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Abstract

Background

The required efforts, feasibility and predicted success of an intervention strategy against an

infectious disease are partially determined by its basic reproduction number, R0. In its sim-

plest form R0 can be understood as the product of the infectious period, the number of infec-

tious contacts and the per-contact transmission probability, which in the case of vector-

transmitted diseases necessarily extend to the vector stages. As vectors do not usually

recover from infection, they remain infectious for life, which places high significance on the

vector’s life expectancy. Current methods for estimating the R0 for a vector-borne disease

are mostly derived from compartmental modelling frameworks assuming constant vector

mortality rates. We hypothesised that some of the assumptions underlying these models

can lead to unrealistic high vector life expectancies with important repercussions for R0

estimates.

Methodology and principal findings

Here we used a stochastic, individual-based model which allowed us to directly measure the

number of secondary infections arising from one index case under different assumptions

about vector mortality. Our results confirm that formulas based on age-independent mortal-

ity rates can overestimate R0 by nearly 100% compared to our own estimate derived from

first principles. We further provide a correction factor that can be used with a standard R0

formula and adjusts for the discrepancies due to erroneous vector age distributions.

Conclusion

Vector mortality rates play a crucial role for the success and general epidemiology of vector-

transmitted diseases. Many modelling efforts intrinsically assume these to be age-indepen-

dent, which, as clearly demonstrated here, can lead to severe over-estimation of the dis-

ease’s reproduction number. Our results thus re-emphasise the importance of obtaining

field-relevant and species-dependent vector mortality rates, which in turn would facilitate

more realistic intervention impact predictions.
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London, Faculty of Medicine, School of Public

Health, UNITED KINGDOM

Received: April 6, 2018

Accepted: November 14, 2018

Published: December 17, 2018

Copyright: © 2018 Tennant, Recker. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by an EPSRC

DTP studentship to WT. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/185245613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-5822-6887
http://orcid.org/0000-0001-9489-1315
https://doi.org/10.1371/journal.pntd.0006999
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006999&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006999&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006999&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006999&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006999&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006999&domain=pdf&date_stamp=2018-12-31
https://doi.org/10.1371/journal.pntd.0006999
https://doi.org/10.1371/journal.pntd.0006999
http://creativecommons.org/licenses/by/4.0/


Author summary

Many infectious diseases of public health concern, such as dengue, Zika and malaria, are

transmitted by insect vectors. Control effort required to curb their continued spread or

even prevent their establishment in the first place are partially determined by the disease’s

basic reproduction number, R0. Of particular importance for estimating R0 is the duration

at which the vector can transmit the disease, which is limited by its life expectancy. Many

R0 estimation methods are based on mathematical frameworks that assume constant vec-

tor mortality rates. Here we demonstrate how the resulting exponential distribution in

life-expectancy can lead to significant over-estimations. By means of an individual-based

model we elucidate the effect of vector mortality on R0 estimates and derive a correction

factor that alleviates some of the discrepancies due to erroneous vector age distributions.

Our results clearly demonstrate the need to obtain more realistic, i.e. field-relevant vector

mortality rates in order to generate robust estimates of a disease’s reproduction number

and provide guidance for setting-specific disease control.

Introduction

Over the last few decades there has been a global rise in the emergence and re-emergence of

vector-borne infectious diseases [1]. The continuing threat of Plasmodium falciparummalaria

[2, 3] and dengue [4], the rapid, near pandemic spread of Zika virus [5] or the recent epizootic

outbreak of Yersinia pestis (plague) in Madagascar [6] are just some examples of pathogens

transmitted by insect vectors that pose a major threat to global public health. Their depen-

dence on insects for transmission between vertebrate hosts has a number of important impli-

cations. First, they are frequently subject to strong spatial and temporal fluctuations due to

environmental and climatic variations, such as seasonality in rainfall or temperature. Second,

these pathogens should be amenable to vector control. That is, disease transmission can, at

least in theory, be interrupted simply by removing the insect vector (e.g. use of insecticides) or

by preventing contact between the vector and the host (e.g. use of bednets). Furthermore, it

has been suggested that only a fraction of insects need to be removed or vector-host contacts

to be prevented for the disease to die out. This concept is largely based on mathematical theory

that can be traced back to the first formal description and mathematical treatment of the

malaria life-cycle by Ross [7]. Unfortunately, translating theoretical predictions to practical

applications, especially with regards to disease elimination through vector control, has only

resulted in partial success.

The epidemiological reasoning behind the theory relies on a particular threshold condition

involving the so-called basic reproduction number, R0, which denotes the expected number of

secondary cases arising from a single infection in a totally susceptible population [8]. To date,

R0 is frequently used either to predict the extent of an epidemic outbreak or to derive the nec-

essary conditions to prevent this outbreak from happening, e.g. by means of vaccination. The

crux of the problem is how to robustly derive or estimate this number in the first place. Com-

partmentalised systems of ordinary differential equations (ODEs) have been in use for decades

to understand infectious diseases at the population level and provide the backbone for most

formulas for R0 [9]. These allow the reproduction number to be computed either exclusively

using empirically informed parameter estimates or from the initial growth rate of an outbreak

[10]. Although the latter is the more common approximation method for directly-transmitted

disease [11–14], it has equally been applied to vector-borne pathogens [15–17].

Estimating the reproductive number of vector-borne diseases
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An important consideration for R0 estimates of vector-borne pathogens is that these can

vary substantially across space and time. For example, reported R0 estimates for the complete

transmission cycle of Plasmodium falciparum in Africa range from 1 to more than 3,000 [18,

19]. Based on nine epidemics in Brazil between 1996 and 2003, the reproduction number for

dengue has been estimated to be somewhere between 2 to 103 [20], and median estimates for

Zika range between 2.6–4.8 in French Polynesia [21] and 4–9 in Rio de Janiero [22]. The rea-

sons for such wide variations are manifold. As mentioned earlier, the dependence on insect

vectors for transmission can naturally introduce large spatio-temporal heterogeneities. That is,

a disease introduced during the dry season will behave very differently to the same disease

being introduced during the rainy seasons. Equally, an outbreak in a densely populated urban

area will likely take a different course than an outbreak in a sparsely populated rural area. Here

we argue that in addition to these natural variations and potential differences in data collection

and analyses, the actual methodologies used to derive R0 estimates can also introduce substan-

tial discrepancies.

A crucial component of the reproduction number for a vector-borne disease is the mean

time that an infected vector is able to transmit to a host, or the infectious vector-to-host trans-

mission period (VHTP) [23]. As infectious vectors are assumed to continue to transmit the

disease until death, the VHTP is determined both by the life expectancy of the vector and the

extrinsic incubation period of the pathogen. For mathematical simplicity, most epidemiologi-

cal models of vector-borne diseases assume that vectors have a constant (daily) mortality rate.

However, this assumption is in stark contrast to findings from lab-based and field mark-and-

recapture studies. For example, survival probabilities of the dengue mosquito vector Aedes
aegypti and the principal malaria vectors Anopheles stephensi and An. gambia have been

shown to be strongly age-dependent [24–27]. Although it should be clear that current lab and

field-based studies of vector survivorship come with their own set of limitations and uncertain-

ties, constant, i.e. age-independent mortality rates are biologically less likely than assuming a

general decrease in the survival probability with age.

Previous work has looked into the effects of logistic mortality rates on the vectorial capacity,

the mosquito-related components of R0 [28]. However, the effects of assuming constant vector

mortality on R0 in a system where death rates are strongly age-dependent have not yet been

explored. Here we compared a commonly used R0 formula based on continuous-time differen-

tial equation model using constant mortality rates to an R0 estimate derived from first princi-

ples under relaxed assumptions about vector mortality. Using a stochastic, individual-based

simulation model (IBM), which permits the direct measurement of the average number of sec-

ondary cases, we demonstrate how the underlying assumptions of vector survivorship can sig-

nificantly inflate R0 estimates. We further show how estimates based on endemic equilibria are

generally more robust and derive a correction factor to ameliorate R0-inflations in estimation

methods based on epidemic growth curves.

Methods

Model frameworks

We derived R0 estimates from two different epidemiological frameworks: (i) a simple, single-

strain vector-borne disease model based on ordinary differential equations (ODE), where vec-

tor mortality is assumed to be constant, leading to an exponentially distributed vector survi-

vorship, and (ii) a stochastic individual-based model (IBM), which permits more explicit

control over the demographic processes regulating birth and death rates.

ODE model. The classical ODE approach to model infectious diseases is obtained by

dividing the population into those that are susceptible (S), exposed but not yet infectious (E),

Estimating the reproductive number of vector-borne diseases
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infectious (I) and recovered (R). The same principle is then applied to extend these models to

vector-transmitted diseases, except for the fact that vectors usually do not recover from infec-

tion but are instead assumed to remain infectious until death. This model can be realised by

the following set of differential equations

dSH
dt
¼ mHNH � pHbIV

SH
NH
� mHSH ð1Þ

dEH
dt
¼ pHbIV

SH
NH
� �HEH � mHEH ð2Þ

dIH
dt
¼ �HEH � gIH � mHIH ð3Þ

dRH
dt
¼ gIH � mHRH ð4Þ

dSV
dt
¼ mVNV � pVbSV

IH
NH
� mVSV ð5Þ

dEV
dt
¼ pVbSV

IH
NH
� �VEV � mVEV ð6Þ

dIV
dt
¼ �VEV � mVIV ð7Þ

Here, 1/μH,V are the mean host and vector life expectancies; β is the daily biting rate; pH,V are

the per-bite transmission probabilities from vector to human and human to vector, respec-

tively; 1/�H,V are the incubation periods in the host and vector, respectively; and 1/γ is the

mean infectious period in the host. This model is illustrated by means of a flow diagram in

Fig 1A.

Stochastic IBM. We employed a spatially-explicit IBM (motivated by the one previously

proposed by [29]), which, similarly to the ODE approach, assumes that individual hosts are

either susceptible (SH), exposed (EH), infectious (IH), or recovered (RH). Individual vectors are

equally set to be either susceptible (SV), exposed (EV) or infectious (IV), in which state they

remain until death. Vectors are assumed to bite at a constant per day rate β. Infectious vectors

transmit the infection to a host with probability pH, and susceptible vectors become infected

upon biting an infectious host with probability pV. For simplicity we fixed the extrinsic incuba-

tion period (1/�V days), the intrinsic incubation period (1/�H days) as well as the length of

infections in the host (1/γ days).

In contrast to the ODE model, we assumed age-dependent mortalities for both the hosts

and the vectors, governed a Weibull distribution:

mi tð Þ ¼
ci
dcii
tci � 1e�

�
t
di

�ci
ð8Þ

where ci and di are the scale and shape parameters, with i 2 {H, V} denoting the parameters for

host and vectors, respectively. Setting cV = 1 results in an exponential vector age distribution

(Fig 1B), i.e. where a vector’s risk of death is age-independent equivalent to the above ODE for-

mulation. Defining cV> 1 results in a sigmoid age profile (Fig 1D) with the vector death rate

Estimating the reproductive number of vector-borne diseases
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being age-dependent. This allowed us to investigate the effect of different vector age distribu-

tions on the reproduction number R0 within this framework.

The host and vector populations were divided into a set of communities organized into a

lattice. The distribution of humans and vectors was uniform across all communities, and it

Fig 1. Comparison of flow diagrams and vector death rates between the ODE and IBM frameworks. (A) The compartmentalised system

of differential equations for a vector-borne pathogen assumes constant vector mortality rates from each state of infection. (B) Constant vector

mortality rates result in exponential age distribution of vectors (with 1/μV = 21.3), with a high proportion of individuals living far beyond their

life-expectancy. (C) The transmission cycle of a vector-borne pathogen used in the individual-based model highlighting the dependency of the

infectious period and the probability of surviving the extrinsic incubation period on the mortality rate of vectors. (D) The age distribution of

vectors under three different Weibull distributed mortality risks with an increasing dependency on vector age (light blue to dark blue with cV
= 2, 4, 6 and dV = 23).

https://doi.org/10.1371/journal.pntd.0006999.g001
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was assumed that individuals mix homogeneously within each community. Human movement

was incorporated by allowing human individuals to temporarily visit any sub-population in

the lattice with probability ω. The remaining proportion of transmission events from each

community, 1 − ω, were dispersed to surrounding local sub-populations, thereby modelling

the movement of vectors. Please refer to S1 Text for a more detailed description of the individ-

ual-based model.

Estimation of R0

ODE-based reproduction number. We derived the R0 estimates from the ODE model by

applying the next generation approach [30], which relates the number of newly infected indi-

viduals in the compartments in consecutive generations to one another (see S1 Text for

details), yielding

R0 ¼
MpHpVb

2

ðgþ mHÞ

1

mV

�H
�H þ mH

�V
�V þ mV

ð9Þ

whereM is the vector:host ratio (NV: NH) and
�H

�HþmH
and

�V
�VþmV

are the probabilities of hosts and

vectors surviving the intrinsic and extrinsic incubation period of the pathogen respectively.

For many vector-borne disease systems, such as malaria and dengue, both the human

recovery rate, 1/γ, and the intrinsic incubation period 1/�H, are much shorter than the mean

human life expectancy, 1/μH. We can therefore make the following approximation of the

above formula, which, here, we define as RODE
0

.

RODE
0
¼
MpHpVb

2

g

1

mV

�V
�V þ mV

ð10Þ

IBM-based reproduction number. The basic reproduction number for the individual-

based model, RIBM
0

, was derived from first principles using the transmission cycle of the patho-

gen, similar to [18] (Fig 1C). Starting with an infected host in an entirely susceptible popula-

tion, this individual will infect on averageMpV β vectors per day and will remain infected for

1/γ days. Therefore, a single infected host is expected to infect a total ofMpV β/γ vectors.

A single infected vector will infect on average pHβ hosts per day (in a totally susceptible

population). As vectors remain infectious for the rest of their lives, the infectious period is

defined as the difference between the mean life expectancy, 1=mIV , and the mean age at which a

vector becomes infectious, 1=aIV (see S1 Text for details), meaning that an infectious vector

will have ð1=mIV � 1=aIV Þ days to infect hosts.

Furthermore, the proportion of infected vectors that survive the extrinsic incubation

period, denoted by rEV!IV , also depends on the vector mortality risk (see S1 Text for details).

Combining all these terms, the basic reproduction number of the individual based model can

be derived as

RIBM
0
¼
MpHpVb

2

g

1

mIV
�

1

aIV

 !

rEV!IV ð11Þ

Note, the first term is identical to the first term of RODE
0

. However, the second term, which

denotes the infectious period of the vector, and the third term, which denotes the probability

of vectors surviving the incubation period, differ between RODE
0

and RIBM
0

. This is because the

formula for the reproduction number derived from the transmission cycle in the individual

Estimating the reproductive number of vector-borne diseases
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based model takes into account alternative (Weibull distributed) vector mortality risks,

whereas the ODE system assumes a constant mortality rate (an exponential distributed mortal-

ity risk).

Timeseries-based reproduction number. In addition to the direct R0 formulas derived

above, we also considered two common methods to estimate the reproduction number from

timeseries data: one approach based on the initial growth rate of an epidemic outbreak (S1A

Fig), and one based on the dynamic equilibrium of an endemic scenario (S1B Fig). Both epi-

demic and endemic cases were simulated using the individual based model.

Epidemic growth rate. The epidemic outbreak method for estimating the reproduction

number requires timeseries data for the introduction of the disease into a completely suscepti-

ble population [31]. The initial (exponential) growth rate, λ, was obtained by fitting a Poisson

generalised linear model to the initial outbreak data (S1A Fig). Using the classical SEIR-SEI

system of ordinary differential equations for a vector-borne disease, the formula for the basic

reproduction number, Rl
0
, can be derived as

Rl
0
¼ 1þ

l

g

� �

1þ
l

mV

� �

exp l
1

�V
þ

1

�H

� �� �

ð12Þ

where 1/μV is the mean life expectancy of the vector (see S1 Text for derivation).

Endemic equilibrium approach. The asymptotically stable steady state of susceptible individ-

uals in an ODE-based SEIR system for a directly transmitted disease can be used to estimate

the basic reproduction number [10] as

R�
0
¼
NH
S�

ð13Þ

where S� is the number of susceptible individuals at equilibrium. The directly transmitted

disease R0 estimate was then used as an approximation for the basic reproduction number

of an endemic vector-borne disease. For the stochastic IBM this required the system to

reach a dynamic equilibrium, where the proportion of susceptibles oscillates around the

deterministic equilibrium (as the inherent stochasticities prevent the system from reaching

an equilibrium state). We calculated R�
0

using susceptibility levels at a single time point, as

well as the mean proportion of susceptible individuals over the final five years of the time-

series (S1B Fig).

Parameter values

Table 1 provides an overview of the parameters and parameter values used throughout this

work (unless stated otherwise). The values were chosen to reflect the epidemiological dynamics

of an arboviral disease, such as dengue or Zika. However, the results presented here are quali-

tatively independent of the particular choice of parameters; S2 Fig show the results of model

sensitivity analyses with respect to the dependency of R0 estimates on particular parameter

values.

Results

A multitude of the mathematical models put forward to study the dynamics of vector-borne

diseases are based on compartmental models described by systems of ordinary differential

equations (ODE). Crucial to these types of models is the assumption of constant death rates.

As vectors are assumed to remain infectious for life, such assumptions influence not only the

resulting dynamics but also the estimates of the disease’s basic reproduction number R0 (and

relatedly the (time-varying) effective reproduction number Re(t)). Here we aimed to quantify

Estimating the reproductive number of vector-borne diseases
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the effects of relaxing the assumption of constant vector death rate on R0 estimates within the

same theoretical setting. This was done by comparing the R0 values derived from an SEIR-SEI

system of ODEs with a formula derived from first principles using the transmission cycle of a

generic vector-borne disease using different assumptions about vector mortality rates (see

Methods). We then verified these estimates by means of a stochastic individual-based model,

which allowed us to directlymeasure R0 from running repeat simulations of introducing an

infected individuals into a fully susceptible population. The same model was also used to

derive R0 estimates from simulated timeseries data.

Constant vector mortality rates over-estimate R0

Assuming constant vector mortality rates leads to exponentially distributed age profiles (Fig

1B), which permit some vectors to live in excess of four times their mean life expectancy and

potentially to transmit the pathogen for an unusually long period of time. Even more concern-

ing is that the vector life expectancy in each compartment of the infection process is essentially

the same (Fig 1A). That is, independent of when in its life a vector becomes infected and infec-

tious, its remaining life expectancy remains exponentially distributed around the mean life

expectancy. As a consequence, all infectious vectors have a vector-to-human transmission

period (VHTP) equal to the mean life expectancy of all vectors, 1/μV, with obvious conse-

quences for R0 estimates.

In contrast to ODE models, individual-based models (IBM) permit much greater control

over vector mortality rates. Here we used (Weibull distributed) age-dependent vector death

rates (see Methods), which yield a range of sigmoid age profiles (Fig 1D) but which all prevent

vectors from living severely extended lives. More importantly, an individual vector’s remaining

life expectancy remains unchanged when transitioning between susceptible and infected state

Table 1. The default set of parameter values used in the simulation of the individual-based model describing the

spread of a vector-borne disease.

Parameter Description Value [range†]

|C| Number of communities in lattice 400 [1, 16384]

NH Host population size 100000

M Vector to host ratio 1.2

cH Host mortality shape parameter 6

dH Host mortality scale parameter 75 × 365 days

cV Vector mortality shape parameter 4 [1–4]

dV Vector mortality scale parameter 23 days [10, 40]

1/μH Mean human life expectancy in ODE 70 years

1/μV Mean vector life expectancy in ODE 21.3 days

1/γ Host recovery time 4 days

1/�H Intrinsic incubation period 6 days

1/�V Extrinsic incubation period 5 days

β Per day contact rate 0.6 days−1

pH Pathogen transmission success to host 0.5

pV Pathogen transmission success to vector 0.5

σ Local disease dispersal kernel standard deviation 2

ω Long distance transmission probability 10−4

ι External infection rate per 100,000 hosts per day 10−2 [10−5, 1]

† range considered for sensitivity analyses.

https://doi.org/10.1371/journal.pntd.0006999.t001
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or between infected and infectious state, resulting in shorter and more realistic infectious

periods.

We demonstrate the effect of assuming different vector mortality rates by comparing the

R0 estimates derived from the ODE model to the individual-based model (see Methods). As

expected, using parameters as listed in Table 1 we find that the reproduction numbers from

the ODE and IBM systems are similar under the assumption of constant vector mortality rates

(Table 2). The small discrepancy between the two models is due to the ODE model’s assump-

tion of an exponentially distributed extrinsic incubation period, whereas the IBM assumes this

to be a fixed length of time. Using the IBM approach to track individual mosquitoes and infec-

tion events we also find that under this assumption the mean age at which vectors become

infected is 20 days and infectious at an age of 25 days, i.e. days beyond their average life-expec-

tancy. Furthermore, those vectors that have become infectious live for an average of 46 days,

which means that their infectious period is 21 days (equal to the life expectancy of all vectors).

This clearly highlights the discrepancy between model outputs based on constant mortality

rates and biological reality. In contrast, assuming age-dependent mortality rates (Weibull

shape parameter, cV = 4) results in biologically more reasonable infectious periods of 11 days

(Table 2) and R0 estimates that are less than half of those based on a model with constant

mortality.

To further demonstrate the dependency of R0 on different distributions of mosquito survi-

vorship, we changed the Weibull distribution of vector mortality to transition smoothly

between an exponential (cV = 1) and a sigmoid (cV> 1) age profiles and by keeping the average

life expectancy constant. As illustrated in Fig 2, relaxing the assumption of constant mortality

and resultant exponential age profile shortens the average infectious period and lowers the

reproduction number as derived from the transmission cycle of the pathogen, i.e. RIBM
0

. This

clearly demonstrate that as well as the vector life expectancy, the actual shape of the survival

curve strongly determines the estimated values of a pathogen’s reproduction number.

Comparing R0 estimates through direct measurement

The scenario defined by the reproduction number, whereby a single infectious case enters an

entirely susceptible population, is arguably unrealistic for most diseases. Furthermore, disease

transmission is an inherently stochastic process, such that each realisation of a disease intro-

duction event is likely to take a different course. We should therefore expect that R0 estimates

derived from such introductory events should come with a certain degree of variation. In

order to better understand the variability of the expected number of secondary cases and then

to directly compare the above formula-based R0 estimates, we simulated disease introduction

events into a completely susceptible population using our IBM framework and kept track of all

secondary host infections resulting from the index case.

As before we compared the two different assumptions regarding vector life expectancy:

constant vs. age-dependent mortality rates. As shown in Fig 3, there is a wide distribution in

the number of secondary infections, particularly when we assumed constant vector death

Table 2. Comparison of the reproduction numbers derived from a system of ordinary differential equations and the individual-based model under the assumption

of constant versus age-dependent mortality rates.

Model Vector death rate Life expectancy Infectious period R0

ODE Constant 21 days 21 days 7.5

IBM Constant 21 days 21 days 7.2

IBM Age-dependent 21 days 11 days 3.2

https://doi.org/10.1371/journal.pntd.0006999.t002
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rates (Fig 3A and 3B). In that case it was not unusual to observe 40-60 secondary infections,

due to the aforementioned unrealistically high life-expectancies for some of the vectors, per-

mitting the accumulation of secondary cases well after the primary human case has recovered

(Fig 3A). The mean number of secondary infection (i.e. R0) across 500 model simulations

was around 7, more than twice that of the model which assumed age-dependent mortalities.

In the latter case we observed secondary infections in the range of 0 to 18 (due to the model’s

stochastic nature where some vectors may be infected for their entire life) and with a mean

of around 3.2 (Fig 3C and 3D), in line with theoretical expectations. Please refer to S3 Fig for

sensitivity on model parameters on the direct measurement of mean secondary infections

from the IBM.

An interesting observation is that under both assumptions of vector mortality, over 30% of

our simulations resulted in zero secondary infections, as either the single primary case did not

infect any vectors, the infected vectors failed to survive the extrinsic incubation period, or the

infectious vectors failed to transmit the pathogen. Shorter infectious periods for both the host

and the vector, a longer extrinsic incubation period, and lower transmissibility naturally

decrease the overall likelihood of transmission from primary to secondary cases. Therefore,

the proportion of failed outbreaks crucially depends on all these factors (S4 Fig).

Initial growth rate methods can lead to over-estimation of R0

In most cases, only successful disease introductions that lead to epidemic outbreaks are

observed. These outbreaks can then be used to estimate the reproduction number based on

Fig 2. The effects of age-dependent mortality rates on the reproduction number. Starting by assuming a constant

death rate (cV = 1), the reproduction number derived from the transmission cycle of the individual based model, RIBM
0

,

rapidly decreases as vector mortality becomes increasingly more age-dependent (cV> 1) under constant average life

spans.

https://doi.org/10.1371/journal.pntd.0006999.g002

Estimating the reproductive number of vector-borne diseases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006999 December 17, 2018 10 / 20

https://doi.org/10.1371/journal.pntd.0006999.g002
https://doi.org/10.1371/journal.pntd.0006999


the initial epidemic growth rate λ (see Methods). Formulas to calculate R0 from λ are usually

based on ODE modelling frameworks assuming constant vector death rates. To investigate

the effect of this assumption on estimating a disease’s basic reproduction number from epi-

demic growth rates, Rl
0
, we used our IBM framework to generate 100 epidemic outbreaks

Fig 3. Reproductive number measured from the individual-based model. (A,C) Keeping track of the number of secondary infections in an

entirely susceptible population starting with a single human case over time illustrates how in the model with constant vector death rates,

secondary cases can still occur more than 100 days after the disease is introduced. This is in stark contrast to the model with age-dependent

mortality, where most secondary infections occur within the average life-expectancy of the mosquito. Each solid line represents the

accumulation pathway of secondary infections over time with darkness indicating the percentage of simulations that follow each pathway. The

individual-based model was executed 500 times yielding a distribution of total number of secondary infections, or R0, assuming either constant

(B) or age-dependent vector mortality rates (D). The two dotted lines are the reproduction numbers calculated from the theoretical IBM

calculation. The mean number of secondary infections was comparable to the reproduction number derived from the transmission cycle of a

vector-borne pathogen. Results are based on 500 model runs. Parameter values as in Table 1, except cv = 1, dv = 20.8 (constant mortality) and

cv = 4, dv = 23 (age-dependent mortality).

https://doi.org/10.1371/journal.pntd.0006999.g003
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(discounting failed introductory events) under identical initial conditions for both constant

and age-dependent mortality rates.

As illustrated in Fig 4A, estimating the reproduction number from initial outbreak data is

fairly reliable as long as the empirical age profiles of the mosquitoes match the one assumed in

the model. That is, if mosquito mortality was indeed independent of age, leading to exponen-

tially distributed age profiles, then Rl
0

can provide good estimates of the real reproduction

number. However, if the risk of dying does increase with age, then Rl
0
, as derived form the

ODE framework, is once again significantly over-inflated. Likewise, assuming age-dependent

death rates when mortality is in fact constant, this could lead to an underestimation of the true

reproduction number; note, however, that the latter scenario is arguably less relevant in bio-

logical terms.

Noticeable in all situations is the considerable variance in Rl
0
. This is due to the stochastic

nature of our spatial IBM framework, which to a certain extent should also reflect the natural

stochasticities underlying real vector-borne disease systems. Changing the model’s spatial

and demographic set-up will obviously affect the variance reported here; however, the results,

related to the mean values, are to be understood as independent of the model’s underlying

structure.

Fig 4. R0 estimates based on the initial growth can over-estimate R0. Violin plots showing the density distribution of

R0 estimates based on the initial epidemic growth rates. When the model assumptions regarding vector mortality

correctly reflect the true mortality rates (solid colour) we find that the method based on epidemic growth generates

fairly robust estimates of the true R0. When the assumed mortality rate does not coincide with the real one (mixed

colour), estimates can be off by a wide margin. Results are based on 100 model runs for each scenario; the inserted

boxplots indicate the median and interquartile ranges.

https://doi.org/10.1371/journal.pntd.0006999.g004
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Correction for initial growth rate methods

As shown in Fig 4, using the initial epidemic growth rate is only appropriate when empirical

vector mortality is indeed age-independent, whereas it can lead to significant over-estimations

otherwise. In order to compensate for this and include age-dependent vector mortality rates

into the ODE-derived formula for Rl
0
, we replaced this critical term by the vector to host trans-

mission period (VHTP), denoted by nIV , calculated directly from an assumed vector age profile

(see Methods), which yields the corrected estimate

R̂ l

0
¼ ð1þ lnIV Þ

mV
mV þ l

� �

Rl
0

ð14Þ

where μV is the constant vector mortality rate in the classical system of ordinary differential

equations. Crucially, a vector age profile has to be assumed explicitly to calculate the VHTP.

And as before, if the assumed profile in R̂l
0

matches the simulations’ profile, we find that the

derived reproduction numbers are good estimates of the actual ones, with the same variance as

before (Fig 4).

Endemic equilibrium can provide robust estimates of R0

Finally, we sought to estimate R0 from the dynamic equilibrium distribution of susceptibles in

the human population (see Methods). Crucially, this approach does not require any a priori
knowledge of mosquito survivorship and should therefore provide more robust estimates

regardless of the underlying assumptions regarding vector mortality rates. Indeed, and as dem-

onstrated in Fig 5, using the endemic state can provide reasonable estimates of a disease’s true

(i.e. theoretical) R0 value, even though the formula itself was derived from a directly transmit-

table disease, which might explain why R�
0

slightly underestimates R0.

As before we find a significant degree of variation around the mean estimates, due to the

stochastic nature of disease transmission. This can somewhat be reduced by taken longer term

averages (compare single time point estimates with 10 year average in Fig 5), which in reality

will be limited due to data availability. Equally, the model and population structure itself,

Fig 5. R0 estimates from the endemic equilibrium are more robust. Estimating R0 from the endemic equilibrium

distribution of susceptibles (R�
0
) requires no assumptions about underlying vector survival rates and proves more

robust than estimates based on the initial growth rate (Rl
0
), especially when using longitudinal data (compare single

time point with 10 year average). Note that corrected values of Rl
0
, R̂ l

0
, can yield good estimates but are still subject to

significant variations around the mean. Results are based on 100 model runs for each scenario; the inserted boxplots

indicate the median and interquartile ranges, and the dashed line denotes the theoretical R0 value.

https://doi.org/10.1371/journal.pntd.0006999.g005
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including as population size, importation rates, spatial structuring and mixing, all affect the

stability of the dynamic equilibrium and with it the variance and hence robustness of R�
0

(see

S2 Fig). Although this method is only applicable for diseases that have reached at least a semi-

endemic state, its parameter and assumption-free approach means that it should be considered

as one of the most robust ways to estimate a disease’s reproduction number.

Discussion

Mathematical models describing the population dynamics of an infectious disease provide

the necessary frameworks by which we can calculate an infectious disease’s reproduction

number, R0, based on specific parameters related to infection and transmission probabilities.

One of the most important factors influencing R0 is the length at which an individual

remains infectious. For vector-transmitted diseases this places huge significance on vector

mortality rates as vectors usually do not clear an infection and instead remain infectious for

life. Many formulas to estimate R0 are based on systems of ordinary differential equations

(ODEs), which commonly assume that vector mortality is constant, i.e. independent of age.

As we have demonstrated here, the resulting exponential distribution and the effective reset-
ting of life expectancies as individuals transition through the infection stages permit some

vectors to live for an extraordinary length of time. As a result, vectors are potentially able to

transmit the disease multiple times that of what should biologically be possible, leading to

significantly inflated R0 estimates.

In comparison to ODE models, individual-based models (IBMs) provide much greater con-

trol over the dynamics that govern both demography and disease transmission. Here we used

an individual-based modelling approach to elucidate the influence of vector mortality on R0

estimates and to highlight the discrepancy between model predictions based on constant vs.

age-dependent mortality. Because individual infection events can easily be tracked within an

IBM, the basic reproduction number can essentially be measured simply by counting the num-

ber of secondary infections arising from a single index case. This in turn not only allowed us to

compare different formulas for estimating R0 but also provided us with a better understanding

of the degree of uncertainty surrounding these estimates.

As demonstrated here, the assumption of constant vector death rates can lead to significant

over-estimation of R0. Importantly, it is not so much that the formulas commonly used to esti-

mate R0 are inherently wrong but rather that the underlying assumption of the models from

which they are derived are not necessarily aligned with biological reality. We found that one of

the most robust methods to estimate a pathogen’s R0 is based on the proportion of susceptible

individuals at endemic equilibrium, as this is entirely parameter free and does not require any

assumption about vector death rates. Unfortunately, this only works for diseases that are well

established in a population, and its reliability is strongly dependent on the stochasticity of the

underlying endemic equilibrium, i.e. the (multi-annual) variations around the mean. For

emerging diseases this is obviously not practical and estimation methods in those cases usually

make use of epidemic growth curves instead. However, these also implicitly assume exponen-

tial vector age profiles and are therefore subject to inflation. In order to account for this we

have here derived a correction factor that can be applied to classical R0 estimation formulas

and which adjusts for most of the discrepancy between the vector-to-human transmission

period (VHTP) of the biological system and the assumed system with constant vector

mortality.

In this work we made use of an individual-based modelling framework to test the effect of

non-exponential vector age distributions on R0. Alternative methods that allow for the (par-

tial) relaxation of the assumption regarding constant mortality or vector senescence have

Estimating the reproductive number of vector-borne diseases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006999 December 17, 2018 14 / 20

https://doi.org/10.1371/journal.pntd.0006999


also been proposed, including lumped-age class models [32] or systems of partial differential

equations [33]. However, these methods can still suffer from the same issues as simpler ODE

models, where transition rates between life and infection stages are usually exponentially dis-

tributed and where information about individual ages is lost at every transition stage. The

ease at which different distributions that govern host and vector mortality, infection recovery

and other epidemiological factors can be incorporated, make IBM frameworks the natural

choice to examine the influence of vector mortality or other such factors on R0 estimations.

Here we only concentrated on the effect of vector mortality, whereas similar arguments are

equally valid for the distribution underlying the extrinsic incubation period [34], for exam-

ple. Nevertheless, our work strongly suggests that vector mortality rates, or rather our

assumptions about the age-dependency of survivorship, are the predominant factors, as our

correction term for R0 estimates based on epidemic growth essentially recovers the true

value.

Another important observation from this study was that when simulating the spread of a

disease from a single infected individual and then calculating R0 based on the number of sec-

ondary infections, the stochastic nature of such events resulted in very wide distributions in

R0. Although the assumption of age-dependent mortality rates generally prevented extremely

high values of secondary cases, and therefore R0, the variance was still in the region of twice

the mean and included a significant proportion of zero cases. That is, in around a third of the

simulations we observed no secondary case at all despite starting off with the same initial con-

ditions. This then begs the question whether these events should be counted towards the esti-

mated R0 or not, as in reality we never observe such failed introductions. Comparing the

expected with the observed R0 value would suggest that zero cases should be counted, which

on the other hand implies that even high values of the reproduction number are by no means a

guarantee that an outbreak should ensue if a disease gets introduced in a fully susceptible pop-

ulation (sufficient conditions to prevent stochastic fade-out at the start of an epidemic have

been previously discussed [35]). The high variation also suggests that control strategies based

on R0 estimates generated from initial growth rates should be treated with caution and that

estimations based on one particular setting might not be adequate to generalize and predict

pathogen behaviour across all other spatial contexts [36].

We here concentrated solely on the basic reproduction number, which describes an argu-

ably unusual and often artificial situation. However, it should be clear that the same arguments

also hold for the effective reproduction number, Re, which is essentially R0 multiplied by the

fraction of the population that is susceptible to a disease, as well as their time-dependent coun-

terparts R(t) and Re(t). Furthermore, the serial and generation intervals, which can be under-

stood as temporal analogues of the reproduction number, also rely on the vector to host

transmission period and are usually assumed to be exponentially distributed [37, 38]. This

implies that these intervals, and alternative R0 estimation methods that depend upon them

[39–41], may equally be over-estimated.

Our work thus reiterates the importance of obtaining empirical vector mortality rates in the

field. The original Ross-MacDonald model for the spread of Plasmodium falciparum and P.

vivaxmalaria assumed constant vector mortality as laboratory and field studies seemed to

suggest that death rates were age independent [42]. However, re-analysis of laboratory data

showed that mosquito mortality is in fact age-dependent for several Anopholes species [43].

More recent studies also confirmed that mosquito mortality is dependent on age for Anopheles
mosquitoes [27] and Aedes aegypti [24, 25]. What is clear is that more work needs to be done

to fully elucidate realistic, i.e. field-relevant vector mortality rates, perhaps with more accurate

spectroscopic methods [44], as well as their environmental drivers. That is, seasonal variations

in temperature and rainfall have been shown to affect the birth and death rate of vectors
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[45–48], the vectorial competence [49] as well as the extrinsic incubation period [50–53]. It

has also been emphasized that other spatio-temporal heterogeneities, such as community

structures and host and vector movement, should be considered when assessing R0 [54, 55].

All this needs to be factored in if we are to develop better models to understand the epidemio-

logical and ecological determinants of vector-borne diseases, guide outbreak prevention strate-

gies or monitor ongoing intervention measures.

Supporting information

S1 Text. Model description and derivation of R0 estimates.

(PDF)

S1 Fig. Estimating R0 from empirical data. (A) The reproduction number can be estimated

from epidemic outbreak data assuming an initially exponential growth rate, λ. (B) The

dynamic equilibrium of susceptible individuals in a population can also be used to estimate R0.

(TIFF)

S2 Fig. Sensitivity of R0 direct measurement on model parameters. The direct measurement

of the mean number of secondary infections from a single introduction in the individual based

model reliably estimates the theoretical calculation RIBM
0

. Longer vector life expectancies (A),

decreased age-dependence of vector mortality rates (B), longer human infectious periods (C),

shorter extrinsic incubation periods (D), and higher transmissibility E–F, increase RIBM
0

and

the mean number of secondary infections simulated in the individual based model. Each

parameter was tested 2500 times, where the mean number of secondary infections was calcu-

lated from groups of 100 simulations. The dashed vertical lines represent the baseline values

selected.

(TIFF)

S3 Fig. Sensitivity of stochastic fadeout on model parameters. The proportion of failed

disease introductions in the individual based model depends upon a variety of factors. Lon-

ger vector life expectancies decrease the number of failed outbreaks (A), whereas the age-

dependence of vector mortality has little effect (B). Longer human infectious periods (C),

shorter extrinsic incubation periods (D), and higher transmissibility (E–F) naturally

increase the overall likelihood of transmission from primary to secondary cases. Each

parameter was simulated 2500 times, where the proportion of failed introductions was calcu-

lated from groups of 100 simulations. The dashed vertical lines represent the baseline values

selected.

(TIFF)

S4 Fig. Sensitivity of R0 estimates on model parameters. (A) Vector mortality shape parame-

ter cV. Increasing the shape of the vector mortality distribution from constant to age-dependent

survival rates shows that traditional theoretical approaches to R0 significantly overestimate the

reproduction number RIBM
0

. Both estimates from the endemic equilibrium and post-correction

initial growth rate continue to be robust over this range of shape parameters. (B) Vector mor-

tality scale parameter dV. Both theoretical calculations scale linearly with the vector mortality

scaling parameter, as this directly influences vector life expectancy and thus the vector-to-

human transmission period (VHTP). Across all tested parameters, both estimates from the

endemic equilibrium and post-correction initial growth rate continue to be reliable for R0 > 1.

(C) Number of communities in the lattice |C|. The theoretical calculations of R0 presented do

not explicitly contain any spatial dynamics. Increasing the number of communities (starting

with a homogeneous mixing model) does not affect the robustness of R0 estimates. (D) External
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infection rate ι. The theoretical calculations of R0 presented do not explicitly contain the exter-

nal infection rate. Increasing the external infection rate, does not influence the robustness of R0

estimates from the initial growth rate unless external infection rates are high enough to start

driving the epidemiological dynamics. Furthermore, R0 estimates from the endemic equilib-

rium continue to be reliable until re-introduction of the disease into the system is too low for

disease persistence. For each parameter value tested, 50 stochastic simulations were executed

and R0 estimated for each simulation. The dashed vertical lines represents the baseline values

selected.

(TIFF)
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