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The prevailing hypotheses for the evolution of cognition focus on either the
demands associated with group living (the social intelligence hypothesis
(SIH)) or ecological challenges such as finding food. Comparative studies
testing these hypotheses have generated highly conflicting results; conse-
quently, our understanding of the drivers of cognitive evolution remains
limited. To understand how selection shapes cognition, research must incor-
porate an intraspecific approach, focusing on the causes and consequences of
individual variation in cognition. Here, we review the findings of recent
intraspecific cognitive research to investigate the predictions of the SIH.
Extensive evidence from our own research on Australian magpies (Cracticus
tibicen dorsalis), and a number of other taxa, suggests that individuals in
larger social groups exhibit elevated cognitive performance and, in some
cases, elevated reproductive fitness. Not only do these findings demonstrate
how the social environment has the potential to shape cognitive evolution,
but crucially, they demonstrate the importance of considering both genetic
and developmental factors when attempting to explain the causes of
cognitive variation.

This article is part of the theme issue ‘Causes and consequences of
individual differences in cognitive abilities’.

1. Introduction: prevailing theories for the evolution
of cognition

For over a century, scientists have investigated the factors governing cognitive
evolution, yet the topic still remains intensely debated today. Hypotheses
typically place the emphasis on either social or ecological challenges as
predominant factors driving cognitive evolution, but studies addressing the
potential role of these factors have produced highly conflicting results [1-4].
The cognitive buffer hypothesis (CBH), for instance, predicts that large brain
size evolved to allow species to adjust their behaviour adaptively in response to
variable environmental conditions [5]. Two environmental challenges in par-
ticular are hypothesized to be selective pressures influencing cognition:
resource availability and seasonality [3]. If the availability of food is difficult
to predict, then selection may favour the evolution of enhanced learning and
memory to allow animals to maximize foraging intake [6]. For example, frugi-
vorous spider monkeys (Ateles geoffroyi), whose primary food source is
ephemeral and unpredictable, have larger relative brain size compared to the
leaf-eating howler monkey (Alouatta palliate), whose food source is ubiquitous
[7]. These findings are supported by a recent phylogenetic analysis by DeCasien
et al. [2], which found a strong relationship between frugivory and brain size.
Coupled with evidence of links between brain size and cognitive ability
[8-12], this appears consistent with the CBH. Further support comes from
behavioural studies. Field studies suggest that grey-cheeked mangabeys
(Lophocebus albigena), for example, use integrated, episodic memory about the
location and ripeness of fruit encountered on previous foraging trips and
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weather conditions over the intervening period when decid-
ing whether to revisit particular fruiting trees [13].
Unpredictable resource availability may also favour more
innovative individuals if novel foraging techniques allow
the exploitation of a new food source. In this vein, there is evi-
dence of a positive relationship between innovativeness and
brain size in both primates and birds (reviewed in [14]).
Larger-brained birds (relative to body mass) are also more
successful than smaller-brained birds when establishing
themselves in a novel environment [12].

Although not necessarily mutually exclusive from
resource availability, seasonality has also been hypothesized
to select for increased cognitive ability [15,16]. Seasonal
changes in climatic conditions mean some species migrate
while others endure the harsher environments [15,16]. Both
scenarios may create situations that select for elevated
cognitive performance [15,16]. Migratory birds
increased levels of long-term spatial memory compared to

have

non-migratory birds [17-19] (although note Sayol et al. [3]
found migratory birds have smaller relative brain size).
Among non-migratory species, it has been discovered that
subpopulations that cache food for the winter tend to have
a larger hippocampus and elevated long-term spatial
memory retention compared to non-caching subpopulations
[20-22]. A comparative analysis of brain size in 1200 bird
species found larger-brained birds were more likely to
occur in areas with greater environmental variation, adding
support to the idea of seasonality favouring increased infor-
mation processing power [3]. However, a number of
comparative studies suggest ecological factors alone cannot
adequately explain interspecific differences in neuroanatomy
and cognition; for example, Shultz & Dunbar [23] concluded
that social factors were just as important as ecological factors
in driving the evolution of ungulate brains.

The novel concept of social intelligence was first intro-
duced over half a century ago in papers by Chance &
Mead [24] and Jolly [25], although it is arguably Nick
Humphrey’s seminal paper, “The social function of intellect’
[26], that is recognized as giving rise to the social intelligence
hypothesis (SIH) and the resulting research in this area. The
SIH posits that group living can generate substantial chal-
lenges that favour selection for enhanced cognitive abilities
[27]. Since the SIH was conceptualized, an abundance of lit-
erature has characterized some of the potential challenges
of living in groups [28]. The need to maintain and coordinate
multiple relationships, monitor other group members and
recognize suitable cooperative partners are examples of fac-
tors unique to social animals that are hypothesized to be
selective pressures requiring advanced cognition [28,29].
Byrne & Whiten [30] also highlighted the ‘Machiavellian’
nature of some animal societies, where the need to outwit
others in competitive interactions may generate arms races
of escalating cognitive abilities.

The majority of evidence supporting the SIH is derived
from comparative studies on primates and birds [31,32], relat-
ing between-species or between-population differences in
brain size or cognitive performance to differences in social
organization or life history [1,32-36]. Several proxies of
social complexity have been found to correlate with cognitive
performance or measures of brain size or brain composition
[1,32-34]. For instance, large brain size in birds has been
linked to the establishment, maintenance and coordination
of behaviour within long-term, monogamous pair bonds

[32]. In anthropoid primates, positive correlations between
neocortex size and group size are argued to stem from the
greater need to remember, track and manage relationships
in larger groups [1]. Brain size is also particularly large in
species with low within-group kinship, where individuals
must make regular strategic decisions to manage conflicts
of interest [37]. In addition, comparative studies have also
revealed links between social structure and performance in
a number of cognitive tasks. For instance, primates experien-
cing fission—fusion dynamics outperform those with more
stable groups in tests of inhibitory control [34], and the
highly social pinyon jay (Gymnorhinus cyanocephalus) outper-
forms less social corvids in transitive inference and reversal
learning tasks [33,35].

Nevertheless, a number of studies have reported findings
inconsistent with the SIH (reviewed in Holekamp [38]). For
example, Sayol et al.’s [3] comprehensive analysis found no
relationship between mating system and brain size in
birds, and one of the largest avian forebrains (relative to
total brain size) is found in the non-social owl (Athene
noctua) [39]. It is also worth noting that the majority of com-
parative studies investigating cognitive evolution use
neuroanatomical measures as proxies for cognition. The
relationship between cognition and neuroanatomy remains
highly contentious [40]; for example, it has been argued
that gross measures of brain size, or brain regions, do not
explicitly quantify neural functioning, and therefore, more
refined neurobiological measures are required, such as
neuron counting. Conversely, there is also evidence for a
link between brain size and cognitive performance within,
as well as between species (e.g. [9,41]).

The conflicting evidence generated from comparative
studies suggests the need for a novel approach to the study
of cognitive evolution. Recent studies focusing on individual
variation in cognition have produced exciting results (e.g.
the role that cognition plays in mate choice [42]), indicating
that an intraspecific approach to the study of cognitive
evolution, may be a valuable addition to comparative studies
as a means of furthering our understanding of cognitive
evolution.

2. An intraspecific approach to the study
of cognition

A focus on individual differences in cognitive performance
within species allows the causes and consequences of vari-
ation in cognitive ability to be quantified [43—47]. This is in
contrast with an interspecific approach, where variation in
cognitive performance within species is often disregarded
as ‘noise’ [44] and species-level estimates of cognitive per-
formance or brain size are used. This is also true of
explanatory terms in analyses; for example, comparative ana-
lyses of the relationship between group size and brain size
typically use average group size per species, despite there
often being considerable intraspecific variation in group
size [45]. Moreover, while comparative analyses often
attempt to control for ecological and phylogenetic confounds,
these are difficult to remove altogether and analyses can yield
very different results depending on which variables are
included and how those variables are specified [48]. Thus,
rather than focusing exclusively on species- or population-
level averages, vital insights may be gained by focusing on
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the causes of individual variation and linking cognitive
variation to fitness consequences.

3. Intraspecific evidence for the social
intelligence hypothesis?

Over the past decade, studies investigating intraspecific vari-
ation in cognitive performance have started to accumulate
evidence for profound effects of both ecological factors and
social factors. For instance, several studies on birds and fish
have shown cognitive differences between individuals
exposed to different climatic variables, predation pressure
and feeding regimes (see table 1 for studies investigating
the effect of the non-social environment on cognition),
while zoo and laboratory studies show that enrichment of
the physical environment can promote cognitive performance
(e.g. [65,66]). Intraspecific studies are also generating evi-
dence consistent with the SIH, showing that social factors
can influence cognitive development, and in some cases
that this may have important fitness consequences as well
(see table 2 for studies investigating the effect of the social
environment on cognition).

The majority of evidence supporting a social theory of
intellect is derived from studies on humans (see Kwak et al.
[89] and references therein). For example, social network
size has been found to predict orbital prefrontal cortex size
[90] and ventromedial prefrontal volume [91], and Kanai
et al. [92] found that online (as well as real world) social net-
works predicted right superior temporal sulcus, left middle
temporal gyrus and entorhinal cortex size.

A small but growing number of studies, encompassing a
broad range of taxa, are accumulating evidence linking social
factors with intraspecific cognitive variation in non-human
animals. For example, Sallet et al. [68] found that social network
size correlates with levels of grey matter in the brains of rhesus
macaques (Mucaca mulatta), and social enrichment has a posi-
tive effect on neural development in prairie voles [71]
(Microtus ochrogaster) and mice [76] (Mus musculus). There is
also evidence for a relationship between social group size
and the development of various brain regions in invertebrates
[75,80-82], amphibians [73,74], fish [69,70] and birds [72].
Although these studies suggest the social environment may
play an important role in cognitive evolution, none of them
directly quantify cognitive traits, with the majority of studies
using measures of brain size or structure as a proxy for cogni-
tive abilities (e.g. [69]); see Healy & Rowe [93] for a critical
review of correlational studies of brain size or structure.

Intraspecific evidence suggests there is a relationship
between sociality and cognition (table 2). However, it is
worth noting that a number of these studies [83,84] use
social isolation as a treatment: as isolation is likely to be
highly stressful for social animals, these results may reflect
pathological impacts of developmental stress rather than
the cognitive demands of group living. Furthermore, none
of these studies were carried out on wild populations of ani-
mals (table 2). To quantify and analyse variation in cognitive
traits in ecologically relevant contexts, particularly in larger
animals whose natural conditions cannot be readily repli-
cated in the laboratory, it is vital to carry out tests on wild
populations of animals, as selective pressures may be sub-
stantially different in captive conditions compared to the
wild [47]. In order to determine the potential for selection

to act on cognitive traits, it is also vital to examine the fitness
consequences of variation in cognition, something that has
rarely been attempted (table 2). Although reliably quantify-
ing cognitive traits and monitoring fitness, especially in the
wild, presents a number of challenges, [43,45,47], it is crucial
if we are to further our understanding of factors shaping
cognitive evolution.

4. Social influences on cognitive development
in Australian magpies

We investigated the causes and consequences of individual
variation in cognition in a wild population of Australian mag-
pies (Cracticus tibicen dorsalis) at our field site in Perth, Western
Australia. Cognitive performance was quantified by present-
ing individuals in 14 groups (ranging in size from three to 12
individuals) with a battery of four psychometric tests designed
to measure inhibitory control, associative learning, reversal
learning and spatial memory. We found individual perform-
ance was significantly positively correlated across all four
tasks, and a principal component analysis (PCA) revealed evi-
dence of a general cognitive factor (referred to as general
cognitive performance hereafter) underlying cognitive per-
formance [67]. Although there is evidence of general
cognitive performance in a wide range of taxa [94-99], there
are few examples of it being recorded in wild populations
(although see [94,95]). Crucially, we found a strong positive
association between group size and general cognitive perform-
ance ([67], figure 1). This relationship could not be explained by
food intake (recorded during focal follows carried out outside
of cognitive testing), body size, neophobia or time spent inter-
acting with the task, suggesting that adults in large groups do
well on tasks not because they are better fed or better able to
focus on tasks, but rather because living in larger groups
informational demands that affect
development.

An important strength of the individual-based approach

involves cognitive

to the study of cognition is that it allows individual cognitive
performance to be recorded over time [45]. Obtaining such
longitudinal data allows us to determine factors affecting
cognitive development. Few of the limited number of studies
investigating the causes of intraspecific cognitive variation
have attempted this (table 2), but there is growing evidence
that the early social environment can affect brain develop-
ment [69,74,76] and adult social learning ability [100]. In
our research, we presented our cognitive test battery to juven-
ile Australian magpies at 100, 200 and 300 days post-fledging,
finding that the relationship between group size and cogni-
tive performance emerges as birds get older [67], adding to
the weight of evidence that social factors can drive the devel-
opment of domain-general cognitive abilities. One important,
but as yet relatively unexplored issue, is whether this relation-
ship may in fact be bi-directional: that is, while social factors
may influence cognitive development, an individual’s cogni-
tive phenotype may also influence their social interactions
with others [101].

5. Cognitive plasticity and evolution

Thus far, we have presented evidence that differences in the
social environment experienced by different individuals
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Figure 1. (a) An Australian magpie interacting with a cognitive task, and (b) the relationship between group size and general cognitive performance. Reproduced

with permission from Ashton et al. [67]. (Online version in colour.)

may influence the development of their cognitive abilities.
However, the SIH, as originally formulated, is an evolution-
ary, not a developmental hypothesis. To begin to address
evolutionary questions, it is therefore necessary to ask
whether elevated cognitive performance provides selective
benefits. Previous studies using psychologically grounded
psychometric tests have found both positive [102-106], nega-
tive [107] and no relationships [94,105] between individual
cognitive performance and measures of fitness. In Australian
magpies, we found that females that performed well in cog-
nitive tasks had more successful nesting attempts, fledged
more chicks and had more offspring that survived to inde-
pendence [67]. Furthermore, cognitive performance was a
stronger predictor of individual reproductive success than
both foraging efficiency and body mass, indicating that vari-
ation in fitness was a direct consequence of cognitive
performance, rather than nutritional intake [67]. Thus, it
seems that in this species, the size of the group an individual
grows up in influences the development of its cognitive per-
formance, and cognitive performance in turn may have
important consequences for reproductive fitness. As we
were unable to manipulate group size experimentally, this
proposed causal pathway cannot be demonstrated unequivo-
cally, but these findings raise important questions. How does
selection act upon a trait that is, at least in part, shaped by the
social environment during early development? Is cognitive
plasticity itself adaptive? Can developmental reaction
norms themselves be shaped by selection? The answers to
these questions have far reaching implications, not only in
terms of understanding cognitive evolution, but also how
we approach the study of evolution in general. Our results
are consistent with the view that the proximate/ultimate dis-
tinction may be blurrier than is often suggested [108], as
developmental processes may often be vital in shaping phe-
notypes that serve an ultimate function. Further work is
needed to understand the interplay between development,
inheritance and selection in shaping cognitive phenotypes.

6. Future directions

Although there is evidence for a link between sociality, cogni-
tion and fitness, the underlying mechanisms driving these
associations are unclear. First, to unequivocally determine
causality in the group size—cognition relationship,

experimental manipulations of group size would be required.
Cross-fostering experiments present the best opportunity to
do this, but in the wild, they may only be feasible in species
that breed synchronously and will accept eggs or young intro-
duced from other groups. Another priority for future research
is to determine precisely how and why group size affects cog-
nitive development. Although we have argued that our
findings cannot be explained by greater foraging intake for
individuals in large groups, it is possible that nutrient quality,
rather than total amount of food captured/received, drives
cognitive development. Stable isotope analyses [109] may
reveal if diet significantly differs between individuals from
larger and smaller groups, and between individuals that exhi-
bit differing cognitive performance. It is also important to
characterize the social demands of living in larger groups,
and relate these to cognitive development. Even within
a group of a given size, different group members may
well experience different information-processing demands,
depending on the pattern of their agonistic and affiliative
interactions and the strength and number of their relation-
ships [110]. Social network analyses can help to quantify
these relationships and characterize each individual’s position
within the wider social network (e.g. [111]), allowing us to
relate each individual’s cognitive profile to the specific
social challenges it has faced during development.

A related point is the need to identify informational chal-
lenges more broadly. Studies of cognitive evolution have
often tended to adopt a dichotomous approach: the key selec-
tion pressures acting on cognitive traits are either ecological or
social. However, in reality, this distinction is not clear-cut:
social animals, after all, solve ecological problems in a
social context (see also [34]). Western-scrub jays (Aphelocoma
californica), for example, use episodic memory to solve an eco-
logical problem: remembering and retrieving food they have
cached for the winter [112], but if there are other scrub jays
present, they also face the need to outwit conspecifics so as
to avoid having their caches stolen [113]. Thus, the problem
is both ecological and social. Moreover, while some propo-
nents of the SIH have argued that the demands of group
living should specifically drive the evolution of socio-cognitive
traits, there is increasing evidence that social behaviour often
relies on the same, domain-general cognitive processes that
are used to solve ecological problems [114,115]. Our research
[67] speaks to this issue, in that social factors (specifically
group size) appear to influence the development of basic
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cognitive processes (learning, memory and inhibitory con-
trol) that are not specifically social. The routes through
which sociality affects cognitive development are still
unknown, but could involve both explicitly social challenges
(e.g. having to learn the characteristics of multiple different
individuals) and ecological challenges that happen to be
played out in a social context. For instance, if adults within
a group show differing foraging niches [116], then dependent
young in large groups may be exposed to a greater range of
foraging locations, strategies and food types, driving elevated
cognitive performance compared to youngsters in small
groups. Thus, future studies may benefit from abandoning
the explicit social/ecological dichotomy and focus instead
on characterizing the full range of informational challenges
that animals must solve.

Finally, while several studies have now identified a
relationship between cognition and measures of fitness
[102-106], our understanding of why cognition confers fit-
ness benefits is limited. To resolve this, studies need to
investigate how cognitive performance may influence the
specific aspect of fitness being measured; for example, in
the Australian magpie, an important next step will be to
investigate if females with greater general cognitive perform-
ance provide offspring with improved parental care (perhaps
through provisioning food of greater nutritional quality),
and/or whether they are better at protecting their fledglings
from threats from predators and conspecifics. Such research
would have the potential to reveal why smarter females are
capable of rearing offspring more successfully.

Understanding the factors driving cognitive evolution is one
of the greatest challenges in biology today. Here, we highlight
how several recent studies, using the relatively novel
approach of focusing on the causes and consequences of indi-
vidual variation in cognition, provide evidence of a link
between sociality and cognition. While these results are
broadly consistent with the SIH, we suggest that the distinc-
tion between social and ecological influences may, to a large
extent, be artificial. Adopting an individual-based approach
to the study of cognition will be important in revealing the
information-processing challenges animals face in their phys-
ical and social environments, and elucidating the role of
developmental processes in cognitive evolution.
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