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Invisible Inequality Leads to  

Punishing the Poor and Rewarding the Rich 

 

Abstract 

Four experiments examine how lack of awareness of inequality affect behaviour towards 

the rich and poor. In experiment 1, participants who became aware that wealthy individuals 

donated a smaller percentage of their income switched from rewarding the wealthy to 

rewarding the poor. In experiments 2 and 3, participants who played a public goods game—

and were assigned incomes reflective of the U.S. income distribution either at random or 

on merit—punished the poor (for small absolute contributions) and rewarded the rich (for 

large absolute contributions) when incomes were unknown; when incomes were revealed, 

participants punished the rich (for the low percentage of income contributed) and rewarded 

the poor (for their high percentage). In experiment 4, participants provided with public 

education contributions for five New York school districts levied additional taxes on 

mostly poorer school districts when incomes were unknown, but targeted wealthier districts 

when incomes were revealed. These results shed light on how income transparency shapes 

preferences for equity and redistribution. We discuss implications for policy-makers. 

 

Keywords: inequality; transparency; cooperation; punishment; reward 
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The Norwegian government operates an online database which contains detailed 

information about all citizens’ income, wealth, and tax contributions – which any 

Norwegian citizen can access (Norwegian Tax Administration 2015). While social 

scientists’ first reaction to such radical transparency and opportunity for social comparison 

may be fear of the tearing of the social fabric, Norwegians seem to have survived the 

openness – and, notably, even have high tax morale (I. Lago-Peñas & S. Lago-Peñas 2010). 

While anecdotal, this example suggests that revealing incomes can be associated with 

increased support for contributing to the public good. Such preferences for spending on 

public goods such as social programs or health care are based, at least in part, on beliefs 

about income and wealth inequality (Oishi et al. 2011; Alesina & Angeletos 2005; 

Kuziemko et al. 2015; Brown-Iannuzzi et al. 2015). Survey evidence suggests, however, 

that many people may not be aware of the true extent of inequality in their country (Davidai 

& Gilovich 2015; Norton & Ariely 2011; Kiatpongsan & Norton 2014; Hauser & Norton 

2017). A lack of transparency of incomes could lead individuals to hold different 

preferences than they would have if income information were available to them, and this 

misinformation might, in turn, have downstream consequences.  

We examine how invisible, or hidden, income inequality affects group-level 

outcomes and individual people’s behaviours towards the richest and the poorest group 

members – relative to when inequality is revealed. We hypothesised that revealing 

information about inequality might exert a substantial effect on behaviour: if people do not 

realise how little the poor have, and how much the rich have, they may be less sympathetic 

to low contributions from those who cannot afford to give more, and less likely to punish 

the rich for not contributing their “fair share.”  
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Previous research on cooperation has explored the determinants and consequences 

of such sanctioning behaviour (Fehr & Gächter 2002; Rand et al. 2009; Hauser et al. 2016; 

Crockett et al. 2014; Krasnow et al. 2016; Jordan et al. 2016; Hauser, Nowak, et al. 2014). 

Results typically reveal that low contributors are punished, while high contributors are 

rewarded. In these studies, all players typically receive identical endowments in each 

round, and this equality is common knowledge to all players; thus the majority of these 

experiments, while highly informative regarding the maintenance of cooperation, shed 

little light on perceptions of, and reactions to, inequality. Indeed, only recently, scholars 

have been investigating inequality in the provisioning of public goods and social dynamics 

more generally (Nishi et al. 2015; Gächter et al. 2017; Anderson et al. 2008; Hauser, 

Traulsen, et al. 2014; for a full literature review, see Supplemental Online Material (SOM) 

Section 1.2.) 

Building on this previous research, we introduce three novel features to explore the 

impact of people’s recently demonstrated lack of knowledge (Kiatpongsan & Norton 2014; 

Hauser & Norton 2017) on public goods provisioning: (i) we experimentally vary whether 

the income distribution is hidden or revealed to explore the causal effect of knowledge of 

inequality on behaviour toward the rich and poor; (ii) we use income distributions that are 

extremely unequal (e.g., the actual United States distribution) to explore behaviour toward 

the rich and poor under conditions reflective of real-world inequality; and (iii) we allow 

participants to either punish, reward, or both punish and reward the poor and the rich to 

explore how these sanctions are utilised to address perceived inequity.   

In Experiment 1, we randomly assign participants to one of two conditions, in 

which they are either aware of donors’ incomes (the revealed condition) or unaware (the 
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hidden condition). Based on representative of real-world income and donation 

distributions, we study participants’ reward behaviour towards a real donor. In Experiment 

2, we randomly assign participants to different incomes—reflective of the income 

distribution of the United States—and then further randomly assign them to either the 

revealed or hidden condition; we examine sanctioning behaviour—both punishment and 

reward—towards other players in a repeated public goods game. In Experiment 3, we 

examine whether merit might play a moderating role: whereas in Experiment 2 incomes 

are assigned randomly, in the third experiment incomes are assigned based on task 

performance. We again assign participants to either the revealed or hidden condition, and 

examine their decisions to punish and reward other players. Finally, in Experiment 4, we 

explore potential policy consequences, examining preferences for taxation policies: we use 

actual data on charitable contributions to public schools in New York to examine which 

school districts—wealthy or poor—people believe should be taxed more highly, as a 

function of whether the incomes of those districts are hidden or revealed.  

Across all four experiment, our results can be summarized as follows: when 

incomes were hidden, participants rewarded the richest group members for their seemingly 

high contributions, while punishing the poorest for contributing apparently little. When 

incomes were revealed, however, participants reversed this behavioural pattern, such that 

they rewarded the poorest (for contributing a high relative amount of their small 

endowment) and punished the richest (for contributing a low relative amount of their large 

endowment).  

 

Experiment 1 
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Methods 

Participants (N = 315) were recruited on Amazon Mechanical Turk from the United 

States. Participants were told that they had to decide to which out of five donors—all of 

them previous participants in another study on Amazon Mechanical Turk—they would 

assign a $1.00 bonus payment.  The donors were chosen so that their donation behaviour 

represented the actual distribution of U.S. donors across five income ranges (Maryland 

CPA 2016): on average, households donated $1,874 (income under $25,000), $2,594 

($25,000–$50,000), $2,970 ($50,000–75,000), $3,356 ($75,000–$100,000), and $4,130 

($100,000–$200,000) in 2014, the year with the latest available data. Participants were 

asked which one of the five donors should receive a $1.00 bonus payment. The decision 

was incentive-compatible: one participant was drawn at random and their decision 

implemented to pay the donor. 

Participants were randomly assigned to one of two conditions. In the revealed 

condition, participants were told the donors’ average donation as well as their income 

range. Conversely, in the hidden condition, they saw the donation amount only but not the 

income range. We expected participants in the hidden condition to reward the 

(unbeknownst to them richest) donor who donated the largest absolute amount of money 

in the past year, while we predicted a reversal of reward behaviour in the revealed 

condition, such that participants would reward the poorest donor who gave the highest 

percentage of their income to charity. See Supplemental Online Material (SOM) Section 

2.2.1 for detailed methods. 

 

Results 
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 As predicted, we find that the distributions of donors rewarded is significantly 

different between the two conditions (Figure 1; using linear regression: coeff = -2.250, p < 

0.001, Table S1; qualitatively similar results are obtained with rank-sum test: Z = -10.935, 

p < 0.001). This shift in reward behaviour occurs only for the top and bottom income 

classes: when income ranges are revealed, participants are more likely to reward the 

poorest donor (coeff = 2.681, p < 0.001, Table S2) and less likely to reward the richest 

donor (coeff = -3.72, p < 0.001, Table S2). There is no difference in likelihood to reward 

donors in the middle of the distribution (all ps > 0.1).  

 

Experiment 2 

Methods 

Participants (N = 855) were recruited on Amazon Mechanical Turk, read the 

instructions and answered comprehension questions, and were assigned to groups of five 

to play a two-stage economic game over 10 rounds.  

We used a standard paradigm in experimental economics; an incentive-compatible, 

repeated public goods game (PGG) in groups of 5 players. In each of 10 rounds, every 

player was assigned an “income” and chose how much of that income to contribute to a 

common pool; all contributions were doubled and divided equally among the five players 

(see SOM Section 2.2.1 for more details about experiment design). We then showed each 

player the contributions of all other players, and gave each player the opportunity for costly 

sanctioning of all other players. In the punishment condition, participants could pay 1 unit 

to decrease any other participant’s payoff by 3 units; in the reward condition, participants 
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could pay 1 unit to increase any other participant’s payoff by 3 units. Participants could 

spend up to 2 units on each of the other participants.  

Before the start of the game, participants were randomly assigned to receive an 

income, and were told they would receive this same income in each round of the game. We 

used the United States pre-tax incomes by quintile to create incomes for the five players 

(Congressional Budget Office 2007): The top quintile participant received 55 units out of 

100 units in the group (or 55% of all income), the next 19 units, the next 13 units, the next 

9 units, and the bottom quintile participant 4 units (Fig. 2A). Once assigned to an income 

level, participants received the same income each round for 10 rounds. 

Across all conditions, participants played two stages in each round. In Stage 1, 

participants could contribute any amount of their income to a common project. Any units 

contributed were doubled and split equally among all five group members. In Stage 2, 

participants could see everyone’s contributions and could either punish or reward their 

group members (depending on the condition). Participants could not spend more in Stage 

2 than they had earned in Stage 1. At the end of each round, participants saw their group 

members’ decision to reward or punish them in Stage 2, and a summary of their payoff in 

this round. To ensure that participants could not identify one another across multiple rounds 

and to avoid retaliation (Nikiforakis et al. 2012), each player was only known by a series 

of random letters that changed at the beginning of every round. 

The experimental design was a 2 (punishment versus reward) X 2 (hidden versus 

revealed) between-participants design (N = 600; for details about the experimental design, 

see SOM Section 2.2.2.). In the hidden condition, players had no information about the 

incomes of the others in their group (Fig. 2B): they made contributions, viewed others’ 
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contributions, and decided to punish or reward based only on the total amounts contributed 

by other players. In the revealed condition, in contrast, participants were shown the income 

of each player as they made their decisions to punish or reward – allowing them to base 

their decisions not only on the total amount contributed, but also the percentage of 

available income that each player chose to contribute (Fig. 2C). For example, a player who 

contributed just three units in the hidden condition may look stingy; learning that this 

player had only four total units in the revealed condition may dramatically alter perceptions 

of their contribution.  

We expected that in the hidden condition, participants would generally view the 

(low total) contributions of bottom quintile players unfavourably, inducing punishment, 

and the (high total) contribution of the top quintile players favourably, inducing reward. In 

contrast, we expected that in the revealed condition, participants would generally view the 

(high percentage) contributions of bottom quintile players favourably, inducing reward, 

and the (low percentage) contribution of the top quintile players unfavourably, inducing 

punishment.  

 

Results 

We find that, indeed, participants in the hidden condition rewarded richer 

participants more (coeff = 0.636, p < 0.001), whereas those in the revealed condition 

rewarded poorer participants more (coeff = -0.720, p < 0.001; interaction between income 

and revealed dummy, coeff = -1.356, p < 0.001; Figure 3 and Table S3). We observe a 

mirror image of these results for decisions to punish: participants in the hidden condition 

punished poorer participants more (coeff = -0.282, p = 0.042), whereas those in the 
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revealed condition punished richer subjects more (coeff = 0.692, p < 0.001; interaction 

between income and revealed dummy, coeff = 0.974, p < 0.001; Figure 3 and Table S5). 

Thus, knowledge about economic inequality had a profound effect on sanctioning.  

Why did players sanction so differently in the hidden and revealed conditions? 

Across both conditions, richer players contributed larger total amounts (hidden: coeff = 

3.172, p < 0.001; revealed: coeff = 4.734, p < 0.001; Table S7), but lower percentages of 

their income (hidden: coeff = -0.098, p < 0.001; revealed: coeff = -0.058, p < 0.001; Table 

S8) (Figure 4). Collapsing across conditions, top quintile participants contributed 20.49 out 

of 55 units (or 37% of their income) whereas bottom quintile participants contributed 2.83 

out of 4 units (or 71% of their income). The pattern of sanctioning we observe therefore 

follows naturally if sanctions were assigned based on percentage of income contributed in 

the revealed condition but total amount contributed in the hidden condition. 

Supporting this logic, in the revealed condition, participants conditioned their 

sanctioning decisions on the percentage of the target’s income that was contributed (using 

percentage contributed as the independent variable; predicting punishment: coeff = -4.664, 

p < 0.001, Figure 5A; predicting reward: coeff = 6.320, p < 0.001, Figure 5B; Table S12), 

more so than on the absolute amount contributed. In the hidden condition, conversely, 

where only total contribution amounts were known, sanctioning was based on total amount 

contributed (predicting punishment: coeff = -1.863, p = 0.019, Figure 5C; predicting 

reward: coeff = 4.700, p < 0.001, Figure 5D; Table S11), but not on percentage of income 

contributed (predicting punishment: coeff = 0.030, p = 0.954; predicting reward: coeff = -

0.216, p = 0.677; Table S11). 
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We next consider the consequences of income transparency on total contributions 

and final payoff inequality. Overall, significantly more units were contributed in the 

revealed condition compared to the hidden condition (coeff = 1.745, p = 0.002; Table S17). 

However, these overall greater contributions in the revealed condition were not distributed 

equally: the richest participant earned significantly less per round (predicting round payoff 

of top quintile only: coeff = -5.430, p < 0.001), the fourth quintile was unchanged (coeff = 

-0.474, p = 0.715), but all other participants earned significantly more (first quintile: coeff 

= 6.261, p < 0.001; second quintile: coeff = 3.950, p = 0.003; third quintile: 3.399, p = 

0.010).  

In addition, revealing income not only affected contributions and payoffs; it also 

resulted in less inequality by the end of the game. The Gini coefficient—a common 

summary measure of inequality—after the final round of the game was significantly higher 

in the hidden condition (average 0.238) compared to revealed (average 0.169; rank-sum, p 

< 0.001). Notably, participants in the bottom (poorest) through fourth (second richest) 

quintiles maintained (or even increased) their contribution levels over the ten rounds in 

both the hidden and revealed conditions; in contrast, although participants in the top 

(richest) quintile in the revealed condition also continued to contribute steadily over time 

(coeff = -0.382, p = 1.000 bonferroni-corrected), top quintile players in the hidden 

condition decreased their contributions over the ten rounds (coeff = -1.077, p < 0.001 

corrected) (Tables S19 and S20). In other words, in the hidden condition, sanctions were 

less effective at maintaining contributions among those with the greatest ability to 

contribute to the public good.  
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Experiment 3 

Participants in our second experiment were assigned their income randomly. 

However, incomes in the real world are not just the product of chance, but also of effort. 

Earned incomes could justify inequalities and thus reduce a desire for redistribution 

through punishment or reward (Cappelen et al. 2013). In Experiment 3, we thus assigned 

income based on participants’ performance in an individual effort task before playing the 

public goods game. While the general setup of the game was similar to Experiment 2, we 

also made several additional changes to the design, which are described in detail in SOM 

Section 2.2.3; below is a shortened summary. 

 

Methods 

Participants (N = 440) who were recruited on Amazon Mechanical Turk played a 

two-phase experiment. In Phase 1, participants completed an individual effort task that 

affected their income level in the second phase. In Phase 2, participants played the same 

repeated two-stage economic game with sanctions (unlike before, both reward and 

punishment options were available simultaneously). As before, participants were assigned 

to one of two conditions: participants in the revealed conditions saw their own income, the 

income of the other participants and the sum of all incomes, while participants in the hidden 

condition only saw their own income and the sum of all incomes in the group.  

Unlike in the previous experiment, participants were not randomly assigned their 

income at the start of the economic game, but earned their position in the income 

distribution beforehand through an effort task (Abeler et al. 2011) and this was common 

knowledge to all players. The best-performing participant in a group earned the highest 
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income, the second-best performing participant earned the second-highest income, and so 

on. 

Furthermore, in this experiment, we increased external validity by ensuring that 

participants in both conditions were aware of some degree of inequality, as they are in the 

real world (Kiatpongsan & Norton 2014): we informed participants (who had been 

recruited exclusively from the U.S.) in both the hidden and revealed conditions in the 

second experiment that the income distribution used in the game was derived from the 

United States income distribution by quintile (U.S. Census Bureau 2013). However, based 

on previous research (Norton & Ariely 2011; Hauser & Norton 2017), we anticipated that 

participants would misjudge the actual extent of U.S. inequality (and thus inequality in the 

game) and would therefore not adjust their sanctioning behaviour sufficiently, thereby 

showing a similar sanctioning pattern to the previous experiment.  

 

Results 

In our third experiment, we found qualitatively similar results as before: 

participants continued to reward the rich and punish the poor in the hidden condition 

(predicting number of units received, where positive values imply receiving on average 

reward and negative values punishment: coeff = 0.053, p = 0.042), while this trend reversed 

completely in the revealed condition (coeff = -0.171, p < 0.001; interaction between 

income and revealed dummy: coeff = -0.225, p < 0.001; Table S22). Across conditions, 

richer participants contributed more in absolute terms (coeff = 3.979, p < 0.001; Table 

S22), but less as a percentage of their income (coeff = -0.078, p < 0.001; Table S25), than 

poorer participants. As before, this sanctioning pattern was linked to reward and 
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punishment decisions: higher absolute contributions received more reward in the hidden 

condition (coeff = 0.571, p < 0.001; Table S28), but higher percentage of income 

contributed was more rewarded in the revealed condition (coeff = 1.775, p < 0.001; Table 

S28).  

Groups in the revealed condition (average Gini index = 0.124) again ended up with 

more equal payoffs than those in the hidden condition (Gini 0.255). Furthermore, overall 

contributions to the public good were higher in the revealed condition than in the hidden 

condition (coeff = 3.134, p < 0.001; Table S30) but they did not benefit everyone equally: 

the richest participant earned significantly less per round (coeff = -4.923, p = 0.011), the 

fourth-quintile participant’s payoff did not change (coeff = 2.864, p = 0.105), but all other 

participants earned significantly more (first quintile: coeff = 11.990, p < 0.001; second 

quintile: coeff = 8.269, p < 0.001; third quintile: coeff = 6.218, p = 0.001). 

In our third experiment, even when incomes were earned and when participants 

were informed that the income distribution was reflective of their own country’s 

distribution, participants continued to punish the poor and reward the rich when the income 

distribution was hidden, but reward the poor and punish the rich when incomes were 

revealed.  

 

Experiment 4 

In our final experiment, we turn to the question of how revealing inequality might 

influence relevant policy outcomes. In particular, we examine taxation preferences with 

regards to school funding. We used actual data from donations to Parent-Teacher 

Associations (PTA) in five New York school districts, which vary on both average income 
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and average donation amounts. In particular, districts with higher incomes tend to 

contribute more to PTAs, resulting in inequality in educational funding. We showed 

participants either the contributions to the PTA from each district (hidden condition) or 

both the contributions and the average income (revealed condition), and asked which 

district they believed should be responsible for an additional tax which helps all schools 

across districts. We expected that in the hidden condition, poor school districts would be 

“punished” with the additional tax, whereas in the revealed condition, punishment would 

switch toward wealthier districts. 

 

Methods 

Participants (N = 313) were recruited on Amazon Mechanical Turk and randomly 

assigned to two conditions (hidden versus revealed). Participants in all conditions read 

about the annual fundraisers that the PTA organises across American schools, which helps 

schools afford non-state funded initiates such as a science lab, teachers’ aides, and 

additional equipment; as in the public goods game in Experiments 2 and 3, these funds 

were pooled across the districts and then distributed back to each district. Participants were 

then informed that the city government wants to raise $2,000 additional funding for each 

school by raising taxes, and were asked: “Which parents do you think should pay the 

additional tax to cover the $2,000 per school in all five schools?” The choice of the school 

parents that bear the additional tax is our measure of “punishment” in this study. 

In the revealed condition, participants saw a list of five schools (identified by a 

string of two random letters), the average PTA donation from parents at this school, as well 

as the average household income in that area. Conversely, in the hidden condition, 
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participants saw the same five schools but only the average PTA donation with no income 

information. In both conditions, the five schools are modelled after a real dataset. We 

obtained data from average PTA donations (Sullivan & Felton 2014) and median 

household incomes (Weissman Center for International Business 2016) from five New 

York City school districts (Bronx, Brooklyn, Manhattan, Queens, Staten Island). 

Participants saw the following five schools which appeared in random order: $353 average 

PTA donation (median income: $35,176), $1,227 ($51,141), $4,249 ($60,422), $9,759 

($71,622), and $1,486 ($75,575). See SI Section 2.2.4 for more details on the experimental 

design. 

Note that the absolute donation averages do not perfectly track with household 

incomes: parents in Manhattan—the district with the highest median household income—

give less to PTA fundraisers ($1,486) than parents in Queens ($4,249) and Staten Island 

($9,759). Our predictions remain qualitatively unchanged, however: we predict that 

participants’ punishment preferences will shift away from raising taxes on the poorest 

school parents in the hidden condition to raising them on the richest parents when incomes 

are revealed. 

 

Results 

As predicted, we found that participants’ preference shifted from punishing poor 

school parents in the hidden condition to punishing richer school parents in the revealed 

condition (using linear regression predicting 1 = poorer to 5 = richer school areas by 

revealed dummy: coeff = 1.826, p < 0.001, Table S34; qualitatively similar results are 

obtained with rank-sum test: Z = -11.883, p < 0.001). Most changes in preferences occurred 
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in a shift to the richest school parents. Specifically, participants were significantly less 

likely to raise taxes from poorer parents (M = 41.5%) in the revealed condition relative to 

the hidden condition (M = 7.1%; using logit regression predicting likelihood of choosing 

the poorest school parents to pay taxes by revealed dummy: coeff = -2.222, p < 0.001, 

Table S35). Conversely, participants were more likely to raise taxes on the richest parents 

when incomes were revealed (M = 77.3%) compared to when incomes were hidden (M = 

4.4%; predicting choosing the richest school parents: coeff = 4.302, p < 0.001, Table S35).  

Participants were also less likely to want taxes raised from the second-richest 

school districts in the revealed condition than in the hidden condition (predicting choosing 

second-richest school: coeff = -1.985, p < 0.001, Table S35); there were no significant 

differences in punishment behaviour in remaining two districts (both ps > 0.1). 

In sum, Experiment 4 offers an example of a real-world public goods dilemma with 

similar dynamics to our laboratory paradigms: people have an opportunity to contribute to 

a valued public good (in this case, education for their children) via voluntary contributions 

(in the form of charitable gifts), which are then pooled across groups of people with 

different incomes (in this case, schools districts with higher and lower annual incomes). 

The decision for participants is to choose which school district should be the target of 

“punishment” – in the form of an additional tax levied by the government.  Consistent with 

the results from the previous studies, awareness of inequality shifted people’s preferences 

away from punishing the poor (in the form of additional taxation) and toward rewarding 

them. 

 

General Discussion 
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In sum, revealing inequality had substantial effects on people’s decisions to reward 

or punish others, and on total contributions to the public good. Participants were more 

likely to punish poorer participants and reward richer participants when inequality was 

hidden; when income was revealed, participants became more sensitive to people’s ability 

to contribute – leading them to punish the rich and reward the poor. These general patterns 

held true across charitable donations (Experiment 1), contributions to public goods in 

interactive group-based studies (Experiments 2 and 3), and with regards to taxation to 

support public education (Experiment 4). 

To some, these results may not come as a surprise – indeed, one might argue that 

revealing the income distribution to participants would necessarily change their behaviour. 

However, we believe that this is only obvious in hindsight. First, people in the real world 

are aware of inequality in their communities and lives, but at the same time they 

underestimate the extent to which incomes (and wealth) are so drastically different between 

people (Norton & Ariely 2011; Hauser & Norton 2017) – and consequently they do not 

take these different into account sufficiently when they evaluate contributions to a public 

good. Thus, we contribute to the literature by demonstrating that implicit knowledge of 

inequality in a country (such as the hidden conditions in Experiments 3 and 4) is not 

sufficient to make people realise that they could account for large differences in 

contribution amounts. People do not seem to spontaneously consider the background 

wealth of others when evaluating public contributions. Conversely, once incomes were 

revealed, the extent to which participants reserve their sanctioning patterns is also quite 

remarkable: we find that people are very responsive to this type of information, such that 

they punish the rich and reward the poor consistently in all our experiments.  
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Participants’ motivation to punish the rich and reward the poor in the revealed 

condition could arise from seeking equity in contributions or simply aiming to reduce 

inequality in the group, or both (Rawls 1971; Frohlich et al. 1987; Van Dijk & Wilke 1994). 

Though equity concerns were present in our sample, we additionally show in the SOM that 

participants in the revealed condition punished the top quintile more than any other player, 

even when the rich had contributed the same percentage of their income. In other words, 

when inequality was revealed, participants in our experiments desired not just equity but 

that the wealthy were slightly less well off, suggesting that spite may play a role in 

sanctioning under transparency. The observation that our participants were unaccepting of 

inequality adds to a growing literature on social preferences, egalitarianism and 

libertarianism (Konow 2000; Cappelen et al. 2007). Conversely, what levels of inequality 

are acceptable remains an open question but some recent work has started to shed light on 

this question (Norton 2014; Kiatpongsan & Norton 2014). Certainly, more research is need 

to explore what shapes belief formation of perceived and ideal inequality (Sheehy-

Skeffington et al. 2016); one fruitful area to investigate is the role of normative second-

order beliefs (Jachimowicz, Hauser, et al. 2018; Kraft-Todd et al. 2018)—one’s beliefs of 

what others believe—which might, in turn, shape one’s own attitudes towards an issue, 

including inequality acceptance. 

Our participants’ unwillingness to tolerate inequality of income persisted even 

when incomes were assigned by performance. Literature on pay dispersion in organisations 

has found that being able to attribute unequal rewards to differences in production and 

performance can help reduce feelings of unfairness (Bloom & Michel 2002; Shaw 2014; 

Breza et al. 2017). Furthermore, plausible justifications typically make people more 
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accepting of inequalities (Cappelen et al. 2013). However, in Experiment 3, we did not find 

evidence that earning incomes moderated the effects in either the hidden or revealed 

conditions. One explanation might be that most previous research has focused on moderate, 

not extremely high, levels of inequality, which are likely to map more closely onto people’s 

(inaccurate) beliefs about the distribution of wealth and income; varying the extent to 

which distributions reflect reality versus perception offers an important area for future 

research. Another explanation might be that the act of earning incomes was less salient in 

our experiments than the incomes themselves. Future research is needed to investigate 

other potential moderators for the observed sanctioning behaviour, including individual 

traits such as subjective status (Kraus & Mendes 2014; Akinola & Mendes 2013; Brown-

Iannuzzi et al. 2015), sense of control (Kraus et al. 2009), or risk preferences (Payne et al. 

2017). Furthermore, group size and the extent to which (lack of) sense of control is affected 

by inequality (Chou et al. 2016; Jachimowicz, To, et al. 2018) could help explain why and 

how participants are using reward and punishment in our experiments. 

Visibility of income will of course not always have positive effects. For example, 

without the opportunity to sanction others, revealed inequality can lead to more 

segregation of the rich and poor, and even further inequality (Nishi et al. 2015). 

Furthermore, making incomes between co-workers public can reduce satisfaction and 

productivity of low earners (Card et al. 2012; Pfeffer & Langton 1993). Most studies 

have usually focused on individuals who conduct similar work and might thus feel 

unfairly treated if their salaries were vastly different. Much less research has looked at 

the consequences of CEO salary visibility, and it remains an open question to how 

mandatory reporting policies (such as the U.S. Dodd Frank Act) that will require CEO 
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salaries to be disclosed publicly will affect productivity, retention and satisfaction of 

workers.  

While our income distributions were drawn from the real world, our paradigms 

necessarily offer stylised examinations of the impact of inequality on the public good and 

some limitations must be acknowledged. First, our experiments were conducted on 

Amazon Mechanical Turk (AMT), an online labour market, often used for research 

purposes (Buhrmester et al. 2011; Rand 2012); however, this labor market is not 

nationally representative and thus results should be interpreted with caution. Of particular 

relevance to our own investigation is the demographic skew towards younger, more 

educated and more technologically savvy people in a typical AMT sample compared to 

the general U.S. population. For example, in exploratory analysis in our fourth 

experiment, we found that, while the overall shift to levying a tax on the richest 

household (versus the poor) was statistically significant and economically meaningful 

across all age groups in the revealed condition, there was more variation across age 

groups in the hidden condition, such that older individuals in our sample were more 

likely than younger participants to assign the tax to the poorest households. This suggests 

that older participants were (likely unbeknownst to them) more willing to punish the poor 

and not consider their unobservable circumstances when incomes were hidden. Whether 

this suggestive evidence is more generalisable remains to be understood in follow up 

work; however, these results do point to the importance of conducting research with a 

wide range of participants from different and representative backgrounds. Future research 

should thus consider demographic variation in lab and online experiments or ideally, 

wherever possible, conduct research on inequality using field experiments. The latter is 
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particularly policy relevant: for example, policy-makers and scholars interested in 

behavioural science and choice architecture (or “nudges”, Thaler & Sunstein (2008)) 

might want to run an audit or procedural field experiment (Harrison & List 2004; List 

2006; Ludwig et al. 2011; Hauser et al. 2017; Kraft-Todd et al. 2015) to study and 

potentially shift incorrect beliefs about inequality (“budging” versus “nudging”, see 

Hauser et al. (2019)) and its effects on redistribution; recent examples of large-scale, 

policy-relevant field experiments in the context of inequality include Jachimowicz et al. 

(2017) and Sands (2017). 

Second, we had to make some design choice in our experiments that may differ 

from the real world. For example, in Experiments 2 and 3, we restricted the amount that 

all participants could pay to punish or reward other players to the same fixed number of 

units per player (as in Rockenbach & Milinski (2006); Rand et al. (2009)). We observe a 

weak, marginally significant relationship between income and sanctioning behaviour 

across both the revealed and hidden conditions in Experiment 2 (linear regression 

predicting units spent on reward or punishment by income quintile: coeff = 0.070, p = 

0.053), though not in Experiment 3 (p > 0.1), suggesting that placing restrictions on 

sanctioning may have some effect. Future research is needed to delineate the effects of 

varying limitations on sanctioning. Of course, the real world may not always provide an 

upper bound: given their greater resources, the rich have much greater ability to inflict 

harm or bestow benefits on others. Still, there are some real-world situations in which all 

decisions count equally: for instance, casting a vote in democratic elections carries equal 

weight despite differences in income.  
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Conversely, our experiment also did not vary the degree to which punishment and 

reward affected individuals across the income spectrum differently. Future research 

should model and study potentially interesting policies that have varying effects on the 

rich and poor. For example, rich and poor participants in Experiments 2 and 3 could face 

the same maximum, absolute number of punishment (or reward) points, but being punish 

with the maximum would likely have different effects on the person depending on their 

income. A punishment of 4 points is less than 10% of the rich participants’ income, but it 

equals the total income each round for the poorest participants. It would thus be 

interesting to ask whether behaviour would be affected differently if punishment were the 

same fraction of one’s income in both cases. There exists some precedent for a 

proportional fine structure: in the UK, for example, speeding fines can be as high as 

150% of the offender’s weekly income – however, the caveat is that the maximum fine 

cannot exceed £2,500 (BBC 2017). While the proportionality with income has 

comparable effects on individuals across the income spectrum, the choice of a ceiling 

likely limits the punishment the richest could be exposed to in extreme circumstances. 

Future research should experimentally vary the degree to which policy institutions assign 

punishment proportional to income, or impose an upper bound.  

In conclusion, a range of experiments and methodologies—from incentive-

compatible economic games to psychological vignettes—demonstrate that preferences for 

who to sanction changed when incomes were made transparent, and that revealing incomes 

decreased inequality and increased total contributions. To highlight, some of our results 

speak to the concerns of policymakers: our final experiment shows that revealing 

information about inequality and wealth is an important factor in people’s perceptions of 
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where resources ought to be allocated to sustain a public good. We return to our 

introductory example to speculate what revealing inequality might look like in the real 

world: while revealing all citizens’ incomes may seem challenging to implement or even 

hard to imagine in some countries, it is common practice in others – as in the Norway 

example cited earlier. In a world of income transparency, the “haves” may become less 

rewarded and the “have-nots” less punished, with implications for the common good. 
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Figure 1. Reward behaviour shifts from rewarding the richest donor who donates the 

highest absolute amount in the hidden condition to the poorest donor who donates the 

largest relative amount in the revealed condition. 
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Figure 2. The income distribution in our game and the main experimental manipulation 

between the hidden and revealed conditions. A Each player in a group of five was 

randomly assigned to a position in an income distribution. In the first experiment, we used 

the 2007 U.S. pre-tax income distribution (Congressional Budget Office 2007): in each of 

ten rounds, the top quintile participant received 55 units, while the bottom quintile player 

received 4 units. B When making decisions to punish and reward, participants in the hidden 

condition saw their own income and the sum of all incomes. C In the revealed condition, 

participants viewed all players’ incomes.  
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Figure 3. Amount of received reward (top panels) and punishment (bottom panels) 

depends on income quintile and whether income was hidden (left panels) or revealed 

(right panels). A Participants rewarded higher income participants more in the hidden 

condition, but B less in the revealed condition. C Punishment behaviour is a mirror image 

of reward: participants punished poorer participants more in the hidden condition, while 

D punishing richer participants more in the revealed condition.  
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Figure 4. Who contributes more? A In the hidden condition, only absolute contributions 

could be assessed, such that richer participants appeared to contribute more. B In the 

revealed condition, where participants could view contributions relative to income, it 

became apparent that lower income participants contributed a larger fraction of their 

income.  
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Figure 5. Received punishment and reward depends on percentage of income 

contributed in the revealed condition (top panels) and on absolute income contributed 

in the hidden condition (bottom panels). A,B When incomes were revealed, participants 

who contributed a higher percentage of their income were A punished less and B rewarded 

more. C,D Conversely, when incomes were hidden, participants who contributed a higher 

absolute amount were C punished less and D rewarded more. Bubble size is proportional 

to the fraction of corresponding participants. 
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1. Motivation and relation to previous work 
 

1.1 Research motivation  

The central observation motivating the present work is that people, both in the U.S. and 
in 39 other countries, systematically underestimate the extent of inequality in their 
country (Kiatpongsan & Norton, 2014; Norton & Ariely, 2011). We hypothesised that 
this misinformation regarding inequality can have major negative impacts on societal 
well-being: if people do not realise how little the poor have, and how much the rich have, 
they may be less sympathetic to low contributions from those who cannot afford to give 
more, and less able to hold the rich to account for not contributing their “fair share”.  
 
To explore these societal impacts experimentally, we used the standard paradigm from 
experimental economics for studying group social interactions: the public goods game 
(PGG). In particular, we built on the large body of prior work demonstrating that people 
tend to punish players who do not contribute in the PGG, and reward players who do 
(Fehr & Gächter, 2000; 2002; Gächter, Renner, & Sefton, 2008; Herrmann, Thöni, & 
Gächter, 2008; Rand, Dreber, Ellingsen, Fudenberg, & Nowak, 2009; Sefton, Shupp, & 
Walker, 2007; Sutter, Haigner, & Kocher, 2010). (There are, however, cultural 
differences across countries: while punishment of low contributors is the norm in most 
Western countries, so-called ‘anti-social’ punishment aimed at high contributors is 
observed at high frequency in countries with a weak rule of law (Herrmann et al., 2008).) 
While most prior PGG studies have focused on groups where incomes were equally 
distributed, several recent studies have begun to explore how inequality affects 
contribution and sanctioning behaviour (Buckley & Croson, 2006; Reuben & Riedl, 
2013) (see Section 1.2 for more details). 
 
In the current paper, we add to our understanding of inequality by incorporating three key 
features of inequality that have received little prior attention. First, in most prior work, 
the income distribution was common knowledge among all PGG groups members. Thus, 
little is known about our central question of the consequences of the empirical 
observation that people do not have an accurate understanding of the level of inequality 
(Kiatpongsan & Norton, 2014; Norton & Ariely, 2011). To that end, we experimentally 
manipulate when the income distribution is known or hidden.  
 
Secondly, most prior studies focus on the impact of levels of inequality that were much 
lower than what is observed outside the laboratory. The Gini index is the most a common 
measure of inequality (Allison, 1978). Using the most recent country-level data from the 
World Bank (World Bank, n.d.), we found that globally, the Gini index ranges between 
0.25 and 0.66. Almost no prior studies used endowments that reflected that level of 
inequality: while 90% of all countries had Gini indices higher than 0.29, 91% of previous 
PGG experiments we surveyed had a Gini index below 0.29. To better reflect the reality 
of income inequality, we used PGG endowments that match the actual U.S. income 
quintiles from 2007 having a Gini index of 0.440 (Experiment 1), and 2013 having a Gini 
index of 0.444 (Experiment 2). 
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Third, most prior studies have randomly assigned subjects to receive higher or lower 
incomes. Yet in reality, variation in income is (at least in part) determined by non-random 
factors such as effort. Thus we also explore the impact of earned vs random inequality, 
and how this interacts with knowledge about the distribution of incomes. 
 
Finally, while most prior experiments have either not allowed for sanctioning, or have 
focused exclusively on punishment, we examine both costly peer punishment and costly 
peer rewarding through different operationalisations. Rewards (e.g. “positive” sanctions) 
play a key role in much of human social life, and thus understanding whether inequality 
impacts rewards differently from punishment is important.  
 

1.2 Previous research  

The vast majority of prior literature using public goods game has focused on equally-
endowed participants. In recent years, however, economists and psychologists have 
begun to study the effects of endowment (or income) inequality on cooperation. Here we 
provide a brief survey of prior literature on inequality and public goods. (While we focus 
on income inequality, we note that inequality can also be induced by varying the marginal 
per capita return (Cardenas, Stranlund, & Willis, 2002; Fisher, Isaac, Schatzberg, & 
Walker, 1995; Reuben & Riedl, 2008), show-up fees for participants (Anderson, Mellor, 
& Milyo, 2008), or marginal abatement costs (Brick & Visser, 2012), or by taking 
advantage of endogenous variation in participants’ real-world wealth (Cardenas, 2007; 
2003).) 
 
One of the most consistent findings has been that exogenous inequality in incomes leads 
to lower levels of overall contributions in a group (Buckley & Croson, 2006; Cherry, 
Kroll, & Shogren, 2005; Isaac & Walker, 1988; Keser, Markstädter, Schmidt, & 
Schnitzler, 2014b). The reduction in contributions is driven primarily by richer 
participants contributing less so as to match the level of contributions of the poorer 
participants (Buckley & Croson, 2006). Consequently, wealthier participants contribute 
less relative to their income than do poorer participants (Buckley & Croson, 2006; Chan, 
Mestelman, Moir, & Muller, 1996; Keser et al., 2014b).  
 
Several researchers have aimed to introduce interventions to increase cooperation 
between unequal group members. Institutional fines for low contributors (Brick & Visser, 
2012), minimum contribution requirements (Keser, Markstädter, & Schmidt, 2014a), 
communication (Brick & Visser, 2012; Chan, Mestelman, Moir, & Muller, 1999; 
Hackett, Schlager, & Walker, 1994) and punishment (Antinyan, Corazzini, & Neururer, 
2015; Bornstein & Weisel, 2010; Reuben & Riedl, 2013) can play an important role in 
sustaining contributions.  
 
Of particular relevance for the current paper, Reuben and Riedl (2013) demonstrated that 
punishment can stabilise contributions from participants with different incomes. In their 
experiments, participants used punishment in order to enforce both efficiency norms 
(everyone contributing their entire income) as well as relative contribution norms 
(everyone contributing the same fraction of their income); Carpenter and Matthews 
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(2009) found similar results among equally-endowed players (Carpenter & Matthews, 
2009). Similarly, Antinyan et al. (2013) and Bornstein and Weisel (2010) showed that 
punishment was effective in sustaining contributions in unequal groups under fully 
informed condition. (Note that while Bornstein and Weisel (2010) also investigate a 
situation in which players’ incomes in each round were not observable, the distribution of 
incomes is always known in their experiment, and each subject typically has experience 
receiving each possible level of income.)  
 
Importantly, research using PGGs without inequality shows that incomplete information 
about contributions can lead to increased spending on punishment (Ambrus & Ben 
Greiner, 2012) and lower average payoffs (Grechenig & Nicklisch, 2010). Thus, it seems 
likely that prior conclusions about punishment and inequality may change when the 
income distribution is unknown.  
 
Furthermore, some research indicates that the origin of incomes can matter. Most studies 
randomly assign incomes to participants. However, various theories of fairness suggest 
that earning incomes by exerting individual effort can lead to more acceptance of 
inequality. The experimental literature has led to mixed results on this conjecture: Van 
Dijk and Wilke (1994) found that participants who were made to believe that their group 
members earned more money by exerting more effort were more likely to contribute 
more to the public good, and vice versa (Van Dijk & Wilke, 1994).  
 
In contrast, Cherry et al. (2005), Hofmeyr et al. (2007) and Antinyan et al. (2015) found 
that public goods contributions were not significantly different when endowments were 
earned or received as a ‘windfall’ (Antinyan et al., 2015; Cherry et al., 2005; Hofmeyr, 
Burns, & Visser, 2007). In some cases, punishment towards low contributors can be 
reduced when income was earned (Antinyan et al., 2015). Thus, understanding how 
earned incomes affects cooperation and sanctioning, and how it might interact with (lack 
of) knowledge of the income distribution, remains an open question. 
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2. Methods 
 

2.1 Data collection on Amazon Mechanical Turk 

We recruited U.S. residents to participate using the online labour market Amazon 
Mechanical Turk (AMT). AMT is an online market place in which employers can pay 
users for completing short tasks (generally about 10 minutes) – usually referred to as 
Human Intelligence Tasks (HITs) – for a relatively small payment (generally less than a 
$1). Workers who have been recruited on AMT receive a baseline payment and can be 
paid a bonus depending on their performance in the task. This setup lends itself to 
incentivised economic experiments: the baseline payment acts as the ‘show up’ fee and 
the bonus payment may derive from the workers’ behaviour in the economic game and/or 
other tasks throughout the experiment. 
 
The sample of recruited participants on AMT has been shown to be more diverse and 
more nationally representative than subject pools at most research universities 
(Buhrmester, Kwang, & Gosling, 2011). Numerous studies have been carried out to 
validate results collected using AMT (Berinsky, Huber, & Lenz, 2012; Crump, 
McDonnell, & Gureckis, 2013; Paolacci & Chandler, 2014). Of particular relevance are 
studies showing quantitative agreement between play in economic games conducted on 
AMT and in the physical laboratory (Amir, Rand, Gal, & Gal, 2012; Horton, Rand, & 
Zeckhauser, 2011; Mason & Suri, 2011; Rand, Greene, & Nowak, 2012). 
 
All data was collected using Software Platform for Human Interaction Experiments 
(SoPHIE) (Hendriks, 2012). Experiment 1 was carried out in summer 2014, while 
Experiment 2 was conducted in summer 2015. SoPHIE is a novel experimental platform 
that enables participants to interact with one another in real time. Participants were 
recruited on the AMT website, were grouped together, and then made decisions 
simultaneously; their decisions were exchanged through an external server provided by 
SoPHIE Labs (www.sophielabs.net).  
 
The experiments were approved by the Harvard University Committee on the Use of 
Human Subjects in Research. 
 

2.2 Basic flow of the experiments 

2.2.1 Experiment 1: Charity survey experiment 
 
2.2.1.1 Donor Survey. Before launching the main experiment, we recruited participants 
who fit the following demographic information. First, participants were asked whether 
they earned either “under $25,000”, “$25,000–$50,000”, “$50,000–$75,000”, “$75,000–
$100,000” or “$100,000–$200,000”. Depending on their income selection, they were 
then asked whether last year they donated approximately $1,874, $2,594, $2,970, $3,356 
or $4,130, respectively. The five donation amounts were chosen to represent the average 
U.S. donations made in 2014 within those income ranges (Maryland CPA, 2016). We 
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selected at random five donors who fit these criteria. These participants made up the 
recipient pool eligible for a bonus payment. The bonus was paid in accordance with a 
decision by another participant, chosen at random from the main experiment. 
 
2.2.1.2 Main Experiment. We recruited a (non-overlapping) sample of 315 participants on 
AMT for an academic survey. We chose 150 observations per condition as our sample 
size to ensure we would be able to detect relatively small effect sizes. The final sample 
size was slightly above this target (N = 315). 
 
All participants earned $0.40 for participating. Participants agreed to a consent form and 
read the instructions of the study. The instructions informed the participant that we had 
previously recruited five donors on AMT and they would now choose to whom of the 
five participants they would award a $1.00 bonus payment. We varied the information 
that participants received about those five donors between two conditions. 
 
In the hidden condition, participants saw only the donation amount that the donors gave 
to charity last year. Each donor was identified by a random string of two letters which we 
fully randomized across the five donors. Conversely, participants in the revealed 
condition saw the two-letter identifier, donation amount and the income range for each 
donor. Thus, participants in the revealed condition could assess approximately how much 
of their income a donor had given to a charity, whereas they were not able to do so in the 
hidden condition. 
 
As described above (and in the instructions to participants), the decision was incentive 
compatible: one participant was chosen at random and their decision implemented as 
described. 
 

2.2.2 Experiment 2: PGG with ‘windfall’ incomes 
 
All participants earned a $1.50 showup fee and had the opportunity to earn additional 
bonus payments between $0.00 and $3.88, depending on the outcome of the game. 
Participants took part in the experiment through an online survey provided by SoPHIE 
Labs. After participants had read the experimental instructions, they had to pass a 
comprehension quiz about the rules of the game in order to partake in the actual 
experiment. Participants who did not pass the comprehension quiz on the first attempt 
were given the chance to try again; no participants were thus removed from the 
experiment. 
 
After participants passed all comprehension questions, they waited for up to 10 minutes 
in a designated online ‘waiting room.’ As soon as five participants had arrived in the 
waiting room, the public goods game (PGG) started automatically.  
 
We recruited at least 30 groups of five participants who completed the experiment in each 
condition (N = 600; including drop-out groups, N = 855). Our sample size of 150 
participants per condition was based on previous studies and the feasibility of collecting 
interactive group decisions online. At the beginning of the game, participants were 
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randomly assigned to a position in the income distribution. This implied that participants 
earned a ‘windfall’ endowment, which can in some cases affect contribution behaviour in 
public goods games (Van Dijk & Wilke, 1994). In experiment 3, we show, however, that 
assigning incomes based on performance, instead of randomly assigning incomes, does 
not alter our reward and punishment results.  
 
The income distribution was common knowledge to all participants in the revealed 
condition, but not in the hidden condition. Across conditions, the actual distribution 
(Congressional Budget Office, 2007) is the same: the participant with the highest income 
(referred to as top quintile player) earns 55 units per round, the second-highest earner 19 
units, the middle participant 13 units, the second-lowest 9 units and the bottom quintile 
player 4 units. That is, the sum of income units distributed each round is 100 units, and 
this total is also known to all players in all conditions. Once incomes had been assigned, 
participants received the same income in each of the 10 rounds. 
 
The game lasted 10 rounds and each round consisted of two stages. Participants were 
given no information about the length of the game to avoid any end-round effects, as in 
prior work (Rand et al., 2009; Rand, Nowak, Fowler, & Christakis, 2014). In stage 1, 
participants were asked how many units they wanted to contribute to the public good. All 
contributed units were doubled and then split equally among all five players. In stage 2, 
participants were either participating in a punishment-game or a reward-game. In the 
punishment game, each player could pay 1 unit to take away 3 units from another player. 
In the reward game, conversely, players could pay 1 units to increase another player’s 
payoff by 3 units.  
 
Across conditions, we limited the number of units that could be spent on punishment and 
reward to 2 per target player. In addition, no participant could spend more than they had 
accumulated with their income and their earnings from stage 1. In other words, 
participants could spend up to 8 units per round on the other 4 players but if they had less 
than 8 units in their account, the upper bound of spending was their remaining 
endowment. To examine whether this upper bound could affect the decisions participants 
were able to make (e.g., consistently prevented them from punishing or rewarding), we 
examined all players’ payoffs after stage 1 across all conditions. We find that only 0.84% 
of the time did a participant have less than 8 units available, and the number of affected 
participants does not vary by condition (χ²(21) = 23.16, p = 0.34). Given the small 
number of incidences in which participants were constrained in their decisions to punish 
and reward, it is unlikely that they affect our results. 
 
At the end of each round, participants were informed about the payoff they earned. At the 
end of 10 rounds, participants filled out a short demographics survey. If at any time a 
participant became unresponsive (because they quit the game or lost their Internet 
connection), the remaining participants in the group were automatically moved to an 
‘early exit’ screen. They were informed that a participant had left the game unexpectedly 
and thus the experiment could not be continued. All remaining participants were asked to 
fill out a questionnaire and earn a bonus of $1.00 to compensate them for their time spent 
on the study.  
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Across all conditions, in 29.8% of groups, a participant dropped out before the end of the 
game (which is consistent with previous studies carried out on AMT, e.g. (Rand et al., 
2012). Dropout rates did not vary between conditions (χ²(3) = 2.74, p = 0.433). In half of 
the groups that dropped out, one or more participants did not respond within the time 
available to them (up to two minutes per decision stage). In the other half, one of the 
participants in each dropout group quit their browser or tab (either by choice or due to a 
failed Internet connection). Dropout rates did not differ significantly between quintiles 
(χ²(12) = 7.89, p = 0.793). The majority of dropouts (73.9%) occurred in the first half of 
the game and the time of dropout did not differ by quintile (χ² (21) = 23.123, p = 0.337).  
 
We further analysed participants’ likelihood of dropping out based on the average sum of 
contributions in the group or the rewards and punishment a participant received. Across 
conditions, the sum of contributions did not affect whether a participant finished the 
game (logistic regression using sum of a group’s contributions to predict finishing the 
game: coeff = 0.007, p = 0.340). There was not interaction between the sum of 
contributions and income visibility (logistic regression using sum of contributions 
interacted with revealed dummy: coeff = 0.008, p = 0.614).  
 
The amount of reward or punishment received did not affect a participant’s likelihood of 
finishing the game (logistic regression using sanctions received to predict finishing the 
game; reward: coeff = 0.023, p = 0.618; punishment: coeff = -0.048, p = 0.093). Income 
visibility did not affect dropout rates: the amount a participant was rewarded or punished 
did not significantly affect their chances of finishing the game (logistic regression using 
sanctions received interacted with revealed dummy; reward: coeff = 0.135, p = 0.101; 
punishment: coeff = -0.028, p = 0.600). 
 
In our main analysis, we include groups that did not finish the game. However, we found 
qualitatively similar results when we dropout groups are not included in the analysis. 
 

2.2.3 Experiment 3: Earned incomes 
 
All participants earned a $2.00 show-up fee and had the opportunity to earn an additional 
in bonus payments between $0.00 and $4.26 depending on the outcome of the game. 
Participants took part in the experiment through SoPHIE. The experiment consists of two 
phases. 
 
In phase 1, participants completed an individual task (Abeler, Falk, Goette, & Huffman, 
2011). They were asked to count the number of 0s in a matrix randomly made up of 0s 
and 1s. The goal was to complete as many such matrices as possible within 2 minutes. 
Each time, after they submitted a solution, a new matrix was presented to them. 
Participants were not informed of how many matrices they had solved correctly. 
However, they were told that their performance mattered for their income in the 
upcoming group task. The best performing participant in the individual task was assigned 
the highest income level; the second-best performing participant received the second-
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highest level of income, and so on. Participants were fully informed in both conditions 
about the assignment procedure of incomes. 
 
In phase 2, participants then read instructions about an economic game. After reading the 
instructions, the were asked to answer several comprehension questions. Once 
participants had correctly answered the comprehension questions, they waited for four 
other participants to arrive in the ‘waiting room’. As soon as five participants were ready, 
the began the repeated two-stage economic game comprising of a public goods stage and 
a sanctioning stage. 
 
We collected 30 groups of five participants who completed the game in each condition (N 
= 300; including dropout groups, N = 440). We excluded participants from experiment 2 
from participating in experiment 3. While conceptually similar, the economic game in 
experiment 2 differed from the economic game in experiment 1 in several ways. First, the 
income distribution used in experiment 3 was updated to reflect the latest U.S. census 
data (U.S. Census Bureau, 2013): the top quintile player received 51 units, the player in 
the next quintile 23 units, the middle-quintile player 15 units, the second-lowest player 8 
units and the lowest earner 3 units.  
 
In addition, participants in this experiment knew that the income distribution used in this 
game represented the current income distribution of the United States. Unlike in 
experiment 3, participants thus had an implicit reference point, which they could use to 
make informed reward and punishment decisions assuming that their estimate of U.S. 
income inequality is accurate. Participants in experiment 3 were not given any hint about 
the distribution used and only knew that their incomes would be different from one 
another. Based on previous research (Norton & Ariely, 2011), our prediction was that 
participants in experiment 3 would, however, not hold accurate beliefs about the extent of 
U.S. inequality and it would thus qualitatively not alter the way in which people punished 
or rewarded.  
 
Furthermore, the reward and punishment conditions in experiment 3 were collapsed into 
one combined treatment: it was thus possible for participants to punish or reward in all 
conditions in experiment 3. Each player could choose not to pay any units and thus leave 
another player’s payoff unaffected; or they could choose to pay 2 units to reduce another 
player’s by 6 units or pay 2 units to increase another player’s by 6 units.  Participants 
could spend up to 8 units on all four other players or up to as much as they had earned in 
stage 1. Only 2.33% of the time a participant was restricted in punishing or rewarding 
their group members because they had less than 8 units available in stage 2, which did 
not vary by condition (χ²(9) = 12.532, p = 0.185).  
 
Finally, we adopted the standard infinite-game paradigm used in economics (Dal Bo, 
2005): participants were told that the game would last at least 8 rounds and each 
additional round would occur with a probability of 50% to avoid end-game effects (Dal 
Bo, 2005; Rand et al., 2009). Due to a programming error, we did not collect 
demographic information from participants in experiments 3. However, since participants 
were randomly assigned to the hidden or revealed condition, there should not be any 
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systematic variation in demographics across conditions. Furthermore, when we controlled 
for demographics in experiment 2, we found that it did not affect our results. 
 
Dropout rates in experiment 3 were comparable to those in experiment 2: 31.82% of 
groups did not finish the game in experiment 3. Dropout rates did not differ by condition 
(χ²(1) = 0.098, p = 0.755). Across quintiles, there was no variation in the rate of dropout 
(χ²(4) = 3.280, p = 0.512). The majority of dropouts (71.4%) occurred in the first five 
rounds of the game; and the time of dropout did not differ by condition (χ²(4) = 4.278, p 
= 0.370).  
 
The behavioural history of participants did, however, matter to whether a group finished 
the game in experiment 3. While the sum of contributions across both condition did not 
affect a participant’s likelihood of finishing (logistic regression using sum of group 
contributions to predict finishing the game: coeff = 0.013, p = 0.112), there was an 
interaction between the sum of contributions and income visibility: participants in the 
revealed condition were more likely to finish the game, the more the group contributed to 
the common pool, while there was no effect of sum of contributions in the hidden 
condition (logistic regression using sum of contributions as IV to predict finishing the 
game: coeff = -0.014, p = 0.186; sum of contributions interacted with revealed dummy: 
coeff = 0.043, p = 0.004).  
 
The amount of reward or punishment participants received also affected their dropout 
rates in experiment 3. Across both conditions, participants were not significantly affected 
by rewards and punishment received (logistic regression using number of units received 
to predict finishing the game: coeff = 0.180, p = 0.094). However, a difference emerged 
by condition: whereas groups in the revealed condition were more likely to finish the 
game when they received more rewards, whereas there was no effect of units received in 
the hidden condition (logistic regression using number of units received to predict 
finishing the game: coeff = -0.168, p = 0.287; sum of contributions interacted with 
revealed dummy: coeff = 0.66, p < 0.001).  
 
Since neither sum of contributions nor received reward or punishment predicted dropout 
rates in the hidden condition, we can be reasonably confident that selection effects are not 
driving our results in the hidden condition. However, in the revealed condition, groups in 
which fewer contributions were made altogether and groups in which fewer reward units 
were distributed were more likely to drop out. Thus, to mitigate concerns about potential 
selection effects, we include all groups in our main analyses, regardless of whether they 
completed the game or dropped out. However, we found qualitatively similar results 
when we did not include dropout groups.  
 

2.2.4 Experiment 4: school donations and tax choice 
 
We recruited N = 313 participants on Amazon Mechanical Turk to take part in an 
academic survey. After consenting to participating in the research, participants read a 
vignette about the Parent-Teacher Associations (PTA). The PTA is an annual fundraiser 
organized voluntarily across the United States, soliciting donations from households in 
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the area (in particular, parents who have children in school) to contribute to an 
educational fund. All donations are typically pooled at the school district level and 
donations are distributed across schools to pay for educational expenses that the schools 
do not receive state or federal funding for, such as a science lab, teachers’ aides, and 
additional equipment. 
 
Participants were told in the experiment that the city government was planning to 
introduce an additional tax for educational purposes (in addition to the existing funding 
and PTA donations) in the amount of $2,000 per school across the five schools in the 
city. Participants had to choose which school parents of the five schools would have to 
bear the additional tax to cover this educational spending. 
 
The donations and incomes presented in this experiment was inspired by real-world data 
sources: we obtained data from average PTA donations (Sullivan & Felton, 2014) as well 
as median incomes (Weissman Center for International Business, 2016) from five New 
York school districts (Bronx, Brooklyn, Manhattan, Queens, Staten Island). Because 
individual school level data was not available, we used the available data from the five 
school districts which we labelled as five schools for ease of understanding. Participants 
saw the five schools, which were identified by a random two-letter string and appeared in 
random order: $353 average PTA donation (median income: $35,176), $1,227 ($51,141), 
$4,249 ($60,422), $9,759 ($71,622), and $1,486 ($75,575). 
 
Note that donation amounts do not perfectly track with household incomes: parents in 
Manhattan—the district with the highest median household income—give less to PTA 
fundraisers ($1,486) than parents in Queens ($4,249) and Staten Island ($9,759). Our 
predictions remain qualitatively unchanged, however: we predict that participants’ 
punishment preferences will shift away from raising taxes on the poorest school parents 
in the hidden condition to raising them on the richest parents when incomes are revealed. 
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3. Statistical details 

3.1 Experiment 1 

We first looked at whether the average choice for which donor should receive the $1.00 
bonus differed between the hidden and revealed conditions. Specifically, we coded 
donors in order of their income range (1 = poorest donor, 5 = richest donor). We 
predicted that participants would shift their choice of who to reward towards lower-
income donors when incomes were revealed. 
 
Indeed, we found that participants rewarded, on average, donors in lower income ranges 
more in the revealed condition than in the hidden condition (coeff = -2.250, p < 0.001; 
Table S1 col. 1). Results were qualitatively similar when control variables were included 
(Table S1 col. 2). A rank-sum test revealed a qualitatively similar result (Z = -10.935, p < 
0.001).  
 
Furthermore, we investigated which donors, in particular, were chosen to be rewarded 
between the two conditions. We found that the poorest donors were rewarded 
significantly more when incomes were revealed (using logit regression predicting choice 
of poorest donor by revealed dummy: coeff = 2.681, p < 0.001; Table S2 col. 1). 
Conversely, the richest donor was significantly less likely to be chosen for the reward 
payment when incomes were revealed (coeff = -3.716, p < 0.001; Table S2 col. 5). There 
were not significant difference for the other three donors (Table S2 cols. 2-4). 
 
Table S1: Linear regression estimating the choice of donor (where 1 = poorest donor to 5 
= richest donor) who received a reward payment by treatment. 
 
 (1) (2) 
VARIABLES Donor choice Donor choice 
   
1=Revealed -2.250*** -2.311*** 
 (0.161) (0.160) 
1=Female  0.110 
  (0.163) 
Age  -0.013 
  (0.007) 
Constant 3.561*** 4.015*** 
 (0.144) (0.293) 
   
Observations 315 306 
R-squared 0.386 0.402 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S2: Logit regression estimating the likelihood that the poorest donor (col. 1), the 
2nd poorest donor (col. 2), the middle donor (col. 3), the 2nd richest donor (col. 4) or the 
richest donor (col. 5) was chosen for the reward payment. 
 
 (1) (2) (3) (4) (5) 
VARIABLES Poorest 2nd Poorest Middle 2nd Richest Richest 
      
1.Revealed 2.682*** 0.189 -1.412 -0.496 -3.716*** 
 (0.287) (0.445) (1.126) (0.583) (0.483) 
Constant -0.912*** -2.688*** -3.644*** -2.925*** 0.295 
 (0.177) (0.327) (0.507) (0.363) (0.162) 
Observations 315 315 315 315 315 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

3.2 Experiment 2 

Unless otherwise noted, all statistics are linear regressions with income quintile as a 
continuous independent variable. Because participants’ decisions are not independent 
within each group over time, we cluster standard errors on the group. To check the 
robustness of our results, we also use log-transformed absolute income as continuous IV. 
We use log-transformed income, rather than absolute income, because the distribution of 
incomes is highly right skewed (the income of the rich participant is an outlier relative to 
the other 4 income levels). 
 

3.2.1 Received reward and punishment 
 
We first assessed whether income visibility affects participants’ reward and punishment 
behaviour. We examined which player(s) participants rewarded and punished when not 
informed about the income distribution (hidden condition) compared to when they were 
informed (revealed condition). The independent variable in our main analysis was the 
income quintile of the recipient of the sanctions (1 to 5). The higher the participant’s 
quintile, the higher her income: the participant in the first quintile was the poorest player 
(1 = bottom quintile) whereas the participant in the fifth quintile was the richest player (5 
= top quintile). 
 
We found qualitatively similar results when we used amount of income of the recipient as 
the independent variable, rather than quintile. To account for the fact that the distribution 
of incomes is highly right skewed (the income of the top quintile player is an outlier), we 
used log-transformed income amounts. We included the regression table of the log-
transformed income models below each of the corresponding quintile models. 
 
3.2.1.1 Reward 
 
In the hidden condition, participants could not take another player’s ability to contribute 
to the public good into account, since this information is not available to them. We thus 
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expected participants to view the (high total) contributions of the top quintile participants 
favourably—leading to more reward targeted toward them. In the revealed condition, 
conversely, we predicted that participants would view the (high percentage) contributions 
of the bottom quintile participants favourably, inducing higher reward. 
 
To test these hypotheses, we estimated the amount of reward that a participant receives as 
a function of their income quintile and whether the income distribution was hidden or 
revealed (Table S3). In the hidden condition, we found that higher income participants 
were rewarded significantly more (coeff = 0.636, p < 0.001, Table S3 col. 1), whereas in 
the revealed condition, lower income players were rewarded significantly more (coeff = -
0.720, p < 0.001, Table S3 col. 2). Furthermore, a regression including data from both 
hidden and revealed conditions together showed that this difference was itself significant 
(interaction between income and revealed dummy, coeff = -1.356, p < 0.001; Table S3).  
We also found qualitatively similar results when we included demographic information: 
higher income participants were rewarded more in the hidden condition (coeff = 0.629, p 
< 0.001, Table S3 col. 4) while, conversely, they were rewarded less in the revealed 
condition (interaction between income and revealed dummy: coeff = -1.320, p < 0.001, 
Table S3 col. 4). 
 
Table S3: Linear regression model estimating the effect of a target’s income quintile 
(i.e., their position in the income distribution) on the amount of reward they received. 
Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden  Revealed Interaction Interaction 
     
Quintile 0.636*** -0.720*** 0.636*** 0.629*** 
 (0.141) (0.134) (0.141) (0.143) 
1=Revealed   4.316*** 4.180*** 
   (0.957) (0.961) 
Quintile X Revealed   -1.356*** -1.320*** 
   (0.193) (0.199) 
1=Female    0.561 
    (0.468) 
Age    0.0368 
    (0.0279) 
Location    -0.809 
    (0.490) 
Constant 3.332*** 7.648*** 3.332*** 2.119* 
 (0.534) (0.801) (0.531) (0.917) 
     
Observations 1,735 1,690 3,425 3,381 
R-squared 0.038 0.038 0.039 0.051 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Finally, we repeated the same analysis with log-transformed income as independent 
variable. We found qualitatively similar results: higher income participants were 
rewarded more in hidden (coeff = 1.043, p < 0.001, Table S4 col. 1) but, conversely, they 
were rewarded less in revealed (coeff = -1.140, p < 0.001, Table S4 col. 2), and the 
interaction between condition and income was significant (interaction between log-
transformed income and revealed dummy, coeff = -2.183, p < 0.001, Table S4 col. 3). 
The results were qualitatively similar when demographics were included (Table S4 col. 
4). 
 
Table S4: Linear regression model estimating the effect of a target’s log-transformed 
income on the amount of reward they received. Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden Revealed Interaction Interaction 
     
Log(income) 1.043*** -1.140*** 1.043*** 1.014*** 
 (0.223) (0.226) (0.221) (0.228) 
1=Revealed   5.966*** 5.749*** 
   (1.130) (1.142) 
Log(income) X Revealed   -2.183*** -2.111*** 
   (0.315) (0.328) 
1=Female    0.553 
    (0.470) 
Age    0.0370 
    (0.0276) 
Location    -0.799 
    (0.489) 
Constant 2.509*** 8.475*** 2.509*** 1.345 
 (0.632) (0.945) (0.628) (0.976) 
     
Observations 1,735 1,690 3,425 3,381 
R-squared 0.038 0.036 0.037 0.049 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
3.2.1.2 Punishment 
 
We followed the same analysis procedure as above for punishment. We expected a mirror 
image of the results compared to reward. In the hidden condition, we predicted that 
participants would view the (low total) contributions of the bottom quintile participants 
unfavourably, leading them to punish them more. In the revealed condition, participants 
were able to take the participant’s ability to contribute into account and thus we expected 
that the (low percentage) contributions of the top quintile participants would be viewed 
disapprovingly, leading to higher punishment. 
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In our analysis, the dependent variable was the amount of punishment that a participant 
received. The independent variables are the income quintile and whether the income 
distribution was hidden or revealed (Table S5). In the hidden condition, we found that 
higher income participants were punished less (coeff = -0.282, p = 0.042, Table S5 col. 
1), whereas in the revealed condition, in contrast, higher income participants were 
punished more (coeff = 0.692, p < 0.001, Table S5 col. 2). Furthermore, a regression 
including data from both hidden and revealed conditions together showed that this 
difference was itself significant (interaction between income and revealed dummy, coeff 
= 0.974, p < 0.001; Table S5 col 3).   
 
Qualitatively similar results were obtained when we included demographics in the 
regression: higher income participant in the hidden condition were punished marginally 
less (coeff = -0.258, p = 0.057), while, in the revealed condition, higher income 
participants were punished more (interaction between quintile and revealed dummy: 
coeff = 1.005, p < 0.001). 
 
We found qualitatively similar results with log-transformed income: higher income 
participants were punished marginally less in hidden (coeff = -0.417, p = 0.057, Table S6 
col. 1) but were punished more heavily in revealed (coeff = 1.212, p < 0.001, Table S6 
col. 2); a difference which was itself significant (interaction between log-transformed 
income and revealed dummy, coeff = 1.629, p < 0.001, Table S6 col. 3). Results are 
qualitatively similar when demographics were included (Table S6 col. 4). 
 
Table S5: Linear regression model estimating the effect of a target’s income quintile on 
the amount of punishment they received. Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden  Revealed  Interaction Interaction 
Quintile -0.282* 0.692*** -0.282* -0.258 
 (0.133) (0.0982) (0.132) (0.134) 
1=Revealed   -2.956*** -3.045*** 
   (0.640) (0.665) 
Quintile X Revealed   0.974*** 1.005*** 
   (0.164) (0.170) 
1=Female    -0.185 
    (0.273) 
Age    0.0129 
    (0.0153) 
Location    0.185 
    (0.307) 
Constant 4.056*** 1.099** 4.056*** 3.614*** 
 (0.513) (0.391) (0.509) (0.687) 
Observations 1,590 1,819 3,409 3,230 
R-squared 0.011 0.061 0.038 0.045 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S6: Linear regression model estimating the effect of a target’s log-transformed 
income on the amount of punishment they received. Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden Revealed Interaction Interaction 
     
Log(income) -0.417 1.212*** -0.417 -0.376 
 (0.212) (0.168) (0.210) (0.212) 
1=Revealed   -4.303*** -4.459*** 
   (0.798) (0.828) 
Log(income) X Revealed   1.629*** 1.690*** 
   (0.269) (0.277) 
1=Female    -0.182 
    (0.276) 
Age    0.014 
    (0.015) 
Location    0.181 
    (0.306) 
Constant 4.302*** -0.001 4.302*** 3.788*** 
 (0.635) (0.493) (0.630) (0.796) 
     
Observations 1,590 1,819 3,409 3,230 
R-squared 0.009 0.070 0.042 0.050 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

3.2.2 Absolute vs. relative contribution 
 
What caused participants to punish and reward other players so differently in the hidden 
and revealed conditions? Contribution behaviour provides a potential answer. We 
hypothesised that the hidden and revealed conditions enabled participants to view 
contributions differently: in the hidden condition, participants could not take another 
player’s ability to contribute into account since they did not know the income 
distribution. In the revealed condition, on the other hand, participants could evaluate the 
amount contributed relative to the player’s income before choosing whom to punish or 
reward – in other words, participants could differentiate between absolute and relative 
contributions.  
 
The hypothesis that relative contributions were driving the difference in sanctions 
between hidden and revealed generated several predictions. First, we expected that 
absolute contributions would be higher for higher income participants while relative 
contributions (as a percentage of income) would be higher for lower income participants.  
 
Second, we expected absolute contributions to predict received reward and punishment 
when income is hidden, but relative contributions to predict received reward and 
punishment when income is revealed: participants would punish (reward) those who give 
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little (a lot) in absolute terms more in hidden, while their sanctions would be driven by 
relative contributions in revealed. 
 
3.2.2.1 Absolute vs. relative contribution by quintile 
 
We first examined absolute contributions by quintile. We expected that higher income 
participants contributed a larger amount of units to the public good but a smaller fraction 
of their total income – such that lower income participants would contribute a larger 
percentage of their income. 
 
As predicted, we found that higher income participants in both the hidden (coeff = 3.172, 
p < 0.001, Table S7 col. 1) and revealed (coeff = 4.738, p < 0.001, Table S7 col. 3) 
conditions contributed a larger number of units. Conversely, we found that higher income 
participants made smaller relative contributions (percentage of income contributed) in 
both hidden (coeff = -0.098, p < 0.001, Table S8 col. 1) and revealed (coeff = -0.058, p < 
0.001, Table S8 col. 3). All results are robust to inclusion of demographic variables 
(Tables S5 and S8 cols. 2 and 4). 
 
This variation in contribution across incomes can also be illustrated with an example: 
across all conditions, top quintile participants contributed 20.49 out of 55 units (or 37% 
of their income) to the public good. In contrast, bottom quintile participants contributed 
2.83 out of 4 units (or 71% of their income).  
 
In Tables S9 and S10, we repeated the same analysis with log-transformed income as the 
independent variable; results were qualitatively similar. 
 
Table S7: Linear regression model estimating the effect of income on absolute 
contribution. Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Quintile 3.172*** 3.195*** 4.734*** 4.644*** 
 (0.257) (0.260) (0.341) (0.349) 
1=Female  -1.285*  0.367 
  (0.645)  (0.830) 
Age  0.065  -0.025 
  (0.038)  (0.035) 
Location  0.381  0.304 
  (0.571)  (0.752) 
Constant -0.923 -2.550 -3.853*** -3.097* 
 (0.476) (1.338) (0.637) (1.314) 
Observations 3,412 3,343 3,655 3,461 
R-squared 0.233 0.241 0.316 0.312 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S8: Linear regression model estimating the effect of income on percentage of 
income contributed (relative contribution). Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Quintile -0.098*** -0.097*** -0.058*** -0.061*** 
 (0.009) (0.009) (0.010) (0.011) 
1=Female  -0.050  0.025 
  (0.027)  (0.029) 
Age  0.002  -0.000 
  (0.001)  (0.001) 
Location  0.053  0.030 
  (0.032)  (0.036) 
Constant 0.850*** 0.788*** 0.773*** 0.762*** 
 (0.032) (0.055) (0.036) (0.059) 
     
Observations 3,412 3,343 3,655 3,461 
R-squared 0.141 0.153 0.047 0.053 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
Table S9: Linear regression model estimating the effect of log-transformed income on 
absolute contribution. Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Log(income) 5.416*** 5.455*** 8.082*** 7.937*** 
 (0.464) (0.467) (0.611) (0.626) 
1=Female  -1.292*  0.472 
  (0.617)  (0.785) 
Age  0.060  -0.023 
  (0.037)  (0.034) 
Location  0.531  0.218 
  (0.551)  (0.734) 
Constant -5.598*** -7.155*** -10.827*** -10.068*** 
 (0.918) (1.539) (1.211) (1.639) 
     
Observations 3,412 3,343 3,655 3,461 
R-squared 0.253 0.261 0.344 0.339 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S10: Linear regression model estimating the effect of log-transformed income on 
percentage of income contributed. Standard errors clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Log(income) -0.163*** -0.160*** -0.101*** -0.105*** 
 (0.014) (0.015) (0.016) (0.017) 
1=Female  -0.050  0.023 
  (0.027)  (0.030) 
Age  0.002  -0.000 
  (0.001)  (0.001) 
Location  0.049  0.031 
  (0.032)  (0.036) 
Constant 0.981*** 0.914*** 0.863*** 0.857*** 
 (0.042) (0.063) (0.047) (0.067) 
     
Observations 3,412 3,343 3,655 3,461 
R-squared 0.144 0.156 0.052 0.059 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
3.2.2.2 Absolute vs. relative contribution predicted sanctioning behaviour 
 
Our hypothesis was that sanction behaviour followed from the contribution pattern. In the 
hidden condition, participants could only consider absolute contribution: thus, because 
richer participants contributed more units, they would be rewarded more and punished 
less. In the revealed condition, conversely, participants could consider the amount 
contributed relative to the amount players earn—that is, the percentage of income 
participants contributed. Because poorer participants contributed more relative to their 
income in the in the revealed condition, they would receive more reward and less 
punishment  
 
To test these hypotheses, we examined the effect on sanctioning of the target’s relative 
contribution (percentage of income contributed) and absolute contribution. We log-
transformed absolute contribution because of the same right skew that also underlies 
absolute income, and we added 1 to all contributions prior to log-transforming as the 
log(0) is undefined (McDonald, 2014; Rand et al., 2012). 
 
In the hidden condition, as predicted, we found that higher absolute contributions led to 
less punishment (coeff = -1.863, p = 0.019, Table S11 col. 1) and more reward (coeff = 
4.700, p < 0.001, Table S11 col. 3) received. Because richer participants contributed a 
larger absolute number of units, they received less punishment and more reward in 
hidden. Relative contributions, in contrast, predicted neither punishment (p = 0.954, 
Table S11 col. 1) nor reward (p = 0.677, Table S11 col. 4) received in the hidden 
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condition; this is unsurprising, given that relative contributions were not observable in the 
hidden condition. We found qualitatively similar results when including demographics 
(Table S11 cols. 2 and 4). 
 
In the revealed condition, participants could assess both relative and absolute 
contributions, and we expected them to primarily pay attention to relative contribution. 
Indeed, we found that a higher percentage of income contributed led to less punishment 
(coeff = -4.664, p < 0.001, Table S12 col. 1) and more reward (coeff = 6.782, p < 0.001, 
Table S12 col. 4) received. This is in line with our prediction: as we have shown before, 
poor participants contributed a larger percentage of their income and are thus punished 
less and rewarded more in the revealed condition. 
 
We also observed an effect of absolute contribution in the revealed condition, in the 
opposite direction of the effect in the hidden condition: higher absolute contributions led 
to more punishment (coeff = 1.365, p = 0.003, Table S11 col. 1) and marginally less 
reward (coeff = -0.980, p = 0.080, Table S11 col. 4). Although richer participants 
contributed a larger amount of units, they made low relative contributions; because those 
larger absolute contributions were correlated with the lowest relative contributions, larger 
absolute contributions were punished more and rewarded less. 
 
Table S11: Linear regression model estimating the effect of absolute log-transformed 
contribution and relative contribution on received punishment (cols. 1 and 2) and reward 
(cols. 3 and 4) in the hidden condition. To deal with zero-contributions, a constant of 1 
was added to all contributions before applying the log-transformation. Standard errors 
clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Punishment 

received 
Punishment 

received 
Reward 
received 

Reward 
received 

     
Log(contribution+1) -1.863* -1.730* 4.700*** 4.592*** 
 (0.755) (0.739) (0.659) (0.641) 
Relative contribution -0.030 -0.256 -0.216 -0.112 
 (0.515) (0.522) (0.514) (0.518) 
1=Female  -0.243  0.711 
  (0.306)  (0.366) 
Age  0.021  0.018 
  (0.021)  (0.023) 
Location  0.272  -0.719 
  (0.402)  (0.400) 
Constant 4.774*** 4.154*** 1.624** 0.960 
 (0.565) (0.835) (0.475) (0.818) 
Observations 1,590 1,553 1,735 1,713 
R-squared 0.033 0.037 0.188 0.198 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S12: Linear regression model estimating the effect of relative contribution and 
absolute log-transformed contribution on received punishment (cols. 1 and 2) and reward 
(cols. 3 and 4) in the revealed condition. To deal with zero-contributions, a constant of 1 
was added to all contributions before applying the log-transformation. Standard errors 
clustered on group. 
 
 (1) (2) (3) (4) 
VARIABLES Punishment 

received 
Punishment 

received 
Reward 
received 

Reward 
received 

     
Relative contribution -4.664*** -4.782*** 6.320*** 6.420*** 
 (0.489) (0.532) (0.993) (1.034) 
Log(contribution+1) 1.365** 1.465** -0.980 -0.987 
 (0.434) (0.471) (0.545) (0.601) 
1=Female  -0.213  0.036 
  (0.401)  (0.692) 
Age  0.011  0.050 
  (0.019)  (0.036) 
Location  0.073  -1.542* 
  (0.403)  (0.759) 
Constant 4.889*** 4.636*** 2.641*** 1.351 
 (0.363) (0.613) (0.466) (0.994) 
     
Observations 1,819 1,677 1,690 1,668 
R-squared 0.122 0.128 0.182 0.205 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
3.2.2.3 Social preference or a desire to take from the rich? 
 
We hypothesised that the poor (rich) would be rewarded (punished) in the revealed 
condition because of their high (low) relative contributions. Next, we were interested in 
whether reward or punishment behaviour in the revealed condition was motivated by 
more than just eliciting higher relative contributions, such as potentially a desire to target 
and reduce the income of the rich. 
 
To evaluate this prediction, we tested whether both relative contribution and income 
quintile both predicted punishment and reward received in the revealed condition. 
Indeed, holding constant the fraction of income contributed, richer participants were 
rewarded less (coeff = -0.309, p = 0.031, Table S13 col. 1) and punished more (coeff = 
0.563, p < 0.001, Table S14 col. 1), indicating that participants were not only concerned 
with the higher income participant’s relative contribution but generally more willing to 
take units from, and less willing to give units to, the rich. 
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Results were qualitatively similar when demographics are included. Holding constant 
relative contribution, higher quintiles were rewarded marginally less (coeff = -0.298, p = 
0.052, Table S13 col. 2) and punished more (coeff = 0.604, p < 0.001, Table S14 col. 2). 
Similar results are obtained with log-transformed income as IV (Table S15 and S16). 
 
While our results shed light on the combined effect of relative contribution and income 
quintile, it remains an important question for future research to explore to what extent 
income rank alone motivates the targeting of sanctions. 
 
Table S13: Linear regression model estimating the effect of relative contribution and 
quintile on received reward in the revealed condition. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Reward received Reward received 
   

Relative contribution 5.209*** 5.318*** 
 (1.038) (1.031) 
Quintile -0.309* -0.298 
 (0.138) (0.148) 
1=Female  -0.016 
  (0.695) 
Age  0.049 
  (0.036) 
Location  -1.549* 
  (0.757) 
Constant 3.426*** 2.146 
 (0.727) (1.102) 
   
Observations 1,690 1,668 
R-squared 0.184 0.207 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S14: Linear regression model estimating the effect of relative contribution and 
income quintile on received punishment in revealed. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Punishment received Punishment received 
   
Relative contribution -3.224*** -3.212*** 
 (0.377) (0.394) 
Quintile 0.563*** 0.604*** 
 (0.096) (0.103) 
1=Female  -0.181 
  (0.402) 
Age  0.010 
  (0.019) 
Location  0.133 
  (0.414) 
Constant 3.501*** 3.107*** 
 (0.455) (0.593) 
   
Observations 1,819 1,677 
R-squared 0.147 0.156 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
Table S15: Linear regression model estimating the effect of relative contribution and 
income quintile on received reward in revealed. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Reward received Reward received 
   
Relative contribution 5.239*** 5.346*** 
 (1.042) (1.038) 
Log(income) -0.441 -0.428 
 (0.234) (0.253) 
1=Female  -0.011 
  (0.697) 
Age  0.050 
  (0.036) 
Location  -1.547* 
  (0.757) 
Constant 3.639*** 2.350 
 (0.907) (1.193) 
   
Observations 1,690 1,668 
R-squared 0.182 0.205 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S16: Linear regression model estimating the effect of relative contribution and 
income quintile on received punishment in revealed. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Punishment received Punishment received 
   
Relative contribution -3.162*** -3.136*** 
 (0.380) (0.393) 
Log(income) 0.983*** 1.060*** 
 (0.162) (0.172) 
1=Female  -0.173 
  (0.402) 
Age  0.012 
  (0.019) 
Location  0.117 
  (0.408) 
Constant 2.577*** 2.045** 
 (0.553) (0.620) 
   
Observations 1,819 1,677 
R-squared 0.152 0.162 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 

3.2.3 Public good provisioning and inequality 
 
We next explored the effect of revealed and hidden incomes on public good provisioning 
as well as subsequent inequality. We find that revealing incomes had a positive effect on 
total contributions to the public good that was provided – and from whom these 
contributions came.  
 
3.2.3.1 Revealing incomes increased contributions 
 
We assessed the effect of revealing incomes on total contributions and whether certain 
players in the income distribution were affected more than others.  
 
Overall, contributions were higher in the revealed than in the hidden condition (coeff = 
1.745, p = 0.002, Table S17 col. 1). Examining how income and condition interact, we 
saw that in the hidden condition, higher income participants contributed more than lower 
income participants (coeff = 3.172, p < 0.001, Table S17 col. 2); and that this difference 
became significantly larger when incomes were revealed (interaction between income 
and revealed dummy, coeff = 1.562, p < 0.001, Table S17 col. 2).  
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We found qualitatively equivalent results when demographics (Table S17 col. 3) are 
included as well as when log-transformed income is used as the independent variable 
(Table S18). 
 
Table S17: Linear regression model estimating the effect of income visibility (revealed 
dummy) and income on average contribution to the public good. Standard errors 
clustered on group. 
 
 (1) (2) (3) 
VARIABLES Contribution Contribution Contribution 
    
1=Revealed 1.745** -2.930*** -2.651** 
 (0.562) (0.793) (0.817) 
Quintile  3.172*** 3.190*** 
  (0.256) (0.257) 
Quintile X Revealed  1.562*** 1.434** 
  (0.426) (0.437) 
1=Female   -0.412 
   (0.533) 
Age   0.016 
   (0.026) 
Location   0.272 
   (0.473) 
Constant 8.592*** -0.923 -1.354 
 (0.353) (0.474) (1.009) 
    
Observations 7,067 7,067 6,804 
R-squared 0.007 0.291 0.286 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S18: Linear regression model estimating the effect of income visibility (revealed 
dummy) and log-transformed income on average contribution to the public good. 
Standard errors clustered on group. 
 
 (1) (2) (3) 
VARIABLES Contribution Contribution Contribution 
    
1=Revealed 1.745** -5.229*** -4.790** 
 (0.562) (1.515) (1.556) 
Log(income)  5.416*** 5.442*** 
  (0.463) (0.464) 
Log(income) X Revealed  2.666*** 2.462** 
  (0.765) (0.784) 
1=Female   -0.362 
   (0.507) 
Age   0.015 
   (0.025) 
Location   0.307 
   (0.460) 
Constant 8.592*** -5.598*** -6.043*** 
 (0.353) (0.915) (1.270) 
    
Observations 7,067 7,067 6,804 
R-squared 0.007 0.316 0.310 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
3.2.3.2 Revealing incomes reduced inequality 
 
Finally, we assessed the effect of revealing incomes on the level of inequality and the 
distribution of participant payoffs at the end of the game relative to when incomes were 
hidden. We computed the Gini index—a commonly used measure of inequality—of the 
final payoffs of each group. The Gini index is defined as (Allison, 1978): 
 

 ! = 1
2%&'(()*+ − *-)

.

-/0
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+/0
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where n is the number of players with mean income µ over incomes x. The Gini takes a 
value between 0 and 1: the higher the value, the more unequal the set of incomes. 
 
We found that the Gini index at the end of the game is lower in the revealed condition 
(average 0.169) than in the hidden condition (average 0.238; rank-sum, p < 0.001). Thus, 
revealing incomes decreased inequality relative to keeping incomes hidden. 
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To explain this difference in inequality, we examined contributions over time. To account 
for multiple testing in these regressions, we report Bonferroni-corrected p-values. 
Participants in quintiles 1 (poorest) through 4 never decreased their contributions in either 
the hidden or revealed conditions. In fact, the poorest player in the hidden condition 
actually increased their contributions over time (coeff = 0.047, p = 0.04 bonferroni-
corrected; all other bottom-to-4th quintiles in both conditions: ps = 1.000 corrected; 
Tables S19 and S20 cols. 1-4; all regressions were also robust to including 
demographics).   
 
The contributions of the top quintile participants did, however, differ substantially over 
time between the hidden and revealed conditions. In the revealed condition, rich 
participants maintained their contributions over time (coeff = -0.382, p = 1.000 corrected, 
Table S20 col. 5), whereas they decreased their contributions over time in the hidden 
condition (coeff = -1.077, p < 0.001 corrected, Table S19 col. 5). In other words, when 
incomes were revealed, sanctions were effective in maintaining cooperation from all 
players, including those with the greatest ability to contribute. 
 
Table S19: Linear regression model estimating the effect of round on contribution to the 
public good in the hidden condition. Standard errors clustered on group. 
 

 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.047* 0.087 0.092 -0.203 -1.077*** 
 (0.017) (0.043) (0.056) (0.092) (0.240) 
Constant 2.620*** 5.387*** 7.549*** 10.173*** 22.829*** 
 (0.137) (0.318) (0.482) (0.736) (1.781) 
      
Observations 683 683 681 682 683 
R-squared 0.008 0.006 0.003 0.009 0.039 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 

 

Table S20: Linear regression model estimating the effect of round on contribution to the 
public good in the revealed condition. Standard errors clustered on group. 
 

 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.024 0.037 0.032 0.024 -0.382 
 (0.021) (0.061) (0.073) (0.103) (0.266) 
Constant 2.663*** 5.700*** 7.721*** 11.385*** 25.626*** 
 (0.157) (0.369) (0.434) (0.587) (1.723) 
      
Observations 733 733 729 730 730 
R-squared 0.002 0.001 0.000 0.000 0.003 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 
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3.3 Experiment 3 
Following the procedures of the second experiment, we repeat the same statistical 
analysis for experiment 3. Unless otherwise noted, all statistics are linear regressions with 
income quintile as a continuous independent variable and standard errors are clustered on 
the group. To check the robustness of our results, we also use log-transformed absolute 
income as continuous IV.  
 

3.3.1 Individual performance 
 
In experiment 3, participants first completed an individual effort task before they were 
assigned to groups and received an income level based on their performance in the 
individual task. Their rank among their group members determined which income level 
they were assigned to: the best-performing participant in the individual task was allocated 
the highest income level; the second-best performing participant was assigned the 
second-highest income level; and so on.  
 
In the individual task, participants had to count the number of 0s in a random matrix of 0s 
and 1s (Abeler et al., 2011). The more matrices they solved correctly, the higher their 
performance score. There was no difference in the mean number of correctly solved 
matrices between the hidden (mean = 4.489, s.d. = 1.869) and revealed (mean = 4.544, 
s.d. = 2.029) conditions; t(438) = -0.298, p = 0.766. There were no significant differences 
in performance for any quintile between conditions (Table S21). 
 
Table S21: The number of correctly solved matrices did not differ between conditions for 
any quintile. Mean values on top, standard deviation in parentheses. 
 
 Hidden condition Revealed condition Two-tailed t-test 

Top quintile 6.578 
(1.530) 

6.953 
(1.252) p = 0.212 

2nd highest quintile 5.267 
(1.074) 

5.627 
(0.976) p = 0.103 

Middle quintile 4.589 
(1.125) 

4.674 
(1.063) p = 0.951 

2nd lowest quintile 3.667 
(1.000) 

3.441 
(1.120) p = 0.323 

Bottom quintile 2.244 
(1.026) 

2.023 
(1.080) p = 0.327 
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3.3.2 Received reward and punishment 
 
In our second experiment, reward and punishment are available in all conditions. Thus, 
the dependent variable is the number of units that a participant received: negative units 
represent punishment received, while positive units represent reward received. The 
independent variable is the income quintile of the recipient of the sanctions (1 to 5). We 
found qualitatively similar results when we used log-transformed income of the recipient 
as the independent variable.  
 
In the hidden condition, participants could not assess to what extent another player can 
contribute. Thus, we expected participants to punish the poor for their (low total) 
contributions and to reward the rich for their (high total) contributions. In the revealed 
condition, conversely, we predicted the mirror image: poorer participants would be 
rewarded more units for their (high percentage) contribution than wealthier ones. 
 
We estimated the number of units that a participant received as a function of their income 
quintile and whether the income distribution was hidden or revealed (Table S22). In the 
hidden condition, we found that higher income participants received more units (coeff = 
0.053, p = 0.042, Table S22 col. 1), whereas in the revealed condition, higher income 
players received fewer units (coeff = -0.171, p < 0.001, Table S22 col. 2). Furthermore, a 
regression including data from both hidden and revealed conditions together showed that 
this difference was itself significant (interaction between income and revealed dummy, 
coeff = -0.225, p < 0.001, Table S22 col. 3).  
 
We found qualitatively similar results with log-transformed income as independent 
variable: lower income participants received more units in hidden (coeff = 0.188, p = 
0.037, Table S23 col. 1) but, conversely, they received fewer units in revealed (coeff = -
0.582, p < 0.001, Table S23 col. 2), and the interaction between condition and income 
was significant (interaction between log-transformed income and revealed dummy, coeff 
= -0.771, p < 0.001, Table S23 col. 3). 
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Table S22: Linear regression model estimating the effect of a target’s income quintile 
(i.e., their position in the income distribution) on the number of units they received. 
Standard errors clustered on group. 
 
 (1) (2) (3) 
VARIABLES Hidden  Revealed  Interaction 
    
Quintile 0.054* -0.171*** 0.054* 
 (0.026) (0.030) (0.025) 
1=Revealed   0.949*** 
   (0.193) 
Quintile X Revealed   -0.225*** 
   (0.039) 
Constant -0.054 0.895*** -0.054 
 (0.121) (0.151) (0.120) 
    
Observations 1,970 1,935 3,905 
R-squared 0.006 0.044 0.043 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
Table S23: Linear regression model estimating the effect of a target’s log-transformed 
income on the number of units they received. Standard errors clustered on group. 
 
 (1) (2) (3) 
VARIABLES Hidden  Revealed  Interaction 
    
Log(income) 0.188* -0.582*** 0.188* 
 (0.087) (0.097) (0.087) 
1=Revealed   1.143*** 
   (0.217) 
Log(income) X Revealed   -0.771*** 
   (0.130) 
Constant -0.105 1.038*** -0.105 
 (0.139) (0.169) (0.138) 
    
Observations 1,970 1,935 3,905 
R-squared 0.006 0.044 0.043 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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3.3.3 Absolute vs. relative contribution 
 
Participants in the hidden condition could not take another player’s ability to contribute 
into account since they did not know the income distribution. In the revealed condition, 
on the other hand, participants could evaluate the amount contributed relative to the 
player’s income before choosing whom to punish or reward – in other words, participants 
could differentiate between absolute and relative contributions.  
 
We hypothesised that absolute contributions would predict the number of units received 
when income is hidden, but that relative contributions would predict units received when 
income is revealed. Thus we expected participants to take (give) more units those who 
give little (a lot) in absolute terms in hidden, while their sanctions would be driven by 
relative contributions in revealed. 
 
3.3.3.1 Absolute vs. relative contribution by quintile 
 
As predicted, higher income participants contribute more in absolute terms in both the 
hidden (coeff = 3.465, p < 0.001, Table S24 col. 1) and revealed (coeff = 5.573, p < 
0.001, Table S24 col. 2) conditions. Conversely, we found that higher income 
participants contributed a smaller percentage of their income in the hidden condition 
(coeff = -0.064, p < 0.001, Table S25 col. 1).  
 
Surprisingly, in the revealed condition, there was only a weak trend of higher income 
participants contributing a lower percentage of their income (coeff = -0.0263, p = 0.108, 
Table S25 col. 2). This is a slight departure from our previous results in experiment 1: 
while higher income participants in both experiments contributed more after being 
punished more and rewarded less in the revealed condition, it appears that sanctions were 
more effective in the revealed condition in experiment 2 to encourage richer participants 
to contribute a higher fraction of their income.  
 
These results were qualitatively similar when log-transformed income is used as the 
independent variable (Tables S26 and S27). 
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Table S24: Linear regression model estimating the effect of income on absolute 
contribution. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Quintile 3.465*** 5.573*** 
 (0.346) (0.535) 
Constant -2.446** -5.640*** 
 (0.698) (0.921) 
   
Observations 1,581 1,598 
R-squared 0.236 0.381 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
Table S25: Linear regression model estimating the effect of income on percentage of 
income contributed (relative contribution). Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Quintile -0.064*** -0.026 
 (0.011) (0.016) 
Constant 0.664*** 0.671*** 
 (0.050) (0.054) 
   
Observations 1,581 1,598 
R-squared 0.055 0.009 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S26: Linear regression model estimating the effect of log-transformed income on 
absolute contribution. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Log(income) 11.742*** 18.733*** 
 (1.151) (1.761) 
Constant -5.264*** -9.996*** 
 (0.937) (1.288) 
   
Observations 1,581 1,598 
R-squared 0.235 0.373 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
Table S27: Linear regression model estimating the effect of log-transformed income on 
percentage of income contributed. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Log(income) -0.210*** -0.084 
 (0.037) (0.054) 
Constant 0.710*** 0.687*** 
 (0.058) (0.065) 
   
Observations 1,581 1,598 
R-squared 0.052 0.008 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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3.3.3.2 Absolute vs. relative contribution predicted sanctioning behaviour 
 
We hypothesised that participants in the hidden condition would reward those who give 
more in absolute terms (the rich) and punish those who give less in absolute terms (the 
poor). Conversely, participants in the revealed condition would reward those who give a 
high percentage of their income (poorer participants) but punish those who give a smaller 
percentage of their income (richer participants). 
 
As predicted, higher absolute contributions in the hidden condition led to receiving more 
reward units and fewer punishment units (coeff = 0.571, p < 0.001, Table S28 col. 1). 
This helped mostly richer participants because they contributed a larger absolute number 
of units. Relative contributions, in contrast, did not predict the number of units received 
(p = 0.098, Table S28 col. 1) in the hidden condition since relative contributions were not 
observable. 
 
In the revealed condition, we found that higher relative contribution led to receiving more 
units (coeff = -1.775, p < 0.001, Table S28 col. 2). Since poorer participants contributed a 
larger percentage of their income, they were punished less and rewarded more in the 
revealed condition. We also observed that absolute contribution had an effect in the 
revealed condition, in the opposite direction of the effect in the hidden condition: higher 
absolute contributions led to fewer units received (coeff = -0.461, p = 0.001, Table S28 
col. 2). 
 
Table S28: Linear regression model estimating the effect of absolute log-transformed 
contribution and relative contribution on the number of units received in the hidden and 
revealed condition. To deal with zero-contributions, a constant of 1 was added to all 
contributions before applying the log-transformation. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Log(contribution+1) 0.571*** -0.461*** 
 (0.109) (0.123) 
Relative contribution 0.195 1.775*** 
 (0.115) (0.212) 
Constant -0.365** -0.211* 
 (0.117) (0.097) 
   
Observations 1,581 1,598 
R-squared 0.084 0.206 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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3.3.3.3 Social preference or a desire to take from the rich? 
 
We hypothesised that the poor (rich) would be rewarded (punished) in the revealed 
condition because of their high (low) relative contributions, for which we found evidence 
presented above. Next we investigated to what extent participants were motivated by 
more than just relative contributions, such as a desire to reduce the income of the rich 
regardless of their relative contribution. 
 
Holding constant the fraction of income contributed, we found that richer participants 
indeed received fewer units (coeff = -0.173, p < 0.001, Table S29 col. 1). Results were 
qualitatively similar when we used log-transformed income as the independent variable 
(coeff = -0.595, p < 0.001, Table S29 col. 2). Thus, participants gave fewer units to the 
rich, even when they contributed the same relative amount of their income. 
 
Table S29: Linear regression model estimating the effect of relative contribution and 
income quintile on units received in the revealed condition. Standard errors clustered on 
group. 
 

 (1) (2) 
VARIABLES Units received Units received 
   
Relative contribution 1.291*** 1.294*** 
 (0.173) (0.172) 
Quintile -0.173***  
 (0.032)  
Log(income)  -0.595*** 
  (0.109) 
Constant 0.217 0.367* 
 (0.143) (0.161) 
   
Observations 1,598 1,598 
R-squared 0.225 0.226 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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3.3.4 Public good provisioning and inequality 
 
3.3.4.1 Revealing incomes increased contributions 
 
Contributions were higher in the revealed than in the hidden condition (coeff = 3.134, p < 
0.001, Table S30 col. 1). We observed that higher income participants in the hidden 
condition contributed more than lower income participants (coeff = 3.194, p = 0.007, 
Table S30 col. 2); a difference that became significantly larger when incomes were 
revealed (interaction between income and revealed dummy, coeff = 2.109, p = 0.001, 
Table S30 col. 2). We found qualitatively equivalent results when using log-transformed 
income as the independent variable (Table S31). 
 
Table S30: Linear regression model estimating the effect of income visibility (revealed 
dummy) and income on average contribution to the public good. Standard errors 
clustered on group. 
 

 (1) (2) 
VARIABLES Contribution Contribution 
   
1=Revealed 3.134*** -3.194** 
 (0.877) (1.149) 
Quintile  3.465*** 
  (0.344) 
Quintile X Revealed  2.109** 
  (0.633) 
Constant 7.946*** -2.446*** 
 (0.467) (0.695) 
   
Observations 3,179 3,179 
R-squared 0.018 0.338 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S31: Linear regression model estimating the effect of income visibility (revealed 
dummy) and log-transformed income on average contribution to the public good. 
Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Contribution Contribution 
   
1=Revealed 3.134*** -4.732** 
 (0.877) (1.583) 
Log(income)  11.742*** 
  (1.145) 
Log(income) X Revealed  6.992** 
  (2.092) 
Constant 7.946*** -5.264*** 
 (0.467) (0.932) 
   
Observations 3,179 3,179 
R-squared 0.018 0.333 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
3.3.4.2 Revealing incomes reduced inequality 
 
Finally, we assessed the effect that revealing incomes had on inequality. Using (1), we 
computed the Gini index of the final payoffs of each group. We found that the Gini index 
at the end of the game was lower in the revealed condition (average 0.124) than in the 
hidden condition (average 0.255; Rank-sum, p < 0.001). Revealing incomes decreased 
inequality relative to keeping incomes hidden. 
 
What led to lower inequality in the revealed condition? We examined contributions over 
time. To account for multiple testing in these regressions, we report Bonferroni-corrected 
p-values. Participants in quintiles 1 (poorest) through 4 never decreased their 
contributions in either the hidden or revealed conditions (all ps > 0.5 corrected; Tables 
S32 and S33 cols. 1-4).  
 
Contributions of the highest earners, however, did marginally differ over time between 
the hidden and revealed conditions. In the revealed condition, rich participants 
maintained their contributions over time (coeff = -0.056, p = 1.000 corrected, Table S32 
col. 5), whereas they marginally decreased their contributions over time in the hidden 
condition (coeff = -1.105, p = 0.080 corrected, Table S33 col. 5).  
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Table S32: Linear regression model estimating the effect of round on contribution to the 
public good in the hidden condition. Standard errors clustered on group. 
 
 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.029 0.075 0.069 -0.240 -1.105 
 (0.021) (0.067) (0.203) (0.190) (0.442) 
Total # rounds 0.036 -0.450* -0.831*** -0.600 0.957 
 (0.105) (0.144) (0.211) (0.302) (1.591) 
Constant 1.287 7.873*** 15.421*** 15.727*** 13.124 
 (0.940) (1.330) (2.016) (3.120) (13.069) 
      
Observations 316 317 316 316 316 
R-squared 0.010 0.051 0.061 0.036 0.033 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 

 
 
Table S33: Linear regression model estimating the effect of round on contribution to the 
public good in the revealed condition. Standard errors clustered on group. 
 
 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.025 0.112 0.347 0.192 0.056 
 (0.034) (0.088) (0.147) (0.219) (0.476) 
Total # rounds -0.032 -0.143 -0.360 -0.688 -0.714 
 (0.142) (0.254) (0.665) (0.813) (1.159) 
Constant 2.046 5.444* 11.876* 18.442* 31.846** 
 (1.266) (2.354) (5.782) (7.564) (11.144) 
      
Observations 320 320 318 320 320 
R-squared 0.003 0.011 0.030 0.012 0.003 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 

 
 

3.4 Experiment 4 

The analysis of experiment 4 was similar to that of our first experiment: in this study, 
participants had to choose which school parents would be the target of a “tax increase” –
 our measure of punishment in this study. We repeated the same analysis as in experiment 
1, first looking at the average and median choice of target, followed by a look at the 
distribution to identify which parents (sorted by their income) were targeted specifically. 
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We predicted that revealing incomes would lead participants to punish richer households 
more.  
 
In line with this prediction, we found that participants’ choice of the target of a tax 
increase shifted from the poorest school parents to richer ones when incomes were 
revealed (using linear regression predicting the choice of target by revealed dummy: 
coeff = 1.826, p < 0.001, Table S34 col. 1). Results were qualitatively similar when 
control variables were included (Table S34 col. 2) and when estimated with a rank-sum 
test instead (Z = -11.883, p < 0.001). 
 
Finally, we investigated which school parents in particular are chosen to pay the 
additional tax between the revealed and hidden conditions. We observed that participants 
were significantly less likely to choose the poorest school parents for the tax payment 
when incomes were revealed (using logit regression predicting choosing the poorest 
school parents by revealed dummy: coeff = -2.222, p < 0.001, Table S35 col. 1) while 
they were significantly more likely to choose the richest school parents (coeff = 4.302, p 
< 0.001, Table S35 col. 5). Moreover, when incomes were revealed, parents in the 
second-richest district were also less likely to be chosen to pay the additional tax (coeff = 
-1.985, p < 0.001, Table S35 col. 4). School parents from other incomes were not chosen 
significantly differently between the two conditions (ps > 0.05, Table S35 cols. 2-3). 
 
Table S34: Linear regression estimating the choice of school parents (where 1 = poorest 
school parents to 5 = richest school parents) who would be “punished” with an additional 
tax to pay for more educational funding across schools. 
 
 (1) (2) 
VARIABLES Target school Target school 
   
1=Revealed 1.826*** 1.810*** 
 (0.149) (0.153) 
1=Female  0.093 
  (0.155) 
Age  -0.012 
  (0.007) 
Constant 2.648*** 3.046*** 
 (0.117) (0.290) 
   
Observations 313 304 
R-squared 0.323 0.328 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S35: Logit regression estimating the likelihood that the poorest (col. 1), the second 
poorest (col. 2), the middle (col. 3), the second richest (col. 4) or the richest school 
parents (col. 5) were chosen for the additional tax payment. 
 
 (1) (2) (3) (4) (5) 
VARIABLES Poorest 2nd Poorest Middle 2nd Richest Richest 
      
1.Revealed -2.222*** -0.491 -0.707 -1.985*** 4.302*** 
 (0.352) (0.740) (0.478) (0.324) (0.432) 
Constant -0.343* -3.428*** -2.338*** -0.317* -3.078*** 
 (0.161) (0.455) (0.280) (0.161) (0.387) 
      
Observations 313 313 313 313 313 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
 
  



  Invisible Inequality     S42 
 

 

4. Instructions 
 
In this section, we include the main instructions from each of the experiments. All 
experiments were run on Amazon Mechanical Turk. Experiments 1 and 4 were built with 
Qualtrics and Experiments 2 and 3 were programmed on SoPHIE, an interactive platform 
for decision-making experiments (Hauser, Hendriks, Rand, & Nowak, 2016). To obtain 
all screenshots and instructions, please email the authors. 
 

4.1 Experiment 1 

4.1.1 Hidden condition 
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4.1.2 Revealed condition 
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4.2 Experiment 2 

4.2.1 Hidden condition 
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Public goods game (repeated 10 times): 
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4.2.2 Revealed condition 
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Public goods game (repeated 10 times): 
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4.3 Experiment 3 

4.3.1 Hidden condition 
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Public goods game (repeated 10 times): 
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4..2 Revealed condition 
 
The hidden and revealed conditions were identical except for the following three pages: 
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4.4 Experiment 4 

4.4.1 Hidden condition 
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4.4.2 Revealed condition 
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