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Towards sparse characterisation of on-body ultra-wideband wireless channels
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With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body
ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered
by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling
devices.
1. Introduction: Body-centric wireless communications (BCWC)
will be a focal point for future communications from an
end-to-end user’s perspective [1]. Ultra-wideband (UWB)
communication is a low-power, high-data-rate technology with
large bandwidth signals that provide robustness to jamming and
have a low probability of detection [2]. For BCWC, long battery
life is necessary; therefore, UWB, which has low power
transmission characteristics, is a good candidate for BCWC. An
understanding of the radio propagation environment is critical for
designing UWB transceivers. Therefore, UWB channel
modelling, which plays a key role in understanding the
propagation environment [3–5], has caused extensive concern.
For BCWC, a UWB radio channel is typically measured in two
ways: frequency domain using a frequency sweep technique and
time domain using a narrowband pulse [6]. Both of these
methods have their specific advantages and disadvantages;
however, the issue regarding channel estimation for BCWC has
been focused on intensively and extensively. For frequency
domain technique, high-end vector network analyser (VNA) is
necessary to guarantee measurement accuracy and range. On the
other hand, in the time domain UWB system, a high-rate
analogue-to-digital converter (ADC), which is very expensive and
power consuming, is an important device for ensuring the normal
running of systems. All these factors drive researchers to further
study the UWB channel estimation technique for BCWC.

For on-body UWB communications, it has been demonstrated
that most of the energy is received via the direct path, with some
multipath reflections at a later time [7–9]; this indicates that the
delay spread is very large and the number of paths is small. Such
kind of propagation characteristic provides us the prerequisite for
estimating the UWB on-body channel using the new approach
since the channel has the property of sparsity. By solving the
l1-regularised problem presented in [10], the impulse response of
the channel can be obtained. The solving process is based on the
compressive sensing (CS) framework originally proposed by
Candes et al. [11]. With the success of sparse UWB channel estima-
tion for on-body scenario, the cost of measurement is significantly
reduced; thus, the UWB channel measurement idea for BCWC is
further updated.

The paper is organised as follows. Section 2 gives a brief intro-
duction of CS; Section 3 accomplishes the sparse UWB on-body
channel estimation using the CS framework; Section 4 draws
some conclusions from the study.
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2. Basics of CS framework: Generally, to recover a signal, the
sampling rate must be twice the maximum frequency present in
the signal [12]. Candes et al. [11] pioneered a new theory of
sampling; under his theory, Shannon’s theorem was surpassed
and proven that it does not apply in all cases. In this section, CS
is briefly introduced according to his framework. Suppose
discrete time signal x∈ RN×1 can be expressed using an
orthonormal basis Ψ = [ψ1, ψ2, …, ψN], which can be written as

x =
∑N

i=1

ciui (1)

where θ is a vector with many zero components. Writing it using
matrix notation, we obtain

x = Cu (2)

The precondition for applying compressive sampling reconstruction
process is that the signal x should be sparse for the basis Ψ.

Suppose the sparsity of the vector is K (K≪N ), the signal x can
also be written as

x =
∑K

k=1

cik
uik (3)

where uik are coefficients. According to Candes’ theory, the sam-
pling rate can be reduced to sub-Nyquist rate. For signal x, we
can find its M linear measurements

s = Fx, F [ RM×N (4)

Here, each line of Φ can be seen as a sensor, and by multiplying it
with the signal, a part of information of the signal is collected. With
M measurements and Φ, we can reconstruct the original signal. In
short, the basic framework of the compressive sampling is

s = Fx = FCu (5)

where Φ is an M × N measurement matrix (M≪ N ), Ψ is an N × N
matrix, θ is a vector with K non-zero components in the basisΨ and
s is the measurement signal. The near-perfect reconstruction is
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Figure 2 Output of ADC
based on the strict l1 optimisation problem presented in the follow-
ing equation:

min
u∗[RM

u∗
∥∥ ∥∥

l1
s.t. s = FCu∗ (6)

Kim et al. [10] developed an interior-point l1 reconstruction
algorithm; in this Letter, we used the algorithm presented in [10]
to recover the signal.

3. Sparse on-body UWB channel estimation using CS
framework: In recent years, some works have been done on the
system-level modelling for UWB BCWC [8, 13]; in [8], the
authors tried to investigate the effects of on-body channels on
UWB systems using different pulse modulation techniques. On
the basis of the idea shown in [8], the novel on-body UWB
channel estimation approach is actually an inverse problem. We
try to explore the way of predicting UWB BCWC channels
without performing experimental measurement campaigns. It is
noted that a prerequisite for applying the CS framework is that
the impulse response of the BCWC UWB channel is sparse. On
the basis of the literature review, UWB channels for on-body
scenario meet the sparse characteristics. For on-body UWB
communications, it has been demonstrated that most of the
energy is received via the direct path, with some multipath
reflections at a later time [7–9]; this indicates that the delay
spread is very large and the number of paths is quite small. Such
kind of propagation characteristics lead to the sparsity of the
impulse response of the channel, which is essential for the
on-body UWB channel characterisation. The objective of this
work is to recover the sparse impulse response of the on-body
UWB channel by applying the similarity between the
communication process and the CS framework.
At the transmitting terminal of the UWB system, the signal is

composed of a pulse sequence. The duration for each pulse is
very short; the mathematical expression for the transmitting signal
is [14]

s(t) = d(t)⊗ p(t) t [ 0, Ts
[ )

(7)

where Ts is the transmitting interval, p(t) is the monopulse and d(t)
is the pulse excitation. The excitation signal can be modelled as
d(t) = ∑N

i=1 did(t − ti), and {di, ti} represents the magnitude and
phase of the ith pulse, respectively. We decompose the problem
of sparse on-body UWB channel estimation into two parts:
without on-body channel and with on-body channel. In the first
part, it is assumed that the channel is ideal.

3.1. Part 1: Binary sequence reconstruction using compressive
sampling UWB system without considering radio channels: In
[15], acquiring and reconstructing signals can be achieved by
Figure 1 Random sparse signal for the CS framework
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using a fixed finite impulse response (FIR) filter-based system; it
is found that the FIR filter-based system can be modelled as a CS
framework. By considering the convolution operation and the
FIR filter in the UWB system, the problem can also be likened to
a basic CS framework.

Considering an FIR filter h with length B, we use x to denote the
signal, which is about to enter the filter and s to denote the signal
after the ADC. It is noted that the symbols used here consist of
the symbols presented in Section 2. In mathematics, FIR filter
and ADC are modelled as the convolution between h and x:

s = h× x (8)

Comparing (8) with (4), we can obtain the measurement matrix Φ.
In addition, (8) should be associated with (5) to match the basic CS
framework; therefore, x is decomposed into the product of an
orthonormal basis Ψ and sparse vector θ. In the system, θ is a
random sparse binary sequence while Ψ is a Gauss wave sequence.
Figs. 1–3 present the basic variables in the CS framework. In Fig. 1,
sparsity-inspired random signal is given, which also represents vari-
able x in the basic CS framework. The frequency for the binary se-
quence is 5 GHz; therefore the interval between two Gaussian
pulses is ΔT = 2 × 10−10 s. On the other hand, the minimal time
interval used in the simulation is set to ΔT/500 to achieve the
discretisation of successive time. In addition, the width of
the Gauss wave is σ = ΔT/10. Fig. 2 shows the output signal of
ADC in the UWB communication system. However, one should
note that the time interval has changed to 4 × 10−8 s, which corre-
sponds to the period of low-speed sampling. It is noted that the
magnitudes are accumulated; this is due to the integral effect for
every UWB communication. In Fig. 3, l1 reconstruction algorithm
was used to reconstruct the transmitted binary sequences; it can
be seen that the recovered signals match the original signals very
well, demonstrating the effectiveness of the reconstruction.
Figure 3 Comparison between transmitted binary sequences and recovered
ones
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Figure 7 Comparison between the real sparse body-surface IR and the
recovered sparse body-surface IR

Figure 8 Comparison of signal-to-noise ratio for perfect and imperfect
on-body UWB channels

Figure 4 Random binary information

Figure 5 Sparse body-surface UWB channel impulse response
3.2. Part 2: Body-surface UWB sparse IR reconstruction
considering channel effect: Figs. 4–7 present the IR
reconstruction process for on-body UWB channel. It is clear in
Fig. 7 that the recovered sparse on-body IR is very close to the
original sparse IR, demonstrating the feasibility of sparse on-body
IR reconstruction using the CS framework. To obtain the typical
on-body impulse response, tapered slot antennas (TSAs) were
used [16]. The antenna has good performance (e.g. VSWR,
radiation pattern, gain etc.) over the whole UWB range and has
been demonstrated to be a very good electromagnetic transceiver
for on-body wireless communications. The frequency domain
measurement technique was used in the whole measurement
process. Two TSAs were connected to a Hewlett Packard 8720ES
VNA first; then, they were fixed to the body surface to measure
the on-body frequency domain transmission response. The
frequency range during the measurement is 3–10 GHz [7]. Then,
by adopting inverse discrete Fourier transform, the UWB on-body
channel impulse response can be obtained. It should be noted that
in the transform process, the sampling rate is 1601 and the
sampling time is 50 ps. The measurement took place in the
Figure 6 Signals at the receiving terminal
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wireless sensor laboratory at Queen Mary, University of London.
The laboratory is analogous to the typical wireless body area
networks propagation environment. When compared with the free
space IR, it is normal to see the distortion in the on-body IR.
Such kind of distortion is mainly due to the absorption and
reflection by the human body. It is noted in Fig. 8 that the error
rate of perfect on-body UWB channel estimation and imperfect
channel estimation are similar; it is worth noting that, for
imperfect channel, the error rate becomes 0 when the SNR is
more than 80 dB.

4. Conclusion: In this Letter, sparse UWB on-body channel
impulse response estimation was achieved using the CS
framework which has been found very attractive in many other
research fields [17–20]. This channel estimation approach is of
important significance to BCWC [21]. Users are sensitive to the
prime cost and power consumption of terminal devices (e.g. cell
phone, tablet etc.); these problems can be safely solved via using
low-speed sampling devices at the receiving terminals. Once
these low-speed sampling devices are used, it is necessary to apply
the CS framework to the channel estimation module [22, 23]. It
should be noted that the channel estimation approach presented in
this Letter can be extended to other propagation environments as
well.
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