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White dwarfs are stellar embers depleted of nuclear energy sources that predictably cool 

over billions of years at the expense of their leaking thermal reservoir of ions1. These stars, 

supported by electron degeneracy pressure, are essential to develop our understanding of 

dense plasmas, reaching densities of 107 g/cm3 in their cores2. It is predicted that a first-order 

phase transition occurs during white dwarf cooling, leading to the crystallisation of the non-

degenerate carbon and oxygen ions in the core that releases a significant amount of latent 

heat and delays the cooling process by about one billion years3. Here we report the presence 

of a pile-up in the cooling sequence of white dwarfs within 100 pc of the Sun, using 

photometry and parallaxes determined from the Gaia satellite4. Based upon modelling, we 

infer that the pile-up arises from the release of latent heat as the cores of the white dwarfs 

crystallise. In addition to the release of latent heat we find strong evidence that cooling is 
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further slowed by the liberation of gravitational energy from element sedimentation in the 

crystallising cores5-7. Our results demonstrate the total energy released by crystallisation in 

strongly coupled Coulomb plasmas8-9, and the newly measured cooling delays could improve 

the accuracy of using white dwarfs for age-dating stellar populations10. 

 

The white dwarf cooling age at which crystallisation sets in is predicted to depend on the mass 

(Fig. 1), with more massive white dwarfs entering this phase transition earlier3. Another major 

event in the evolution of a white dwarf is the direct coupling between the degenerate core and the 

convective envelope11, resulting in an initial slow down in cooling rates followed by an increase. 

At the low white dwarf masses (~0.55 M☉) of the old stellar populations in globular clusters, this 

event occurs at a similar age as crystallisation but has a stronger signature12. Previous attempts to 

measure cooling effects from crystallisation in globular clusters have therefore provided indirect 

evidence, based on linking the white dwarf and turn-off age determinations13. In contrast, 

crystallisation occurs much earlier than convective coupling in white dwarfs more massive than 

0.7 M☉. The observational implication of this, predicted over fifty years ago3, is an isolated 

crystallisation sequence in the colour versus absolute magnitude Hertzsprung-Russell (H-R) 

diagram, yet no direct observational evidence existed until now to characterise this event. 

 

Because of their small radii, typically on the order of 0.01 R☉, white dwarfs are intrinsically faint, 

and consequently until recently very few had accurate distance measurements needed to measure 

their luminosities14. The second Data Release of the European Space Agency Gaia mission4 (Gaia 

DR2) has led to a breakthrough, defining the first empirical cooling sequence of field white dwarfs 

in the H-R diagram15. While previous studies have investigated the cooling sequences of white 
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dwarfs in old globular clusters16, only a local volume-limited sample will contain white dwarfs 

spanning the full ranges of total ages and initial masses17. 

 

We used a recently established catalogue of high-confidence Gaia white dwarf candidates18 to 

extract degenerate stars within 100 pc. The selection function of Gaia was found to be colour and 

magnitude independent down to the sky-position dependent faint magnitude limit18 and the median 

parallax precision of 1.5 percent allows for unambiguous transformation to distances. For 15,109 

sources the Gaia photometry and astrometry are reliable enough to derive the surface temperature, 

surface gravity, and mass18 by fitting the data to model atmospheres19 and standard evolutionary 

tracks with 12C/16O core-composition and thick H envelopes11. Sloan Digital Sky Survey (SDSS) 

spectroscopy is available for 1309 of the white dwarfs within 100pc, providing their atmospheric 

composition. 

 

The 100 pc field white dwarf cooling sequence exhibits a substantial amount of structure (Fig. 2). 

The bifurcation into two sub-sequences in the range −0.1 < GBP − GRP < 0.6 has been shown to be 

a split between H atmospheres in the upper branch and He-dominated atmospheres in the lower 

branch18,20. These two branches correspond to cooling tracks at the median (~0.6 M☉) white dwarf 

mass. More massive white dwarfs have larger absolute magnitudes because of their mass-radius 

relation21 and are therefore expected to populate the area below the principal branches. A third 

separate “transverse” sequence is visible at fainter absolute magnitudes. Unlike the 

aforementioned bifurcation, this transverse feature is inconsistent with a single-mass cooling track. 

This rules out a simple astrophysical explanation such as effects from the mass loss in post-main-

sequence evolution or merger products from binary evolution, as these scenarios cannot 
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conceivably result in a tight white dwarf mass versus surface temperature correlation unrelated to 

the cooling process.  

 

The transverse sequence fully coincides with the range of absolute magnitudes and colours at 

which the bulk of the latent heat from crystallisation is released for white dwarfs over the full range 

of masses. The crystallisation sequence is more clearly visible when the sample is restricted to 

white dwarfs with more simple hydrogen-dominated atmospheres, and for which independent 

spectroscopic parameters determined from fitting the hydrogen lines19,22,23 agree with their position 

in the H-R diagram (Fig. 3). Roughly eight per cent of sources within the crystallised sequence 

harbour large (>2 MG) global magnetic fields detected from Zeeman splitting18. Helium-

atmosphere white dwarfs also populate the cooler and less massive (< 0.7 M☉) area of the 

sequence. There is a dearth of massive helium-atmosphere stellar remnants in all parts of the H-R 

diagram including the crystallised sequence, which is likely caused by single star evolution not 

forming thin-hydrogen layers for higher mass progenitors24. The 100 pc sample was cross-matched 

with the Galex, 2MASS, WISE, Pan-STARRS and SDSS photometric data sets, and it was 

determined that white dwarfs within the transverse sequence are under luminous at all wavelengths 

compared to objects on the dominant cooling sequence, and therefore behave as genuine high-

mass objects. We conclude that nothing stands out in the atmospheric properties of the white 

dwarfs in the crystallised sequence, apart from a tight correlation between colour and absolute 

magnitude. The consistent explanation is crystallisation, a cooling effect that is expected to impact 

white dwarfs of similar mass and interior composition at the same age, with little influence from 

the atmospheric composition or the presence of magnetic fields2,25. 
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The crystallised sequence is not a cooling track but a mass-dependent pile-up across the H-R 

diagram resulting from the white dwarfs spending more time at this location as they release their 

latent heat. To further characterise this process we have extracted the white dwarf luminosity 

function in the mass range 0.9-1.1 M☉ from the Gaia 100 pc sample (Fig. 4). Two peaks are clearly 

seen in the luminosity function, one at higher luminosities that is attributed to crystallisation, and 

the other one at lower luminosities which is unambiguously linked to the finite age of the Galactic 

disk10. At lower masses than those considered, crystallisation occurs at fainter absolute magnitudes 

where it overlaps both with the convective coupling of the core with the envelope and the peak in 

the luminosity function caused by the age of the Galactic disk.  

 

We have performed white dwarf population simulations (Fig. 4) assuming constant stellar 

formation over the past 10 Gyr, the Salpeter initial-mass function, a standard initial-to-final mass 

relation26 coupled with predicted main-sequence lifetimes27, and a Gaia magnitude limit of G = 

20. These input parameters do not influence the slope of the luminosity function where 

crystallisation occurs, so we made no attempt to fit them to the observations. In contrast, the three 

simulations presented in Fig. 4 use different assumptions about the crystallisation process, showing 

a strong influence on the prediction of a peak at −3.75 < log L/L☉ < −2.75. The case without latent 

heat release by crystallisation is clearly ruled out by the observations. When latent heat is included 

in the modelling, there is, comparatively, a substantial increase of the predicted number of white 

dwarfs in the range of luminosity of the observed peak. The Gaia luminosity function is best 

reproduced when 16O sedimentation is allowed to occur along with the release of latent heat. 

Compared to the original 12C/16O fluid mixture, sedimentation leaves behind a solid region that is 

oxygen-enriched, the level of which depends upon the actual composition of the fluid. The extra 
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carbon in the fluid phase is forced upward from a crystallising shell, leading to a release of potential 

energy that further delays the cooling7. Note that this third model, with latent heat and phase 

separation, provides an excellent description of the overall Gaia luminosity function, including its 

descending branch. The cumulative cooling delay from crystallisation has a direct effect on the 

descending branch; stars that have more internal energy become warmer for the same age. The 

model bump is not perfectly modelled, as the observed feature is narrower and of higher 

magnitude, but its exact shape depends on several choices including the value of the Coulomb 

plasma parameter28 (Γ = 175 here), the assumed chemical profile in the core (12C/16O in 50/50 

proportions by mass and distributed homogeneously), the envelope stratification (MH/MWD = 10−4 

and MHe/MWD = 10−2), as well as possible 22Ne sedimentation9,13. More fundamentally, the 

existence and location of this bump provides the extremely strong evidence that the observed 

excess of white dwarfs in the Gaia transverse sequence bears the signature of crystallisation. 

 

We report direct evidence that a first-order phase transition really occurs in high-density Coulomb 

plasmas3, a theory that cannot be tested in laboratories because of the extreme densities involved, 

thus providing strong constraints on dense plasma physics7-9,28. Crystallisation significantly slows 

down the cooling process in white dwarfs and the observations also require the release of 

gravitational energy from the separation of an initially homogeneous fluid into a stratified solid 

with 16O/12C ratio that increases towards the centre of the star, providing a new method to test 

nucleosynthesis processes in low and intermediate-mass stars29. The descending branch of the 

empirical white dwarf luminosity function is heavily impacted by phase separation5-7 and quantum 

effects in Debye cooling6,30, necessitating the understanding of these processes when relying on 

stellar remnants for age-dating stellar populations10,11.  
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Fig. 1 | Illustration of the effects of crystallisation on the cooling of white dwarfs. The closely 

spaced isochrones in effective temperature-luminosity space connect white dwarfs of the same age 

(log tcool = 7.5 [yr] at the top, with subsequent increments of Δlog tcool = 0.02) but with different 

masses (from 0.4 M☉ on the low-Teff sides of the isochrones to 1.3 M☉ on the high-Teff sides). The 

(variable) density of these many isochrones indicates graphically phases of slowing down and of 

accelerated cooling. All models are for standard pure-hydrogen atmosphere DA white dwarfs with 

the same envelope stratification (MH/MWD = 10−4 and MHe/MWD = 10−2) and core composition 

(12C/16O in 50/50 proportions by mass fraction, and homogeneously distributed)11. The models 

include the release of latent heat, but no additional energy source associated with phase separation5-

7. From the top, the series of orange dots indicates the onset of crystallisation at the centre of the 
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evolving model in selected evolutionary sequences. At that point, as the crystallisation front 

progresses upward in the star from the centre, latent heat is liberated, forming a crest of isochrones 

taking the shape of a “transverse” sequence. Since the internal energy is discontinuous between 

the liquid and solid phases, this is a predicted phase transition of the first order3. The series of blue 

dots indicates the location where 80% of the mass has solidified. Following this event, the most 

significant effect of crystallisation on the cooling of white dwarfs is the so-called Debye cooling 

phase6,11, i.e., the transition, in the solid state, from the classical regime to the quantum regime, 

indicated through a series of green dots. Finally, the onset of the coupling between the upper 

convection zone with the degenerate core25 is illustrated by black dots. 
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Fig. 2 | Observational Gaia colour-magnitude H-R diagram for white dwarfs within 100 pc. 

Dereddened G, GBP, and GRP photometry along with parallaxes are used for 15,109 white dwarf 

candidates with Gaia data reliable enough to derive atmospheric parameters18. For visualisation 

purposes, the data are shown in a greyscale according to a Gaussian kernel density estimate, and 

with a power-law scaling of exponent 0.25. Two orange dashed sequences illustrate where 

evolutionary models predict that 20% (top sequence) and 80% (bottom sequence) of the total white 

dwarf mass has crystallised. The higher density of white dwarfs within that region corresponds to 

the transverse sequence discussed in the text. Three evolutionary models at 0.6, 0.9, and 1.1 M☉ 

from the top to bottom (blue solid lines) illustrate the evolution of H-atmosphere white dwarfs 

with thick hydrogen layers11. The bifurcation of the observed cooling sequence in two separate 
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tracks in the range −0.1 < GBP − GRP < 0.6, and above the orange-dashed curves, is not caused by 

crystallisation but has been interpreted as the different positions of hydrogen- and helium-

atmosphere white dwarfs18,20.  
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Fig. 3 | Observational Gaia H-R diagram for white dwarfs with SDSS spectra. Included are 

798 objects within 100 pc that show the presence of hydrogen Balmer lines and no helium lines or 

red excess from a companion18. White dwarfs are colour coded (see right-hand scale) for their 

independent spectroscopic masses19,22,23 except when lines are too weak to derive masses (σM/M > 

50%, red dots), or there is evidence of a magnetic field (>2 MG) from Zeeman line splitting (red 

dots with black outlines). Two orange dashed sequences illustrate where evolutionary models 

predict that 20% (top) and 80% (bottom) of the total white dwarf mass has solidified. This region 

where the bulk of the crystallisation occurs shows an overdensity of objects. 
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Fig. 4 | Luminosity function for massive white dwarfs within 100 pc. Stellar remnants with 

Gaia derived masses between 0.9 and 1.1 M☉ were used to calculate the observed luminosity 

function (connected red dots). Error bars are from number statistics (1 sigma). The first peak on 

the left is a direct observational signature of crystallisation in white dwarfs. The second peak on 

the right followed by a sharp drop off at smaller luminosities is caused by the finite age of the 

Galactic disk10. Three different predicted luminosity functions are employed to illustrate the 

physics of crystallisation. All models use the same assumptions on Galactic evolution, including 

an age of 10 Gyr for the disk. In the standard case (solid line) both the latent heat released from 

crystallisation and the gravitational energy released from 16O sedimentation are included. The 

dotted curve neglects phase separation while still including the release of latent heat, while the 
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dashed curve neglects both latent heat and phase separation. In the latter case the equation-of-state 

still transits from liquid to solid as otherwise the solution is not physical. The three models are 

arbitrarily normalised based on the 2nd and 3rd highest luminosity bins. 

 

 


