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Abstract

We present a computational study of the compound Y(Co1−x−yFexCuy)5 for
0 ≤ x, y ≤ 0.2. This compound was chosen as a prototype for investigating
the cell boundary phase believed to play a key role in establishing the high
coercivity of commercial Sm-Co 2:17 magnets. Using density-functional theory,
we have calculated the magnetization and magnetocrystalline anisotropy at zero
temperature for a range of compositions, modeling the doped compounds within
the coherent potential approximation. We have also performed finite temper-
ature calculations for YCo5, Y(Co0.838Cu0.162)5 and Y(Co0.838Fe0.081Cu0.081)5
within the disordered local moment picture. Our calculations find that substi-
tuting Co with small amounts of either Fe or Cu boosts the magnetocrystalline
anisotropy K, but the change in K depends strongly on the location of the
dopants. Furthermore, the calculations do not show a particularly large differ-
ence between the magnetic properties of Cu-rich Y(Co0.838Cu0.162)5 and equal
Fe-Cu Y(Co0.838Fe0.081Cu0.081)5, despite these two compositions showing differ-
ent coercivity behavior when found in the cell boundary phase of 2:17 magnets.
Our study lays the groundwork for studying the rare earth contribution to the
anisotropy of Sm(Co1−x−yFexCuy)5, and also shows how a small amount of
transition metal substitution can boost the anisotropy field of YCo5.

Keywords: Permanent magnets, Doping, Coercivity, Coherent potential
approximation

1. Introduction

Of the wide variety of magnetic materials that can be formed by alloy-
ing rare-earth elements with transition metals (RE/TM) [1], the permanent
magnet market is dominated by those based either on Nd-Fe-B [2, 3] or Sm-
Co [4, 5]. The performance of a permanent magnet is usually quantified by
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its maximum energy product (BH)max, which measures the energy stored in
the air gap of the associated magnetic circuit [6]. At temperatures up to ap-
proximately 120◦C, the Nd-Fe-B materials have the highest (BH)max of all
available permanent magnetic materials, but above this temperature their ex-
cellent performance sharply diminishes [7]. By contrast, Sm-Co magnets do not
have the same dramatic sensitivity to temperature as Nd-Fe-B, showing superior
performance above 120◦C [7] and even operating at temperatures in excess of
400◦C [8]. Sm-Co magnets are therefore the materials of choice for applications
where high-temperature performance is critical, e.g. sensing in manufacturing
processes [9].

The Sm-Co magnets can be further partitioned into the 1:5 and 2:17 classes
based on their nominal crystal structures, with the highest-performing magnets
falling into the 2:17 class [10]. As well as Sm and Co, commercial 2:17 magnets
also contain Fe, Cu and Zr at an approximate stoichiometry Sm(Co1−x−y−uFexCuyZru)z,
where z ∼ 7.5, x, y ∼ 0.1 and u ∼ 0.01 [11]. As illustrated by the value of z, the
2:17 magnets also do not simply consist of a single Sm2TM17 phase but rather
adopt a multi-phase structure [12]. This structure consists of a cellular phase
composed of 2:17 cells surrounded by thin (∼10 nm) cell boundaries with an
approximate 1:5 stoichiometry, and a lamellar, Zr-rich “Z” phase [13].

It has long been accepted that this complex multi-phase structure is es-
sential to maintaining the excellent high-temperature performance of the 2:17
magnets [10]. Recent work has highlighted the importance of the Z phase in
aiding the formation of the cellular phase [14]. The critical role played by the
cellular phase is then revealed by electron microscopy experiments, which show
the pinning of magnetic domain walls at 2:17/1:5 boundaries [15]. This domain
wall pinning inhibits magnetization reversal and thus provides a coercive force.

Over the years a number of theories have been proposed to explain the
pinning of the domain walls [15–25]. According to micromagnetic theory [26],
the energy of a domain wall depends both on the strength of the exchange
interaction A and the magnetic anisotropy K as ∝

√
AK. Assuming that the

2:17 cells and 1:5 cell boundary phases have different A and K, there will be an
energy barrier associated with a domain wall moving between these regions [16].
Interestingly, this argument does not rely on the domain wall energy being larger
or smaller in the cell boundary phase compared to the cell [17]. In models based
on “repulsive” pinning, the domain wall energy is higher in the cell boundary
phase, so the domain wall gets stuck in the cell [16, 18, 19], while in “attractive”
pinning models the domain walls have higher energies in the cell, so they get
pinned in the cell boundary phase instead [15, 20–22]. More recently, models
have been proposed where it is the variation of K within the cell boundary
region that determines the coercivity [23–25].

The existence of different models reflect the complicated nature both of
2:17 magnets and of coercivity in general. Indeed, the small size of the cell
boundary phase and of the domain walls themselves already presents a challenge
to continuum-based micromagnetics [20]. However, assuming micromagnetics
can be used to gain insight into the magnetization reversal process, a basic
question is what values of A, K and magnetic polarization J should be used as
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input in the simulations. Focusing on the magnetic anisotropy K, based upon
the values measured for SmCo5 and Sm2Co17 one would expect a much larger
anisotropy in the 1:5 cell boundary phase compared to the 2:17 cells. Indeed,
there are reports of measurements on a commercial 2:17 sample which support
this view [16]. However, other experimental studies concluded that the 1:5 cell
boundary was actually softer (smaller anisotropy) than the cell [21]. Another
study found similar anisotropy energies for the two phases, but explained the
pinning of domain walls in terms of a large difference in exchange energy A
between the phases [20].

Of course, a crucial property of the commercial magnets is the presence of the
additional elements Cu, Fe and Zr. A recent 3D atom probe study measured the
chemical compositions of the cell boundary phase for 2:17 magnets showing both
high and low coercivities, depending on heat treatment [25]. This study reported
that the high-coercivity sample coincided with an enhanced Cu and diminished
Fe content in the 1:5 cell boundary, as well as a sharp interface between the cell
and cell boundary phases. Conversely, having a similar Fe and Cu content in
the 1:5 cell boundary, as well as having a diffusive interface between the cell and
cell boundary phases, was correlated with low coercivity [25]. The Zr content
was found to be very small in both cases.

It would be desirable to be able to establish a link between chemical compo-
sition and magnetic properties. In Ref. [25] it is pointed out that, although there
is some data on binary Sm(Co,Cu)5 (e.g. Ref. [27]), there is a gap in the litera-
ture considering the ternary compound Sm(Co1−x−yFexCuy)5. Indeed we note
that even the experimental data of Ref. [27] on Sm(Co1−yCuy)5 only reports
anisotropy fields measured for y ≥ 0.24 (≥20% by atom) which is already larger
than the ∼15% measured in the cell boundary phase in Ref. [25]. The modifica-
tion of TM content by the substitution of Co with Cu and Fe can be expected
to change the magnetic anisotropy of SmTM5 in a number of ways, namely: (a)
affecting the single ion anisotropy of Sm by modifying the crystal field [28] (b)
affecting the temperature dependence of this single ion anisotropy by modify-
ing the exchange field felt by the RE due to the RE/TM interaction [29] and
(c) modifying the contribution of the TM-3d electrons to the anisotropy[30–34].
The introduction of Fe and Cu can also be expected to affect the other key
micromagnetic parameters A and polarization J , leading for example to mod-
ified Curie temperatures [35]. Furthermore, changing the local environment of
the Sm atoms may even modify their valency and orbital hybridization, further
affecting the anisotropy [36].

As a first step towards obtaining an improved understanding of how the mag-
netic properties of the cell boundary phase are affected by chemical composi-
tion, we have performed first-principles (density-functional theory) calculations
on the ternary compound Y(Co1−x−yFexCuy)5 (Fig. 1). The reasons for first
investigating Y rather than Sm are twofold: first, although Y has the same s2d
valence structure as Sm, the absence of 4f electrons means that we can isolate
the Tm-3d contribution to the anisotropy [point (c) above] from the single ion
contribution [(a) and (b)]. Second, YCo5 remains an interesting magnet in its
own right, being free of lanthanide elements [37], having an anisotropy field of

3



Figure 1: Schematic representation of RETM5 crystal structure (space group 191, P6/mmm),
showing the RE site (purple) and two inequivalent TM sites: the 2c position (in plane with
RE, dark grey), and the 3g position (out of plane, light grey).

order 20 T [38] and potentially having a coercivity comparable to traditional
SmCo5 magnets [39]. Indeed, Fe-doped YCo5 magnets are the subject of active
research as potential intermediate-performance permanent magnets [40].

Our study consists of two parts. In the first part, we calculate the zero-
temperature properties (magnetization and magnetocrystalline anisotropy) of
Y(Co1−x−yFexCuy)5 for 0 ≤ x, y ≤ 0.2. The studied compositions fall into the
ranges previously investigated in experiments on binary compounds [41, 42].
The chemical disorder is modelled within the coherent potential approxima-
tion (CPA) [43]. In the second part, we concentrate on the compounds YCo5,
Y(Co0.838Cu0.162)5 and Y(Co0.838Fe0.081Cu0.081)5 and calculate their finite tem-
perature properties within the disordered local moment (DLM) picture [44].
These particular concentrations were chosen based on the experimentally-measured
compositions of the cell boundary phases of (Sm-Co) 2:17 magnets which showed
high and low coercivity respectively in Ref. [25].

The current manuscript aims to address the gap in the literature concerning
the intrinsic properties of the ternary Y(Co1−x−yFexCuy)5 compound. From a
technical aspect, due to the current lack of studies which have used the CPA
to model the doping, the manuscript includes some technical discussion, such
as a comparison of the CPA with the simpler “rigid band” approach. However,
we also aim to make a practical connection to Ref. [25] by reporting values of
the anisotropy field and micromagnetic parameters A, K and J for the repre-
sentative high and low coercivity cell boundary compositions. We hope that
such parameters might be useful for future micromagnetics calculations like
those originally performed in Ref. [25]. In this way we follow recent works on
RE/TM magnets which have demonstrated how microscopic quantities can be
incorporated into large scale simulations [45, 46].

Interestingly, the zero temperature calculations find that a low level of sub-
stitution enhances the magnetocrystalline anisotropy, regardless of whether Co
is substituted with Fe or Cu. In particular, substituting ∼15% of Co yields
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the largest anisotropy energies. The calculations also demonstrate how the
anisotropy is very sensitive to the location of the dopant atoms.

We find that the calculated difference between Cu-rich and equal Cu-Fe
substitution is not particularly large. The current calculations therefore do not
indicate that the TM-3d contribution to the anisotropy of the cell boundary
phase is an important factor in determining the coercivity of the 2:17 magnets.
Nonetheless, our study lays the groundwork for studying the RE contribution
to the anisotropy of Sm(Co1−x−yFexCuy)5, and highlights the route of boosting
the anisotropy field of YCo5 through TM substitution.

Our manuscript is organized as follows. In Section 2 we outline the methods
used to calculate magnetic properties at zero and finite temperature. The cal-
culated results are presented in Section 3 and analyzed in Section 4. We present
our conclusions and discuss future directions for study in Section 5.

2. Calculation details

All calculations were performed within the multiple-scattering, Korringa-
Kohn-Rostocker (KKR) formulation of density-functional theory (DFT) [47],
treating exchange and correlation effects within the local spin-density approxi-
mation (LSDA) [48]. Scalar-relativistic calculations were performed within the
atomic sphere approximation (ASA) for the charge density and potential using
the Hutsepot KKR code [49], solving the scattering problem up to a maximum
angular momentum quantum number lmax = 3 and sampling the Brillouin zone
on a 20×20×20 grid. The Y-4p electrons were treated explicitly as valence
states. The self-consistent potentials were obtained for the T=0 K, ferromag-
netic arrangement of magnetic moments.

Substitutional doping of Co with Fe or Cu was modeled within the CPA [43,
47]. For all compositions the lattice parameters were kept fixed to the values
a,c, = 4.950, 3.986 Å, as measured experimentally for YCo5 at 300 K [50].

To calculate magnetic properties, the “frozen” scalar-relativistic potentials
were inserted into the Kohn-Sham-Dirac equation in order to solve the fully-
relativistic scattering problem [51]. Spin and orbital magnetic moments were
calculated by tracing the appropriate operators with the Green’s function [52].
The magnetocrystalline anisotropy energy was obtained via the torque, i.e. the
change in free energy on rotation of the magnetization vector [53, 54]. An
adaptive algorithm for the Brillouin zone integration was used to ensure high
numerical precision [55].

Finite temperature properties were calculated within the disordered local
moment picture, which treats the temperature-induced fluctuations of the local
moments at the level of the CPA [44]. The temperature-dependent Weiss fields
were determined using an iterative procedure [34, 35]. Both an overview of
DFT-DLM and the detailed procedure of evaluating the Weiss fields and torque
can be found elsewhere, e.g. Ref. [54].

Previous computational studies on YCo5 found the LSDA to yield values of
both the orbital magnetic moments and the magnetocrystalline anisotropy which
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are smaller than measured experimentally, but including an orbital polarization
correction (OPC) [56] on the TM-d orbitals corrects this discrepancy [30–32].
Although the relativistic DFT-DLM calculations do allow an OPC to be in-
cluded [29, 57, 58], in the current work we do not do so due to the large number
of (Fe,Cu) compositions considered. Therefore our calculated anisotropy ener-
gies are underestimates compared to experiment. Test calculations for selected
compositions found the same qualitative trends to be obeyed by OPC and non-
OPC calculations, but more work is necessary to perform a full comparison of
the two approaches.

3. Results

3.1. Anisotropy at zero temperature: rigid band model

For a crystal with hexagonal symmetry, the expected variation of the free
energy with magnetization angle θ is K1 sin2 θ + K2 sin4 θ + O(sin6 θ), where
θ is given with respect to the c axis. Evaluating the torque ∂F/∂θ at θ =
45◦ yields K1 + K2, which we label K. Previous experimental and theoretical
studies [38, 58] have determined K2 to be an order of magnitude smaller than K1

in pristine YCo5, so K ≈ K1. A positive value of K corresponds to out-of-plane
anisotropy.

The most straightforward method of simulating the substitutional doping of
Co with Fe or Cu is to use the rigid band approximation, i.e. simply shift the
Fermi level in the DFT calculation of pristine YCo5 so that the total number of
electrons in the unit cell matches that expected for the doped system. YCo4Fe
corresponds to a change in electron number of ∆Ne = −1, while YCo4Cu cor-
responds to ∆Ne = +2.

The anisotropy K calculated in this way is shown as the dotted line in
Fig. 2(a). As noted in previous works [30–32, 34] there is a pronounced de-
pendence of K on the band filling. As discussed at length in Ref. [31], the
anisotropy energy originates from the splitting of otherwise degenerate states by
the spin-orbit interaction, with the strongest contributions coming from states
with energies close to the Fermi level. Shifting the Fermi level changes the
weights of the contribution of each state, which may overall lead to an increase
or decrease in K.

From the shape of the curve in Fig. 2(a) we see that the rigid band model
predicts that adding Fe would increase K, up to a maximum close to YCo4Fe.
By contrast, adding instead a small amount of Cu to form YCo4.75Cu0.25 would
reduce K to zero and yield a perfectly soft magnet. Increasing the Cu content
(e.g. YCo4Cu) would again result in an enhanced K1 compared to the pristine
case.

3.2. Anisotropy at zero temperature: CPA, non-preferential substitution

We now consider modeling the doping within the coherent potential approx-
imation (CPA), a more sophisticated approach than the rigid band model [43].
In these calculations it is necessary to specify the location of the dopants, i.e.
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Figure 2: (a) Anisotropy energy K per formula unit (FU) as a function of change in electron
number Ne, calculated for Y(Co1−x−yFexCuy)5 either in the rigid band approximation (black
dotted line) or with the CPA (crosses). Each cross lies on the intersection of a solid (x) and
dashed (y) line which allows the composition to be deduced. (b) The same CPA calculations
as (a) replotted as a function of dopant content x+ y.

7



either the 2c or 3g crystallographic sites (Fig. 1). Here we choose that Fe and
Cu occupy 2c and 3g sites with equal probability, i.e. non-preferential substitu-
tion, and explore the case that different sites are preferred by different dopants
in Section 3.5.

We have calculated K for Y(Co1−x−yFexCuy)5 within the CPA for x, y =
[0.00, 0.05, 0.10, 0.15, 0.20]. The data are shown in Fig. 2 as crosses. The com-
position of each data point can be deduced by noting each cross lies at the
intersection of a solid and dashed line. For instance, the composition with the
highest K, Y(Co0.85Fe0.15)5, lies at the intersection of the x = 0.15 (blue solid)
and y = 0.00 (red dashed) lines. The change in electron number ∆Ne is -0.75.

Comparing the CPA and rigid band calculations shows two key differences.
First, the predicted variation in K is smaller for the CPA case, with the CPA
values occupying a range of 0.8 meV/FU compared to 1.7 meV/FU for the rigid
band model. Second, according to the CPA the addition of dopants almost al-
ways increases K, with only Y(Co0.65Fe0.20Cu0.15)5 and Y(Co0.60Fe0.20Cu0.20)5
having a (slightly) reduced anisotropy energy compared to the pristine case.
Therefore, the rigid band and CPA calculations strongly disagree regarding the
effect of, for instance, adding a small amount of Cu. Another example of the dis-
agreement between the two models is seen in configurations with the same num-
ber of electrons, like YCo5, Y(Co0.85Fe0.10Cu0.05)5 and Y(Co0.70Fe0.20Cu0.10)5.
According to the rigid band model, K calculated for each of these compounds
should be the same, but in the CPA, K varies over a range of 0.5 meV/FU. In
Section 4.2 we return to the comparison of the rigid band model and CPA.

It is interesting to replot the CPA data as a function of total dopant content,
x + y, which is done in Fig. 2(b). In this case, the data for different ratios of
Fe and Cu doping follow a more general trend, which is an increase in K up to
a maximum for x + y = 0.15. Plotting the data in this way indicates that the
size of the Co deficit is an important contributor to the variation in anisotropy.
Furthermore, replacing Co with Fe rather than Cu yields the largest K values,
i.e. the compositions with Cu content y = 0.00.

3.3. Magnetization and anisotropy field at zero temperature: CPA, non-preferential
substitution

According to micromagnetic theory, the theoretical maximum for the co-
ercive field of a ferromagnet is the anisotropy field, µ0Ha = 2K/M [59, 60].
Therefore, it is also important to investigate the dependence of the magnetiza-
tion M on doping, which is shown in Fig. 3(a).

In this case, there is quite close agreement between the rigid band model
(black dotted line) and the CPA calculations. The moment calculated for pris-
tine YCo5 is 8.3µB/FU, where µB is the Bohr magneton. Adding electrons
to YCo5 (Cu-doping) increases the population of the minority spin band, and
therefore decreases the magnetization. The reverse applies when electrons are
removed (Fe-doping). We note that, although the agreement is generally good,
the magnetization decreases faster with Cu doping than predicted by the rigid
band model. For instance, for YCo4Cu the magnetization calculated with the
CPA is 6.1 µB/FU, compared to the rigid band prediction of 6.6 µB/FU.
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Figure 3: (a) Zero-temperature magnetization M calculated as a function of electron number
within the rigid band model (black dotted line) or using the CPA. (b) Anisotropy field µ0Ha

(= 2K/M) obtained in the CPA, plotted as a function of dopant content x+ y.
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Figure 4: Anisotropy energies of Y(Co1−xFex)5 and Y(Co1−yCuy)5 calculated with no pref-
erential (pref.) substitution at particular sites, compared to exclusive substitution at the 2c
or 3g crystal sites.

Figure 3(b) shows the anisotropy field calculated from the anisotropy en-
ergies and magnetizations in Figs. 2(b) and 3(a), respectively. Comparing to
Fig. 2(b), we find a smaller scatter in Ha compared to K for different composi-
tions. The reason for this smaller scatter is that the increased K from doping
with larger amounts of Fe is partly offset by the increased M ; similarly, in-
creasing the amount of Cu weakens M and therefore helps to boost Ha. The
clearest example is YCo4Cu, whose value of K is smaller than YCo4Fe by a fac-
tor of 1.4 (0.61 vs. 0.86 meV/FU), but whose anisotropy field is actually larger
(3.4 vs. 3.3 T). Nonetheless, the purely Fe-doped Y(Co0.85Fe0.15)5 has both the
highest anisotropy energy (0.93 meV/FU) and anisotropy field (3.6 T).

3.4. Dependence of anisotropy on site occupation

As stated already, the CPA calculations presented above were performed as-
suming both Cu and Fe substitute onto the 2c and 3g sites with equal probability.
On the other hand, it is possible that the dopants may prefer to substitute at
particular sites, and that the value of K might be affected. Therefore, in Fig. 4
we compare the previous calculations of the anisotropy energy of Y(Co1−xFex)5
and Y(Co1−yCuy)5 with the case where the dopants are placed exclusively at
the 2c or 3g crystal sites (Fig. 1).
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Interestingly, there is indeed a strong dependence of K on the location of
the dopants, with the site that gives the largest enhancement to the anisotropy
depending on the dopant. Substituting Co with Cu at the 3g site has essentially
no effect on the anisotropy energy, while substituting with Fe at the 2c site also
does not result in a large change. By contrast, placing Cu at the 2c site or Fe
at the 3g site has a large effect on K. Substituting the dopants equally at both
sites effectively interpolates between the two limiting cases.

We are unaware of experimental data directly characterizing the location
of dopant atoms in Y(Co1−xFex)5 or Y(Co1−yCuy)5. Neutron diffraction mea-
surements on the related compounds Th(Co1−xFex)5 and Y(Co1−yNiy)5 found
preferential Fe/Ni substitution at the 3g/2c sites, respectively [61, 62]. However
based on the changes in lattice parameters in Y(Co1−xFex)5 with Fe doping it
was argued in Ref. [63] that Fe preferred to occupy 2c sites. Our own CPA
calculations performed at zero temperature (ferromagnetic state) find 2c substi-
tution to be preferred for Fe, Cu, and Ni [35] but calculations on stoichiometric
systems including optimization of the lattice parameters found Fe to prefer 3g
doping and Cu to prefer 2c [64]. Furthermore our test calculations and previ-
ous work [65] have shown the energetics to be sensitive to the modeling of the
magnetic state (ferromagnetic versus nonmagnetic). For definiteness, in what
follows we place Fe at 3g sites and Cu at 2c sites in line with the neutron
data [61, 62], the calculations including geometry optimization [64] and with
previous theoretical works [66, 67].

3.5. Anisotropy at zero temperature: CPA, preferential 3g/2c substitution

In Fig. 5(a) we plot K calculated for Y(Co1−x−yFexCuy)5 with the CPA,
placing Fe at the 3g sites and Cu at the 2c sites. For comparison we show again
the band-filling behavior predicted by the rigid band approximation (Sec. 3.1).

Referring to the data shown in Fig. 2(a), we see that the anisotropy en-
ergy is enhanced compared to non-preferential site substitution. The largest
value of K, calculated for Y(Co0.85Fe0.09Cu0.06)5, is 1.18 meV/FU, whilst the
smallest value (apart from pristine YCo5) is calculated to be 0.70 meV/FU for
Y(Co0.79Cu0.21)5.

As with the calculations with non-preferential site substitution, the agree-
ment between the rigid band and CPA calculations is poor. For instance, it is
interesting to compare the sensitivity of K to the level of Cu doping, at low
and high Fe content. For Y(Co1−yCuy)5 (red solid line), K varies between
0.31 meV/FU at y = 0.00 to a peak value of 0.92 meV/FU at y = 0.09. How-
ever, including Fe at the level Y(Co0.79−yFe0.21Cuy)5 (purple solid line) reduces
the variation in K to just 0.03 meV/FU over the entire range of y.

Replotting the CPA calculations against x + y [Fig. 5(b)] does not show
as clear a trend as for the non-preferential doping case [Fig. 2(b)]. However,
again it is found that the largest values of the anisotropy energy are calculated
for concentrations with x + y ∼ 0.15. Around this optimal level, the largest
values of K have similar Fe and Cu concentrations. By contrast, the Cu-rich
Y(Co0.85Cu0.15)5 has a relatively low K. However, at the lowest dopant con-
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Figure 5: (a) Anisotropy energy K of Y(Co1−x−yFexCuy)5 calculated either in the rigid
band approximation (black dotted line) or with the CPA (crosses) (cf. Fig. 2). The CPA
calculations were performed placing Fe (Cu) at 3g (2c) sites. (b) The same CPA calculations
as (a) replotted as a function of dopant content x+ y.
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Figure 6: Anisotropy fields calculated within the CPA placing Fe (Cu) at 3g (2c) sites.
Additionally, calculations with equal Fe/Cu doping (x = y) and Cu-rich (y = 5x) doping are
shown with thick blue and red lines, respectively.

centrations (x, y) = 0.06 the effect of replacing Co with either Cu or Fe is very
similar.

3.6. Anisotropy fields at zero temperature: Cu-rich vs. equal Cu/Fe content

Unlike the anisotropy energy, the magnetization M is not particularly sen-
sitive on the location of the dopants, following the same behavior as shown in
Fig. 3(a). In Fig. 6 we plot the anisotropy field for preferential substitution
of Fe/Cu at the 3g/2c sites. As for the non-preferential case [Fig. 3(b)] the
anisotropy field is enhanced (weakened) for large Cu (Fe) content, due to effect
of the dopants on M . This can be seen most clearly for the composition dis-
cussed above, Y(Co0.79−yFe0.21Cuy)5, which has K effectively independent of y
but Ha which increases with Cu content due to the corresponding reduction in
M .

Motivated by the observations made at the end of the previous section,
Fig. 6(b) shows some additional data points, calculated for equal Fe/Cu dop-
ing (x = y; thick red line) and Cu-rich doping, which we define as y = 5x
(thick blue line). Here, it can be seen that despite the boost to Ha by the
smaller magnetization of Cu, the compositions with equal amounts of Fe and
Cu have larger anisotropy fields than the Cu-rich compositions. Of all of the
compositions considered, Y(Co0.82Fe0.09Cu0.09)5 is found to have the highest
anisotropy field of µ0Ha = 5.3 T. The Cu-rich composition with the same x+y,
Y(Co0.82Fe0.03Cu0.15)5, has µ0Ha = 4.9 T.

3.7. Anisotropy at finite temperature: YCo5, Y(Co0.838Cu0.162)5 and Y(Co0.838Fe0.081Cu0.081)5

In order to make a tentative connection to the 2:17 Sm-Co magnets, we now
focus on specific compositions similar to those reported for the cell-boundary
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Figure 7: Anisotropy energy K calculated for YCo5 (black circles), Y(Co0.838Cu0.162)5 (red
squares) and Y(Co0.838Fe0.081Cu0.081)5 (blue circles) as a function of temperature.

(x, y) K (meV/FU) M (µB/FU) µ0Ha (T) TC (K)
(0.000,0.000) 0.31 ; 0.12 8.14 ; 7.16 1.3 ; 0.6 841
(0.000,0.162) 0.83 ; 0.57 6.42 ; 5.52 4.4 ; 3.6 711
(0.081,0.081) 1.10 ; 0.80 7.63 ; 6.66 5.2 ; 4.1 788

Table 1: Anisotropy energy K, magnetization M , anisotropy field Ha and Curie temperature
TC calculated for Y(Co1−x−yFexCuy)5. The two values given for K, M and Ha correspond
to calculations at T = 0 and 300 K.

phase in high and low coercivity samples in Ref. [25] and calculate their proper-
ties between 0–300 K. In Ref. [25], high coercivity was correlated with a Cu-rich
cell-boundary phase, while low coercivity was correlated with equal Cu and Fe
content. We model the two cases with compositions (x,y) = (0.00,0.162) and
(0.081,0.081). We also compare to pristine YCo5. As in Secs. 3.5 and 3.6 we
place the Fe and Cu dopants at the 3g and 2c sites, respectively.

Figure 7 shows the anisotropy energy K calculated as a function of tem-
perature T , for the three cases. As expected from Fig. 5, at zero temperature
YCo5 has the lowest K value of 0.31 meV/FU, followed by Y(Co0.838Cu0.162)5
(0.83 meV/FU) and then Y(Co0.838Fe0.081Cu0.081)5 (1.10 meV/FU). Up to at
least T = 300 K, this ordering is unchanged, with each composition showing a
monotonic decrease in K with temperature with a similar slope. At 300 K, the
K values for the three configurations are 0.12, 0.57 and 0.80 meV/FU respec-
tively.

The magnetization and anisotropy field (not shown) display the same mono-
tonic decrease with temperature. We also calculated the Curie temperatures TC,
finding the largest value (841 K) for pristine YCo5. The TC of Y(Co0.838Cu0.162)5
is found to be lower by over 100 K (711 K), while Y(Co0.838Fe0.081Cu0.081)5 lies
in between (788 K). The temperature-dependent results are summarized in Ta-
ble 1.

14



(x, y) Km (MJ/m3) Jm (T) Am (pJ/m)
(0.000,0.000) 0.59 ; 0.23 1.12 ; 0.99 8.3 ; 6.6
(0.000,0.162) 1.57 ; 1.08 0.88 ; 0.76 7.0 ; 5.4
(0.081,0.081) 2.08 ; 1.52 1.05 ; 0.92 7.7 ; 6.1

Table 2: Anisotropy energy Km, magnetic polarization Jm and exchange stiffness constant
Am calculated for Y(Co1−x−yFexCuy)5 as discussed in the text. The two values given corre-
spond to calculations at T = 0 and 300 K.

3.8. Deriving parameters for micromagnetics simulations

The quantities K, M and TC listed in Table 1 may be obtained directly
from the DFT-DLM calculations. However micromagnetics simulations in fact
require the magnetic polarization Jm and stiffness constant Am in addition
to the anisotropy Km [26]. Denoting the volume per formula unit as Ω(=√

3a2c/2), the anisotropy and polarization can be straightforwardly related to
the quantities given in Table 1:

Km = K/Ω (1)

Jm = µ0M/Ω (2)

We again note that the derived Km values are likely to be underestimates since
no orbital polarization correction terms were included (Sec. 2).

We have not yet established a formal framework to extract the exchange
stiffness constant Am from the DFT-DLM calculations. A similar challenge is
encountered when performing calculations based on atomistic spin models [45].
In the current work we use a basic approximation [26, 27]:

Am = (kBTC/Ω) ζ2 [mCo(T )]2 (3)

where ζ is the nearest neighbor distance between transition metal atoms and
mCo(T ) is the calculated order parameter of the Co moments at temperature
T . The results of using equations 1–3 to express the quantities in Table 1 as
micromagnetics parameters are shown in Table 2.

3.9. Temperature in DFT-DLM calculations

We conclude this section by noting that the classical statistical mechanics
used in the DLM picture leads to a faster decay of the the magnetic order param-
eter mCo(T ) with temperature than observed experimentally [68]. As a result,
the DFT-DLM “temperature” may in fact correspond to a higher temperature
in experiment. To illustrate this aspect, we note from our DFT-DLM calcu-
lations on YCo5 that at a calculated temperature of 300 K, mCo has a value
of 0.90. However, the experimental data shown in Ref. [69] shows mCo = 0.90
in fact corresponds to a temperature of 465 K. Conversely, at an experimental
temperature of 300 K the order parameter is 0.95 [69], which in the DFT-DLM
calculations corresponds to a temperature of 200 K. As illustrated here, it is
relatively straightforward to correct for this effect if required by mapping the
DFT-DLM order parameters onto the experimental magnetization versus tem-
perature curves [69].
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4. Discussion

Here we discuss the specific results presented in Sec. 3 in more general terms.

4.1. Modelling doping

We first highlight some limitations of our chosen method of simulating the
doping. First, we have not attempted to include structural effects in our cal-
culations, instead using the same lattice parameters for all concentrations. The
anisotropy has previously been shown to be sensitive to the c/a ratio [70], so
different-sized dopants may affect K indirectly in this way. In the context of un-
derstanding the cell-boundary phase in the 2:17 magnets modeling this effect is
especially difficult, since there may be local strains which invalidate predictions
based on Vegard’s law or total energy minimization [64].

Also, the CPA assumes the limit of a dilute alloy, with the dopants dis-
persed homogeneously throughout the host structure. As a result, effects from
short-range ordering are not included [71], which may be especially important
in understanding the low coercivity 2:17 Sm-Co sample which had a diffusive
interface between the cell and cell boundary phase [25].

Finally, we note that we have assumed a perfect YCo5 structure and not ex-
plored the role of point defects, e.g. the “dumbbell” substitution which replaces
Y with a pair of Co atoms [10]. It is possible that Fe and Cu may interact with
these defects in different ways.

4.2. Rigid band or CPA?

Within the limitations of the above model, we explored two methods of
modeling doping, namely the rigid band model or the CPA. While the two
models produce similar values for the magnetization M , the predicted values of
K differ substantially. The rigid band model predicts much larger variations in
the anisotropy energy K than the CPA. Indeed the rigid band model predicts
that the addition of a small amount of Cu should reduce K, potentially yielding
a perfectly soft magnet for YCo4.75Cu0.25. By contrast the CPA almost always
predicts K to increase regardless of the dopant species, especially if there is
preferential substitution at particular crystal sites.

From the theoretical point of view, the CPA is the more rigorous approach [43].
As suggested by its name, the rigid band model cannot account for changes in
the bandstructure induced by the addition of dopants. Furthermore if we take
the view that the anisotropy depends not only on the dopant species but also on
which site it occupies (as argued experimentally a number of decades ago [72]
and observed in the CPA calculations, e.g. Fig. 4), we see that the rigid band
model cannot provide a full account of the behavior of K.

4.3. Comparison to experiment

As noted in Sec. 2, since the current calculations do not include a correction
for orbital polarization, we expect the calculated values of K to be smaller than
observed experimentally. Therefore we restrict our comparison to trends in K
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with doping. We have not found experimental data on the ternary compound
Y(Co1−x−yFexCuy)5, but studies on the binaries Y(Co1−xFex)5 [41, 63, 73] and
Y(Co1−yCuy)5 [42] are available.

Considering Fe-doping first, Ref. [63] reports anisotropy constants at room
temperature for x = 0.0–0.3. Here K increases from a value of 4.5 MJm−3 for x
= 0.0 to a maximum of 5.5 MJm−3 at x = 0.10, before reducing again. Interest-
ingly a follow-up work [41] states that there were calibration errors the original
data, even though later papers continued to cite the original reference [72]. A
more recent work [73] measured K for x = 0.0–0.15 and found an increase from
4.2 to 5.0 MJm−3, (again at room temperature), reasonably consistent with
Ref. [63].

So, for Fe doping there is at least qualitative agreement between different
experiments and the current calculations in predicting an increased K on the
addition of a small amount of Fe. Quantitatively, the change of 0.8 MJm−3

between x = 0.0 and x = 0.15 found in Ref. [73] corresponds to an absolute
increase of approximately 0.4 meV/FU, or a relative increase of 19%. The (zero
temperature) calculations predict an absolute increase of 0.7 meV/FU over the
same composition range (Fig. 5), but a much larger relative increase of over
300%.

Now considering Cu doping, Ref. [42] reports anisotropy fields for Y(Co1−yCuy)5
for y = 0.0, 0.2 and 0.4, at temperatures T > 200 K (lower temperature data are
reported for y = 0.4). At the studied temperature range, YCo5 is reported to
have the highest anisotropy field. However the difference between the pristine
case and y = 0.2 (YCo4Cu) gets smaller with decreasing temperature, and a
straightforward linear extrapolation of the data indicates the anisotropy field of
YCo4Cu would exceed YCo5 at temperatures below 50 K. We were unable to
find experimental data measured for lower Cu concentrations which could be
compared more directly to our calculations. Such data, particularly at very low
Cu concentration (y ∼ 0.05) would be useful e.g. in comparing the rigid band
model with the CPA, since the former predicts a perfectly soft magnet at this
concentration (Fig. 2).

Finally, we note that although our calculations should ideally be compared
to anisotropy constants measured for single crystals, there are a number of
experiments which report coercivity enhancement in RE/TM magnets upon
addition of Fe or Cu [74–76].

4.4. 2:17 Sm-Co magnets

We return to the original motivation of our work, to quantify the effect on
the TM contribution to the anisotropy with Fe and Cu doping. As shown
by the blue and red lines in Figs. 6 and 7, and the numbers reported in
Table 1 the differences between doping purely with Cu or with equal quan-
tities of Cu and Fe are not particularly large. The anisotropy energy and
field is calculated to be slightly smaller for Y(Co0.838Cu0.162)5 compared to
Y(Co0.838Fe0.081Cu0.081)5. This fact, combined with a lower exchange stiffness
constant for Y(Co0.838Cu0.162)5 (Table 2) gives a lower domain wall energy in
this phase compared to Y(Co0.838Fe0.081Cu0.081)5 [26].
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Applying this observation to a repulsive pinning model (where the 2:17
cells have smaller domain wall energies than the boundaries), one would expect
stronger pinning for boundaries with the Y(Co0.838Fe0.081Cu0.081)5 composition.
Unfortunately however, in Ref. [25] this composition (equal Fe and Cu content)
corresponded to the low, not high, coercivity sample. Therefore, according to
our calculations the TM contribution to the anisotropy does not account for the
correlation of coercivity with the composition of the cell boundaries reported in
Ref. [25]. Of course, as described in the Introduction the larger Sm contribution
to the anisotropy may provide this missing link. In the final section we outline
future work aimed at exploring the 2:17 magnets further.

5. Conclusions and outlook

The aim of this work has been to study how the magnetic anisotropy and
magnetization of YCo5 is affected when Co is substituted with Fe and/or Cu.
We have demonstrated how two different approaches to modeling dopants — the
rigid band model and the coherent potential approximation (CPA) — give rather
different predictions. We also showed how the results of the CPA calculations
depend very strongly on which crystal site the dopant atoms occupy.

Our CPA calculations found that the anisotropy of YCo5 could be enhanced
by adding reasonably small amounts of Fe and/or Cu, with the largest anisotropy
field at zero temperature observed for the composition Y(Co0.81Fe0.09Cu0.09)5.
Of the compositions studied, assuming preferential substitution of Fe and Cu at
3g and 2c sites respectively, Fe-rich samples (i.e. Y(Co0.79−yFe0.21Cuy)5) had
the lowest anisotropy fields, but these still exceeded the anisotropy field of YCo5
at zero temperature.

On the theoretical side, the obvious next step is to study the RE contribution
to the anisotropy in Sm(Co1−x−yFexCuy)5. In this case it will be essential to
properly account for the crystal field effects in the calculations [77] and analyse
the effects of hybridization of the 4f states with their environment [29, 36].
It will be interesting to see whether addition of a small quantity of Fe or Cu
boosts the anisotropy like in YCo5, or whether K decreases for all compositions.
In addition to the 1:5 calculations, a DFT-DLM characterization of the pristine
bulk Y2Co17 and Sm2Co17 will be necessary to build a full picture of the cellular
phase.

On the experimental side, first considering YCo5, in our view the question
of the site preference of the Fe-dopants has still not been conclusively answered.
Having knowledge of this aspect would be a useful test both of using the CPA to
calculate magnetic anisotropy, and also of total energy calculations in general to
predict the preferred location of dopants. Furthermore, additional data explor-
ing the behavior of K for low Fe and Cu content, particularly for the ternary
system, would also be useful. Complementary measurements on SmCo5 are also
required. In particular, as pointed out in Sec. 1, the experimental data explor-
ing Cu-doped SmCo5 does not extend to the critical y < 0.2 region [27]. A full
characterization of (Y,Sm)(Co1−x−yFexCuy)5 for (x, y) < 0.2 would therefore
be a valuable contribution to the permanent magnet literature.
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