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Coordinated capacity and demand management in a redesigned Air 1 

Traffic Management value-chain  2 

Abstract 3 

We present a re-designed European Air Traffic Management value-chain, with a new role for the Network 4 

Manager, which coordinates capacity and demand management decisions, using economic instruments for 5 

both areas. A conceptual and mathematical model supports decision-making in that process, focusing on 6 

capacity management decisions taken at the strategic level. Total costs are minimized by jointly managing 7 

sector-opening schemes and trajectory assignments. A large-scale case study demonstrates clear trade-offs 8 

between the volume of capacity ordered and the scope of necessary demand management actions. In 9 

addition, the comparison against a baseline, which resembles the current system, shows that with the 10 

proposed concept less capacity is needed to serve the same demand, resulting in lower total cost for Aircraft 11 

Operators. 12 

1 Challenges in the current Air Traffic Management value-chain 13 

The current role of the Network Manager (NM) in the process of establishing a balance between air traffic 14 

demand and airspace/airport capacity in Europe is merely moderation between Aircraft Operators (AOs) and 15 

capacity providers, since the NM has limited instruments to influence either capacity or demand side planning 16 

decisions (EUROCONTROL NMOC, 2017). The European Commission (EC) also recognizes that the lack of the 17 

NM’s clear executive powers in practice means that the NM ‘tends to decide by consensus, which often results 18 

in weak compromises’ (European Commission, 2013). The EC however stresses that an optimisation of the 19 

network performance necessitates an extended operating scope of actions by the NM (European Commission, 20 

2013), a view also shared by one of the biggest airlines in Europe (Ryanair, 2018).  21 

Although the NM initiates planning several months before the day of operations (EUROCONTROL NMOC, 22 

2017), most of demand-capacity imbalance situations are still resolved on the day of operations by means of 23 

demand management actions, predominantly by delaying flights. For instance, total en-route Air Traffic Flow 24 

Management (ATFM) delay was 8.7 million minutes in Europe in 2016, for a traffic of more than 10 million 25 

flights (EUROCONTROL PRC, 2017). More than 55% of total en-route ATFM delay is attributed to (lack of) 26 

capacity and staffing reasons, while approximately half of that delay occurred during peak summer months: 27 

June, July and August 2016 (EUROCONTROL PRC, 2017). The Performance Review Commission (PRC) notes 28 

that the capacity requirements are frequently not met by some Area Control Centres (ACCs), but also that 29 

maximum capacity is not delivered at the times when it is needed (EUROCONTROL PRC, 2017).  30 

One of the underlying causes for capacity/demand mismatch is seasonal traffic variability. If traffic is highly 31 

variable and there is limited flexibility to adjust the capacity provision according to actual demand, the result 32 

may be poor service quality or an underutilisation of resources (EUROCONTROL PRC, 2017). If addressed 33 

proactively, traffic variability can be mitigated or resolved to a certain degree by utilising previous experience, 34 

roster staffing levels to suit and to make more operational staff available by reducing ancillary tasks performed 35 

by Air Traffic Controllers (ATCOs) during the peak period (EUROCONTROL PRC, 2017). While delay costs occur 36 

when there is no sufficient capacity, better allocating or reducing spare capacity should also lead to lower 37 

costs of capacity provision for AOs. 38 

AOs also attach great value to their flight planning flexibility and tend to reveal their route choice decisions 39 

only hours before the time of departure to benefit from up to date information. Although last moment route-40 

choice cost savings could be at most a few hundred euros per flight (Altus, 2009; Cook and Tanner, 2012; 41 

Delgado, 2015), such behaviour reduces predictability for ANSPs and the NM. Namely, ANSPs plan their 42 
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capacity weeks and months in advance, with only very limited and costly possibilities to adjust those at a short 43 

notice, especially upwards (Massacci and Nyrup, 2015). Therefore, ANSPs have to account not only for traffic 44 

variability, but also for traffic (un)predictability at a shorter notice, when planning their capacity provision. A 45 

consequence of this divorced planning horizons on a network level could be lower utilization of available 46 

capacities and/or higher costs imposed on other AOs, as well as likely deterioration of the network 47 

performance as a whole (Jovanović et al., 2015a). The fact that demand is inherently heterogeneous and that 48 

some AOs, in some cases, choose routes which seem to be inefficient (distance- or/and charges-wise) 49 

(Bucuroiu, 2016; Delgado, 2015), adds to the complexity of predicting AOs’ route choice, with an adverse 50 

impact on the decision on adequate capacity provision.  51 

Indeed, the current route charging scheme in Europe also plays a role in AOs’ route choices, which are not 52 

always favourable for the environment and lead to an overall inefficient utilisation of airspace (Delgado, 2015). 53 

ANSPs still apply a rather simple charging structure without differentiation other than the aircraft Maximum 54 

Take-Off Weight (MTOW). In some areas, charges for air navigation services differ significantly between 55 

neighbouring areas. This may lead to environmentally detrimental outcomes, if an airline chooses a longer 56 

route due to lower charges (Delgado, 2015), but also to a shift of traffic from less towards more congested 57 

airspace (EUROCONTROL STATFOR, 2015). 58 

Therefore, the trade-off between predictability for ANSPs and flexibility for AOs results in substantial and 59 

costly capacity buffers built into ANSP resource allocation. For instance, one ANSP estimated that 60 

approximately 5-10% of its capacity is actually ‘reserved’ to take care of all predictability and non-adherence 61 

issues arising in pre-tactical and tactical stages. Potential cost savings arising from a more predictable system 62 

are estimated to 45 million EUR per annum for that provider (EUROCONTROL, 2013a). Similarly, costly buffer 63 

times are built into AOs’ schedules. For example, for AOs in the US approximately 6 billion USD was associated 64 

with schedule buffers (Ball et al., 2010), embedded to compensate for (a portion of) anticipated delays from 65 

all causes, while maintaining the on-time performance of flights and the operational reliability of schedules 66 

(Wu, 2005). 67 

We recognize the issues of traffic variability and predictability and the need for capacity provision flexibility as 68 

some of the major challenges in today’s ATM value-chain and propose a potential solution within the 69 

“Coordinated capacity ordering and trajectory pricing for better-performing ATM” - COCTA (acronym) 70 

framework. Within COCTA, we develop a concept to harmonize air traffic demand and airspace capacity by 71 

means of orchestrated application of economic instruments (incentives) on the demand as well as on the 72 

capacity side. The objective of COCTA is to propose and evaluate a redesigned ATM value-chain in which the 73 

NM coordinately asks for airspace capacity from ANSPs and offers trajectories at differentiated charges to 74 

AOs, aiming to optimize the overall network performance. 75 

In the remainder of the paper we present the COCTA concept and its innovative elements (vs. state-of-the-76 

art). We outline a modelling framework for strategic capacity management in Section 3, focusing on the NM’s 77 

network-centric capacity ordering form ANSPs at strategic level. The mathematical model is presented in 78 

Section 4. We describe data, methodology and steps for model testing, as well as results in Section 5, followed 79 

by discussion and conclusions in Section 6.  80 

2 Previous contributions and a way forward 81 

2.1 Literature review 82 
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The vast majority of previous efforts in the field focus on administrative demand management actions at the 83 

tactical level, i.e. the day of operations, given the network capacity1 (e.g. Lulli and Odoni, 2007; Bertsimas and 84 

Patterson, 1998; Agustin et al., 2012a, 2012b). On the other hand, there are only a handful of papers exploring 85 

the possibility to use economic measures to manage demand to manage demand (Jovanović et al., 2014). de 86 

Matos (2001) argues that certain potentials exist to employ price discrimination in the ATM system, while 87 

Deschinkel et al. (2002) investigate the possibility of influencing AOs’ route choices (departure time and route) 88 

by differential sector pricing. A new Air Navigation Services (ANS) pricing rule taking into account, among else, 89 

the cost of congestion, is proposed by Raffarin (2004). A novel route charging method was recently proposed, 90 

called FRIDAY (Fixed Rate Incorporating Dynamic Allocation for optimal Yield). It assumes a single unit rate per 91 

city pair, which is expected, inter alia, to take away incentives for AOs to choose detours. It also proposes an 92 

accompanying mechanism for revenue redistribution among ANSPs (Verbeek and Visser, 2016). 93 

Several previous Single European Sky ATM Research (SESAR) Long-Term and Innovative Research (WP-E) 94 

projects have addressed some related problems, which might, to a certain extent, be relevant in the context 95 

of COCTA research. 96 

ACCHANGE, analysed, among other aspects, potential paths for change in ATM in Europe, using two-stage 97 

network congestion games (Blondiau et al., 2016). The results suggest that vertical integration between ANSPs 98 

and AOs may succeed in accelerating change as long as ANSPs are permitted to charge for improved quality, 99 

such as reduced congestion (Adler et al., 2014). The NEWO project investigated effects of various prioritisation 100 

criteria on network performance and delay propagation (Arranz et al., 2013). The ELSA project employed 101 

agent-based modelling to analyse interactions between the NM and AOs (strategic layer) and aircraft/pilot 102 

and ATCOs (tactical layer) (Bongiorno et al., 2015). The CASSIOPEA project is particularly worth noting for its 103 

finding that a strategy to reduce delay up to a residual delay of 10 minutes leads to ‘significant costs savings 104 

when compared to the approach, widely used by AOs, of trying to eliminate all delay.’ (Molina et al., 2014). 105 

Probably the most relevant among recent research efforts in the field is the SATURN project (‘Strategic 106 

Allocation of Traffic Using Redistribution in the Network’). The objective of SATURN was to propose and test 107 

realistic ways to use market-based demand management mechanisms to redistribute air traffic in the 108 

European airspace at the strategic level. To that end, several mechanisms have been developed (Bolić et al., 109 

2014) – ranging from peak-load pricing (Bolić et al., 2017) to a conceptual model of cost-reflective 110 

intertemporal price discrimination application (Jovanović et al., 2015a), (Jovanović et al., 2015b). Some 111 

promising results have been obtained, yet, all SATURN mechanisms were developed under the assumption of 112 

strictly taking the capacity side as given. Consequently, improvements in financial cost-efficiency were 113 

impossible by definition, with possible benefits arising solely from trade-offs between cost of delays and costs 114 

of re-routings. Importantly, SATURN stakeholder consultation workshops provided a very useful feedback in 115 

terms of acceptability of economic-based demand-capacity balancing mechanisms. Among other aspects, it 116 

was revealed that differentiating charges based on quality of service might be a viable option from aircraft 117 

operators’ perspective (SATURN Consortium, 2014).  118 

A study produced by Steer Davies Gleave (SDG) for the EC investigates options for modulation of charges in 119 

the European airspace, with strong focus on implementation aspects (Steer Davies Gleave, 2015). The findings 120 

suggest that a fixed congestion supplement should be preferred over a differentiated unit rate. It is also 121 

suggested that incorporating economic and social costs in modulated charges would lead to prohibitively high 122 

route charges. As for price setting, the study recommends the use of several iterations rather than setting the 123 

price at single point in time. However, similar to SATURN, the SDG study tackles only the demand side of the 124 

                                                           
1 For a comprehensive review of different formulations of airspace/airport congestion problem and mathematical 
modelling approach to tackle it, see Agustín et al. (2010). 
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problem, with strong stakeholders’ (especially AOs’) objections expressed to such approach employed (Steer 125 

Davies Gleave, 2015).  126 

Lastly, there are a few relevant SESAR H2020 research projects which address some aspects relevant for the 127 

COCTA research. The INTUIT project’s aim is to explore a potential use of visual analytics, machine learning 128 

and systems modelling techniques to improve understanding of the cause-effect relationships between 129 

different performance indicators in ATM. Marcos et al. (2017) propose a visual analytics and machine learning 130 

approach for the prediction of airline route choices in the pre-tactical planning phase and demonstrate some 131 

improvements compared to the tool (“PREDICT”) currently used by the Network Manager. Similarly, the 132 

APACHE project proposes a new framework to assess ATM performance in Europe to capture 133 

interdependencies between KPAs at different modelling scales (micro, meso and macro) (Prats et al., 2017). 134 

The DART project evaluates the suitability of applying big data techniques for predicting multiple correlated 135 

aircraft trajectories based on data driven models and accounting for ATM network complexity effects. For 136 

example, Esther Calvo et al. (2017) address a trajectory prediction and demand-capacity imbalance problem 137 

at pre-tactical stage by means of machine learning and agent-based modelling methods. First, they 138 

demonstrate that aircraft trajectories can be predicted with a certain level of accuracy during pre-tactical 139 

phase based on historical data (individual trajectory prediction). Second, the authors demonstrate how agent-140 

based modelling methods can help in trajectory forecasting when anticipated demand exceeds available 141 

capacity, taking into account interactions among trajectories, considered as self-interested agents that aim to 142 

minimize their delays and resolve demand-capacity imbalances. The results based on a case study in a Spanish 143 

airspace for a day of operations (~4,000 flights) indicate that the proposed approach could establish a demand-144 

capacity balance in a decentralised manner with very low delay overall. 145 

To the best of our knowledge, COCTA is the first research attempt to explore options for coordinated capacity 146 

and demand management decisions, employing economic instruments and incentives, at the strategic and the 147 

pre-tactical levels in a redesigned ATM value-chain. In one of the first COCTA-related publications, Starita et 148 

al. (2016) formulate a problem of jointly finding route prices, which are linked to the capacity level provided, 149 

and route assignments to minimise total cost for AOs. The authors developed a non-linear mathematical 150 

model, based on simplified assumptions regarding capacity provision, and demonstrate basic trade-offs 151 

between providing more capacity or re-routing flights using an academic example. In Starita et al. (2017), the 152 

authors develop a new (linear) mathematical model to support capacity ordering decision making. As a 153 

measure of capacity (budget), the authors use total sector-hours provided by capacity providers and 154 

demonstrate (two-step) capacity ordering using an artificial small-scale example (~150 flights flying over an 155 

airspace within jurisdiction of five ANSPs within a 2-hour window).  156 

In this paper, we further develop the COCTA concept compared to the previous research, make more realistic 157 

assumptions regarding capacity provision, revise the mathematical model formulation and test it using a large-158 

scale case study based on real data. 159 

3 COCTA Air Traffic Management value-chain 160 

3.1 Key novel aspects  161 

We envisage a new role for the Network Manager, mandating it to co-ordinately take capacity and demand 162 

management decisions and actions. This change is supported by a redesigned ATM value-chain, in which the 163 

NM has contractual relationships with ANSPs and AOs, with the responsibility to optimise network 164 

performance, as defined by policy makers, Figure 1. Policy objectives might include acceptable ranges of 165 

network performance indicators, including areas of cost-efficiency, capacity, environment, equity, etc. 166 
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One of the key proposed changes on the capacity side concerns the relationship between the NM and the 167 

ANSPs2. In the proposed setting, the NM asks for airspace capacities in line with expected network demand, 168 

employing a network-centred, demand driven approach, as opposed to the current piecemeal supply driven 169 

practice, often tailored to accommodate local/ANSP traffic peaks (EUROCONTROL, 2013b). The COCTA 170 

capacity management process has long-, medium- and short-term phases, involving negotiations between the 171 

NM and ANSPs about capacity which should be provided in respective periods and eventually delivered on the 172 

day of operations. 173 

On the demand side, COCTA introduces an airport-pair based charging principle to incentivise more 174 

predictable route choices. Within the COCTA concept, the base charge for a flight between two airports, i.e. 175 

the charge without applying additional demand management incentives, only depends on the MTOW of an 176 

aircraft. Building upon capacity ordered and applying the airport-pair charging principle, the NM defines 177 

different trajectory products and offers them at differentiated charges to AOs, thus employing economic 178 

(incentives) measures to manage demand. Mindful of AOs business needs and preferences, the NM defines 179 

trajectory products in such manner to influence their trajectory (route) choice to establish demand-capacity 180 

balance in a network (performance) optimal manner.  181 

 182 

Figure 1.Re-designed ATM value chain 183 

3.2 An overview of the COCTA capacity and demand management process 184 

The COCTA mechanism combines capacity and demand management actions to optimise network 185 

performance. Within the COCTA framework, the mechanism is primarily designed for the strategic (six months 186 

in advance) and the pre-tactical stages (seven days in advance), while the tactical stage is considered to a 187 

certain extent only. In addition, we also discuss long-term (five years) capacity planning and ordering. 188 

The NM carries out capacity management at the network level. Due to long lead times related to the capacity 189 

planning process(Tobaruela et al., 2013), the COCTA network capacity management spans over a 5-year 190 

horizon. Similar to the current practice, we assume that the NM and the ANSPs agree on a nominal capacity 191 

profile (NCP) which needs to be delivered over the long-term (EUROCONTROL, 2018a), with the difference 192 

that this agreement is based on a contract within the COCTA concept. This capacity profile is based on long-193 

term traffic forecasts and serves as a foundation for ANSP’s decisions affecting capacity (e.g. staff training and 194 

technical equipment). There are different options to define a measure and metrics for the NCP: total number 195 

of sector-hours (± margin) for each year, planned peak-day sector-opening scheme profile, ACC sustainable 196 

capacity during peak hours (which is currently being used in practice, EUROCONTROL (2013b)), etc. Although 197 

                                                           
2 Within the general COCTA context, airports are involved as fairly passive capacity providers. As such they are not 
explicitly included into the modelling. 
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choosing a measure and metrics for the NCP is not the major focus of COCTA research, we recognise the 198 

importance of long-term capacity planning on cost-efficiency and other performance indicators. This process 199 

determines staffing, with ATCOs being the main resource of a centre, and strongly impacts airspace 200 

sectorisation and sector-opening sequences (Tobaruela et al., 2013). 201 

When AOs publish schedules, around six months in advance of a schedule season, the NM has more precise 202 

information on O&D pairs and respective times of operations. Based on information of scheduled traffic and 203 

accounting for a portion of non-scheduled demand - which is associated with a higher level of uncertainty in 204 

terms of O&D pairs, times of operations and overall traffic levels - the NM defines capacity orders within the 205 

capacity profile sketched above. Therefore, about six months in advance before the schedule season, the NM 206 

refines its planning and specifies its capacity orders, aligned with the long-term order. Depending on the 207 

assumed flexibility of capacity provision in terms of ANSPs’ staffing practices, e.g. how much in advance ATCOs 208 

rostering is fixed, the NM can define its initial order as a sector-opening scheme for a day of operations (less 209 

flexible variant) or as a total number of sector-hours to be delivered on that day, including the maximum 210 

number of sectors to be opened and the duration at maximum configuration (more flexible variant). The 211 

capacity management process continues after this decision, with an option to slightly adjust the initial capacity 212 

order, in line with flight intentions information received/updated subsequently, again, depending on the 213 

assumed flexibility of capacity provision.  214 

In general, the potential for reducing the costs of capacity provision depends (amongst others) on the specific 215 

staffing agreements and working regulations of each individual ANSP. On a pre-tactical level, only few options 216 

for improving cost-efficiency exist, in particular reducing the number of ATCOs working overtime (and thereby 217 

receiving overtime premia) or reducing the number of staff on stand-by. In the strategic phase, an improved 218 

capacity planning might reduce the total number of ATCO hours needed during a specific period (e.g. one 219 

year), influencing total ATCO employment and thereby personnel costs. Again, the costs per ATCO-hour on 220 

duty (as well as the share of ATCO costs on total costs) differ significantly between European ANSPs 221 

(EUROCONTROL 2017). In our modelling we assume that ANS are provided by ATCOs employed by the ANSPs 222 

responsible for specific parts of the airspace. A more flexible provision of capacity, in particular cross-border 223 

provision of ANS, would increase the flexibility of the entire system and expectedly enable further cost savings 224 

which are not included into the analysis in this paper.   225 

In the redesigned ATM value-chain, we also foresee a novel approach to demand management, which 226 

becomes trajectory (product) management. The trajectory management process (lifecycle) starts at the 227 

strategic level and spans until a flight has been executed. Again, in the current COCTA concept, we focus on 228 

the strategic and pre-tactical phases.  229 

At the strategic level, demand management is used by the NM primarily to establish a cost-efficient balance 230 

between demand and capacity. Namely, the NM evaluates if it is more cost-efficient to delay or re-route flights 231 

in certain parts of the network, instead of asking ANSPs to provide more capacity. Moreover, in some parts of 232 

the network and during certain periods (peak hours), demand profile might be such that even maximum 233 

(structural) capacity might not be sufficient to accommodate anticipated demand without delays (or re-234 

routings). Therefore, using available information on flight intentions (scheduled carriers) and 235 

anticipated/forecasted level and spatio-temporal distribution of non-scheduled flights (e.g. charters), the NM 236 

evaluates what is the scope of demand management actions, combined with capacity management, which 237 

minimises total cost to AOs. As a result of this analysis, the NM has information on capacity needed per ANSP 238 

and the scope of delays and re-routings of flights/flows in the network, which establishes a cost-efficient 239 

balance between anticipated demand and capacity ordered.  240 
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For the sake of completeness, we briefly elaborate on trajectory management from the strategic to the pre-241 

tactical stage, without explicitly addressing it in this paper (due to the scope of the paper and the complexity 242 

of this aspect within the COCTA demand management process).  243 

After the initial capacity order, the NM starts defining trajectory products to incentivise AOs’ route/trajectory 244 

choice to maintain, to the extent possible, the strategically established balance between demand and capacity, 245 

which minimises total cost to AOs. Therefore, the NM steers demand by defining and offering to AOs different 246 

trajectory products, at differentiated prices. These products are, for the sake of simplicity, labelled Standard 247 

Trajectory (ST), Discounted Trajectory (DT) and Premium Trajectory (PT). For instance, ST is associated to the 248 

shortest route between two airports, including relatively narrow and pre-agreed spatio-temporal trajectory 249 

margins, potentially needed for trajectory fine tuning at a later stage (e.g. shortly before take-off). This product 250 

comes at a base charge and is tailored for flights/flows which are not likely, based on strategic assessment, to 251 

be subject to demand management actions. On the other hand, by choosing DT, an AO gets a lower charge 252 

compared to ST, but delegates the decision to the NM to delay or re-route its flight within pre-agreed margins 253 

(wider than those for ST), if needed. With PT, AOs have an option for last minute trajectory changes, either in 254 

space or time, within agreed margins; this option comes at a higher charge compared to the ST. To sum up, 255 

the NM offers different trajectory products, which are also subject to negotiation with AOs, at differentiated 256 

charges, to incentivise AOs’ trajectory/route choices to the extent possible, to achieve required network 257 

performance. 258 

In Table 1, we provide a brief overview of the process as a whole. 259 

Table 1. The COCTA capacity and demand management process summary 260 

Phase 

Time before 

day of 

operations 

Demand management Capacity management 
Transactions / 

products 

Long-

term 

5 years  

(rolling plan) 

The NM forecasts demand and 

assesses impact of future traffic on 

overall network performance with 

currently available capacity. 

 

Network 

performance 

indicators 

 

The NM evaluates if more capacity 

should be provided and agrees with 

ANSPs on capacity to be provided in 

the next five years (rolling plan). 

Nominal 

capacity profile  

 

Strategic 

~ 1 year 

 

Based on published schedules, the NM 

defines capacity order for the following 

schedule season, within the limits of 

nominal capacity profile (any deviation 

is negotiated with ANSPs). 

Capacity 

(ordered for a 

schedule 

season or a 

year) 

~ 1 year 

– 

1 week 

 

The NM defines trajectory products 

and starts offering them to AOs. AOs 

negotiate and book trajectories from 

the NM. The NM adapts the products 

and prices if needed. 

 
Trajectory 

products 

~ 1 year 

– 

1 week 

 

The NM asks ANSPs to adjust 

capacity in line with updated spatio-

temporal demand profile, if needed 

(depending on assumed flexibility in 

capacity provision).  

Capacity order 

adjustments 
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Pre-

tactical 

1 week 

 –  

day-1  

The NM makes final decision on 

sector-opening scheme, subject to 

consultation with ANSPs (very limited 

options for further capacity 

adjustments). 

Sector-opening 

scheme 

1 week 

 –  

day-1 

The NM and AOs negotiate about 

trajectory products to be adjusted (if 

needed). 

 Trajectory 

products 

adjustments 

Tactical 

Day of 

operati

ons 

Final trajectories are defined and 

agreed, in line with chosen 

trajectory products. 

 Final 

trajectories 

 261 

The main focus of this paper is on the strategic decision on capacity orders which the NM is taking several 262 

months (up to a year) in advance of a day of operations. We demonstrate how the NM makes strategic capacity 263 

ordering decisions, determining the sector-opening scheme (SOSc) for a day of operation. In addition, we show 264 

to which degree the COCTA concept may reduce the cost of capacity provision by comparing the COCTA 265 

concept against a modelled baseline which we elaborate on in the following sections. 266 

4 Mathematical model 267 

4.1 Conceptual model 268 

We analyse principal trade-offs between capacity and demand management actions to improve overall cost-269 

efficiency: 270 

 asking for higher capacity provision, versus 271 

 delaying or re-routing flights. 272 

Ordering more capacity entails higher capacity provision costs, but a reduction in costs associated with 273 

delaying or re-routing (so-called displacement costs), and vice versa. The mathematical model introduced in 274 

this section aims to balance this trade-off so as to minimise overall cost. Note that this optimisation is not 275 

intended for operational flight assignments, but serves a basis for defining trajectory products, as well as to 276 

inform the strategic capacity ordering decision well in advance of the planned day of operation.  277 

On the capacity side, we assume that each ANSP has defined how its volume of airspace is divided into 278 

elementary sectors and how these can be combined in predefined ways to form (sector) configurations, with 279 

different number of sectors open/active in a configuration. The more sectors are open in a configuration, the 280 

more capacity an ANSP can offer, up to the point where maximum number of sectors is open (structural 281 

capacity limit). By asking for more sectors to be opened during a certain period, the NM effectively increases 282 

capacity, but also the cost of capacity provision. As a unit cost of capacity provision, we use the cost of opening 283 

one sector for one period. In our case, this period is 30 minutes long, since sector configurations are typically 284 

not changed more frequently than every half an hour. Cost of capacity provision is borne by AOs, through 285 

airspace charges. Although the costs of capacity provision are fixed on the actual day of operations (as outlined 286 

in section 3.2), we treat ATCO costs per sector half-hour as variable costs in our modelling. Since the NM and 287 

the ANSPs have agreed on the provision of a capacity (budget) over a longer period (e.g. six months or one 288 

year), using parts of this total capacity reduces the capacity which is available in the remainder of this period, 289 

thereby causing opportunity costs. Moreover, decreasing the average number of sector hours opened per day 290 

decreases also the total staff requirements. Consequently, although there is no immediate cost effect of 291 
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reducing the number of sector hours on one day, the aggregated reduction enables the ANSPs to reduce total 292 

staff costs. 293 

On the demand side, we assume that AOs prefer flying the shortest routes which are also the cheapest in the 294 

COCTA context (assuming zero wind condition)3. Delaying a flight or re-routing it from the shortest route, 295 

incurs a (“displacement”) cost to the AO, while we assume that changing a flight level for a flight (up to one 296 

level higher or lower) does not affect the AO’s operational cost. We assume that displacement cost depends 297 

on the scope of demand management action (non-linear), i.e. length of delay or re-routing, and aircraft type.  298 

Therefore, the NM jointly decides on which SOSc will be ordered from each ANSP and which flights/flows will 299 

be delayed or re-routed across the network to maximize cost-efficiency, i.e. to minimize the sum of the cost 300 

of capacity provision and displacement cost.  301 

4.2 Terminology and notations 302 

We consider several en-route airspaces 𝑎 ∈ 𝐴, with each airspace 𝑎 composed by a set of elementary sectors 303 

𝑠 ∈ 𝑆𝑎. Let 𝐶𝑎 be the set of configurations, indexed by 𝑐. A sector configuration 𝑐 is identified by a partition 304 

𝑃𝑐. Elements of a partition are indexed by 𝑝, to represent how the airspace is split, i.e. how elementary sectors 305 

are combined (collapsed) to form configurations. In other words, an element 𝑝 is a portion of the airspace, 306 

identified by a subset of elementary sectors 𝑠 ∈ 𝑆𝑝 ⊆ 𝑆𝑎; this sector which is formed from elementary sectors 307 

is called collapsed sector. Every element 𝑝 in a partition has a capacity 𝑘𝑝 denoting the maximum number of 308 

flights allowed to enter a sector, be it elementary or collapsed, per time period (commonly referred to as 309 

“entry counts”). Capacity cost (variable) is linked to the number of sectors open and the duration they are 310 

active (open), with each airspace 𝑎 ∈ 𝐴 having its unit cost of opening one sector for one period 𝜌𝑎. Finally, 311 

we use 𝐵 to denote the route-configuration-time incidence matrix: 𝑏𝑓𝑟𝑝𝑢 = 1 if route 𝑟 uses elementary or 312 

collapsed sector 𝑝 at time 𝑢, 0 otherwise. 313 

We consider a set of flights 𝐹 in a network. Each flight 𝑓 connects an origin (𝑜) to a destination (𝑑) airport 314 

(O&D pair). Trajectories for each flight are chosen from a set 𝑅𝑓 which contains several alternatives. We stress 315 

that this set 𝑅𝑓 is assumed to be pre-determined by the exogenously given trajectories (more details in the 316 

data Section 5.1). The displacement cost of trajectory 𝑟 for a flight 𝑓 is 𝑑𝑟
𝑓

.  317 

A fine-scale discrete time axis is used to define trajectories, and a coarse-scale one to model the dynamics of 318 

airspace configurations. The time unit used to define trajectories is 5 minutes, whereas the one used for sector 319 

configuration corresponds to 30 minutes. 320 

4.3 Mathematical model formulation 321 

The notation used to formulate the COCTA mathematical model is summarized below: 322 

Sets:  

𝐹 The set of all flights  

𝑅𝑓 The set of trajectories available to flight 𝑓  

𝑈 Set of all coarse-scale time periods 

𝐴 Set of airspaces 

𝐶𝑎, 𝑆𝑎 Set of configurations and elementary sectors for airspace 𝑎 

𝑃𝑐 Partition of elementary sectors corresponding to a configuration 

𝑆𝑝 Subset of elementary sectors forming a collapsed sector within a configuration 

                                                           
3 This assumption appears valid for short and medium-haul flights, e.g. intra-European flights, for which wind is less 
influential on trajectory choice. For long(er)-haul routes, like trans-Atlantic flights, shortest route might not be the 
cheapest option, therefore AOs have to be eventually offered more flexibility and left with an option to decide on their 
final trajectory shortly before take-off. 



10 
 

Indices:  

𝑓 Flights 

𝑢 Coarse-scale time index 

𝑟 Trajectory 

𝑎 Airspace 

𝑐, 𝑐′ Airspace’s configuration 

𝑝 Airspace sector (elementary or collapsed) 

𝑠 Elementary sector 

Parameters: 

𝜌𝑎 Variable cost of providing one sector-time unit for airspace 𝑎 

𝑘𝑝 Maximum capacity of airspace portion 𝑝 

ℎ̅𝑎𝑐 Number of sector-time units consumed by airspace 𝑎 operating in configuration 𝑐 

𝑑𝑟
𝑓

 Displacement cost of trajectory 𝑟 for flight 𝑓 

𝐵 = [𝑏𝑓𝑟𝑝𝑢] 
Matrix element 𝑏𝑓𝑟𝑝𝑢 is equal to 1 if trajectory 𝑟 of flight f uses elementary or collapsed 

sector 𝑝 at time 𝑢, 0 otherwise 

Variables:  

𝑧𝑎𝑐𝑢 = {
1, if airspace 𝑎 configuration is 𝑐 at time 𝑢
0, otherwise

 

𝑦𝑟
𝑓

 = {
1, if flight 𝑓 is assigned to route 𝑟 
0, otherwise

 

The joint sector configuration and flight assignment problem is formulated below as a linear binary program: 323 

min
𝒛,𝒚

∑ 𝜌𝑎 ∑ ∑ ℎ̅𝑎𝑐𝑧𝑎𝑐𝑢

𝑐∈𝐶𝑎𝑢∈𝑈𝑎∈𝐴

+ ∑ ∑ 𝑑𝑟
𝑓

𝑦𝑟
𝑓

𝑟∈𝑅𝑓𝑓∈𝐹

 (1) 

s. t. ∑ 𝑦𝑟
𝑓

𝑟∈𝑅𝑓

= 1 ∀𝑓 ∈ 𝐹 (2) 

∑ 𝑧𝑎𝑐𝑢 = 1

𝑐∈𝐶𝑎

 
∀𝑎 ∈ 𝐴, 

𝑢 ∈ 𝑈 
(3) 

∑ ∑ 𝑏𝑓𝑟𝑝𝑢 𝑦𝑟
𝑓

≤  𝐾𝑝𝑧𝑎𝑐𝑢 + |𝐹| ∑ 𝑧𝑎𝑐′𝑢

𝑐′≠𝑐𝑟∈𝑅𝑓𝑓∈𝐹

 

∀𝑎 ∈ 𝐴, 

𝑐 ∈ 𝐶𝑎 ,  

𝑝 ∈ 𝑃𝑐 , 

𝑢 ∈ 𝑈 

(4) 

𝑧𝑎𝑐𝑢 ∈ {0, 1} 

∀𝑎 ∈ 𝐴, 

𝑐 ∈ 𝐶𝑎 , 

𝑢 ∈ 𝑈 

(5) 

𝑦𝑟
𝑓

∈ {0, 1} 
∀𝑓 ∈ 𝐹 

𝑟 ∈ 𝑅𝑓 
(6) 

The objective (1) aims to minimize capacity and displacement cost. The constraint (2) ensures that each flight 324 

must be assigned to one and only one trajectory. The constraint (3) states that one configuration must be 325 

defined (active) at any time, for each airspace. The inequalities (4) set the capacity limitations across the 326 
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network. More specifically, if a partition 𝑝 belongs to a configuration 𝑐 in a given airspace 𝑎, and 𝑐 is chosen 327 

as an active configuration in this airspace at time 𝑢 (i.e., 𝑧𝑎𝑐𝑢 = 1), then no more than 𝐾𝑝 aircraft can enter 328 

the sector 𝑝 in period 𝑢. However, if 𝑐 is not chosen, then the term |𝐹| ∑ 𝑧𝑎𝑐′𝑢𝑐′≠𝑐  guarantees that the constraint 329 

is no longer binding. This so-called “Big M” approach may lead to poor linear programming relaxations and 330 

more efficient formulation is possible, however, the problem (using either formulation) still would be 331 

intractable even for commercial solvers at large scale. Therefore, we stick to this representation as it easier to 332 

read. The left-hand side of the constraint computes the total number of flights entering a sector in period 𝑢. 333 

Finally, (5) - (6) define the binary nature of the decision variables. 334 

4.4 Computational methods 335 

Computational runtime is a crucial aspect of this modelling approach. Our model as presented so far is 336 

challenging to solve even with a commercial solver when large instances are considered. For this reason, we 337 

tested several heuristic approaches to solve the model. The main challenge is a large number of possible 338 

combination of configurations, but also a large number of potential different trajectories for each flight. After 339 

intensive testing, we selected a heuristic approach, which we briefly describe below. 340 

In the initial step, we open all elementary sectors, that is, start with maximum sectors open (capacity provided) 341 

for every period 𝑢. Then, we assign flights to preferred (shortest) trajectories. Note that a demand profile 342 

might be such that it exceeds maximum capacity in some elementary sectors 𝑠 in periods 𝑢. After assignment, 343 

we obtain the traffic counts 𝜃𝑠𝑢
0  for each open sector 𝑠 and time period 𝑢, that is, how many flights entered 344 

each elementary sector in each time period. Then, for each pair (𝑎, 𝑢), we select a configuration associated 345 

with the lowest cost (i.e. minimum sectors open) which provides enough capacity for the given traffic (𝑘𝑝 >346 

 𝜃𝑠𝑢
0 ). This is done by fully enumerating configurations starting from the one with lowest cost, that is, lowest 347 

number of sectors. As soon as a configuration which provides enough capacity for the traffic in the airspace 348 

considered is found, the enumeration stops. If, however, there is no configuration in an airspace with enough 349 

capacity for the traffic at a given time, the configuration minimising the gap between traffic and capacity is 350 

selected. A new feasible trajectory assignment is then found by solving the optimization model with capacity 351 

decisions fixed. The output of the initial step is a solution with the minimum displacement cost achievable 352 

(given the airspaces structural capacity constraint). However, the capacity cost returned can be very high. 353 

Therefore, a second empirical step is implemented to try to reduce the capacity cost while trading with 354 

displacement cost. The basic idea is to identify when the network is close to congestion and apply minor 355 

changes to the capacity configurations around those time periods. At this stage, this is done empirically by 356 

looking at the peaks in the demand profile.  Formally, for each airspace (𝑎, 𝑢) pairs deemed as congested 357 

(capacity utilisation >90%), the traffic count 𝜃𝑠𝑢
𝑖𝑡  (∀ 𝑠 ∈ 𝑆𝑎) is decremented by a pre-determined number of 358 

flights; in our experiments, the modifications 𝛾 are empirically set to 5, 10 and 20 flights. Practically, these 359 

flights are delayed and will enter the affected airspaces in the time periods after congestion. With the new 360 

temporal distribution of flights in the network, we run the enumeration algorithm to identify the new least 361 

cost configurations for each pair (𝑎, 𝑢). Optimization is then used to find the flight-to-trajectory assignments 362 

and measure the displacement cost, given the fixed capacity. This procedure is repeated while increasing the 363 

magnitude of the traffic modifications and storing the best solution. The procedure stops after the solution 364 

cannot be improved by a threshold margin or when the time for computation expires.  365 

It should be noted that we also use the COCTA mathematical model and algorithm in the Baseline (reference) 366 

scenario, but with different model settings, as explained in section 5.2.1.  367 

5 Numerical results 368 

5.1 Large-scale case study data 369 
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For our case study, we use real data, obtained from EUROCONTROL’s service Demand Data Repository (DDR2), 370 

using EUROCONTROL Network Strategic Tool (NEST). The large-scale case study includes airspaces in central 371 

and Western Europe, covering eight ANSPs and 15 ACCs/sector groups (Figure 2. Case study airspace, ACCs 372 

and sector groups [Source: EUROCONTROL NEST]). For instance, Karlsruhe Upper Area Centre (UAC) is divided 373 

into four sector groups: East, West, South and Central, each with its own sectorisation and sector 374 

configurations. The COCTA concept is primarily developed for the en-route airspace and therefore, most of 375 

the selected ACCs provide ANS services primarily in the upper airspace. We choose between configurations 376 

that were used by ACCs in 2016 and select those that were most frequently used. We select configurations 377 

with different number of sectors: in total, we have 173 different configurations for 15 ACCs/sector groups 378 

(Figure 2. Case study airspace, ACCs and sector groups [Source: EUROCONTROL NEST]). 379 

The ANSP cost data used in the model is based on cost and capacity information provided in the ATM Cost-380 

Effectiveness Benchmarking Report (EUROCONTROL, 2017). Since some ANSPs in our case study changed their 381 

sectorisation over the last years (which also has an influence on costs per sector hour), we only use the most 382 

recent data available (2015). For each ANSP in the case study, we calculated the average ATCO costs per sector 383 

hour based on the average number of ACC ATCOs on duty per sector hour and the average employment costs 384 

per ATCO hour (in the case of Germany we used operational data for ACC Karlsruhe only). We treat these 385 

average ATCO costs per sector hour as variable costs in our model. 386 

To obtain a challenging set of flights, the busiest day on record in 2016 - 9th September, with a total of 34,594 387 

flights in the European airspace, was chosen for the case study. In the COCTA context, the ANS charging 388 

scheme favours shortest routes, therefore, we first use NEST to generate shortest routes for the traffic sample 389 

based on last filed flight plans (many flights have already filed shortest plannable routes). We then generate 390 

alternative trajectory options for each flight, using NEST, both in horizontal and vertical plane, crossing 391 

different elementary sectors. In the end, the final traffic sample consists of 11,211 individual flights (shortest 392 

trajectories), plus 49,685 additional (spatial) trajectory options. We also consider several levels of delays (e.g. 393 

5, 10, 15, etc. minutes) for flights as well, thus further increasing the number of different 4D flight options. We 394 

consider delays only for shortest routes, i.e. we apply only one demand management measure per flight (delay 395 

or re-routing). To estimate delay and re-routing costs per aircraft type we make use of findings presented in 396 

Cook and Tanner (2015) and EUROCONTROL (2018). Scheduled flights make around 85% of total demand in 397 

the case study traffic sample, while the remaining 15% are non-scheduled, in line with the annual averages 398 

(EUROCONTROL PRC, 2017). 399 

 

 

No. ACC/Sector 
group 

Min/Max Sectors 
open  

Number of 
configurations  

1 Genève UAC 1/6 11 

2 Zurich UAC 1/5 7 

3 MUAC Brussels 1/6 10 

4 MUAC Deco 1/6 7 

5 MUAC Hannover 1/7 12 

6 Karlsruhe West 1/8 11 

7 Karlsruhe Central 1/9 13 

8 Karlsruhe South 1/8 13 

9 Karlsruhe East 1/9 13 

10 Praha UAC 1/5 8 

11 Praha CTA 1/5 6 

12 Wien ACC 2/12 21 

13 Budapest 1/7 7 

14 Bratislava 1/5 8 

15 Warszawa 1/10 26 

Figure 2. Case study airspace, ACCs and sector groups [Source: EUROCONTROL NEST] 
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5.2 COCTA model evaluation methodology 400 

We test and evaluate the COCTA concept/model to: 401 

1) Compare the COCTA results, i.e. capacity required for a given traffic demand and associated network 402 

performance indicators, against a modelled Baseline, which mimics the current system (described in 403 

the next section).  404 

2) Demonstrate the NM’s capacity ordering decision-making, that is, asking for sector-opening schemes 405 

from ANSPs for a day of operations in the schedule season.  406 

5.2.1 COCTA model evaluation: comparison against a modelled Baseline 407 

For the sake of comparison, we define a Baseline scenario which should mimic, to the extent possible, the 408 

current practice of capacity planning. To facilitate fair comparison, for the Baseline we use the same COCTA 409 

model, but with different assumptions/model settings, which are in line with the current practice. Namely, we 410 

assume that the NM also tries to find the most cost-efficient solution in the Baseline scenario, with the 411 

difference that the NM considers delays as a primary demand management measure, without considering re-412 

routings (EUROCONTROL, 2013b). This means that the Baseline scenario de facto relies upon the same capacity 413 

management principles as the COCTA case, while demand management in the Baseline is primarily focused on 414 

delaying flights; re-routings of limited length (up to 2NM only) are considered only when the model cannot 415 

find a feasible solution by delaying flights solely. The reason for having the same capacity management 416 

mechanism assumed in both scenarios is that replicating individual ANSP’s capacity management/planning 417 

practices is not trivial. Also, using the available real data on capacity provision is not appropriate for 418 

comparison purposes, since the capacity decisions in practice are affected by many non-nominal conditions 419 

(disruptions) and limitations (e.g. ATCOs available) which are challenging to replicate. It should finally be noted 420 

that by assuming COCTA-like capacity-management principles in the Baseline, we arguably remain on the 421 

conservative side concerning the estimated COCTA cost-efficiency benefits. 422 

The comparison is performed as follows. The NM examines how much capacity, provided by means of a 423 

specific sector-opening scheme – SOSc, is needed for different traffic levels in the network and assesses 424 

network performance associated with capacity decisions for both scenarios (COCTA and Baseline). As input for 425 

both scenarios, we have a range of different traffic levels anticipated in a schedule season. Based on typical 426 

seasonal traffic patterns and anticipated flow variations, both on local and network level, the NM has a good 427 

estimate of how many flights could be expected (EUROCONTROL STATFOR, 2018). In our experiments, we vary 428 

number of flights between 8,300 and 11,211 (maximum number of flights), using a uniform distribution. Each 429 

flight from the set of flights has an equal chance to be sampled, which increases variability of traffic flows, and 430 

we randomly choose 200 different traffic samples. For each of these traffic samples, we run the model in 431 

COCTA and Baseline scenarios to obtain results: sector-opening schemes for each ANSP, cost of capacity 432 

provision, scope of delays and re-routings, etc. Note that although both COCTA and Baseline scenario use the 433 

same capacity management mechanism, the resulting capacity ordered might be different, due to different 434 

demand management mechanism used.  435 

This comparison could reflect a long(er)-term capacity ordering decision implication on overall network 436 

performance. Since a very large number of iterations is needed to make sound capacity ordering decisions, we 437 

present the results from 200 iterations and then demonstrate the capacity ordering decision based on model 438 

testing for a representative day in the network.  439 

5.2.2 COCTA model evaluation: capacity ordering for a representative day  440 

We demonstrate the NM’s capacity ordering decision-making in the COCTA context, that is, asking for sector-441 

opening schemes from ANSPs for a day of operations in the schedule season. 442 
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For any specific day of operations, the NM assumes that scheduled flights will materialise as planned whereas 443 

there is a degree of uncertainty associated with a number of non-scheduled flights expected for the day of 444 

operations. As an example, we use a busy Friday traffic (pattern), anticipating that the total number of flights 445 

will be 11,000 including ± 2% traffic variability. Out of these 11,000 flights, approximately 85% are scheduled, 446 

while we assume that variability, again in terms of traffic levels and spatio-temporal distribution in the 447 

network, originates from the remaining 15% of non-scheduled demand. We use all scheduled flights from the 448 

dataset (9,642 in total) as fixed and randomly choose between 1,130 and 1,569 flights from the non-scheduled 449 

flights in dataset (there are 1,569 such flights in total). Again, we select 200 different traffic samples to be used 450 

as input for model testing. For any traffic sample, we solve the COCTA optimisation model (1-6). The solution 451 

is used to identify the SOSc (𝒛 variables) together with several performance indicators (e.g., displacement cost, 452 

CO2 emissions etc.) resulting from the flight-to-route assignments (𝒚 variables). The objective is to collect a 453 

list of SOSc for different demand levels. Basically, in order to establish a cost-efficient demand-capacity 454 

balance the NM assesses the effects of traffic variability on the capacity needed, in terms of overall traffic 455 

levels and spatio-temporal distribution of non-scheduled flights. We subsequently define different scenarios 456 

by grouping (clustering) similar results of individual iterations. We refer to this step as Scenario Identification 457 

(SI) step, which as an output has different capacity ordering (SOSc) policies, associated with distinct network 458 

performance levels. 459 

Then the NM evaluates capacity ordering decisions, that is, different SOSc ordered and associated network 460 

performance under different traffic scenarios (“what if”). This is the Scenario Testing (ST) step in which the 461 

NM tests the performance (including robustness) of each of the identified scenarios in the previous step. 462 

Basically, the NM evaluates the effects of his capacity decision if the actual traffic on the day of operations is 463 

on the low, ”medium” or on the higher side of expected levels. In our case, we assume that “low” traffic means 464 

10,856 flights, “high” is 11,176 flights and “expected” or “medium” is 11,075 flights. Again, for each of these 465 

expected traffic levels, we sample non-scheduled flights as in the SI step to serve as input for model testing. 466 

Also, we now have a specific SOSc for each ordering policy chosen in the SI step to be also used as input for 467 

the COCTA model testing. Basically, the COCTA model is used just to find optimal demand management 468 

decisions to minimise cost of delays and re-routings for a traffic sample, given the capacity. Finally, the NM 469 

can compare results (network performance) for the pre-defined set of SOSc and decide on the final capacity 470 

for each ANSP/ACC.  471 

5.3 Results 472 

5.3.1 Results of COCTA model evaluation: comparison against a modelled Baseline 473 

We start with the individual results of 200 iterations, which correspond to 200 different traffic 474 

materialisations, uniformly distributed between “low” (8,300 flights) and “high” (11,211 flights) demand. The 475 

number of flights in the COCTA and the Baseline scenario does not differ, since we are using the same demand 476 

across scenarios, which ensures fair comparison between them. The summary of the results for 200 iterations 477 

for the Baseline and the COCTA scenario are presented in Table 2. 478 

Since we chose the busiest day in the network in 2016, in the Baseline scenario we can see very high delays 479 

associated with high demand (Table 2). Moreover, in some instances the heuristics was not able to find a 480 

feasible solution, assuming ground delays limited to 90 minutes. For that reason, after extensive testing, we 481 

had to allow re-routings of up to 2NM in the Baseline scenario so that all the demand could be accommodated. 482 

As expected, the average number of delayed flights and total delay overall are also significantly lower in the 483 

COCTA scenario than in the Baseline scenario (independent-samples Mann-Whitney U Test4, p=.000 across all 484 

                                                           
4 Since the results (data) are not normally distributed (Kolmogorov-Smirnov and Shapiro-Wilk tests) and variances are not 
the same (Levene’s test for equality of variances), we use non-parametric Mann-Whitney U test (Connolly, 2011) to 
thoroughly compare network performance between the two. As a note, non-parametric test generally have lower power 
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delay categories). The equity indicator for very long delays also heavily favours systematic and centralised 485 

application of re-routings, as there are no severely delayed flights in the COCTA scenario. 486 

In the present ATM system, re-routings are not considered in the capacity planning phase (EUROCONTROL, 487 

2013b), but are executed in a form of mandatory (re-routing) scenarios on the day of operation to avoid 488 

excessive ATFM delays (EUROCONTROL NMOC, 2017). Therefore, in this case of very high delays, the Baseline 489 

scenario is not a realistic representation of demand materialisation, but merely a consequence of limited 490 

capacity in the network and limited demand management actions undertaken at the strategic stage.  491 

It is also worth noting that, in the present system, AOs are not always in favour of re-routings (EUROCONTROL, 492 

2015), not just because of the additional cost, but because there is no network-wide assessment of scenarios’ 493 

impact (Woodland, 2018). More specifically, AOs seem to be concerned that ANSPs use mandatory re-routing 494 

scenarios primarily as a tool to reduce ATFM delays to meet their local delay targets (EUROCONTROL, 2015).  495 

On the other hand, in the COCTA ATM value-chain, with airport pair pricing and trajectory charging introduced, 496 

re-routing becomes a network-centric instrument to effectively establish a demand-capacity balance, with 497 

clear benefits for AOs overall. They allow the NM as a central planner to spread the demand in the network in 498 

such a manner that the total cost is lower in the COCTA scenario, compared to the Baseline. 499 

Table 2. Comparison of Scenarios: Baseline and COCTA – Key Performance Indicators 500 

Performance indicators 

Baseline COCTA 

Min Average 

[St.Dev] 

Max Min Average 

[St.Dev] 

Max 

Number of flights in the 
demand scenario 

8,302 9,743 

[872] 

11,194 8,302 9,743 

[872] 

11,194 

Total cost (capacity + 
displacement) [EUR] 

756,939 1,035,165 

[269,411] 

2,333,510 752,144 884,681 

[81,534] 

1,025,670 

Capacity cost (only variable) 
[EUR] 

747,843 886,410 

[80.270] 

1,010,570 747,965 863,107 

[65,397] 

966,855 

Displacement cost [EUR] 1,979 148,755 

[204.580] 

1,336,160 2,729 21,574 

[17,057] 

61,184 

Total number of sector half-
hours used 

2,384 2,831 

[263] 

3,242 2,387 2,755 

[212] 

3,095 

Number of displaced flights 64 768 

[556] 

2,173 156 531 

[286] 

1,097 

Number of delayed flights 30 629 

[508] 

1,953 6 85 

[65] 

219 

Total delay (min) 

 

170 7,390 

[8,026] 

40,045 40 478 

[368] 

1,255 

Average delay per delayed 
flight (min) 

5.58 9.56 

[2.81] 

20.57 5.00 5.23 

[0.43] 

7.86 

Num of flights delayed 5min 28 354 

[212] 

752 5 80 

[60] 

203 

Num of flights delayed 15min 2 214 

[214] 

715 0 5 

[5] 

20 

Num of flights delayed 30min 0 35 

[54] 

232 0 0 1 

Num of flights delayed 45min 0 19 

[31] 

221 0 0 0 

Num of flights delayed 60min 0 2 70 0 0 0 

                                                           
for statistical inference compared to parametric tests (like t-test); for instance, when the alternative hypothesis is true, 
non-parametric tests may be less likely to reject the null hypothesis (Connolly, 2011). 
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Performance indicators 

Baseline COCTA 

Min Average 

[St.Dev] 

Max Min Average 

[St.Dev] 

Max 

[8] 

Num of flights delayed 90min 0 4 

[9] 

62 0 0 0 

Average re-routing per re-
routed flight (NM) 

1 1 

[0.6] 

1 2.68 5.62 

[5.82] 

7.78 

Extra CO2 (kg) 752 2,970 

[1,176] 

5,152 7,729 46,315 

[34,865] 

128,317 

However, the COCTA mechanism makes far more frequent use of spatial displacement (re-routings), with 501 

about 450 re-routed flights on average (=531 displaced minus 85 delayed flights), corresponding to 4.6% of all 502 

flights. Consequently, the CO2 emission due to additional mileage is notably higher in the COCTA scenario. The 503 

distribution of spatial deviations from the shortest plannable route in the COCTA scenario is however strongly 504 

right-skewed, with re-routings being up to 7.5NM for 75% of all re-routed flights, and up to 30NM for 99% of 505 

all re-routed flights (Figure 3). Maximum re-routing length allowed is 50NM, with only 100 flights, counting 506 

together across all 200 iterations, being re-routed more than 45NM. 507 

 508 

Figure 3. Average number of re-routings and distances per iteration (COCTA scenario, 200 iterations) 509 

We also evaluate the COCTA model using a “high fuel” price of 1 EUR/kg (whereas the Table 2 results were 510 

obtained using 0.5EUR/kg). A high fuel price increases the cost of re-routings, since fuel costs make roughly 511 

50-60% of total re-routing cost for turbo-prop and 75% for jet aircraft (Cook and Tanner, 2015). In general, 512 

cost of re-routings increases in a super-linear way with millage, with higher gradients of change associated 513 

with larger aircraft. However, the results of COCTA model testing using the same demand, but with higher fuel 514 

price, are almost identical with the results obtained with a lower fuel price, with only few minor differences. 515 

Displacement cost is higher, which is a consequence of higher re-routing costs, due to higher fuel price. We 516 

also observe the expected trade-off between “attractiveness” of re-routing vs. delay: when the fuel price goes 517 

up, the number of re-routed flights goes down and the number of delayed flights goes up. Consequently, 518 

additional CO2 emissions decline with fewer re-routings in the “high” fuel scenario. However, the higher delay 519 

in the “high” fuel price scenario is caused by a higher number of flights delayed by only 5 minutes. Although 520 

the difference seems to be statistically significant (Mann-Whitney U test p<0.05), the difference in absolute 521 

terms is only a few percent.  522 



17 
 

Basically, the differences at strategic level between “high” and “low” fuel price are marginal and observable 523 

only in few network performance indicators, with relatively weak statistical significance. There are several 524 

reasons for similar results from model testing with different fuel prices. First, more than two thirds of 525 

alternative routes are shorter than 20 NM in our case study, so the cost differences are not as high, compared 526 

to cost of capacity provision and cost of delays. Also, in cases of high demand in the network, longer delays 527 

instead of re-routings are no longer a more cost-efficient demand management option, since cost of delays 528 

increase in a non-linear fashion with delay minutes. Lastly, although we have more than 50,000 different 3D 529 

trajectory options for individual flights in our case study, there might be other viable options in some portions 530 

of airspace, which we are not able to generate a priori using NEST. 531 

Moving on to other performance areas, COCTA coordinated capacity and demand management allows the 532 

same traffic to be handled with significantly fewer sector hours overall (Mann-Whitney U Test p=0.001), with 533 

difference being 38 sector-hours, or about 2.8%, on average, with however much larger difference for higher 534 

demand cases (up to 74 sector-hours, or 4.7% higher capacity spending in the Baseline).  535 

As presented in Table 2, total cost in the COCTA scenario is almost 15% lower compared to the Baseline 536 

scenario. This difference mainly arises from higher displacement cost in the Baseline scenario and only partially 537 

due to higher cost of capacity provision. This is not unexpected though, since the capacity management in the 538 

Baseline scenario is coordinated network-wide (using the COCTA capacity mechanism). Mann-Whitney U test 539 

shows significant differences in total cost, capacity costs and displacement costs (p<0.05). 540 

Figure 4 shows that the cost-efficiency performance of the COCTA and the Baseline scenario is broadly 541 

comparable for low and moderate demand volumes, i.e. until about 10,000 flights. For higher demand 542 

materialisations total cost in the Baseline scenario starts increasing in a non-linear way, whereas in the COCTA 543 

scenario the linear relationship between traffic volume and total costs continues. The cost-efficiency gap 544 

between the two thus increases with the demand increase, owing primarily to dramatic growth in the 545 

displacement costs in the Baseline scenario. This again is a consequence of the range of demand management 546 

measures available in the Baseline scenario, and of strong non-linearity of at-gate delay costs (Cook and 547 

Tanner, 2015), especially for delays in excess of 30 minutes, which are far more frequently imposed in the 548 

Baseline scenario (Table 2). 549 
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 550 

Figure 4. Comparison between Baseline and COCTA total cost-efficiency (capacity and displacement costs) 551 

However, COCTA also outperforms the Baseline in terms of capacity usage, i.e. it persistently spends fewer 552 

sector-hours than the Baseline to accommodate the same demand volume. This is notable for demand above 553 

10,000 flights, since a Mann-Whitney U Test shows no significant difference at 5% level (p=.070) between 554 

capacity costs for demand lower than 10,000 flights (again, owing to coordinated capacity management). 555 

This comparative analysis suggests a substantial added value of the extensive spatial demand management 556 

measures applied in COCTA, resulting in better use of available capacities and yielding remarkably better cost-557 

efficiency than in the Baseline scenario, as observed in the strategic planning stage. Unsurprisingly, this comes 558 

at a cost of somewhat increased CO2 emissions due to more extensive re-routings applied in COCTA: about 559 

4.45kg extra CO2 per flight, on average, equivalent to 1.4kg extra fuel burned per flight. 560 

Capacity (sector-hours) needed to cost-efficiently handle various levels of traffic in the case study network, 561 

linearly increases with traffic for both scenarios5, Figure 5. Up to 10,000 flights, there are no significant 562 

differences between sector-hours needed. With more than 10,000 flights in the network, the number of 563 

displaced flights increases non-linearly in the Baseline scenario, compared to a linear increase in the COCTA 564 

scenario (Figure 5). 565 

                                                           
5 This linear relationship between traffic levels and sector hours is also noticeable in practice; based on DDR data obtained 
via NEST, we can see than some ACCs, like Geneva and Maastricht adapt their sector-opening schemes in line with 
demand. However, some other ACCs do not adapt their sector-opening schemes closely in line with demand, thus 
deviating from linear relation (and potentially suggesting that their efficiency can be improved). 
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 566 

Figure 5. Capacity required and displaced flights comparison between Baseline and COCTA 567 

From 10,000 flights and above, the Baseline scenario also needs more sector hours than COCTA, as confirmed 568 
by Mann-Whitney U test (p=.000). Moreover, the Baseline scenario uses configurations with more sectors than 569 
COCTA (Figure 6).  570 

 571 

Figure 6. Maximum sectors open and duration (sector half-hours) at maximum configuration 572 
Distribution of sector half-hours across ACCs is shown in Figure 7 – ACCs like Vienna and Karlsruhe Central 573 
have higher variation in capacity, while some others, like Bratislava, have much lower variability. 574 
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 575 

Figure 7. Sector half hour periods across ACCs for COCTA and Baseline scenarios 576 

The analyses so far compared the COCTA and the Baseline scenario over a wide range of demand levels 577 

expected to materialize in the network during a schedule season (and/or years), accounting for a high level of 578 

traffic variability (in terms of number of flights and spatio-temporal distribution). This might serve as a starting 579 

point for the NM to assess required capacity profiles during the season, or even for a longer period, for all 580 

ACCs. We observe a very strong correlation between the number of flights and almost all the other variables 581 

(KPIs) monitored, usually higher than 0.9. This indicates that the number of flights is a very strong driver and 582 

predictor not just for the capacity required in the coming period (see Figure 5) but also for the network 583 

performance overall. The NM, therefore, can base its capacity orders, even in the long term, upon the 584 

expected traffic growth in the network. Potentially, the NM could conclude that some ACCs might need to 585 

increase their maximum number of sectors or provide the maximum capacity level for a longer period. Since 586 

we do not  have reliable information on the current “limits” for maximum capacity levels and for how long 587 

they can be provided by each ACC, we cannot test and evaluate if that is the case. 588 

5.4 COCTA model evaluation: capacity ordering for a representative day  589 

5.4.1 Scenario Identification 590 

To demonstrate capacity ordering decisions taken by the NM, that is, sector-opening schemes for ACCs, we 591 

use a representative day in the network. We consider a moderate level of traffic variability, i.e. assume that 592 

all scheduled flights will materialize as planned, with only a portion of demand (non-scheduled) being 593 

“stochastic”. We demonstrate this process for a busy Friday traffic (pattern), anticipating that the total number 594 

of flights will be 11,000 including ± 2% traffic variability. Out of 11,000 flights, approximately 85% are 595 

scheduled (and deterministic), while we assume that variability, again in terms of traffic levels and spatio-596 

temporal distribution in the network, originates from the remaining 15% of non-scheduled demand.  597 

Based on model output (active sector configurations over time per each ACC) for 200 runs of the model, within 598 

a relatively narrow range of high demand materialisations, we obtained the distribution of SOSc for each ACC 599 

for the entire day. Building upon obtained sector-opening schemes for each ACC for each 30-minute time 600 

window (i.e. 48 periods in the day), we defined four representative SOScs to be used for the second stage 601 

analysis, i.e. for the strategic scenario testing: 602 
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 MIN: representing the sector-opening schemes providing as low as possible capacities which still, on 603 

average, allows for accommodating the expected demand. 604 

 Q1: broadly corresponding to the first quartile (25th percentile) of the capacity provided per each ACC 605 

and each 30-min period. This is a slightly more generous capacity-policy than MIN, expected to result 606 

in higher costs of capacity provision but also improved delay and environmental performance, on 607 

average. 608 

 MEDIAN: broadly corresponding to the median (50th percentile) of the capacity provided per each ACC 609 

and each 30-min period, aiming to broadly represent an "average" case.  610 

 MAX: Meant to reflect the most conservative capacity policy, taking for each ACC and each 30-min 611 

period the maximum observed number of opened sectors. This arguably mimics planning for the 612 

highest-demand scenario, with likely redundancies in some ACCs. It is thus not intuitively clear if (or 613 

how often) gains from reduction of displacement costs would offset the higher capacity provision 614 

costs. 615 

In Table 3, we present the network performance results, which correspond to the generated SOSc. It should 616 

be noted that the difference between the MIN and MAX scenario is 167.5 sector-hours, that is, MAX SOSc 617 

provides, overall, 11.7% more sector-hours than the MIN SOSc (Table 3). Furthermore, MAX adds six more 618 

sectors opened at maximum configuration compared to MIN, which might also have longer-term cost 619 

implications. 620 

With the MIN SOSc we get 35% of unfeasible solutions, meaning that there are 35% demand materialisations 621 

which cannot be accommodated by such SOSc when a maximum at-gate delay of 90 minutes is assumed. With 622 

the Q1 SOSc only 5% of the demand profiles turn out to be too challenging for the available capacities and the 623 

predefined range of available demand management actions, Table 3.  624 

Whereas there is quite a sharp performance improvement between the MIN and the Q1 SOSc, in particular 625 

concerning total delay, the incidence of lengthy delays and the CO2 emissions, the improvement gradient 626 

notably slows down between the Q1 and MEDIAN SOSc, and effectively diminishes between the MEDIAN and 627 

the MAX SOSc, except for slight CO2 emission reduction (Table 3). 628 

With MEDIAN and MAX SOSc we get feasible solutions for every random demand sample, the summary results 629 

of which are presented in Table 3. The MEDIAN SOSc spends a 4.8% lower overall capacity than the MAX SOSc. 630 

With respect to total cost-efficiency (capacity and displacement cost), we can clearly observe the 631 

improvements from MIN to Q1 and MEDIAN, owing to larger decline in displacement cost than increase in 632 

capacity cost (Figure 8). Adding more capacity on top of MEDIAN in this case leads to further lowering 633 

displacement cost, but at the expense of higher total cost, due to higher cost of capacity provision (Figure 8).  634 
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Table 3. COCTA scenario identification for a representative day 635 

Performance indicators 

SOSc scenario 

MIN Q1 MEDIAN MAX 

Capacity (sector-halfhours) 2,873 2,974 3,062 3,208 

Sum of peak ACC configurations (sectors) 94 96 99 100 

Feasibility 0.65 0.95 1 1 

Variable capacity cost 902,520 933,166 957,516 998,004 

Average capacity cost per flight (EUR) 81.6 84.3 86.5 90.1 

Average total cost per flight (EUR) 117.2 95.7 91.7 95.1 

Displacement cost (EUR) [st.dev] 
394,866 

[187,081] 
126,901 
[99,572] 

57,877 
[5,482] 

55,678 
[4,091] 

Number of displaced flights [st.dev] 
1,233 
[118] 

1,072 
[61] 

1,074 
[55] 

1,041 
[53] 

Total delay (min) [st.dev] 
6,961 

[3,132] 
2,423 

[1,806] 
1,201 
[126] 

1,208 
[103] 

Average delay per flight (min) [st.dev] 
0.63 

[0.28] 
0.22 

[0.16] 
0.108 

[0.011] 
0.109 

[0.009] 

Average delay per delayed flight (min) 17.4 9.3 5.82 5.79 

Average number of flights delayed 15-30 (min) 102.2 34.3 16.1 16.5 

Average number of flights delayed 45+ (min) 68.8 15.9 0.2 - 

Extra CO2 (kg) [st.dev] 
168,393 
[28,500] 

130,900 
[21,665] 

119,852 
[8,896] 

115,720 
[7,542] 

 636 

 637 
Figure 8. Capacity and displacement cost trade-off between different scenarios 638 



23 
 

5.4.2 Scenario testing 639 

Based on the results from the Scenario Identification step, we proceed with testing and evaluating in more 640 
detail only the MEDIAN and the MAX sector-opening schemes, since those were able to accommodate all 641 
flights in each iteration. In this step, the NM assesses fixed sector opening schemes (MEDIAN and MAX) for 642 
each ACC, for the same traffic levels and assumed variability in the SI step. We run 100 iterations, with different 643 
non-scheduled traffic materialisations in the network, and summarize our results in Table 4. 644 

Table 4 suggests that the MEDIAN SOSc, on average, performs 3.6% better than the MAX scenario in terms of 645 

total cost (variable cost of capacity provision plus displacement cost) and that the difference is statistically 646 

significant (Mann-Whitney U Test p=.000). This is because the increment in displacement costs, owing to 647 

scarcer capacity in MEDIAN, is on average lower than the corresponding cost of additional capacity provided 648 

in the MAX SOSc. On the other hand, there is no significant difference between displacement cost in MEDIAN 649 

and MAX scenarios at 5% level (Mann-Whitney U Test p=0.070).  650 

Table 4. Scenario testing: network performance for COCTA MEDIAN and MAX SOSc  651 

Performance 
indicators 

MEDIAN MAX 

Low Medium 

[St.dev] 

High Low Medium 

[St.dev] 

High 

Number of 
flights in the 
demand 
scenario 

10,856 11,075 
[0] 

11,176 10,856 11,075 
[0] 

11,176 

Total cost 
(capacity + 
displacement) 
[EUR] 

1,004,890 1,015,393 
[5,482] 

1,029,210 1,044,590 1,053,682 
[4,091] 

1,058,120 

Capacity cost 
(only variable) 
[EUR] 

957,516 957,516 
[0] 

957,516 998,004 998,004 
[0] 

998,004 

Displacement 
cost (EUR) 

47,371 57,877 
[5,482] 

71,693 46,590 55,678 
[4,091] 

60,121 

Total number 
of sector half-
hours used 

3,062 3,062 
[0] 

3,062 3,208 3,208 
[0] 

3,208 

Number of 
displaced 
flights 

950 1,074 
[55] 

1,152 922 1,041 
[53] 

1,105 

Number of 
delayed 
flights 

176 206 
[15] 

234 174 209 
[16] 

233 

Total delay 
(min) 

990 1,201 
[126] 

1,565 1,000 1,208 
[103] 

1,375 

Average delay 
per flight 
(min) 

0.091 0.108 
[0.011] 

0.140 0.092 0.109 [0.009] 0.123 

Average delay 
per delayed 
flight (min) 

5.50 5.82 
[0.23] 

6.69 5.49 5.79 
[0.11] 

5.94 

Num of flights 
delayed 5 min 

161 190 
[12] 

205 174 192 
[13] 

233 

Num of flights 
delayed 15min 

9 16.0 
[3.5] 

25 9 16.4 
[3.1] 

21 

Num of flights 
delayed 30min 

0.0 0.1 
[0.45] 

2.0 0.0 0.05 
[0.22] 

1.0 

Num of flights 
delayed 45min 

0.0 0.1 
[0.31] 

1.0 0.0 0.0 
[0.00] 

0.0 



24 
 

Performance 
indicators 

MEDIAN MAX 

Low Medium 

[St.dev] 

High Low Medium 

[St.dev] 

High 

Extra CO2 
emitted (kg) 

101,323 119,852 
[8,896] 

135,294 98,678 115,720 
[7,542] 

123,478 

The remaining indicators are, on average, typically only marginally better in the MAX scenario than in the 652 

MEDIAN, with however somewhat higher dispersion of values (measured via standard deviation) in the 653 

MEDIAN scenario, which is expected given the scarcer capacity, owing to the impact of most challenging 654 

demand materialisations. The capacity decision of the NM ultimately depends on its objective function. If the 655 

NM is supposed to minimize overall costs, the MEDIAN scenario should be chosen. However, if a very strong 656 

emphasis is put on some other KPIs, e.g. minimizing CO2 emissions, the MAX scenario might be preferable. 657 

6 Discussion and conclusions 658 

In this paper, we outline the proposed changes in the ATM value-chain and briefly explain the COCTA concept 659 

of a combined capacity and demand management process. We present in detail the COCTA mathematical 660 

model and an approach to solve it. For model testing and evaluation of the COCTA concept, we use a large-661 

scale case study based on real data. We include the large portion of central and western Europe, covering 662 

eight ANSPs, that is, 15 ACCs/sector groups, with more than 170 different sector-opening schemes available. 663 

The demand consists of more than 11,200 individual flights for the entire day, with almost 50,000 different 664 

trajectory (re-routing) options. We calculate costs of capacity provision, delays and re-routings, to serve as 665 

input parameters for model testing and evaluation. 666 

The idea to balance demand and capacity on a sooner-than-tactical level (day of operations) in a deterministic 667 

context clearly has its limitations, owing to a number of uncertainties and variabilities inherent to air transport 668 

system (Ball et al., 2005), stemming from both demand and supply side. Nevertheless, although the proposed 669 

COCTA concept presently does not include the tactical phase, but focuses on strategic and pre-tactical phase, 670 

it establishes a framework preceding the day of operations, which will be integrated in our future research. 671 

Setting the scene for model testing is not trivial in this case, so we elaborate in detail different levels and steps, 672 

as well as different scenarios. We start with model testing at the strategic level for the case with high traffic 673 

variability, both in terms of overall traffic levels and their spatio-temporal distribution in the network. We 674 

compared the model results against a Baseline scenario, which reflects the current system to the extent 675 

possible. Based on the results from model testing, we can infer that by coordinated capacity and demand 676 

management, the NM is able to achieve better network performance in cost-efficiency, capacity and equity 677 

performance areas compared to the Baseline, which could have a long(er)-term impact. Unsurprisingly, the 678 

Baseline scenario had seemingly better performance in the environment area (lower CO2 emissions), owing to 679 

assumed Baseline demand management options (i.e. ground delays predominantly). The results also show 680 

how the COCTA mechanism makes trade-offs between ordering more capacity, thus increasing cost of capacity 681 

provision and lowering displacement cost, and vice versa. 682 

We proceed with the COCTA model testing and demonstrate the NM’s capacity ordering for a representative 683 

day in a schedule season, now assuming a lower level of traffic variability. This level has two different testing 684 

steps: scenario identification and scenario testing. Basically, the NM evaluates the capacity needed based on 685 

anticipated traffic materialisation in the network, identifies scenarios based on initial results, and then tests 686 

those scenarios and compares them against each other. Finally, the NM, based on its objective function, 687 

decides on the sector-opening scheme to be ordered, that is, asked for and negotiated, from ANSPs.  688 
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The results of extensive COCTA concept (model) testing are promising, especially concerning the overall cost-689 

efficiency, indicating that coordinated capacity and demand management actions, within a redesigned ATM 690 

value-chain, might be the right step forward.  691 

However, after its initial capacity order, the NM has to define trajectory products and prices thereof, to govern 692 

AO's trajectory choice towards a “system optimum” which is defined at the strategic level. This requires 693 

modelling AO's choices, when presented a range of trajectory products at differentiated prices. Also, one of 694 

the options for the NM would be to refine its initial capacity order, e.g. to order more capacity (sector-hours) 695 

from some ACCs, but at a higher price compared to the initial order. Moreover, decisions taken at the strategic 696 

level have to be further tested at the pre-tactical and tactical level, especially in cases when the assumptions 697 

from the strategic level no longer hold; for instance, traffic does not materialize as anticipated or an ACC 698 

cannot deliver capacity ordered. It would further be interesting to examine the effect of variability concerning 699 

take-off times. For instance, adding an uncertainty interval, e.g. (-5 minutes, +10 minutes) around published 700 

(scheduled) take-off times would enable assessment of robustness of different capacity orders we analysed in 701 

this paper, providing a valuable additional performance indicator. These are some of the immediate future 702 

research directions. 703 
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