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ABSTRACT Resistance to the lantibiotic nisin (NIS) arises readily in Staphylococcus
aureus as a consequence of mutations in the nsaS gene, which encodes the sensor
kinase of the NsaRS two-component regulatory system. Here we present a series of
studies to establish how these mutational changes result in reduced NIS susceptibil-
ity. Comparative transcriptomic analysis revealed upregulation of the NsaRS regulon
in a NIS-resistant mutant of S. aureus versus its otherwise-isogenic progenitor, indi-
cating that NIS resistance mutations prompt gain-of-function in NsaS. Two putative
ABC transporters (BraDE and VraDE) encoded within the NsaRS regulon that have
been reported to provide a degree of intrinsic protection against NIS were shown to
be responsible for acquired NIS resistance; as is the case for intrinsic NIS resistance,
NIS detoxification was ultimately mediated by VraDE, with BraDE participating in the
signaling cascade underlying VraDE expression. Our study revealed new features of
this signal transduction pathway, including that BraDE (but not VraDE) physically in-
teracts with NsaRS. Furthermore, while BraDE has been shown to sense stimuli and
signal to NsaS in a process that is contingent upon ATP hydrolysis, we established
that this protein complex is also essential for onward transduction of the signal from
NsaS through energy-independent means. NIS resistance in S. aureus therefore joins
the small number of documented examples in which acquired antimicrobial resis-
tance results from the unmasking of an intrinsic detoxification mechanism through
gain-of-function mutation in a regulatory circuit.

IMPORTANCE NIS and related bacteriocins are of interest as candidates for the
treatment of human infections caused by Gram-positive pathogens such as Staphylo-
coccus aureus. An important liability of NIS in this regard is the ease with which S.
aureus acquires resistance. Here we establish that this organism naturally possesses
the cellular machinery to detoxify NIS but that the ABC transporter responsible
(VraDE) is not ordinarily produced to a degree sufficient to yield substantial resis-
tance. Acquired NIS resistance mutations prompt activation of the regulatory circuit
controlling expression of vraDE, thereby unmasking an intrinsic resistance determi-
nant. Our results provide new insights into the complex mechanism by which ex-
pression of vraDE is regulated and suggest that a potential route to overcoming the
resistance liability of NIS could involve chemical modification of the molecule to pre-
vent its recognition by the VraDE transporter.
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Nisin (NIS) is the best-characterized member of a family of bacteriocins known as the
lantibiotics and displays potent bactericidal activity against a range of Gram-

positive organisms (1). The antibacterial mechanism of action of this agent proceeds via
an initial binding event between NIS and the pyrophosphate cage of the peptidoglycan
precursor, lipid II, with subsequent insertion of NIS into the cytoplasmic membrane
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resulting in pore formation and a lethal loss of membrane integrity (2). NIS has been
extensively deployed for over 60 years as an antibacterial preservative in food produc-
tion and is also used in some countries as a topical agent to prevent bovine mastitis (3).
Given the dearth of new antibacterial agents receiving approval for systemic use in the
treatment of human infections, a number of articles have highlighted the potential for
NIS to fill such a role (4–7). Though the compound has a relatively short serum half-life
(0.9 h) (8), it has nonetheless been shown to successfully treat staphylococcal and
streptococcal infection in mouse models (8, 9).

While NIS may therefore have potential as a chemotherapeutic agent, in vitro studies
suggest that resistance to this agent can arise readily, a phenomenon that could serve
to rapidly compromise its therapeutic utility. In an earlier publication, we demonstrated
that substantial reductions (up to 16-fold) in NIS susceptibility could be selected in S.
aureus as a consequence of spontaneous mutation (10). At 4� MIC, such NIS-resistant
mutants arose at a frequency of �2 � 10�7 in vitro, a figure similar to that seen for
antibacterial drugs not generally considered suitable for monotherapy owing to resis-
tance liabilities (10, 11). Further underscoring the idea that these resistant mutants
could potentially constitute a threat to therapeutic use of NIS, they proved stable upon
extended passage in the absence of selection and resistance was not generally asso-
ciated with a significant fitness cost in vitro (10). The majority of NIS resistant mutants
were found to harbor mutations in nsaS, a gene encoding the sensor histidine kinase
(SHK) portion of a two-component system (TCS) termed NsaRS (also known as BraRS
[12]). This TCS has been shown to participate in regulating expression of resistance to
the peptidic antibiotic bacitracin and is also one of several such TCS modules in S.
aureus that have been reported to provide the bacterium with a degree of intrinsic
protection against NIS (10, 12). The mechanism by which mutations in nsaS lead to
acquired NIS resistance has not been established, and the present study was therefore
initiated to gain insight into this phenomenon.

RESULTS
NIS resistance mutations lead to constitutive activation of NsaS, resulting in

upregulation of the NsaRS regulon. Following a sensory stimulus, SHKs such as NsaS
undergo a conformational change that triggers autophosphorylation of a conserved
histidine residue and subsequent phosphotransfer to a conserved aspartate on the
response regulator (RR) protein (NsaR in this case) (13). RRs typically act as transcription
factors, with activation of gene expression by the RR being dependent upon its
phosphorylation state (13). In our previous study, we speculated that NIS resistance
mutations in nsaS confer a gain of function on the encoded protein (10), with NIS
resistance resulting from consequent upregulation of the NsaRS regulon. To exclude
the possibility that NIS resistance is instead the result of loss of NsaS function, we
disrupted nsaS by insertional inactivation in the nisin-resistant strain S. aureus SH1000
NsaSA208E (NIS MIC, 64 mg/liter). Susceptibility testing of the resulting strain revealed
complete loss of resistance, with the NIS MIC returning to the same level as that of the
NIS-susceptible parent strain (SH1000; 4 mg/liter). This observation implies that NIS
resistance is not attributable to a loss of function in NsaS.

To define more precisely the consequences of NIS resistance mutations on NsaS
function, RNAseq was employed to compare global gene expression profiles in SH1000
NsaSA208E versus SH1000. Compared with the parent strain, the expression of 16 genes
was found to be upregulated �2-fold in SH1000 NsaSA208E (Table 1), with 9 genes
downregulated �2-fold (data not shown). Of the upregulated genes, five (braD, braE,
vraD, vraE, and vraH) are known to be part of the regulon previously shown to be
controlled by NsaRS (12, 14), and a further four (SAOUHSC_03040, SAOUHSC_03041,
SAOUHSC_03042, and SAOUHSC_03042a/vraH2) lie immediately downstream of vra-
DEH on the SH1000 chromosome and likely constitute part of the same operon (14).
These results corroborate the idea that NIS resistance mutations in nsaS confer a gain
in function on the encoded protein, leading to upregulation of its cognate regulon
through constitutive activation.
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That NIS resistance in S. aureus requires a mutation leading to upregulation of the
NsaRS regulon implies that the NIS molecule itself is incapable of sufficient induction of
this system to bring about resistance. In support of this idea, we note that a previous
study showed only modest induction of NsaRS regulon members at subinhibitory NIS
concentrations (12). Furthermore, when we exposed the NIS-susceptible SH1000 strain
to a range of subinhibitory NIS concentrations for 60 min, we observed no reduction in
NIS susceptibility in a subsequent MIC determination (data not shown). In contrast, the
antibiotic bacitracin has been reported to be a potent inducer of the NsaRS regulon
(12), and we found that bacitracin preexposure of SH1000 did result in reduced NIS
susceptibility; the maximal effect was observed at a bacitracin concentration of 16 mg/
liter, which led to an increase in the NIS MIC of SH1000 (32 mg/liter), similar to that
observed for SH1000 NsaSA208E (64 mg/liter).

BraDE and VraDE are essential for, and universally upregulated in, acquired
NIS resistance. We next sought to establish which genes of the NsaRS regulon are
responsible for the NIS resistance phenotype of SH1000 NsaSA208E. The work of Hiron
et al. has established that the braDE and vraDE genes, which encode two putative ABC
transporters, are together capable of providing S. aureus with an intrinsic level of
protection against NIS and bacitracin (12). Since both braDE and vraDE are part of the
NsaRS regulon, with both appearing upregulated in the transcriptome analysis of
SH1000 NsaSA208E (Table 1), it seemed likely that acquired NIS resistance in the latter
strain was attributable to increased braDE/vraDE expression. We confirmed overexpres-
sion of braDE/vraDE in SH1000 NsaSA208E using qRT-PCR with oligonucleotide primers
specific for braD and vraD, detecting 2.8 (�0.3)-fold and 64.2 (�9.8)-fold increases in
transcription of these genes, respectively, relative to SH1000 (Fig. 1). At the same time,
we took advantage of this qRT-PCR approach to establish that NIS resistance mutations
encoding substitutions other than NsaSA208E (10) also trigger upregulation of the NsaRS
regulon and that the process by which all of these mutations lead to NIS resistance is
therefore similar. Comparable levels of braD/vraD upregulation were observed in S.
aureus strains containing NIS resistance mutations encoding NsaSA105T, NsaSR209I, and
NsaSG210D (10) (Fig. 1), confirming that all NsaS polymorphisms associated with NIS
resistance result in constitutive activation of this sensor protein and upregulation of the
NsaRS regulon.

To establish whether both braDE and vraDE participate in acquired NIS resistance,
we independently deleted braDE and vraDE in SH1000 NsaSA208E and evaluated the
effect on NIS susceptibility. Both ΔbraDE and ΔvraDE mutants of SH1000 NsaSA208E

TABLE 1 Genes overexpressed �2-fold in the NIS-resistant S. aureus strain SH1000
NsaSA208E versus the NIS-susceptible progenitor, SH1000

Locus tag Encoded protein
Fold change in
expressiona

SAOUHSC_00355 Hypothetical protein of unknown function 94
SAOUHSC_01005 Hypothetical protein of unknown function 2.2
SAOUHSC_01068 Hypothetical protein of unknown function 2.4
SAOUHSC_01761 Hypothetical protein of unknown function 2.3
SAOUHSC_01844 Hypothetical protein of unknown function 2.7
SAOUHSC_02745 Hypothetical protein of unknown function 2.6
SAOUHSC_02872 Hypothetical protein of unknown function 5.6
SAOUHSC_02953 Permease domain-containing protein (BraE) 7.0
SAOUHSC_02954 ABC transporter ATP-binding protein (BraD) 7.3
SAOUHSC_03036 ABC transporter ATP-binding protein (VraD) 480
SAOUHSC_03037 Permease domain-containing protein (VraE) 460
SAOUHSC_03037a Transmembrane protein required for intrinsic

daptomycin and gallidermin resistance (VraH)
620

SAOUHSC_03040 Integrase 92
SAOUHSC_03041 Phage tail protein 22
SAOUHSC_03042 Integrase 120
SAOUHSC_03042a Duplication of SAOUHSC_03037a (VraH2) 75
aExpression values represent the means from three independent biological replicates and are given to two
significant figures.
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exhibited complete loss of NIS resistance (Table 2), implying that both gene pairs are
essential for the acquired NIS resistance phenotype. A series of complementation
studies was subsequently undertaken to confirm and further explore this result. NIS
resistance was in each case fully restored when the gene pair that had been deleted
from the chromosome was provided in trans on plasmid pRMC2 (Table 2). In contrast,
complementation was unsuccessful when only one gene of the deleted pair was
provided in trans (Table 2), implying that both components of each putative transporter
are required for the acquired NIS resistance phenotype.

Roles of VraDE and BraDE in acquired NIS resistance. BraDE and VraDE have
been shown to play distinct roles in intrinsic resistance to NIS/bacitracin in S. aureus
(12). BraDE is thought to participate in sensing these compounds at the membrane and,
via an ATP-dependent mechanism, transduce this signal to NsaS (12). Onward trans-
duction of the signal through NsaRS prompts upregulation of VraDE, which is directly
responsible for detoxification of these antibiotics through a mechanism that has been
postulated to involve transport (either export or import of antibiotic) (12, 14). To

FIG 1 Expression of braD and vraD in S. aureus strains harboring acquired NIS resistance mutations in
nsaS. A figure denoting the location of each substitution within the predicted structure of NsaS can be
found elsewhere (10). Fold change in expression in NIS-resistant mutants was calculated relative to the
corresponding parent strain (SH1000 or MW2) using the ΔΔCT method. Values represent the means from
at least three independent biological replicates.

TABLE 2 NIS susceptibility of SH1000 derivativesa

Strain NIS MIC (mg/liter)

SH1000 4
SH1000 (pRMC2:vraDE) 64
SH1000 (pRMC2:braDE) 4
SH1000 NsaSA208E 64
SH1000 NsaSA208E ΔvraDE 2
SH1000 NsaSA208E ΔbraDE 2
SH1000 NsaSA208E ΔvraDE (pRMC2:vraD) 2
SH1000 NsaSA208E ΔvraDE (pRMC2:vraE) 2
SH1000 NsaSA208E ΔvraDE (pRMC2:vraDE) 64
SH1000 NsaSA208E ΔvraDE (pRMC2:braDE) 2
SH1000 NsaSA208E ΔbraDE (pRMC2:braD) 2
SH1000 NsaSA208E ΔbraDE (pRMC2:braE) 2
SH1000 NsaSA208E ΔbraDE (pRMC2:braDE) 64
SH1000 NsaSA208E ΔbraDE (pRMC2:vraDE) 64
SH1000 NsaSA208E ΔbraDE (pRMC2:braDE168QE) 64
aExpression from pRMC2 constructs induced with 0.125 mg/liter anhydrotetracycline.
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confirm that acquired NIS resistance is also ultimately mediated by VraDE alone, we
artificially overexpressed VraDE in both SH1000 and SH1000 NsaSA208E ΔbraDE, in both
instances creating strains for which NIS had an MIC of 64 mg/liter (identical to that seen
for SH1000 NsaSA208E; Table 2). Conversely, artificial overexpression of BraDE in SH1000
and SH1000 NsaSA208E ΔvraDE had no impact on NIS susceptibility (Table 2).

The essentiality of BraDE for acquired NIS resistance implies that the existing model
for the role of this protein complex in protecting S. aureus from peptide antibiotics is
incomplete; under this model, in which BraDE lies upstream of NsaS in the signal
transduction pathway, acquired NIS resistance mutations mediating constitutive acti-
vation of NsaS would obviate an initial sensing/signaling event by BraDE. Consequently,
BraDE must have a function in addition to sensing, leading us to speculate that BraDE
assists in some way with the process of onward signal transduction from NsaS. Using
qRT-PCR of vraD to report on expression of the NsaRS regulon, we sought evidence of
such a role for BraDE by comparing vraD expression in strains SH1000, SH1000
NsaSA208E, and SH1000 NsaSA208E ΔbraDE. Deletion of braDE in SH1000 NsaSA208E

caused a substantial (�9-fold) drop in vraD expression (from 64.2- � 7.3-fold to
6.9- � 0.5-fold, relative to SH1000), supporting the idea that BraDE is required for
optimal signal transduction through NsaRS. In contrast to antibiotic sensing by BraDE,
this process is not dependent on ATP hydrolysis by BraD; the NIS resistance phenotype
was successfully restored in SH1000 NsaSA208E ΔbraDE upon expression in trans of
BraDE carrying an engineered E168Q substitution in the Walker B motif of BraD that
abolishes ATP hydrolysis by this protein (Table 2).

How does BraDE aid signal transduction through NsaRS? Based on the detailed
understanding of TCSs that already exists (13), several steps must occur for successful
signal transduction from NsaS to NsaR. These include dimerization of NsaS, recruitment
of NsaR to NsaS, and phosphotransfer from NsaS to NsaR. We considered that BraDE
might directly associate with NsaS and/or NsaR, thereby acting as a physical scaffold to
facilitate one or more of these steps. To explore this possibility, two-hybrid analysis was
carried out using the BACTH system to identify physical interactions between these
proteins (Fig. 2). Control experiments were first conducted to establish that the system
could successfully detect anticipated interactions among proteins of this NIS detoxifi-
cation module; as expected for the domains of ABC transporters, interaction could be
demonstrated between the ATP binding domains, BraD and VraD, and their cognate
permeases (BraE and VraE, respectively). BraDE was shown to interact with NsaRS,
though a weaker interaction was also detected between BraDE and the individual
components of this TCS, NsaS and NsaR (Fig. 2). NsaS was able to interact with itself and
NsaR in the BACTH system; since this experiment was conducted in the absence of
BraDE, this result implies that BraDE is not required for NsaS dimerization or interaction
between NsaS and NsaR.

DISCUSSION

Understanding the mechanisms by which bacterial pathogens resist the action of
antibacterial agents constitutes an integral part of the preclinical evaluation of such
compounds. Since NIS and related bacteriocins are of considerable interest as candi-
dates for antistaphylococcal chemotherapy in humans (15–17), we sought to dissect
the mechanism underlying acquired resistance to NIS in S. aureus. Having previously
demonstrated that NIS-resistant strains of S. aureus harbor mutations in the SHK (NsaS)
of the NsaSR TCS, we have shown here that these mutations prompt constitutive
activation of NsaS and the NsaSR regulon, with resistance resulting ultimately from
dramatically upregulated expression of the VraDE transporter (Fig. 3). Thus, while S.
aureus naturally possesses the necessary cellular machinery to detoxify NIS, the bacte-
rium is ordinarily sensitive to NIS because this machinery is not expressed at a
sufficiently high level to deliver resistance, and the regulatory circuit controlling its
expression does not effectively recognize or respond to the presence of NIS (Fig. 3).

Acquired resistance to NIS is therefore one of a small number of examples in which
antimicrobial resistance has been shown to arise through the unmasking of an intrinsic
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detoxification module owing to a gain-of-function mutation in a TCS. Other examples
of this phenomenon include enterococcal resistance to teicoplanin (18) and resistance
to silver (19) and colistin (20) in Enterobacteriaceae, with resistance mutations in each
case identified in the corresponding SHK (VanSB, SilS/CusS, and PmrB, respectively) that
result in constitutive expression of the resistance determinant (18–20). It remains to be
established precisely how these mutations—including the NIS resistance mutations
found in NsaS—result in the uncoupling of signaling from sensing in the TCS. However,
by analogy with previously characterized TCS proteins (e.g., EnvZ, NtrB, PhoQ, and
NarX), these mutations typically lie in regions of the SHK essential for phosphatase
activity (21–23); loss of phosphatase activity would effectively trap an SHK in the kinase
state, leading to constitutive phosphorylation of the RR even in the absence of an
inducing stimulus.

NsaS lacks an extracytoplasmic sensing domain and is, in the absence of a gain-of-
function mutation, reliant on BraDE for substrate detection (12). Regulatory systems in

FIG 2 Identification of protein-protein interactions between proteins involved in acquired NIS resistance
using bacterial two-hybrid analysis. Protein-protein interactions were tested using the BACTH system,
with genes encoding proteins of interest cloned into the pUT18/pUT18C and pKT25/pKNT25 vectors in
every conceivable combination. Blue colonies signal a protein-protein interaction, while white colonies
imply that no interaction is taking place. Empty boxes represent interactions that were not tested. Results
presented are representative of at least three independent experiments.
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which an ABC transporter acts as the sensing module for an SHK are not unusual
among the Firmicutes, with BceAB/BceRS from Bacillus subtilis providing the archetypal
example (24). Substrate sensing by such ABC transporters occurs via a large extracy-
toplasmic domain, with the resulting stimulus transduced to the SHK through a poorly
understood mechanism that is contingent upon ATP hydrolysis (12, 25). This signal
transduction event is believed to involve a protein-protein interaction between the
transporter and the SHK (26, 27); our demonstration that BraDE physically interacts with
both NsaS and NsaR corroborates the idea that sensing ABC transporters directly
associate with their cognate SHK proteins.

We have also shown that BraDE plays an essential role in NIS resistance in addition
to the initial sensing event, participating in onward transduction of the signal from
activated NsaS via a mechanism that does not require the hydrolysis of ATP. Given that
NsaS appears to be competent for dimerization and subsequent interaction with NsaR
in the absence of BraDE (Fig. 2), we propose that BraDE is instead acting to enable
phosphotransfer from NsaS to NsaR. In potential support of this idea, accessory
regulator proteins that interact with SHKs and stimulate kinase activity at the level of
phosphotransfer have previously been described (28). While the distinct roles of BraDE
(sensing, downstream signal transduction from the SHK) have therefore been indepen-
dently observed among the proteins of other regulatory circuits, there is to our
knowledge no reported precedent for an ABC transporter that does both. Future work
should clarify whether this reflects a common but as-yet-undiscovered feature of other
sensing ABC transporters or if BraDE is unique in this regard.

The ease with which NIS resistance is selected and maintained in S. aureus consti-
tutes a potential threat to its efficacy in the treatment of bovine mastitis and represents
an important liability to be considered in the context of advancing NIS and related
bacteriocins toward therapeutic deployment in humans. Recognition that the VraDE
transporter is ultimately responsible for mediating most acquired NIS resistance in S.
aureus suggests that a potential route to overcoming this resistance liability could
involve modification of the NIS molecule to prevent VraDE recognizing it as a substrate.
Toward this end, we note that numerous natural variants and engineered derivatives of

FIG 3 Predicted roles of NsaRS, BraDE, and VraDE in intrinsic and acquired NIS resistance. In the case of intrinsic
resistance, the presence of NIS or bacitracin in the extracellular space is detected by the NsaS/BraDE complex,
which in turn activates the cognate response regulator NsaR via phosphotransfer to achieve upregulation of
BraDE/VraDE expression (12). Detoxification of NIS and bacitracin is ultimately achieved by VraDE through an
as-yet-unknown mechanism. In acquired resistance, an amino acid substitution in NsaS (e.g., A208E) uncouples NIS
sensing from activation of NsaR, leading to constitutively high levels of BraDE/VraDE expression and high-level NIS
resistance.
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NIS have been described in the literature to date, with even limited chemical changes
in the NIS molecule achieving considerable modulation of its biological properties (29).

MATERIALS AND METHODS
Bacterial strains, culture conditions, and susceptibility testing. S. aureus and Escherichia coli

strains (Table 3) were routinely cultured in Mueller-Hinton broth (MHB) and lysogeny broth (LB),
respectively, at 37°C with vigorous aeration. Where appropriate, cultures were supplemented with
ampicillin (100 mg/liter), chloramphenicol (10 mg/liter), or erythromycin (5 mg/liter) to maintain plas-
mids. The MIC of NIS against S. aureus strains was determined by broth microdilution in MHB according
to the CLSI method (30). MIC determinations following antibiotic preexposure were performed in an
identical manner, with the exception that actively growing cultures were first exposed to a doubling
dilution series of subinhibitory concentrations of nisin or bacitracin for 1 h.

Transcriptome analysis. Triplicate cultures of SH1000 and a NIS-resistant derivative (SH1000
NsaSA208E) were grown at 37°C with aeration in MHB to an optical density of 0.2 at 600 nm. Two culture
volumes of RNAprotect (Qiagen) were added to each culture, and the mixture was processed according
to the manufacturer’s instructions. Processed cultures were incubated with lysostaphin (200 mg/liter) for
90 min at 37°C, followed by the addition of proteinase K (40 mg/liter) and incubation for a further 10 min
at room temperature. Total RNA was purified using the RNeasy midikit (Qiagen).

Removal of rRNA from the samples, library creation, and RNAseq were performed at the Leeds Clinical
Molecular Genetics Centre (St. James’ Hospital, University of Leeds) using the NextSeq platform (Illumina).
Sequencing data were analyzed using CLC Genomics Workbench version 8 (Qiagen). Briefly, reads were
trimmed and gene expression values for each sample replicate were calculated using the annotated
sequence of S. aureus 8325 (accession number NC_007795) as a reference. Quality control for each
sample was carried out using principal component analysis prior to quantile normalization (31). Relative
expression values between groups (SH1000 versus SH1000 NsaSA208E) were subsequently calculated, and
the significance of each value was determined by t test.

For RT-qPCR, superscript II reverse transcriptase (Invitrogen) was used to convert RNA to cDNA and
levels of vraD and/or braD in each sample were determined by qPCR and ΔΔCT analysis using the
QuantiTect SYBR Green PCR kit (Qiagen) with appropriate oligonucleotide primers (see Table S1 in the
supplemental material).

Gene inactivation and complementation studies. Insertional inactivation of nsaS was achieved
using the suicide vector pMUTIN4 (32), containing an �0.5-kb PCR-generated fragment comprising
nucleotides 195 to 682 of nsaS.

For gene deletions, 1-kb regions of chromosomal DNA flanking the gene of interest were PCR
amplified using Phusion DNA polymerase (NEB) and appropriate oligonucleotide primers (Table S1). PCR
amplicons were introduced into the multiple cloning site of the allelic replacement vector pIMAY (33) by
Gibson assembly, and the resulting constructs were used to transform E. coli SA08B (34) before recovery
and electroporation into SH1000 NsaSA208E. Markerless deletion of the gene of interest was achieved as
described previously (33). Complementation of gene deletions was achieved by expression of the gene
of interest in trans from the anhydrotetracycline (ATc)-inducible expression vector, pRMC2 (35). Creation

TABLE 3 Bacteria and plasmids used in this study

Strain or plasmid Description
Reference(s)
or source

Bacterial strains
S. aureus SH1000 Derivative of strain 8325-4, containing functional rsbU 37, 38
S. aureus SH1000 (NsaSA208E) NIS-resistant derivative of SH1000 10
S. aureus SH1000 (NsaSA105T) NIS-resistant derivative of SH1000 10
S. aureus MW2 Community-acquired MRSA strain 3
S. aureus MW2 (NsaSR209I) NIS-resistant derivative of MW2 10
S. aureus MW2 (NsaSG210D) NIS-resistant derivative of MW2 10
E. coli SA08B Cloning host that modifies cloned DNA for introduction into wild-type S. aureus strains 34
E. coli BTH101 Host strain for two-hybrid assays 36

Plasmids
pRMC2 E. coli/S. aureus shuttle vector containing the Pxyl/tet promoter for

tetracycline-inducible gene expression in S. aureus
35

pIMAY E. coli/S. aureus shuttle vector, for allelic replacement in S. aureus 33
pMUTIN4 Suicide vector for insertional inactivation of genes in S. aureus 32
pUT18 Vector for two-hybrid analyses. Enables C-terminal fusion of T18 domain of adenylate cyclase

to protein of interest
36

pUT18C Vector for two-hybrid analyses. Enables N-terminal fusion of T18 domain of adenylate cyclase
to protein of interest

36

pKT25 Vector for two-hybrid analyses. Enables N-terminal fusion of T25 domain of adenylate cyclase
to protein of interest

36

pKNT25 Vector for two-hybrid analyses. Enables C-terminal fusion of T25 domain of adenylate cyclase
to protein of interest

36
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of a construct expressing BraDE168QE was achieved using QuikChange site-directed mutagenesis (Agilent)
on pRMC2:braDE using appropriate oligonucleotide primers (Table S1).

Two-hybrid analysis of protein-protein interactions. Two-hybrid analysis was carried out using
the BACTH system (36). Genes encoding proteins of interest (POIs) were cloned into a suite of vectors to
allow expression of POIs fused to the T25 (pUT18/pUT18C) or T18 (pKT25/pKNT25) domain of adenylate
cyclase. T25 fusion constructs were cotransformed with T18 fusion constructs into E. coli BTH101 in all
possible combinations and plated onto LBA containing IPTG and X-Gal. Transformants that turned blue
following 48-h incubation at 30°C indicated a protein-protein interaction. A blue color observed for any
combination of constructs for a given protein pair was considered evidence of protein interaction.

Accession number(s). Raw sequence reads and processed data are available from GEO and the SRA
under accession number GSE114706.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphereDirect.00633-18.
TABLE S1, DOCX file, 0.02 MB.
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