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Abstract: Photodynamic therapy (PDT) is a light activated drug therapy that can be used to treat a 

number of dermatological cancers and precancers. Improvement of efficacy is required to widen its 

application. Clinical protoporphyrin IX (PpIX) fluorescence data were obtained using a pre-

validated, non-invasive imaging system during routine methyl aminolevulinate (MAL)-PDT 

treatment of 172 patients with licensed dermatological indications (37.2% actinic keratosis, 27.3% 

superficial basal cell carcinoma and 35.5% Bowen’s disease). Linear and logistic regressions were 

employed to model any relationships between variables that may have affected PpIX accumulation 

and/or PpIX photobleaching during irradiation and thus clinical outcome at three months. Patient 

age was found to be associated with lower PpIX accumulation/photobleaching, however only a 

reduction in PpIX photobleaching appeared to consistently adversely affect treatment efficacy. 

Clinical clearance was reduced in lesions located on the limbs, hands and feet with lower PpIX 

accumulation and subsequent photobleaching adversely affecting the outcome achieved. If air 

cooling pain relief was employed during light irradiation, PpIX photobleaching was lower and this 

resulted in an approximate three-fold reduction in the likelihood of achieving clinical clearance. 

PpIX photobleaching during the first treatment was concluded to be an excellent predictor of clinical 

outcome across all lesion types. 

Keywords: aminolevulinic acid (ALA; Ameluz); dermatology; fluorescence; imaging; methyl 

aminolevulinate (MAL; Metvix); non-melanoma skin cancer (NMSC); photobleaching; 

photodynamic therapy (PDT); protoporphyrin IX (PpIX) 

 

1. Introduction 

Photodynamic therapy (PDT) is a light activated drug therapy that can be used topically to treat 

a number of non-melanoma skin cancers (NMSC) and precancers [1]. NMSC management commonly 

includes surgical excision, 5-fluorouracil or cryotherapy [2]. These therapies are not always 

associated with excellent cosmesis and their appropriateness can be limited, depending on the 

location, size and number of lesions to be treated [2–4]. PDT uses light to activate a pre-administered 

drug in the presence of molecular oxygen to kill diseased cells without harming surrounding 

connective tissue, so that healing tends to occur without scarring [1]. It also has several advantages, 

including the ability to treat a whole area of field change, good lower leg healing, repeated treatment 

without patient resistance and excellent cosmesis in highly visible sites without advanced surgical 

techniques [3–5]. PDT can also be utilized as a treatment adjuvant [5]. Dermatological PDT has been 

found to be safe (with few side effects beyond treatment effects) and efficacious for the treatment of 

actinic keratosis (AK), superficial basal cell carcinoma (sBCC) and Bowen’s disease (BD) [3–6]. 
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Protoporphyrin IX (PpIX) is the photosensitizer most commonly used in dermatological PDT 

[3]. A topical cream containing a small, soluble precursor to PpIX (e.g., 5-aminolevulinic acid (ALA) 

or its methyl ester, methyl-aminolevulinate (MAL)) is utilized because PpIX is relatively large and 

water-insoluble [1]. PpIX precursors are absorbed and enzymatically converted into PpIX over three 

hours by the haem biosynthesis pathway naturally present in all nucleated cells [7]. Neoplastic cells 

accumulate more PpIX more rapidly than normal cells because their haem biosynthesis is 

elevated/less well controlled, and this creates a relatively selective treatment window in which 635 

nm irradiation can be applied to activate PpIX [1]. The disrupted tumor surface is also more 

permeable than healthy skin to the topically applied prodrug, facilitating PpIX precursor penetration 

[1]. 

PpIX also exhibits characteristic red fluorescence (at 635 nm and 700 nm) when excited by blue 

light (410 nm) and therefore cells accumulating PpIX can be identified through fluorescence 

monitoring [8,9]. Photodynamic detection (PDD) of this fluorescence can aid the identification of pre-

clinical lesions in an area of field change or the margin of a poorly demarcated lesion and thus ensure 

that all the skin disease is properly eliminated during excision [10,11]. However, PpIX fluorescence 

can also now be exploited to follow the changes in PpIX concentration within the skin during PDT. 

Our ability to do this has been limited in the past by the poor reproducibility of results and numerous 

factors influencing fluorescence detection [12,13] and so historically, invasive techniques (such as 

chemical extraction) have been commonly utilized to determine the presence and concentration of 

tissue PpIX [14,15]. We therefore developed and validated [16], a non-invasive imaging system based 

on a commercially available piece of PDD equipment (Dyaderm, Biocam, Regensburg, Germany) [17] 

in order to monitor PpIX fluorescence changes in real-time during routine dermatological MAL-PDT 

of licensed skin lesions [18]. We found that both PpIX accumulation and photobleaching are 

important indicators of dermatological MAL-PDT treatment success and anything that adversely 

affected them had the potential to reduce treatment efficacy.  

2. Results 

2.1. Demographics 

Initial analyses checked whether there were any demographic differences between the 

participants with complete PpIX fluorescence data +/− outcome data. Table 1 indicates that no 

significant differences were detected for any of the demographic variables considered. Clinical 

outcome data was available for the majority (n = 172; 83.1%) of participants with complete 

fluorescence data sets, with complete clinical responses being observed in 75.6% (n = 130) of these 

participants at three months. Partial responses were recorded in 23.8% (n = 41) of cases and no 

response in one single case only (0.6%; n = 1). Mean participant age was 73.1 years, with a roughly 

equally gender distribution (47.1% male). Lesion type distribution was also approximately equal, 

with 37.2% AK, 27.3% sBCC and 35.5% BD. The majority of lesions were located on the head (39.5%), 

body (22.7%) and legs (24.4%), with the remainder either being acral (8.7%) or on the arms (4.7%). A 

considerable number of participants (n = 77; 44.8%) also utilized some form of pain relief, with the 

majority (93.5%) using an air cooling device (ACD). 

Table 1. Demographic comparison of the participants with complete PpIX fluorescence data sets 

either with or without clinical outcome data available. 

Demographic All Patients Included 
Patients with Clinical 

Outcome Data 
* P Comparison 

N 207 172 NA 

Mean age (SD) 72.7 (10.2) 73.1 (10.4) 0.2 

Male sex, N (%) 99 (47.8) 81 (47.1) 0.6 

Lesion type:    

AK (%) 82 (39.6) 64 (37.2) 0.1 

sBCC (%) 58 (28.0) 47 (27.3)  

BD (%) 67 (32.4) 61 (35.5)  

Lesion location:   0.9 
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Acral (%) 17 (8.2) 15 (8.7)  

Arms (%) 11 (5.3) 8 (4.7)  

Body (%) 47 (22.7) 39 (22.7)  

Head (%) 81 (39.1) 68 (39.5)  

Legs (%) 51 (24.6) 42 (24.4)  

Mean PpIX accumulation in 

arbitrary units (SD) 
69.3 (32.1) 69.9 (31.7) 0.6 

Mean PpIX photobleaching 

in arbitrary units (SD) 
62.1 (32.2) 61.5 (30.2) 0.6 

Pain relief used, N (%) 90 (43.5) 77 (44.8) 0.4 

* P comparison calculated using age and sex adjusted logistic regression. SD: standard deviation, AK: 

actinic keratosis, sBCC: superficial basal cell carcinoma, BD: Bowen’s disease. 

2.2. Different Lesion Types 

Three PpIX fluorescence images were taken of every skin lesion, one before MAL application, 

one after MAL application and one immediately following the irradiation period. Representative 

images from a single lesion are presented in Figure 1a–c respectively. When mean PpIX accumulation 

and photobleaching was considered from all of these images combined at each of these time points, 

the former was found to be higher than the latter in all three lesion types investigated, with the 

strongest evidence (p < 0.001) in BD lesions (Figure 1d). This confirmed the trends observed in our 

previous work [19] and suggested that accumulation is a prerequisite for photobleaching with higher 

PpIX levels prior to irradiation, resulting in greater photobleaching during irradiation. PpIX 

accumulation and photobleaching were clearly correlated in all three lesion types (R2 for each 

individual lesion type: AK 0.47, sBCC 0.45 and BD 0.43; overall R2 = 0.45; Figure 1e).  

 

(a) 



Cancers 2019, 11, 72 4 of 14 

 

 

(b) 

 

(c) 



Cancers 2019, 11, 72 5 of 14 

 

 

(d) 

(e) 

Figure 1. Representative (false color coded) PpIX fluorescence images of an individual superficial 

basal cell carcinoma (sBCC) (upper back, 70 year old female) (a) before methyl aminolevulinate (MAL) 

application, (b) three hours later prior to irradiation and (c) immediately following irradiation. Actinic 

keratosis (AK), sBCC and Bowen’s disease (BD) lesions (d) accumulate more PpIX than is 

photobleached during MAL-induced PDT irradiation (mean PpIX fluorescence is presented in 

arbitrary units (a.u.) with bars indicating the standard deviation) and (e) PpIX accumulation and 

photobleaching (a.u.) is correlated in each licensed lesion type during MAL-PDT, with red dots 

representing AK, black dots representing sBCC and blue dots representing BD. The lines of best fit 
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are also presented and the R2 values for each lesion are: AK 0.47, sBCC 0.45 and BD 0.43; overall R2 = 

0.45). 

Treatment outcome at three months was found to be strongly associated with PpIX 

photobleaching during the first PDT treatment. When all licensed lesions were considered together, 

participants in the highest 50% of PpIX photobleaching were found to be 40 times more likely to 

achieve a complete clearance than those in the bottom 50% (Odds Ratio (OR): 40.3 (95% Confidence 

Intervals (95%CI): 9.2, 176.3; p < 0.001). A 20% higher PpIX photobleaching was associated with nearly 

four-fold higher odds of complete clinical clearance (OR: 3.9 95%CI: 2.5, 6.0; p < 0.001). This was 

consistent across all lesion types (AK OR: 3.8 (1.8, 8.3; p < 0.01); sBCC OR: 5.0 (1.7, 15.4; p < 0.01); BD 

OR: 3.9 (1.9, 8.0; p < 0.001)) and indicated that lower PpIX photobleaching appeared to negatively 

affect efficacy independently of lesion type. When PpIX accumulation was considered, it was 

observed to be associated with treatment outcome to a lesser extent than PpIX photobleaching when 

all lesion types were combined. Individuals accumulating the highest 50% of PpIX were at 4.0 higher 

odds of complete clinical clearance (95%CI: 1.8, 8.7; p < 0.01) than those in the lowest 50%. A 20% 

higher accumulation was associated 1.7 higher odds of complete clinical clearance (95%CI: 1.3, 2.2; p 

< 0.001). Receiver Operating Characteristic (ROC) curve analyses highlighted the potential of PpIX 

photobleaching as a predictor of clinical outcome, with an area under the curve of 0.9, in comparison 

to 0.7 for PpIX accumulation (pdifference < 0.001; Figure 2a). This was similar for all lesion types with 

area under the ROC of 0.9, 0.9 and 0.9 for PpIX photobleaching compared to 0.7, 0.6 and 0.8 for PpIX 

accumulation in AK, sBCC and BD respectively.  

Half of study participants (n = 86) received two PDT treatments (27 AK, 26 sBCC and 33 BD). As 

previously observed [19], both PpIX accumulation and photobleaching were consistently 

significantly reduced on the second PDT treatment in all three lesion types (mean PpIX accumulation 

and photobleaching for all lesion types combined on the first treatment here =70.0 a.u. and 63.0 a.u. 

versus 46.2 a.u. and 46.5 a.u. on the second treatment, p < 0.001 and p < 0.001 respectively). Neither 

the PpIX accumulation nor photobleaching observed during the second PDT treatment was 

associated with clinical outcome. However, when PpIX photobleaching across both treatments were 

combined, a 20% higher overall PpIX photobleaching was associated with 1.7 higher odds of 

complete clinical clearance (95%CI: 1.1, 2.5; p < 0.05). PpIX photobleaching during the first treatment 

was a better predictor of clinical outcome than that during the second treatment in the individuals 

undergoing two treatments (area under ROC 0.8 and 0.6 respectively; pdifference < 0.01; Figure 2b). 

 

Figure 2. (a) Receiver operating characteristic (ROC) curve shows that PpIX photobleaching predicts 

clinical outcome at 3 months more successfully than PpIX accumulation. Area under curve (AUC) is 

0.88 for PpIX photobleaching and 0.69 for PpIX accumulation and (b) ROC curve for first and second 

treatment PpIX photobleaching in the patients undergoing two treatments 9 days apart. AUC 

indicates first treatment PpIX photobleaching is a better predictor of clinical outcome (0.81 versus 

0.55). 
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2.3. Age and Gender 

Participant age was found to be inversely associated with both PpIX accumulation and 

subsequent photobleaching when all these data were analyzed as a whole (Figure 3). A one-year 

increase in age was associated with both a 0.5 unit lower PpIX accumulation (95%CI: 0.1, 0.9; p < 0.05) 

and a 0.5 unit lower PpIX photobleaching (95%CI: 0.1, 1.0; p < 0.05). However, at the individual lesion 

type level these associations were not observed in AK or BD lesions, only in sBCC where for every 

one-year increase in age a 1.1 unit decrease in PpIX accumulation alone (95%CI: 0.2, 2.0; p < 0.05) was 

observed. Participant age was not found to be associated with the clinical outcome at three months 

(OR: 1.0 (95%CI: 1.0, 1.0); p = 0.54).  

Participant gender was found to neither alter PpIX accumulation (p = 0.53) nor photobleaching 

(p = 0.29) when all the lesion types were combined or effect the subsequent treatment outcome (p = 

0.78). 

 

Figure 3. Scatter plots of age at treatment versus (a) PpIX accumulation (a.u.) and (b) PpIX 

photobleaching (a.u.) and box plots of (c) PpIX accumulation and (d) PpIX photobleaching 

distribution for different age categories. 

2.4. Lesion Location 

Only 17 lesions (8.2%; 8 AK, 1 sBCC and 8 BD) in the whole data set were classified as acral 

(fingers and toes). Individuals with acral lesions were generally found to be of a similar age and sex 

distribution to those with non-acral lesions. PpIX accumulation was observed to be lower in acral 

lesions and PpIX photobleaching was approaching significance (p = 0.034 and 0.056 respectively) 

within this small data subset (Figure 4) supporting our previous observations in this respect [20].  

As acral lesion numbers were limited, lesions located on the arms and legs were combined with 

these data and reclassified as “peripheral” for subsequent analyses. This again indicated a reduction 

in treatment efficacy at three months (OR: 0.5 (0.2, 0.9; p < 0.05), with lesions located on the head and 

main body being more than twice as likely to achieve complete clearance than peripheral lesions 

located on the limbs. 
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(a) 

 

(b) 

Figure 4. (a) Mean PpIX accumulation (a.u.) and mean PpIX photobleaching (a.u.) recorded during 

MAL-PDT conducted in different licensed indications (AK, sBCC and BD) on different anatomical 

locations and (b) comparison of mean PpIX accumulation and mean PpIX photobleaching in acral 

versus non-acral lesions (AK, sBCC and BD) undergoing MAL-PDT. Bars on both panels represent 

the standard deviations of the data. 

2.5. ACD Pain Relief 
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Seventy-seven participants (44.8%) utilized some form of pain relief, with the majority (93.5%) 

using ACD. Analysis indicated that there was no association between PpIX accumulation and the use 

of ACD (p = 0.52), however PpIX photobleaching was lower (p < 0.05). This difference did not persist 

when analyzed on a lesion specific basis. The use of pain relief resulted in less photobleaching of the 

accumulated PpIX (Figure 5) and this was also noted in sBCC alone.  

The use of ACD was also associated with lower odds of achieving a complete clinical clearance 

at three months (OR: 0.4 (0.2, 0.7; p < 0.01), the equivalent to an approximate three-fold reduction. 

Adjustments for age and sex did not alter the likelihood of achieving clinical clearance but when this 

relationship between ACD usage and clinical outcome was considered by lesion type, BD was 

particularly affected and AK unaffected (AK OR: 0.8 (0.2, 2.9) p = 0.76); sBCC OR: 0.3 (0.1, 1.3) p = 0.11; 

BD OR: 0.2 (0.1, 0.6) p = 0.004). Participants who utilized ACD pain relief during both PDT treatments 

were noted to be even less likely to achieve a complete clearance (OR: 0.2 (0.0, 0.8)). 

 

Figure 5. The effect of using air cooling pain relief on the correlation between mean PpIX 

accumulation (a.u.) and mean PpIX photobleaching (a.u.) during MAL-PDT of AK, sBCC and BD. 

Black dots represent the pain relief users, with the solid black line representing the line of best fit for 

pain relief users and the white dots represent no pain relief, with the dashed line representing the line 

of best fit for no pain relief. The regression coefficients from these models differ (p < 0.05). 

3. Discussion 

The real-time PpIX fluorescence monitoring presented here and previously [19], clearly indicates 

that sufficient PpIX accumulation occurs during routine dermatological MAL-PDT of AK, sBCC and 

BD, when utilizing the well documented licensed MAL-PDT protocol derived for this purpose [3,18]. 

PpIX photobleaching during the first PDT treatment was observed to be strongly associated (p < 

0.001) with clinical outcome at three months, further supporting our initial findings [21]. With further 

study, monitoring this variable may enable treatment success to be determined at the end of the first 

irradiation period and thus how many repeat treatments an individual patient/lesion may need to 

receive (for patient benefit and cost efficiency). Alternatively, this mechanistic insight may help us 

derive new PpIX-PDT protocols for other dermatological applications. It can be postulated that the 

results between the first and second PDT treatments may have been found to be significantly 
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different, at least in part, because the amount of disease being treated in the second treatment was 

much reduced due to the effectiveness of the initial PDT treatment.  

As PpIX accumulation has been observed to be a prerequisite for PpIX photobleaching and the 

latter is now observed to be correlated with PpIX-PDT efficacy, anything that reduces either of these 

two variables has the potential to reduce treatment effectiveness. This was observed to some extent 

with the decline in PpIX accumulation and thus photobleaching with increasing patient age, 

fortunately this reduction was not substantial enough to adversely affect treatment outcome. 

However, the reduced PpIX accumulation in acral lesions indicated that a modified protocol may 

need development for this subset of difficult to treat lesions. A recent randomized controlled trial of 

acral AK by Nissen et al. [22], found that conducting MAL-PDT in association with curettage 

improved treatment outcomes as did increasing the drug-light interval to 21 h, however they 

concluded that there was an optimal amount and localization of PpIX required for best effect with 

minimal side effects. Interestingly here, even lesions on the limbs were less than half as likely to 

completely respond to MAL-PDT when compared with lesions located on the head and main body 

and brings new insight to our previous work [20]. Furthermore, skin is known to be very different at 

different points of the human body, varying greatly in thickness (e.g., thin on the face versus thick 

on the palms) and in specialization (number of blood vessels, hair follicles, sebaceous glands etc.). 

Any one of these parameters might influence PDT, particularly in terms of prodrug cream 

penetration, and thus may also effect treatment efficacy. Although not investigated here, poor 

technique when conducting MAL-PDT (e.g., poor lesion preparation) could also adversely affect 

clinical outcomes. It may also be possible in the future to improve outcomes in patients who 

accumulate high PpIX levels prior to irradiation but then experience relatively low photobleaching 

during irradiation, by extending the light delivery period to increase the light dose applied if 

substantial PpIX levels remain at the end of the standard light delivery period. 

The biggest threat to MAL-PDT treatment success detected, was the use of air cooling. A 

significant reduction (p < 0.05) in PpIX photobleaching was observed in the combined licensed lesions 

and the odds of achieving a complete clinical response dropped to only 0.4. This latest evidence 

corroborates and extends the findings of our initial analyses in this respect [23], which noted that the 

ACD system employed in our Dermatology clinic (SmartCool, Cynosure UK Ltd., Cookham, UK) 

produced air at −35 °C locally directed via a hand-held nozzle. The application of this system to an 

area of normal skin in a healthy volunteer [23] resulted in significant cooling of the area from 30.3 +/− 

0.3 °C to 4.1 +/− 0.4 °C over the course of eight minutes with a corresponding 16% decrease in oxygen 

saturation indicating that vasoconstriction occurred [23]. The high usage of ACD in this non-

interventional observational study (93.5% of 44.8% pain relief users), may have also contributed to 

the relatively low complete clinical response rates observed (75.6%). Much higher treatment efficacy 

has been reliably documented for dermatological MAL-PDT [3,17] and as a result our practice has 

been altered. An alternative approach would be to reduce the fluence rate of the light delivery, 

delivering the total light dose over an extended period of time to reduce pain levels and thus the need 

for air cooling in a bid to improve efficacy as well as patient tolerability.  

Monitoring PpIX fluorescence during real-time PDT in a reliable, quantitative manner is not 

trivial and to make highly accurate PpIX measurements, corrections for variations in tissue optical 

properties need to be made [24,25]. This has been achieved within skin cancer models [26] and human 

tissues [27,28]. Such corrections were not undertaken here as our purpose was to seek potential 

predictors of clinical outcome at the time of treatment in a relative manner within a considerably 

sized, pre-existing data set. Furthermore, wide variations in inter-lesional PpIX levels mean that 

measures of pre-treatment PpIX are less useful for determining clinical outcome at the time of light 

delivery than measuring diffuse PpIX changes during the first irradiation period. As considerable 

variations in PpIX levels can occur within an individual lesion [16], utilizing a standardized operating 

procedure to record PpIX fluorescence [16] is essential. Smaller lesions (<50 mm) have also been 

found to be more likely to exhibit homogeneous PpIX distribution than larger lesions [19]. PpIX 

fluorescence measurements have been reported here in arbitrary units, however we have previously 

calculated that mean estimates of PpIX levels of ~0.80 μM pre MAL application, ~10.00 μM post MAL 
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application and ~0.75 μM post irradiation occurred in an individual skin lesion monitored with this 

fluorescence imaging system, with a good degree of accuracy being observed in the 0–10 μM range 

[16]. It has also been speculated that differences between the PpIX levels observed on the head/neck 

and lower leg [29] may be due to the temperature differences that exist at different body sites, as PpIX 

accumulation has been observed to occur faster at higher temperatures [30]. PpIX photobleaching has 

also previously been monitored clinically during sBCC ALA-PDT at a variety of different fluence 

rates [31]. In vivo studies have also indicated a positive correlation between PpIX photobleaching 

and cellular damage [32,33]. PpIX photobleaching particularly during the first minute of irradiation, 

is also strongly correlated to oxygen consumption during dermatological MAL-PDT [34]. No 

intervention that photobleaches the photosensitizer is suggested, simply observation of PpIX 

photobleaching as a surrogate for the photodynamic reaction in progress (as the production of singlet 

oxygen by MAL-PDT interacts with PpIX to produce a non PDT active photoproduct). 

4. Materials and Methods  

4.1. Dermatological MAL-PDT 

Patients attending Royal Cornwall Hospital for routine MAL-PDT for licensed indications (AK, 

BD and sBCC) were recruited following giving consent and with ethical approval from the Cornwall 

and Plymouth Research Ethics Committee. All subjects gave their informed consent for inclusion 

before they participated in the study. The study was conducted in accordance with the Declaration 

of Helsinki, and the protocol was approved by the Cornwall and Plymouth Research Ethics 

Committee (23/Q210/122). Patients were treated in accordance to National Institute of Health and 

Care Excellence guidelines [18] as part of a standard nurse-led dermatological PDT clinic. Patient age, 

gender, lesion type and exact lesion location were recorded. Participants had Fitzpatrick skin type I, 

II or III. 

Any lesion crust was gently removed via curettage. MAL (Metvix®, 160 mg/g MAL, Galderma, 

Watford, UK) was then applied (~1 mm thick with 5 mm normal border) and an occlusive dressing 

applied. Three hours later, any excess MAL was wiped away and the lesion irradiated (Aktilite, 

Galderma, Watford, UK, 635+/−5 nm, 37 Jcm−2, 70–100 mWcm−2) taking care to use the center part of 

the light array to irradiate the entire lesion plus a margin of normal surrounding skin utilizing the 

Aktilite spacer bar provided. Any use of pain relief was noted. After treatment, the lesion was covered 

with an occlusive dressing for 24 h. All lesions included in this study excepting the most superficial 

AK lesions [3] received two identical MAL-PDT treatments nine days apart in accordance with the 

routine PDT clinic schedule. This clinical decision was made by the Consultant Dermatologist who 

made the patient’s management plan indicating treatment with PDT in accordance with the NICE 

Guidelines [18]. 

A Consultant Dermatologist (blinded observer unaware of imaging results) clinically assessed 

all treatment areas at three months. Lesions were considered to have achieved complete clinical 

clearance if no visual evidence of the tumor remained.  

4.2. Fluorescence Imaging 

A commercially available, validated [16], non-invasive fluorescence imaging system (Dyaderm, 

Biocam, Regensburg, Germany) [17] was employed to image each lesion prior to MAL application, 

immediately before irradiation and immediately after irradiation. This permitted PpIX accumulation 

and subsequent photobleaching during irradiation to be monitored.  

The fluorescence imaging system simultaneously collected and processed in real-time a normal 

colored image (from white light) and a PpIX fluorescence image (from blue light; 370–440 nm) using 

a filtered Xenon flash light source, a charged couple device camera and custom-made software 

(Dyaderm Pro v2, Biocam, Regensburg, Germany). Natural green spectrum autofluorescence was 

also imaged and subtracted from the image produced to ensure that the sole changes recorded 

resulted from PpIX. A synthetic PpIX fluorescence standard (Biocam, Regensburg, Germany) was 

also imaged on each clinic day to ensure system continuity and reproducibility.  
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This process followed the standard protocol derived previously to enable reproducible images 

to be acquired and thus PpIX levels to be semi-quantified in a reliable manner with a piece of 

equipment originally designed for PDD [16]. This included a standardized warm up phase, consistent 

imaging distance/perpendicular angle, consistent light conditions (door shut/lights on), central 

orientation of the lesion and maximal camera activation of sixty seconds. 

4.3. Data Analysis 

Bitmap image exports were analyzed in NIH ImageJ software (http://rsb.info.nih.gov/ij/) using 

the same point within the lesion to record the mean greyscale values at each time point. Following 

data integrity checks, where the data held in Microsoft Excel was cross referenced with the original 

data in its entirety by one researcher and additional spot checks undertaken at 10% intervals by a 

second researcher, the entire data set was imported into STATA 14.1 for analysis in this non-

interventional, observational study.  

This data set originally contained 270 entries for licensed lesions that had undergone 

fluorescence imaging during standard MAL-PDT. Any lesion that did not have complete three time 

point fluorescence data sets recorded for both MAL-PDT treatment cycles was removed. STATA’s 

drop duplicate command then selected at random, without bias, one data set from each participant 

where treatments/fluorescence imaging had been conducted on more than one lesion. This left 207 

complete entries. Finally, any lesion where the clinical response at three months was not known was 

removed, producing 172 data sets for analysis.  

Lesion location was classified as head, body, arms, legs and acral. A further peripheral category 

was created, where acral sites were merged with lesions on the arms and legs.  

PpIX accumulation was calculated by subtracting pre-treatment fluorescence (before MAL 

application) from pre-irradiation fluorescence. PpIX photobleaching was calculated by subtracting 

post-irradiation fluorescence from pre-irradiation fluorescence. Comparisons between the three time 

points were initially made using paired t-tests and repeated measures ANOVA.  

Linear regression analyses were then utilized to analyze the difference in PpIX 

accumulation/photobleaching for a range of predictors including lesion type, lesion location, pain 

relief, age and gender. Logistic regression analysis was used to explore the odds of complete clinical 

clearance for a range of predictors including lesion location, lesion type, age, sex, use of ACD and 

PpIX accumulation/photobleaching. To investigate the potential of PpIX 

accumulation/photobleaching to predict clinical outcome ROC curve analyses were performed using 

the STATA roccomp command. All models were adjusted for age and sex. 

5. Conclusions 

Non-invasive PpIX fluorescence monitoring is therefore concluded to be a useful technique for 

increasing understanding of the mechanism of action of dermatological MAL-PDT. Both PpIX 

accumulation and photobleaching are important indicators of treatment success and anything that 

adversely affects them has the potential to reduce efficacy, particularly as PpIX photobleaching 

during the first irradiation period has been found to be an excellent predictor of clinical outcome.  
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