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Abstract

This paper examines the effects of taxation on long-run growth in
a two-sector endogenous growth model with (i) physical capital as an
input in the education sector and (ii) leisure as an additional argu-
ment in the utility function. The analysis of the effects of taxation -
including income taxation, capital income taxation and labor income
taxation - distinguishes between the case with a unique (interior) bal-
anced growth path and the case with multiple balanced growth paths.
Due to the flexibility of labor supply, taxation of income may induce
agents to spend more or less time on leisure activities. In the case of
income taxation, where capital and labor income are taxed equally,
the resulting effect on the growth rate is negative. The contribution
of endogenous leisure is confined to reducing or increasing the size of
the effect on the growth rate. If only capital income is taxed, the
direction of the effect may reverse. In that case, the positive effect
of the increase in total non-leisure time dominates the direct negative
effect, implying that capital taxation increases the long-run growth
rate.
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1 Introduction
This paper examines the effect of taxation on long-run growth in a two-
sector endogenous growth model with leisure as an additional argument in
the utility function. Endogenizing labor supply through leisure-dependent
utility in models of economic growth has some interesting implications for
the dynamics of these models, see e.g. Ladrón-de-Guevara et al. (1997) and
De Hek (1998, 1999). The present analysis shows that the model may have
multiple balanced growth paths, depending on the values of the parameters.
The analysis of the effects of taxation, including income taxation, capital
income taxation and labor income taxation, therefore distinguishes between
the case with a unique (interior) balanced growth path (BGP) and the case
with multiple balanced growth paths.
In the case of a unique equilibrium, the analysis shows that, like in the case

without leisure-dependent utility, taxation of income has a negative effect on
the long-run growth rate. However, depending on the relative importance
of substitution and income effects, a tax on income leads to a rise or fall
in the time spent on leisure activities, which in turn increases respectively
reduces the size of the negative effect on growth. Furthermore, contrary
to the case without leisure-dependent utility, a tax on capital income may
have a positive effect on the long-run growth rate. The intuition behind
this effect is that, compared to a tax on income, a tax on capital income
induces more time spent on production (capital accumulation) and human
capital accumulation, because labor (time) is not taxed. Hence, time spent
on leisure activities increases. It is shown that, under sensible parameter
configurations, the positive effect of higher total non-leisure time outweighs
the (direct) negative effect on growth of taxation. Finally, concerning the
case with a unique balanced growth path, the analysis shows that a tax on
labor income has a negative effect on the long-run growth rate.
The existence of multiple balanced growth paths is proved by showing that

under some parameter configurations there exist three BGP’s. A necessary
condition for the existence of multiple BGP’s is established and the stability
of the BGP’s is determined numerically. One of these BGP’s is unstable while
the other two BGP’s are stable. The value of the ratio of physical to human
capital determines which of the stable BGP’s will be reached, the relatively
high or relatively low growth BGP. A higher income tax rate in this setting
implies a lower ratio of physical to human capital in the unstable BGP, which
implies that a smaller set of values of the ratio of physical to human capital
will converge to the ’high growth’ BGP. In addition, the growth rate in the
high growth BGP decreases.
The effects of income taxation in the context of a two-sector endogenous
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growth model have been examined before by many authors. Some of these
studies use numerical simulations of calibrated models to calculate the effect
of tax reform on growth, e.g. Lucas (1990), Jones, Manuelli and Rossi (1993),
Stokey and Rebelo (1995) and Hendricks (1999). Others, like Chamley (1992)
and Mino (1996), examine analytically the effect of (capital) income taxation
on growth. Almost all these studies conclude that a (capital) income tax is
bad for growth. An exception is Uhlig and Yanagawa (1996) who show that
higher capital income taxes may lead to faster growth in an overlapping
generations economy with endogenous growth. The reason for this positive
effect is however entirely different from the reason for a similar positive effect
in the present paper. They assume that labor income is paid mostly to the
young while capital income accrues mostly to the old. This implies that a
higher capital income tax, accompanied with a lower labor income tax, leaves
the young with more income out of which to save. If the interest elasticity of
savings is sufficiently low, the net effect on savings and, therefore, on growth
is positive.
The analysis in the present paper is closely related to the analyses in

Rebelo (1991), Ladrón-de-Guevara et al. (1997) and Ortigueira (1998). In
fact, the model in the present paper is the same as Rebelo’s model with
an endogenous leisure choice (Rebelo, 1991, section III). Due to analytical
difficulties, Rebelo confines his analysis of the effect of income taxation on
the rate of growth to numerical simulations. These simulations indicate that
taxing income has a negative effect on the growth rate. The analysis in
this paper shows analytically that this is true. Ladrón-de-Guevara et al.
(1997) establishes that there could be multiple balanced growth paths in the
human capital accumulation model of Lucas (1988) if leisure is endogenously
determined. The present analysis extends this result to the more general
two-sector endogenous growth model, where physical capital is included as an
input of the educational sector. Ortigueira (1998) studies the effects of labor
and capital income taxation on the transitional dynamics to the balanced
growth path. He considers both the case of physical capital in the education
sector and leisure as an additional argument in the utility function as two
separate extensions of the basic model.
The main innovation of this paper relative to the previous literature is

to combine physical capital as an input in the educational sector and leisure
as an additional argument in the utility function. Previous work has studied
models with either the former or the latter feature, but not with both. The
present study first shows that the combination of both features leaves the
possibility of multiple balanced growth paths intact, compared to the model
with endogenous leisure but without capital in the education sector. Second,
the finding that endogenous leisure may strengthen or weaken the effect of
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income taxes on growth, but does not reverse the sign, does depend on this
combination. The positive effect of capital income taxes on growth is however
shown to be a consequence of the labor-leisure choice. The inclusion of capital
as an input in the education sector actually reduces this possibility.
The paper is organized as follows. Section 2 describes the model and its

solution, including the possibility of multiple BGP’s. Section 3 analyses the
effects of taxation on long-run growth, including income, capital-income and
labor-income taxation, both in the unique BGP case and the multiple BGP’s
case. A summary is given in section 4.

2 The Model
Following Rebelo (1991, section III), the model consists of two sectors with
different technologies for production and education. A fraction φ of total
capital K together with NH efficiency units of labor, where N is the fraction
of time allocated to labor and H the stock of human capital, are used for the
production of goods, i.e.,

Y (t) = A (φ(t)K(t))1−γ (N(t)H(t))γ , (1)

where A > 0 and 0 < γ < 1 are parameters. Profit maximization implies
that in equilibrium firms must pay each production factor its marginal pro-
ductivity:

r(t) = (1− γ)A (φ(t)K(t))−γ (N(t)H(t))γ , (2)

w(t) = γA (φ(t)K(t))1−γ (N(t)H(t))γ−1 , (3)

where r is the interest rate and w the wage rate. The government imposes
flat-rate taxes on capital income, τ r, and labor income, τw. The analysis will
be undertaken in a closed economy context, but, as noted by Rebelo (1991), is
valid in a world of open economies connected by international capital markets
if all countries follow the worldwide tax system. Furthermore, to focus on the
effects of taxation, government revenues do not affect the marginal utility of
private consumption and leisure or the production possibilities of the private
sector. Under these assumptions, capital accumulation takes place according
to
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·
K(t) = (1− τ r)r(t)φ(t)K(t) + (1− τw)w(t)N(t)H(t)− δK(t)− C(t), (4)

where δ is the depreciation rate of capital and C aggregate consumption.
Human capital accumulation takes place by combining the remaining frac-

tion (1− φ) of the capital stock with (1−N −L)H efficiency units of labor,
where L is the fraction of the time used for leisure activities. The human
capital stock depreciates at the same rate δ as the physical capital stock.
This leads to the following human capital accumulation equation:

·
H(t) = B [(1− φ(t))K(t)]1−β [(1−N(t)− L(t))H(t)]β − δH(t), (5)

where B > 0 and 0 < β < 1 are parameters.
In the presence of an endogenous leisure choice, the preferences have

to be such that in equilibrium the rate of growth of consumption and the
allocations of time between work, leisure and human capital accumulation
are constant. The following utility function is used throughout the paper1:

U(C,L) =
(CαL1−α)1−σ − 1

1− σ
, (6)

for σ > 0 (1/σ is the elasticity of intertemporal substitution). This leads to
the following optimization problem for the economy,

MaxC(t),L(t),N(t),φ(t)

Z ∞

0

e−ρtU(C(t), L(t))dt (7)

subject to equations (4) and (5), and such that C(t) ≥ 0,K(t) ≥ 0, H(t) ≥ 0,
0 ≤ L(t) ≤ 1, 0 ≤ N(t) ≤ 1, 0 ≤ L(t) +N(t) ≤ 1, 0 ≤ φ(t) ≤ 1, K(0), H(0)
given. The parameter ρ reflects the time preference of the economy.
In order to have different technologies for production and education, γ

and β should be different. The most plausible case is that the goods sec-
tor is relatively intensive in physical capital while the educational sector is
relatively intensive in human capital, i.e. γ < β. In most models with hu-
man capital accumulation β is chosen to be one, as in Lucas (1988) and
Ladrón-de-Guevara et al. (1997).
First, in a competitive equilibrium, the allocation of both physical and

human capital across the two sectors is such that the marginal products of the

1See King, Plosser and Rebelo (1988) for a derivation of the class of utility functions
from which this function is taken.
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two types of capital (measured in terms of units of physical capital) should
be equated in the two sectors, i.e.,

(1− τ r)r = q(1− β)B [(1− φ)K]−β [(1−N − L)H]β (8)

and

(1− τw)w = qβB [(1− φ)K]1−β [(1−N − L)H]β−1 , (9)

where q is the relative value of human capital in terms of physical capital.
Second, the return from investing one unit in physical capital should be the
same as the return from investing 1/q units in human capital. Hence,

(1− τ r)r − δ = βB [(1− φ)K]1−β [(1−N − L)H]β−1 (1− L)− δ +

·
q

q
.

(10)

Third, the optimal growth rate of consumption, given the interest rate, is

·
c

c
=
(1− τ r)r − δ − ρ

σα

(11)

with σα = 1− (1− σ)α. Last, the optimal allocation of time between leisure
and non-leisure activities requires that the marginal utility of leisure equals
the marginal productivity of non-leisure time measured in terms of utility of
forgone consumption,¡
CαL1−α

¢−σ
(1− α)CαL−α = λqβB [(1− φ)K]1−β [(1−N − L)H]β−1H,

(12)

where λ is the current-value shadow price of the capital stock. The derivation
of equations (11) and (12) is given in appendix 5.1.

2.1 The balanced growth path

In a balanced growth pathC,K andH grow at constant rates, while φ, N and

L remain constant. In particular, it follows that
·
C/C =

·
K/K =

·
H/H ≡ g.

If we define x ≡ K/H and z ≡ C/H, then this implies that, along a balanced
growth path,

·
x = 0 and

·
z = 0. Using equations (4) and (5), the

·
x = 0

equation is given by

(1− τ r)rφ+ (1− τw)w
N

x
− C
K
= B (1− φ)1−β (1−N − L)β x1−β. (13)
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Similarly, by equations (5) and (11), the
·
z = 0 equation can be written as

(1− τ r)r − δ − ρ

σα
= B (1− φ)1−β (1−N − L)β x1−β − δ. (14)

Furthermore, equations (8), (9), (10) and (12), together with the fact that
·
q = 0 in a balanced growth path, imply that

1− τw
1− τ r

γ

1− γ

φ

N
=

β

1− β

1− φ

1−N − L, (15)

(1− τ r)(1− γ)A

·
φ

N
x

¸−γ
= βB

·
(1− φ)

1−N − Lx
¸1−β

(1− L), (16)

(1− α)z = αβB

·
(1− φ)

1−N − Lx
¸1−β

L. (17)

This system of equations, consisting of the equations (13)-(17), charac-
terizes a balanced growth path. As is shown in appendix 5.2, the solution
to this system involves the solution to the next two equations in the two
unknown variables N and L:

(1− γ)(1− Tψ)N2 +

+(1− L){β(1− γ + Tγ)− (1− γ)(1− 2Tψ)}N +
−T (1− L)

½
(1− γ)ψ(1− L) + αβγ

1− α
L

¾
= 0, (18)

N =
σα − β

σα
(1− L) + (ρ+ (1− σα)δ)(Tψ)

−(1−ν)(1−β)βν

σαB1−ν [(1− τ r)A(1− γ)]ν
(1− L)ν, (19)

with ψ ≡ γ(1−β)
β(1−γ) < 1, T ≡ 1−τw

1−τr and ν ≡ 1−β
1−β+γ < 1. The first equation

derives from the
·
x = 0 equation, whereas the second equation derives from

the
·
z = 0 equation. To solve this reduced system of two equations, notice

that the first equation can be written as aN2+ b(L)N + c(L), with c(L) < 0.
Hence, N can be expressed as a function of L, say N = f(L). Similarly,
equation (19) expresses N as a function of L, say N = h(L). Therefore we
have a balanced growth path if f(L) = h(L).
To keep the analysis clear, we impose the following condition:
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Condition 1 Tψ < 1.

The reason for imposing this condition is that this ensures that a > 0,
which implies that (i) the discriminant (b2 − 4ac) is always positive (hence,
there are only real solutions) and (ii) only one of the two solutions is positive.
Moreover, it is not only a device to establish a unique positive solution, it
is also an empirically plausible condition. As ψ lies between 0 and 1, the
condition requires T to be less than some value larger than one. E.g. if
γ = 2/3 (consistent with the usual data on labor’s share of income) and
β = 3/4(> γ), the condition requires T to be less than 3/2. Concerning
the empirical evidence, Carey and Tchilinguirian (2000) construct average
effective tax rates on both capital and labor income for the OECD countries,
which are reported in table 1. The last column shows the resulting values
of T . It follows that 14 out of 21 countries have a T smaller than 1 and all
reported countries have a T that is smaller than 3/2. Hence, the condition
is likely to be satisfied in reality. Notice that this condition is automatically
satisfied if β = 1 (as this implies that ψ = 0).

2.2 The possibility of multiple balanced growth paths

In this section we shortly review the possibility of having multiple balanced
growth paths in this model. First, it turns out that there is a necessary
condition for the existence of more than one balanced growth path. This
necessary condition derives from the fact that a balanced growth path is
characterized by the equality of two functions of L, f(L) and h(L). First
it is shown that f(L) is strictly concave. Since a strictly concave function
has at most two intersections with a convex function, and because f(1) =
h(1) is one of the intersections, there will be at most one interior solution if
h(L) is convex. Hence, convexity of h(L) excludes the possibility of multiple
balanced growth paths. This leads to the next proposition.

Proposition 1 Let Condition 1 hold. A necessary condition for the exis-
tence of multiple balanced growth paths is that σ < 1 + ρ

αδ
.

Proof. See appendix 5.5.1.
Is it likely that this condition holds in reality, or not? Given plausible

values of the relevant parameters - 0 < ρ < 0.1, 0 < δ < 0.1 and 0 ≤ α < 1 -
and the empirically estimated range of values for σ - usually σ is estimated
somewhere between 1 and 5 - the comparison could come out either way.
Furthermore, if the condition holds, this does not imply that there are

multiple balanced growth paths, as it is only a necessary condition. Given
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the complexity of the model, to find out whether it is actually possible to
have multiple BGP’s we resort to a numerical analysis. It turns out that
it is possible to have more than one balanced growth path, as can be seen
in figure 1. This figure shows the existence of three BGP’s. BGP 1 and
BGP 2 are interior, while BGP 3 is a non-interior balanced growth path (in
which N + L = 1). See appendix 5.3 for a proof that the non-interior BGP
is characterized by f(L) = 1 − L (i.e., it lies on the point of intersection of
N = f(L) and N = 1− L).
The existence of multiple balanced growth paths raises the question of the

stability properties of the BGP’s. Due to the complexity of the dynamical
system, we investigated the stability of the BGP’s numerically (see appendix
5.4). That analysis implies that BGP 2 is unstable, while BGP 1 and BGP 3
are stable. Let xi (i = 1, 2, 3) denote the capital-human capital ratio at BGP
i. Then, given some initial value x0 (6= x2) there are z0, N0, L0 and φ0 such
that {x0, z0,N0, L0,φ0} lies on a stable manifold and x0 converges to either
x1 or x3, depending on the specific value of x0. The next lemma implies that
along the curve of f(L) a higher value of L is accompanied with a higher
capital-human capital ratio.

Lemma 2 Let Condition 1 hold and let x(L,N) denote the optimal capital-
human capital ratio as a function of L and N . Then ∂x(L,f(L))

∂L
> 0.

Proof. See appendix 5.5.2.
From this Lemma we may conclude that - given the stability properties

implied by the numerical analysis - if x0 is smaller than x2 it converges to x1
and if x0 is larger than x2 it converges to x3. Furthermore, as will be apparent
from the equation describing the growth rate of the economy as a function of
leisure (see equation 20), more leisure lowers the growth rate on a balanced
growth path. Thus, an economy with a relatively high human capital stock
will converge to the ’high-growth’ BGP, while an economy endowed with
a relatively low human capital stock will end up in the ’low-growth’ BGP
(in which the growth rate is actually negative if the depreciation rate δ is
positive).
As a last remark, it should be noted that the existence of multiple bal-

anced growth paths relies on the presence of a labor-leisure choice, i.e. 0 <
α < 1. If α = 1, the model reduces to the basic two-sector endogenous
growth model as described by Rebelo (1991, section III A), which has a
unique interior solution.

9



3 The effects of taxation
This section analyses the effects of taxation - income taxation, labor income
taxation and capital income taxation - on the long-run growth rate. We
distinguish two separate cases, one with a unique interior balanced growth
path and one with multiple balanced growth paths.2 The effects critically
depend on which of the cases apply.

3.1 Unique interior balanced growth path

3.1.1 Income taxation

Taxing (total) income implies that both tax rates are equal, i.e. τw = τ r ≡ τ
and T = 1. To find the effect of taxation on the long-run growth rate we
first write the growth rate, g, as a function of L,

g(L) = G(1− τ r)
(1−γ)ν(1− τw)

γν(1− L)1−ν − ρ+ δ

σα

, (20)

with G = ψ(1−β)(1−ν)(βB)1−ν ((1− γ)A)ν /σα. See appendix 5.6 for a deriva-
tion of this result. Notice that this expression for the growth rate reduces to
the growth rate in Rebelo (1991, equation 14) if α = 1.
This equation for the growth rate shows that, if both tax rates are equal-

ized to τ , the tax rate has a direct negative effect on the growth rate of
(1 − τ )ν. Moreover, the tax rate also has an indirect effect on the growth
rate through the effect on leisure. The direct effect consists of three sepa-
rate effects. First, taxation takes resources away from a productive sector
(the capital production sector) to use it in some unproductive way. Second,
income taxation reduces the marginal products of capital and labor in the
production of capital (see equation 4), inducing the economy to shift re-
sources from capital production to human capital production (and to leisure
activities, but this is part of the indirect effect). Third, the income effect
resulting from taxing income implies that more capital and more time will
be devoted to the production of capital. As noted above, these three effects
taken together, apart from the (indirect) effect on total working time, affect
the growth rate negatively.
The analysis above implies that the determination of the overall effect of

an income tax on the long-run growth rate involves the effect of the tax rate
on the equilibrium value of leisure. To find this latter effect, notice that,

2If h(0) < f(0) it may happen that there is one interior BGP. However, that BGP will
be unstable and the economy will converge to one of the two non-interior BGP’s. This
situation, therefore, falls into the category of multiple BGP’s.
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since T = 1, the function f(L) is not affected by a change in the tax rate τ .
The function h(L), on the contrary, is affected by a change of the tax rate.
In particular, the nature of this effect (positive or negative) depends on the
earlier encountered comparison between σ and 1 + ρ/(αδ): An increase in
τ induces a positive shift of h(L) if σ < 1 + ρ/(αδ) and a negative shift if
σ > 1 + ρ/(αδ). (See figure 2 for an example of the latter effect.) Hence,
higher income taxes lead to a new balanced growth path with more or less
time spent on leisure activities, depending on the relative value of σ, the
inverse of the elasticity of intertemporal substitution (EIS). Intuitively, the
higher σ, the lower the EIS and the more anxious agents are to smooth their
consumption over time and, hence, the stronger the income effect. As a result,
at a relatively high level of σ the income effect dominates the substitution
effect, leading to less time spent on leisure activities.
Spending less time on leisure activities and, hence, more time on working,

either to produce output (and capital) or to produce human capital, has
obviously a positive effect on the growth rate, as is also clear from equation
(20). This raises the question whether this (indirect) positive effect could be
stronger than the (direct) negative effect. Analyzing the derivative of g(L)
with respect to the tax rate τ , however, reveals that this situation cannot
arise.

Proposition 3 Let Condition 1 hold. Suppose that there is a unique interior
BGP. Let τw = τ r ≡ τ . Then an increase in the tax rate induces a decline
the long-run rate of growth.

Proof. See appendix 5.5.3.
Hence, taxing both labor income and capital income equally reduces the

long-run growth rate. Compared to the situation with a fixed labor supply,
the negative effect of income taxation on the long-run growth rate is either
stronger (i.e. more negative) in the case of a relatively large EIS, which leads
to more time spent on leisure activities, or weaker (i.e. less negative) in
the case of a relatively small EIS, which leads to less time spent on leisure
activities. Smith (1996) finds a similar but opposite effect of introducing
uncertainty into the model. In a stochastic growth model, he finds that: (i)
If the EIS is small, an increase in the tax rate reduces growth more than
predicted by non-stochastic models; (ii) If the EIS is large, the long-run
growth rate decreases by less than predicted by non-stochastic models.3

3The comparison between the effects of uncertainty in Smith (1996) and the effects
of endogenous labor supply in the present paper on the impact of tax rates on long-run
growth can de drawn even further. Both analyses show that it is actually possible for a
tax increase to increase growth (see section 3.1.2 in the present paper).
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If β = 1, that is, if human capital accumulation is independent from
physical capital, the expression for the growth rate, as given by equation
(20), changes to

g(L) =
B

σα
(1− L)− ρ+ δ

σα
. (21)

This implies that taxes have no direct effect on the long-run growth rate.
Moreover, it can easily be shown that in this case the function h(L) is inde-
pendent from any tax rate (see appendix 5.2). As a result, income taxation
has no indirect effect on the growth rate either. Hence, the finding that
endogenous leisure may strengthen or weaken the effect of income taxes on
growth, but does not reverse the sign, depends on the combination of both
physical capital in the educational sector and leisure as an additional argu-
ment in the utility function.

3.1.2 Capital income taxation

In this section we analyze the effect of a capital income tax on the long-run
growth rate. For simplicity, let us start with the case in which capital is
not an input in the education sector, i.e. β = 1. Hence, the capital income
tax rate has no direct effect on the growth rate (see equation 21). A change
in the time spent on leisure, then, directly translates into a change in the
growth rate. To find the indirect effect of the tax rate through the effect on
leisure, we need to examine, as in the previous section, the effect of the tax
rate on the functions f(L) and h(L), which are (implicitly) given in appendix
5.2. First, notice that f(L) only depends on the capital income tax rate, τ r,
through T . The derivative of f(L) with respect to T can be derived from
total differentiation of equation (33). As a result,

∂f(L)

∂T
∝ γ(1− L)

·
α

1− α
L− f(L)

¸
> 0. (22)

The positive sign of this derivative follows directly from equation (33) by
noticing that (1 − γ)N2 > 0. A higher capital income tax rate therefore
shifts the function f(L) upwards.
Second, the capital income tax rate has no effect on h(L). This implies

that, given the existence of a unique equilibrium, the effect of the tax rate
on the equilibrium value of leisure is negative. Since h(0) > f(0) = 0 (see
footnote 2), h(L) (which is monotone in L) intersects f(L) from above, which
implies that an upward shift of f(L) decreases the equilibrium value of leisure.
A rise in the capital income tax rate, consequently, leads to less time spent
on leisure activities, and, hence, to a rise in the rate of economic growth.
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Proposition 4 Given Condition 1, let a unique interior BGP exist. If hu-
man capital is the only input in the education sector, an increase in the tax
rate on (physical) capital income induces a rise in the long-run rate of growth.

Proof. This follows immediately from the consideration preceding the
proposition.
Let us now examine the more general case in which capital is an input

in the education sector, i.e. 0 < β < 1. Equation (20) reveals that in this
case the capital income tax has a direct negative effect on the growth rate
of (1− τ r)

(1−γ)ν. The indirect effect is now more complicated as the sign of
the derivative of f(L) with respect to T cannot be established analytically.
However, extensive numerical computations4 show that ∂f(L)/∂T is positive
for all L ∈ (0, 1). Then, a higher τ r, which implies a higher T , shifts f(L)
upwards.

Numerical Result 1 ∂f(L)/∂T > 0 for all L ∈ (0, 1).

The effect of the capital income tax rate on h(L) can be deduced from
rewriting equation (19) as

h(L) =
σα − β

σα
(1− L) + [ρ+ (1− σα)δ]×

×∆(1− τ r)
−ν(1−γ)(1− τw)

−(1−ν)(1−β)(1− L)ν, (23)

with ∆ = ψ−(1−ν)(1−β)βν
σαB1−ν [A(1−γ)]ν . Therefore, the effect of the capital income tax

rate on h(L), like in the case of the (total) income tax rate, depends on the
relative values of σ, α, δ and ρ: An increase in τ r induces a positive shift of
h(L) if σ < 1 + ρ/(αδ) and a negative shift if σ > 1 + ρ/(αδ).
Again we can ask ourselves the question whether the positive effect on

the growth rate through a fall in the time spent on leisure activities could
dominate the direct negative effect. While this was not possible in the case
of income taxation, it is possible in the case of capital income taxation to
construct examples in which the tax rate has a positive effect on the long-
run growth rate. Moreover, it is possible for sensible or empirically plausible
parameter values. For example, let γ = 0.67 (consistent with data on labor’s
share of income); ρ = 0.05; δ = 0.1; σ = 3 (the elasticity of intertemporal
substitution, 1/σ, is usually estimated between 0.2 and 1, see e.g. Vissing-
Jørgenson, 2002, Mulligan, 2002); β = 0.95; α = 0.5; A = 0.5; B = 0.4.
Table 2 shows the effect of increasing τ r from 0 to 0.5 on leisure L and the

4The numerical computations depend on the values of α, β, γ and T , such that 0 <
α < 1, 0 < γ < β < 1 and T > 0.
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growth rate g, both starting from an undistorted economy (τw = 0) as well as
a distorted economy (τw = 0.5). Notice that the finding that capital income
taxation can have positive growth effects depends on the endogeneity of the
leisure choice. With a fixed labor supply this result cannot be obtained.

Proposition 5 Let capital be an input in the education sector. Then there
exist (sensible) configurations of the parameters such that an increase in the
tax rate on capital income induces a rise in the long-run rate of growth.

Proof. This follows from numerical simulation of the model (see table
2).
The reason for this positive effect on the growth rate - or, better, the

possibility of a positive effect - is that, compared to income taxation, spending
time on capital accumulation, N , and on human capital accumulation, 1 −
N−L, becomes more attractive, because human capital is not taxed. Hence,
leisure becomes more expensive and will be purchased less.

3.1.3 Labor income taxation

Let us first examine the case of β = 1. Given the growth rate in equation
(21) and the functions f(L) and h(L) (equations 33 and 34 in appendix 5.2),
it is easy to see that the effect of a labor income tax is exactly the opposite of
the effect of a capital income tax. A tax on labor income, therefore, induces
a downward shift in f(L), while leaving h(L) unchanged. Under the same
conditions as in the previous section, a higher tax rate on labor income will
increase the time spent on leisure.

Proposition 6 Given Condition 1, let a unique interior BGP exist. If hu-
man capital is the only input in the education sector, an increase in the tax
rate on labor income induces a decline in the long-run rate of growth.

Proof. Follows immediately from Proposition 4.
Considering the more general case in which capital is an input in the

education sector, equation (20) directly shows that the labor income tax rate
has a direct negative effect on the growth rate of (1 − τw)

γν. The indirect
effect of the labor income tax rate through leisure is very similar to the
indirect effect of the capital income tax rate. First, the effect of τw on f(L)
is exactly the opposite from the effect of τ r, i.e., a higher τw shifts f(L)
downwards (given Numerical Result 1). Second, the effect of τw on h(L) is
qualitatively similar to the effect of τ r and follows from equation (23): An
increase in τw induces a positive shift of h(L) if σ < 1+ρ/(αδ) and a negative
shift if σ > 1 + ρ/(αδ).
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What will be the effect of the labor income tax rate on the long-run rate of
growth? If we compare labor income taxation with income taxation, the use
of physical capital in the capital accumulation process is not taxed, implying
that more capital is used to accumulate capital and less to accumulate human
capital. This has a negative effect on growth. Moreover, the positive effect
on growth through reduced leisure as present in the case of capital income
taxation is absent in this case. This suggests that the effect of the labor
income tax rate on the long-run rate of growth is negative. This is confirmed
in the next proposition.

Proposition 7 Let Condition 1 and Numerical Result 1 hold. Suppose that
there exists a unique interior BGP. Then an increase in the tax rate on labor
income induces a decline in the long-run rate of growth.

Proof. See appendix 5.5.4.
Hence, increasing the tax rate on labor income reduces the long-run rate

of growth. Like in the case of income taxation, the negative effect of income
taxation on the long-run growth rate, compared to the situation with a fixed
labor supply, is either stronger (i.e. more negative) in the case of more time
spent on leisure activities or weaker (i.e. less negative) in the case of less
time spent on leisure activities.

3.2 Multiple balanced growth paths

Suppose that there are three balanced growth paths as depicted in figure 1.
Then, according to proposition 1, σ < 1+ ρ

αδ
. This implies that a higher tax

rate on income induces an upward shift in h(L). As a result BGP’s 1 and
2 change, while BGP 3 stays the same, as is shown in figure 3. In the new
BGP 1 - the stable interior path - people have more leisure, work more in the
goods sector but spend less time on education. As a result the growth rate
is lower. Taxation of income also induces a shift in BGP 2 - the unstable
interior path - such that less time will be spent on leisure activities, while
the effect on the time spent on the production of goods is ambiguous. Due to
the reduced time spent on leisure, however, it can be shown that the growth
rate in the new balanced growth path is always higher than the growth rate
in the old balanced growth path, while the capital-human capital ratio has
fallen. The effects of income taxation on the three BGP’s are summarized in
the next proposition.

Proposition 8 Let Condition 1 hold. Suppose that there are three balanced
growth paths as depicted in figure 1. Then an increase in the tax rate on

15



income induces (i) a shift in BGP 1 such that the relating long-run rate of
growth decreases, (ii) a shift in BGP 2 such that the relating long-run rate
of growth increases while the capital-human capital ratio decreases, and (iii)
no shift in BGP 3.

Proof. See appendix 5.5.5.
Observe that the result that a higher income tax implies a lower capital-

human capital ratio in BGP 2 implies that the set of (initial) values of the
capital-human capital ratio converging to the high-growth BGP - which itself
has a lower growth rate - reduces.
Finally, consider the effects of the two tax rates on capital and labor

income separately. Due to the fact that σ is smaller than 1 + ρ
αδ
, both

capital income taxation as well as labor income taxation have a positive
effect on h(L). As shown in the previous subsections, given Condition 1 and
Numerical Result 1, a higher tax rate on capital (labor) income induces an
upward (downward) shift in f(L). Figures 4 and 5 show the effects of positive
tax rates on capital and labor income respectively on the equilibrium values
of N and L.

4 Summary
The present study analyses the effects of taxation on long-run growth in a
two-sector endogenous growth model with (i) physical capital as an input in
the education sector and (ii) leisure as an additional argument in the utility
function. First, depending on the values of the parameters, the model may
exhibit multiple balanced growth paths. As shown in the earlier literature,
this is due to the labor-leisure choice. The inclusion of capital in the edu-
cation sector does not change this conclusion. This paper gives an example
where there are three balanced growth paths and, additionally, establishes
the effects of taxation on the three equilibria.
Second, due to the flexibility of labor supply, taxation of (capital and/or

labor) income may induce agents to spend more or less time on leisure activi-
ties, depending on the relative sizes of the substitution and income effects. In
the case of income taxation, where capital and labor income are taxed equally,
the resulting effect on the growth rate is negative, as in the case without en-
dogenous leisure. The finding that endogenous leisure may strengthen or
weaken the effect of income taxes on growth (without reversing the sign) is,
however, also the result of including capital as an input in education. Having
only human capital as an input in education implies that income taxation
has no effect on the growth rate.
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In the case of capital income taxation the direction of the effect may also
change. In this case, the positive effect of the increase in total non-leisure
time dominates the direct negative effect of the tax rate on growth, implying
that capital taxation increases the long-run growth rate. The possibility of
a positive effect of capital income taxes on growth is shown to be a conse-
quence of the labor-leisure choice. The inclusion of capital as an input in the
education sector actually reduces this possibility.
Labor income taxation, on the contrary, has a negative effect on the

growth rate, with or without capital as an input in the education sector.
In general, with capital in the education sector, endogenous leisure may
strengthen or weaken the effect of labor income taxes on growth, but does
not reverse the sign.

5 Appendix

5.1 The consumer optimization problem

The Hamiltonian associated with the representative consumer’s optimization
problem reads

H =
(CαL1−α)1−σ

1− σ
+ λ

·
K + µ

·
H, (24)

where
·
K and

·
H are given by equations (4) and (5). The first-order conditions

are: ¡
CαL1−α

¢−σ
αCα−1L1−α = λ, (25)

·
λ = λρ− ∂H

∂K
, (26)

¡
CαL1−α

¢−σ
(1− α)CαL−α = µβB [(1− φ)K]1−β [(1−N − L)H]β−1H,

(27)

·
µ = µρ− ∂H

∂H
. (28)

If we define q ≡ µ
λ
, and make use of equations (8), (9) and (10), we can show

that
·
λ

λ
=

·
µ

µ
= ρ+ δ − (1− τ r)r, (29)
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which implies, by equation (25), that the growth rate of consumption is given
by equation (11). Furthermore, by the definition of q, equation (27) directly
turns into equation (12). Notice that equation (29) implies that q is constant.
Since µ is growing at the same rate as λ and H is growing at the same

rate as K, the transversality condition is given by

lim
t→∞

£
e−ρtλ(t)K(t)

¤
= 0. (30)

5.2 Solution to the system of equations (13)-(17)

Using equations (2) and (3), equation (13) can be rewritten as

(1− τ r)(1− γ)A

µ
φ

N

¶−γ
x1−γφ+ (1− τw)γA

µ
φ

N

¶1−γ
x1−γN − z

= B

µ
1− φ

1−N − L
¶1−β

x2−β(1−N − L). (31)

Note that equation (15) implies that

1− φ

1−N − L = (Tψ)
φ

N

and

φ =
N

Tψ(1−N − L) +N .

Then, from equation (16), we can derive an expression of x, i.e.,

x =

·
(1− τ r)(1− γ)A

βB(Tψ)1−β(1− L)
¸ 1
1−β+γ N

φ
. (32)

Moreover, it is easy to show that N
φ
(1−N−L) = Tψ(1−L)2+(1−2Tψ)(1−

L)N + (Tψ − 1)N2. These observations, together with equation (17), imply
that equation (31) transforms to equation (18).
To derive equation (19), we rewrite equation (14) with the help of equation

(10):

βB (1− φ)1−β (1−N − L)β−1 x1−β(1− L)− δ − ρ

= σαB (1− φ)1−β (1−N − L)β x1−β − σαδ,

or,

B (1− φ)1−β (1−N − L)β−1 x1−β [β(1− L)− σα(1−N − L)]
= ρ+ (1− σα)δ.
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Inserting the expression for x and simplifying yields equation (19).
If β = 1, equations (18) and (19) reduce to

(1− γ)N2 + Tγ(1− L)N − T αγ

1− α
(1− L)L = 0, (33)

N =
σα − 1
σα

(1− L) + ρ+ (1− σα)δ

σαB
. (34)

5.3 The non-interior balanced growth path

The Hamiltonian associated with the restricted optimization problem (in
which N = 1− L) reads

H =
(CαL1−α)1−σ

1− σ
+ θ

·
K, (35)

where
·
K is given by equation (4) (with φ = 1 andN = 1−L). The first-order

conditions are: ¡
CαL1−α

¢−σ
αCα−1L1−α = θ, (36)

·
θ = θρ− ∂H

∂K
, (37)

¡
CαL1−α

¢−σ
(1− α)CαL−α = θ(1− τw)wH. (38)

Equations (36) and (38), together with (3) (with φ = 1 and N = 1 − L)
imply that

z =
α

1− α
(1− τw)γAx

1−γ(1− L)γ−1L,

while the
·
x = 0 and

·
z = 0 equations are now given by

(1− τ r)(1− γ)A(1− L)γx1−γ + (1− τw)γA(1− L)γx1−γ = z (39)

and

(1− τ r)r − δ − ρ = −σαδ. (40)

It is easy to show that the solution for L to this set of equations is implicitly
given by

(1− τ r)(1− γ) + (1− τw)γ =
α

1− α
(1− τw)γ

L

1− L, (41)

which is exactly equal to equation (18) with N = 1− L.
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5.4 Stability of the balanced growth paths

To investigate the local stability of the balanced growth paths, we first derive
the law of motion of the variables {x, z, L,N,φ}. Elimination of the costate
variables leads to the following system of five differential equations:

·
x = A (φx)1−γ Nγ −B(1− φ)1−β(1−N − L)βx2−β − z,

·
L =

L

1− (1−σ)(1−α)
σα

·
η(x,L,N,φ) +

1− γ

β − γ
µ(x, L,N,φ)

¸
,

·
z = z

·
η(x,L,N,φ) +

(1− σ)(1− α)

σαL

·
L

¸
,

·
N = N

"
1− φ

φ(1− L)−N
·
L+

1−N − L
φ(1− L)−N

Ã ·
x

x
+

1

β − γ
µ(x,L,N,φ)

!#
,

·
φ = φ(1− φ)

·
1− L

(1−N − L)N
·
N +

1

1−N − L
·
L

¸
,

where η(.) and µ(.) are given by

η(x, L,N,φ) =
(1− γ)A

σα

(φx)−γ Nγ −B((1− φ)x)1−β(1−N − L)β

−ρ+ (1− σα)δ

σα
,

µ(x, L,N,φ) = (1− L)βB((1− φ)x)1−β(1−N − L)β−1
−(1− γ)A (φx)−γ Nγ.

By differentiating each differential equation with respect to x, z, L,N and φ
in a steady state, we obtain the coefficients matrix of the linearized system
around a steady state. The eigenvalues of this matrix determine the local
stability of the steady state. If all eigenvalues have negative real parts the
steady state is locally stable. If all eigenvalues have positive real parts the
steady state is unstable. If some of the eigenvalues have negative and others
positive real parts, there exists a stable manifold, which is defined as the
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set of points on which convergence to the steady state takes place. The
dimension of the stable manifold is equal to the number of eigenvalues with
negative real parts.
In the case of the three equilibria of figure 1 the (approximate) values of

the eigenvalues, which are given in table 3, imply that BGP 2 is unstable,
while BGP’s 1 and 3 are stable, i.e. both have a stable manifold of dimension
one.

5.5 Proofs

5.5.1 Proof of Proposition 1

As written in the paragraph preceding Proposition 1, the first step in the
proof is to prove that f(L) is strictly concave. Solving equation (18) for
N = f(L) yields

2(1− γ)(1− Tψ)f(L) + (1− L)Ω = (1− L)Q (42)

with Q =
¡
Ω2 + 4(1− γ)(1− Tψ)T{(1− γ)ψ + αβγ

1−α
L
1−L}

¢1/2
> 0 and Ω =

{β(1−γ+Tγ)−(1−γ)(1−2Tψ)}. Differentiating this equation with respect
to L gives

2(1− γ)(1− Tψ)f 0(L) = Ω−Q+ 2(1− γ)(1− Tψ)Tαβγ
(1− α)Q(1− L) .

Replacing Ω−Q with the expression implied by equation (42) and simplifying
yields

(1− L)f 0(L) = −f(L) + αβγT

(1− α)Q
, (43)

which, since Q > 0, implies that

−(1− L)f 0(L) < f(L). (44)

Using equation (43), the second derivative of f(L) can be written as

f 00(L) =
−2(1− γ)(1− Tψ)(αβγT )2

(1− α)2(1− L)3Q3 < 0. (45)

This proves that f(L) is strictly concave.
The second step is to find out when h(L) is convex and/or concave. It is

straightforward to show that the second derivative of h(L) is given by

h00(L) = −ν(1− ν)
(ρ+ (1− σα)δ)(Tψ)

−(1−ν)(1−β)βν

σαB1−ν [(1− τ r)A(1− γ)]ν
(1− L)ν−2. (46)

Hence, h(L) is strictly concave if σ < 1+ ρ
αδ
and strictly convex if σ > 1+ ρ

αδ
.
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5.5.2 Proof of Lemma 2

From equation (32) we derive that

x(L,N) = X0 [Tψ(1− L) + (1− Tψ)N ] (1− L)
−1

1−β+γ , (47)

with X0 ≡
h
(1−τr)(1−γ)A
βB(Tψ)1−β

i 1
1−β+γ

> 0. This implies that

x(L, f(L)) = η1(1− L)
γ−β

1−β+γ + η2f(L)(1− L)
−1

1−β+γ , (48)

with η1 ≡ X0Tψ > 0 and η2 ≡ X0(1− Tψ) > 0 (by Condition 1). Differen-
tiating with respect to L yields

∂x(L, f(L))

∂L
= η1

β − γ

1− β + γ
(1− L) −1

1−β+γ + η2f
0(L)(1− L) −1

1−β+γ (49)

+η2
1

1− β + γ
f(L)(1− L) −1

1−β+γ−1.

This derivative is positive iff

η1
β − γ

1− β + γ
+ η2f

0(L) + η2
1

1− β + γ
f(L)(1− L)−1 > 0, (50)

which is true since equation (44) implies that

−f 0(L) < 1

1− β + γ
f(L)(1− L)−1, (51)

since 1
1−β+γ > 1.

5.5.3 Proof of Proposition 3

Inserting τw = τ r ≡ τ into equation (20) implies that the growth rate as a
function of L reads

g(L) = G(1− τ )ν(1− L)1−ν − ρ+ δ

σα
. (52)

The derivative with respect to τ is, then, given by

∂g(L)

∂τ
= −νG(1− τ)ν−1(1− L)1−ν − (1− ν)G(1− τ)ν(1− L)−ν ∂L

∂τ
, (53)

which implies that ∂g
∂τ
< 0 iff

∂L

∂τ
> − ν

1− ν

µ
1− L
1− τ

¶
≡ −1− β

γ

µ
1− L
1− τ

¶
. (54)
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To prove the proposition we will show that this inequality is satisfied.
The total derivative of f(L) = h(L), which applies in a balanced growth

path, can be written as

(f 0(L)− h0(L)) ∂L
∂τ

=
∂h(L)

∂τ
. (55)

Let h(L) = H0(1−L)+H1(1−τ )−ν(1−L)ν , whereH0 andH1 can be deduced
from equation (19). Then

∂h(L)

∂τ
= νH1(1− τ )−ν−1(1− L)ν (56)

and

−h0(L) = H0 + νH1(1− τ)−ν(1− L)ν−1. (57)

This implies thatµ
1− τ

1− L
¶

∂L

∂τ
=

νH1(1− τ)−ν(1− L)ν−1
f́(L) +H0 + νH1(1− τ )−ν(1− L)ν−1 , (58)

which should be higher than − ν
1−ν to satisfy equation (54). Hence, equation

(54) is satisfied iff

(1− ν)H1(1− τ)−ν(1− L)ν−1
f 0(L) +H0 + νH1(1− τ )−ν(1− L)ν−1 > −1. (59)

In the case of a unique interior BGP, h(L) intersects f(L) from above, imply-
ing that f 0(L)−h0(L) > 0. This allows us to multiply both sides of equation
(59) with f 0(L)− h0(L) which yields

f 0(L) +H0 > −H1(1− τ)−ν(1− L)ν−1, (60)

or

−f 0(L) < H0 +H1(1− τ)−ν(1− L)ν−1 = h(L)

1− L =
f(L)

1− L. (61)

According to equation (44) this inequality is satisfied.

5.5.4 Proof of Proposition 7

This proof proceeds along the same lines as the proof of proposition 3. First,
it is easy to show that ∂g

∂τw
< 0 iff

∂L

∂τw
> − γν

1− ν

µ
1− L
1− τw

¶
≡ −(1− β)

µ
1− L
1− τw

¶
. (62)
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Then we take the total derivative of f(L) = h(L), which can be written as

(f 0(L)− h0(L)) ∂L

∂τw
=

∂h(L)

∂τw
− ∂f(L)

∂τw
. (63)

Two observations are made at this point. First, by Numerical Result 1,
∂f(L)
∂τw

< 0. Second, in the case of a unique interior BGP, h(L) intersects f(L)
from above, which implies that f 0(L) − h0(L) > 0. These two observations
imply that

∂L

∂τw
>

∂h(L)/∂τw
f 0(L)− h0(L) , (64)

which can be rewritten asµ
1− τw
1− L

¶
∂L

∂τw
>
(1− ν)(1− β)H1(1− τw)

−(1−ν)(1−β)(1− L)ν−1
f 0(L) +H0 + νH1(1− τw)−(1−ν)(1−β)(1− L)ν−1 . (65)

If the right-hand side of this inequality is higher than −(1− β), i.e.,

(1− ν)(1− β)H1(1− τw)
−(1−ν)(1−β)(1− L)ν−1

> −(1− β)
£
f́(L) +H0 + νH1(1− τw)

−(1−ν)(1−β)(1− L)ν−1¤ , (66)
equation (62) is satisfied and the proof is done. It is easy to show that this
inequality can be transformed to

−f 0(L) < h(L)

1− L =
f(L)

1− L, (67)

which is satisfied according to equation (44).

5.5.5 Proof of proposition 8

First, observe that in BGP 1, f 0(L)− h0(L) > 0. This implies that this case
is similar to the case of a unique interior BGP as worked out in the proof of
Proposition 3, implying that a marginal increase in the tax rate decreases the
long-run growth rate. Second, reasoning along the same lines as in the proof
of Proposition 3 shows that, since f 0(L) − h0(L) < 0 in BGP 2, a marginal
increase in the tax rate increases the long-run growth rate. Obviously BGP
3 is unchanged.
To find the effect of the tax rate on the capital-human capital ratio we

calculate the derivative of x(L, f(L)) (see equation 48):

∂x(L, f(L))

∂τ
=

∂η1
∂τ
(1− L)− β−γ

1−β+γ +
∂η2
∂τ
f(L)(1− L)− 1

1−β+γ +·
η1(β − γ)

1− β + γ
(1− L)− 1

1−β+γ +
η2

1− β + γ
f(L)(1− L)− 1

1−β+γ−1
¸
∂L

∂τ
.(68)
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Since β > γ, ∂ηi
∂τ
< 0 for i = 1, 2 and ∂L

∂τ
< 0 in BGP 2 (the shift in BGP 2

reduces the time spent on leisure), the capital-human capital ratio x falls.

5.6 Derivation of the growth rate as a function of L

Equation (2) implies that

(1− τ r)r = (1− τ r)(1− γ)A

·
φ

N
x

¸−γ
= βB

·
(1− φ)

1−N − Lx
¸1−β

(1− L)

= βB(Tψ)1−β
µ

φ

N

¶1−β
x1−β(1− L)

where the second and third equations follow from equations (15) and (16)
respectively. Inserting the expression for x as given by equation (32), yields

(1− τ r)r = ψ(1−β)(1−ν)(βB)1−ν ((1− γ)A)ν (1− τ r)
νT (1−β)(1−ν)(1− L)1−ν.

(69)

Inserting this equation into equation (11) yields the growth rate as a function
of L as given in equation (20).
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Table 1. Average Effective Tax Rates1, 1991-1997
Per cent

capital income (τ r) labor income (τw) T ≡ 1−τw
1−τr

Australia 28.0 22.6 1.21
Austria 18.9 41.8 0.72
Belgium 30.8 39.7 0.87
Canada 38.6 28.7 1.16
Denmark 29.12 42.8 0.81
Finland 19.6 44.5 0.69
France 23.6 40.2 0.78
Germany 19.9 35.9 0.80
Greece 26.8 24.3 1.03
Ireland 18.7 25.1 0.92
Italy 31.0 36.3 0.92
Japan 32.6 24.0 1.13
Netherlands 24.7 41.0 0.78
New Zealand 34.9 24.2 1.16
Norway 20.2 35.5 0.81
Portugal 18.3 22.7 0.95
Spain 20.6 30.4 0.88
Sweden 30.5 48.5 0.74
Switzerland 25.1 30.2 0.93
U.K. 38.4 21.0 1.28
U.S.A. 31.1 22.6 1.12

Simple average 26.7 32.5 0.92

1. The average effective tax rates on capital and labor income are taken from
Carey and Tchilinguirian (2000, Table 4) using the revised methodology.

2. Denmark’s capital income tax rate is for 1991-1996.

Table 2. The effect of capital income taxation

τw = 0 τw = 0 τw = 0.5 τw = 0.5
τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5

L 0.32 0.31 0.35 0.32
g 0.037 0.038 0.029 0.032
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Table 3. The (approximate) eigenvalues of the three BGP’s

BGP 1 BGP 2 BGP 3
0.055 0.052 0.073
0.027 0.027+0.033i -0.006
0 0.027-0.033i 0
-0.028 0
0 0
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Figure 1: An example of multiple equilibria (α = 0.6, β = 0.96, γ = 0.5,
A = 1.8, B = 0.106, ρ = 0.03, σ = 0.35, δ = 0.05, τ r = τw = 0).
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Figure 2: An example of the effect of income taxation on the unique BGP
(α = 0.5, β = 0.8, γ = 0.67, A = 0.2, B = 0.4, ρ = 0.05, σ = 4, δ = 0.1,
τ r = τw = 0, τ ŕ = τ ẃ = 0.5).
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Figure 3: An example of the effect of income taxation on the three BGP’s
(α = 0.6, β = 0.96, γ = 0.4, A = 1.8, B = 0.11, ρ = 0.03, σ = 0.35, δ = 0.05,
τ r = τw = 0, τ ŕ = τ ẃ = 0.3).
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Figure 4: An example of the effect of capital income taxation on the three
BGP’s (α = 0.6, β = 0.96, γ = 0.35, A = 1.5, B = 0.11, ρ = 0.03, σ = 0.35,
δ = 0.05, τ r = τw = 0, τ ŕ = 0.3).
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Figure 5: An example of the effect of labor income taxation on the three
BGP’s (α = 0.6, β = 0.96, γ = 0.35, A = 1.5, B = 0.11, ρ = 0.03, σ = 0.35,
δ = 0.05, τ r = τw = 0, τ ẃ = 0.15).
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