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Genome-wide association analyses of chronotype
in 697,828 individuals provides insights into
circadian rhythms
Samuel E. Jones 1, Jacqueline M. Lane2,3,4, Andrew R. Wood1, Vincent T. van Hees 5, Jessica Tyrrell1,

Robin N. Beaumont 1, Aaron R. Jeffries 1, Hassan S. Dashti 2,4, Melvyn Hillsdon6, Katherine S. Ruth 1,

Marcus A. Tuke 1, Hanieh Yaghootkar1, Seth A. Sharp1, Yingjie Jie1, William D. Thompson1,

Jamie W. Harrison 1, Amy Dawes1, Enda M. Byrne 7, Henning Tiemeier8,9, Karla V. Allebrandt10,

Jack Bowden11,12, David W. Ray 13,14, Rachel M. Freathy1, Anna Murray1, Diego R. Mazzotti15,

Philip R. Gehrman16, 23andMe Research Team, Debbie A. Lawlor 11,12, Timothy M. Frayling1,

Martin K. Rutter13,14,17, David A. Hinds 18, Richa Saxena 2,3,19 & Michael N. Weedon1

Being a morning person is a behavioural indicator of a person’s underlying circadian rhythm.

Using genome-wide data from 697,828 UK Biobank and 23andMe participants we increase

the number of genetic loci associated with being a morning person from 24 to 351. Using data

from 85,760 individuals with activity-monitor derived measures of sleep timing we find that

the chronotype loci associate with sleep timing: the mean sleep timing of the 5% of indivi-

duals carrying the most morningness alleles is 25 min earlier than the 5% carrying the fewest.

The loci are enriched for genes involved in circadian regulation, cAMP, glutamate and insulin

signalling pathways, and those expressed in the retina, hindbrain, hypothalamus, and pitui-

tary. Using Mendelian Randomisation, we show that being a morning person is causally

associated with better mental health but does not affect BMI or risk of Type 2 diabetes. This

study offers insights into circadian biology and its links to disease in humans.
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Circadian rhythms are fundamental cyclical processes that
occur in most living organisms, including humans. These
daily cycles affect a wide range of molecular and beha-

vioural processes, such as hormone levels, core body temperature
and sleep–wake patterns1. Chronotype, often referred to as cir-
cadian preference, describes an individual’s proclivity for earlier
or later sleep timing and is a physical and behavioural manifes-
tation of the coupling between internal circadian cycles and the
need for sleep, driven by sleep homoeostasis. Significant natural
variation exists amongst the human population with chronotype
typically measured on a continuous scale2, though individuals are
often separated into morning people (or “larks”) who prefer going
to bed and waking earlier, evening people (or “owls”) who prefer
a later bedtime and later rising time, and intermediates who lie
between the two extremes3,4. Age and gender as well as envir-
onmental light levels explain a substantial proportion of variation
in chronotype, but genetic variation is also an important
contributor5–8.

There is evidence that alterations to circadian timing are linked
to disease development, particularly metabolic and psychiatric
disorders9,10. Animal model studies have shown that mutations in,
and altered expression of, key circadian rhythm genes can cause
obesity, hyperglycaemia and defective beta-cell function leading to
diabetes11–13. In humans, there are many reported associations
between disrupted circadian rhythms and disease14,15, but the
evidence for a causal role of chronotype on disease is limited16.
For example, evening people have an increased frequency of
obesity17, Type 2 diabetes18 and depression19 independent of sleep
disturbance, and studies of shift workers show an increased risk of
diabetes, depression and other diseases20. However, these asso-
ciations could be explained by reverse causality (diseases affecting
sleep patterns or dictating job options) or confounding (common
risk factors influencing both chronotype and disease). Genetic
analyses identifying variants robustly associated with putative risk
factors, such as chronotype, can improve causal understanding by
providing genetic instruments for use in Mendelian Randomisa-
tion (MR) analyses21–23, which minimise the effect of both reverse
causality and bias caused by confounding. Identifying genetic
variants associated with chronotype and sleep timing will also
provide insights into the biological processes underlying circadian
rhythms and sleep homoeostasis.

Three previous genome-wide association studies (GWAS)24–26,
using a maximum of 128,286 individuals, identified a total of 24
independent variants associated with self-report chronotype. In
this study, we perform a GWAS meta-analysis of a substantially
expanded set of 697,828 individuals, including 248,098 partici-
pants from 23andMe Inc., a personal genetics company, and
449,734 participants from UK Biobank27,28. In addition to con-
firming an enrichment of circadian rhythm and brain expressed
genes at chronotype-associated loci and genetic correlation with
mental health disorders25,26, we identify 327 additional
chronotype-associated loci and demonstrate that the chronotype-
associated variants are associated with objective measures of sleep
timing, but not sleep duration or quality, in 85,760 UK Biobank
participants. By fine-mapping the genetic associations at all loci,
we identify 10 coding variants with a high likelihood of being the
causal variant, providing prospective targets for chronobiological
investigation and go on to show evidence of a causal link between
chronotype and mental health by MR.

Results
Meta-analysis identifies 351 loci associated with chronotype.
We performed a GWAS of self-report chronotype (phenotype
summarised in Table 1) using 11,977,111 imputed variants in
449,734 individuals of European-ancestry from the UK Biobank

and meta-analysed with summary statistics from a self-report
morningness GWAS using 11,947,421 variants in 248,098
European-ancestry 23andMe research participants. We identified
351 independent loci at P < 5 × 10−8, of which 258 reached P <
6 × 10−9, a correction for the significance threshold based on
permutation testing (Supplementary Methods). Of the 351 loci,
24 had been previously reported in earlier GWAS of
chronotype24–26 and 327 were novel associations. The primary
meta-analysis, based on sample size, and individual study results
are shown in Fig. 1 and Supplementary Data 1. Conditional
analysis identified 49 loci with multiple independent signals
(Supplementary Data 2). A sensitivity analysis was performed in
the UK Biobank data alone, excluding shift workers and those
either on medication or with disorders affecting sleep (see
the Methods section and Supplementary Methods for details).
Effect sizes were similar to those in the full UK Biobank GWAS
(Supplementary Data 1 and Supplementary Figure 1).

Known circadian genes amongst associated loci. Well-
documented circadian rhythm genes were among the most
strongly associated loci (Supplementary Data 1). These genes
included the previously reported loci containing RGS16, PER2, PER3,
PIGK/AK5, INADL, FBXL3, HCRTR2 and HTR624–26, and newly
associated loci containing known circadian rhythm genes PER1,
CRY1 and ARNTL (Supplementary Figure 2). At the PER3 locus, two
highly correlated low-frequency missense variants (rs150812083 and
rs139315125, minor allele frequency (MAF)= 0.5%), previously
reported to be a monogenic cause of familial advanced sleep phase
syndrome29, were associated with self-reported morningness (odds
ratio (OR)= 1.44 for minor allele; P= 2 × 10−38) but with a lower
magnitude of effect on sleep timing than expected in the activity-
monitor derived measures of chronotype, advancing sleep timing (as
measured by time of minimum activity) by only 8min (95% con-
fidence interval (CI): 4–13, P= 4.3 × 10−4) as opposed to the average
4.2 h reported in the previous study29.

Chronotype loci affect sleep timing but not quality or duration.
Self-report assessments of sleep and chronotype can be subject to
reporting bias30–33. To assess and quantify the effect of the genetic
associations on objective measures of sleep timing, duration and
quality, we tested the association of the chronotype-associated
variants with sleep estimates derived from the UK Biobank activity
monitor data. Derived phenotypes included sleep timing, effi-
ciency and duration. Timing was determined by timings of mid-
point of sleep, the least active 5 h of the day (L5 timing) and
midpoint of the most-active 10 h of the day (M10 timing). Sum-
mary statistics of these derived phenotypes and their associations
with self-report morningness are presented in Supplementary
Table 1, and their associations with the newly identified chron-
otype single nucleotide polymorphisms (SNPs) are provided in
Supplementary Data 3. To avoid inflation of associations due to
overlapping samples, we performed an additional GWAS meta-
analysis of self-reported morningness excluding all UK Biobank
individuals with activity monitor data. Of the 292 lead chronotype
variants reaching P < 5 × 10−8 from this meta-analysis that were
available in the UK Biobank imputed genotype data, 258 had a
consistent direction of effect for sleep midpoint (binomial test P=
3.8 × 10−44), 262 with L5 timing (binomial P= 9.3 × 10−48) and
260 with M10 timing (binomial P= 6.4 × 10−46). A genetic risk
score (GRS) of these 292 variants was associated with earlier sleep
midpoint, L5 timing and M10 timing (binomial P= 4 × 10−128,
P= 1 × 10−182 and P= 7 × 10−130, respectively). There was little
evidence of association between the chronotype GRS and the
activity monitor sleep phenotypes that estimate sleep duration and
fragmentation (Supplementary Table 2), indicating a specific effect
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of the chronotype SNPs on sleep timing and circadian metrics.
Limiting the analysis to the 109 lead variants identified from the
independent 23andMe GWAS gave similar results (Supplementary
Table 2). Using the activity-monitor derived estimates of sleeping
timing, the 5% of individuals carrying the most morningness
alleles at the 292 associated loci had L5 timing shifted earlier, on
average, by 25.1 min (95% CI: 22.5–27.6) compared to the 5%
carrying the fewest morningness alleles: a mean L5 time of 03:06
rather than 03:32. The data suggest that variants associated with
self-report chronotype strongly relate to an individual’s sleep
timing and therefore represent valid instruments for MR.

Loci enriched in circadian rhythm pathways and brain tissues.
To identify biological pathways and tissues enriched for genes at
the associated loci, we used MAGMA34, implemented as part of

the FUMA GWAS35 platform (Figs. 2 and 3, Supplementary
Data 4 and Supplementary Table 3). Because of the variety of
methods available and databases employed, and to allow better
comparisons with studies that have implemented other methods,
we also performed secondary gene-set and tissue enrichment
using the software packages PASCAL36, MAGENTA37 and
DEPICT38 (Supplementary Datas 5–7). We identified strong
enrichment in circadian rhythm and circadian clock pathways as
with previous morningness GWAS24–26. We also identified
multiple pathways that correspond to (central) nervous system
and brain development, components of neuronal cells such as
synapses, axons and dendrites, as well as neurogenesis. There was
clear enrichment in all types of brain tissue (Fig. 4, Supplemen-
tary Table 3 and Supplementary Data 8), in behavioural path-
ways, containing genes responsible for mediating behavioural
responses to internal and external stimuli, and in retinal tissue
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Table 1 Distribution and demographics of chronotype in the UK Biobank

Chronotype category Phenotype coding N Sex (% male) Age (SD) TDI BMI (S.D.)

Definitely morning 2 107,555 43.6 57.7 (7.7) −1.4 27.5 (4.8)
More morning than evening 1 144,731 43.9 57.0 (7.9) −1.7 27.1 (4.6)
Don’t know 0 46,538 57.1 56.8 (8.0) −1.43 27.3 (4.7)
More evening than morning −1 115,090 45 56.1 (8.2) −1.41 27.4 (4.8)
Definitely evening −2 35,818 46.8 55.3 (8.3) −1.05 27.9 (5.2)
All 449,732 45.7 56.8 (8.0) −1.47 27.4 (4.8)

Summary of sex, age, townsend deprivation index (TDI) and BMI by chronotype categories in European-ancestry individuals from the UK Biobank study. SD denotes standard deviation
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the dashed line marks the threshold of P= 6 × 10−9 identified through permutation testing. Lead variants are annotated with a diamond
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(Supplementary Data 8). The genes in the associated loci were
also enriched in multiple pathways relating to the regulation and
metabolism of cyclic nucleotides, such as cAMP and cGMP, as
well as pathways involved in G-protein signalling and activation.
The NMDA glutamate signalling pathway was also enriched
and MAGMA-mapped genes in this pathway include NRXN1
and RELN, which have been shown to influence risk of schizo-
phrenia39,40, but for which there is limited evidence of a role in
circadian rhythm regulation.

Fine-mapping identifies likely causal variants and genes. To
highlight putative causal variants and genes, we fine-mapped the
associated loci using FINEMAP41. FINEMAP uses a shotgun
stochastic search to identify the most plausible causal variant
configuration given the GWAS association statistics and local
linkage disequilibrium (LD) patterns and outputs the posterior
probabilities of each variant configuration being causal. Forty-two
loci had a single variant with a probability of >50% of being

causal (Supplementary Data 9). Annotation of these likely causal
variants identified ten coding variants. These include a low fre-
quency missense variant in RGS16 (MAF= 3%, morningness
OR= 1.26 for minor allele), previously associated with chron-
otype25 and the most strongly associated with morningness in
this study, and missense variants in the INADL, HCRTR2, PLCL1
and CLN5 genes, all four genes having been identified in previous
GWAS24,26. Fine-mapping also identified missense variants in
PCYOX1 and SKOR2, and a stop gain variant in the MADD gene,
as likely causal variants in these loci, highlighting further candi-
date genes for chronotype. The MADD stop gain variant
(rs35233100) has previously been associated with levels of
proinsulin42, suggesting a potential link between insulin secretion
and chronotype. To gain further insight into additional genes that
may play a role in determining chronotype, we annotated
the putative causal variants using the GTEx eQTL database
(Supplementary Data 9). There were 90 variants across 51 loci
that were eQTLs for one or more genes, with a total of 208
mapped genes. As an example, this included a putative causal
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Fig. 4MAGMA tissue expression analysis results. Per-tissue enrichment of expression of chronotype genes based on GTEx RNA-seq data for a 30 general
and b 53 specific tissue types
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variant in the promoter of FBXO3 which represents the strongest
eQTL for FBXO3. FBXO3 is in the ubiquitin-proteosome path-
way; protein (de)ubiquitination has been shown to be involved
with the degradation of several core clock genes43,44, influencing
the build-up up these proteins and the pace of the circadian
clock45,46. FBXO3 expression has been shown to be altered by
light treatment and to demonstrate rhythmic expression46.

SCN-enrichment analysis identifies plausible circadian genes.
The suprachiasmatic nucleus (SCN) is a small region of the brain,
consisting of around 20,000 neurons, that is integral to main-
taining circadian rhythms in humans and is a likely mechanism of
action for at least some of the associated genes and loci. Indeed,
the associated loci included many key mammal SCN clock genes
including PER1, PER2, PER3, CRY1, FBXL3 and ARNTL (Sup-
plementary Data 10). To identify additional genes important in
setting and modulating circadian rhythms in the SCN, we assessed
expression, enrichment and fluctuation of proximal or eQTL-
mapped genes using expression data from the mouse SCN. We
cross-referenced all mapped genes at the fine-mapped loci against
whether there was evidence for enrichment of expression in the
SCN compared to other brain tissue47,48 and whether the
genes demonstrated evidence of fluctuation in expression over the
24-h cycle47 (Supplementary Data 9). We also annotated the genes
against a set of 343 putative clock genes identified from RNAi
knockdown experiments a human cellular clock model49 (Sup-
plementary Data 9). Of the 22.5% of all genes tested that were
enriched in the SCN48, 28.0% of the 804 genes (mapped using
MAGMA and present in the enrichment analysis) were enriched
in the SCN, representing a significant excess (binomial P= 2 ×
10−4). As a negative control, we tested the enrichment of
MAGMA-mapped genes for several unrelated GWAS phenotypes,
finding no significant excess of SCN-enriched genes (all binomial
P > 0.05) (Supplementary Table 4). Similar enrichment was found
for those chronotype genes fluctuating in the SCN, but no sig-
nificant excess from the RNAi knockdown study. Enriched and
fluctuating genes from the fine-mapping efforts included known
circadian genes such as FBXL3 and putative genes such as LSM7
and VIP. LSM7 encodes core components of the spliceosomal
U6 small nuclear ribonucleoprotein complex for which some
previous studies have suggested a role in circadian timing49,50. VIP
encodes a vasoactive peptide hormone that lowers arterial blood
pressure and relaxes muscles of the stomach and trachea. Evidence
from mouse models indicates that it has a role in generating and
light-entrainment of circadian oscillations51.

Chronotype is genetically correlated with psychiatric traits. As
a strategy to prioritise traits for subsequent causal analyses, as pre-
vious studies have shown a strong correlation between genetic and
phenotypic correlations52,53, and to identify genetic overlap between
chronotype and other diseases and traits, we performed LD-score
regression analyses against a range of other diseases and traits for
which GWAS summary statistics were publicly available (Supple-
mentary Data 11). We estimated the heritability of chronotype to be
13.7% (95% CI: 13.3–14.0%), as calculated by BOLT-REML in the
UK Biobank data alone, which is towards the lower end of pre-
viously reported figures (12–21%)24–26. The most genetically cor-
related trait was subjective well-being, which was positively
correlated with being a morning person (rG= 0.17, P= 6 × 10−9).
Psychiatric traits schizophrenia (rG=−0.11, P= 1 × 10−7),
depressive symptoms (rG=−0.16; P= 2 × 10−6), major depressive
disorder (rG=−0.19; P= 3 × 10−5) and intelligence (rG=−0.11;
P= 8 × 10−6) were all negatively correlated with the morning
chronotype. Metabolic traits fasting insulin (rG=−0.09, P= 0.03)
and HOMA-IR (rG=−0.12, P= 0.009) were negatively correlated

with being a morning person but did not reach our Bonferroni-
corrected significance threshold. Body mass index (BMI) (rG=
0.007, P= 0.74) and T2D (rG= 0.02, P= 0.60) were not genetically
correlated with morningness.

Evidence of causal link between chronotype and mental health.
Genetic correlations do not allow for statements of causality to be
made about the association between an exposure and an outcome.
We therefore performed two-sample MR analyses against the five
psychiatric traits that showed evidence of a genetic correlation, to
estimate causal effects. Because of the extensive literature on the
link between chronotype and metabolic disease and because the
well-known SNP in FTO (rs1558902) previously associated with
higher BMI54,55 was also associated with being a morning person
(OR= 1.04, P= 4.9 × 10−32), we also performed two-sample MR
against the metabolic phenotypes BMI, type 2 diabetes and fasting
insulin levels. For individual instrument effects on chronotype, log
ORs (representing liability for morningness) from the secondary
morning person meta-analysis were used, as no effect sizes were
obtained in the primary meta-analysis. With chronotype as an
exposure, we implemented the R package TwoSampleMR56 to
report causal associations of chronotype on these eight outcomes
(Supplementary Data 12). We saw evidence that being a morning
person confers a liability to lower risk of schizophrenia and greater
subjective well-being, with a genetically determined unit log odds
increase in self-report morningness being associated with a liabi-
lity for reduced schizophrenia (OR of 0.89 (0.82–0.96); inverse-
variance weighted (IVW) P= 0.004) and higher subjective well-
being (0.04 SD (0.02–0.06); IVW P= 5 × 10−5), and with good
agreement amongst the different MR methods (Figs. 5 and 6).
There was suggestive evidence that morningness decreases the
liability of depression: one-unit log odds increase in morningness
was associated with an OR of 0.65 (0.44–0.95; IVW P= 0.03)
for major depressive disorder and 0.02 SD lower (0.002–0.04; IVW
P= 0.03) for depressive symptoms (Supplementary Figures 3
and 4), but these did not reach our multiple testing threshold of
Pbonf= 0.005. There was no strong statistical evidence that
chronotype was causally associated with BMI, fasting insulin or
risk of type 2 diabetes (IVW P > 0.1), as previously reported24–26.

No evidence that poor mental health influences chronotype. To
assess whether our genetically correlated phenotypes were causally
influencing chronotype, we performed two-sample MR analyses
with chronotype as the outcome. Owing to a limited number of
genetic instruments, of the original five genetically correlated psy-
chiatric phenotypes we were able to test only schizophrenia and
major depressive disorder, in addition to the metabolic phenotypes
BMI, insulin secretion and type 2 diabetes (Supplementary Data 13).
We observed only weak evidence of liability effects of type 2 diabetes
(IVW P= 0.01), insulin secretion (IVW P= 0.04) and BMI (IVW
P= 0.05) on chronotype. Despite strong genetic correlations with
chronotype, we see no strong evidence that schizophrenia (IVW
P= 0.07) or major depressive disorder (IVW P= 0.62) causally
influence liability for morningness.

Discussion
Using data from 697,828 individuals, we have performed the
largest GWAS study of chronotype and expanded the number of
chronotype-associated loci from 24 to 351. Using activity monitor
data from 85,760 we showed that these variants are associated
with objective measures of sleep timing. We confirm previously
reported enrichment of circadian rhythm pathways and retina
and brain expressed genes at associated loci, and demonstrate
further enrichment of genes in the cAMP, cGMP, NMDA and
insulin signalling pathways as well as those in pituitary gland
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tissue and the SCN. We fine-map the loci and provide target
genes for other researchers to perform in depth functional
investigation into chronobiology. We have provided more accu-
rate genetic correlation estimates of chronotype with a range of

traits and disease and provide some evidence for a causal link
between chronotype and mental health.

We have found evidence that the natural variation in circadian
preference amongst the human population can be ascribed to sev-
eral different mechanisms. Given the prominence of genetic var-
iants in or near multiple core circadian rhythm genes (PER1, PER2,
PER3, CRY1, FBXL3 and ARNTL), we infer that some of the var-
iation is attributed to subtle differences in the biochemical feedback
mechanism of the circadian clock. This is supported by evidence of
the chronotype-associated loci being enriched in the SCN, sug-
gesting that variants that also subtly affect the modification and
regulation of the circadian clock contribute to the population var-
iation of chronotype. Entrainment of circadian rhythms through
external stimuli such as light and temperature is well-known but
through this study and previous GWAS efforts, we found that an
individual’s chronotype is also influenced by variants in genes
important in the correct formation and functioning of retinal
ganglion cells (RGS16 and INADL), highlighting that some natural
variation could be explained by better detection and communica-
tion (to the SCN) of external light signals. Variants in genes with
known roles in appetite regulation (FTO), insulin secretion
(MADD) and even nicotine and caffeine metabolism (CYP2A6)
point to other processes that impact an individual’s chronotype,
though it is unclear whether the effect of these on chronotype are
mediated through the modulation of the circadian clock or by other
means, such as through sleep–wake homoeostasis.

Reported observational associations of chronotype with meta-
bolic diseases are particularly strong57,58, but we found no evi-
dence for a causal effect of morningness on type 2 diabetes, BMI
or insulin levels and could exclude the observational association
effect sizes. One possibility which future studies should investi-
gate is whether circadian misalignment, rather than chronotype
itself, is more strongly associated with disease outcomes. For
example, are individuals who are genetically evening people but
have to wake early because of work commitments particularly
susceptible to obesity and diabetes?

There are clear epidemiological associations reported in the lit-
erature between mental health traits and chronotype, with mental
health disorders typically being overrepresented in evening
types59–61, and in this study we show that morningness is negatively
genetically correlated with both depression and schizophrenia, and
positively correlated with well-being. Previous studies have found a
link between schizophrenia and circadian dysregulation and mis-
alignment62,63 with schizophrenics displaying greater variation in
sleep and activity timing and misaligned melatonin and sleep cycles,
but no evidence exists for the effect of chronotype on schizophrenia
risk. Our MR analyses support a causal role of eveningness on
increased risk of schizophrenia, though the statistical significance is
not overwhelmingly strong. We do not find evidence of schizo-
phrenia causally influencing chronotype. However, several of the
mapped genes at the chronotype-associated loci are well-known
schizophrenia loci such as NRXN1 (as well at NRXN2 and NRXN3)
and RELN39,40 and subsequent studies will be necessary to under-
stand the shared biological mechanisms between chronotype and
schizophrenia risk.

Chronotype is influenced by circadian rhythms and innate
sleep homoeostatic mechanisms, but is also dependent on societal
pressures. It is also a self-report measure which means the
interpretation of the phenotype and the genetic association is
complicated. In this study, however, we show, using objective
measures derived from activity monitor data, that these chron-
otype variants do affect objectives measures of sleep timing, but
not other aspects of sleep including duration and timing, pro-
viding evidence that we are identifying biologically meaningful
associations and allowing us to quantity the effect of these var-
iants on sleep timing.
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The response to UK Biobank participation was <5% and this
has resulted in selection for healthier individuals, which may
introduced bias into our analyses, including in GWAS and MR64.
Here, GWAS results replicated those of 23andMe, a study that
may also suffer from selection bias but of a different nature to UK
Biobank. Adopting two-sample MR we attempted to maximise
statistical power by using publicly available aggregated data based
on consortia of studies that had considerably greater response
rates, and avoided winner’s curse which can lead to under-
estimation of causal effects65. MR of a binary (or other broad
category) exposure that is derived from an underlying continuous
trait, as is the case with chronotype, may be biased by horizontal
pleiotropy from within-category variation in the trait that cannot
be identified by alternative MR methods, such as MR-Egger. As
effect sizes for MR analyses were derived from log ORs in the
secondary morning person meta-analysis, there may be the pos-
sibility of undetected pleiotropy and so our findings should
therefore be treated with some caution.

In conclusion, we have identified 327 novel loci that regulate
circadian rhythms and sleep timing in humans and provide fur-
ther insights into the association of chronotype with disease.

Methods
Ethics and consent. The UK Biobank was granted ethical approval by the North
West Multi-centre Research Ethics Committee (MREC) to collect and distribute data
and samples from the participants (http://www.ukbiobank.ac.uk/ethics/) and covers
the work in this study, which was performed under UK Biobank application number
9072. All participants included in these analyses gave informed consent to participate.
UK Biobank consent procedures are detailed at http://biobank.ctsu.ox.ac.uk/crystal/
field.cgi?id=200. All 23andMe participants were customers of the personal genetics
company 23andMe, Inc. and were genotyped for the 23andMe Personal Genome
Service. The 23andMe participants included in our analyses provided informed
consent for their data to be used for research purposes and responded to online
questionnaires according to 23andMe’s human subject protocol, which was reviewed
and approved by Ethical and Independent Review Services, a private institutional
review board (http://www.eandireview.com). Details of 23andMe’s consent process
can be found at https://www.23andme.com/en-gb/about/consent/.

Cohorts. The UK Biobank is a health resource with phenotypic and genetic data on
over 500,000 volunteer participants who were aged between 40 and 69. Participants
were recruited from the general UK population and baseline data were collected from
2006 to 2010 across 22 centres in England, Scotland and Wales, with recording of
detailed anthropometric measures as well as self-report health and sociodemographic
variables. The cohort is described in full elsewhere27. We used data on 451,454
individuals from the full UK Biobank data release that we identified as White Eur-
opean and that had genetic data available. To define a set of White Europeans, we
performed principal components analysis in the 1000 Genomes (1KG) reference
panel using a subset of variants that were of a high quality in the UK Biobank. We
projected these principal components into the set of related UK Biobank participants
to avoid the relatedness confounding the principal components. We then adopted a k-
means clustering approach to define a European cluster, initialising the ethnic centres
defined by the population-specific means of the first four 1KG principal components.
This analysis was performed only within individuals self-reporting as British, Irish,
White or Any other white background. Because association analyses are performed
using the LMM method, we included related individuals.

We used summary statistics from a morning chronotype GWAS performed by
23andMe of 248,100 participants (120,478 cases, 127,622 controls) with a minimum
of 97% European-ancestry. GWAS analysis was performed in a maximal set of
unrelated participants, where pairs of individuals were considered related if they
shared 700 cM IBD of genomic segments, roughly corresponding to first cousins in
an outbred population. The 23andMe cohort is described in more detail elsewhere24.

Activity monitor data. A subset of the UK Biobank cohort was invited to wear a
wrist-worn activity monitor for a period of a week. Individuals were mailed the device
and asked to wear it continuously for seven days, including while bathing, showering
and sleeping. In total, 103,720 participants returned their activity monitor devices with
data covering at least three complete 24-hour periods. We downloaded the raw activity
monitor data (data-field 90001) for these individuals, in the form of binary Con-
tinuous Wave Accelerometer (cwa) files. Further information, along with details of
centrally derived variables, is available elsewhere66. Detailed protocol information can
be found online at http://biobank.ctsu.ox.ac.uk/crystal/docs/PhysicalActivityMonitor.
pdf and a sample instruction letter at http://biobank.ctsu.ox.ac.uk/crystal/images/
activity_invite.png (UKB Resources 131600 and 141141, respectively; both accessed
January 30th 2018). We converted the .cwa files to .wav format using the open-source
software omconvert, recommended by the activity monitor manufacturers Axivity,

which is available online (see https://github.com/digitalinteraction/openmovement/
tree/master/Software/AX3/omconvert). To process the raw accelerometer data in.wav
format, we used the freely available R package GGIR (v1.5-12)67,68. The list of our
GGIR settings is provided in Supplementary Data 14 and the full list of variables
produced by GGIR can be found in the CRAN GGIR reference manual (see https://
cran.r-project.org/web/packages/GGIR/GGIR.pdf).

Genotyping and quality control. The 23andMe cohort was genotyped on one of
four custom arrays: the first two were variants of the Illumina HumanHap550+
BeadChip (4966 cases and 5564 controls), the third a variant of the Illumina
OmniExpress+ BeadChip (53,747 cases and 61,637 controls) and the fourth a fully
custom array (61,765 cases and 60,421 controls). Successive arrays contained
substantial overlap with previous chips. These genotypes were imputed to ~15.6
million variants using the September 2013 release of the 1000 Genomes phase 1
reference panel. For analyses, we used ~11.9 million imputed variants with
imputation r2 ≥ 0.3, MAF ≥ 0.001 (0.1%) and that showed no sign of batch effects.

The UK Biobank cohort was genotyped on two almost identical arrays. The first
~50,000 samples were genotyped on the UK BiLEVE array and the remaining
~450,000 samples were genotyped on the UK Biobank Axiom array in two groups
(interim and full release). A total of 805,426 directly genotyped variants were made
available in the full release. These variants were centrally imputed to ~93M
autosomal variants using two reference panels: a combined UK10K and 1000
Genomes panel and the Haplotype Reference Consortium (HRC) panel. For all
analyses, we used ~12.0M HRC imputed variants with an imputation r2 ≥ 0.3,
MAF ≥ 0.001 (0.1%) and with a Hardy–Weinberg equilibrium (HWE) P > 1 × 10−12

(chi-squared; 1 degree of freedom). We excluded non-HRC imputed variants on
advice from the UK Biobank imputation team. Further details on the UK Biobank
genotyping, quality control and imputation procedures can be found elsewhere28.

Self-report phenotypes. Responses to two identical questions (“Are you naturally
a night person or a morning person?”) were used to define the dichotomous
morning person phenotype in the 23andMe cohort, with one question having a
wider selection of neutral options. For the first instance, the possible answers were
“Night owl”, “Early bird” and “Neither”, and for the second “Night person”,
“Morning person”, “Neither”, “It depends” and “I’m not sure”. Individuals with
discordant or neutral responses to both were excluded. For those with one neutral
and one non-neutral response, their non-neutral response was used to define their
phenotype. Morning people were coded as 1 (cases; N= 120,478) and evening
people were coded as 0 (controls; N= 127,622).

The UK Biobank collected a single self-reported measure of Chronotype
(“Morning/evening person (chronotype)”; data-field 1180). Participants were
prompted to answer the question “Do you consider yourself to be?” with one of six
possible answers: “Definitely a ‘morning’ person”, “More a ‘morning’ than ‘evening’
person”, “More an ‘evening’ than a ‘morning’ person”, “Definitely an ‘evening’
person”, “Do not know” or “Prefer not to answer”, which we coded as 2, 1, −1, −2,
0 and missing, respectively (distribution summarised in Table 1). Of the 451,454
white European participants with genetic data, 449,734 were included in the GWAS
(had non-missing phenotype and covariates).

In order to provide interpretable ORs for our genome-wide significant variants,
we also defined a binary phenotype using the same data-field as for Chronotype.
Participants answering “Definitely an ‘evening’ person” and “More an ‘evening’
than a ‘morning’ person” were coded as 0 (controls) and those answering
“Definitely a ‘morning’ person” and “More a ‘morning’ than ‘evening’ person” were
coded as 1 (cases). Participants answering “Do not know” or “Prefer not to answer”
were coded as missing. A total of 403,195 participants were included in the GWAS
(252,287 cases and 150,908 controls).

Activity monitor phenotypes. The software package GGIR68,69 produces quan-
titative and timing measures relating to both activity levels and sleep patterns, with
a day-by-day breakdown, as well averages across the period of wear. A new
algorithm, implemented in version 1.5–12 of the GGIR R package and validated
using PSG in an external cohort70, allows for detection of sleep periods without the
use of a sleep diary and with minimal bias. Briefly, for each individual, median
values of the absolute change in z-angle (representing the dorsal–ventral direction
when the wrist is in the anatomical position) across 5-min rolling windows were
calculated across a 24-h period, chosen to make the algorithm insensitive to activity
monitor orientation. The 10th percentile was incorporated into the threshold to
distinguish movement from non-movement. Bouts of inactivity lasting ≥30 min are
recorded as inactivity bouts. Inactivity bouts that were <60 min apart were com-
bined to form inactivity blocks. The start and end of longest block defined the start
and end of the sleep period time-window (SPT-window).

The UK Biobank made multiple activity monitor data-quality variables
available. From our activity monitor phenotypes, we excluded 4925 samples with a
non-zero or missing value in data-field 90002 (“Data problem indicator”). We then
excluded any individuals with the “good wear time” flag (field 90015) set to 0 (No),
“good calibration” flag (field 90016) set to 0 (No), “calibrated on own data” flag
(field 90017) set to 0 (No), “data recording errors” (field 90182) > 788 (Q3+ 1.5 ×
IQR) or a non-zero count of “interrupted recording periods” (field 90180).
Phenotypes determined using the SPT-window (all phenotypes except L5 and M10

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08259-7 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:343 | https://doi.org/10.1038/s41467-018-08259-7 | www.nature.com/naturecommunications 7

http://www.ukbiobank.ac.uk/ethics/
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
http://www.eandireview.com
https://www.23andme.com/en-gb/about/consent/
http://biobank.ctsu.ox.ac.uk/crystal/docs/PhysicalActivityMonitor.pdf
http://biobank.ctsu.ox.ac.uk/crystal/docs/PhysicalActivityMonitor.pdf
http://biobank.ctsu.ox.ac.uk/crystal/images/activity_invite.png
http://biobank.ctsu.ox.ac.uk/crystal/images/activity_invite.png
https://github.com/digitalinteraction/openmovement/tree/master/Software/AX3/omconvert
https://github.com/digitalinteraction/openmovement/tree/master/Software/AX3/omconvert
https://cran.r-project.org/web/packages/GGIR/GGIR.pdf
https://cran.r-project.org/web/packages/GGIR/GGIR.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


timing) had additional exclusions based on short (<3 h) and long (>12 h) mean
sleep duration and too low (<5) or too high (>30) mean number of sleep episodes
per night (see below). These additional exclusions were to ensure that individuals
with extreme (outlying), and likely incorrect, sleep characteristics were not
included in any subsequent analyses.

Sleep midpoint was calculated as the time directly between the start and end of
the SPT-window and is defined as the number of hours elapsed since midnight at
the start of the calendar day on which the STP-window started (e.g., 02:30= 26.5;
23:45= 23.75) with a cut-off at midday (12:00 and 36:00). This accounted for
participants whose sleep midpoint occurs before midnight. Our sleep midpoint
phenotype represented the average of each participant over all their valid SPT-
windows. After exclusions and adjustments, 84,810 participants had valid sleep
midpoint, covariates and genetic data.

L5 and M10 refer to the least-active five and the most-active 10 h of each day
and are commonly studied measures relating to circadian activity and sleep. L5
(M10) defines a 5-h (10-h) daily period of minimum (maximum) activity, as
calculated by means of a moving average with a 5-h (10-h) window. As with sleep
midpoint, we defined our L5 (M10) timing phenotype as the number of hours
elapsed from the previous midnight to the L5 (M10) midpoint, averaged over all
valid wear days. Of the 103,711 participants with activity monitor data, there were
85,205 and 85,670 with valid L5 and M10 timing measures respectively, covariates
and genetic data. Basic summaries of these and other raw activity monitor
phenotypes are given in Supplementary Table 1.

Sleep episodes within the SPT-window were defined as periods of at least 5 min
with no change larger than 5° associated with the z-axis of the activity monitor68.
The summed duration of all sleep episodes provided the sleep duration for a given
SPT-window. We took both the mean and standard deviation of sleep duration
across all valid SPT-windows to provide a measure of average sleep quantity and a
measure of variability. After exclusions and adjustments, we had 85,449 (84,441)
participants with valid sleep duration mean (SD), covariates and genetic data.

Sleep efficiency was calculated as a ratio of sleep duration (defined above) to
SPT-window duration. The phenotype represented the mean across all valid SPT-
windows and after exclusions and adjustments, left us with 84,810 participants with
valid sleep efficiency, covariates and genetic data.

The number of sleep episodes was defined as the number of sleep episodes of at
least 5 min separated by at least 5 s of wakefulness within the SPT-window. The
phenotype represented the mean across all SPT-windows and, once adjusted for the
mean length of time in bed, can be interpreted as a measure of sleep disturbance or
fragmentation. After exclusions and adjustments, we had 84,810 participants with a
valid number of sleep episodes, covariates and genetic data.

Diurnal inactivity was defined as the total daily duration of estimated bouts of
inactivity that fall outside of the SPT-window. This comprised the total length of
periods of sustained inactivity (>5 min) and captured sleep (naps), but did not
include other inactivity such as sitting and reading or watching television, which
involve a low but detectable level of movement. This variable likely captured some
non-sleep rest as it was not possible to separate these without detailed activity
diaries. The phenotype was calculated as the mean across all valid days and, after
exclusions and adjustments, we were left with 84,757 participants with a valid
measure, covariates and genetic data.

Genome-wide association analysis. We performed all association test using
BOLT-LMM71 v2.3, which applies a linear mixed model (LMM) to adjust for the
effects of population structure and individual relatedness, and allowed us to include all
related individuals in our white European subset, boosting our power to detect
associations. This meant a sample size of up to 449,734 individuals, as opposed to the
set of 379,768 unrelated individuals. BOLT-LMM approximates relatedness within a
cohort by using LD blocks and avoids the requirement of building a genetic-
relationship matrix, with which calculations are intractable in cohorts of this size.
From the ~805,000 directly genotyped (non-imputed) variants available, we identified
524,307 high-quality variants (bi-allelic SNPs; MAF ≥ 1%; HWE P > 1 × 10−6; non-
missing in all genotype batches, total missingness < 1.5% and not in a region of long-
range LD72) that BOLT-LMM used to build its relatedness model. For LD structure
information, we used the default 1000 Genomes LD-Score table provided with the
software. We forced BOLT-LMM to apply a non-infinitesimal model, which provides
better effect size estimates for variants with moderate to large effect sizes, in exchange
for increased computing time. At runtime, the chronotype and morning person
phenotypes were adjusted for age (field 21003), sex (field 31), study centre (field 54;
categorical) and a derived variable representing genotyping release (categorical;
UKBiLEVE array, UKB Axiom array interim release and UKB Axiom array full
release). Accelerometer-based phenotypes were adjusted at runtime for age activity
monitor worn (derived from month and year of birth and date activity monitor
worn), sex, season activity monitor worn (categorical; winter, spring, summer or
autumn; derived from date activity monitor worn) and number of valid measure-
ments (SPT-windows for sleep phenotypes, number of valid days for diurnal inactivity
or number of L5 or M10 detections for L5 or M10 timing). The GWA analysis for the
number of sleep episodes phenotype was also adjusted for the mean length of SPT-
window (across all included SPT-windows) to account for the fact that individuals
have a greater number of sleep episodes the longer they spend in bed.

In the 23andMe morning person GWAS, the summary statistics were generated
through logistic regression (using an additive model) of the phenotype against the
genotype, adjusting for age, sex, the first four principal components and a

categorical variable representing genotyping platform. Genotyping batches in
which particular variants failed to meet minimum quality control were not
included in association testing for those variants, resulting in a range of sample
sizes over the whole set of results. A λGC of 1.325 was reported for this GWAS. Lead
variants for the 23andMe only morning person GWAS are provided in
Supplementary Data 15.

Sensitivity analysis. To avoid issues with stratification, we performed a sensitivity
GWAS, in UK Biobank alone, to assess whether any of the associations were driven
by a subset of the cohort with specific conditions. We excluded those reporting
shift or night shift work at baseline, those taking medication for sleep or psychiatric
disorders and those with either with a HES ICD10 or self-reported diagnosis of
depression, schizophrenia, bipolar disorder, anxiety disorders or mood disorder
(see Supplementary Methods for further details). Results for the 341 lead chron-
otype variants available in the UK Biobank are provided in Supplementary Data 1
alongside the main meta-analysis results.

Meta-analysis of GWAS results. Meta-analysis was performed using the software
package METAL73. To obtain the largest possible sample size, and thus maximising
statistical power, we performed a sample-size meta-analysis, using the results from
the UK Biobank chronotype GWAS and the 23andMe morning person GWAS.
Genomic control was not performed on each set of summary statistics prior to
meta-analysis but instead the meta-analysis chi-squared statistics were corrected
using the LD-score intercept (ILDSC= 1.0829), calculated by the software LDSC, as
using λGC is considered overly conservative and the LD-score intercept better
captures inflation due to population stratification74. For interpretable results, we
reported the OR from a secondary effect size meta-analysis between our dichot-
omous UK Biobank morning person GWAS and the 23andMe morning person
GWAS. The primary chronotype sample-size meta-analysis produced results for
15,880,941 variants in up to 697,828 individuals, with the secondary effect-size
morning person meta-analysis producing results for 15,880,664 variants in up to
651,295 individuals (372,765 cases and 278,530 controls). All reported meta-
analysis P values were calculated by METAL using a Z-test.

Post-GWAS analyses. We used MAGENTA37, DEPICT38, PASCAL36 and
MAGMA34 to perform pathway and tissue enrichment. For MAGENTA and
DEPICT, we included all variants from the meta-analysis, whereas for PASCAL, we
included only those with an RSID as the software assigns variants to genes using
their RSID. For the MAGENTA analysis, we used upstream and downstream limits
of 110Kb and 40Kb to assign variants to genes by position, we excluded the HLA
region from the analysis and set the number of permutations for gene-set
enrichment analysis to 10,000. For DEPICT, we used the default settings and the
annotation and mapping files provided with the software. As each of the four pieces
of software adopts a different gene prioritisation method or relies on different
databases, we included results from all four to cover all bases and to allow for better
comparison with other studies, where only a single method may have been used.
Briefly PASCAL corrects for the effect of LD blocks by accounting for the LD
structure between associated variants, MAGENTA uses distance-based mapping
but allows the user to set the upstream and downstream distances for inclusion,
DEPICT makes use of large-scale data on gene co-regulation to prioritise genes
before calculating enrichment in its own reconstituted gene sets and MAGMA, the
most recent method (and implemented in the FUMA GWAS35 platform), claims
greater statistical power to detect enriched gene sets than methods such as
MAGENTA and PASCAL, without affecting the type 1 error rate. By using mul-
tiple methods and looking for consistency, we provide more compelling evidence of
enrichment in specific pathways and tissues.

We used the LD-score regression (LDSC) software, available at https://github.
com/bulik/ldsc/, to quantify the genetic overlap between the trait of interest and
222 traits with publicly available GWA data. Briefly, to estimate heritability of a
single phenotype, LDSC regresses chi-squared statistics from summary statistics
against pre-computed LD Scores (a measure of how well each variant tags nearby
variants) for all variants of the phenotype. The genetic correlation (rg) between two
phenotypes is, similarly, calculated by regressing each variant’s product of Z-scores
from the two phenotypes against the LD scores; the slope of the regression line is
the estimate of rg. The P values reported in this manuscript were calculated using a
Z-test of calculated rg against the null hypothesis of rg= 0. Further methodological
details are given elsewhere74. We used an LD-Score panel calculated in European
samples from 1000 Genomes phase 3 v5 and removed variants that were not
present in this reference panel. We considered any correlation as statistically
significant if it had a Bonferroni-corrected P < 0.05.

Fine-mapping analyses were performed using FINEMAP v1.141 using a shotgun
stochastic approach, allowing up to 20 causal SNPs at each locus and by focussing
on a 1Mb (±500 Kb) region around each index variant. As FINEMAP assumes a
fixed sample size for all variants, we excluded variants not present in both the UK
Biobank and 23andMe data, and to make the LD calculations more tractable we
excluded variants with GWA analysis P > 0.01 to limit the total number of variants
at each locus. We constructed an LD matrix for each locus by calculating the
Pearson correlation coefficient for all pairs of variants using dosages derived from
the unrelated European-ancestry subset of the UK Biobank imputed genotype
probabilities (N= 379,769). A variant was considered to be causal if its log10 Bayes
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factor was 2 or larger, a limit recommended by the FINEMAP documentation
(http://www.christianbenner.com/index_v1.1.html).

We annotated variants identified by FINEMAP as likely to be causal using
Alamut Batch v1.8 (Interactive Biosoftware, Rouen, France) with genome assembly
GRCh37 and all options set to default. We retained only the canonical (longest)
transcript for each variant and reported the variant location and coding effect (if
applicable) in this transcript. To identify whether variants were cis-eQTLs for
nearby genes, we performed a lookup of our variants in the GTEx single-tissue cis-
eQTL dataset (v7), accessed at the GTEx portal (https://www.gtexportal.org/home/
datasets) on 13/07/18, for significant associations. A variant was reported as an
eQTL for a gene if the variant-gene association was significant (q value ≤ 0.05) for
one or more brain or non-brain tissues.

With the aim of highlighting genes that have a role in regulating the internal
circadian clock, we cross-referenced the genes identified by eQTL mapping, in
addition to the two nearest genes (within 1 Mb), with catalogues from three gene
expression studies. Firstly, we used data from an RNAi screen of circadian clock
modifiers49, in which a genome-wide scan was performed on the effects of single-
gene knockouts on the amplitude and period of the circadian expression. Secondly,
we used data from a study of gene expression in SCN tissue over a 24-h light/dark
cycle47 to identify whether our genes exhibit fluctuating expression in SCN tissue
and whether the genes show enriched expression in the SCN compared to other
tissues. Finally, we used data from a meta-analysis of gene expression in the SCN48

to investigate whether the genes were preferentially expressed in the SCN when
compared to other brain tissues.

MR analyses. We undertook MR analyses to explore both the effect of chronotype
on different outcomes and the effect of different exposures on chronotype as an
outcome. These two-sample MR analyses can be summarised by:

1. Chronotype exposure using the 351 variants and effect sizes discovered in this
meta-analysis against the five significant psychiatric outcomes from the
genetic correlation analyses and three metabolic outcomes, using summary
data from published GWAS (Supplementary Data 12).

2. Two of the five significant psychiatric exposures from the genetic correlation
analyses and four metabolic exposures, all using variants from published
GWAS, against chronotype as an outcome, using summary data from this
meta-analysis (Supplementary Data 13).

In both analyses, we tested four MR methods:

a. Inverse-variance weighting (IVW)75

b. MR-Egger75

c. Weighted median (WM)76

d. Penalised weighted median (PWM)76

Analysis 1 (chronotype exposure) was performed using the R package
TwoSampleMR using aggregated summary statistics available through the MR-Base
platform56. We implemented the four MR methods listed above and also included
the MR-Egger bootstrap to provide better estimates of the effect sizes and standard
errors as compared to the MR-Egger method. We used data from published GWAS
to test the effect of chronotype on the following exposures: schizophrenia77, major
depressive disorder78, depressive symptoms79, subjective well-being79, PGC cross-
disorder traits80, fasting insulin81, BMI55,82 and T2D83,84. To provide meaningful
effect sizes for MR analyses, we used betas from the secondary effect size meta-
analysis of the dichotomous UK Biobank and 23andMe morning person GWAS.

For analysis 2 (chronotype outcome) we applied the four MR methods listed
above, utilising a custom pipeline. Using data from published GWAS, we tested
whether chronotype is influenced by the following exposures: schizophrenia77, major
depressive disorder78,85, insulin secretion86, favourable adiposity87, BMI55 and T2D88.
As with analysis 1, chronotype effect sizes represented morningness liability and were
taken from the secondary morning person meta-analysis, with the exception of the
major depressive disorder exposure from a 23andMe study85 for which outcome effect
sizes were taken from the UK Biobank-only chronotype GWAS.

We used the inverse-variance weighted approach as our main analysis method
and MR-Egger, weighted median estimation and penalised weighted median
estimation as sensitivity analyses in the event of unidentified pleiotropy of our
genetic instruments. MR results may be biased by horizontal pleiotropy, i.e., where
the genetic variants that are robustly related to the exposure of interest (here
chronotype) independently influence the outcome, through association with
another risk factor for the outcome. IVW assumes that there is either no horizontal
pleiotropy (under a fixed effect model) or, if implemented under a random effects
model after detecting heterogeneity amongst the causal estimates, that:

I. The strength of association of the genetic instruments with the risk factor is
not correlated with the magnitude of the pleiotropic effects.

II. The pleiotropic effects have an average value of zero.

MR-Egger provides unbiased causal estimates if just the first condition above
holds, by estimating and adjusting for non-zero mean pleiotropy. However, MR-
Egger requires that the InSIDE (Instrument Strength Independent of Direct Effect)
assumption89 holds, in that it needs the pleiotropy of the genetic instruments to be
uncorrelated with the instruments’ effect on the exposure. The weighted median
approach is valid if less than 50% of the weight in the analysis stems from variants
that are pleiotropic (i.e., no single SNP that contributes 50% of the weight or a

number of SNPs that together contribute 50% should be invalid because of
horizontal pleiotropy). Given these different assumptions, if all methods are broadly
consistent this strengthens our causal inference. IVW causal effect size estimate P
values were calculated using Student’s t test with (NSNP-1) degrees of freedom, MR
Egger using Student’s t test with (NSNP-2) degrees of freedom and WM/PWM using
a Z-test. Additional care should be taken interpreting results from binary exposures
or outcomes, as these MR methods assume that horizontal pleiotropy due to within-
category variation of dichotomous or categorical traits is negligible.

Data availability
Summary statistics for the top 10,000 chronotype meta-analysis variants are
provided in Supplementary Data 10. The full set of UK Biobank-only chronotype
and morning person GWAS summary statistics can be found at http://www.
t2diabetesgenes.org/data/ and on the Sleep Disorder Knowledge Portal at http://
sleepdisordergenetics.org/informational/data/. Full meta-analysis summary
statistics can be requested directly from 23andMe Inc. (see https://
research.23andme.com/collaborate/#publication). The GGIR R script used to
generate the activity monitor measures (Supplementary Data 14) is available with
the online version of this article.
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