
Noname manuscript No.
(will be inserted by the editor)

A statistical learning strategy for closed-loop control
of fluid flows

Florimond Guéniat · Lionel Mathelin ·
M. Yousuff Hussaini

Received: date / Accepted: date

Abstract This work discusses a closed-loop control strategy for complex systems
utilizing scarce and streaming data. A discrete embedding space is first built using
hash functions applied to the sensor measurements from which a Markov process
model is derived, approximating the complex system’s dynamics. A control strat-
egy is then learned using reinforcement learning once rewards relevant with respect
to the control objective are identified. This method is designed for experimental
configurations, requiring no computations nor prior knowledge of the system, and
enjoys intrinsic robustness. It is illustrated on two systems: the control of the tran-
sitions of a Lorenz 63 dynamical system, and the control of the drag of a cylinder
flow. The method is shown to perform well.

Keywords Closed-loop control, Reinforcement learning, Machine learning

1 Introduction

While the design and capability of aircraft, and more generally of complex sys-
tems, have significantly improved over the years, closed-loop control can bring
further improvement in terms of performance and robustness to non-modeled per-
turbations. In the context of flow control, closed-loop control however suffers from
severe limitations preventing its use in many situations. As a paradigmatic ex-
ample, a typical turbulent flow involves both a large range of spatial scales and
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exhibits a rich and fast dynamics. High frequency phenomena hence require a con-
trol command fast enough to adjust to the current state of the quickly evolving
flow system. Indeed, frequencies of interest can routinely lie over 1 kHz, leading
to a very short period of time for the controller to synthesize the command based
on its knowledge of the state of the system.

While flow manipulation and open-loop control are common practice, much
fewer successful closed-loop control efforts are reported in the literature. Further,
many of them rely on unrealistic assumptions. For example, Model Predictive
Control (MPC) approaches require very significant computational resources to
solve the governing equations in real-time. If a Reduced-Order Model (ROM) is
employed, as is common practice to alleviate the CPU burden, one often needs to
observe the whole system for deriving the ROM as, for instance, the velocity or
pressure fields with Proper Orthogonal Decomposition (POD), see [1–6]. Hence,
flow control with this class of approaches is restricted to numerical simulations or
experiments in a wind tunnel equipped with sophisticated visualization tools such
as Particle Image Velocimetry (PIV).

This paper discusses a practical strategy for closed-loop control of complex
flows by alleviating the limitations of current methods. The present work relies
on a change of paradigm: we want to derive a general nonlinear closed-loop flow
control methodology suitable for actual configurations and as realistic as possible.
No a priori model, nor even a model structure, describing the dynamics of the
system is required to be available. The approach proposed is data-driven only, with
the sole information about the system given by scarce and spatially-constrained
sensors. The method then exploits statistical learning methods.

This is the framework one typically deals with in practical situations where the
amount of information on the system at hand is limited and usually comes from
a few sensors located at the boundary of the fluid domain, e.g., on solid surfaces.
The resulting information takes the form of short time-dependent vectors with as
many entries as sensors.

Among the few earlier efforts relying on streaming measurements from a few
sensors, a trained neural network using surface measurements is employed to re-
duce the drag of a turbulent channel flow with an opposition control strategy in [7].
In [8], pressure sensors and an auto-regressive model (AutoRegression with eXoge-
nous inputs, ARX) are used to reduce flow-induced cavity tones. An autoregressive
approach is also followed in [9] and [10], while a genetic programming technique
is adopted in [11] to control a separated boundary layer. Interested readers may
refer to [12] for a comprehensive review of the topic. The present approach aims at
deriving an efficient, yet robust, nonlinear closed-loop control method compliant
with actual situations. Among its distinctive features compared to other methods
is a combination of both performance and fast learning.

To facilitate learning about the system dynamics from the time-dependent
measurements, and the subsequent derivation of a control strategy, the problem
must be amenable to a finite dimension. Hence, one needs to discretize the infinite-
dimensional time-series of the sensors’ information. To this end, the streaming data
are convolved with a kernel which should result in a discrete image space. Locality-
Sensitive Hash (LSH) functions are used for that purpose, [13], which results in a
low-dimensional discrete state space. Transitions from state to state in this discrete
space describe the dynamics, [14], and allow the analysis to learn, and update in
real-time, a Markov process model of the system. A suitable discretization of the
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dynamics allows the derivation of a reinforcement learning-based control strategy
of the identified Markov process model of the system. The control of Markov
processes is a mature field, [15] and reinforcement learning, [16,17], is a suitable
class of methods for the control of Markov processes, see for instance [18,19] for the
control of 1-D and 2-D chaotic maps. As will be seen in the application examples
below, the resulting control strategy is data-driven only, intrinsically robust against
perturbations in the flow and does not require significant computational resources
nor prior knowledge of the flow. The proposed approach is experiment-oriented and
on-going efforts are carried-out to demonstrate it on an experimental open cavity
flow in a turbulent regime. This will be the subject of a subsequent publication.

The paper is organized as follows. The framework and basics of how hash func-
tions are used to generate a low-dimensional state space are discussed in Section 2.
Section 3 is concerned with learning an efficient control strategy for the system
modeled as a stochastic process living in a small dimensional space. The resulting
control strategy is illustrated and discussed in the case of the control of a Lorenz 63
system and the drag reduction of a cylinder in a two-dimensional flow in Section 4.
Concluding remarks close the paper in Section 5.

2 Hash functions for reduced order modeling

2.1 Preliminaries

Consider a dynamical system evolving on a manifold D:

Ẋ (t) = f (X (t)) , X ∈ D,

with X the state of the system and f the flow operator. Let g : D → Rnp be a
sensor function. In the sequel, the number of sensors np will be taken to be one but
generalization to more sensors is immediate. The observed data y ∈ R is defined
as y (t) := g (X (t)).

Let ∆t be the sampling rate of the measurement system. Sampling has to be
fast enough to capture the small time scales of the dynamics of y. The data coming
from the sensor are embedded in a reconstructed phase space Ω:

(y (t) y (t−∆t) . . . y (t− (ne − 1)∆t)) =: y (t) ∈ Ω ⊂ Rne .

The correlation dimension of y is estimated from the time-series, for instance
using the Grassberger-Proccacia algorithm, [20]. It allows the definition of the
embedding dimension ne as, at least, twice the correlation dimension. Under mild
assumptions, this resulting embedding dimension ensures there is a diffeomorphism
between the phase space D and the reconstructed phase space, [21], so that y is
an observable on the system.

2.2 Hash functions

A hash function is any function that can be used to map an entry y ∈ Rne to
a key s ∈ Z. Since the key is an integer, hash functions effectively result in a
discrete image space of y. Hash functions are often used to efficiently discriminate
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two different entries so that slightly different input data should result in a large
variation of the associated key, [22]. An important objective in choosing the hash
function is to avoid collisions, i.e., when two different entries are associated with
the same key.

Conversely, the need for identification of similar entries in large databases has
led to the use of the Locality-Sensitive Hash functions (LSH) [23,13]. In contrast
with most hash functions, they are designed to promote collisions when two entries
are close to each other. The idea is that, if two points are close in Rne , they should
be likely to remain close after a projection on a lower dimensional subspace. The
Johnson-Lindenstrauss lemma (JLL), [24], provides useful results to reach this
objective and motivates the use of LSHs. Specifically, the JLL provides proba-
bilistic guarantees of the near preservation of relative distances between objects
in high-dimension after projection onto random low-dimensional spaces.

Let v ∈ Rne , ‖v‖2 = 1, be a test vector. The function hv,w : Rne → N is a
LSH, [23]:

hv,w (y) := h0 +
⌊v · y
w

⌋
, (1)

where b·c is the floor operator, w > 0 a quantization length and h0 is such that
hv,w > 0, ∀y ∈ Ω, v ∈ Bne

2 (1), with Bne
2 (1) the unit ball of Rne in the sense of

L2. As an illustration, following [24,13], if two observables y1 and y2 are such
that ‖y1 − y2‖2 < r, with r = w/2 ‖v‖2, they are associated with the same key
with a probability p1 larger than 1/2. On the other hand, the probability p2 that
two distant points y1 and y2 appear close to each other in the sense of hv,w is a
function of the angle between (y2 − y1) and v and is smaller than p1.

Let us illustrate the LSH with a simple example. Let ne = 30 and ya,yb and
yc be three vectors from Rne such that:

yaj = cos (2π (j − 1)) , 1 ≤ j ≤ ne,
ybj = cos (2π (j)) ,
ycj = cos (2π (j + 2)) .

Let v be a unit-norm normal Gaussian vector of Rne , w = 0.2 and h0 = 0. The
different vectors are drawn in Fig. 1. Upon processing with the LSH, the keys
associated with the three vectors ya,yb and yc are:

hv,w (ya) = 3, hv,w
(
yb
)

= 3, hv,w (yc) = 1.

ya and yb are closer to each other, in the sense of their L2-distance, than to yc,
and indeed, vectors ya and yb are associated with the same key s = 3 while yc is
associated with s = 1.

To discriminate false neighbors with higher probability, projections on several
low-dimensional subspaces can be used. Consider the hash function h : Rne → S ⊂
N made of concatenation of nv keys {hvl,wl (y)}nv

l=1. Many choices can be made
for the test vectors {vl}l. For instance, they could be the principal axes of the
manifold on which the observable y evolves, or may be randomly selected from
a Gaussian distribution. Keys (i.e., objects in the image space of h) generate a
Voronöı paving of the observable space. Each key is associated with a cell, or state
s, and close observables are associated with the same key.

Coarseness of the paving depends on the quantization lengths {wl}l and the
number nv of test vectors. The set {wl}l quantifies the minimal length of the
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Fig. 1 Plot of the vectors ya and yb (solid lines) and yc (dashed line). The random test vector
v is plotted in red.

cells1 and, as wl increases, the cardinality nkey := card (S) of the image space
of h decreases. On the other hand, increasing nv is equivalent to refining the
description, i.e., increasing the cardinality of S.

3 State-driven control

Thanks to the hash function, the original infinite-dimensional system is approxi-
mated as a discrete stochastic process whose state space is spanned by the keys.
The system is observable in real-time in this discrete space since evaluating the
hash function with the streaming sensor data y can be done at no computational
cost. Under a discrete control command a ∈ A to the actuators, hereafter termed
the action, the dynamics of the system will be modified and the goal is to find
the action which makes the physical system at hand satisfy the control objective,
say, a target dynamics. The discretized description of the system with the hash
function naturally lends itself to a Markovian framework, [25,26], which is adopted
below.

3.1 Markov Decision Process

Let p (i, l, j) be the probability of transition from a state s(i) ∈ S to s(j) ∈ S
under an action a(l) ∈ A, A :=

{
a(l) ∈ R, l ∈ IA := [1, na] ⊂ N

}
being a uni-

formly discretized space of possible control actions. Here again, the analysis is
restricted to one actuator but generalization to more actuators is immediate.

Actions
{
a(l)
}na

l=1
index the discrete commands available to the controller. De-

fine S :=
{
s(i), i ∈ IS := [1, nkey] ⊂ N

}
and sk ≡ s (tk := k∆t). Similarly, ak ≡

a (tk). To each transition-action (i→ j, l) is associated a transition reward (TR)

1 Two vectors y1 and y2 are associated with two different keys if their L2-norms differ by
more than w/|cos (∠ (v, y1 − y2))|, hence the minimal length w of the cells.
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R
(
s(i), a(l), s(j)

)
2. The goal of the control strategy is hence to identify the opti-

mal policy π : S → A, which describes the best action to apply when in a given
state so as to maximize the value, V πi , defined as the sum of the future expected
rewards of the policy when starting at state s(i):

V πi := lim
K→∞

E

[
K∑
k=1

γk−1R (sk, π (sk) , sk+1)

]
, s1 = s(i), (2)

where E [·] is the expectation operator over all possible sequences {sk}Kk=1 under
the policy π. Here, γ is the discount rate, 0 < γ < 1. By weakly accounting for
TRs occurring far in the future, the discounted rate effectively introduces a time
horizon. The values express the expectation of the cumulative TRs of a given
policy. Eq. (2) may be reformulated as, [15]:

V πi = Rπi + γ
∑
j∈S

p(i, π
(
s(i)
)
, j)V πj , (3)

where Rπi := E
[
R
(
sk = s(i), π (sk) , sk+1

)]
is the mean TR in state sk = s(i)

under the policy π. This corresponds to the celebrated Bellman equation, [27],
written in the discrete settings.

3.2 Identification of the rewards

The transition rewards are unknown a priori and depend on the control objective.
As perhaps more familiar to the reader, one could define the cost as the opposite
of the reward. Consequently, to learn relevant rewards, consider the cost function
J associated with the control objective:

J (tn) :=
∞∑
k=0

γk
(
C (tn+k+1) + ρ |a (tn+k)|2

)
, (4)

with C the measure of performance, e.g., the drag coefficient in the included ex-
ample. The contribution of the control intensity |a|2 to the cost with respect to
the measure of performance C is weighted by ρ > 0.

Let the immediate rewards Rimm (sn, an, sn+1) represent, at any given time
tn, the negative of the contribution to the cost J (tn) of the transition from the
present state sn ≡ s (tn) to state sn+1, under an action an ≡ a (tn):

Rimm (sn, an, sn+1) := −
(
C (tn+1) + ρ |a (tn)|2

)
. (5)

Rimm is then high when the performance associated with the controlled system
is good, and low otherwise. Instead of the reward associated with a particular tra-
jectory in the original, infinite-dimensional, phase space, the average, trajectory-
independent, reward associated with all trajectories leading to a given transition
(sn → sn+1, an) should be determined. The ergodicity assumption postulates the

2 We use a slight abuse of notation as we consider R
(
s(i), a(l), s(j)

)
≡ R (i, l, j) and

p
(
i, a(l), j

)
≡ p (i, l, j). Both R and p are nkey × na × nkey three-way tensors.
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equivalence of a temporal and an ensemble average, i.e., here lim
K→∞

K−1
K−1∑
k=0

f (sk) = E [f (s)].

Under this assumption, the mean transition rewards, in the sense of the probability
distribution of Rimm, are finally determined during the learning stage via:

R (sn, an, sn+1)← (1− αn) R (sn, an, sn+1)︸ ︷︷ ︸
old value

+αnRimm (sn, an, sn+1) , (6)

with αn > 0 the learning rate. For the TRs to be associated with the average
contribution to the cost function of the transition-action (sn → sn+1, an), the

learning rate is set to αn = 1/N (i,l,j), where N (i,l,j) ∈ N corresponds to the

number of times the transition-action
(
s(i) → s(j), a(l)

)
has occurred so far during

the learning process.

3.3 Reinforcement learning

To derive a control strategy, one needs to determine a policy which would give the
best control action given the current state of the system, as known through the
hash function. The rewards associated with an action when in a given state have
been learned and this information is now used to derive a control policy to drive
the system along transitions and actions associated with the largest rewards.

When the probabilities of transition from a state to another are known, the
policy may be identified by means of a dynamic programming algorithm, [27,
15]. However, the distribution of transition probabilities and values {V πi }i∈IS are
difficult to reliably evaluate since neither the control policy nor the transition
probabilities are stationary during the learning stage. In this situation, Reinforce-
ment Learning is a suitable class of methods for the control of Markov processes,
[16,28,29].

Among these methods, the Q-learning approach consists in relying on the
estimation of the Q-factors, or action-values, Qπ which evaluate the expected
reward of a state-action combination:

Qπ (i, l) :=
〈
Ri
(
a(l)
)〉

+ γ
∑
j∈S

p(i, π (i) , j)V πj , (7)

where
〈
Ri
(
a(l)
)〉

:= E
[
R
(
sk = s(i), a(l), sk+1

)]
is the empirical mean TR as-

sociated with applying the action a(l) when in the state s(i). From Eq. (3), the
action-value is hence the expected average reward of applying a(l) while in state
s(i) and subsequently following the policy π.

As stated previously, the transition probabilities can not be accurately esti-
mated. However, an iterative estimation of the Q-factors can be derived, [16,29,
17]. Letting the initial Q-factors be given, the Q-factor associated with a state s(i)

and an action a(l) can be updated at time tn as follows:
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Qπ (i, l) ← Qπ (i, l)︸ ︷︷ ︸
old value

+αn∆Q
π, (8)

∆Qπ :=

R(sn = s(i), a(l), sn+1

)
+ γ max

l̃∈IA
Qπ
(
i, l̃
)

︸ ︷︷ ︸
“best” value

−Qπ (i, l)︸ ︷︷ ︸
old value

 ,

where αn > 0 is a learning factor. It can be shown that Qπ converges to the true
Q-factors when n → ∞ if the following conditions hold, [16]: i) the TRs R are

bounded, ii) 0 < αn < 1, ∀n ∈ N, iii)
∞∑
n=1

αn →∞ and iv)
∞∑
n=1

(αn)2 <∞.

The action-value Qπ (i, l) will increase when the reward associated with the 2-

tuple
(
s(i), a(l)

)
is good, i.e., such that ∆Qπ > 0, and decrease otherwise. To learn

a good policy, the system in different states is stimulated with different actions to
estimate the Q-factors. The control policy is the action which, for each state, is
associated with the largest Q-factor, [16,29].

3.4 Robustness

A critical property of any realistic and practically useful control strategy is its
resilience with respect to unpredictable events. These events encompass exoge-
nous/external perturbations to the flow, sensor noise, actuator noise, etc. A control
strategy robust to these perturbations is passive and brings the flow back to its
nominal controlled state after the perturbation is gone. As will be demonstrated
in the application example below, see section 4.2.3, the present strategy is robust
thanks to two properties:

First, the state of the system, as estimated via the LSH, is discrete. The locality
sensitivity property of LSHs implies that a small perturbation ε of the measure-
ment vector y will likely result in the same key as the unperturbed measurement,
hv,w (y + ε) = hv,w (y). More precisely, the state estimation is strictly robust to

any perturbation of energy ‖ε‖2 with probability

nv∏
l=1

max
[
0, 1− ‖ε‖2 |cos (∠ (ε, vl))|/w

]
.

Second, the proposed method is also robust against perturbations of the flow
dynamics. The learning of the control strategy relies on an ensemble average of
rewards and Q-factors and then results in an optimal control policy in the ensemble
mean-sense. Hence robustness against noise.
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4 Results

4.1 Dynamical system

To illustrate the methodology discussed above, we now consider the Lorenz 63
system [30], defined by the following equations:

dX1

dt = σ (X2 −X1) + fX1
(X, t)

dX2

dt = X1 (r −X3)−X2 + fX2
(X, t)

dX3

dt = X1 ×X2 − bX3 + fX3
(X, t) ,

(9)

with the common parameters (σ, r, b) = (10, 20, 8/3). A chaotic attractor defines
the dynamics, structured as two “wings” around two fixed points of the sys-
tem. The state vector evolves on a wing, turning around a fixed point, before
eventually jumping to the other wing. fXi

is the action on the component i of
X := (X1 X2 X3). The chosen control objective is to remain on the “left” wing,
X1 ≤ 0. The measure of the performance is given as the distance between the
state vector and the left fixed point X? of the system, C := ‖X −X?‖2, with

X? :=
(
−
√
b (r − 1),−

√
b (r − 1), r − 1

)
.

The observable y is constructed from the time series {y (t− n∆t)}ne−1
n=0 of X2,

sampled every ∆t = 0.025 time units. In this illustration, only fX1
is different from

zero so that the Lorenz system is controlled only through the time-derivative dX1/
dt of the first component of its state vector. It mimics a realistic scenario, where
sensors and actuators are distinct. Actuation values lie between [−26, 26] with a
discretization step of 4. This leads to na = 14 different actuations to control the
system. The cost function to minimize is given by Eq. (4) and the control command
is penalized with ρ = 0.1.

The embedding dimension is set to ne = 8. The first three singular vectors of
a ne ×N Hankel matrix, built on N = 500 measures {y (t− n∆t)}N−1

n=0 , are used
as the nv = 3 test vectors {vl}nv

l=1 of the LSHs. The quantization length is set to
w = 45 and leads to a cardinality of the set of keys of nkey = 14.

Once the test vectors are determined from the Hankel matrix, the states are
to be identified via the LSHs, see Fig. 2(a). It is hence possible to infer both the
dynamics of the system from the state transitions and the rewards associated with
the objective. The mean transition probabilities from one state to another, after
five time increments in order to improve visualization, are plotted in Fig. 2(b). As
expected for the Lorenz system, the dynamics are seen to be driven by two main
cycles, see Fig. 4. There are two statistically dominant sequences of transitions
cycling around all states between 1 (resp. 5) and 4 (resp. 8), corresponding to the
right (resp. left) wing of the Lorenz attractor. States 9 to 11 and 12 to 14 represent
sub-transitions from a main cluster to another one.

From the observations of the system, one learns the nkey × na × nkey ' 2100
transition rewards matrix R and the nkey×na ' 150 Q-factors matrix Q by repeat-
edly applying Eq. (6) and Eq. (9). The transition matrix is sparse, see Fig. 2(b),
and many transitions hence hardly ever occur. Thus, the learned TRs and the Q-
factors matrices are also sparse, see Fig. 2(c) and Fig. 2(d). The difference between
one wing and the other is clearly discernible in the rewards, the first block being
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Fig. 2 (a): Identified clusters (color-coded) for the Lorenz 63 system. (b): Mean state tran-
sition probabilities. The transition matrix has been iterated five times for readability. (c):
Transition rewards associated with a state transition, for the NULL command. The TRs have
been rescaled between −2 and 2 and the colormap saturated, in order to improve readability.
(d): Q-factors.
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Fig. 3 Uncontrolled Lorenz system in dashed black. Controlled response in solid red. The
identified strategy is applied at time t = 15. (a): State phase. (b): X1 component.

associated with negative rewards while the second block is associated with positive
rewards. By construction of the rewards, the use of a strong (expensive) command
is also discouraged, as can be seen in the Q-factors, Fig. 2(d). The identified control
strategy succeeds in staying on the left wing, see Fig. 3.
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Fig. 4 Transitions between clusters for the Lorenz system. Only the first two most probable
transitions are represented. The dark red arrows represent the most probable transitions from
one cluster to another, while the pale red represents the second most probable transitions.

4.2 Two-dimensional numerical flow

To further illustrate the methodology discussed above, consider a 2-D laminar flow
around a circular cylinder, in two situations: a fixed, or random in time angle of
the incoming flow.

4.2.1 Configuration of the test case

The considered Reynolds number of the flow is Re = 200 based on the cylinder
diameter and the upstream flow velocity. Details of the simulation can be found in
[31]. The observable y is constructed from the time series {y (t− n∆t)}ne−1

n=0 of a
single pressure sensor, sampled every ∆t = 0.75 time units. This sensor is located
on the cylinder surface at an angle of 160 degrees from the upstream stagnation
point when the angle is fixed. In this case, the pressure signal oscillates with a
period of about 9 time units and half as much for the drag.

Actuation, i.e., control of the flow is achieved via blowing or suction through
the whole cylinder surface. Actuation values lie within [−0.2, 0.02], with a dis-
cretization step of 0.02, ranging from suction to blowing. It leads to na = 12
different actuations to control the system. The cost function to minimize is given
in Eq. (4), with ρ = 23. It corresponds to the drag (C is the drag coefficient)
induced by the cylinder penalized with the intensity of the command. The penalty
ρ was chosen so that the resulting command remains within the operating range
of the actuator. The embedding dimension is set to ne = 14. The first five singular
vectors of a ne×N Hankel matrix, built on N = 500 measures {y (t− n∆t)}N−1

n=0 ,
are used as the nv = 5 test vectors {vl}nv

l=1 of the LSHs. The quantization length
is set to w = 50 and leads to a cardinality of the set of keys of nkey = 15.

Two situations are considered to illustrate the proposed control algorithm.
First, the incident angle of the incoming flow is kept constant at its zero nominal
value, Sec. 4.2.2. Alternatively, in Sec. 4.2.3, the angle is a random process, smooth
in time, whose realizations range from -20 to 20 degrees around the nominal value
with a uniform probability distribution, see Fig. 5(b).
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Fig. 5 (a): Transition rewards associated to the transition 3 → 4, with respect to the com-
mand. The TRs have been rescaled between −2 and 2. The drawings illustrate the actuation
(suction or blowing). (b): Time-evolution of the incident angle of the incoming flow, for the
noiseless (red) and noisy (black) case.

4.2.2 Noiseless case: nominal incidence

Once the test vectors are determined from the Hankel matrix, and the states are
identified via h, it is possible to infer the dynamics of the system and the associated

rewards. The learned transition reward R
(

3, a(l), 4
)

is plotted in Fig. 5(a). It

clearly exhibits a maximum which corresponds to the best compromise between a
sufficient decrease of C while a reasonable increase of |a|2. The estimated transition
probabilities from one state to another are plotted in Fig. 6(a). In the present case,
the dynamics are seen to be rather periodic, with a statistically dominant sequence
of transitions cycling around all states between 1 and 8, see Fig. 7. Other states are
“transient” states between two stages of the main cycle. For instance, a transition
from state 1 to state 16 can occur with a low probability but the next transition
will be to state 2 (or, less likely, state 3). Further analysis of the transition matrix
can give more insights into the dynamics and on the relevance of other sequences,
e.g., via stability analysis, [14], symbolic dynamics based on keys, [32], or the
Kullback-Leibler entropy, [14].

From the observations of the system, one learns the nkey × na × nkey ' 2700
transition rewards matrix R and the nkey × na ' 180 Q-factors matrix Q by
repeatedly applying Eq. (6) and Eq. (9). As in the Lorenz system case (see above
in Sec. 4.1), the transition matrix is sparse, as can be appreciated from Fig. 6(a),
and many transitions hence hardly ever occur. Thus, the learned TRs and the
Q-factors matrices are also sparse, see Fig. 6(b) and Fig. 6(c).

The performance of the control strategy is assessed in terms of the performance
indicator η defined as the difference between the time-averaged cost 〈J 〉 := 〈J (t)〉t
and the time-averaged cost with a NULL strategy (a = 0), 〈JNULL〉. The perfor-
mance indicator is scaled with the difference between 〈JNULL〉 and the cost 〈JORA〉
of an optimal time-invariant control strategy:

η := (〈JNULL〉 − 〈J 〉) / (〈JNULL〉 − 〈JORA〉) . (10)

The evolution of η as a function of the learning effort, defined as the number
N of measurements during the learning phase, is plotted in Fig. 8(a). The per-
formance indicator increases with the amount of learning for computing the TRs,
but quickly reaches a plateau. The TR matrix being sparse, the information of
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Fig. 6 (a): Mean state transition probabilities. (b): Transition rewards associated with a state
transition, for the NULL command. The TRs have been rescaled between −2 and 2 and the
colormap saturated, in order to improve readability. (c): Q-factors.
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Fig. 7 Transitions between clusters for the cylinder flow. Only the first two most probable
transitions are represented. The dark red arrows represent the most probable transitions from
a cluster to another one, while the pale red represents the second most probable transitions.

the learning stage focuses onto a limited number of unknowns and the Q-factors
quickly converge.

As expected, the values {V πi }i∈IS , computed with the learned policies are
larger than the values computed with the ORA policy, on average, see Tab. 1.

Policy NULL ORA Present strategy
Average value 〈V π〉 -15.8 9.5 13.2

Table 1 Average expected value 〈V π〉 := Ei∈IS
[
V πi

]
associated with the NULL, ORA and

present strategy policies. The learning effort for the rewards (resp. the Q-factors) was 10000.

The resulting control command is plotted in Fig. 8(b) and is seen to exhibit an
oscillatory behavior. The associated drag coefficient of the cylinder flow is plotted
in Fig. 8(c) for the present approach as well the NULL and the ORA strategy. The
identified control is seen to perform well. The drag coefficient for the identified
control resembles the one given by the ORA control.

To illustrate the impact of the control on the system, the time-averaged pres-
sure field around the cylinder is plotted in Fig. 9, both with and without control.
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Fig. 8 Illustration of the control policy. (a): Performance indicator with respect to the learning
effort of the transition rewards matrix R. Colors (from blue to red) encode different efforts in
learning Q. (b): Actuation as a function of time, a(t). (c): Time-evolution of the drag coefficient
under three different control policies: zero command (NULL, black), ORA strategy (blue), and
the optimal policy from the present approach (red).

When control is applied, the pressure difference between the upstream stagnation
point and the rear cylinder vicinity is significantly reduced. Further insights about
the control effect can be gained by examining Fig. 10 where the time-averaged
streamlines are plotted. With control, i.e., with a negative normal velocity at the
cylinder surface, small recirculation bubbles significantly weaken, or even vanish,
and the separation of the boundary layer from the cylinder surface is postponed
further downstream, reducing the effective width of the wake. The length Lr of
the recirculation bubble drops from Lr = 1.11 in the case of the NULL command
(no control), see Fig. 9(a), to Lr = 0.95 when the command identified by the
present control approach is applied, see Fig. 9(b). The length of the recirculation
bubble is hence reduced by 15%. Suction at the cylinder surface tends to slightly
increase the viscous drag (thinner boundary layers with larger velocity gradients)
but significantly decreases the width of the wake and the pressure defect at the
back of the cylinder, producing a lower drag.

4.2.3 Measurements with noise

To investigate the robustness of our control strategy, the angle of the incident flow
is made to vary randomly between −20 and 20 degrees around its nominal value
with a uniform probability distribution and a smooth time-evolution, see Fig. 5(b)
for a typical realization. This mimics a typical class of perturbations to the system
at hand and allows the determination of the robustness of the control strategy.

As in the noiseless case considered in Sec. 4.2.2 above, the transition probabil-
ity, rewards and Q-factors matrices are all sparse (not shown for sake of brevity).
The performance indicator η of the derived policy is depicted in Fig. 11(a). In con-
trast with the noiseless case, η is here strongly dependent on the effort in learning.
At early stages of the learning process, the influence of the noise is prominent and
the dynamics are not properly captured, which ultimately leads to poor control
strategies.

Similarly as in Sec. 4.2.2, the values {V πi }i∈IS , computed from the identi-
fied strategy, are larger, on average, than the values from the ORA policy, see
Tab. 2. This result indicates that the present approach is able to uncover an ef-
ficient control strategy, here achieving a significantly lower cost than an optimal
time-invariant control strategy, even in a noisy environment. The resulting control
command is plotted in Fig. 11(b) and is seen to exhibit an oscillatory behavior.
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Fig. 9 Mean pressure field. (a): for the NULL command. (b): for the present identified control
strategy. Note that only a part of the computational domain is plotted.

Policy NULL ORA Present strategy
Average value 〈V π〉 -6.8 3.0 8.0

Table 2 Average expected value 〈V π〉 := Ei∈IS
[
V πi

]
associated with the NULL, ORA and

present strategy policies. The learning effort for the rewards (resp. the Q-factors) was 10000.

The associated drag coefficient of the cylinder flow is plotted in Fig. 11(c) for the
present approach as well the NULL and the ORA strategy. Again, the identified
control is seen to perform well and resembles that given by ORA.

5 Concluding remarks

This work has presented an experiment-oriented control strategy which does not
require any prior knowledge of the physical system to be controlled nor significant
computational resources. This strategy allows the learning of a control policy from
scarce and point sensors with very limited information on the system at hand. From
the sensors’ streaming data, a phase space is built using hash functions as a kernel
the measurements are convoluted with in real-time. This allows the derivation
of a discrete, low-dimensional, space in which the dynamics of the system are
approximated. Ensemble-averaged rewards associated with transitions from one
discrete state to another are estimated during an online learning sequence. They
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Fig. 10 Vorticity field and streamlines for the mean field. (a): for the NULL command. (b):
for the present identified control strategy. Note that only a part of the computational domain
is plotted. Colors encode the sign of the vorticity.
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Fig. 11 Illustration of the control policy. (a): Performance indicator with respect to the
learning effort of the transition rewards matrix R. Colors (from blue to red) encode different
efforts in learning Q. (b): Actuation as a function of time, a(t). (c): Time-evolution of the drag
coefficient under three different control policies: zero command (NULL, black), ORA strategy
(blue), and the optimal policy from the present approach (red).

are directly related to the control objective and tend to sort state transitions based
on their impact on the control cost function. A reinforcement learning algorithm
is then used to derive the optimal control policy, promoting transitions associated
with good rewards.

The resulting method is compliant with actual configurations where instru-
mentation is limited and spatially-constrained. Owing to the use of kernel hash
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functions and effective state-aggregation in a discrete phase space, the method runs
in real-time and allows closed-loop control. Its discrete and ensemble-averaged na-
ture also brings intrinsic robustness against perturbations in the flow.

This approach has been illustrated on two test cases. The control of a Lorenz
system is achieved, by measuring only one component. To mimic a realistic sce-
nario, the actuation is done on a different component. The method is also illus-
trated by the two-dimensional flow around a circular cylinder. Measurements were
provided by a single wall-mounted pressure sensor and actuation was achieved by
blowing or suction of fluid at the cylinder surface. The drag coefficient was signif-
icantly reduced, reaching essentially the same performance as the control policy
given by the ORA strategy.

More generally, the method presented in this work is readily applicable to
physical systems with a causal link between the actuators and the cost functional
as evaluated from the sensors. It does not rely on a prior model and instead
learns directly from observing the system under stimulation by the actuators,
hence being suitable for practical configurations. An identified limitation of the
proposed approach is the number of keys one needs to consider if the relevant
dynamics of the system is very rich (large nkey) and/or a very fine control law is
required (large na). In this situation, the number of entries of the Q matrix grows
and hence possibly requires more data for learning. Approximation techniques
have however been used to alleviate this limitation [33].

Current efforts concern the experimental control of the turbulent flow over an
open cavity using the present approach and will be the subject of a subsequent
publication. Further developments focus on the convolution kernels, an improved
evaluation of suitable rewards and milder assumptions for the reinforcement learn-
ing of the control policy.
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