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Abstract

We previously estimated that 42% of patients with severe developmental disorders carry 

pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory 

elements affecting genes associated with developmental disorders, or other genes, has been 
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essentially unexplored. We identified de novo mutations in three classes of putative regulatory 

elements in almost 8,000 patients with developmental disorders. Here we show that de novo 
mutations in highly evolutionarily conserved fetal brain-active elements are significantly and 

specifically enriched in neurodevelopmental disorders. We identified a significant twofold 

enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients 

without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active 

regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal 

brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our 

findings represent a robust estimate of the contribution of de novo mutations in regulatory 

elements to this genetically heterogeneous set of disorders, and emphasize the importance of 

combining functional and evolutionary evidence to identify regulatory causes of genetic disorders.

The importance of non-coding variation in complex disease has been well established—most 

disease-associated common SNPs lie in intergenic or intronic regions, albeit with low effect 

sizes1,2. Rare sequence and structural variants in relatively few regulatory elements have 

been causally linked to Mendelian disorders3–5. These pathogenic regulatory variants can act 

by loss of function6–9 or gain of function10,11 and most act dominantly, with a few 

exceptions12. These regulatory elements can lie far from the gene they regulate. For 

example, sequence variants in an evolutionarily conserved regulatory element located 1 Mb 

from its target gene, SHH, can cause polydactyly10. As a consequence, it can be challenging 

to identify the gene whose regulation is being perturbed by an associated regulatory 

variant13–15. Moreover, the contribution of highly penetrant mutations in regulatory elements 

to genetically heterogeneous rare diseases, such as neurodevelopmental disorders, has not 

been firmly established.

We recruited 7,930 individuals with a severe, undiagnosed developmental disorder, and their 

parents to the Deciphering Developmental Disorders (DDD) study from clinical genetics 

centres in the UK and Ireland. Systematic clinical phenotyping16 identified 79% with 

cognitive impairment or abnormality of the brain, which we refer to as neurodevelopmental 

disorders. Congenital heart defects (CHD) were the most prevalent non-neurodevelopmental 

phenotype, present in 10% of the cohort. Exome sequencing of the first 4,293 families in a 

previous analysis revealed that about 25% of probands carry damaging de novo mutations 

(DNMs) in genes associated with developmental disorders, accounting for the majority of 

diagnostic variants17,18. An additional 17% of probands carry pathogenic DNMs in genes 

not yet robustly associated with developmental disorders18. Thus the majority of the 

probands do not carry a diagnostic variant in a protein-coding gene, and are termed ‘exome-

negative’. To explore the role of DNMs in non-coding elements, we performed targeted 

sequencing on three classes of putative regulatory elements: 4,307 highly evolutionarily 

conserved non-coding elements (CNEs)19, 595 experimentally validated enhancers20, and 

1,237 putative heart enhancers21, together covering 4.2 Mb of sequence with comparable 

depth of coverage to protein-coding regions (Extended Data Fig. 1, Supplementary Table 1). 

Furthermore, we define a set of ‘control’ intronic elements covering 6.03 Mb (see Methods).
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Selective constraint acting on non-coding elements

We first assessed how much purifying selection had skewed allele frequencies in non-coding 

elements. We used the mutability-adjusted proportion of singletons (MAPS) metric22 in 

7,080 unrelated, unaffected DDD parents to test six different element classes: introns, heart 

enhancers, validated enhancers, CNEs, protein-coding genes, and genes known to be 

associated with developmental disorders. The validated enhancers from the VISTA enhancer 

browser vary across the spectrum of evolutionary conservation, while the heart enhancers are 

poorly conserved, consistent with previous reports23, and the CNEs show high levels of 

evolutionary conservation (Fig. 1a). The introns and heart enhancers show little evidence of 

purifying selection, while the experimentally validated enhancers and CNEs are constrained 

to a similar degree to protein-coding genes, but less than genes known to be associated with 

developmental disorders (Fig. 1b), consistent with evolutionary conservation maintained by 

purifying selection. Statistical power to detect functionally relevant variants in protein-

coding genes is strengthened considerably by stratification of variants by their likely impact 

on the encoded protein and variant deleteriousness metrics such as CADD24. We computed 

the MAPS within bins of CADD scores encompassing 1,520,250 variants in unaffected 

DDD parents to assess whether CADD was predictive of selective constraint. In protein-

coding genes, the strong correlation between CADD score and strength of purifying 

selection enabled us to differentiate between variants that are neutral, weakly constrained, 

and highly constrained. In CNEs, CADD differentiates neutral variation from variation 

under weak constraint, but failed to identify highly deleterious variants with selective 

constraint on a par with protein-truncating variants (Fig. 1c, Extended Data Fig. 2d). Other 

deleteriousness metrics were assessed, but none were more informative than CADD 

(Extended Data Fig. 2a-c).

We used DNase I hypersensitivity sites (DHS) in 39 tissues and chromHMM genome 

segmentation predictions in 111 tissues25 to predict tissue activity for the targeted non-

coding elements. Of the 4,307 CNEs we sequenced, 4,046 (93.9%) were active in at least 

one of the 111 surveyed tissues whereas 261 (6.1%) were inactive or repressed in all tissues 

(Extended Data Fig. 2e, f). Variants within a DHS peak in at least one tissue were under 

stronger purifying selection than variants that did not overlap a DHS peak (P = 0.019), but 

we did not identify significant differences in selective constraint between tissues (Fig. 1d).

Enrichment of mutations in non-coding elements

We identified candidate de novo single nucleotide mutations in 7,930 trios (see Methods). 

We adapted a previously described model for germline mutation26 to include methylation 

status at CpG sites (see Methods, Extended Data Fig. 3a) and show that it better accounts for 

observed levels of rare variation than the unadapted model (Extended Data Fig. 3b). We 

tested four genomic features previously associated with mutagenicity27 for enrichment in 

non-coding elements with DNMs and found no evidence that these genomic features were 

enriched in non-coding elements with DNMs (H3K27me3, χ2-test P = 0.4809; H3K9me3, 

χ2-test P = 0.1966; replication timing28, Extended Data Fig. 3f; recombination rate29, 

Extended Data Fig. 3e).
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We identified 1,691 ‘exome-positive’ individuals with a likely pathogenic protein-altering 

DNM or inherited variant in a gene known to be associated with developmental disorders, 

with the remaining 6,239 being ‘exome-negative’. Using the mutation model, we compared 

the numbers of observed and expected DNMs in the targeted non-coding elements in these 

individuals. No significant DNM enrichment was observed in exome-positive probands in 

the targeted non-coding elements, demonstrating that the mutation model is reasonably well-

calibrated and that a large proportion of exome-positive cases are likely to represent 

Mendelian syndromes caused by high-penetrance protein-coding mutations (Extended Data 

Fig. 4a). We note that the number of exome-positive individuals affords only limited power 

to reject modest mutation enrichment in the non-coding elements. On the basis of these 

results, we chose to focus on the 6,239 exome-negative individuals for subsequent analyses.

We found that the CNEs were nominally significantly enriched for DNMs (422 observed, 

388 expected, P = 0.04), whereas experimentally validated enhancers (153 observed, 156 

expected, P = 0.605), heart enhancers (86 observed, 86 expected, P = 0.514), and intronic 

controls (901 observed, 919 expected, P = 0.728) were not enriched (Fig. 2).

Given the preponderance of individuals with neurodevelopmental disorders in our cohort but 

the broad range of tissue activity of the targeted CNEs, we focused on CNEs that are active 

in the fetal brain. DNMs were strongly and significantly enriched within 2,077 fetal brain 

DHS peaks in CNEs (177 observed, 138 expected, P = 8.1 × 10−4) but no enrichment in sites 

in CNEs falling outside fetal brain DHSs (245 observed, 249 expected, P = 0.608) (Fig. 2). 

We also used chromHMM30 predictions of fetal brain activity and again identified 

significant enrichment of DNMs in the 2,613 fetal brain-active CNEs (Fig. 2). Moreover, the 

DNMs observed in fetal brain-active CNEs in exome-negative probands were at more highly 

conserved sites (Wilcoxon rank sum test on PhyloP 100-way score31) compared to DNMs 

observed in exome-positive probands (Extended Data Fig. 4b). To test for as yet unknown 

factors causing differential mutability, we compared the levels of rare variation in fetal 

brain-active and -inactive CNEs in 7,509 deep whole genomes from the gnomAD 

consortium and found no evidence for a higher germline mutation rate in fetal brain-active 

elements (Extended Data Fig. 3c, d). The excess of DNMs observed in fetal brain-active 

CNEs is concentrated exclusively within the 79% of exome-negative probands with 

neurodevelopmental phenotypes (fetal brain DHS peaks: 147 observed, 109 expected, P = 

3.1 × 10−4; fetal brain-active by chromHMM: 238 observed, 194 expected, P = 1.2 × 10−3), 

with no significant enrichment observed in those without neurodevelopmental phenotypes 

(fetal brain DHS: P = 0.413; fetal brain-active by chromHMM: P = 0.681) (Fig. 2). The 

highly significant and specific enrichment of DNMs in fetal brain-active CNEs in exome-

negative probands with neurodevelopmental disorders is robust to Bonferroni correction for 

thirteen explicitly and implicitly tested hypotheses (see Methods, Extended Data Fig. 5a). 

Analysis of the FANTOM532 and EnhancerAtlas33 datasets suggests that 50-70% of the fetal 

brain-active CNEs act as enhancers (see Methods).

We re-evaluated the experimentally validated enhancers with functional evidence for activity 

in fetal brain (N = 383, 64%) and observed a nominally significant enrichment for DNMs 

only within the top quartile of evolutionary conservation (18 observed, 9 expected, P = 0.01) 

(Extended Data Fig. 5b). This result suggests that even for experimentally validated fetal 
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brain enhancers, DNM enrichment is concentrated within elements with strong evolutionary 

conservation.

We assessed four methods of gene target prediction: Genomicus14 (based on evolutionary 

synteny), correlation between DNase accessibility and gene expression34, Hi-C in fetal 

brain15 and choosing the closest gene. Genome annotations are rapidly evolving and the 

sensitivity and specificity of gene target prediction methods is not yet known. However, 

independent expression quantitative trait loci, enhancer RNA and Hi-C data all suggest that 

the closest gene is often not the target of non-coding regulatory variation32–34.

Across the four methods tested, the proportion of fetal brain-active CNEs for which a target 

gene was predicted was 28% (fetal brain Hi-C), 48% (DHS-RNA correlation), 91% 

(evolutionary synteny), and 100% (closest gene). The pairwise concordance between any 

two methods (given that both methods make a prediction) was between 17% and 35% 

(Extended Data Fig. 6a). Intersecting multiple independent methods may provide higher 

confidence predictions, but comes at a cost of sensitivity and therefore power. We did not 

identify any enrichment for DNMs in elements predicted to target genes known to be 

associated with developmental disorders, likely dosage-sensitive genes (pLI metric22), or 

genes that are differentially expressed in the brain (see Methods, Extended Data Fig. 6b for 

Hi-C results). Elements with DNMs were enriched for interactions with genes that are 

specifically upregulated in early prenatal brain development35 (Extended Data Fig. 6c, 

Methods).

We assessed the impact of DNMs on a set of 45 transcription factor binding motifs that are 

enriched in fetal brain-active CNEs (see Methods), and observed a nominally significant 

enrichment for DNMs predicted to increase binding affinity; this did not survive multiple 

hypothesis correction (Extended Data Fig. 7a-d). Given the number of DNMs we have 

identified, and the relative immaturity of in silico predictions of the impact of non-coding 

variation, it is not currently possible to determine precise mechanisms by which these DNMs 

contribute to developmental disorders.

To explore the penetrance associated with the observed DNM enrichment in the targeted 

non-coding elements, we investigated potential overtransmission of inherited rare variants in 

these elements to affected children and found no evidence for overtransmission (Extended 

Data Fig. 7e). Furthermore, we did not detect any enrichment for rare variants in cis that 

would suggest that the DNM is acting as a ‘second hit’ to an already perturbed haplotype. 

The fold-enrichment of DNMs is consistent with DNMs in fetal brain-active CNEs 

comprising a mixture of 70-80% non-pathogenic DNMs and 20-30% pathogenic DNMs.

Recurrently mutated regulatory elements

We found a significant excess of recurrently mutated elements (two or more DNMs in 

unrelated individuals) in the fetal brain-active CNEs and evolutionarily conserved enhancers 

compared to the expectation under the null mutation model (31 observed, 15 expected, P = 

9.3 × 10−5) (Fig. 3a). However, no individual element exceeded a conservative genome-wide 
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significance threshold of P < 1.91 × 10−5 (Bonferroni correction for independent tests on 

2,613 fetal brain-active elements) (Fig. 3b).

Increased power to detect locus-specific enrichments of DNMs could be gained from 

aggregating DNMs across elements that regulate the same target gene. However, as 

described above, gene target prediction lacks coverage and accuracy. CNEs have been shown 

to cluster together within the genome and are enriched around developmentally important 

genes36. Therefore we applied hierarchical clustering on the 2,613 fetal brain-active CNEs to 

identify 356 clusters (see Methods). We found an excess of recurrently mutated clusters, 

defined as two or more elements with at least one DNM in each element (11 observed, 6 

expected, P = 0.016). We did not find any element clusters with a significant excess of 

DNMs at a genome-wide significance threshold (Supplementary Table 2).

We used chromHMM30 to assign the recurrently mutated CNEs to a predicted chromatin 

state. We observed the greatest excess of DNMs in CNEs predicted to be enhancers (n = 9) 

or strongly or weakly transcribed (n = 8) (Extended Data Fig. 8). Five of the eight 

transcribed recurrently mutated elements fall in close proximity to exons, but are not in 

protein-coding transcripts and show evidence of involvement in alternative splicing 

(BCLAF1, SRRT, SLC10A7, and MKNK1) or as a 3′ UTR (CELF1). The full set of 

recurrently mutated elements is described in Supplementary Table 3 and the location of 

DNMs relative to population variation and additional annotations is shown in Extended Data 

Fig. 9.

Estimating genome-wide non-coding mutation burden

The absence of individual non-coding elements with genome-wide significant enrichment of 

DNMs allowed us to place an upper bound on the proportion of sites and elements in which 

DNMs are pathogenic. Approximately 8% of DNMs in protein-coding regions result in a 

protein-truncating mutation26,37. CNEs are smaller than protein-coding exons (median 600 

bp) and also lack annotation to identify putative pathogenic mutations. Down-sampling gene 

length to 600 bp and masking protein consequence annotation resulted in an 80% drop in 

empirical power for the 94 genes passing the genome-wide significance threshold in a 

previous study18 (Extended Data Fig. 10a). As we did not discover any genome-wide 

significant CNEs, the proportion of DNMs in CNEs that are pathogenic and highly penetrant 

must be substantially lower than 8%. We modelled the likelihood of observing 286 DNMs, 

25 recurrently mutated CNEs, and zero CNEs at genome-wide significance across different 

values for the number of fetal brain-active CNEs (out of 2,613) and the proportion of 

mutations in those elements that are pathogenic with a dominant mechanism for 

neurodevelopmental disorders (see Methods). The maximum likelihood model is one in 

which 3.5% of mutations within approximately 100 elements are pathogenic with a 

dominant mechanism. However, there is considerable uncertainty around this point estimate 

(Extended Data Fig. 10b), with the credible interval including scenarios in which tens of 

elements have around 5-7% of mutations being pathogenic or thousands of elements have 

below 1% of mutations being pathogenic.
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Our survey of the non-coding genome is biased towards highly evolutionarily conserved 

elements, but also includes elements with lower levels of evolutionary conservation. To 

extrapolate the excess of DNMs we observed in the targeted non-coding elements to a 

genome-wide estimate, we modelled the enrichment of DNMs as a function of evolutionary 

conservation (see Methods). Factoring in the distribution of evolutionary conservation of 

fetal brain DHS peaks genome-wide, we predicted a genome-wide excess of 88 DNMs (95% 

confidence interval (CI): 48-140), corresponding to 1.0-2.8% of exome-negative cases 

carrying pathogenic mutations in regulatory elements (Fig. 4b) in contrast to 13.4% and 

28.4% carrying protein-truncating variants and missense variants, respectively, estimated 

previously18 (Fig. 4c).

Discussion

We have demonstrated that de novo mutations in regulatory elements contribute to severe 

neurodevelopmental disorders. These elements act primarily either as enhancers or to 

regulate alternative splicing, but establishing the precise mechanism for each element has 

proved challenging. This significant excess of DNMs is observed only in highly evolutionary 

conserved elements that are active in the fetal brain. These elements also exhibit substantial 

selective constraint within human populations. We observed a 1.3-fold excess of DNMs 

within DHS peaks in these regulatory elements, suggesting that a minority of such DNMs 

are pathogenic. Moreover, our modelling suggests that there are few, if any, regulatory 

elements in which more than 4% of mutations cause neurodevelopmental disorders with a 

dominant mechanism. Our data are consistent with only 0.15% of mutations within fetal 

brain-active CNEs being highly penetrant for neurodevelopmental disorders (Fig. 4a); this is 

likely to be considerably lower than the proportion of dominant pathogenic mutations in 

protein-coding regions. As a consequence, this class of pathogenic non-coding DNMs is 

likely to account for only a small proportion (less than 5%) of ‘exome-negative’ individuals, 

and the robust identification of disease-associated regulatory elements will present a greater 

challenge than of protein-coding genes.

Our study design focuses on highly conserved elements and fetal brain-active elements, and 

is relatively uninformative with respect to pathogenic ‘gain-of-function’ DNMs within 

elements that show no wild-type activity in fetal brain and are not highly evolutionarily 

conserved. While our findings have focused on the highly conserved elements, we do not 

consider our observations to be definitively negative about the role of less highly conserved 

fetal brain enhancers in neurodevelopmental disorders, or the role of heart enhancers in 

CHD (owing to the low proportion of subjects with CHD). The field of regulatory element 

annotation has progressed tremendously over the six years since this study design was 

initially conceived. Therefore, a comprehensive analysis of the contribution of variation 

within all classes of non-coding elements to neurodevelopmental disorders is likely to 

require whole genome sequencing (WGS) of many tens of thousands, if not hundreds of 

thousands, of parent-proband trios (Extended Data Fig. 10c).

One challenge of interpreting WGS data is the vast universe of hypotheses that could be 

tested, and thus how to account appropriately for multiple hypothesis testing. A recent study 

reported a nominally significant enrichment (P = 0.03) of de novo single-nucleotide variants 
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(SNVs) and private copy number variants in fetal brain DHS or at sites with PhyloP 

conservation scores above 4, within 50 kb of known autism-associated genes in WGS from 

53 individuals with autism38. Caution should be exercised in interpreting findings based on 

small sample sizes relative to those required for well-powered analyses (as discussed above) 

and analyses requiring multiple, arbitrary levels of variant stratification (for example, gene 

set, genomic proximity threshold, and conservation score). WGS-based analyses need to 

account for all explicit and implicit hypothesis testing.

Our analyses were limited to SNVs as current mutation models for indels and structural 

variation are too inaccurate to allow robust assessment of mutational excess. In addition, our 

analyses highlight an urgent need for improved tools to stratify benign and damaging 

variants within non-coding elements and to annotate gene targets for regulatory elements. 

These improved mutational models and functionally relevant annotations will greatly 

increase power to detect highly-penetrant disease-associated non-coding variation, for 

example, increasing power more than tenfold from 8% to 83% in 40,000 trios (Extended 

Data Fig. 10c). Functional characterization of increasing numbers of robustly associated, 

highly-penetrant, regulatory variants in cellular and animal models will be critical in moving 

from a descriptive to a more predictive understanding of non-coding variation in the human 

genome, as well as elucidating its underlying pathophysiological mechanisms.

METHODS

Defining targeted non-coding elements

The placental mammal 28-way phastCons score19 was used to select the top 4,432 CNEs 

with no overlap with RefSeq genes (downloaded from UCSC on 4 August 2010). Using the 

VISTA enhancer browser20, all 622 putative enhancers with evidence of in vivo activity in 

developing mouse embryos were downloaded on 3 August 2010. At the time the capture was 

designed, it had been observed that heart enhancers are depleted among ultra-conserved 

elements23. As heart defects are the largest group of non-CNS abnormalities in the DDD 

cohort we sought to supplement the ultra-conserved elements with an early annotation of 

heart enhancers. These putative heart enhancers were provided by A. Visel and based on 

chromatin immunoprecipitation with sequencing (ChIP-seq) of p300 in human fetal heart 

described previously21 in GRCh36 coordinates, mapped over to GRCh37. Collectively, these 

elements cover approximately 4.6 Mb of total sequence. First, elements were filtered to 

exclude any targeted sequences with less than 10× coverage across the DDD data set. 

Second, any elements previously annotated to be non-coding, but classified as protein-

coding in Gencode v1939, were removed. Finally, any elements less than 50 bp in length 

were excluded. After filtering, 4,307 conserved elements, 595 enhancer elements and 1,237 

putative heart enhancers remained.

Defining intronic control sequences

The exome baits designed to capture the coding regions frequently have considerable 

overlap with non-coding intronic regions. To define a set of putative well-covered introns, a 

10-bp buffer was added upstream and downstream of all gencode v19 coding sequence (to 

avoid classifying any critical splice sites in the control introns) and this coding sequence was 
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subtracted from the exome probes. Furthermore, any introns within known developmental 

disorder genes (the DDG2P gene set17) were excluded. This set of control introns was 

filtered to include only elements 30 bp in length or larger with >30× coverage.

Evolutionary conservation of non-coding elements

The degree of evolutionary conservation across vertebrates at the element level was 

calculated using the phastcons vertebrate 100-way score. Scores were retrieved in R using 

the Bioconductor40 package phastCons100way.UCSC.hg1919.

Benchmarking CADD and other variant scoring methods using MAPS

Scores for all possible SNVs genome-wide were downloaded from CADD24 (http://

cadd.gs.washington.edu/download), Genomiser41 (https://charite.github.io/software-remm-

score.html#download), and fathmm-MKL42 (https://github.com/HAShihab/fathmm-MKL).

Functional genomic annotation

Data from DNase hypersensitivity assays (broad-Peak set, FDR 1%) were downloaded from 

the Roadmap Epigenome Project30 ftp site (http://egg2.wustl.edu/roadmap/data/byFileType/

peaks/consolidated/broadPeak/) in order to predict regulatory function and tissue specificity 

in the enhancers and CNEs. The GenomicRanges Bioconductor package was used to 

intersect DHS peaks with the elements sequenced in this analysis. All code used in this 

analysis can be found at https://github.com/pjshort/DDDNonCoding2017.

Chromatin state predictions (chromHMM 15-state model30) for 111 different tissue types 

were downloaded from the Roadmap Epigenome Project25 (REP) ftp site (http://

egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/

coreMarks/indivModels/default_init/). We considered a CNE to be inactive in a given tissue 

if it was completely contained within a chromHMM segment described as quiescent, 

heterochromatin, or polycomb repressed (‘9_Hef’, ‘13_ReprPC’, ‘14_ReprPCWk’, and 

‘15_Quies’) in the 15-state model. Using the GenomicRanges43 Bioconductor package and 

coding sequence from gencode v19, we calculated the distance of each active and broadly 

inactive element to the nearest exon or transcription start site. All code used in this analysis 

can be found at https://github.com/pjshort/DDDNonCoding2017.

Variant calling, QC, and filtering for unaffected parents

Mapping of short-read sequences was carried out using the Burrows-Wheeler Aligner 

(BWA; version 0.59) algorithm with the GRCh37 1000 Genomes Project phase 2 reference. 

The Genome Analysis Toolkit (GATK; version 3.1.1) and SAMtools (version 0.1.19) were 

used for sample-level BAM improvement. Ensembl Variant Effect Predictor (VEP) based on 

Ensembl gene build 76 was used to annotate variants and, in coding regions, the transcript 

with the most severe consequence was selected. We determined the number of variants 

called per individual, and excluded unaffected parents with variant counts on the extremes of 

the distribution (top 1% and bottom 1%). We identified a trinucleotide-specific error mode 

(GTN→GGN) that introduced false positives, which was corrected by strict strand filtering 

(FS <20). Across the 7,080 unaffected parents that passed quality control filters, we 

identified 1,520,250 unique variants in the targeted non-coding elements and coding regions.
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MAPS metric within functional annotations

We used DHSs from 39 different tissues to annotate unique variants from 7,080 unaffected 

parents in the 4,307 CNEs and 595 enhancers we targeted in this analysis as ‘in peak’ or 

‘outside peak’. We calculated the MAPS22 for each annotation (within DHS peak in any 

tissue, outside DHS peak in all tissues, and within DHS peak in each specific tissue). Where 

possible, we grouped individual tissues into larger tissue groups based on the Roadmap 

Epigenome Project25 (REP) categorization. Within the fetal brain tissues (E081, E082 in 

REP), we calculated the MAPS score for each of the 15 states in order to assess differences 

in purifying selection between elements that are likely to be inactive versus those that are 

active.

Defining exome-positive and exome-negative probands

We used the Developmental Disorders Genotype-to-Phenotype Database (DDG2P) to define 

a set of high-confidence developmental disorder genes (https://decipher.sanger.ac.uk/

ddd#ddgenes). We classified all probands as ‘exome-negative’ if they did not have a protein-

altering (stop-gain, splice site, or missense variant) DNM in a DDG2P gene with a 

monoallelic loss of function mechanism, a rare inherited biallelic variant in a DDG2P gene 

with a recessive mechanism, or a copy number variant identified by clinical microarray and 

determined to be pathogenic.

De novo mutation calling

De novo mutations were called as described18, excluding variants with posterior probability 

<0.00781 as annotated by DeNovoGear44.

Trinucleotide germline mutation rate model with CpG-methylation status

A previously described germline mutation rate model based on trinucleotide context26 was 

adapted to include a correction at CpG sites for methylation status. This method models the 

null mutation rate at a given site as a Poisson rate parameter that is dependent on the 

trinucleotide context, where the second base is mutated. We fit a linear model to the ratio of 

observed/expected variants at MAF <0.1% in CpG sites based on their methylation status in 

embryonic stem cells. For all CpG sites, we corrected the trinucleotide mutation rate based 

on the methylation status to produce a methylation-aware mutation rate model. As the sum 

of Poisson random variables is Poisson, the rate parameter for a given element, or set of 

elements, can be determined by summing the mutation rate for each individual site. 

Simulated mutations were based on the same trinucleotide mutation framework and 

implemented in an R software package (https://github.com/pjshort/DenovoSim).

Testing for enrichment of mutagenic genomic features

The CNEs sequenced in this analysis were intersected with four genomic features previously 

associated with hypermutability: H3K9me3, H3K27me3, replication timing, and 

recombination rate. A χ2-test was used to test whether elements in which DNMs were 

observed were enriched for H3K9me3 or H3K27me3 peaks compared to elements in which 

no DNM was observed using primary mononuclear cells from peripheral blood (Roadmap 
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Epigenome ID E062). For replication timing28 and recombination rate29, a Wilcoxon rank 

sum test was used to test for differences between the two sets of elements.

Testing for hypermutability using rare variation in deep whole genomes

We calculated the number of observed rare variants (MAF <0.1%) per unit of expected 

mutability from the null mutation model for the fetal brain-active and brain-inactive 

elements that we sequenced in 7,509 non-Finnish European deep whole genomes present in 

the gnomAD data set. We used bootstrap re-sampling to estimate the standard error around 

the estimated rare variants per unit mutability for each set. To assess the power of this 

approach to detect mutability, we simulated rare variants using the null mutation model 

under 1.1×, 1.2×, and 1.3× mutability in the fetal brain-active elements and tested the power 

to reject the null hypothesis of mutability 1.0× for different numbers of elements from 50 to 

1,000 in steps of 50.

Statistical testing for mutational burden

The P value for the number of observed de novo mutations compared to expected is 

calculated in R as: ppois(n_obs - 1, lambda = mu, lower.tail = FALSE) where n_obs is the 

number of observed mutations within an element and mu is the mutability of the element(s) 

being tested (under the null model described above) multiplied by the number of probands. 

The burden testing we performed across subsets of elements and phenotypes included 

multiple nested hypotheses that were accounted for with a conservative Bonferroni-adjusted 

P value threshold based on the number of explicit and implicit tests. We corrected for 

thirteen tests within the exome-negative cohort based on branching on element class and 

phenotype, where appropriate (detailed in Supplementary Fig. 5). In testing for single 

elements with an excess of observed mutations, we employed a conservative Bonferroni 

adjustment to correct for 2,613 tests (the number of fetal brain-active CNEs).

Defining fetal brain-active elements

We used the Roadmap Epigenome Project25 DNase data and chromHMM annotations to 

annotate the CNEs as ‘active’ and ‘inactive’ in the fetal brain. We defined all of the sections 

of the genome predicted to be quiescent, heterochromatin, or polycomb repressed (‘9_Het’, 

‘13_ReprPC’, ‘14_ReprPCWk’, and ‘15_Quies’ in the 15-state model) as ‘inactive’ states. 

We considered a CNE or enhancer to be inactive if it was completely contained within an 

inactive chromHMM30 segment in both male and female fetal brain and if it did not overlap 

with any high confidence DNase hypersensitive site in male or female fetal brain. In total, 

2,613 of 4,307 CNEs and 383 of 595 experimentally validated enhancers were predicted to 

be active in the fetal brain based on these criteria. All code used in this analysis can be found 

at https://github.com/pjshort/DDDNonCoding2017.

Estimating the proportion of fetal brain-active CNEs acting as enhancers

To evaluate the proportion of CNEs that may be acting as enhancers, we analysed 

downloaded enhancer RNA (eRNA) data from the fetal brain generated by the FANTOM5 

consortium32 and predicted fetal brain enhancers from EnhancerAtlas33, which combines 

multiple sources of data to identify enhancers in different tissues. We used the 
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experimentally validated fetal brain-active VISTA enhancers to estimate this sensitivity of 

each data set. We then overlapped the fetal brain-active CNEs with the FANTOM5 eRNA 

and EnhancerAtlas predictions and used the sensitivity estimates to estimate the total 

proportion of fetal brain CNEs likely acting as enhancers.

Stratifying enhancers by evolutionary conservation

Phastcons vertebrate 100-way scores19 were retrieved in R using the Bioconductor package 

phastCons100way.UCSC.hg19 for each of the 383 fetal brain-active experimentally 

validated enhancers.

Statistical testing for enrichment of recurrently mutated elements

We defined any element observed with a DNM in at least two unrelated probands as 

‘recurrently mutated’. We used the simulation framework described above to calculate the 

likelihood of observing a given number of recurrently mutated elements. To calculate the 

significance of individual elements, we calculated the likelihood of observing n DNMs in a 

given element with mutability lambda in R as ppois(n_obs - 1, lambda = mu, lower.tail = 

FALSE). The P values were compared to a genome-wide significance cutoff of 0.05/2,613 or 

P < 1.91 × 10−5 (Bonferroni-corrected P value based on independent tests for enrichment 

across 2,613 elements).

Defining CNE clusters

In order to identify clusters of CNEs, we compared the inter-element distance in our set of 

sequenced CNEs to the inter-element distance of the same number of elements randomly 

distributed genome-wide. We used agglomerative hierarchical clustering with single linkage 

clustering in R to define clusters at a given inter-element distance. The false discovery rate 

(FDR) for a set of clusters can be determined by comparing the number of observed clusters 

to the number expected under the randomly distributed null model at the same inter-element 

distance. For this analysis, we used a maximum inter-element distance of 10kb, which 

corresponds to a false discovery rate of 10%.

chromHMM state of recurrently mutated elements

We used the chromHMM 15-state model predictions from the Roadmap Epigenome 

Project25 (REP) fetal brain male and female (E081, E082 in REP) to classify each of the 

DNMs observed in recurrently mutated elements. The predicted state in male/female fetal 

brain was not always concordant. When one annotation predicted the element as inactive and 

the other as active, we kept the active prediction. When the DNM was predicted to be active 

in both male and female fetal brain, but in different states, we chose the male state. Re-

running this analysis to instead choose the female prediction did not substantially change the 

outcome.

Phenotypic similarity by human phenotype ontology comparison

Referring clinicians used the Human Phenotype Ontology (HPO) version 2013-11-30 to 

systematically describe patients upon recruitment to the DDD study. In order to compare 
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phenotypic similarity between groups of patients statistically, the hpo similarity test was 

used45.

Clustering of DNMs

To test the observed DNMs for clustering that might imply disruption of an underlying 

binding site or functional motif, we used the denovonear framework described previously18. 

This method compares the distance between observed DNMs to the distance between 

simulated DNMs based on the trinucleotide null mutation model to generate an empirical P 
value.

Gene target prediction and pair-wise overlap

We used four different methods of gene target prediction to link CNEs and enhancers to 

putative target genes.

The first method, Genomicus, predicts gene targets based on evolutionary conservation with 

nearby genes. Genomicus determines the extent to which each CNE is within the same 

syntenic block with nearby genes across a number of vertebrate species and predicts one or 

more targets14. The Genomicus method produces at least one prediction for 90% of CNEs 

(approximately one-third of these are the closest genes).

The second method compares DNase hypersensivity at each CNE to expression of nearby 

genes in 56 different tissues (using RNA sequencing (RNA-seq)) to search for CNE-gene 

pairs that show a correlation between DNase signal and gene expression34. This method 

produces statistically significant predictions for only 28% of CNEs in our set and is likely to 

be underpowered to detect elements that are active in specific tissues or time points.

The third method is to link CNEs to putative target genes using chromatin interaction data 

(Hi-C) in two different regions of the fetal brain46. The use of Hi-C data is the most direct 

and tissue-specific of all of the prediction methods used, but the prediction is sparse (26% of 

CNEs with evidence of fetal brain activity have a predicted target).

The fourth method used is a simple heuristic to choose the gene with the closest TSS (for 

intergenic elements) or the gene containing the element (for introns). Choosing the closest 

gene allows us to make a prediction for 100% of elements, but comparison with chromatin 

conformation and DHS-based methods has shown that the closest gene is likely to be the 

target in 7% and 12% of cases, respectively34,47.

We used the Genomicus, DHS, and Hi-C predictions to generate aggregated predictions 

which we considered ‘high confidence’ if predicted by at least two of the three methods.

To assess the pair-wise concordance reported in Extended Data Fig. 7, we took the set of 

CNEs for which at least one gene target was reported in both methods and tested how 

frequently both methods identified the same gene within the set of predicted targets.
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Brain developmental expression trajectory

BrainSpan developmental RNA-seq data (http://www.brainspan.org) were processed as 

previously described35. Expression values were log-transformed (log2[RPKM+1]) and scale 

normalized. This expression data set consists of six brain regions (cortex, thalamus, striatum, 

hippocampus, amygdala, and cerebellum) and developmental epochs that span prenatal 

(8-37 post-conception week) and postnatal (4 months-40 years) periods. Genes that are 

associated with CNEs with DNMs and without DNMs were selected and their 

developmental expression trajectories were plotted using loess smooth.

Transcription factor binding analyses

The JASPAR2016 and TFBSTools Bioconductor packages48 were used to retrieve position 

weight matrices for 454 human transcription factors. Analyses in this paper focus on the 202 

transcription factors predicted to be expressed in the brain (cortex-expressed from GTEx 

data set49).

A custom R package called ‘denovoTF’ (https://github.com/pjshort/denovoTF) was written 

to predict any change in transcription factor binding at sites where DNMs were observed or 

simulated. This analysis works by scanning the reference and alternative sequences for all 

202 PWMs and comparing predicted binding events on both sequences. By comparing the 

potential binding affinity for ref and alt sequences, we can predict loss of binding (alt 

binding < ref binding), gain of binding (alt binding > ref binding), and silent (no difference). 

‘Silent’ DNMs fall into two classes: those for which binding is predicted on both reference 

and alternate, but strength of binding is unchanged, and those which do not lie in a predicted 

transcription factor binding site.

The analysis of motif enrichment (AME) tool from the meme suite was used to identify a 

subset of PWMs that was significantly enriched in fetal brain-active elements50. Comparing 

the fetal brain-active CNEs to the fetal brain inactive CNEs returned a set of 90 transcription 

factors, of which 45 were expressed in the brain and had PWMs available in JASPAR201648. 

This analysis was performed on the meme-suite web server using the following command:

ame-verbose 1-oc.-control meme_chromHMM_fb_inactive_all.fasta-bgformat 1-scoring 

avg-method ranksum-pvalue-report-threshold 0.05 meme_chromHMM_fb_active_all.fasta 

db/JASPAR/JASPAR_CORE_2016.meme.

In order to test for enrichment of loss of binding or gain of binding events in the observed 

DNMs, we compared predicted impact on transcription factor binding in observed DNMs to 

1,000 simulations of mutations across the 2,613 fetal brain-active elements for 6,147 

probands.

Nucleotide-level conservation (PhyloP)

PhyloP scores represent the — log10 P value that a given site is evolving neutrally31. We 

used a tabix file of pre-computed PhyloP vertebrate 100-way scores for every site in the 

genome in order to annotate the DNMs observed in exome-negative probands to exome-

positive probands as well as the simulated null model.
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Power calculations at different study sizes

We used the trinucleotide null model described previously in order to estimate our power to 

detect disease-associated elements. Parameters that affect power include the fold enrichment 

for disease-causing mutations in the DDD cohort (proportional to the incidence of severe 

developmental disorders with a genetic basis in the population), the proportion of mutations 

within a true disease-associated element expected to be pathogenic, the penetrance of such 

mutations, the size and mutability of the elements tested, and the number of trios analysed. 

To estimate the power across different study sizes, we fixed the remaining parameters as 

follows: 120-fold enrichment for disease-causing mutations, proportion of mutations 

expected to be pathogenic at 8% (lower bound estimate for coding regions), penetrance at 

100%, and the elements tested were the 2,613 fetal brain-active CNEs. Code for power 

analysis can be found in the R script: https://github.com/pjshort/DDDNonCoding2017/blob/

master/analysis_notebooks/Figure4_maximum_likelihood_and_genome_estimate.Rmd.

Likelihood of power calculation model parameters under observed data

To test the likelihood of different models of dominant disease mechanism within the non-

coding space we adapted the power calculation framework described above to test the 

probability of observing our data across two different parameters: the number of elements 

(out of 2,613) with a dominant disease mechanism and the proportion of mtuations expected 

to be pathogenic. We tested the likelihood of observing 286 DNMs, 25 recurrently mutated 

elements, and zero elements at genome-wide significance while systematically varying two 

parameters: the proportion of mutations expected to be pathogenic parameter (from 0.01% to 

10.0% in increments of 0.01%) and the proportion of elements with true disease associations 

(from 0 to 2,613 in increments of 5). In this analysis, the remaining parameters were held 

constant: 120× enrichment for pathogenic mutations, penetrance at 100%, testing 2,613 fetal 

brain-active CNEs, and number of trios at 6,147. Code can be found in the R notebook: 

https://github.com/pjshort/DDDNonCoding2017/blob/master/analysis_notebooks/

Figure4_maximum_likelihood_and_genome_estimate.Rmd.

Estimating the genome-wide burden of DNMs in fetal brain-active elements

First, we intersected all targeted non-coding sequences, irrespective of original class, with 

fetal brain DHS peaks. We used the phastcons100 score (scores retrieved in R using the 

Bioconductor package phastCons100way.UCSC.hg1919 to rank these elements by 

evolutionary conservation. The ratio of observed/expected DNMs was computed with a 

sliding window across the elements (window size of 1,000 elements, shift of 100 elements). 

This approach resulted in a median of 62 DNMs expected in each bin (minimum 51, 

maximum 68) which was compared to the observed number of DNMs. We fit a logistic 

regression to the excess observed/expected in each window, setting any window with 

observed less than expected to have an excess of zero. We used the logistic regression fit on 

the CNEs sequenced in our analysis to predict the burden of DNMs in this genome-wide set.

Transmission of rare variants

All variants that were heterozygous in one parent were tested for any patterns of 

overtransmission within different variant classes. Only elements with >20× median coverage 
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were used for this analysis, as elements without adequate coverage showed systematic 

underestimation of transmission. The observed proportion of rare variants that were 

transmitted from parents to affected probands was compared to the expected proportion 

under the null hypothesis (50%) using a binomial test.

Testing CNEs for ‘already perturbed haplotypes’

In order to test the hypothesis that DNMs in fetal brain-active CNEs may be contributing to 

a developmental disorder via a second hit on an already weakened haplotype, we extracted 

the rare variants present in the relevant DNM-containing CNE for each proband. We 

compared the proportion of probands with at least one variant besides the observed DNM in 

the fetal brain-active CNEs compared to the fetal brain-inactive CNEs. We also calculated 

the total burden of rare variation within the DNM-containing element (measured as SNVs 

per kb) for probands with DNMs in fetal brain-active CNEs compared to probands with 

DNMs in fetal brain-inactive CNEs.

Code availability

Source code used to analyse data and generate the figures for this article can be found at 

https://github.com/pjshort/DDDNonCoding2017/.

Data availability

Sequencing and phenotype data are accessible via the European Genome-phenome Archive 

(EGA) under study number EGAS00001000775 (https://www.ebi.ac.uk/ega/studies/

EGAS00001000775). The DDG2P gene list of genes associated with developmental 

disorders is available at www.ebi.ac.uk/gene2phenotype. All other data are available from 

the corresponding author upon request.
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Extended Data

Extended Data Figure 1. Coverage in targeted non-coding elements
Coverage in the targeted non-coding elements is comparable to the proteincoding exons 

(median 73× and 56×, respectively).
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Extended Data Figure 2. Assessment of variant deleteriousness metrics and selective pressure in 
CNEs
Dots and bars represent the point estimate and 95% CI, respectively, for MAPS and 

proportion singletons. a, b, Fathmm-MKL (a) and Genomiser (b) separate benign variation 

(low MAPS score) from likely damaging variation (high MAPS score), but do not identify 

any classes of variation under strong selective constraint. c, There was no significant 

difference in the strength of purifying selection measured by MAPS between sites predicted 

to result in loss, gain, or no change in transcription factor binding. d, Validation of Fig. 1c 
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using whole-genome data from the UK10K project. While CADD can identify coding 

variation under strong selective constraint (as measured by the proportion of singletons), 

CADD is unable to identify strongly constrained non-coding variants. e, f, The subset of 

CNEs sequenced in the DDD cohort that are predicted to be inactive in all 111 Roadmap 

Tissues (n = 261) exhibit a similar degree of evolutionary conservation (e) but lower 

selective constraint (f) in a healthy population compared to CNEs active in at least one tissue 

(n = 4,046).
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Extended Data Figure 3. Genomic factors that affect mutation rate in non-coding elements
a, Aggregating CpG sites genome-wide into bins of methylation proportion from 0% 

(unmethylated in all cells) to 100% (methylated in all cells) and calculating the observed/

expected ratio reveals differences in mutability not accounted for a by a triplet model alone. 

b, A mutation rate model incorporating a correction for CpG methylation explains greater 

variance in rare variant counts in the DDD unaffected parents. c, Levels of rare variation in 

deep whole genomes (n = 7,509 non-Finnish Europeans) were used to estimate power to 

detect a hypermutability of 1.1×, 1.2×, or 1.3×. d, The level of rare variation in the fetal 

brain-active elements (n = 2,613, FB(+)) is slightly lower than in the fetal brain-inactive 

elements (n = 1694, FB(−)), consistent with similar mutability between the two element sets 

with slightly stronger purifying selection in the fetal brain-active elements. e, f, Elements 

with DNMs observed in our study are not enriched in late-replicating regions (e) or in 

regions with higher recombination rate (f), which have been shown to be hypermutable.
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Extended Data Figure 4. Non-coding mutations in exome-positive probands and poorly 
evolutionarily conserved sites make a minimal contribution to severe developmental disorders
a, In the 1,691 ‘exome-positive’ probands, there is no evidence for a burden of DNMs in any 

of the non-coding element classes tested. Red diamonds indicate the observed counts, while 

black circles and bars indicate the expected count and 95% CI, respectively. b, DNMs in 

exome-negative probands show a greater degree of evolutionary conservation (measured by 

PhyloP score) than DNMs in exome-positive probands in two classes: fetal brain-active 
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CNEs (median 1.57 exome-positive, 2.85 exome-negative, n = 368 mutations) and missense 

changes (median 3.43 exome-positive, 3.98 exome-negative, n = 6,244 mutations).

Extended Data Figure 5. Hypothesis test enumeration and enrichment for mutations in highly 
conserved fetal brain-active enhancers
a, We corrected for thirteen tests in order to account for the nested hypotheses based on 

element class and phenotype in this analysis. b, Evolutionarily conserved fetal brain-active 

enhancers (n = 106) are enriched for DNMs in exome-negative probands.
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Extended Data Figure 6. Gene target prediction for targeted noncoding elements
Pairwise concordance between four different gene target prediction methods is low. Using 

predicted targets from fetal brain Hi-C data, elements with an observed DNM in exome-

negative probands (n = 286) do not show any bias towards any of the gene sets consistently 

implicated in neurodevelopmental disorders. Dots and bars represent the point estimate and 

95% confidence interval, respectively.
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Extended Data Figure 7. Transcription factor binding disruption and transmission 
disequilibrium test
a–d, Comparison of predicted change in transcription factor binding for observed DNMs 

compared to null mutation model. Empirical P values derived from comparison with 

mutations simulated from the null mutation model. e, None of the non-coding element 

classes tested show any evidence of overtransmission from parents to affected children. Dots 

and bars represent the point estimate and 95% confidence intervals of estimates of 

transmission proportions, respectively.
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Extended Data Figure 8. Predicted chromatin state for recurrently mutated elements
chromHMM state of the n = 31 recurrently mutated elements shows enrichment for 

enhancers and transcribed elements. Elements that overlapped a high confidence DHS but 

were predicted as quiescent by chromHMM are classed as Overlaps DHS. P values derived 

from Poisson distribution with parameter lambda defined by the simulated data.
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Extended Data Figure 9. Schematic describing each of the thirty-one recurrently mutated 
elements
Element is in black, red lollipops denote observed DNMs, grey lollipops denote observed 

variation at MAF >0.1% in 7,080 unaffected parents, phastcons100 conservation score is 

shown in blue, and DHSs from the Roadmap Epigenome project are shown in blue/pink in 

the bottom track.
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Extended Data Figure 10. Empirical and simulated power for disease association in targeted 
non-coding elements
a, Estimation of the reduction in power due to size differences between non-coding elements 

and genes (median 600 bp versus 1,800 bp) and ignoring VEP annotations used to stratify 

benign from likely damaging variants. Dots and bars represent the point estimate and 95% 

confidence interval, respectively. b, Credible intervals for the proportion of fetal brain-active 

conserved elements and proportion of sites within those elements with a dominant 

mechanism for developmental disorders. c, Power calculations for disease-associated non-
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coding element discovery. Without annotation or tools to discriminate pathogenic from 

benign variants in non-coding elements (grey), more than 100,000 trios are required to 

achieve 40% power. With annotation or tools to fully discriminate likely pathogenic from 

benign variants (blue), 40% power is achieved with only 21,000 trios.
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Figure 1. Selective constraint in targeted non-coding elements
a, Evolutionary conservation score (phastcons10019) for CNEs (n = 4,307), experimentally 

validated enhancers (VISTA; n = 595), and putative heart enhancers (n = 1,237). b, Strength 

of selection (MAPS metric, mean and 95% CI represented by dot and bars) in targeted 

noncoding elements compared to protein-coding regions, where ‘Exonic’ refers to all 

variation within protein coding-exons. Stratification based on synonymous/non-synonymous 

consequence displayed on the same row to illustrate power of even a simple discriminator. 

Introns and putative heart enhancers show little evidence of purifying selection while CNEs 

show selection on par with all genes, but less than genes known to be associated with 

developmental disorders. c, Using CADD to stratify coding and non-coding variants 

observed in unaffected parents differentiates neutral variation from weakly and strongly 

constrained sites in coding regions, but fails to identify non-coding variation with selection 

pressure on par with protein-truncating variants (stop gained). d, Sites overlapping a DHS in 

at least one tissue are under stronger purifying selection than sites not overlapping a DHS. 

ES cells, embryonic stem cells; HSCs, haematopoietic stem cells; iPS cells, induced 

pluripotent stem cells.
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Figure 2. Enrichment of DNMs across element classes and functional annotations in exome-
negative probands
n = 6,239. Red diamonds indicate observed counts, while black circles and bars indicate 

expected count and 95% CI, respectively. Targeted CNEs showed a modest enrichment for 

DNMs (422 observed, 388 expected, P = 0.04) while heart enhancers, experimentally 

validated enhancers, and control introns matched the null model. Observed enrichment is 

specific to CNEs predicted to be active in the fetal brain and to patients with 

neurodevelopmental disorders (238 observed, 194 expected, P = 1.2 × 10−3). Confidence 

intervals and P values derived from a Poisson distribution.
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Figure 3. Recurrently mutated elements
a, Approximately twofold enrichment of recurrently mutated non-coding elements. Grey 

histogram shows distribution of expected number of recurrently mutated fetal brain-active 

non-coding elements under the null model and vertical line indicates observed number. b, 

Enrichment test of individual non-coding elements. No element was significant at a genome-

wide threshold of P <1.9 × 10−5 (Bonferroni correction for testing 2,613 fetal brain-active 

elements). Inset plots for three elements show the nearest exon or transcription start site, 

location of DNMs (red markers) with any predicted transcription factor binding site 

disruptions (gain of binding in blue, loss of binding in red), location of rare variants in 

unaffected parents (grey markers), evolutionary conservation (blue, higher indicates more 

conserved), and fetal brain DNase I hypersensitivity (male in pink, female in blue). TSS, 

transcription start site.
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Figure 4. Modelling the proportion of DNMs in non-coding elements that are likely to be highly 
penetrant for dominant neurodevelopmental disorders
a, Our observation of zero non-coding elements at genomewide significance in 6,239 

exome-negative probands indicates that very few sites within these elements (<5%) are 

likely to contribute to developmental disorders through a highly penetrant dominant 

mechanism. b, Logistic regression used to model the genome-wide contribution of 

dominant-acting DNMs in fetal brain DNase hypersensitive sites in non-coding elements as 

a function of level of evolutionary conservation using a sliding window approach including 

1,000 elements in each bin (see Methods). Dashed lines indicate the upper and lower 95% 

CI. The bar plot shows fetal brain-active DHS peaks genome-wide (in megabase of total 

sequence) at a given level of evolutionary conservation. c, The proportion of probands 

carrying a pathogenic de novo SNV in a fetal brain-active regulatory element (1-2.8%) is far 

lower than the proportion carrying a pathogenic protein-truncating DNM (~13.4%) or 

missense DNM (~28.4%).
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