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Abstract 

Beetles have colonized water many times during their history, some of these events 

involving extensive evolutionary radiations and multiple transitions between media. 

With over 13,000 described species, they are one of the most diverse 

macroinvertebrate groups in most non-marine aquatic habitats, on all continents 

except Antarctica.  A combination of wide geographical and ecological range, 

together with relatively accessible taxonomy make these insects an excellent model 

system for addressing a range of questions in ecology and evolution. Work on water 

beetles has recently made important contributions to fields as diverse as DNA 

taxonomy, macroecology, historical biogeography, sexual selection and conservation 

biology as well as predicting organismal responses to global change. Aquatic beetles 

have some of the best resolved phylogenies of any comparably diverse insect group, 

and this, coupled with recent advances in taxonomic and ecological knowledge are 

likely to drive an expansion of studies in the future. 

  



INTRODUCTION 

 

Beetles are an evolutionary success story par excellence, being by far the most 

speciose order of animals on earth. The Coleoptera are an old radiation, whose 

evolutionary origins may date back to the Permian or even Carboniferous (148, 161). 

Of the features that underpin the evolutionary success of beetles, the presence of 

elytra is probably the single most important trait facilitating their colonization of 

aquatic habitats as adults, a lifestyle almost unknown in other holometabolous 

insects. As well as protecting the hindwings, the elytra enclose a subelytral air store, 

fundamental to gas exchange in almost all water beetle adults (30). At least 23 

beetle families, from three of the four extant suborders, are predominantly aquatic as 

adults, larvae or both (see Figure 1). Additionally, members of a number of other 

families are aquatic, or associated with water during at least one life-history stage, 

making the precise definition of a ‘water beetle’ somewhat subjective (75, 131). What 

is clear is that water beetles are an ecological guild rather than a clade, each aquatic 

colonization representing an independent transition between media, some giving rise 

to evolutionary radiations across the entire spectrum of inland waters.  With more 

than 13,000 described species, water beetles are abundant and ecologically 

important in almost all non-marine aquatic habitats, from the smallest phytotelmata 

to larger lakes and rivers, on all continents except Antarctica. Their wide 

geographical and ecological range, together with a relatively stable and accessible 

taxonomy means that these insects are excellent models for addressing a range of 

ecological and evolutionary questions. Here we explore how water beetles have 

contributed to a range of disciplines, from macroecology to biogeography, sexual 

selection and conservation biology. 



 

EVOLUTION AND MACROECOLOGY 

 

Terrestrial-Aquatic Transitions 

 

Amongst the insects, only Diptera have crossed the aquatic-terrestrial boundary as 

many times as Coleoptera (75). There are at least eight major transitions, and the 

actual number may be more than twice that (Figure 1) (131), with four of these 

resulting in radiations greater than 1,000 species. Not all aquatic beetles share the 

same ecology or evolutionary pathway to aquatic adaptation. In most, both the adult 

and larvae are aquatic. In others, only the larvae (Scirtidae) or adult (some 

Dryopidae and Helophoridae) live in water. Additionally, a number of water beetle 

lineages have experienced one or more secondary transitions back to terrestriality, 

particularly the Hydrophilidae and Hydraenidae (44, 103, 133, 144). The impact of 

these aquatic-terrestrial transitions on the evolutionary trajectories of lineages are 

not yet fully understood. In Hydrophilidae, habitat shifts were not themselves linked 

to changes in diversification rate, although increased habitat breadth may play a role 

(24). In other cases, transitions to terrestriality seem to be the result of unusual or 

idiosyncratic conditions, such as a rapid shift from streams to tree moss on Oceanic 

Islands (135) or to forest litter (144). Hygropetric habitats, recently revealed to 

support diverse water beetle assemblages (111, 134), may be important ‘stepping-

stones’ between media. 

 

From Freshwater to Salt 

 



Water beetles, together with some Diptera and Heteroptera, are amongst the few 

insects able to tolerate hypersaline waters, with concentrations up to more than 200 

gr/l. This tolerance has developed independently –and recurrently– in several 

lineages, mostly Hydrophilidae (e.g. Berosus, Enochrus, Paracymus), Hydraenidae 

(Ochthebius), and Dytiscidae (some species of Nebrioporus, Hygrotus and 

Boreonectes). Hypersaline habitats are usually coastal, most commonly saltmarshes 

or rockpools, but they may also be found inland, with saline streams forming one of 

the most unusual aquatic environments (87). The evolution of salinity tolerance has 

been studied in detail in the Enochrus subgenus Lumetus, in which the evolutionary 

origin of salinity tolerance was associated with geological periods of increased 

aridification (10). There were also direct and relatively fast transitions between 

freshwater and hypersaline habitats, suggesting species may have evolved salinity 

tolerance before actually occupying saline habitats. Salinity tolerance may thus 

represent an exaptation from an adaptation to aridity, favored by a similar 

physiological mechanism. This hypothesis has been corroborated by further studies 

of physiological tolerance to salinity and desiccation (25, 96–100). Data on the 

evolution of salinity tolerance in other groups of Coleoptera are scanty, but the 

association between the origin of salinity tolerance and periods of aridification seems 

to be recurrent (157). Another common pattern is the evolutionary conservation of 

habitat preferences. Despite multiple origins of salinity tolerance, species typical of 

saline habitats tend to cluster together in phylogenies more than expected given their 

morphological similarities (97, 121, 157). 

 

Going Underground 

 



Given the global extent of subterranean waters (54) it is not surprising that aquatic 

beetles have colonized these systems multiple times, across five families in various 

parts of the world (62, 91, 138, 158, 159).  Prior to 2000, most publications on 

subterranean water beetles were isolated species descriptions. Since then it has 

been recognized that the subterranean dytiscid fauna of Australia is astoundingly 

rich, with around 100 species now known (37, 82).  Australia’s extensive 

subterranean environments, present for long periods of evolutionary time, may mean 

that this hypogean is uniquely diverse. However, other areas with subterranean 

faunas that share similar paleography, including parts of southern Africa and India 

remain largely uninvestigated (58). Most Australian taxa are associated with calcrete 

aquifers in Western Australia, where Miocene-Pliocene aridity (10–5 million years 

ago) has driven the colonization of groundwaters by previously epigean beetles (82; 

142). In all cases, described species are restricted to a single calcrete, these 

aquifers forming an archipelago of biologically isolated systems associated with 

paleodrainages (37, 82). Calcrete aquifers support one-three endemic dytiscids, their 

colonization representing independent experiments in evolution (79).  Coexisting 

species are always morphologically different from each other, with a relatively 

consistent average body-size ratio of 1.6 between them, despite marked differences 

in absolute beetle body sizes across calcretes – these insects providing one of the 

few empirical examples of self-organizing limiting similarity in nature (129, 156).  In 

most aquifers, species derive from different ancestral lineages (82) suggesting that 

speciation occurred in allopatry. Eleven calcretes are so far known to contain sister 

species, however, which may have diverged locally (79). Whether the speciation of 

such taxa was truly sympatric, remains unclear, as physicochemical conditions, 

including salinity, do vary across many individual calcretes (73), and population 



genetic structure has been observed in a number of taxa within aquifers (59). In at 

least one case stable isotope analysis has revealed differential prey specialization 

across a triplet of sister species (26), an observation consistent with sympatric 

divergence through resource partitioning. 

Most subterranean Australian taxa were originally described in new, entirely 

hypogean, genera on the basis of their derived morphology, although subsequent 

molecular analyses have shown that they instead nest within genera with surface-

dwelling representatives, mostly Paroster and Limbodessus (12, 81). As with the 

evolution of salinity tolerance, transitions to the subterranean environment are 

concentrated in a few lineages, for unknown reasons; in the northern hemisphere, 

most stygobiont species are dytiscids of the subtribe Siettitina (91, 92). The 

diversification dynamics of Australian Paroster suggest an early burst of speciation, 

which, together with the high degree of morphological diversity seen in the genus, is 

consistent with an adaptive radiation in groundwaters (142).  However, the overall 

speciation and extinction rates do not appear to differ between surface and 

underground lineages (142). 

The regressive evolution of features, particularly eyes, in subterranean taxa, 

has long intrigued evolutionary biologists.  There remains limited empirical evidence 

that eye regression is associated with the loss of protein-coding gene function, 

however. A comparison of Australian subterranean species with their fully eyed 

surface-dwelling relatives revealed that the eye pigment gene cinnabar behaves in a 

pseudogene-like manner in hypogean taxa (80).  Two out of three species 

investigated further showed a complete loss of opsin transcription, consistent with 

neutral, regressive evolution.  The remaining species retained transcription of a long-



wavelength opsin orthologue, despite living in an aphotic environment, which may 

indicate a novel pleiotropic role or an early stage of pseudogene development (139). 

 

Macroecology and Range Size 

 

Understanding the drivers of geographical range size forms an important research 

focus in both macroecology (52), and its more recent offshoot macrophysiology (53).  

Most multicellular organisms have relatively limited geographical ranges, and relative 

range sizes typically vary considerably within clades, the majority being restricted 

whilst a few are much more widespread (52).  Various explanations have been put 

forward to account for such observations, including differences in evolutionary age 

(52) dispersal ability (18) and fundamental niche breadth (27).  Few empirical studies 

have explored these questions within a comparative framework, however. 

Deronectes diving beetles are one of the first and best-studied model systems in this 

regard, range sizes in these Palearctic stream-dwellers varying from point endemics 

to species present throughout most of Europe.  Multiple regression models show that 

thermal range – the absolute number of degrees centigrade between a species 

mean upper and lower thermal limits – is a strong predictor of both latitudinal range 

extent and relative latitudinal position, and always more important than relative 

dispersal ability (33).  This result remained when controlling for phylogeny, 

suggesting limited influence of evolutionary age – perhaps unsurprising in a clade 

whose ranges have been shaped by Pleistocene climatic events which post-date 

their evolutionary origin (49).  Differences in thermal performance may themselves 

be linked to metabolic plasticity (35) and setal tracheal gill densities (78, 155) in the 



genus, and in both Deronectes and Ilybius diving performance has also been 

observed to differ between widespread and restricted taxa (34).   

A strong association between thermal biology and range parameters is also 

seen in the Agabus brunneus group (Dytiscidae) (31, 67), where differences in the 

expression of proteins involved in energy metabolism and molecular chaperones 

(including heat shock proteins) have been observed between widespread and more 

restricted congeners (64, 65); pointing to a possible mechanistic basis behind 

differences in whole-organism performance.  Whether physiological features of 

widespread species arose prior to (and therefore facilitated) their range expansion, 

or appeared afterwards, as a result of local adaptation, remains incompletely 

understood.  The fact that broad physiological tolerances have been observed in 

single populations (31, 33) together with the genetic and ecological uniformity of 

many widespread taxa and their relatively recent origins (49) point toward the former 

explanation, however.  In the temperate latitudes occupied by these beetles, 

widespread species are those which have been successful at expanding their 

geographical ranges in the Holocene, meaning that the location of a species ice-age 

refugium may also influence its present range size and position (50, 51). 

 

Going with the Flow? 

 

One of the most readily observable habitat preferences in aquatic Coleoptera (and 

macroinvertebrates in general) is whether they occupy running (lotic) or standing 

(lentic) waters. Species are usually found in one of these two broad types, very few in 

both. These contrasting preferences occur at all taxonomic levels, between families 

(e.g. Elmidae are almost exclusively lotic), genera, or even closely related species 



(e.g. Ochthebius notabilis (Hydraenidae) or Nebrioporus ceresyi (Dytiscidae) groups 

– see 2). Studies of Iberian aquatic Coleoptera first noted that lentic species had much 

larger geographical range sizes than their lotic relatives (116). These differences were 

related to the contrasting geological stability of the two habitat types: species in more 

geologically ephemeral lentic waters are forced to disperse when the habitat 

disappears, whilst in more long-lived lotic systems species can maintain local 

populations for longer. Consequently, lentic species were predicted to have higher 

dispersal abilities and inter-population gene flow, resulting in larger, more dynamic 

geographical ranges and slower evolutionary turnover. Lotic species, in contrast, 

would tend to have lower dispersal abilities, with higher persistence of local 

populations and reduced inter-population gene flow. Latitudinal diversity gradients of 

lentic and lotic species may also be expected to differ, as lotic species will be more 

dependent on historical factors and distance to glacial refugia, whereas lentic species 

will be closer to an equilibrium with current ecological and geographical conditions 

(109). It must be noted, however, that multiple factors influence dispersal ability in 

addition to habitat stability (18), so macroecological patterns related to habitat type will 

manifest as statistical trends, exceptions always being possible (e.g. 132). It is also 

obvious that the lotic-lentic divide is a simplification of the complexity of freshwater 

habitats, which could be further subdivided (e.g. 74). Despite these limitations, most 

of the predictions of (116) have proved accurate, mostly with data from aquatic 

Coleoptera but also other aquatic groups (e.g. 71, 84). Differences in geographical 

range between lotic and lentic species are not restricted to Western Europe (38, 70) 

and can be associated with dispersal ability rather than ecological tolerance (8). The 

Enochrus bicolor complex includes eight Palearctic species, all of which occupy saline 

habitats (11). Widespread lentic species had significantly larger wings, relative to body 



size, than restricted lotic relatives, but running and standing water taxa differed little in 

thermal physiology (8). 

The higher mobility of lentic species has apparently resulted in a faster 

recolonization of formerly glaciated areas in the Northern hemisphere, and a closer 

equilibrium with ecological conditions, whilst lotic species show a stronger 

dependence on latitude (115, 127). Differences in habitat stability are reflected in gene 

flow between populations (2, 84), although it is still not clear how these differences 

affect net diversification rates of lineages over longer evolutionary timescales (40, 41, 

109, 112).  

 

BIOGEOGRAPHY AND DIVERSIFICATION 

 

Because most water beetle lineages arose prior to the breakup of Gondwana 

(Figure 1), they have been proven useful in providing a comparative model for the 

biogeographic consequences of Mesozoic vicariance events as well as more recent 

episodes of Cenozoic colonization and diversification.  Australia-Oceania and the 

Western Palearctic have been the primary foci for recent regional-scale 

biogeography and diversification studies, with Madagascar and the Neotropics 

having been studied to a lesser degree. The Nearctic and Oriental regions have 

been largely overlooked to date. 

 

Gondwanan Fragmentation 

 

The separation of Africa and South America has been implicated in the 

diversification of several water beetle groups, including the dytiscid tribe Aciliini (28) 



and the hydrophilid tribe Hydrophilini (141). The separation of Madagascar and India 

has been linked to the distributional pattern of hydrophilid cascade beetles in those 

regions (143). Gondwanan fragmentation may have played a role in the 

diversification of the Hydrobiuisini (Hydrophilidae) (150) although the lineage likely 

originated in Laurasia. Additionally, there are a number of water beetle lineages that 

show a classical austral disjunction between southern South America, Australia/New 

Zealand, and/or South Africa including the hydrophilid Cylominae (43), and 

Copelatinae (Dytiscidae) (22). 

 

Africa and Madagascar 

 

No studies have focused on the internal biogeography of continental Africa, although 

several have examined the phylogenetic placement of newly discovered endemic 

lineages such as South African Aspidytes (Aspidytidae) (111, 140) and Capelatus 

(Dytiscidae) (22). In contrast, Madagascar has been a particular focus for 

biogeographical and diversification studies. The current fauna has been shown to be 

a mix of ancient endemics (57), Cenozoic colonizers, as well as perhaps serving as 

a source of lineages back-dispersing to mainland Africa (29), a finding which should 

be tested with wider taxon sampling. A faunistic link between Madagascar and the 

South African Cape has been highlighted in dytiscids (110) and Hydraenidae (102). 

 

The Neotropics 

 

Our knowledge of the Neotropical fauna, and particularly that of tropical South 

America, has grown substantially in the last twenty years. The region harbors 



substantial deep phylogenetic diversity and recent studies have begun to unravel its 

distribution and origins. In Platynectinae diving beetles, the Andean and 

Guiana/Brazilian Shield faunas represent separate colonizations, which have 

diversified independently (145, 149). This phylogenetic separation between lineages 

found in the Andes and eastern Shield regions is implied in a number of other 

groups, including Hydroscaphidae (134). .Additionally, the hypothesis that South 

America has served as a reservoir of diversity which has repeatedly dispersed 

northwards into Central America, North America, and the Caribbean has been 

supported in a variety of water beetles (39, 141, 28).  

 

Australia and Oceania 

 

The Cenozoic diversification of diving beetles across Australia and Oceania is one of 

the best-studied water beetle systems outside the Palearctic. Phylogenetic analyses 

of Australian Hydroporini reveal that eastern Australia was likely the ancestral source 

of the lineage when it began to diversify about 27 mya, and that the ongoing 

aridification of the continent has led to rampant extinction, as well as excursions 

underground (144, 146, 147). Recent radiations of Copelatinae (Dytiscidae) in New 

Guinea and New Caledonia are the result of repeated dispersal from Australian 

ancestors during the Miocene (14). There have been few incidents of back-dispersal 

or inter-island mixing, with the notable exception of an incredible “supertramp” 

species in the genus Rhantus (Dytiscidae), which originated in New Guinea and has 

dispersed as far as the Azores and New Zealand (13, 147).   

 

Western Palearctic 



 

There has been substantial progress in recent years towards understanding the 

origins of the Mediterranean – and more widely western Palearctic – water beetle 

fauna. Two general patterns emerge regarding the origin of Mediterranean endemics 

and the role of Pleistocene glacial cycles in shaping current faunas. 

 Virtually all Western Palearctic water beetles with restricted distributions are 

Mediterranean. The most ancient have been estimated to date from the Miocene, 

and these are mostly restricted to the Iberian and Anatolian peninsulas (49, 66, 114), 

in some cases forming two reciprocally monophyletic sister lineages (e.g. Hydrochus 

(Hydrochidae) and Deronectes). There are no ancient endemics of such genera in 

mainland Italy and most of the Balkans, resulting in an east-west disjunction that has 

been long recognized biogeographically. The likely explanation for this disjunction is 

that most of the Italian and Balkan peninsulas remained submerged until the 

Pliocene (106), meaning that species of these genera endemic to mainland Italy 

south of the Alps and southern Greece are of Plio-Pleistocene origin. In these areas 

there are, however, many endemics in taxa with an abundance of recent species, 

such as Limnebius and Hydraena (Hydraenidae) (118, 151, 152). 

 The availability of comprehensive phylogenies and phylogeographies of 

various groups of water beetles in Western Europe and the Mediterranean region 

has revealed the complex role of Pleistocene glaciations in shaping current faunas. 

There are examples of the classic pattern of recolonization of recently deglaciated 

areas from the Mediterranean peninsulas (26, 63), mostly from populations at the 

northern edge of southern refugia. This implies that southern endemic species 

remained localized (e.g. Deronectes (49) and some Hydraena (113, 151)). These 

southern endemics, in some cases of Pleistocene origin and sister to species with 



northern distributions (e.g. 117), may not have undergone significant range 

movements during their entire evolutionary histories, never colonizing areas directly 

affected by glaciations (1, 3, 113). In central and northern Europe the fauna is 

dominated by widespread lentic species with good dispersal abilities (115, 127), or 

lotic species that expanded their ranges in a short temporal window with favorable 

conditions after the last glaciation (50, 113). These cycles of range expansion with 

subsequent fragmentation and speciation (similar to refuge speciation (95) or 

vicariance by niche conservatism (160)) may have acted as a “species pump”, 

contributing substantially to current diversity. 

 

SEXUAL SELECTION IN WATER BEETLES 

 

Sexual selection occurs when changes in trait frequency result from differential 

reproductive success between individuals.  This includes intrasexual competition, as 

well as intersexual interactions such as mate choice (cryptic or otherwise) and forced 

matings (136).  Sexual selection is implicated in the evolution of many complex traits, 

including insect genitalia (72, 137), and water beetle mating systems are complex 

and varied, but best known to date in Dytiscidae.  As with most insect groups, male 

genitalia often provide the primary means of differentiating closely related water 

beetle taxa (e.g. 91, 102, 103), and in some cases reach striking levels of 

complexity, particularly in the Hydraenidae (see Figure 2), where the precise 

homology of some structures remains unclear (118).  In Limnebius, changes in body 

size appear to driven trends in genital evolution; reduced body size in the subgenus 

Bilimnius being accompanied by shrinkage and simplification of male genitalia, and 

several independent increases in body size in Limnebius s. str. associated with 



larger, more complex genitalia (118, 119).  There is also evidence for Rensch’s rule 

in this genus, where male body size is more evolutionarily labile than female (120). 

The fact that greater sexual size dimorphism in Limnebius is not associated with 

more strongly developed secondary sexual characters suggests that the increased 

variation in male body size may have more to do with the lack of constraints 

associated with egg development and reproduction, than with directional sexual 

selection (120). 

Given differential gametic investment, the evolutionary interests of the two 

sexes often diverge, particularly when mating is relatively costly (136), leading to 

sexual conflict, which can drive evolutionary “arms-races” between males and 

females and result in extreme sexual dimorphism (101).  Most male dytiscids have 

modified, sucker-like articulo-setae on the tarsi of their fore and middle legs (see 

Figure 2), which increase their ability to grasp females during mating (7).  In 

contrast, females of many species have enhanced dorsal sculpture, which reduces 

male grasping ability during pairing (76).  Such female sculpture results from either a 

modification of existing surface reticulation (e.g. 19, 21) or the evolution of novel 

structures, including ridges and furrows or macroscopic granules on the elytra and 

irregular sculpture and hair-filled pits on the pronotum, in areas where male tarsi 

attach during mating initiation (Figure 2). Such traits are common in the larger 

Dytiscinae, where pre-insemination sexual conflict dominates a sexual system 

characterized by long pairings, post-inseminatory mate-guarding (sometimes with 

the production of mating plugs), and vigorous attempts by females to dislodge males, 

particularly at the onset of pair formation (90).  Although not quantified to date, such 

pairings are likely to impart a greater energetic cost to females than males, 

particularly since males restrict females’ access to air when surfacing, in an apparent 



attempt to manipulate mating success (7, 90).  Pairing duration and mating behavior 

in other water beetles are poorly known, but sexual dimorphism consistent with 

sexual conflict has been reported in a number of other dytiscid groups (19, 21) and 

Haliplidae (107).  Male attachment devices seen in Gyrinidae and some 

Hydrophilidae may also indicate sexual conflict, although to date these have not 

been investigated.   

Some dytiscids are also intrasexually dimorphic, with two forms of female 

differing in their resistance traits; some being rough, others smooth, like males (89,  

90).  Differences in female resistance appear to drive the evolution of counter-

modifications in male attachment devices, with non-random mating between male 

and female morphs leading to linkage disequilibrium between male and female traits 

and the coexistence of morphs through negative frequency dependent selection (60, 

61).  In some species there is marked geographical variation in the relative 

frequencies of rough and smooth female morphs, although the drivers of these 

distributions remain poorly understood (77).  Sometimes, rough and smooth female 

populations are allo/parapatric, and associated with males differing in the extent of 

development of tarsal attachment suckers (17, 21).  Differential mating success may 

drive observed changes in the geographical position of such contact zones (17). 

In addition to pre-insemination conflict, the Dytiscidae show great variation in 

female reproductive tract morphology (88), particularly in the subfamily 

Hydroporinae.  Female hydroporine tracts frequently feature long, convoluted 

spermathecal and fertilization ducts, as well as other modifications (88), all of which 

point to the occurrence of sperm selection by females (23, 93).  Dytiscid sperm 

morphology is varied and complex, again particularly in the Hydroporinae, where 

complex sperm conjugations and heteromorphisms have been reported (Figure 2) 



(68, 69).  The evolution of sperm and female reproductive tract features are 

correlated across the family, consistent with strong sexual selection (68, 69).  The 

role of morphologically complex spermatophores in this process (130) remains 

unknown, but these structures may play a role in sperm delivery and positioning as 

well as functioning as mating plugs. 

 

BIODIVERSITY, CONSERVATION, AND GLOBAL CHANGE 

 

Water beetles have great potential for biodiversity and conservation assessment of 

inland water habitats, a number of features making them an excellent indicator 

group.  These include high species richness, wide ecological/habitat range, high 

functional diversity (reflecting multiple aquatic colonizations), relative ease of 

sampling (at least as adults), and the fact that they are relatively well known 

taxonomically and biogeographically (47, 75, 108, 131).  Being well known 

taxonomically, they have featured heavily in attempts to explore the effectiveness of 

DNA taxonomy and species delineation methods (e.g. 15, 94). In addition, taxa vary 

considerably in both their degree of ecological specialization, and dispersal abilities, 

with some species being reliable indicators of water quality (48, 86) or long-term 

habitat stability (e.g. 45, 46).  To date, most detailed applications have been in 

Europe (47, 55, 56, 104, 123), studies in other regions largely concerned with the 

diversity and conservation of the insects themselves   Beetles are also effective 

surrogates of wider macroinvertebrate diversity (20, 56, 122), reflecting patterns in 

both species richness and compositional similarity in the wider aquatic community.  

This surrogate effect has been widely used to address a range of conservation-

related questions, particularly in southwest Europe.  These include the setting of 



regional conservation priorities (4), area selection (123), the effectiveness of 

protected area networks (5, 56), sampling bias in environmental datasets (124, 125) 

and species distribution models (126), the influence of surrounding land cover on 

aquatic assemblages (42) and the importance of conserving the evolutionary history 

of a group (6). 

Recent studies of ecophysiology and geographical range size in water beetles 

have provided insights into relative vulnerability to global change, being examples of 

insect conservation physiology (9, 11).  The distinction can be made between 

species with high persistence ability, and those more likely to shift distribution, these 

two groups requiring different conservation approaches (9).  Deronectes diving 

beetles are weak dispersers (16), whose occupied ranges bear little resemblance to 

those predicted by species distribution models based on macroclimate (128).  In 

these beetles, geographically restricted southern endemics are more vulnerable to 

climate warming than their widespread congeners, due to limited heat tolerance and 

thermal plasticity (32, 33).  Global change is reducing the extent of suitable habitat in 

Mediterranean mountains (32), placing such taxa in double jeopardy.  In reality, 

global change involves multiple stressors operating synergistically.  In inland waters, 

these include increased temperatures and hypoxia (154), the latter resulting both 

from eutrophication and increased metabolic demand at high temperatures (153).  

Recent work suggests that gas exchange mechanism, and the degree to which 

individuals can regulate internal oxygen levels, are good predictors of vulnerability to 

the combined effects of rising temperature and hypoxia, plastron-breathing elmids 

being much more strongly affected than surface exchanging dytiscids (154). 

 

FUTURE ISSUES AND DIRECTIONS 



 

1. Water beetle families (particularly Dytiscidae, Hydrophilidae, Hydraenidae) will be 

amongst the first diverse insect groups for which phylogenies with an almost 

complete taxon sampling could be available, allowing us to accurately explore the 

diversification processes that have shaped the biodiversity of lineages and regions.  

 

2. Genomic/transcriptomic data will soon allow us to resolve difficult nodes in 

phylogenies (e.g. the status of Hydradephaga) and to explore the mechanistic bases 

of morphological and physiological adaptations. How are convergences between 

lineages at the phenotypic scale (e.g. complex antennal modifications used for gas 

exchange in Hydrophiloidea and Hydraenidae, similarities in thermal physiology or 

adaptations to extreme salinity and the subterranean environment) reflected at the 

genomic level?  Such approaches could also explore convergences in the sensory 

apparatus associated with aquatic colonization and the level at which these changes 

have occurred - deep in the reception mechanism, or only in the structures that 

receive the stimulus? 

 

3. How general are the relationships between physiology and geographical range 

size revealed in Palearctic water beetles?  There is an urgent need for similar 

comparative studies in tropical and southern temperate regions. 

 

4. Most studies of water beetle sexual systems to date have focused on a limited 

number of diving beetle taxa. To understand the drivers of sexual conflict, further 

comparative studies are needed, both within the Dytiscidae and in other water beetle 



families. The emergence of larger, more robust phylogenies means that such studies 

can be conducted within a sound evolutionary framework.  

 

5. Water beetles are excellent surrogates of aquatic biodiversity. To date, however, 

their use as indicator taxa has been largely restricted to Europe. Ongoing 

improvements to taxonomic, ecological, and biogeographical knowledge in other 

regions will make the wider development of water beetles in habitat assessment a 

realistic possibility in the near future. 
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Figure legends 

 

Figure 1. Representative time-calibrated phylogeny of Coleoptera showing the 

relative phylogenetic position and antiquity of each major water beetle lineage. The 

tree topology is simplified from McKenna et al. (85), with the exception that 

Adephaga is drawn as a polytomy between Geoadephaga, Grynidae, Haliplidae, and 

Dytiscoidea. Divergence time estimates of crown lineages (red circles) are based on 

Toussaint et al. (148) (but see e.g. 85 or 161 for an alternative dating), and the 

oldest known fossil taxa (black circles) are taken from Pomonorenko & Prokin (105). 

Primarily terrestrial lineages that contain some aquatic taxa are marked with an 

asterisk. See Supplementary File 1 for additional explanations.   

 

Figure 2. Sexually selected characters in water beetles: (a-c) Acilius sulcatus 

(Dytiscidae) (a) male habitus – note expanded fore and mid tarsi; (b) ventral surface 

of male fore-tarsus – note plunger-like articulo-setae which function as attachment 

devices; (c) female habitus – note furrowed elytra and hairs on pronotum and elytra, 

resistance traits making male attachment more difficult during pairing. (d-g) 

Limnebius species (Hydraenidae) (d) Limnebius truncatellus male (above) and 

female (below) habitus – note strong sexual dimorphism in body size and leg 

modifications; (e) relatively complex male genitalia of Limnebius truncatellus; (f) 

Limnebius evanescens male (above) and female (below) habitus – note limited 

sexual dimorphism in body size; (g) relatively simple male genitalia of Limnebius 

evanescens. (h-i) sperm of Hygrotus sayi (Dytiscidae), epifluorescence microscopy 

with only DNA-stained heads visible (h) isolated, dimorphic sperm, some with broad 

heads and basal spurs, others with filamentous heads; (i) sperm conjugation – 



sperm with broad heads stack (like traffic cones), forming a scaffold which sperm 

with filamentous heads attach to. Scale bars as follows: a & c = 5 mm, b, d & f = 1 

mm, e & g = 500 µm, h-I = 20 µm. 

 

 


