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Abstract

Recent years have seen a surge of studies in machine learning in health and biomedicine,

driven by digitalization of healthcare environments and increasingly accessible computer

systems for conducting analyses. Many of us believe that these developments will lead to

significant improvements in patient care. Like many academic disciplines, however, prog-

ress is hampered by lack of code and data sharing. In bringing together this PLOS ONE

collection on machine learning in health and biomedicine, we sought to focus on the impor-

tance of reproducibility, making it a requirement, as far as possible, for authors to share data

and code alongside their papers.

Introduction

In its strategic plan for data science released in June of this year, the National Institute of

Health stated that we “stand at a unique moment of opportunity in biomedical research” [1].

"Advances in [data] storage, communications, and processing" offer an opportunity for tech-

nologies such as machine learning to yield "transformative changes for biomedical research

over the coming decade". This promise, alongside more accessible data and open-source soft-

ware, has created a surge of studies in machine learning in health and biomedicine. Our collec-

tion provides a glimpse of things to come.

At the time of authoring the introduction to the collection, we had received over 100 sub-

missions, of which we selected a subset across topics including primary care, acute care, medi-

cal imaging, and global health. Papers already accepted cover a diverse range of topics,

including areas such as early detection of glaucoma, prediction of survival using health rec-

ords, localization of ossification in radiographs, and risk stratification in neuroblastoma using

transcriptomics data [2–5]. In all cases, the authors have included a link to their code and

instructions for accessing data. Many more papers are under review.

While we have no doubt that applications of machine learning in health and biomedicine

will have a tremendous impact on the outcomes of many future patients, we share concerns

that the rigor of research is often tainted by the environment that drives it [6,7]. To establish
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trust in research findings, greater transparency of data, protocols, and code is desirable [8,9].

In the Call for Papers for this collection, we emphasised that "Data underlying the study’s find-

ings will be a requirement of publication, per the PLOS data policy" and that authors would be

"responsible for providing, upon submission, the source code needed to replicate their find-

ings" [10].

Journals such as PLOS ONE have had firmly worded policies on the importance of data and

code sharing for many years, so these requirements are nothing new. Nevertheless, our experi-

ence has shown that policies on data and code sharing are often weakly enforced. It is rare for

a published study in any journal to be associated with publicly available code and data, and it is

even rarer for the code and data to be sufficiently well-curated to enable a third party to repro-

duce the study. Statements such as “code and data are available from the authors upon request”

are the norm, rather than the exception. Such statements are typically misleading [11,12].

We therefore present this collection with an emphasis on reproducibility, to set a precedent

for publishers and researchers alike on how open publishing policies can be applied to studies

in health and biomedicine. With support from PLOS ONE staff, we have worked hard to

ensure that all of the papers in the collection are associated with public code. While some data

could not be shared publicly, all papers should at the very least provide institutional contact

information for data requests in line with PLOS ONE’s data availability policy. Despite best

efforts, not all of the code and data is as cleanly organized or presented as we would like, but

we hope that readers will respond positively to the good intentions of all authors and help data

and code sharing to become common practice.

Reproducibility

Computational reproducibility is the ability to repeat an analysis of a given data set and obtain

sufficiently similar results ([13–16] and references therein). It requires having the complete

software environment available, properly documented full source code, and the original data.

Ideally the reader should be able to inspect, modify and apply the code under modified param-

eter settings to reproduce the results and explore the robustness of the algorithm to the values

of its parameters [17]. In recent years, platforms designed for the development of software

such as GitHub, GitLab, and BitBucket, have been adopted by the scientific community as

ways to distribute the code that accompanies scientific papers. Initially little more than web-

based front ends for source control systems such as “git”, they evolved into integrated solutions

that can render markdown documents and Jupyter notebooks, which can be used to visually

present the results together with the code used to obtain them [18]. A number of platforms

have been created to facilitate computational reproducibility of code shared through such plat-

forms. One such example is Code Ocean, which allows readers to directly interact with code

by running it within a widget embedded within an article [19]. Another example is Binder,

which enables an investigator to quickly reproduce a computational environment using data

and code shared online [20,21].

A potentially groundbreaking algorithm and its code implementation only really benefit

the community and the wider society if they can be applied to new data and adapted to similar

problems. Therefore reproducibility should be taken a step further by aiming for reusability

[22], which enables the application of the methodology to new questions or new data so that

future studies build upon past studies and science progresses faster. Reusability requires that

the authors make the additional step of explaining and documenting how some decisions were

taken or how some parameters were chosen based on the data. The authors should make the

extra effort to make the code easy to maintain and to extend. As any derived code should be

similarly distributed, the issue arises of a proliferation of different versions of similar code.
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This is where the use of repository management services, like GitLab for example, can make a

difference by allowing researchers to clone existing code, modify it to suit their needs and pos-

sibly integrate potential improvements back into the original repository through a pull request.

These services allow the community to track the evolution of the initial piece of code accompa-

nying a paper into a widely used toolbox through collaborative science.

Data sharing

Data sharing in medical research is advocated for reasons including verification of results and

for unlocking the opportunity to address complex medical questions through the creation of

large multi-center datasets [23–26]. In the U.S., the National Institutes of Health (NIH) has

required data sharing for all large funding grants since 2003 while the National Science Foun-

dation (NSF) has required research grant proposals to include data sharing plans since 2011.

Similar policies have been introduced by the UK research councils [27] and by the European

Commission [28]. Piwowar (2011) examined studies funded by the NIH and the NSF and

found that data sharing remains infrequent in spite of the recommendations by the funding

agencies [29]. Even in the field such as genomics with mature policies, repositories and stan-

dards, research data sharing levels are low and increasing only slowly.

In a recent survey of patients participating in clinical trials, a large majority (82%) indicated

that they perceived the benefits of sharing deidentified data to outweigh the negatives [30].

93% of respondents in the survey indicated willingness to allow their clinical trial data to be

shared with scientists. A dominant theme in responses to the survey was the need for clinical

data to help others as much as possible. Many of the respondents urged greater cooperation

and less competition among scientists. The feeling that overt competitive behaviour can ham-

per research progress has been reflected in scientist sentiment: one study found that research-

ers who perceive their fields as particularly competitive are more likely to withhold data [31].

Numerous studies have suggested that data withholding can have a detrimental effect on scien-

tific training and research [30–34].

Over the last decade, a significant proportion of journals have adopted guidelines for

authors that explicitly require data associated with studies to be shared. Simple statements of

willingness to share data by investigators rarely translate to true availability when data is

requested by independent scientists [9], which motivates a need for sharing by more formal

methods (for example, sharing via public repositories). Even where data is findable and acces-

sible, maximum value can be gained where it is interoperable (for example, using standardised

vocabularies) and reusable (for example, well described with an open license), as outlined in

the FAIR Principles [35].

In a 2011 survey of papers published in 50 popular research journals, less than 10% of inves-

tigators made their raw data available [32]. Investigators typically cite concerns around patient

privacy as the primary reason for withholding data. Privacy is a serious matter and it is appro-

priate that this concern curtails data sharing to an extent, but approaches that help to address

privacy concerns while allowing data to be shared are emerging. These approaches typically

include combinations of deidentification (removal of information that allows data to be attrib-

uted to a patient), statistical methods such as differential privacy to obscure details, and access

control through protected networks.

The development of clear and effective policies to regulate data sharing is an ongoing task

for governing organisations. Notably, the European Union (EU) General Data Protection Reg-

ulation (GDPR) went into effect in May 2018, with the goal of harmonizing data protection

across the EU. It applies to data pertaining to any EU resident, regardless of where that data

was processed. The policy was crafted with the understanding that health data should be a
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public good, but the penalty for breach of patient privacy is so steep (up to 4% of annual global

revenue or 20 million Euros) that there are concerns that it will curtail momentum around

data sharing [36]. The GDPR does not apply to anonymous or anonymized data, but it allows

for significant room in the interpretation of key aspects of data protection, including when

data are considered anonymized; what safeguards are sufficient for processing data under the

research exemption; and what further limitations should be set on processing personal data for

research purposes [37].

Despite the obstacles to data sharing, authors of studies submitted to the collection found

solutions. In reviewing papers in their approaches to data sharing, we applied some general

principles: open is better than closed; some data must be restricted, but this should not prevent

it from being citable and discoverable; where data is restricted, synthetic or sample data should

be provided; it is better to share data in specialist archives than as supplementary files. In gen-

eral, authors of papers submitted to the collection were receptive to our data sharing requests.

Several submissions that simply stated that data would be “available upon request” in initial

versions, for example, were subsequently updated to provide links to datasets in public reposi-

tories. In one study, the authors determined that while the raw dataset could not be shared for

privacy reasons, it was possible to provide code to enable its reproduction. In many cases, sim-

ple rewording of data availability statements helped to clarify how a researcher might obtain a

protected dataset from a host institution.

Code sharing

There are specific cases where there is potential for private information to leak into code—for

example, caution might be needed in sharing a word embedding generated from detailed

patient notes—but in general code does not suffer the privacy risks associated with data. For

this reason, one might expect code to be widely shared. In practice we find this is not the case,

in short because effort outweighs reward. Familiar excuses for not sharing code include: people

might find bugs; the code isn’t clean enough, and; supporting users will be too much work

[38,39]. For most studies there is a nugget of truth in each of these points. As a community we

should strive to share anyway, accepting that bugs will be found; code can always be improved;

and expectations must be managed. There are many excellent reasons to share code and count-

less ways to do so [40,41].

We believe that reviewing well-documented code can provide as much insight into a

study as reviewing a paper itself. Code that is not clear and well-managed raises questions

about the quality of a study, even if the paper itself is well-written and apparently scientifi-

cally sound. The PLOS ONE editorial team assessed the availability of code for every paper

considered for inclusion in the collection. Similar to our approach for data, several basic

principles were applied: code should be open unless there are exceptional circumstances;

protection of intellectual property will not be cause for exception; user guidelines and a

license are required; a fixed version of the code that underpins the study should be perma-

nently archived and linked from the paper with a persistent identifier such as a Digital

Object Identifier (DOI).

When code accompanies a paper submitted to a journal, how rigorously should it be peer

reviewed? Ideally, the code should be reviewed with the same rigour as the paper, but relying

on an already-stretched pool of referees to do this work is a large ask. For this collection, code

was made available to referees during the review process where possible, but there was no

expectation for it to be reviewed and we did not attempt to execute the code. By ensuring that

code is available and discoverable from articles, however, we create the opportunity for post-

publication review.
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Closing remarks

The papers in this collection present a range of machine learning applications in health and

biomedicine. To our belief, these papers go beyond what is typical in this field in terms of data

and code sharing. For the research community, we hope that the collection sets a standard that

encourages sharing more widely. For journal editors, we intend to demonstrate that authors

are generally open to sharing when prompted. Finally, for organizations looking to fund

machine learning applications in healthcare, we urge investments into the development of

tools and platforms that promote reproducibility.
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