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Abstract

Although substantial attention has focused on efforts by the new Administration to block

environmental policies, climate politics have been contentious in the US since well before

the election of Donald Trump. In this paper, we extend previous work on empirical examina-

tions of echo chambers in US climate politics using new data collected on the federal climate

policy network in summer 2016. We test for the similarity and differences at two points in

time in homophily and echo chambers using Exponential Random Graph Models (ERGM)

to compare new findings from 2016 to previous work on data from 2010. We show that echo

chambers continue to play a significant role in the network of information exchange among

policy elites working on the issue of climate change. In contrast to previous findings where

echo chambers centered on a binding international commitment to emission reductions, we

find that the pre-existing echo chambers have almost completely disappeared and new

structures have formed around one of the main components of the Obama Administration’s

national climate policy: the Clean Power Plan. These results provide empirical evidence that

science communication and policymaking at the elite level shift in relation to the policy

instruments under consideration.

Introduction

With the election of Donald Trump as the 45th President of the United States, American envi-

ronmental politics have become even more contentious [1]. The issue of climate change has

been a central focus of debate, with the new Administration halting efforts to monitor and reg-

ulate greenhouse gases. Despite a well-documented scientific consensus on the causes and

drivers of global climate change, the President and a number of his appointees are well known

for questioning the science of the issue. In fact, the President’s first appointee to run the Envi-

ronmental Protection Agency led the state of Oklahoma’s case against the Obama Administra-

tion for trying to implement the Clean Power Plan to reduce greenhouse gas emissions

nationwide. While scientists continue to warn decisionmakers about the need to act [2–8], the
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political debate remains polarized [9–11]. In August 2015, President Barack Obama finalized

his Clean Power Plan Executive Order, which would regulate emissions from power plants.

Within days, governors and attorneys general from a number of states announced their inten-

tion to oppose the Plan on the grounds that it was federal overreach into state affairs [12].

Recent research illustrates that the structure of policy actor networks can explain how infor-

mation flows in the political sphere and demonstrates how these structures can lead to real-

world policy outcomes [10,13,14]. Specific to climate policy, scientists have looked to the news

media and communications [15–17], the rise of the conservative counter-movement [9,18],

and the polarization of the issue within the US Congress [10,19,20] to explain how an issue of

such wide scientific consensus can lead to sustained political gridlock. A handful of studies

have specifically studied climate policy networks ([21–24] see also [25]). In their study of Swiss

climate policy, Ingold and Fischer look longitudinally across three time periods, finding that

common beliefs among actors and formal power structures explain much of the collaboration

networks among policy actors [22].

In this paper, we look at two periods in time to understand climate policy in the United

States. Instead of focusing on collaboration, however, we build on previous work on echo

chambers to understand information diffusion among the climate policy network [21]. In this

previous study, echo chambers were operationalized as the combination of two components:

the sharing of information between two actors who have the same outlook or opinion on a rel-

evant issue, or the "echo;" and the information from the same source reaching the same end-

point via multiple direct and indirect paths, or the "chamber" [21]. The “echo” is the sending

of information from a source to a recipient who holds the same stance on a particular piece of

policy. This stance or view is represented by the shading of the circles (representing the actors)

in Fig 1B (as opposed to the clear circles in 1a). The “chamber” mechanism, in contrast, has

information from the same source reaching the same recipient via multiple different paths.

The smallest structural configuration that would depict this process is the transitive triad. In

this structure, information passes from actor A to actor C through a direct tie, but also indi-

rectly through actor B (such that B receives information from A, and C receives information

from B; see Fig 1C).

This structure combines the transitive triad, which Carpenter has posited promotes trust in

information networks [13], with the clustering of like-minded actors, structures that were

shown by Klar and Shmargad in an experiment to promote less learning and exposure to

diverse viewpoints than random networks [26]. Williams et al. also found transitive triads to

promote polarization in an observational study [27].

In previous work, this operationalization of echo chambers was applied to data collected

from political elites working on climate policymaking in the US in 2010. Here, again using

Exponential Random Graph (ERG) models, we test empirically whether or not echo chambers

have shifted to form around a more recent climate policy. This analysis enables us to answer

three related research questions: Are there echo chambers in the US climate policy network in

2016 structured around the Clean Power Plan? How stable are the policy positions in our net-

work of elites engaged in climate politics? And, how have structural properties of the federal

climate policy network shifted from 2010 to 2016?

Materials and methods

To show that an echo chamber exists, we must first demonstrate that these transitive triads

contain policy actors with the same viewpoint, and second that they play an important role in

the network. We examine the information networks that supplied members of the climate pol-

icy community in the United States with research, advice, and perspectives on the issue of
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climate change in 2016. Our network comprises the set of policy actors in our sample who

responded to our 2016 survey (49 in total) and all reported directed communication within

this population.

Constructing a data set and sampling

Consistent with previous research studying echo chambers in climate policy networks, we

began by creating a comprehensive dataset of elite United States climate policy actors engaged

in policymaking during the period of our study [21]. A dataset was assembled from three pub-

licly available sources. We began with a list of all the policy actors who participated in climate-

related hearings in the United States Congress during the two sessions prior to when data col-

lection began: the 112th session (January 2011-January 2013) and the 113th session (January

2013- January 2015). Although it would have been ideal to include a list of the speakers who

were participating in the on-going 114th session of the US Congress as well, since data collec-

tion was taking place in the middle of this particular session, a complete list of hearings and

participants was not available.

Next, using the House [28] and Senate [29] Lobbyist Disclosure Act databases, we added a

field to note all lobbyists who were registered to lobby on climate issues during each respective

period. Finally, we added a field to indicate who on the list had participated in the interna-

tional climate change negotiations (COP-21) in Paris in December 2015 [30]. Participants

were neither added nor removed from the dataset based on their participation in the

Fig 1. Structural and attitudinal components of an echo chamber.

https://doi.org/10.1371/journal.pone.0203463.g001
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international negotiations or registration as climate lobbyists. Rather, participation in these

two additional arenas were tallied together so each actor was scored based on their level of

engagement within the climate policymaking arena. By drawing from these varied sources that

span the two previous sessions of the Congress, we were able to assemble a dataset that mea-

sured sustained engagement in the climate policy network over the years leading up to our

period of data collection.

Next, actors in this dataset were ranked according to the degree to which they participated

in hearings, international negotiations, and on lobbyist registries (if they were non-state

actors). Testimonies were weighted such that multiple appearances before Congress indicated

greater participation. Our sample includes all actors who participated more than once in this

"climate policy arena." In some cases, policy actors participated in climate-related Congressio-

nal Hearings more than once, but in other cases, the actors participated in the Congress only

once but also participated in the climate negotiations and/or were registered to lobby on the

issue.

In contrast to the sampling period for the piece by Jasny and colleagues when climate-

related legislation was working its way through the US Congress [21], this four-year

period saw much less climate-related legislative action. As a result, only 83 policy actors

met the sampling criteria and were identified as central climate policy actors. Given this

lower number, we then added into the sample four additional policy actors who had

ranked high in our 2010 sample and had also been active on the issue during the 114th ses-

sion of the US Congress (which was ongoing during our data collection period): Senator

James Inhofe of Oklahoma; the American Council for an Energy-Efficient Economy;

World Resources Institute; and the Pew Center on Global Climate Change, which was

renamed the Center for Climate and Energy Solutions in 2011. We also added the Inter-

governmental Panel on Climate Change, which was included in our 2010 sample and is

the “international body for assessing the science related to climate change” [31]. In total,

our sample of the 2016 climate policy network included 88 policy actors who were espe-

cially influential in the federal climate arena following the ‘events based’ approach to

determining network boundaries [32]. In network analysis these kinds of sampling issues

are called ‘boundary’ problems and are routinely encountered [33].

Like previous studies [21,34], we do not generalize our findings to the entire population of

actors. Rather, our goal is to understand the dynamics of the most central actors in the climate

policy network in the United States at the federal level with the understanding that the pro-

cesses at work in this sample are unlikely to resemble the dynamics outside this sample [35].

We maintain that networks among these central actors are critical for understanding US fed-

eral climate policy.

It is important to note that our data set, like those of others working from a policy network

perspective [25,36–38], includes actors with all types of organizational affiliations, including

both state and non-state actors. We operationalize non-state actors as those who are not

employed by the government; non-state actors include business and trade union representa-

tives, members of the environmental and climate policy teams at NGOs, and university scien-

tists. State actors include both climate-focused staff people from Congressional offices, and

employees working in the Administrative branches of federal agencies. The authors coded all

respondents into one of these categories based on where they worked during the sampling

period. Not only does this sampling method provide a range of actor types, but it notably also

provided us with actors who represent a diversity of ideological positions on the issue of cli-

mate change in the United States.

Shifting echo chambers in US climate policy networks
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Data collected

The data analyzed in this paper were collected in Summer 2016. We compare these data to

data that were collected in 2010 [21]. Data collection took place in 2010 during a period when

climate policy was working its way through the US Congress: The American Clean Energy and

Security Act, sponsored by Representatives Henry Waxman and Edward Markey, had been

passed by the House of Representatives in summer 2009; during summer 2010, while the

research team was in the field surveying respondents, there were efforts to pass a Senate com-

panion bill. The American Power Act was released by Senators Kerry and Lieberman with

input from Senator Graham in May 2010 (for details, see [39]). In July 2010, however, Senate

Majority leader Reid dropped regulating greenhouse gas emissions from the energy bill due to

lack of bipartisan support (for details, see [40]).

In contrast to this highly contentious period in the Congress in 2010, the 2016 data collec-

tion period occurred during a waiting period for President Obama’s Clean Power Plan. The

Clean Power Plan was an executive order designed to regulate emissions from power plants in

the US through the Environmental Protection Agency. Implementation of the Plan had been

stayed by the US Supreme Court in February 2016 until the legal challenges to the program

had been concluded [41]. A final decision from the courts regarding the future of the Clean

Power Plan was expected after the 2016 election.

As we were asking political elites’ about their organization’s official/public views, oral con-

sent was attained as approved by the UMD IRB (Protocol #878998). For the 2010 Survey, oral

consent was approved by the Columbia University IRB (# IRBAAAG2612) and University of

Maryland (IRB Protocol #10–0751). See [21] for additional details of the 2010 survey; the spe-

cifics of the 2016 survey follow. The 88 policy actors identified in our sample were contacted to

participate in our study as they represent the core of political elites that have the most influence

over the policy process. Data were collected through in-person meetings in the Washington,

DC metropolitan area whenever possible. Contact was initially made via email and telephone

with all of the policy actors in the sample that had been included in previous rounds of

research [21,42]. For offices that had never been contacted before, the researchers aimed to

contact a representative who had participated in Congressional Hearings during the sampling

period. In some cases, participants in the study were asked if they could provide a contact for

offices with whom they collaborate. Respondents were offered no incentives to participate in

the study.

In these in-person settings, actors were interviewed and administered a written survey.

After the surveys were filled out by respondents, the research team manually entered the data

into Qualtrics. For policy actors who were not available to meet or who were located outside of

the DC area, interviews were conducted over the phone and surveys were conducted through

Qualtrics online. The survey data are the focus of this paper. In total, survey data were collected

from 50 policy actors in our sample, representing a 57% response rate. Although this response

rate for the 2016 wave is somewhat lower than the 64% response rate for the 2010 data [21], it

is consistent with other studies of communities of political elites [43,44]. Two of the respon-

dents were from different branches of the EPA but these were collapsed so that the agency was

not doubly represented in the network leaving 49 total actors in our analyses. Of the two EPA

respondents, we selected the responses from the more senior interviewee, however the results

and conclusions presented here do not change if the more junior interviewee is selected.

Although a relatively small sample, these data represent a unique dataset from the most central

policy actors working on climate change in the US during this period of time. Moreover, the

size of our sample is not unusual for the policy networks literature (For examples of networks

of similar sizes, see [25,43,44]).

Shifting echo chambers in US climate policy networks
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Even though respondents included actors from across the political spectrum and from all

types of organizational affiliations, we observed some obvious differences between the respon-

dents and the non-respondents in our study. Specifically, the offices of Representatives and

Senators in the US Congress again had a much lower response rate than the other types of

political actors in 2016 (20% versus a response rate of around 57% for the sample overall). This

response rate is consistent with that for elected officials in the US Congress in the previous

work by Jasny et al. [21].

Survey instrument

The survey itself was comprised of three types of questions. Attitudinal questions asked partici-

pants to indicate on a scale of 1 to 5—where 1 indicated strong disagreement, 5 indicated

strong agreement, and 3 indicated neutrality—their positions on statements that were deemed

politically salient during the data collection period. This paper presents analysis of three attitu-

dinal questions that were the focus of previous analysis [21]:Human activities are an important
driver of current global climate change (2016 survey Question 1, item 3: referred to in the paper

as Anthropogenic), Emissions trading (cap and trade) is the best option for reducing US GHG
emissions (2016 survey Question 2, item 2: referred to as Cap and Trade), and There should be
an international binding commitment on all nations to reduce GHG emissions (2016 survey

Question 2, item 6: referred to as Binding). We also include analysis of the question, The Clean
Power Plan should be implemented by every state (2016 survey Question 2, item 7: referred to as

CPP), as the Clean Power Plan had been stayed by the Supreme Court but at the time of data

collection, it was expected to be implemented eventually. Distributions of responses for these

four items are presented in Fig 2.

Most important for the purposes of the present research, this survey asked three network

questions. Each of the 88 policy actors in our sample was listed in alphabetical order by actor

type, and each respondent was presented with three iterations of this list. Participants were

then asked to respond to three network questions. Specifically, they were asked to indicate, in

order: those actors or organizations whom they identified as their sources of expert scientific

information about climate change, those actors or organizations they collaborate with on a

regular basis, and those actors or organizations whom they perceived to be most influential in

climate politics, in any ideological direction. The first network question—reporting sources of

expert scientific information—makes up the foundation of this research. A copy of the survey,

as well as the public dataset and a codebook, can be found at: http://drfisher.umd.edu/CCP.

html.

The authors also collected data on organizational and structural characteristics (such as the

age of the organization, the organization’s number of employees, and so forth) from a system-

atic review of the websites and published materials of each policy actor. Due to their unique

nature among other types of actor, many of these variables are inappropriate for the Congres-

sional offices in our sample, and are therefore missing.

Exponential Random Graph Models

We test for echo chambers and a variety of other configurations using Exponential Random

Graph Models (ERG). ERG models use simulation methods to address the bias introduced in

regression models by the interdependence of network ties, and are increasingly being used in

the study of policy networks [45,46,25,47]. Evidence of echo chambers (Fig 1D) would indicate

directed information flow among this network of policy actors working on climate change that

is based on the combination of agreement on a particular policy position (Fig 1B), and the

structure of a transitive triad (Fig 1C). Our analytic technique enables us to test if information

Shifting echo chambers in US climate policy networks
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diffusion takes place randomly or if perspectives on a specific policy instrument (such as the

Clean Power Plan) determine who gets information from whom. Finding evidence of echo

chambers in American climate politics provides evidence that information is being cherry

picked by policy actors, as well as the degree to which the information is being amplified

through direct and indirect communication channels.

The terms included in the models are presented in Fig 3 and are the same as those used in

Jasny et al. [21]. The results of an ERG model are presented in log-odds form. The edges term

(Fig 3A) acts like an intercept–it is interpreted as the base rate of tie formation given every

other term in the model. Terms for out-star popularity (Fig 3B and 3C) look at whether certain

organizations were popularly named as sources of scientific information (the direction of the

arrow follows the information from the source to the respondent). As in previous work [21]

we operationalize the ‘chamber’ of an echo chamber to be a transitive triad (Fig 3D). Transitive

triads provide evidence of simultaneous direct and indirect information diffusion. We also

include attribute terms: Fig 3E and 3F show the terms for certain types of organizations being

Fr
eq

ue
nc

y

Anthropogenic

0
5

10
15
20
25
30

S
tro

ng
ly

 D
is

ag
re

e

D
is

ag
re

e

 N
ei

th
er

A
gr

ee

S
tro

ng
ly

 A
gr

ee N
A

Fr
eq

ue
nc

y

Binding

0
2
4
6
8

10
12

S
tro

ng
ly

 D
is

ag
re

e

D
is

ag
re

e

N
ei

th
er

A
gr

ee

S
tro

ng
ly

 A
gr

ee N
A

Fr
eq

ue
nc

y

Cap And Trade

0
5

10
15
20

S
tro

ng
ly

 D
is

ag
re

e

D
is

ag
re

e

N
ei

th
er

A
gr

ee

S
tro

ng
ly

 A
gr

ee N
A

Fr
eq

ue
nc

y

Clean Power Plan

0
5

10
15
20

S
tro

ng
ly

 D
is

ag
re

e

D
is

ag
re

e

N
ei

th
er

A
gr

ee

S
tro

ng
ly

 A
gr

ee N
A

Fig 2. Frequencies for 2016 attitudinal data.

https://doi.org/10.1371/journal.pone.0203463.g002
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more or less popular as sources of information depending on their attributes. The attributes

for our model include the organization type (categorical), lobbying budget and FTE which

capture organizational resources, and the attitudinal responses to the questions of interest in

the survey (see Fig 2). Homophily is represented in Fig 3G and is the tendency for organiza-

tions to go to those for information who share their belief. This is the ‘echo.’ Beliefs are mea-

sured based on policy actors’ response to questions about their policy position. The

combination of the ‘echo’ and ‘chamber’ in Fig 3H is the full operationalization of the echo

chamber. ERG models permit the testing of all of these terms simultaneously in the model pre-

dicting edge formation [48]. The ERG models were fit using the Statnet (v2.3.2) software pack-

age for the R (v3.2.2) programming language [49]. We constrained the simulations on the

indegree distribution to match the method used by Jasny and colleagues [21].

Missing data

We made a number of decisions about handling missing data. First, non-respondents were

removed from the network, reducing our size from the 88 actors in the roster to the 50 respon-

dents, which resulted in 49 actors (to restate, the two EPA respondents were collapsed). While

this approach is clearly not an ideal method, it is standard in network analysis [45,50] and

appropriate missing data methods are still being developed [35]. Additionally, we had cases

where respondents left questions blank. In order to use the exponential random graph model

(ERGM) attribute methods in Statnet, we could not leave any continuous entries missing (con-

tinuous covariate terms are a combination of the value for sender and receiver, as this omission

would have resulted in far too much missing data to calculate an accurate value for the

Fig 3. Terms used in the ERG models.

https://doi.org/10.1371/journal.pone.0203463.g003
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covariate effect). The 2010 data had more missing data than 2016 with 4 and 2 missing entries

for Anthro respectively, 12 and 6 for Binding, 9 and 5 for Cap and Trade, 11 and 4 for the

number of full time employees, 15 and 3 for budget, and finally 6 for CPP which was only

asked in 2016. We handled these missing data in two ways: first, by replacing them with the

average value, and second by imputing values using predictive mean matching using the

Hmisc package for R (v4.1–1, [51]). Ten separate sets of values were imputed and ERGMs run

on each set. The results were then combined following Raghunathan ([52] see Chapter 4).

However, for each of the echo chamber terms we treated NAs as a separate category and

removed them from the counts so that echo chambers among the NAs were not incorporated

in the statistics. The average and imputed results are shown separately in our model results but

are consistent in significance and interpretation.

Results

Fig 4 presents the descriptive results of three components of our data. First, the left-hand side

of the bar chart displays the number of echo chambers for policy actors in our analysis based

on their sources of “expert scientific information” and their responses to an attitudinal ques-

tion that asks them to identify their organization’s position from “strongly agree” to “strongly

disagree” on the statement: There should be an international binding commitment on all nations
to reduce GHG emissions. This variable indicates the policy actor’s position on an international

climate treaty and we refer to this variable as Binding. The echo chambers discussed in [21]

centered on this policy instrument, although the data presented in Fig 4 is from the 2016 sur-

vey. Second, the right hand side of the bar chart shows the number of echo chambers for policy

actors in our analysis based on their sources of “expert scientific information” and their

responses to an attitudinal question that asks them to identify their organization’s position

from “strongly agree” to “strongly disagree” on the statement: The Clean Power Plan should be
implemented in every state (the policy instrument intended to regulate emissions in 2016). We

refer to this variable as CPP. Thus, the horizontal axis measures the number of transitive triads

where all members agree on Binding (left) versus the number where they agree on CPP (right).

The organizations are ordered horizontally by organization type (see key to the right) and then

in order of the number of CPP echo chambers. We see clear differences between organization

types and numbers of echo chambers, with no CPP echo chambers among Business respon-

dents (‘B’), but many among each of the other types of organizations. There are clearly more

echo chambers around the CPP (396) than the Binding (206) policy instrument. Where the

echo chambers in 2010 were found at all levels of agreement with Binding, in 2016 they are

split between ‘Agree’ and ‘Strongly Agree.’ The echo chambers around CPP are, with three

exceptions, exclusively around ‘Strongly Agree’. A comparison of the organizations common

to the two samples follow, but in fundamentally thes echo chambers observed in 2016 are dif-

ferent from those observed in the 2010 data [21]. In other words, during the period of our

research in 2016, which was after the Obama Administration had already signed on to the

Paris Agreement, the Clean Power Plan had much more policy salience (For an overview, see

[53]). Finally, the right hand side of the diagram presents a graphical depiction of the echo

chambers in the later network colored by their attitudes towards CPP, showing the concentra-

tion of ties and therefore echo chambers among that policy position. Thus in 2016, while echo

chambers form less frequently around Binding Commitment, they have formed in larger num-

bers and with greater agreement around the CPP.

A direct comparison of the full 2010 and 2016 data is complicated by the changes in the pol-

icy actors identified to participate in the study. The six-year period from 2010 to 2016 marked

a shift in institutional strategy on climate change as organizations developed responses to both
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international and national developments. We see this change represented in the population of

actors who met our sampling criteria, changes in their attitudes on policy, as well as changes in

the network of information ties. Only 27 policy actors from the 100 in our 2010 sample were

included in 2016 and only 19 of those policy actors participated in the study, making longitudi-

nal network modeling impossible unless we restrict to just those organizations [54]. While we

compare the samples from 2010 and 2016 to get a sense of the change in the two points in

time, the analysis performed in this paper is cross-sectional instead of longitudinal, which

allows us to use the full samples from 2010 and 2016 rather than the smaller intersection of the

two.

Fig 5 presents heat maps comparing the policy positions of the actors who were included in

both the 2010 and 2016 analyses and the subnetwork of the 19 actors who responded to both

surveys. “Heat” in this context represents the concentration of actors for each response on our

attitudinal scale. These 19 actors were remarkably stable with regard to whether they believed

thatHuman activities are an important driver of current global climate change (referred to as
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Anthropogenic); the observations are either on the diagonal in the figure (meaning no change

in opinion) or slightly off (for example, one actor switched from “Strongly Agree” to “Agree

[Fig 5A]). Compare these results to the results of the other policy positions. The first is Bind-

ing, discussed above, and the second is a policy statement we refer to as Cap and Trade: Emis-
sions trading (cap and trade) is the best option for reducing US GHG emissions. Both showed

more change than that of Anthropogenic, but still not huge changes or shifts in perception.

Since the Clear Power Plan had not been introduced in 2010, there are no comparable data for

this policy position.

There were 7 total changes in opinion between 2010 and 2016 on Binding (not including

NAs) and one actor switching from “Strongly Agree” to “Strongly Disagree” (Fig 5B). Cap and

Trade (Fig 5C) had the most change with 10 policy changes, but none were as extreme as the

reversal in Binding. Fig 5D displays the reduced sample of 19 actors who responded to both

surveys. It is difficult to discern any patterns of change in the figure; for that we will turn, after

some basic descriptives, to the statistical modeling. The network of information flow between
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these organizations also changed greatly with 41 of the 95 ties in the 2010 network no longer

mentioned in 2016 (43%) and an additional 63 ties added for an overall change in the network

of 30% of the possible ties. The subsample of the 19 repeated surveys shows us that this period

was marked by some limited change in policy stance and the severing of many of the informa-

tion ties found in the previous data with more new ties reported in 2016. However, these small

changes had big consequences for the formation of echo chambers: of the 14 Binding echo

chambers in this 19 organizational subsample, only one echo chamber stayed constant in

structure and agreement from the 2010 to the 2016 data. We therefore see that the combina-

tion of policy agreement (the ‘echo’) and structural composition (the ‘chamber’)–can be more

sensitive to change than either component individually. To understand the statistical relation-

ship between structural properties and agreement on policy position, we turn to cross-sec-

tional modeling of the two datasets.

Fig 6 presents the results of the ERG simulation methods to test for the presence and signifi-

cance (relative to tie formation) of echo chambers holding other structural tendencies con-

stant. The coefficients are logged odds ratios. Thus, the logged ratio of any given tie existing in

the network can be expressed as a sum of the relevant terms in the model. Model 1 presents

the results from the 2015 paper (based on data collected in 2010). Model 2 reprises Model 1

using the more recent data collected in summer 2016. Model 3 adds terms related to the Clean

Power Plan.

Results from replacing NAs with average values are presented with solidly colored symbols

and results using imputed data with symbols with a white center; there are no significant dif-

ferences between these two methods of handling the missing data. Two structural terms are

statistically significant across all three models: the significant out 2-star term shows that certain

organizations are popular sources of information, and the significant sender terms for govern-

ment agencies and scientific organizations indicate that these organization types are more fre-

quently listed as sources of information compared to the reference group of business

organizations. In 2010, only an effect for echo chambers around Binding was found (Model 1).

In 2016, however, the significant echo chambers have shifted to form around the Clean Power

Plan (Model 3). It is worth noting that, in addition to the significance of these echo chambers

in 2016, we find a negative effect for additional “chambers” (or transitive triads) without the

echo, indicating the strength of these echo chambers (see Fig 3). Compared to business groups,

NGOs and the one international organization–the Intergovernmental Panel on Climate

Change (IPCC)—are significantly more often cited as a source of expert scientific information

in 2016. Given its status as the international body responsible for assessing the science related

to climate change, it is not particularly surprising that the IPCC is slightly more likely to be

cited as a source than the actors in every other category.

To interpret the significance of the echo chambers around the CPP, we can think about the

likelihood of an actor citing another actor as a source when a) this tie would add one echo

chamber to the network and b) when this tie would add a transitive triad but not an echo

chamber. If both of these organizations are businesses (the reference category), and in addition

this tie adds one out-2 star (a term for preferential attachment or popularity) to the network,

then in case (a) the log-odds of this tie being formed is just the sum of the three relevant coeffi-

cients (the significant terms for out 2-star, transitive triads, and transitive triads around the

CPP) which is 0.102. Converting this number from log-odds yields a probability of 52.5% of

this tie occurring. If, however, the tie only added a transitive triad but not an echo chamber,

then we leave out the coefficient for CPP transitive triads from the sum. The resulting proba-

bility is 43% (from a log-odds of -0.275). Consequently, we observed an increase of 9.5 percent-

age points. These findings provide clear evidence that strong support for the Clean Power Plan

was driving where policy actors went for climate information: more policy actors strongly
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agreed with the policy and they transmitted information directly and indirectly among them-

selves, thus amplifying their policy perspective. The combination of finding significance for

the full ‘echo chamber’ term, rather than the separate terms for homophily (the ‘echo’) and

transitive triads (the ‘chamber’), shows that these two separate mechanisms are significantly

combined in our empirical data.

Model convergence and goodness-of-fit is essential for the interpretability of the model.

The model adequacy check examines how well the simulation mixes over the sample space and

whether these simulated networks produce normal distributions centered at the empirical val-

ues for each statistic in the model. Goodness-of-fit measures were run for each model which

simulated 10,000 networks from the model to compare to the empirical values. Quantiles for

these simulated values are presented for each term in each model in Fig 7. Models are deemed

interpretable when the p-values are close to 1 indicating that the simulated models capture the
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statistics of interest. The smallest p-value from the goodness-of-fit diagnostics was 0.74 indi-

cating good model fit.

Discussion

As was noted by Jasny and colleagues [21], high levels of transitivity can have a deleterious

impact on networks of information transmission. In other words, “the repeated nature of the

Fig 7. Model adequacy checks for ERG models.

https://doi.org/10.1371/journal.pone.0203463.g007
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ties may give members the impression that an issue is decided when there continues to be

debate” [21]. Within contentious climate politics, echo chambers may also amplify divergence

from the consensus. A modicum of dissenting voices can appear to represent a substantial

number of dissenters when amplified through an echo chamber. Likewise, the echo chamber

may also amplify convergence. It is important to note that echo chambers themselves are

value-free and apolitical; their impacts on policy discussion and debate are an effect of the

political context and the ideological positions of the actors within them. In the context of fed-

eral US climate politics, the results presented in this paper provide evidence that echo cham-

bers shift to focus on specific policy instruments, in this case the Clean Power Plan. It is also

worth highlighting that, in contrast to the results from 2010 that found echo chambers ampli-

fying divergence from consensus, in 2016 echo chambers amplified convergence among mem-

bers of the climate policy network. Although these results show that there was a very low level

of divergence across the policy network at this point, it did not lead to a successful policy out-

come for the Clean Power Plan. In other words, these results provide a clear reminder that we

should not over-interpret the political significance of these structures; while the Clean Power

Plan was prominent in the agenda of the Obama Administration, despite the agreement and

the echo chambers observed in our results from this research, the Plan is no longer politically

viable under the Trump Administration.

This paper is a first step in analyzing information diffusion in policy networks over time.

Although it does not provide time-series analysis, it compares static network data collected

during two points in time with limited overlaps. Expansions on this work will engage with

temporal data to explore the nascence and formation of echo chambers (asking, for example,

which comes first: the echo or the chamber?) drawing on current research regarding influence

versus selection mechanisms in homophily [54]. However, the findings in this paper, which

compare the 2010 and 2016 cross-sectional data, provide important conclusions about the

development and maintenance of networks of expert scientific information used by political

elites. We see a sustained focus on echo chambers and that these structures decrease around

views no longer at the center of the policy process (the content of an international agreement

as measured in Binding Commitment) and form around those that are more policy salient

(the Clean Power Plan). In both years, there was significance for these structures above and

beyond the tendency for either the echo (homophilous ties) or the chamber (transitive triads)

to form independently. The interaction of these two components of echo chambers is a key

component of information diffusion in policy networks. Understanding these processes will

help us, in turn, make sense of the increasingly politically polarized world.
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