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Abstract 

 

Flow sensing is an essential technique required for a wide range of application 

environments ranging from liquid dispensing to utility monitoring. A number of 

different methodologies and deployment strategies have been devised to cover the 

diverse range of potential application areas. The ability to easily create new bespoke 

sensors for new applications is therefore of natural interest. Fused deposition 

modelling is a 3D printing technology based upon the fabrication of 3D structures in 

a layer-by-layer fashion using extruded strands of molten thermoplastic. The 

technology was developed in the late 1980’s but has only recently come to more 

wide-scale attention outside of specialist applications and rapid prototyping due to 

the advent of low-cost 3D printing platforms such as the RepRap. Due to the 

relatively low-cost of the printers and feedstock materials, these printers are ideal 

candidates for wide-scale installation as localised manufacturing platforms to quickly 

produce replacement parts when components fail. One of the current limitations with 

the technology is the availability of functional printing materials to facilitate 

production of complex functional 3D objects and devices beyond mere concept 

prototypes. This paper presents the formulation of a simple magnetite nanoparticle-

loaded thermoplastic composite and it’s incorporation into a 3D printed flow-sensor 

in order to mimic the function of a commercially available flow-sensing device. 

Using the multi-material printing capability of the 3D printer allows a much smaller 

amount of functional material to be used in comparison to the commercial flow 

sensor by only placing the material where is specifically required. Analysis of the 

printed sensor also revealed a much more linear response to increasing flow rate of 

water showing that 3D printed devices have the potential to at least perform as well 

as a conventionally produced sensor.  

 



 

1. Introduction 

3D printing is the process of producing physical objects in a bottom-up fashion, directly from 

computer aided design (CAD) files. Objects are produced through the layer-by-layer 

deposition of materials in specific patterns that represent a series of cross-sections through an 

object.[1,2] Once the object has been initially designed in CAD software, a further software 

package then slices it into a set of 2D cross-sections or ‘slices’, each representing the 

component at a specific layer or z-height. The descriptions of the slices that include 

information about the patterns of the layers and their thickness are then sent to the 3D printer. 

The layers can be physically constructed in a number of ways depending on the type of 3D 

printer being used. Powder can be spread onto a tray and then solidified in the required 

pattern with the application of a liquid binder,[3] by sintering with a laser [4] or by melting 

with an electron beam.[5] Some machines carry out 3D lithographic processes using light and 

photosensitive resins [6] and others deposit filaments of molten plastic.[7] Regardless of how 

each layer is constructed, after the layer is complete the build surface is moved by a fraction 

of a millimetre and another layer of material is added.  

The most prolific technology used in low-cost 3D printers such as the RepRap [8] is 

Fused Deposition Modeling (FDM) or Fused Filament Modeling (FFM).[9] FFM machines 

work on the simple principle of extruding a thin (usually < 1 mm) filament of molten 

thermoplastic (normally from a feedstock of larger filament) through a heated nozzle onto a 

room temperature or heated build platform to create a filament network.[10] This printed 

network cools and adheres to the previously deposited layers to build up a solid 3D object. As 

objects are fabricated in a bottom-up, additive fashion directly from digital designs, with no 

milling or molding, complex components can be produced with less waste and much more 

rapidly than through conventional manufacturing technologies that can often require pre-

tooling. As such, the technology is highly attractive for the rapid production of replacement 

engineering parts. However, the current capabilities of low-cost FDM based 3D printers is 

such that they can, at present, only produce parts using simple engineering plastics, such as 

Acrylonitrile butadiene styrene (ABS). Therefore, a step-change in the range of available 

materials is required. The authors have previously reported a procedure to formulate an 

electrically conductive thermoplastic composite filament for 3D printing of piezoresistive and 

capacitive sensors.[11] In an effort to expand upon this work it was identified that a material 

with magnetic properties could be useful for 3D printing of functional devices. In order to 

demonstrate how a simple composite material of this type could be used to practically carry 

out a sensing function, production of a flow-sensing device that mimicked the action of a 

commercially available flow sensor was chosen. The composite material was formulated 

using the authors’ previously reported procedure and used to 3D print the impeller component 



of the flow sensor. After 3D printing of the sensor, testing not only showed that the 

functionality was comparable to that of the commercial sensor but the printed sensor 

exhibited a much more linear response. 

 

2. Flow Sensor Design and Manufacture 

 

 2.1 Operating principle of commercially available sensor 

Mimicking the function of a commercially available flow device was selected to demonstrate 

the viability of 3D printing for production of working sensing devices. The device chosen was 

an electronic flow sensor (RotorFlow® RFO-2500, Gems Sensors Basingstoke, UK).  A 

depiction of the freely available schematic of the flow sensor is presented in figure 1a.[12] 

The authors have previously shown that a flow sensor can be produced using Micro-

stereolithography (MSL) with a magnetite/acrylate composite material and an Anisotropic 

magnetoresistive (AMR) sensor to detect rotating magnetic fields.[13] While providing a 

means for producing such devices with high-resolution and precision, the small build 

envelope of the MSL instrument limits the size of the devices to miniature flow sensors for 

applications such as microfluidics and lab-on-a-chip devices.[14] Thus, to produce the 

selected sensor, an alternative technology is required. A low-cost 3D printing technology such 

as FFM, where the achievable volume of the printed structures is much larger was identified 

as a suitable technology. The operating principle of the commercial sensor is as follows. As a 

liquid passes though the body of the device (figure 1b), it forces a magnetic rotor to rotate 

with the rate of the rotation is proportional to that of the flow. As the magnetised vanes of the 

rotor rotate, the moving magnetic fields are detected using a Hall effect sensor that then 

produces a series of pulses. The frequency of the pulses is proportional to the rate of flow of 

the liquid passing through the sensor. Hall effect sensors are commonly used in applications 

such as this for measuring the speed of rotating shafts or wheels. 



 
Figure 1 a) Schematic detailing the operation of a commercially available flow sensor, b) 

picture of commercially available flow sensor, c) CAD design of 3D printable sensor and d) 

CAD design of 3D printable central impeller. 

 

2.2 Design of 3D printed flow sensor 

Taking the commercial RotorFlow® sensor as inspiration, in CAD software (Solidworks, 

Dassault Systèmes, France) a sensor with the same footprint that could be produced using a 

standard off-the-shelf FDM 3D printer was designed. The design of the sensor is presented in 

figure 1c and the design of the printed impeller is presented in figure 1d. In contrast to 

fabricating the complete impeller from a ferrous material as with the commercial sensor, it 

was decided to use the multi-material capability of the 3D printing system to print the main 

body of the impeller from the standard ABS print material and then print a small portion of 

formulated magnetite composite on the top surface of the impeller. This would serve two 

purposes: to use the mechanical properties of the ABS to maintain the structural integrity of 

the impeller, especially at high flow rates and secondly, to demonstrate that if placed 

optimally, only a small portion of a functional material is needed to achieve a functional 

effect. 

In the commercially available sensor, the impeller is entirely composed of a ferrous 

material (an approximate volume of 3908.45 mm3). In the 3D printed sensor, it was surmised 

that only a small fraction of the impeller would be required to be composed of ferrous 

material for the sensor to operate. Thus, the printed composite region was selected to be 



equivalent to two printed 0.250 mm layers from a total impeller height of 9.25 mm. This 

reduction in the required volume of functional material would also demonstrate that 3D 

printing would be the ideal technology to consider when the availability (due to cost or 

scarcity) of functional raw materials may be at a premium. 

 

2.3 Composite material formulation 

In order to produce the impeller on the 3D printer a simple magnetite thermoplastic composite 

was devised. The material was formulated as per the authors’ previously reported procedure 

for producing composite feedstock materials for FFM research.[11] Briefly, magnetite 

particles (<50 nm nominal diameter, Sigma-aldrich, UK) were stirred in dichloromethane 

(DCM) while the commercial polycaprolactone formulation (Polymorph, Rapid Electronics, 

UK) was added. The resulting solution was stirred for 1 hour, then the solvent allowed to 

evaporate at room temperature and pressure. This simple process yielded a composite 

polymer film that could be reheated in a water bath and rolled between two glass plates to 

provide a 3 mm rod of material as a feedstock for the 3D printer.  

 

2.4 Flow sensor production 

Production of the flow sensor was carried out using a Bits from Bytes BFB3000 3D printer. 

In order to create a print file for the BFB printer, the CAD file (in .stl format) was transferred 

into the Axon 2 software supplied with the printer. Production of the complete device, 

including the main body took approximately 4 hours in total. The print settings for standard 

polylactic acid (PLA) filament were selected when printing the magnetite composite. A 

picture of the completed device and a macro picture of the impeller are presented in Figure 2c 

and figure 2d respectively. The two printed layers of darker material can clearly be seen on 

the upper surface of the printed impeller. 

 
Figure 2 a) photograph of the printed flow sensor and impeller and b) macro image of the 

printed impeller showing the interface between the formulated composite and the ABS 

material. 



 

In order to measure the rotation of the 3D printed impeller within the sensor, a Honeywell 

HMC1001 AMR sensor was used in place of the Hall effect sensor utilised in the commercial 

flow sensor. The AMR sensor and associated circuit was employed to detect the magnetic 

fluctuation of the rotating impeller such that the frequency of rotation could be observed and 

measured on an oscilloscope . 

 

3.  Composite Material Analysis 

Prior to incorporation in the composite, a portion of the as-received magnetite particles was 

transferred to carbon tape and imaged using Scanning electron microscopy (SEM). The SEM 

image is presented in figure 2a. As can be seen from the SEM image, while the particles have 

quoted nominal diameter of < 50 nm, due to the magnetic-interaction-induced aggregation of 

the particles they exist as much larger (~ 6 um to ~ 120 um) clusters of smaller particles. This 

behavior is common in magnetite-containing fluids.[15] 

 

	
  
Figure 3 a) SEM image of the as-received magnetite nanoparticles on the surface of a section 

of carbon tape and b) X-ray image of a section of the printed composite showing the 

dispersion of magnetite (darker regions) in the polymer matrix. 

 

After formulation of the composite into a 3 mm filament rod, a back-scattered 

electron (BSE) SEM image of a cut face was taken. The BSE imaging confirmed that 

although some particle aggregates were still present, the magnetite filler was evenly 

distributed through the polymer matrix and not confined to the edges or core of the rod. In 

order to understand the effect of 3D printing on the material itself, a section of a magnetite 

impeller arm was imaged through it’s upper surface using the 2D imaging capability of a 

micro focus X-ray CT scanner (Skyscan 1174, Bruker). The image (taken at a source voltage 

of 50kV and scan pixel size of 11.48 μm) is presented in figure 3b. The x-ray imaging 

revealed that after passing through the print nozzle, the magnetite particles (darker regions in 



images) remained dispersed through the polymer matrix with no apparent negative effects, 

such as particle removal or spatial confinement. The darkness (density) of the matrix 

surrounding the larger aggregates also alludes to the presence of smaller particles or 

aggregates (beyond the instrument imaging resolution) being dispersed in the polymer matrix. 

A potential route to improving the dispersion of particles and reducing the occurrence of 

larger particle aggregates could be to directly synthesise polymer or surfactant stabilised 

particles for incorporation into the polymer matrix, however the potential impact on sensor 

functionality is at present unknown. 

 

 
4.  Flow Sensor Testing 

In order to test the functionality of the printed sensor compared to the commercially available 

sensor, the printed sensor was tested using a combination of both compressed air and water.  

The initial test of the 3D printed sensor was carried out using air flow from a compressed air 

system. The aim if this test was to first establish the stability of readings obtained from the 

sensor. It might be hypothesised that due to the thermoplastic construction of the sensor, if 

exposed to sustained use, any friction might cause the structure to heat up and deform, thus 

having a negative impact on its sensing capability. Air was chosen as the flowing phase in 

this case as the presence of the liquid instead might serve to lubricate any contact and reduce 

friction. A representative plot of measured frequency versus time for a period of 120 secs is 

presented in figure 4a. For the presented data, the mean measured value (red horizontal line 

on graph) was 40.8 Hz with a standard deviation of 1.2 Hz. Beyond the excerpt shown, this 

level of stability from the sensor was seen to extend over much larger time periods and 

suggests that the printed sensor is capable of operating with a reasonable degree of accuracy.  

 

   

 

 



 
Figure 4. Graphs showing a) stability of measured rotation of sensor under constant air flow 

(red horizontal line indicates mean value), b) correlation between the commercially available 

flow sensor when exposed to water flow and c) response of the commercial sensor (black 

dots) and 3D printed sensor (white dots) to increasing water flow rate (expressed in terms of 

pump voltage). 

 

A second test was carried out by connecting both sensors to a recirculating pumped water 

system (DC15/5 Centrifugal Pump, Totton Pumps, UK) and the frequency correlation of the 

sensors recorded and plotted (figure 4b). It can be seen that the correlation between the two 

sensors was approximately linear with the 3D printed sensor displaying an average difference 



of + 2.2 Hz from the commercial sensor. The results of the previous stability test indicate that 

inherent fluctuations in the measured frequency could potentially contribute to any recorded 

deviations from the linear behavior. 

 

In order to fully characterise the performance of the printed sensor, the rotation speed of each 

sensor was recorded against increasing pump voltage (and hence increasing flow rate) in the 

recirculating water system (figure 4c). The readings from each sensor were recorded using 

identical oscilloscope signal averaging. Surprisingly, the 3D printed sensor exhibited a much 

more linear response to flow rate compared to the commercial sensor. The reasons for this 

difference are still unclear but could arise from operating the commercial sensor outside it’s 

optimum calibrated range. The ability of the printed sensor to yield such a linear response 

further supports that any error in its measured values alone arises from the inherent stability 

of the sensor and can thus be accounted for. 

 

It is noteworthy that after the sensor tests there was no obvious separation of the magnetite 

composite layers from the underlying ABS layers of the impeller, indicating good interfacial 

adhesion. It can be hypothesised that this is due to the mechanical interlocking of the two 

discrete materials, where the composite is printed at a lower temperature than the ABS, 

allowing it to interlock into the surface topology of the ABS filament network. This interface 

stability is encouraging when considering such printed devices for applications where use of a 

conventional two-shot injection molding approach might require an additional adhesive to 

achieve a strong bond between materials. This demonstration of the robustness of 3D printed 

flow sensors while exhibiting a linear response over such a large range of flow rates and 

conditions is a very encouraging step towards the use of 3D printing for commercial 

manufacture of functional sensors. 

 

3. Conclusions 

By formulating and 3D printing with a functional material based on the incorporation of 

magnetite particles, the ability to take a commercially available flow sensor and mimic it’s 

operation in a working 3D printed device has been demonstrated. As an advantage, the 3D 

printed sensors not only use a versatile circuit that can be reused when a new shape/structured 

device is required and produced but also only use a small amount of material in order to 

achieve the same function as the commercial flow sensor. Furthermore, when compared to the 

commercial sensor, the flow sensor exhibits highly encouraging performance in terms of the 

linearity of its response with predictable accuracy. This work demonstrates that far from 



being solely a prototyping technology, 3D printing is viable technology for production of 

devices and products beyond mere concept prototypes. 
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