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Abstract

This paper studies the modelling of a vibro-impact self-propelled capsule system in the small intestinal

tract. Our studies focus on understanding the dynamic characteristics of the capsule and its performance

in terms of the average speed and energy efficiency under various system and control parameters, such as

capsule’s radius and length, and the frequency and magnitude of sinusoidal excitation. We find that the

resistance from the small intestine will be larger once capsule’s size or instantaneous velocity increases.

From our extensive numerical calculations, optimum system and control parameters are obtained for

prototype design and fabrication. It is suggested that increasing forcing magnitude or choosing forcing

frequency greater than the natural frequency of its inner mass can benefit the average speed of the

capsule, and the radius of the capsule should be slightly larger than the radius of the small intestine in

order to generate a reasonable resistance for capsule progression. Finally, the locomotion of the capsule

along an inclined intestinal tract is tested, and the best radius and forcing magnitude of the capsule are

also determined.

Keywords: Vibro-impact, non-smooth dynamical system, self-propulsion, capsule endoscope, capsule

robot.

1. Introduction

Since its introduction into clinical practice 15 years ago, capsule endoscopy (CE) has become estab-

lished as the primary modality for examining the surface lining of the small intestine, an anatomical

site previously considered to be inaccessible to clinicians. However, all the available CEs have passive

locomotion systems, and their reliance on peristalsis for passage through the intestine leads to significant

limitations, in particular due to their unpredictable and variable locomotion velocities. For example,

intermittent high transit speeds lead to incomplete visualisation of the intestinal surface, resulting in

the potential for significant abnormalities to be missed. To improve the proportion of the lining that is

visualised, patients must fast for 8-12 hours before the procedure and for at least 4 hours after ingestion

of the capsule. In most cases, they are also required to drink 1-2 Litres of polyethylene glycol solution

12 hours before the examination, in order to clear residual intestinal contents. Furthermore, the time

taken for the capsule to pass varies from 14 to 70 hours, with a transit time of 2-5 hours through the
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oesophagus and stomach, 2-6 hours for the small intestine, and 10-59 hours for the large intestine [1].

Reviewing the images obtained during such lengthy transit periods means that the procedure of passive

CE is considered both time-consuming and burdensome for clinicians. Considering all these drawbacks,

an active locomotive mechanism for CE can dramatically reduce the procedure time and allow the endo-

scopist to focus the examination on areas of interest. In this study, we propose the model of an on-board

vibro-impact self-propelled capsule system for examining the small intestine. The aim of this study is to

understand the dynamics and efficient control of the system in the small intestinal environment, so that

the results presented in this paper can be utilized for prototype design and fabrication.

To design a locomotive mechanism for such a small capsule is a challenging task due to its limited

on-board space. Smart materials [2] and small-scale DC motors have been used to address this issue.

For example, a CE with three active flexible legs controlled by means of an on-board microcontroller

was constructed by using shape memory alloy [3]. The micro-actuation concept of the shape memory

alloy was also used for the development of a 6-legged endoscopic capsule [4]. Legged CEs using on-board

DC motors have been designed for 4 legs [5] and 12 legs [6, 7]. A small DC motor has been included

in a small capsule to simultaneously control 8 polymer-treads located on the outer surface [8]. In [9],

a legged capsule controlled by an on-board DC motor and a slot-follower mechanism with a lead screw

was developed. Lin and Yan [10] proposed an inch-like locomotion mechanism by using DC motor-driven

legs and extension/retraction of the CE body. De Falco et al. [11] reported their work of a swimming

wireless capsule that utilised four propellers independently activated by DC motors. In addition to such

on-board locomotive mechanisms, external magnetic fields have also been adopted for capsule propulsion,

see e.g. [12–14]. Manipulation of the external magnet can alter the locomotive direction and orientation

of the capsule. Such on-board and external driving mechanisms make it feasible to either move a capsule

in a limited region or anchor it at a fixed location. However, the fabrication, manipulation, system

reliability, and cost of such complex devices are the main barriers of development. Our work addresses

these issues by employing the so-called vibro-impact self-propulsion approach [15–17]. Its advantages over

the locomotion solutions described above include the fact that, all the components can be located inside

the capsule and no external accessories are required. This could potentially allow for simpler sterilisation

of the capsule so that make it reusable. In addition, the cost of the components needed to produce this

locomotion solution is small. Together, these attributes may significantly reduce the overall cost of CE,

making it an attractive proposition to healthcare providers in both developed and developing countries.

The principle of vibro-impact self-propulsion is that bidirectional rectilinear motion of the capsule

can be obtained by utilizing internal vibration and impact force in the presence of external resistance. A

prototype of the capsule robot propelled by internal interactive force and external friction was designed

by Li et al. [18], and its velocity-dependent frictional resistance inside the intestine was experimentally

investigated [19]. Carta et al. [20] developed a vibrational propelled capsule composed of a motor with

an eccentric mass, which can produce a reduction in the friction with the environment. The motion of

a complex micro-robot exhibiting impact and friction was studied numerically and experimentally using

non-smooth multibody dynamics by Nagy et al. [21]. They found that the stiction and sliding of the

robot were governed by the frequency of excitation and the friction, while impact around the resonant

frequency of the oscillator does not contribute to the propulsion of the robot. Numerical simulations

and experimental investigations of a vibration-driven capsule system under four different friction models

was studied by Wang et al. [22]. This group have also considered the planar locomotion of a vibration-
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driven capsule with two internal masses [23]. In the current paper, we will discuss our vibro-impact

capsule, which employs additional internal impact to enhance progression [16], and analyse its dynamic

characteristics in a pig small intestine. Numerical studies [24, 25] suggest that forward and backward

progression of the capsule can be controlled under either fast progression or energy saving modes in

different frictional environments. Preliminary experimental studies [26, 27] have demonstrated that the

vibro-impact self-propulsion technique could be a potential alternative modality for active CE, and in

particular, the provision of both forward and backward progression can improve both the quality and

the sensitivity of clinical examinations. It is, therefore, useful to understand how the vibro-impact self-

propelled capsule can be adapted to the intestinal environment in terms of selection of system and control

parameters, such as mass ratio, stiffness ratio, and frequency and amplitude of excitation for prototyping

and testing.

The remainder of this paper is organized as follows. In Section 2, the resistances exerted on the

capsule by the intestinal tract are firstly studied and then employed in mathematical modelling of the

vibro-impact capsule system. In Section 3, bifurcation analysis is performed to study the influences

of various parameters on capsule dynamics and performance in terms of average velocity and energy

efficiency. Finally, some concluding remarks are drawn in Section 4.

2. Mathematical Modelling

In this work, we consider the two-degrees-of-freedom dynamical capsule system as shown in Fig. 1(a),

where a movable internal mass m1 is driven by a harmonic excitation with forcing magnitude Pd and

frequency Ω. The internal mass interacts with a rigid capsule m2 via a linear spring with stiffness k and

a viscous damper with damping coefficient c. The capsule has a cylindrical body with a hemispherical

head and tail. Impact between the internal mass and a weightless plate connected to the capsule through

a secondary spring with stiffness k1 may occur, once their relative displacement x1−x2 is larger or equal

to the gap g1, where x1 and x2 are the absolute displacements of the internal mass and the capsule,

respectively.

2.1. Resistances

As the diameter of the capsule is larger than the inner diameter of the small intestine, the capsule

stretches the intestinal tract to yield hoop stress. This hoop stress causes normal and frictional forces on

the capsule yielding environmental resistance which prevents the progression of the capsule. In addition,

the gravity of the capsule which exerts normal pressure on the intestinal tract also adds additional value

to the resistance. It is therefore that the overall resistance on the capsule can be written as

Fr = Fhoop + Fgravity, (1)

where Fhoop and Fgravity represent the resistances introduced by hoop stress and capsule gravity, respec-

tively. As depicted in Fig. 1(b), the resistance due to hoop stress can be written as

Fhoop = − sign(v2)(FHp + FTp + FHf + FBf + FTf ), (2)
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where v2 is capsule speed, FHp and FTp are the normal pressures of the intestine on capsule head and

tail, and FHf , FBf and FTf are the frictional forces exerted on the head, the body, and the tail, along the

axial direction of the capsule, respectively. As the cross section of the small intestine is expanded by the

capsule yielding tensile stress, hoop stress will depend on the geometric deformation of the intestinal wall.

The geometric parameters of the capsule are shown in Fig. 1(b), where L is the length of the capsule, Rc

is the radius of the head, the body, and the tail, Ri is the original inner radius of the intestinal tract,

ϕc is the angle of the point from where the intestinal tract starts to surround the capsule, and xc is the

distance from the contact point to the centre of the head (or the tail).

Figure 1: (a) (colour online) Physical model of the vibro-impact capsule in small intestine. (b) Resistances and geometric
parameters of the capsule. The capsule is depicted in cyan with black shell, and the intestinal tract is displayed in light red.

Figure 2: (a) (colour online) Hoop stress on the head and the body of the capsule. (b) Cross section of the intestinal tract.
The intestinal tract without stretch is depicted in grey, and the tract with stretch is shown in light red.

As shown in Fig. 2(a), a local frame {x, o, R(x)} is employed to calculate hoop stress in terms of

variation of the inner intestinal radius, where x ∈ [0, 2xc+L], xc = Rc cosϕc, and cosϕc =
√

R2
c −R2

i /Rc.

When the capsule moves in a constant speed, according to this local frame, the intestine is stretched to

yield the hoop strain given by

ϵ(x) =
Ri −R(x)

Ri
, (3)

and therefore, the hoop stress which can be expressed using the five-element model [19, 28] as

τ(x) = ϵ(x)
(
E1e

− E1x
η1v2 + E2e

− E2x
η2v2 + E3

)
, (4)

where E1, E2 and E3 represent the elastic property of the intestine, and η1 and η2 are viscosity coefficients.

It is therefore that, as can be seen from Fig. 2(b), the pressure between the capsule and the intestine due
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to hoop stress can be written as

q(x) =
τ(x)tm
R(x)

, (5)

where tm is the mean thickness of the intestine. Consider that for every infinitesimal increment of x as

shown in Fig. 2(a), the corresponding normal pressure can be written as

dp(x) = q(x)dA(x) = q(x)2πR(x)
√
1 +R′(x)2dx, (6)

where R′(x) is the derivative of R(x) with respect to x [29]. Thus, the pressure on capsule head along

the x-axis can be expressed as

FHp =

∫ xc

0

cosϕ(x)dp(x), (7)

where cosϕ(x) = (xc − x)/Rc for x ∈ [0, xc], and the friction force generated by normal pressure can be

obtained using

FHf =

∫ xc

0

µ sinϕ(x)dp(x), (8)

where µ is the Coulomb friction coefficient. Similarly, the resistance on capsule tail can be obtained using

FTp =

∫ 2xc+L

xc+L

cosϕ(x)dp(x), (9)

and

FTf =

∫ 2xc+L

xc+L

µ sinϕ(x)dp(x), (10)

where x ∈ [xc + L, 2xc + L] and cosϕ(x) = (xc + L − x)/Rc < 0, which indicates a negative resistance

due to the direction of the pressure on the tail. In addition, the frictional force on capsule body due to

hoop stress can be written as

FBf =

∫ xc+L

xc

µdp(x). (11)

Now, applying Eqs. (3-6) to (2), the resistance due to hoop stress can be written as

Fhoop =− sign(v2)(

∫ xc

0

cosϕ(x)dp(x) +

∫ 2xc+L

xc+L

cosϕ(x)dp(x) +

∫ xc

0

µ sinϕ(x)dp(x)

+

∫ xc+L

xc

µdp(x) +

∫ 2xc+L

xc+L

µ sinϕ(x)dp(x))

=− sign(v2)

(
2πtmE1

(
1

Ri
(
η1|v2|
E1

)2 + (µ− xc

Ri
)(
η1|v2|
E1

)−Ri

+ e
− E1

η1|v2|xc
(
− 1

Ri
(
η1|v2|
E1

)2 − µ
Rc

Ri
(
η1|v2|
E1

) +Rc + (
E1

η1|v2|
− µ

Ri
)

∫ 0

−xc

e
− E1ξ

η1|v2|
√

R2
c − ξ2dξ

)
+ e

− E1
η1|v2| (xc+L)( 1

Ri
(
η1|v2|
E1

)2 + µ
Rc

Ri
(
η1|v2|
E1

)−Rc + (
E1

η1|v2|
− µ

Ri
)

∫ xc

0

e
− E1ξ

η1|v2|
√

R2
c − ξ2dξ

)
+ e

− E1
η1|v2| (2xc+L)(− 1

Ri
(
η1|v2|
E1

)2 − (µ+
xc

Ri
)(
η1|v2|
E1

) +Ri

))
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+ 2πtmE2

(
1

Ri
(
η2|v2|
E2

)2 + (µ− xc

Ri
)(
η2|v2|
E2

)−Ri

+ e
− E2

η2|v2|xc
(
− 1

Ri
(
η2|v2|
E2

)2 − µ
Rc

Ri
(
η2|v2|
E2

) +Rc + (
E2

η2|v2|
− µ

Ri
)

∫ 0

−xc

e
− E2ξ

η2|v2|
√

R2
c − ξ2dξ

)
+ e

− E2
η2|v2| (xc+L)( 1

Ri
(
η2|v2|
E2

)2 + µ
Rc

Ri
(
η2|v2|
E2

)−Rc + (
E2

η2|v2|
− µ

Ri
)

∫ xc

0

e
− E2ξ

η2|v2|
√

R2
c − ξ2dξ

)
+ e

− E2
η2|v2| (2xc+L)(− 1

Ri
(
η2|v2|
E2

)2 − (µ+
xc

Ri
)(
η2|v2|
E2

) +Ri

))
+ 2πtmE3µ

(
xc −

R2
c

Ri
tan−1(

xc

Ri
)− L

Rc −Ri

Ri

))
.

(12)

The frictional resistance caused by the gravity of the capsule can be given as

Fgravity = − sign(v2) (m1 +m2) gµ cos γ, (13)

where g and γ are the acceleration due to gravity and the inclination of the intestine, respectively.

Table 1: Physical parameters of the pig small intestine (adopted from [28])

Parameter Value Unit

Ri 3.9 [mm]
tm 3 [mm]
E1 7 [kPa]
E2 6.3 [kPa]
E3 9.2 [kPa]
η1 125.9 [kPa·s]
η2 10.3 [kPa·s]
µ 0.08 [-]

Physical parameters of the pig small intestinal tract used in the following simulations are listed in

Table 1. Based on these parameters, calculations of the resistances due to hoop stress and the gravity of

the capsule with respect to capsule velocity are presented in Fig. 3, where Fhoop in Fig. 3(a) is a typical

Stribeck friction and Fgravity in Fig. 3(b) is a classical Coulomb friction. Fig. 3(c) and (d) illustrate

variations of the resistance caused by the hoop stress Fhoop in terms of capsule’s radius Rc and length

L, respectively. From these two figures, one can observe that both the threshold and the maximal value

of the resistance will increase if either Rc or L increases, and the resistance Fhoop is more sensitive to

capsule’s radius Rc.

2.2. Equations of motion

As depicted in Fig. 1, a periodic external force, Pd cos(Ωt), is applied on the inner mass m1 to drive the

capsule m2. The inner mass interacts with the capsule via a damped spring at the tail and a secondary

spring at the head of the capsule. Due to the gap between the mass and the secondary spring, g1, the

interaction between m1 and m2 keeps switching between two phases: no contact (x1 − g1 − x2 < 0) and

contact (x2 − g1 − x1 ≥ 0). Therefore, the mutual interactive force between the inner mass and the

capsule can be calculated as

Fi =

−c(ẋ1 − ẋ2)− k(x1 − x2), for x1 − g1 − x2 < 0

−c(ẋ1 − ẋ2)− k(x1 −X2)− k1(x1 − g1 − x2), for x2 − g1 − x1 ≥ 0
(14)
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Figure 3: Resistances introduced by (a) the hoop stress Fhoop and (b) capsule’s gravity Fgravity as a function of the capsule

velocity v2 calculated for Rc = 4 [mm], L = 10 [mm], g = 9.81 [m/s2] and m1 + m2 = 0.04 [kg]. Variations of the hoop
resistance Fhoop under varying (c) radius Rc and (d) length L.

or

Fi = −c(ẋ1 − ẋ2)− k(x1 − x2)−H1k1(x1 − g1 − x2), (15)

where H1 is the Heaviside function given by

H1 =H(x1 − g1 − x2). (16)

Here, a detailed consideration of these switching phases can be found from [16, 24]. Finally, the compre-

hensive equations of motion for the vibro-impact capsule system are written as

ẋ1 = v1,

v̇1 = 1
m1

[Pd cos(Ωt) + Fi]− g sin γ,

ẋ2 = v2,

v̇2 = − 1
m2

[Fi − Fhoop − Fgravity]− g sin γ.

(17)

3. Bifurcation analysis

As described by Eq. (17), a periodic driving force is implemented to overcome the environmental

resistance for capsule progression. Intuitive speaking , a larger driving force and a small resistance are

preferred for fast capsule progression. As can be seen from Fig. 3, resistance becomes larger once the
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radius or the length of the capsule increases. Therefore, our bifurcation analysis in this paper will focus

on the driving force and the dimension of the capsule system. For bifurcation diagrams, we have adopted

the velocity v∗1-v
∗
2 , which is a projection of the Poincaré map on the v1-v2 axis, as a function of the

magnitude/frequency of the driving force. Calculations were performed for 300 cycles of the driving

force, and the data for the first 280 cycles were omitted to ensure steady state responses, whereas the

next 20 values of the relative velocity, v∗1-v
∗
2 , were plotted in bifurcation diagrams.

In order to study capsule’s performance in the small intestine, the average speed of the progression

given by

vavg =
x2(NT )− x2(0)

Nt
(18)

and the energy efficiency expressed as

xE =
x2(NT )− x2(0)∫ NT

0
Pd cos(Ωt)dt

(19)

were calculated, whereN and T = 2π
Ω are the number of cycles and the period of driving force, respectively.

For simplicity, the abbreviation P-m-n is used to denote the period-m motion with n impacts per period

of the driving force.

3.1. Influence of intestinal resistances

Our first numerical study has focused on the dynamics of the capsule under various magnitudes of

the driving force, Pd, as shown in Fig. 4. As can be seen from Fig. 4(a), most of the capsule responses

are P-1-1, except the P-2-2 motion for Pd ∈ [2.7, 6.7] [mN]. In Fig. 4(b), our calculations show that, the

average progression speed of the capsule increases with the increase of magnitude of the driving force until

Pd ≥ 14.4 [mN] from where the capsule gradually slows down its forward motion. When Pd ≤ 0.4 [mN],

the driving force is too small such that the capsule cannot overcome its intestinal resistances. Thereafter,

as shown in Fig. 4(c), the energy efficiency, xE , experiences a rapid growth until Pd = 2.7 [mN] when

a period doubling of the capsule is encountered. It is obvious that the P-2-2 motion weakens capsule’s

performance in terms of energy consumption. As the magnitude of the driving force increases further, a

reverse period doubling is observed at Pd = 6.6 [mN] followed by a P-1-1 response of the capsule with

decreased energy efficiency.

When the radius of the capsule increases slightly from Rc = 3.91 [mm] to 4 [mm], the bifurcation

pattern presented in Fig. 5(a) becomes more complex. After the first period doubling recorded at Pd = 6.6

[mN], a grazing bifurcation occurs to yield the coexistence of P-2-2 and P-2-3 motions for Pd ∈ [6.8, 9].

The P-2-2 motion disappears next, leaving only the P-2-3 motion which then bifurcates into a P-4-6

motion through the second period doubling at Pd = 8.5 [mN] as shown in Figs. 5(g) and (n). As the

magnitude of the driving force Pd increases, the motion of the capsule becomes chaotic as shown in

Figs. 5(h) and (o). Thereafter, two successive bifurcations of reverse period doubling are observed at

Pd = 12.4 and 14.6 [mN], which yield a P-4-6 and P-2-3 motions as demonstrated in Figs. 5(i) and (j),

respectively. Comparing the average velocity shown in Figs 5(b), as the threshold of the resistances

elevated by the increase of capsule’s radius, Rc, the starting point of capsule progression is postponed

from Pd = 0.5 [mN] to 1.2 [mN], which means that a larger driving force is required to overcome external

resistances. With respect to the increase of Pd, the average capsule velocity, vavg, keeps growing, with

8



Figure 4: (Colour online) (a) Bifurcation diagram, (b) average velocity, and (c) energy efficiency constructed for varying the
magnitude of the driving force, Pd calculated for Rc = 3.91 [mm], L = 10 [mm], m1 = 0.001 [kg], m2 = 0.003 [kg], k = 1
[N/m], k1 = 9 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm], Ω = 31 [rad/s], and γ = 0 [rad]. Panels (d-f) show the trajectories of
the capsule system on the phase plane (x1-x2, v1-v2), and panels (g-i) present the time histories of the inner mass (black
lines) and the capsule (red lines) for Pd = 2.6 [mN], 5 [mN], and 8 [mN], respectively. The locations of the impact surface
are shown by vertical black lines, and Poincaré sections are marked by blue dots.

a sudden jump induced by the grazing bifurcation at Pd = 7 [mN]. It is remarkably shown in Fig. 5(b)

that a larger resistance (i.e. a larger radius of the capsule) does not always result in a slower capsule

progression. When Pd keeps increasing beyond 14.2 [mN], the average velocity of the capsule for Rc = 4

[mm] is faster than the one for Rc = 3.91 [mm]. However, as shown in Fig. 5(c), the capsule with

smaller radius presents much higher energy efficiency suggesting us to use the capsule with small radius

for prototype design from the point of view of energy saving.
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Figure 5: (Colour online) (a) Bifurcation diagram, (b) average velocity, and (c) energy efficiency constructed for varying
the magnitude of the driving force, Pd calculated for Rc = 4 [mm], L = 10 [mm], m1 = 0.001 [kg], m2 = 0.003 [kg], k = 1
[N/m], k1 = 9 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm], Ω = 31 [rad/s], and γ = 0 [rad]. Coexisting attractors are marked by
circles. Panels (d-j) show the trajectories of the capsule system on the phase plane (x1-x2, v1-v2), and panels (k-q) present
the time histories of the inner mass (black lines) and the capsule (red lines) for Pd = 5 [mN], 6.9 [mN], 8 [mN], 9 [mN],
10 [mN], 13 [mN] and 15 [mN], respectively. The locations of the impact surface are shown by vertical black lines, and
Poincaré sections are marked by red dots.
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Figure 6: (Colour online) Bifurcation diagrams for (a) Rc = 4.2 [mm] and (b) 4.4 [mm], (c) average velocity, and (d) energy
efficiency constructed for varying the magnitude of the driving force, Pd, where the rest of the parameters were chosen as
L = 10 [mm], m1 = 0.001 [kg], m2 = 0.003 [kg], k = 1 [N/m], k1 = 9 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm], Ω = 31 [rad/s],
γ = 0 [rad]. Coexisting attractors are marked by circles. (e-g) Evolution of basins of attraction for the blue netted area of
Fig. 6(b).

As the radius of the capsule, Rc, increases further, as shown in Fig. 6, the responses of the capsule

become simpler compared to the responses obtained for Rc = 4 [mm]. As can be seen from Figs. 6(a)

and (b), both cases are dominated by period-two motion and the time of impact per period of excitation

switches from three to two via grazing bifurcation. To illustrate the coexistence of two different attractors

observed in Fig. 6, the region for Pd ∈ [6.8, 9] in Fig. 6(b) was marked by netted blue to indicate the

coexisting P-2-3 and P-2-2 motions. Their corresponding basins of attraction at Pd = 7 [mN], 8 [mN] and

9 [mN] are presented in Figs. 6(e), (f) and (g), respectively, where the initial displacement and velocity

of the capsule were fixed as zero, with only the initial conditions of x1 and v1 varying. As can be seen

from the basins, there are two white regions for the initial conditions leading to P-2-3 motion with all

the other purple region resulting in P-2-2 motion. As the forcing magnitude increases, the basin of P-2-3

shrinks slightly.

It also can be observed from Fig. 6(c) that, the contribution of P-1-1 to capsule progression for both

Rc = 4.2 [mm] and 4.4 [mm] is nearly invisible as their resulting driving forces are insufficient to make

considerable progression for the entire capsule system. In general, the enlargement of Rc increases the

resistances in the intestinal tract and the energy dissipation of the capsule, so that degrades its energy

efficiency. However, Fig. 6(c) shows that the capsule with larger radius might result in a faster average
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velocity when the driving force is sufficiently large. In addition, xE for Rc = 4.4 [mm] in Fig. 6(d) is

negative for Pd ∈ [4.9, 5.7] [mN], which demonstrates a slow backward motion of the capsule.

As can be seen from Fig. 2, the capsule length, L, has a significant influence on the resistance in the

intestinal tract. Intuitively, the longer of the capsule, the larger resistance in the tract, so that the slower

of capsule progression. Fig. 7 presents the average speeds and the energy efficiencies of the capsule for

various lengths of the capsule, and different periodic responses of the capsule are marked in the figure. As

can be seen from Fig. 7(a), period doubling is critical for capsule progression, since the period-one motions

produced by small driving force cannot overcome the resistances in the tract, but visible progression can

be observed after the period doubling bifurcation from P-1-1 to P-2-2. As Pd increases, the P-2-2 motion

on each curve successively bifurcates to P-2-3 via grazing bifurcation, except for the red curve for L = 11

[mm]. In addition, the green and purple curves for long capsules (L = 14 [mm] and 17 [mm]), undergo

another grazing bifurcation when the driving force is sufficiently large, which switches P-2-3 into P-2-2

again. Comparing both vavg and xE , our calculations prove that a shorter capsule has faster average

speed and better efficiency for energy consumption.

To sum up, it can conclude that increasing the driving force will benefit the average velocity of the

capsule but can decrease its corresponding energy efficiency. It has also shown that increasing capsule’s

size will enlarge the resistances on the capsule introducing more period-two responses for the system.

The occurrence of period-two motion always slows down capsule progression and decreases its energy

efficiency. However, this does not mean that capsule’s size need to be as small as possible, because larger

resistances can produce faster progression when the driving force is sufficiently large.

3.2. Influence of the magnitude and frequency of the driving force

Fig. 8 shows bifurcation diagram and average velocity of the capsule as functions of the driving

frequency, Ω. In order to use resonance to enhance capsule progression, the branching parameter, Ω, was

0
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Figure 7: (Colour online) (a) Average velocity and (b) energy efficiency as functions of Pd calculated for Rc = 4.3,
m1 = 0.001 [kg], m2 = 0.003 [kg], k = 1 [N/m], k1 = 9 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm], Ω = 31 [rad/s], and γ = 0
[rad].
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Figure 8: (Colour online) (a) Bifurcation diagram and (b) average velocity constructed for varying the frequency of the
driving force, Ω, calculated for Rc = 4 [mm], L = 10 [mm], m1 = 0.001 [kg], m2 = 0.003 [kg], k = 1 [N/m], k1 = 9 [N/m],
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varied around the natural frequency of the inner mass, i.e.

ωn =

√
k

m1
= 31.62 [rad/s].
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When driving frequency is relatively low (Ω < 30 [rad/s]), it can be seen from Fig. 8(a) that the capsule

undergoes a series of successive grazing bifurcations as Ω increases. Panels (c-f) demonstrate these

bifurcations showing the variation of capsule dynamics from P-1-4 to P-1-1. These successive grazing

bifurcations induce a number of “jumps” on the average speed of the capsule as presented in Fig. 8(b),

which remarkably shows that vavg reaches its local maximum after each “jump”. As Ω increases (Ω > 30

[rad/s]), a period doubling which leads to a P-2-3 motion and a sudden drop on vavg can be observed at

Ω = 30.4 [rad/s]. Thereafter, two coexisting P-2-3 and P-2-2 motions were recorded for Ω = 32.2 [rad/s].

The P-2-2 motion bifurcates again into a P-1-1 motion at Ω = 33 [rad/s] through a reverse period

doubling, and the average speed of capsule progression, vavg keeps increasing as the forcing frequency

increases.
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Figure 9: (Colour online) Bifurcation diagrams for (a) Pd = 12 [mN], (b) Pd = 16 [mN], (c) average velocity, and (d) energy
efficiency as functions of the driving frequency, Ω, calculated for Rc = 4, L = 10 [mm], m1 = 0.001 [kg], m2 = 0.003 [kg],
k = 1 [N/m], k1 = 9 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm] and γ = 0 [rad]. Coexisting attractors are denoted by circles.

As shown in Fig. 9, once the driving force is gradually increased, the dynamics of the capsule becomes

more complex, with several regions having multistable dynamics. When Pd is 12 [mN], the bifurcation

pattern of the system is almost the same as the one for Pd = 8 [mN], except the cascade period doubling

on the period-2 branch, which induces a small parametric window of chaos. Further increasing Pd to 16

[mN] makes bifurcation pattern more complex as stronger excitation incurs larger-amplitude vibration

involving two nonlinearities, impact and friction. As a result, Fig. 9(b) displays more period doubling
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bifurcations for relatively low Ω (Ω < 30 [rad/s]). When Ω is relatively high (Ω > 30 [rad/s]), the

parametric regime for P-1-1 can be shrunk as the driving force increases.

It can be seen from Fig. 9(c) that, when Pd = 16 [mN], the average progression of the capsule is

remarkably reduced once period-2 motion occurs. Comparing the average velocities for different magni-

tudes of the driving force when Ω > 40 [rad/s], it shows that high frequency and large magnitude of the

driving force cannot improve capsule progression, and this in turn, degrades the energy efficiency of the

capsule as shown in Fig. 9(d). According to Fig. 9(c) and (d), it can be concluded that the best regime

for the frequency of the driving force is the P-1-2 motion around Ω = 20 [rad/s], where a compromise

between average speed and energy efficiency can be made.

3.3. Influence of the natural frequency of the inner mass

If the stiffness of the primary spring or the weight of the inner mass varies, the natural frequency

of the inner mass, ωn, will be changed. Then, the driving frequency, Ω, should be adjusted accordingly

to match such variations. In this subsection, we will study the influence of the natural frequency of the

inner mass on capsule dynamics by varying the stiffness of the primary spring and the weight of the inner

mass. Firstly, bifurcation diagrams for k = 0.5 [N/m], 0.7 [N/m] and 0.9 [N/m] under variation of the

driving frequency, Ω, are shown in Fig. 10(a), (b) and (c), respectively. As can be seen from these figures,

the range for the driving frequency was chosen in the vicinity of its corresponding natural frequency,

Ω ∈ [ωn − 10, ωn + 10]. In general, these bifurcations are very similar, and the only difference is that the

larger the stiffness of the primary spring, the less the number of the period doubling. In addition, for the

same type of capsule dynamics, say P-1-2 motions in Fig. 10(a), (b) and (c), the capsule with smaller k

has larger average velocity. Regardless of the stiffness of the primary spring, the fastest progression was

achieved just after the occurrence of the grazing bifurcation when the capsule bifurcates from P-1-3 to

P-1-2 motion. Fig. 10(d) shows that the efficiencies of the capsule for different stiffness are very close, so

changing the stiffness of the primary spring does not affect the efficiency of the system.

Apart from the stiffness of the primary spring, the weight of the inner mass, m1, also affects the

natural frequency of the inner mass. When m1 is increased from 0.001 [kg] to 0.003 [kg], as shown in

Fig. 11, the number of period doubling bifurcations reduces. Since period-two motion retards capsule

velocity, it can be observed from Fig. 11(d) that the capsule has a faster average velocity when its inner

mass is heavier. However, the efficiency of the capsule is not affected by m1 as their local maxima are

very close as shown in Fig. 11(e) .

In summary, both grazing bifurcation for Ω < ωn and period doubling for Ω near ωn were observed.

When Ω is much larger than ωn, the capsule has P-1-1 motion, and increasing Ω will degrade the energy

efficiency of the system. When the magnitude of the driving force is increased, the average speed of the

capsule is sensitive to the frequency of the driving force, and its energy efficiency will decrease. If the

stiffness of the primary spring is reduced or the weight of the inner mass is increased, i.e. decreasing the

natural frequency of the inner mass, the average speed of the capsule can be enhanced while maintaining

the energy efficiency unchanged.

3.4. Influence of the stiffness of the secondary spring

The stiffness of the secondary spring is another control parameter affecting the performance of the

capsule. As shown in Fig. 12, hardening the secondary spring enlarges the parametric region of period-

two motion degrading the average speed of the capsule. For k1 = 4 [N/m], there is only a small region
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Figure 10: (Colour online) Bifurcation diagrams for (a) k = 0.5 [N/m], (b) k = 0.7 [N/m], (c) k = 0.9 [N/m], (d) average
velocity, and (e) energy efficiency as functions of the driving frequency, Ω− ωn, calculated for Rc = 4 [mm], L = 10 [mm],
m1 = 0.002 [kg], m2 = 0.003 [kg], k1 = 9 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm], γ = 0 [rad], and Pd = 12 [mN].

for P-2-2 motion. When k1 was increased to 8 [N/m], the region was expanded and a grazing bifurcation

for the switching from P-2-3 to P-2-2 was recorded. When k1 = 12 [N/m], an additional period doubling

from P-2-2 to P-4-6 was observed. Comparing the average velocity of the capsule, as can be seen from

Fig. 12(d), the capsule with a stiffer secondary spring has faster average speed when the driving frequency

is low (i.e. before the grazing bifurcation from P-1-2 to P-1-1), but slower average speed for high driving

frequency (i.e. after the grazing bifurcation). Similar trend can be observed from the energy efficiency

presented in Fig. 12(e). It can be seen that, after the grazing bifurcation from P-1-2 to P-1-1, the energy

efficiencies of the capsules with different secondary springs are similar, but the period doubling bifurcation

degrades the performance of the capsule. After the reverse period doubling, i.e. when the dynamics of

the capsule bifurcates into P-1-1 motion, the capsule with a stiffer secondary spring has better energy

efficiency.

16



Figure 11: (Colour online) Bifurcation diagrams for (a) m1 = 0.001 [kg], (b) m2 = 0.002 [kg], (c) m3 = 0.003 [kg], (d)
average velocity, and (e) energy efficiency as functions of the driving frequency, Ω−ωn, calculated for Rc = 4 [mm], L = 10
[mm], m2 = 0.003 [kg], k = 1 [N/m], k1 = 9 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm], γ = 0 [rad] and Pd = 12 [mN].

3.5. Influence of the contact gap

The influence of the contact gap between the inner mass and the secondary spring is considered in

this subsection. Firstly, a negative gap, g1 = −3 [mm], representing a prestressed secondary spring, is

studied and its bifurcation diagram as a function of the forcing frequency, Ω, is presented in Fig. 13.

The bifurcation diagram shown in Fig. 13(a) has similar bifurcation pattern as the previous ones (i.e. a

grazing bifurcation followed by a period doubling), but around Ω = 25 [rad/s], which is slightly higher

than the natural frequency of the inner mass, the capsule has chaotic and period-3 motions.

When the driving frequency is low, Ω < 12.96 [rad/s], the capsule experiences P-1-4 motion as

demonstrated in Fig. 13(d) and (m), and bifurcates into P-1-3 via a grazing bifurcation. The capsule

bifurcates from P-1-3 to P-1-2 via the second grazing bifurcation recorded at Ω = 16.66 [rad/s] with the

coexistence of P-1-3 and P-1-2 motions recorded for Ω ∈ [16.26, 16.66] [rad/s], and then from P-1-2 to

P-2-4 through a period doubling at Ω = 16.86 [rad/s]. For Ω = 18.26 [rad/s], a reverse period doubling

occurs and the capsule experiences P-1-2 again until Ω = 23.86 [rad/s], where a cascade of period doubling
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Figure 12: (Colour online) Bifurcation diagrams for (a) k1 = 4 [N/m], (b) k1 = 8 [N/m], (c) k1 = 12 [N/m], (d) average
velocity, and (e) energy efficiency as functions of the driving frequency, Ω, calculated for Rc = 4 [mm], L = 10 [mm],
m1 = 0.002 [kg], m2 = 0.003 [kg], k = 1 [N/m], c = 0.001 [Ns/m], g1 = 1 [mm], γ = 0 [rad] and Pd = 12 [mN].

bifurcations leads the capsule to chaotic motion for Ω ∈ [24.26, 25.96] [rad/s] including a small window

of P-3-5 motion for Ω ∈ [24.46, 25.06] [rad/s]. As the frequency increases, a cascade of reverse period

doubling bifurcations was recorded, and the capsule eventually settles down at P-1-1 motion.

The maximum average speed of the capsule can be obtained at where the grazing bifurcation from

P-1-3 to P-1-2 occurs as shown in Fig. 13(b). As the frequency increases, the average speed of the

capsule decreases. When the frequency was increased to Ω = ωn = 22.36 [rad/s], capsule speed was

enhanced again by resonance. As can be observed from Fig. 13(c), the P-1-1 motion after the reverse

period doubling has the best efficiency in energy consumption. However, the energy efficiency of the

P-1-2 motion (for the maximum average speed) is not far from the best efficiency obtained by the P-1-1

motion, so the P-1-2 motion is a better choice in terms of both performance indices.

Bifurcation diagrams for different gaps under variation of the forcing frequency are shown in Fig. 14.

As the gap increases, bifurcations of the capsule becomes simpler. For example, as can be seen from

Fig. 14(a), the regions for chaotic motion and coexisting P-1-3 and P-1-2 motions were significantly
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Figure 13: (Colour online) (a) Bifurcation diagram, (b) average velocity, and (c) energy efficiency as functions of the forcing
frequency, Ω, calculated for Rc = 4 [mm], L = 10 [mm], m1 = 0.002 [kg], m2 = 0.003 [kg], k = 1 [N/m], k1 = 9 [N/m],
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27.46 [rad/s] and 29.06 [rad/s], respectively.
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shrunk compared to the one for g1 = −3 [mm]. When the gap becomes positive as shown in Fig. 14(b) and

(c), chaotic motions are completely removed and only period-two motions exist. Comparing the average

velocity of the capsule shown in Fig. 14(d), it can be seen that local maxima of the average velocities

for different gaps can be obtained after each grazing bifurcation, and the capsule with g1 = 3 [mm]

has the maximal average velocity after its grazing bifurcation from P-1-2 to P-1-1. Energy efficiencies

presented in Fig. 14(e) demonstrate that, the capsules with different gaps have similar efficiencies for

energy consumption after their grazing bifurcations from P-1-2 to P-1-1.

3.6. Progression in an inclined intestine

Our previous studies have focused on the capsule progression along a horizontal small intestinal tract.

In the real environment, as the gastrointestinal tract is folded inside human body, it may require the

capsule to progress along an inclined intestine, i.e. γ > 0. Influence of the inclined slope on capsule

progression is studied here by calculating the average velocity of the capsule as a function of the forcing
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magnitude as presented in Fig. 15. It can be seen that the capsule has zero average velocity for all the

inclined slopes when driving force is small. As the magnitude of the driving force increases, forward

progression of the capsule can be observed, where the capsule moves faster for smaller angle of the slope.

It is worth noting that a larger driving force does not always lead to a faster progression, especially when

the angle of the slope is large, e.g. γ = 0.25 [rad] and 0.35 [rad], which yields backward progression

(negative average velocity of the capsule) as the driving force increases.
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To progress forward along an inclined intestine, the capsule needs to overcome its own gravity, and

the only external resource it can utilize is the environmental resistance. According to Fig. 3(c), the

capsule with a larger radius is required to generate larger resistance so that the capsule can progress

forward along a steeper slope. This study is shown in Fig. 16, where the average velocity of the capsule

was calculated as a function of the forcing magnitude under variations of capsule’s radius. As can be

seen from Fig. 16(a), when the forcing magnitude increases, the average speed of the capsule starts to

successively increase from zero to a positive value. However, the capsule with Rc = 4.1 [mm] firstly slows

down its forward progression, and begins to move backward when Pd = 28.4 [mN]. When Rc is 4.2 [mm],

the capsule moves slower than that for Rc = 4.1 [mm] when Pd < 13.9 [mN], but has a better progression

when Pd ≥ 13.9 [mN]. Similar phenomenon can be observed when Rc is increased to 4.3 [mm], which

yields a faster progression than that for Rc = 4.2 [mm] once Pd ≥ 29.2 [mN]. Based on our calculations,

the capsule with Rc = 4.2 [mm] and the forcing magnitude, Pd ∈ [13.9, 29.2) [mN], is the reasonable

dimension and operational regime for capsule design and control.

21



4. Conclusions and future work

In this paper, we studied the modelling of a vibro-impact self-propelled capsule system moving in the

small intestine. Our studies focused on exploring the dynamics of the system and its performance in terms

of the average velocity and energy efficiency under various system and control parameters, such as the

forcing frequency and magnitude of excitation, the natural frequency of the inner mass, the contact gap

between the inner mass and the secondary spring, and the capsule’s radius and length. We also considered

capsule’s progression along an inclined intestine and its optimum design and control parameters.

Under the assumption that the intestinal tract fully contacts with capsule surface, the intestinal

resistance exerted on the capsule can be modelled using hoop strain and stress. It was found that the

resistance and its threshold become larger with increases in both the capsule’s size and instantaneous

velocity. We also found that strengthening the forcing magnitude of excitation can benefit the average

velocity of the capsule, but will lead to low energy efficiency. Increasing the radius and length of the

capsule could result in resistance enhancement, which can simplify its bifurcation pattern, enlarge the

parametric regime of period-two motion, and decrease capsule’s average velocity and energy efficiency.

However, if the magnitude of the driving force is sufficiently large, the capsule having a larger resistance

can achieve a faster forward progression.

Our investigation on the natural frequency of the inner mass shows that, when the driving frequency

is relatively lower than its natural frequency, successive grazing bifurcations will occur, and this will

decrease the times of impact at each period but drastically increase the average velocity of the capsule.

When the forcing frequency is chosen to be in the vicinity of the natural frequency, period doubling

can be observed, which leads to sudden drops of average velocity and energy efficiency. As the forcing

magnitude is increased, average velocity will be decreased at low forcing frequencies while be increased
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at high forcing frequencies (i.e. the frequency greater than the natural frequency). Our calculations

also reveal that reducing the natural frequency of the inner mass can improve capsule’s average velocity.

However, this will not affect the energy efficiency of the system.

The stiffness of the secondary spring and the contact gap between the inner mass and the secondary

spring were studied under variation of forcing frequency. For a stiffer secondary spring, the capsule has

a faster average velocity under a low driving frequency, while a slower progression when the driving

frequency becomes high (i.e. the frequency greater than its natural frequency). The dynamics of the

capsule is complicated under a prestressed secondary spring, leading to a small window of chaos and

period-three motion when the forcing frequency is a branching parameter. When the gap is increased,

the parametric regime of period-one motion can be enlarged, which can simplify the dynamics of the

capsule. Our studies also indicate that the local maxima of the average velocities for different gaps can

be obtained after each grazing bifurcation, and the capsule with g1 = 3 [mm] has the maximal average

speed after its grazing bifurcation from period-one with two impacts to period-one motion with one

impact. Furthermore, varying the contact gap cannot improve the energy efficiency of the system.

Our final study focused on the locomotion of the capsule along an inclined intestinal tract. As the

magnitude of the driving force increases, the capsule can move forward on a slope with an inclined angle

up to γ = 0.35 [rad]. However, larger magnitude of the driving force will not help capsule’s forward

progression, especially for a steeper slope, e.g. γ = 0.35 [rad]. It was found that, along a steeper slope,

the capsule always has a slower velocity due to gravity and insufficient resistance. To overcome gravity,

the capsule with Rc = 4.2 [mm] and the forcing magnitude, Pd ∈ [13.9, 29.2) [mN], is a reasonable choice

for locomotion control.

In conclusion, our numerical studies based on a pig small intestine with the radius of Ri = 3.9 [mm]

suggest the following optimum design and control parameters as a design guideline, capsule’s radius

Rc = 4.2 [mm] and length L = 10 [mm], forcing frequency Ω > 30 [rad/s] and magnitude Pd > 15 [mN],

natural frequency of the inner mass ωn < 25 [rad/s], stiffness of the secondary spring k1 = 4 [N/m], and

the gap between the inner mass and the secondary stiffness g1 = 3 [mm].

Future works include prototype design and fabrication, test rig design, and experimental testing of

the capsule prototype. Design and fabrication of the capsule prototype will be based on the numerical

studies in this paper, and an artificial intestinal environment will be built for experimental testing of the

prototype. Research findings along this direction will be reported in a separate publication in due course.
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