(
∂11u− ∂22u
−2∂12u

)
· ∇v.704

completes the proof.705

5.2. Decay of the linear residual. As discussed in the sketch of the proof, see706
(14), the crucial object is the linear residual707

fu = −Div(∇2V (0)[Du]).708

We now establish how crystalline symmetries lead to a faster decay of fu as would be709
expected from linearised elasticity in general.710

Theorem 5.6. (a) In the setting of Theorem 2.5, on a square lattice, we711
have712

|fū(x)| . |x|−4713

for sufficiently large |x|.714
(b) In the setting of Theorem 2.5 on a triangular lattice, we have715

|fū(x)| . |x|−6 log2|x|+ |x|−3|Dū|+ |x|−2|D2ū|716

. |x|−5 log|x|717718

for sufficiently large |x|.719
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(c) In the setting of Theorem 2.9, we have720

|fū(x)| . |x|−3721

for sufficiently large |x|. But, writing ū = u1 +u2 + ūrem with u1 and u2 given722
by (18) and (19), we have723

|fūrem
(x)| . |D2ūrem||Dūrem|+ |x|−2|Dūrem|+ |x|−1|D2ūrem|+ |x|−5724

. |x|−4 log|x|.725726

for sufficiently large |x|.727

Remark 5.7. Theorem 5.6 improves on the residual decay estimate |x|−3 obtained728
in [8] in all three cases we consider. This can be used to gain better estimates on ū729
or ūrem which in turn improves the rates here. Iteratively, we will see that the terms730
involving ū or ūrem in all of the above estimates turn out to be negligible.731

Proof. Recall that ū is a critical point of the energy difference, satisfying the732
equilibrium equation733

(25) −Div(∇V (Dû+Dū)) = 0.734

To obtain an estimate on fū(x) we first linearise by Taylor expansion of V around 0735
and then connect to CLE by Taylor expansion of Dû around x. Note that û is not736
smooth at the branch cut Γ and Dρû is not close to ∇û · ρ there either. But this737
is not a problem as the jump of û is equal to the periodicity p (or −p) of V and738
∇û ∈ C∞(R2\{0}). Therefore, one can always substitute û(x) by û(x) ± p where739
necessary. We will use this implicitly in the following arguments.740

Taylor expanding V around 0 and ordering by order of decay gives741

0 = fū + I2 + I3 + I4 + I5 + Irem742

where743

I2 = −Div(∇2V (0)[Dû]),744

I3 = −1

2
Div(∇3V (0)[Dû,Dû]),745

I4 = −Div(∇3V (0)[Dû,Dū])− 1

6
Div(∇4V (0)[Dû,Dû,Dû]),746

I5 = −1

2
Div(∇3V (0)[Dū,Dū])− 1

2
Div(∇4V (0)[Dû,Dû,Dū])747

− 1

24
Div(∇5V (0)[Dû]4),748

749

and the remainder satisfies750

(26) |Irem| ≤|x|−6log2|x|,751

due to the already known decay estimates on ū from Theorem 2.2 and the explicit752
rates for û:753

|Dj û| ≤ |x|−j and |Dj ū| ≤ |x|−j−1 log|x| for j ≥ 1.754
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Estimate for I2: The term I2 depends only on û. We can expand û755

I2 =
∑
ρ,σ∈R

∇2V (0)ρσD−σDρû(x)756

=
∑
ρ,σ∈R

∇2V (0)ρσ
(
û(x+ ρ− σ) + û(x)− û(x+ ρ)− û(x− σ)

)
757

= J2 + J3 + J4 + J5 +O(|x|−6),758759

where760

J2 = −
∑
ρ,σ∈R

∇2V (0)ρσ∇2û(x)[ρ, σ]761

J3 =
1

2

∑
ρ,σ∈R

∇2V (0)ρσ∇3û(x)
(
[ρ, σ, σ]− [ρ, ρ, σ]

)
762

J4 =
1

12

∑
ρ,σ∈R

∇2V (0)ρσ∇4û(x)
(
− 2[ρ, σ, σ, σ] + 3[ρ, ρ, σ, σ]− 2[ρ, ρ, ρ, σ]

)
763

J5 =
1

24

∑
ρ,σ∈R

∇2V (0)ρσ∇5û(x)
(
[ρ, σ, σ, σ, σ]− 2[ρ, ρ, σ, σ, σ]764

+ 2[ρ, ρ, ρ, σ, σ]− [ρ, ρ, ρ, ρ, σ]
)

765

766767

Using the symmetry in ρ and σ it follows that J3 = J5 = 0. By Lemma 5.2,768

J2 = −
∑
ρ,σ∈R

∇2V (0)ρσ∇2û(x)[ρ, σ](27)769

=
(
−
∑
ρ,σ∈R

∇2V (0)ρσρ⊗ σ
)

: ∇2û(x)770

=
(
− 1

2

∑
ρ,σ∈R

∇2V (0)ρσρ · σ
)
∆û(x).771

772

Hence, J2 = 0. Thus we conclude so far that I2 = J4 +O(|x|−6). To proceed, we now773
distinguish the specific cases we consider.774

Proof of (a): Due to mirror reflection symmetry we have ∇3V (0) = 0 and775
∇5V (0) = 0, hence I3 = 0, |I4| . |x|−4 and |I2| . |J4|+ |x|−6 . |x|−4. We therefore776
obtain |fū| . |x|−4 which concludes the proof of (a).777

Estimates for J4, I4 for cases (b, c): We use Lemma 5.2 to calculate778

J4 =
1

12

∑
ρ,σ∈R

∇2V (0)ρσ∇4û(x)
(
− 2[ρ, σ, σ, σ] + 3[ρ, ρ, σ, σ]− 2[ρ, ρ, ρ, σ]

)
(28)779

= Psym

( 1

12

∑
ρ,σ∈R

∇2V (0)ρσ
(
− 2ρ⊗ σ ⊗ σ ⊗ σ + 3ρ⊗ ρ⊗ σ ⊗ σ780

− 2ρ⊗ ρ⊗ ρ⊗ σ
))

: ∇4û(x)781

=
( 1

32

∑
ρ,σ∈R

∇2V (0)ρσ
(
2(ρ · σ)2 + |ρ|2|σ|2 − 2ρ · σ(|ρ|2 + |σ|2

))
∆2û(x)782

783
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As ∆2û = 0, we find J4 = 0 and hence obtain |I2| . |x|−6.784
Next, we consider785

I4 = −1

6
Div(∇4V (0)[Dû,Dû,Dû])786

=
1

6

∑
π,ρ,σ,τ

∇4V (0)πρστD−τ (DπûDρûDσû)787

= −1

2

∑
π,ρ,σ,τ

∇4V (0)πρστ∇2û[π, τ ]∇û · ρ∇û · σ788

− 1

6

∑
π,ρ,σ,τ

∇4V (0)πρστ∇3û[π, π, τ ]∇û · ρ∇û · σ789

+
1

6

∑
π,ρ,σ,τ

∇4V (0)πρστ∇3û[π, τ, τ ]∇û · ρ∇û · σ790

− 1

2

∑
π,ρ,σ,τ

∇4V (0)πρστ∇2û[π, τ ]∇2û[ρ, ρ]∇û · σ791

+
1

2

∑
π,ρ,σ,τ

∇4V (0)πρστ∇2û[π, τ ]∇2û[ρ, τ ]∇û · σ.792

793

The second and third terms cancel each other by symmetry in π and τ , while the794
fourth and fifth terms both vanish due to ∇4V (0)πρστ = ∇4V (0)(−π)(−ρ)(−σ)(−τ).795

Applying again Lemma 5.2 we can express the first term as796

I4 = −1

2

∑
π,ρ,σ,τ

∇4V (0)πρστ∇2û[π, τ ]∇û · ρ∇û · σ(29)797

= Psym

(
− 1

2

∑
π,ρ,σ,τ

∇4V (0)πρστπ ⊗ τ ⊗ ρ⊗ σ
)

: (∇2û⊗∇û⊗∇û)798

=
1

24

(
− 1

2

∑
π,ρ,σ,τ

∇4V (0)πρστ ((π · τ)(ρ · σ) + (π · ρ)(τ · σ) + (π · σ)(ρ · τ))
)

799

· (3∂2
1 û(∂1û)2 + 3∂2

2 û(∂2û)2 + ∂2
1 û(∂2û)2 + ∂2

2 û(∂1û)2 + 4∂1∂2û∂1û∂2û)800

= c(|∇û|2∆û+ 2∇2û[∇û,∇û])801

= c
(
3|∇û(x)|2 + 2)∆û(x)− 4(1 + |∇û|2

) 3
2H,802803

where804

H =
(1 + (∂1û)2)∂2

2 û+ (1 + (∂2û)2)∂2
1 û− 2∂1û∂2û∂1∂2û

2(1 + |∇û|2)
3
2

805

is the mean curvature of the surface given by x3 = û(x1, x2). Since the graph of û is806
a helicoid, i.e., a minimal surface, H ≡ 0 and therefore we have shown that I4 = 0.807

Proof of (b): Due to the mirror symmetry we again obtain ∇3V (0) = ∇5V (0) =808
0, hence I3 = 0. In addition, again due to mirror symmetry, I5 simplifies to809

I5 = −1

2
Div(∇4V (0)[Dû,Dû,Dū]).810

Therefore,811

|I5| . |x|−3|Dū|+ |x|−2|D2ū|812

. |x|−5 log|x|,813814
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Invoking I4 = 0 and |I2| . |x|−6 from the previous step concludes the proof of (b).815
Proof of (c): On the BCC lattice, case (c), one typically finds ∇3V (0) 6= 0 and816

∇5V (0) 6= 0. In particular, I3 does not vanish, hence our arguments so far only yield817
|fū| ≤ |x|−3.818

To estimate, fūrem we replace û with û+ u1 + u2 and ū with ūrem in the previous819
steps of the proof. Recall from (20) that |∇jui| . |x|−i−j .820

Clearly, Equation (25) and the Taylor expansion of V including (26) still hold.821
For the estimates let us start with the higher order terms. We can estimate directly822 ∣∣−Div(∇3V (0)[D(û+ u1 + u2), Dūrem])

∣∣ ≤ |x|−2|Dūrem|+ |x|−1|D2ūrem|.823

If we also substitute û by û+ u1 + u2 in (29), we find overall that824

|I4| . |x|−2|Dūrem|+ |x|−1|D2ūrem|+ |x|−5825

. |x|−4 log|x|.826827

In the same spirit we estimate828

|I5| . |D2ūrem||Dūrem|+ |x|−3|Dūrem|+ |x|−2|D2ūrem|+ |x|−5829

. |x|−5 log2|x|.830831

The important difference to before are found in I2 and I3. Let us start with I2. As832
before, we find J3 = J5 = 0. Substituting û by û+ u1 + u2 in (28), we estimate833

|J4| . |∆2(û+ u1 + u2)| = |∆2(u1 + u2)| . |x|−5.834

Therefore, I2 = J2 +O(|x|−5). It is crucial that now J2 does not vanish to be able to835
cancel out the first terms in the nonlinearity I3. Following (27), we have836

J2 = −
∑
ρ,σ∈R

∇2V (0)ρσ∇2(u1 + u2)(x)[ρ, σ]837

= −det(AΛ) div
(
∇2W (0)[∇(u1 + u2)]

)
838

= −det(AΛ)clin∆(u1 + u2)839840

Now let us come to I3. Clearly,841

I3 = −1

2
Div(∇3V (0)[Dû,Dû])842

−Div(∇3V (0)[Dû,Du1]) +O(|x|−5).843844

Developing the discrete differences as we did previously for I2, we find845

−Div(∇3V (0)[Dû,Du1])846

=
∑

ρ,σ,τ∈R
∇3V (0)σρτD−τ (Dρû(x)Dσu1(x))847

= −
∑

ρ,σ,τ∈R
∇3V (0)σρτ (∇û(x)[ρ]∇2u1(x)[σ, τ ] +∇u1(x)[σ]∇2û(x)[ρ, τ ])848

+O(|x|−5)849

= −detAΛ div(∇3W (0)[∇û,∇u1]) +O(|x|−5).850851
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For the other term we have to take a few more terms into account. For those we again852
use the fact that ∇3V (0)σρτ = −∇3V (0)(−σ)(−ρ)(−τ).853

−1

2
Div(∇3V (0)[Dû,Dû])854

=
1

2

∑
ρ,σ,τ∈R

∇3V (0)σρτD−τ (Dρû(x)Dσû(x))855

=
1

2

∑
ρ,σ,τ∈R

∇3V (0)σρτ
(
D−τDρû(x)Dσû(x) +Dρû(x− τ)D−τDσû(x))856

=
1

2

∑
ρ,σ,τ∈R

∇3V (0)σρτ

(
− 2∇û(x)[σ]∇2û(x)[ρ, τ ]857

+
(
∇3û(x)[ρ, τ, τ ]−∇3û(x)[ρ, ρ, τ ]

)
∇û(x)[σ]−∇2û(x)[ρ, τ ]∇2û(x)[σ, σ]858

+∇2û(x)[ρ, τ ]∇2û(x)[σ, τ ]
)

+O(|x|−5)859

= −
∑

ρ,σ,τ∈R
∇3V (0)σρτ∇û(x)[σ]∇2û(x)[ρ, τ ] +O(|x|−5)860

= −detAΛ
1

2
div(∇3W (0)[∇û,∇û]) +O(|x|−5)861

862

Hence, we can use Equations (16a) and (16b) for u1 and u2 to conclude that J2 +I3 =863
O(|x|−5). This concludes the proof.864

5.3. Proofs of the main theorems. The connection between the decay of fu865
and the decay of u is as follows:866

Theorem 5.8. Let u ∈ Ḣ1, and j ∈ {1, 2}.867
(a) If |fu(x)| . |x|−3 and

∑
x fu = 0, then for |x| sufficiently large,868

|Dju(x)| . |x|−1−j log|x|.869

(b) If |fu(x)| . |x|−4,
∑
x fu = 0, and

∑
x fux = 0, then for |x| sufficiently large,870

|Dju(x)| . |x|−2−j log|x|.871

(c) If |fu(x)| . |x|−5,
∑
x fu = 0,

∑
x fux = 0, and

∑
x fux ⊗ x ∝ Id, then for872

|x| sufficiently large,873
|Dju(x)| . |x|−3−j log|x|.874

(d) If the assumptions on the decay rate of fu in (a), (b), or (c) are slightly875
stronger, namely |x|−3−ε, |x|−4−ε, or |x|−5−ε for some ε > 0, then the result-876
ing rates for Dju are true without the logarithmic term, i.e. |x|−1−j, |x|−2−j,877
and |x|−3−j, respectively.878

Proof. Statement (a) is part of the results in [8]. Its extensions (b), (c), and (d)879
follow a similar basic strategy. The approach is based on knowledge about the lattice880
Green’s functionG as one can writeDu as a convolution on the lattice,Du = fu∗ΛDG,881
that is,882

Du(x) =
∑
z∈Λ

fu(z)DG(x− z).883

The proof of (b), (c), and (d) is part of a full theory developed in [2]. All the details884
as well as further generalisations will be presented there.885
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Theorem 5.8 shows that, to prove the main results in Sections 2.2 and 2.3, in886
addition to the decay of fu established in Section 5.2, we also need to analyse its887
moments.888

Theorem 5.9. In the setting of Section 2.1. Let [u] ∈ Ḣ1 inherit the rotational889
symmetry (11) and let fu denote the resultant linear residual (14). Then we have890 ∑
x fu = 0,

∑
x fux = 0, and

∑
x fux ⊗ x = c Id for some c ∈ R, provided the sums891

converge absolutely.892

Proof. We begin with
∑
x fu = 0. A version of this statement is already needed893

in Proposition 2.1 since it is directly linked with the net-force of the system. Propo-894
sition 2.1 was established in [8]. As there was a gap in the proof, namely a proof of895
the specific claim

∑
x fu = 0 in question here, let us give the details in our specific896

case: Let η be a smooth cut-off function with η(x) = 1 for |x| ≤ 1 and η(x) = 0 for897
|x| ≥ 2 and let ηM (x) = η

(
x
M

)
. Then we have898 ∑

x

fu = lim
M→∞

∑
x

fuηM899

= lim
M→∞

∑
x

Div
(
∇V (Dû+Du)−∇V (0)−∇2V (0)[Dû+Du]

)
ηM900

+ lim
M→∞

∑
x

Div∇2V (0)[Dû]ηM901

= − lim
M→∞

∑
x

(∇V (Dû+Du)−∇V (0)−∇2V (0))[Dû+Du])[DηM ]902

− lim
M→∞

∑
x

∇2V (0)[Dû,DηM ]903

=: lim
M→∞

AM +BM .904
905

Since the support of DηM is contained in {x : M − C ≤ |x| ≤ 2M + C}, for906
some fixed C > 0, the first term, AM , can be estimated as a remainder in a Taylor907
expansion by908

|AM | =
∣∣∣∑
x

(∇V (Dû+Du)−∇V (0)−∇2V (0))[Dû+Du])[DηM ]
∣∣∣909

.
∑
x

|Dû+Du|2|DηM |910

.M2M−3 + ‖u‖2Ḣ1M
−1911

.M−1.912913

For the second term, BM , note that M − C ≤ |x| ≤ 2M + C implies Dû = ∇û · R+914
O(M−2) and DηM = ∇ηM · R + O(M−2). Estimating also the “quadrature error”915
(replacing the sum by an integral) we obtain916

BM =
1

detAΛ

∫
R2

∇2V (0)[∇û · R,∇ηM · R] +O(M−1)917

=

∫
R2\B1(0)

∇2W (0)[∇û,∇ηM ] +O(M−1),918
919

where we used the fact that ∇ηM = 0 on B1(0) for M sufficiently large. Applying920
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Gauß’s theorem as well as the fact that ∇û(x) is always orthogonal to ν, we obtain921

BM =

∫
∂B1(x̂)

∇2W (0)[∇û] · ν dS(x) +O(M−1)922

= clin

∫
∂B1(x̂)

∇û · ν dS(x) +O(M−1)923

= O(M−1).924925

Thus, we have shown that926

∑
x

fu = lim
M→∞

(AM +BM ) = 0.927

To prove our claims about the first and second moments, we first show that928
rotational symmetry of ū implies rotational symmetry of fu, i.e., fu(LQx) = fu(x):929

fu(LQx) =
∑
ρ,σ∈R

∇2V (0)ρ,σ(Dσu(LQx− ρ)−Dσu(LQx))930

=
∑
ρ,σ∈R

∇2V (0)Qρ,Qσ(DQσu(LQx−Qρ)−DQσu(LQx))931

=
∑
ρ,σ∈R

∇2V (0)Qρ,Qσ(DQσu(LQ(x− ρ))−DQσu(LQx))932

=
∑
ρ,σ∈R

∇2V (0)Qρ,Qσ(Dσu(x− ρ)−Dσu(x))933

=
∑
ρ,σ∈R

∇2V (0)ρ,σ(Dσu(x− ρ)−Dσu(x))934

= fu(x),935936

where we have used QR = R, Dσu(x) = DQσu(LQx), as well as the rotational937
symmetry of V , (2). Let N = 3 for the triangular lattice and N = 4 for the quadratic938
lattice, then939

∑
x

fu(x)x =
∑
x

fu(x)(x− x̂)940

=
1

N

∑
x

N−1∑
j=0

fu(LjQx)Qj(x− x̂)941

=
1

N

∑
x

fu(x)

N−1∑
j=0

Qj(x− x̂)942

= 0943944
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and similarly for the second moment,945 ∑
x

fu(x)x⊗ x =
∑
x

fu(x)(x− x̂)⊗ (x− x̂)946

=
1

N

∑
x

N−1∑
j=0

fu(LjQx)(Qj(x− x̂))⊗ (Qj(x− x̂))947

=
∑
x

fu(x)P ((x− x̂)⊗ (x− x̂))948

= Id
(1

2

∑
x

fu(x)|x− x̂|2
)

949
950

where we used Lemma 5.2 in the last step.951

Finally, we can combine all the foregoing results to prove our main theorems.952

Proof of Theorem 2.5. Let us start with the square lattice. According to Theo-953
rem 5.6, we have |fū| . |x|−4. In particular,

∑
x fū and

∑
x fūx converge. Due to954

Theorem 5.9,
∑
x fū = 0 and

∑
x fūx = 0. Hence, by Theorem 5.8955

|Dj ū(x)| . |x|−2−j log|x|.956

for j = 1, 2 and |x| large enough.957
For the triangular lattice Theorem 5.6 gives us |fū| . |x|−5 log|x| . |x|−4−ε. In958

particular,
∑
x fū,

∑
x fū, and

∑
x fūx⊗x converge. Due to Theorem 5.9,

∑
x fū = 0,959 ∑

x fūx = 0, and
∑
x fūx⊗ x = c Id. At first, by Theorem 5.8 we conclude that960

|Dj ū(x)| . |x|−2−j .961

for j = 1, 2 and |x| large enough. But then Theorem 5.6 gives the stronger result962
|fū| . |x|−6 log2|x| ≤ |x|−5−ε, so that by Theorem 5.8 we indeed get963

|Dū(x)| . |x|−3−j964

for j = 1, 2 and |x| large enough.965

Proof of Theorem 2.9. As in the triangular lattice case we have to argue in several966
steps. As a starting point Theorem 5.6 shows that |fūrem

| . |x|−4 log|x| ≤ |x|−3−ε.967
In particular,

∑
x fūrem

and
∑
x fūrem

x converge. Due to Theorem 5.9,
∑
x fūrem

= 0968
and

∑
x fūrem

x = 0. With Theorem 5.8 we find969

|Dj ūrem(x)| . |x|−1−j970

for j = 1, 2, which in turn gives the improved estimate |fūrem
| . |x|−4 in Theorem 5.6.971

Going back to Theorem 5.8 we now get972

|Dj ūrem(x)| . |x|−2−j log|x|.973

Another iteration of Theorems 5.6 and 5.8 improves this to974

|Dj ūrem(x)| . |x|−2−j .975

Finally, by Theorem 5.6, we now find |fūrem
| . |x|−5. In particular,

∑
x fūrem

x ⊗ x976
converges as well and due to Theorem 5.9,

∑
x fūrem

x⊗ x = c Id = c′∇2W (0). A last977
use of Theorem 5.8 gives the desired result,978

|Dj ūrem(x)| . |x|−3−j log|x|979

for j = 1, 2 and |x| large enough.980
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