Accepted Manuscript

In search of the optimal number of fund subgroups

Cheng Yan, Tingting Cheng

 PII:
 S0927-5398(18)30086-0

 DOI:
 https://doi.org/10.1016/j.jempfin.2018.12.002

 Reference:
 EMPFIN 1084

To appear in: Journal of Empirical Finance

Received date : 11 September 2018 Revised date : 5 December 2018 Accepted date : 24 December 2018

Please cite this article as: C. Yan and T. Cheng, In search of the optimal number of fund subgroups. *Journal of Empirical Finance* (2019), https://doi.org/10.1016/j.jempfin.2018.12.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

In Search of the Optimal Number of Fund Substant

Cheng Yan^a, Tingting Cheng^b

^aEssex Business School, Colchester, CO4 3SQ, [†] K. ^bSchool of Finance, Nankai University, Tianjin, 300.5^c PRC.

Abstract

The idea of determining the number of fund subgroups is of central importance in the currently popular academic field of Risk Parity Portfolio Theory, and especially for practitioners' direct use of Funds-of-Funds (FoF) managers. Can the Gaussian Mixture Distributions plugin approach via traditional procedures select the right number of fund subgroups? Probably not. According to our in-sample/out-of-sam the likelihood score analysis, the actual locations of subgroups in real data (of both U.S. mutual funds and hedge funds) are too close to each other. The information loss incur ed b, parameter uncertainty outweigh those incurred by mis-specification, and can only be sh_{s} . Buy alleviated using the nonparametric density estimators. An arbitrary choice of two tog oups only causes affordable information loss relative to more fund subgroups. These incluings challenge the reliability of the Gaussian Mixture Distributions plug-in approac's via traditional procedures (e.g., BIC, Likelihood Ratio and Chi-square

^ACorresponding aut. Y Tip, ting Cheng. Email: tingting.cheng@nankai.edu.cn. We are grateful to David Blake, Yong Chen, Vayne Person, Ken French, Jiti Gao, Robert Kosowski, Yan Liu, Lubos Pastor and participants in the workshops in Vinive sity of Durham, University of Glasgow, University of Leicester, University of Kent, University of £ ussex, and University of Sydney for helpful comments. We are grateful to Xiangdong Wang for his excellent resea. A assistance, and a grant from National Natural Science Foundation of China (NNSFC Grant No.7170304. 7 1803091, 71801117, 71803196). Tingting Cheng is also grateful to the Ministry of Education in China Project of Humanities and Social Sciences (Project No. 18YJC790015) and the National Social Science Foundation of China (Project No. 18CJY061). We alone are responsible for all errors.

ACCEPTED MANUSCRIPT

statistics) in selecting the correct number of subgroups.

Keywords: Performance evaluation, Fund subgroups, Gaussian mixtur e c'stribution,

Parameter uncertainty, Mis-specification

JEL Classification: C15, G11, G12, G23

HIGHLIGHTS

- Investigate the two potential concerns on the validity and reliability of GMD.
- Parameter uncertainty has a larger effect than mis-specification.
- Nonparametric kernel approaches slightly alleviate information loss.
- An arbitrary choice of two subgroups causes affordable information loss.
- Challenge the GMD procedures in selecting the correct number of subgroups.

In Search of the Optimal Number of Fund Substoups

Abstract

The idea of determining the number of fund subgroups is of c_{a} treatimportance in the popular academic field of risk parity portfolio theory, and especia. 'y for practitioners' direct use of fundof-funds managers. Can the Gaussian Mixture Distributions plug-in approach via traditional procedures select the correct number of fund subgroups. Probably not. According to our insample/out-of-sample likelihood score analysis, the actual locations of subgroups in real data (of both U.S. mutual funds and hedge funds) are too close to each other. The information loss incurred by parameter uncertainty out works that incurred by misspecification, and can only be slightly alleviated using the nonperametric density estimators. An arbitrary choice of two subgroups only causes affordable information loss relative to more fund subgroups. These findings challenge the reliability on the Gaussian Mixture Distributions plug-in approach via traditional procedures (e.g., B. vertice an 'nformation Criterion, Likelihood Ratio and Chi-squared statistics) in selecting the context number of subgroups.

Keywords: Performance ... luation; Fund subgroups; Gaussian Mixture Distribution;

Parameter uncertainty; M. specification

JEL Classification: C¹5[,] G1²; G12; G23

1. Introduction

It is a common practice in fund performance evaluation literature, 'c categorize funds into subgroups based on their performance indicators (e.g., fund alph?) So, 'ow many subgroups of funds are there? Theoretically, two subgroups (skilled and univ killed) could coexist but it is also reasonable to conceptualize three subgroups, with z ro, ne, ative, and positive alphas, respectively. To determine the number of fund subgroups prior to performance evaluation, most studies use the Gaussian Mixture Distributions (hereafter GMD) plug-in approach (i.e., estimating alphas first through factor model regrescions and then fitting a GMD model on the estimated alphas) via traditional procedures, such as u. > Bayesian Information Criterion (BIC), Likelihood Ratio (LR) test, and the Chi-squared tes Employing the same sample of mutual fund monthly returns, Harvey and Liu (2018) fi. ... that two subgroups are optimal while Ferson and Chen (2017) obtain three. Using hedge fund monthly returns over the period from 1994 to 2011, Ferson and Chen (2017) find two rubgroups, while Chen et al. (2017) identify four. Since these authors rely on slightly lifferent variants of the same GMD model, it seems difficult to reconcile their mixed results and n 's surprising that few rigorous statistical analyses have been conducted to examine the soc ated information loss. Given the popularity of the GMD approach, such analyses a e e contial to the understanding of the literature and appropriate applications in future research. Our paper fills this gap using Monte Carlo simulations as well as two real data samples identical to these of Cai et al. (2018) and similar to these of Ferson and Chen (2017) and Harver and Liu (2018) covering both U.S. mutual funds and hedge funds.

The idea of determining the number of fund subgroups is of central importance in the popular academic toold of risk parity portfolio theory, and especially for practitioners' direct use of fund-of funds managers. For instance, in fund performance evaluation studies, our question is of essential importance for at least two recent strands of literature, including the studies related to the False Discovery Rate (e.g., Barras et al. (2010); Bajgrowicz and Scaillet (2012);

Criton and Scaillet (2014); Bajgrowicz et al. (2015); Ferson and Chen (2017); Scaillet et al. (2018)) and Expectation-Maximization algorithm (e.g., Chen et al. (2017); Harvey and Liu (2018)). The conclusions of these two strands of literature hinge CP the porrect presumption of the number of subgroups, according to traditional wisdom. For in conce, if, in reality, there are only two subgroups of mutual fund managers, a three-subgroup approach will inevitably cause one entire group to be a false discovery. Hereafter, we refer to this misconception as model misspecification.

Unfortunately, in reality, the true model specification, is not observable, making the determination of the true number of fund subgroups especially difficult. In particular, a model with more fund subgroups could fit the empiric. ' data better than a counterpart model with fewer fund subgroups, given the well-known vermeing problem in econometrics.¹ Even if we ignore the overfitting problem, a true fund to provide the more subgroups, if approximated parametrically, requires more parameters to be estimated, as in most of the finance literature, which will inevitably exacerbate the estimation errors (i.e., estimation risk issues). In other words, since the fund alphas are estimates, the estimation error creates an errors-in-variables problem, which, following the pointfolio selection literature we refer to as parameter uncertainty hereafter in this paper (e.g., Brown (1979); Jobson and Korkie (1980); Jorion (1986); Garlappi et al. (2006); Denviguel et al. (2007); Yan and Zhang (2017)).² Hence, the benefits of a better-specified mode, with more fund subgroups could be offset by the disadvantages incurred by the increation errors brought about by the greater number of parameters

¹For instance, H. vev and Liu (2018, page 29) explicitly state that "A central issue is how we choose the number of component, for the GMD that models the alpha distribution in the cross-section. A more complex model (i.e., a model with more component distributions) can potentially provide a better approximation to the underlying a. V a distribution, but may overfit, leading to a model that has inferior forecasts out of sample."

²For brevity, we do not fully review the portfolio selection papers regarding parameter uncertainty here.

to be estimated.

We explicitly investigate the effects of model misspecification and/or parameter uncertainty on three aspects of the GMD via Monte Carlo simulations: n. an validity (i.e., bias of the estimated mean of alphas), density validity (i.e., Mean Internated Squared Errors) and reliability (i.e., Standard Deviation of Integrated Squared Errors). To do so, we first generate fund returns series from a CAPM-type of single-factor marke, model with the individual fund alphas randomly drawn from one of three scenarios: a nin cure of two Gaussian distributions (GMD(2) as in Harvey and Liu (2018), Ferson and Chen (2017)), a mixture of three Gaussian distributions (GMD(3) as in Ferson and Chen (20.7)) and a mixture of four Gaussian distributions (GMD(4) as in Chen et al. (2017)). In crery scenario, we estimate the market model via fund-by-fund Ordinary Least Squares (OL³) end then employ a GMD model to match the distribution of the estimated individual fund alphas. If model specification/misspecification is more important, we expect to observe una, both the validity loss and reliability loss are lowest when the number of Gaussian components in the GMD model we use to capture the distribution of fund alphas equals be n' mber of Gaussian components in the data generating processes. Alternatively, i pa am ter uncertainty is more important, we conjecture that there is a monotonic increasing in both the validity loss and reliability loss when the number of mixed Gaussian distributions grows. We find that, of all the GMD estimators, GMD (2) has the lowest mean validity loss, lensity validity loss and reliability loss in every scenario while the GMD (4) has the larges. In other words, parameter uncertainty is more important than model specification/mi specification, and the traditional procedures do not always select the correct number of fur ¹ supproups.³ This challenge the use of GMD plug-in approach in selecting the

³Admi, ³Admi, ³ the distance between different Gaussian mixture components is large enough, the traditional procedures co. ⁴ still work. However, the fund manager performances from different subgroups are so close to each other that it is technically challenging to make the traditional methods to work properly. This could change

ACCEPTED MANUSCRIPT

optimal number of fund subgroups which subsequently motivates us to valuate the potential information loss incurred by using a wrong number of fund subgroup.

To what extent can we improve validity and reliability using alternative estimators to alleviate the parameter uncertainty problem? To answer this question, verminimize the parameter uncertainty problem by employing two popular nonparametric (i.e., slobal and adaptive) kernel density estimators that require least parameter estimation. (baldwidth being the only one parameter) and hence are affected the least by the parameter incertainty problem (see, e.g., Breiman et al. (1977), Abramson (1982), Silverman (1980). To our surprise, these two nonparametric kernel estimators can add only limited value to the GMD approach.⁴

In terms of real data, we apply the traditional procedures (i.e., BIC, LR, and Chi-squared test) to two real data samples, similar to Ferso. Find Chen (2017) and Harvey and Liu (2018), covering both U.S. mutual funds and hedge tuiles, and find empirical evidence that supports our prior results. In general, we find that the traditional procedures do not provide consistent estimation of the number of fund stange, ups, no matter whether we focus on the mutual fund or hedge fund sample. Since the true the true terms is unknown in reality, we employ the scoring rule proposed by r_{1} and Giacomini (2007) to examine both the in-sample and out-of-sample perform and of GMD (1) (a single normal density), GMD (2), GMD (3) and G'AD (4). We find the in-sample and out-of-sample likelihood scores for GMD (2), GMD (3) and G'AD (4). This result reaffirms our previous simulation results that

in the future when the primormance of fund managers becomes clearly categorized. For instance, if there are four modes (say, hi_hly skil) d, moderately skilled, just skilled and poorly skilled) in the density function, then GMD (4) could homeoferred in this case.

⁴However, t is possible to enhance the performance of the kernel estimator by correcting or smoothing the errors-in-variables biases. We thank an anonymous referee for pointing this out.

the information loss is trivial, whether we use GMD (2), GMD (3) or G. D (4). We apply two nonparametric (i.e., global and adaptive) kernel density estimators and the scoring rule of Amisano and Giacomini (2007) to determining the optimal number of turd subgroups, which constitutes a methodological novelty.

Overall, our findings challenge the reliability of traditional procedures in selecting the correct number of subgroups, and the traditional wisdom that the results of fund performance evaluation hinge on the presumption of the correct number of subgroups. As the number of fund subgroups increases, there is a tradeoff between precisely estimating the model parameters and a better empirical fit to the data. Therefore, an arbitrary choice of two fund subgroups might only cause affordable information loss relative to an alternative assumption of more fund subgroups, even when the latter fits are empirical data better than the former. Although the importance of parameter uncertainty has been underscored in the topic of portfolio selection, we extend this idea to an entrany rectainty plays a dominating role in fund subgroup selection, suggesting that the effects of parameter uncertainty in Finance could be greater than people currently think and matimation of the offects of two new particular topics.

Our results provide boon a reademic researchers and practitioners with guidance in selecting the optimal number of une subgroups in their simulations and real data analysis, intuition in regards to the potential deficiencies in their specifications, and new insights for generating alternative fund evaluation approaches. For this, methods that take into account the estimation uncertainty of al phas and complement the traditional procedures by feeding both the estimated alphas and their standard errors into the EM algorithm (i.e., Chen et al. (2017)) can represent a promising a reaction to pursue, as does specifying the likelihood function for the factor model regression for each fund (i.e., Harvey and Liu (2018)).

The remainder of the paper proceeds as follows. Sections 2 and 3 present the results

from Monte Carlo simulations and real data sets (of both mutual functs and hedge funds), respectively. Section 4 concludes. For brevity, we delegate all technica' contents and additional results to the Appendices.

2. Simulation

In this section we simulate the effects of misspecification and parameter uncertainty on the performance of a GMD estimator, we examine the renability of traditional procedures to select an optimal number of fund subgroups, and the complex density from three aspects: mean validity, density validity and reliability. According to the Occam's Razor, we focus on the Euclidian distance although we are aware of main other more complex density comparing measures (e.g., Kullback-Leibler divergence (Kulthad), and Leibler (1951)), Bhattacharyya distance (Bhattacharyya (1943)), etc.) in the literature. In untabulated results which are available from the authors upon request, we find supportive evidence using the Kullback-Leibler divergence as well as the Bhattacharyya distance, and we choose to omit the specific results here for brevity. We conservatively implemention. *GMD* estimators via the standard expectation-maximization (EM) algorithm rather that metric advanced EM algorithms such as the ones in Harvey and Liu (2018) and Chen et al. (2017) to stay on the safe side.

2.1. Data Generatin_è ^D oce ses

Following Cheng and Yan (2017), Zhang and Yan (2018) and other extant studies, for simplicity w : generate fund returns (r_{it}) from the CAPM-type of single-factor market model using the following Data Generating Processes (DGP):

$$r_{it} = \alpha_i + \beta_i r_{mt} + \varepsilon_{it}, \text{ for } i = 1, \cdots, N, t = 1, \cdots, T,$$
(1)

where β_i is generated from a uniform distribution over the support [0.5, 1.5]. Market return, r_{mt} , is generated from a Gaussian distribution with a mean of 0.08/12 and 1 standard deviation of $\sqrt{0.15^2/12}$. The disturbance term, e_{it} is generated from a Gaussian distribution with mean 0 and standard deviation 0.02 denoted as $N(0, 0.02^2)$. We conside the following representative scenarios for the generation of α_i .

- **Scenario 1:** Following Table 1 of Harvey and Liu (2018), we senerate α_i from a mixture of two Gaussian distributions: $0.283N(-0.02277/12, 1.5^{-3^2}/12 + 0.717N(-0.00685/12, 0.586^2/12))$.
- Scenario 2: Following Panel C of Table IV of Ferson and Chen (2017), we generate α_i from a mixture of three Gaussian distributions⁵: $0.50713(0, 0.2^2) + 0.069N(-0.0003, 0.2^2) + 0.424N(-0.002, 0.2^2).$
- **Scenario 3:** Following Table A1 of Chen et a. (2,1,7), we generate α_i from a mixture of four Gaussian distributions: $0.1N(0.01, 0.7^2) = 0.4N(0.003, 0.7^2) + 0.4N(0, 0.7^2) + 0.1N(-0.01, 0.7^2)$.

We randomly generate R = 500 representions in each scenario with (N, T) = (400, 200), after consulting with the size of actual and samples in the literature (Harvey and Liu (2018), Ferson and Chen (2017), Chen et al. (2017)). Although we have obtained qualitatively similar results using a variety of alternative transfer values suggested by earlier literature such as Barras et al. (2010), we or an them for brevity.

The estimation prc :ed, re is as follows.

- For the *r*th replication (r = 1, 2, ···, 500), we estimate model (1) via fund-by-fund Ordinary Least oquares (OLS) and denote estimated fund alpha as *α*_{i,r}, for i = 1, 2, ···, N.
- We then estimate the cross-sectional distribution of alpha based on $\{\widehat{\alpha}_{i,r}\}_{i=1}^{N}$ using GMD

⁵Strict¹ speaking, Ferson and Chen (2017) did not rely on normality in their main text but rather extensively in their (espe `.illy internet) appendices. For instance, Ferson and Chen (2017, page 35) end their manuscript with "We find that the use of an asymptotic normal approximation in these calculations provides improved finite sample performance for the standard errors. The Internet Appendix provides the details."

(2), GMD (3), GMD (4), global and adaptive kernel estimator, ar a tenote the density estimates as $\hat{f}_{GMD(2),r}(\alpha)$, $\hat{f}_{GMD(3),r}(\alpha)$, $\hat{f}_{GMD(4),r}(\alpha)$, $\hat{f}_{global,r}(\alpha)$ and $\hat{f}_{adaptive,r}(\alpha)$, respectively. The details of global and adaptive kernel estimators are presented in Appendix A.

2.2. Do traditional procedures such as BIC select the right nu iber of fund subgroups?

Another vital question pertaining to our analysis is 'het'...' the prevailing traditional procedures select the right number of fund subgroups. Give. 'the popularity of using the traditional procedures to select the number of fund subgroups (in recent examples, see, e.g., Chen et al. (2017); Ferson and Chen (2017); Harvey and Lim (2001)), no rigorous statistical analysis has been conducted to examine this question, to the best of our knowledge. Although the traditional procedures feasible and arguably ground d in the literature, they are mostly designed for the choice of best empirical fit, and do not necessarily select the right number of fund subgroups, given the concerns (e.g., parameter uncertainty) we raised in our previous analysis. Admittedly, it is difficult, if not impossible to use the real data to examine this question, as the true fund population in reality is unobservable and hence the true number of fund subgroups, in reality, is unknown. Fortunate, our Monte Carlo simulation design offers us an opportunity to answer this question, as we know the true number of fund subgroups is 2, 3, and 4 for Scenarios 1, 2 and 3, repectively.

In this subsect on, we follow Chen et al. (2017) and focus on the popular Bayesian Information Criter on (P^TC), for brevity. The results from other traditional procedures such as Likelihood ratio sufficiences (see, e.g., Harvey and Liu (2018)) and Chi-squared statistics (Ferson and Chen (2017)) ; re qualitatively similar and hence we delegate them to Section 4.

We prosent our results of BIC values over 500 replications for Scenarios 1, 2 and 3 in Table 3. To be specific, we report the mean of BIC values over 500 replications when we specify two subgroups, three subgroups and four subgroups using GMD (2), GMD (3) and GMD (4)

estimators with the corresponding frequency of being selected in parent iccas. It is clear that, the mean of BIC values over 500 replications for GMD (2), GMD (3) ard CMD (4) do not differ much from each other, no matter which scenario we look into. Interestingly and surprisingly, in all three scenarios, the BIC suggests us to select GMD (2) as it generates the smallest BIC value with a probability of at least 96.2% (=481/500 in Scenario 2). In other words, the BIC does not always select the right number of fund subgroups, which may upset many financial economists who rely on traditional procedures to select the *c* put hal number of fund subgroups and motivates us to evaluate the potential information iccas incurred by using a wrong number of fund subgroups in the next subsection.

2.3. Information loss evaluation

We first investigate the mean validity \Box_{α} comparing the bias in mean alpha μ_{α} in each scenario, which is defined as the average distinct between the true value of mean alpha and the estimated value of mean alpha obtained from different density estimators.

$$\mathcal{D}ias = \frac{1}{R} \sum_{r=1}^{R} \left| \widehat{\mu}_{\alpha,r} - \mu_{\alpha} \right|, \tag{2}$$

where μ_{α} is the true value and μ_{α} , is the estimated value of mean based on the *r*th replication.

The results are pream ed in Panel A of Table 4, from which we can see that i) the mean validity loss is negligible in magnitude (the maximum is 2.6434982/1000 < 0.3% for GMD (4) in scenario ? for all estimators; ii) nonparametric kernel estimators only alleviate mean validity loss by $0.7550^{\circ} 0/0.751167 - 1 = 0.5\%$; iii) parameter uncertainty is more important than model misspecification in using GMD. As in all three scenarios, the mean validity loss monoton with increases at the number of unknown parameters and is least when there are the fewest parameters to be estimated, not when the GMD is correctly specified.

We then look at the density validity and reliability in general, using the Mean Integrated

Squared Errors (MISE) as the criteria for density validity loss, and the Chandrad Deviation of Integrated Squared Errors (SDISE) as the criteria for reliability less, respectively. Before calculating MISE and SDISE, we choose a sequence of grid points $\{\widehat{\gamma}_{nin,r}, \cdots, \widehat{\alpha}_{max,r}\}$ for m = 200 and approximate Integrated Squared Errors (ISE) based on the right replication as follows.

$$ISE(\widehat{f}_{GMD(2),r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{GMD(2),r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{GMD(3),r}) \approx \frac{1}{r} \sum_{i=1}^{n} \left(\widehat{f}_{GMD(3),r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}$$
$$ISE(\widehat{f}_{GMD(4),r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{GMD(4),r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{global,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}$$
$$ISE(\widehat{f}_{adaptive,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{adaptive,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{adaptive,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{adaptive,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{adaptive,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{adaptive,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{adaptive,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{adaptive,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{gloval,r}(\alpha_{i}) - f(\alpha_{i}) \right)^{2}, \quad ISE(\widehat{f}_{gloval,r}) \approx \frac{1}{m} \sum_{i=1}^{m} \left(\widehat{f}_{$$

where $f(\alpha_i)$ denote the true density of alpha evaluated at point α_i .

Upon the obtained ISE values, it is statisfies the result of the state of the stat

$$MISE(\hat{f}_{GMD(2)}) = \frac{1}{R} \sum_{r=1}^{R} (SE(\hat{f}_{G\ 1D(2),r}), \ R = 500$$
(3)

$$SDISE(\hat{f}_{GMD(2)}) = \sqrt{\frac{1}{R} \sum_{r=1}^{R} (ISE(\hat{f}_{GMD(2),r}) - MISE(\hat{f}_{GMD(2)}))^2}, R = 500.$$
(4)

The MISE values are presented in Panel B of Table 4, from which we find a monotonic pattern similar to mean validaty and the magnitude of density validity loss is tiny (the maximum is 2.6933% for GMD (4, i a scenario 2 for all estimators. In all the scenarios, GMD (2) underperforms the adaptive l ernel estimator but outperforms the global kernel estimator, while the global kernel estimator performs better than GMD (3) and GMD (4), reaffirming the previous finding that the validity loss of using GMD estimators (at least GMD (2)) is small.

With regords to reliability and SDISE values in Panel C of Table 4, we also find a monotonic pattern similar to mean and density validity, and the magnitude of reliability loss is subtle (the

ACCEPTED MANUSCRIPT

maximum is 2.7509% for GMD (4) in scenario 1. The GMD estimators to 'onger outperform nonparametric estimators, and the SDISE values of nonparametric estimators can be one order of magnitude smaller than the ones of the GMD (4).

To visualize our results, we plot the corresponding density estimates in Figure 1 and find that the density estimates obtained from various parametric and nonparametric estimators are very close to each other (The only exception is GMD (1) which performs slightly less reliably than the others, probably due to the classical parameter uncertainty problem, which collaborates with our previous analysis), and reasonably close to the true density of alpha. Overall, although the traditional procedures may not be a reliable indicator to select the optimal number of fund subgroups, it will not incur to severe potential information loss using an incorrect (but not too far from the correct one, creative) number of fund subgroups, which to some extent comforts the financial economists who rely on traditional procedures to select the optimal number of fund subgroups.

3. Real data analysis: Mutual fu. 1s ar J hedge funds

In this section, we evaluate the performance of GMD (2), GMD (3) and GMD (4) in real data of the fund returns net of all management expenses and 12b-fees in two scenarios: for all U.S. mutual funds and hedge funds, respectively. We first introduce our fund data sets, employ the traditional procedures to select fund subgroups, and use both in-sample and out-of-sample likelihe all scores to forecast the density of real data of fund returns afterward. As the true density of fund returns, in reality, is unknown, we employ the scoring rule proposed by Amisano and Giaco nini (2007) to examine both the in-sample and out-of-sample performance of GMD (1), GMD (2), GMD (3) and GMD (4). Using this scoring rule, we should be able to decide the best performer among GMD (1), GMD (2), GMD (3) and GMD (4).

3.1. Data and descriptive statistics

Our data set has been used in a companion paper (i.e., Cai et a' (2',18)), and hence the descriptive statistics necessarily follow Cai et al. (2018). Our cross-scortion sample of mutual funds is similar to Ferson and Chen (2017) and Harvey and Liu (2018). To be specific, we obtain active U.S. equity mutual funds data from the Center for R search in Security Prices (CRSP) Survivor-Bias-Free Mutual Fund database for the 1984-2011 point. A Our sample period is the same as that of Harvey and Liu (2018) and Ferson and Color (2017) for comparison reasons. We exclude the index funds. To mitigate omission bias (Evan et al. (2001)) and incubation and back-fill bias (Evans (2010)), we exclude observations prior to the reported year when the mutual funds were first entered into the database, and the funds which do not report a year of organization. We only include the funds which have initial total net assets (TNA) above \$10 million and more than 80% of their holding in equity markets. To avoid the look-ahead bias, we do not exclude funds whose TNA substance. I funds with at least 8 (30) months of returns data for the 1984-2011 period.⁶

Our cross-section sample of hedge funds is similar to Ferson and Chen (2017). To be specific, we obtain U.S. equity priented hedge fund data from Lipper TASS for the 1994-2011 period. Our sample provide is the same as that of Ferson and Chen (2017) for comparison reasons. To mitigate back-fin bias, we remove the first 24 months of returns and returns dated before funds were first out red into the database, and funds with missing values in the field for the add date (Fe. son an 1 Chen (2017)). We only include those categorized for a given month as either Dedic red short bias, Event-driven, Equity market neutral, Fund-of-Funds or Long/short

⁶Similar. ⁷ F arvey and Liu (2018) and Ferson and Chen (2017) obtained a sample of 3619 and 3716 mutual funds with at least 8 months of returns over the same period, respectively. We follow Hunter et al. (2014) by using 30 months as our threshold as it adds robustness to our results.

equity hedge. Similar to the mutual fund sample, we require that a fur a los initial total net assets (TNA) above \$10 million as of the first date. These screens leave us with a sample of 3533 (2072) hedge funds with at least 8 (30) months of returns data for up 1994-2011 period.

Table 5 presents summary statistics of the mutual fund and here ge and data in our study. We find that they share similar characteristics with the data sample used in Ferson and Chen (2017). The main characteristics are listed as follows.

- The range of average returns across funds is much greater in the hedge fund sample $(-0.114 \sim 0.173)$ than that in the mutual fund samp e $(-0.09 \sim 0.06)$.
- The median of estimated alpha from our line... model for the hedge funds is positive, while for the mutual funds it is slightly negerive. The tails of the cross-sectional alpha distributions extend to larger values for the nedge funds. For example, the upper 5% tail value for the alphas in the hedge functions... The tails of funds also present different alpha distributions, with a thicker lower tail for the alphas in the hedge functions.
- The sample volatility of the mediar, hedge fund return (2.8% per month) is smaller than for the median mutual 1.71 (5.3%). The range of volatilities across the hedge funds is greater, with more mass in the lower tail. For example, between the 10% and 90% quantiles of hedge funds the volatility range is 1.2% 7.5% (1.2% 6.7% in Ferson and Chen (2017)), while here the mutual funds it is 3.6% 7.8% (4.2% 7.0%) in Ferson and Chen (2017).
- The autocorrelations of the returns are slightly higher for the hedge funds. The median autocorrelation for the hedge funds is 0.127, compared with 0.121 for the mutual funds, and son. Y of the hedge funds have substantially higher autocorrelations. The 5% left tail for the autocorrelations is -0.304 for the hedge funds, versus only -0.121 for the mutual funds.

3.2. Estimating fund alphas via a linear factor model

Before using the likelihood score methodology in Amisano and Gia omini (2007) to examine the in-sample performance of GMD (2), GMD (3) and GMD (2) we have to estimate the unobservable fund skills. For brevity, we use the one-factor market model, i.e., model (1) in the previous simulation section to illustrate our idea, but one factor may not be enough for empirically analyzing the real data sets, according to the wast of asset pricing and fund performance evaluation literature. As a result, for real ¹ or so ts, we estimate fund alpha as the measure of fund skills via various linear factor models. To be specific, for mutual funds, we consider the Fama-French-Carhart four-factor media as well as its two most famous special cases: the one-factor market model (i.e., model (1)) and the Fama-French three-factor model. The Fama-French-Carhart four-factor media convertient as below:

$$r_{it} = \alpha_i + \beta_{i1}MKT_t + \beta_{i2}SMb_t + \hat{\rho}_{i3}TML_t + \beta_{i4}MOM_t + \varepsilon_{it}, \ t = 1, \cdots, T$$
(5)

where r_{it} denotes the excess retur. of funli at time t. MKT_t , SMB_t , HML_t and MOM_t are the Fama-French-Carhart four factors, which to be specific denote the Market excess return (MKT) factor, the Small-Minus-Big (SMB) sile factor, the High-Minus-Low (HML) value factor and the Momentum (MOM) factor at time c, respectively. Different from the Fama-French-Carhart four-factor model, the Fama French three-factor model does not include the Momentum (MOM) factor, while the one fac or market model (i.e., model (1)) excludes the Small-Minus-Big (SMB) size factor, the High-Minus-Low (HML) value factor.

For hedge funce, we present the results from the analogous Fung-Hsieh seven-factor model (c.f., Fung a. d Hsich (1997, 2001)), instead of the Fama-French-Carhart four-factor model. These seven tractors (i.e., Bond Trend-Following Factor, Currency Trend-Following Factor, Commodity Trend-Following Factor, Equity Market Factor, Size Spread Factor constructed from Russell 2000 index and S&P500, Bond Market Factor and Credit Spread Factor) proposed by Fung and Hsieh (1997, 2001) are arguably more suitable for the hedge funds t'.a. the Fama-French-Carhart four factors (for a recent example, see, e.g., Criton and Scaillet 20 4)). For robustness, we have also tried the Fama-French-Carhart four-factor model and the cosults are available upon request.

3.3. Using traditional procedures to select the optimal numbe [•] of fun l subgroups from real data

Following previous simulation analysis, we follow the real (2017) and use the BIC to select the optimal number of fund subgroup from the real data sets of US mutual funds and hedge funds. The results from other traditional procedeness such as Likelihood ratio statistics (see, e.g., Harvey and Liu (2018)) and Chi-sq. area statistics Ferson and Chen (2017)) are qualitatively similar and hence we delegate the mathematical Appendix B. We present our results of BIC values over 500 replications for Scenarios 1, 2 and 3 in Table 6. To be specific, we report the BIC values when we specify two subgrades, there subgroups and four subgroups using GMD (2), GMD (3) and GMD (4) estimators. In all panels, for robustness, we use two thresholds to filter out our final sample: at least 8 n onths of returns, and at least 30 months of returns. We use the one-factor market nodel, the Fama-French three-factor model, the Fama-French Carhart four-factor model and the rung-Hsieh seven-factor model to estimate fund alpha in Panels A, B, C, and D, respectively.

Interestingly and surp. singly, BIC does not provide a consistent suggestion on the number of fund subgroups, a. i s suggestions vary from one underlying asset pricing model to another, and from one sa nple i. 'tering method to another. In Panels B, C, and D, the BIC suggests the optimal num' or rund subgroups is three if we filter our sample with at least 30 months of returns, b. t suggests at least four subgroups when we filter out our sample with at least 8 months of eturns. In Panel A, the suggested number of subgroups is reversed, as the BIC value of -21729.28 (-24721.70) is smallest for four⁷ (three) subgroups . then we filter our sample with at least 30 (8) months of returns. Overall, BIC is not a reliat 'e indicator to select the optimal number of fund subgroups. Consistent with our simulation regults, the BIC values for GMD (2), GMD (3) and GMD (4) do not differ much from each ot the potential greatly differ from that of GMD (1), no matter which scenario we look into. We further investigate the potential consequences brought by a not-so-wrong number of fund subgroup ps via both in-sample and out-of-sample likelihood score analysis.

3.4. In-sample likelihood score analysis

We first apply the likelihood score method mogy in Amisano and Giacomini (2007) to examine the in-sample performance of GML (2), CMD (3) and GMD (4).⁸ For comparison reasons, we also considered the GMD (1) with 1 (a single normal density). The in-sample likelihood score for a given density estimate $\widehat{\chi}(\alpha)$ can be computed by

$$(S_{is}(\widehat{f}(\mathbf{x})) = \frac{1}{n} \sum_{i=1}^{n} \widehat{f}(\widehat{\alpha}_{i}),$$
(6)

where $\hat{\alpha}_i$ is the OLS estimate, or and alpha for the *i*th fund, *n* is the total number of funds. In our case, n = 3026 or 255/ for antual funds and n = 3533 or 2072 for hedge funds.

Table 7 presents the vesults of the in-sample likelihood score to two real data samples

⁷Of course, in this case, + e number of fund subgroups suggested by BIC might be larger than four if we try GMD (5), GMD (6), etc. However, this issue is arguably trivial as more subgroups are not grounded in the literature and ϵ e nard to interpret with economic meaning. Hence, we do not consider this possibility in this paper.

⁸Some may <u>some</u> that in-sample analysis is not necessary here, given our strong results from latter out-ofsample analysi. We agree to disagree as many existing studies on this topic including Harvey and Liu (2018) include both in-sample and out-of-sample analyses as well.

similar to Harvey and Liu (2018) and Ferson and Chen (2017) which cover both U.S. mutual funds and hedge funds, respectively. We present the values of likelihood core when we specify one subgroup, two subgroups, three subgroups and four subgroups using GMD (1), GMD (2), GMD (3) and GMD (4), respectively.⁹ It is clear in Table 7 that the likelihood scores for GMD (2), GMD (3) and GMD (4) do not differ much from each other while all of them differ substantially from that of GMD (1), which reaffirms our previous simulation results that the information loss is trivial no matter whether using GME (2), GMD (3) or GMD (4).

For instance, after estimating alphas via the Fama-Fre. ch-Carhart four-factor model from the sample of mutual funds with at least 8 (30) arona of return data, in Panel C we find that the likelihood scores of GMD (2), GMD (5, or GMD (4) (i.e., 108.1890, 109.2931 and 109.4282, respectively) are much larger than that of GMD (1), being 88.2091. The likelihood only increases by about 1% (i.e., 109.2931/10° 1c90-1) when we specify three subgroups (i.e., using GMD (3)) instead of two subgroups (i.e., using GMD (2)), and only further increases by less than 0.1% (i.e., 109.4282/109.2021-1) when we specify four subgroups (i.e., using GMD (4)) instead of three subgroups (i.e., usin g GMD (3)). This finding becomes stronger if we use the threshold of 8 months instead of ?0 months to filter out our final sample, and the results obtained from different factor models in Panels A and B are qualitatively similar to the ones in Panel C.

⁹Different from the f_{mu}^{1} tion analysis, we add the special case of one subgroup via GMD (1) for two reasons. i) to have something to con_{F} or , with the results obtained from GMD (2), GMD (3) or GMD (4), although it is not the focus of this parer. ii) Fe ison and Chen (2017) note that "The approach here also generalizes studies such as Kosowski et al. (2006); rama and French (2010), who bootstrap the cross-section of mutual fund alphas. In those studies, all of the inferrances are conducted under the null hypothesis of zero alphas, so there is only one group of funds. The current approach also accounts for multiple hypothesis tests, but allows that some of the funds have nonzero alphas."

Despite a much shorter sample length, the results in Panel D obtain (a from our sample of U.S. hedge funds are also qualitatively similar to the ones obtained from our sample of U.S. mutual funds above. In general, if we use 30 months as the threshold, the likelihood scores of GMD (2), GMD (3) or GMD (4) (i.e., 62.7366, 62.7479 and 64 534 °, respectively) are much larger than that of GMD (1), which is 50.3654. The likelihood increases by only about 0.01% (i.e., 62.7479/62.7366-1) when we specify three subgroup. (i.e., 1sing GMD (3)) instead of two subgroups (i.e., using GMD (2)), and further increases by only 3% (i.e., 64.6349/62.7479-1) when we specify four subgroups (i.e., using GMD (4)) instead of three subgroups (i.e., using GMD (3)). Again, this finding becomes much stronger if we use the threshold of 8 months instead of 30 months to filter out our final sample.

It is noteworthy that to stay on the conservative side we have not used any penalty factor to deal with the parameter uncertainty provider in the above analysis, i.e., we did not take the increased number of estimable parameters (parameter uncertainty) into consideration. The benefit regarding increased likelihood accore brought by a specification of more fund subgroups, should be of a smaller magnitude if we take into account the parameter uncertainty (i.e., the increased number of estimable parameters). In untabulated results which are available from the authors upon request, y is find supportive evidence using the cross-validation method.

3.5. Out-of-sample like in d score analysis

To evaluate the value sample (oos) performance of those above-mentioned density estimators, we fir t divide the whole sample into two sub-samples. The first sub-sample (insample) contains n_1 observations, which are used to estimate the density. The second subsample (out-ef-sample) contains the rest of $n - n_1$ observations to validate the estimated density. According to Cheng et al. (2017), for a given density estimator $\hat{f}(\alpha)$, the out-of-sample

ACCEPTED MANUSCRIPT

likelihood score of Amisano and Giacomini (2007) can be written as bel M

$$LS_{oos}(\widehat{f}(\alpha)) = \frac{1}{n - n_1} \sum_{i=1}^{n - n_1} \widehat{f}(\widehat{\alpha}_i),$$
(7)

where n_1 is the size of in-sample for density estimation, $\hat{\alpha}_i$ the ord ary least squares estimator of fund alpha for the *i*th fund, and *n* the total number of unds. For brevity we only report three choices of n_1 , which are respectively n/3, n/2 and 2n/3. For instance, when we let n_1 equal n/3, n/2 and 2n/3 and use 30 months as the threshold of eout-of-sample length is 1705 (1381), 1279 (1036) and 852 (691) for mutual (he loc) for ds, respectively.

Table 8 presents the results from applying the attractmentioned out-of-sample likelihood scores to the mutual funds and hedge funde data sets. We can see that the out-of-sample performance of GMD (1), GMD (2), GMD (3) and GMD (4) has a similar pattern to their insample performance. For all our samples of neutral funds and hedge funds, no matter what value n_1 takes (n/3, n/2 or 2n/3), GMD (2), GMD (3) and GMD (4) have similar performance, far better than that of GMD (1). Taking the sample of hedge funds with at least 30 months of returns data as an example, when n_1 equals n/3 and the out-of-sample length is 1381, the out-of-sample likelihood scores to. C MD (1), GMD (2), GMD (3) and GMD (4) are 46.6932, 62.3785, 63.0389 and 63.3135, respectively. When n_1 equals 2n/3 and the out-of-sample length is 691, the out-of-sample likelihood scores for GMD (1), GMD (2), GMD (3) and GMD (4) are 46.6932 (4) are 49.0155, 60 +667, 61.9320 and 61.9059, respectively.

4. Concluding marls

The Gau <u>rian</u> insture Distribution (GMD) approach has recently become increasingly popular in deverting the number of fund subgroups prior to performance evaluation, while it is surprising that no rigorous statistical analysis has been conducted to examine the information loss of this model. This paper presents evidence that the traditional procedures do not always select the correct number of fund subgroups, and we use both Monte Callo simulations and real data sets to evaluate the possible information loss in the GMD approach due to model misspecification and parameter uncertainty. We find that parameter uncertainty is more important than model misspecification when using GMD, since the information loss (in terms of mean validity, density validity and reliability under three scenarios) is smallest when there are the fewest parameters to be estimated, not when the number of GMD components is correctly specified. Our results stress the importance of parameter uncertainty, which echoes the portfolio selection literature on the same problem (Brown (1977); Jobson and Korkie (1980); Jorion (1986); Garlappi et al. (2006); DeMiguel et al. (2007), Yan and Zhang (2017)).

There are, of course, caveats to our analysis. 'deally, we need an economic or financial theory that captures the evolution of fund subgroups in the absence of such a generally accepted theory, we rely on statistical and econome in tools to gauge the number of fund subgroups within both simulated and real data. Regarding real data, we follow the mainstream literature and focus on U.S. equity mutical funds and U.S. equity-oriented hedge funds given the lion's share of their market size. In this paper, we consider neither pension funds, bond mutual funds, nor funds in other develored and emerging markets, which is a fruitful direction for future research. Althour, we did not look into every possible data generating process and econometric tool, we believe that our results cannot be easily qualitatively altered given their current robustness and the information loss in the GMD model is less than theories lead one to believe. Albeit of in yo can e, in this paper, we did not try to introduce the concepts of Order Statistics or the 'lootstap methodology to differentiate fund subgroups by luck and skill, since these have been investigated in companion studies (Cheng and Yan (2017); Cai et al. (2018); Zhang and Yan (2018)). There are surely other exciting related questions to ask, since this area is of 'by ous importance and far from completed.

ACCEPTED MANUSCRIPT

Reference

- Abramson, I. S. (1982), 'On bandwidth variation in kernel estimates-a _____ are root law', *Annals of Statistics* **10**(4), 1217–1223.
- Amisano, G. and Giacomini, R. (2007), 'Comparing density for scales via weighted likelihood ratio tests', *Journal of Business & Economic Statistics* **25**(2), 177–190.
- Bajgrowicz, P. and Scaillet, O. (2012), 'Technical trading revisited False discoveries, persistence tests, and transaction costs', *Journal of Financial Conomics* **106**(3), 473–491.
- Bajgrowicz, P., Scaillet, O. and Treccani, A. (2015), Jumps in high-frequency data: Spurious detections, dynamics, and news', *Management Science* C⁽⁸⁾, 2198–2217.
- Barras, L., Scaillet, O., Wermers, R. et al. (2010), 'E.'se all veries in mutual fund performance: Measuring luck in estimated alphas', *Journal of Final ce* **65**(1), 179–216.
- Bhattacharyya, A. K. (1943), 'On a measure of divergence between two statistical populations defined by their probability distributions' *Bulletin of the Calcutta Mathematical Society* **35**, 99–109.
- Breiman, L., Meisel, W. and Purcell, E. (1977). 'Variable kernel estimates of multivariate densities', *Technometrics* **19**(2), 135–144.
- Brown, S. (1979), 'The effect of stink tion risk on capital market equilibrium', *Journal of Financial and Quantitative Analy* is **14**(2), 215–220.
- Cai, B., Cheng, T. and Yan, C. 20' 8), 'Time-varying skills (versus luck) in U.S. active mutual funds and hedge funds', *Jc arn.*,' *of Empirical Finance* **49**(12), 81–106.
- Carhart, M. M. (1997), 'On persistence in mutual fund performance', *Journal of Finance* **52**(1), 57–82.
- Chen, X., Ponomarev, M. and Tamer, E. (2014), 'Likelihood inference in some finite mixture models', *Journal of Econometrics* **182**(1), 87–99.
- Chen, Y., Cliff, M. and Zhao, H. (2017), 'Hedge funds: The good, the bad, and the lucky', *Journal of Fin ncial c nd Quantitative Analysis* **52**(3), 1081–1109.
- Cheng, T., C 10, J. and Zhang, X. (2017), 'Semiparametric localized bandwidth selection in kernel del sity es imation', *Econometric Reviews* forthcoming.
- Cheng, T. 'nu, C. (2017), 'Evaluating the size of the bootstrap method for fund performance evaluation, *Economics Letters* **156**(7), 36–41.
- Criton, G. and Scaillet, O. (2014), 'Hedge fund managers: Luck and dynamic assessment', *Bankers, Markets & Investors* **129**(3-4), 28–38.

- DeMiguel, V., Garlappi, L. and Uppal, R. (2007), 'Optimal versus naive a ersification: How inefficient is the 1/N portfolio strategy?', *Review of Financial Studies* **??**(5), 1915–1953.
- Elton, E. J., Gruber, M. J. and Blake, C. R. (2001), 'A first look at the acwracy of the CRSP mutual fund database and a comparison of the CRSP and Morningsta. mutual fund databases', *Journal of Finance* **56**(6), 2415–2430.
- Evans, R. B. (2010), 'Mutual fund incubation', *Journal of Finance* 5(4), 1581–1611.
- Fama, E. F. and French, K. R. (2010), 'Luck versus skill in the cross-section of mutual fund returns', *Journal of Finance* **65**(5), 1915–1947.
- Ferson, W. and Chen, Y. (2017), 'How many good and bus fur I managers are there, really?', *University of Southern California working paper*.
- Fung, W. and Hsieh, D. A. (1997), 'Empirical characteristic of dynamic trading strategies: The case of hedge funds', *Review of Financial Studies* **10**(?), 275–302.
- Fung, W. and Hsieh, D. A. (2001), 'The risk in heize fund strategies: Theory and evidence from trend followers', *Review of Financial Scilars* **.4**(2), 313–341.
- Garlappi, L., Uppal, R. and Wang, T. (2065), 'Portfolio selection with parameter and model uncertainty: A multi-prior approach.' *Revie* v of *Financial Studies* **20**(1), 41–81.
- Hansen, B. E. (2008), 'Uniform convergence rates for kernel estimation with dependent data', *Econometric Theory* **24**(03), 726-748.
- Harvey, C. R. and Liu, Y. (2018), 'Detecting repeatable performance', *Review of Financial Studies* **31**(7), 2499–2552.
- Hunter, D., Kandel, E., Kandel, S. and Wermers, R. (2014), 'Mutual fund performance evaluation with active peer benchnarks', *Journal of Financial Economics* **112**(1), 1–29.
- Jobson, J. D. and Korki :, B (1980), 'Estimation for markowitz efficient portfolios', *Journal of the American Statistical Association* **75**(371), 544–554.
- Jorion, P. (1986), 'Baye J-stean estimation for portfolio analysis', Journal of Financial and Quantitative Analysis' 21(3), 279–292.
- Kosowski, R., Tii. merr ann, A., Wermers, R. and White, H. (2006), 'Can mutual fund "stars" really pick stock? New evidence from a bootstrap analysis', *Journal of Finance* **61**(6), 2551–2595.
- Kullback, S. e. Leibler, R. A. (1951), 'On information and sufficiency', *The annals of mathematical st. tistics* **22**(1), 79–86.
- Marron, J. and Wand, M. (1992), 'Exact mean integrated squared error', *Annals of Statistics* **20**(2), 712–736.

ACCEPTED MANUSCRIPT

- Pittau, M. G., Zelli, R. and Massari, R. (2016), 'Evidence of convergence dubs using mixture models', *Econometric Reviews* **35**(7), 1317–1342.
- Scaillet, O., Treccani, A. and Trevisan, C. (2018), 'High-frequency junn,' analysis of the bitcoin market', *Journal of Financial Econometrics* forthcoming.
- Silverman, B. W. (1986), Density Estimation for Statistics ar 1 D .ta Analysis, Chapman & Hall/CRC, London.
- Yan, C. and Zhang, H. (2017), 'Mean-variance versus naïve diversification: The role of mispricing', *Journal of International Financial Markets, Institution and Money* **48**(5), 61–81.
- Zhang, H. and Yan, C. (2018), 'A skeptical appraisal of the boo strap approach in fund performance evaluation', *Financial Markets, Institutions and Astronomy* **27**(2), 49–86.

23

Figure 1: **Graphical performance of density estimators.** Density estimates by *a* . rive kernel estimator, global kernel estimator, GMD (2), GMD (3) and GMD (4) in Scenario 1, Scenario 2 and Scen. io 3 based on one replication path.

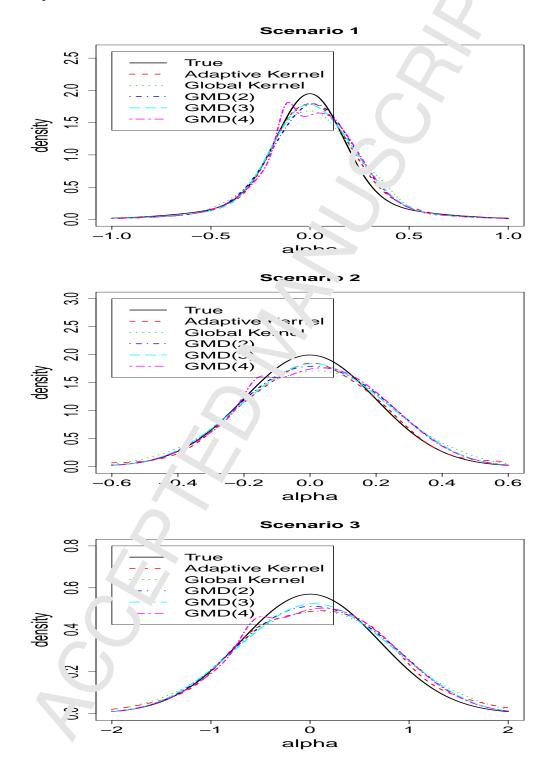


Table 1: **Summary of Density estimators.** The first column presents the five densit, "stimators used in this paper, including adaptive kernel density estimator, global kernel density estimator, GMD (2), "MD (3) and GMD (4). The second column summarizes the unknown estimable parameters involved ir ea h estimator.

Density estimators	Unknown para. reters
GMD (2)	
GMD (2) GMD (3)	$\pi_1, \mu_1, \mu_2, \sigma_1, \cdots$
	$\pi_1, \pi_2, \mu_1, \iota_2, \mu_3, \sigma_1, \sigma_2, \sigma_3$
GMD (4) Global kernel estimator with fixed bandwidth	$ \begin{array}{c} \pi_1, \tau_{2}, \pi_{3}, u_1, \mu_2, \mu_3, \mu_4, \sigma_1, \sigma_2, \sigma_3, \sigma_4 \\ h \end{array} $
Adapative kernel estimator with variable bandwidth	n b
	<u> </u>
v	

Table 2: **Generation of alpha in the simulation study.** Based on a CAPM-type of sin', factor model, we considered the following three representative scenarios for the generation of α_i , for $i = 1, 2, \dots, N$. In Scenario 1, we generate alpha from a mixture of two Gaussian distributions, which follows Table 1 C Harvey and Liu (2018). In Scenario 2, we generate alpha from a mixture of three Gaussian distributions, thick follows Panel C of Table IV of Ferson and Chen (2017). In Scenario 3, we generate alpha from a mixture of α_i from a mixture of α_i and α_i for α_i and α_i for α_i and α

Scenario	Simulated distribution for alpha
	$0.283N(-0.02277/12, 1.513^2/12) + 0.717N(-0.0(585/12, 0.586^2/12))$
Scenario 2	$0.507N(0, 0.2^2) + 0.069N(-0.0003, 0.2^2) + 424N(-0.002, 0.2^2)$
Scenario 3	$0.1N(0.01, 0.7^2) + 0.4N(0.003, 0.7^2) + (.4N(^{0}0.7^2) + 0.1N(-0.01, 0.7^2))$

Table 3: **BIC model selection results for simulated data.** This table reports mear f BIC values over 500 replications for GMD (2), GMD (3) and GMD (4) estimators with the corresponding frequency of being selected in parentheses.

Scenario	GMD (2)	GMD (3)	GMD (4)
Scenario 1	691.4137 (489/500)	710.5049 (8/500`	722 4898 (3/500)
Scenario 2	369.3813 (481/500)	390.5060 (18/500)	412.2884 (1/500)
Scenario 3	811.6118 (492/500)	831.3073(8/デJU)	851.5021 (0/500)

Table 4: **Performance of density estimators.** In Panel A, we present the results of r, an validity, that is, the bias(×10³) of estimated mean parameter of alpha resulted from adaptive kernel estimator, gloc⁻¹ kernel estimator, GMD (2), GMD (3) and GMD (4) based on 200 grid points when $(N, T) = (400, 2^{c} \circ)$. In Panel B and Panel C, we respectively present the results of density validity in terms of MISE and reliabi⁻¹ ty ir terms of SDISE resulted from the above five density estimators. In Panel A, we report the value of bias×10³ to a reader-friendly.

Panel A: Mean Validity								
Scenario	Criteria	Adaptive Kernel	Global Kernel	G™Ɗ (∠,	GMD (3)	GMD (4)		
Scenario 1	Bias	0.998830	0.998830	0999055	0.999249	1.002212		
Scenario 2	Bias	0.751167	0.751167	0., 51628	0.751840	0.755070		
Scenario 3	Bias	2.630384	2.630384	2 220893	2.634982	2.640672		
		Panel H	B: Density Valia	Lý T				
Scenario		Adaptive Kernel	Global Kernei	GMD (2)	GMD (3)	GMD (4)		
Scenario 1	MISE	0.003435	0.000141	003437	0.007097	0.013260		
Scenario 2	MISE	0.006366	0.00>101	0.008427	0.016075	0.026933		
Scenario 3	MISE	0.000716	0 000002	0.000721	0.001379	0.002320		
		Pane	el C: Relial ility					
Scenario		Adaptive Kernel	Gir har menel	GMD (2)	GMD (3)	GMD (4)		
Scenario 1	SDISE	0.002569	6.703728	0.004004	0.007079	0.027509		
Scenario 2	SDISE	0.004053	C 906106	0.010818	0.014136	0.025306		
Scenario 3	SDISE	0.00047	7.000522	0.001023	0.001227	0.002160		

28

Table 5: **Summary statistics.** Monthly returns are summarized for mutual funds (tor , anel) and hedge funds (bottom panel), measured in excess of the one-month return of a three-month Treasury bin. The values at the cutoff points for various quantiles of the cross-sectional distributions of the sample of . unds are reported. Each column is sorted on the statistic shown. Nobs is the number of available monthly eturns, where for the left top (and left bottom) panel, there is no restriction while a minimum of 30 are required is " the right top (and right bottom) panel. Mean is the sample mean return, Std the sample standard deviation of return, and Rho1 the first order sample autocorrelation. The alpha estimates are based on OLS regressions using the Fama-French-Carhart four factors (Carhart (1997)) for mutual funds, while the Fung-Hsieh seven f ctor. (Fung and Hsieh (1997, 2001) are used for the hedge funds.

Quantiles		Mutual f	unds (fu	ll sample	e)	Muran funds (minimum 30 obs)				
Quantiles	Nobs	Mean	Std	Rho1	$\widehat{\alpha}_{ols}$	Joh,	Mean	Std	Rho1	$\widehat{\alpha}_{ols}$
Тор	335	0.060	0.512	0.688	0.032	335	0.060	0.512	0.688	0.024
1%	333	0.021	0.117	0.406	0.008	505	0.018	0.114	0.361	0.008
5%	263	0.013	0.088	0.303	0.004	277	0.012	0.087	0.284	0.004
10%	223	0.010	0.078	0.254	0.005	232	0.010	0.077	0.243	0.003
20%	178	0.008	0.069	0.207		190	0.007	0.068	0.205	0.001
30%	149	0.006	0.062	0.172	0.001	163	0.006	0.062	0.173	0.001
Median	97	0.004	0.053	0.121	-0 JUU	118	0.004	0.054	0.127	-0.000
30%	53	0.002	0.046	0.0(?	-L 001	76	0.002	0.047	0.079	-0.001
20%	38	-0.000	0.042	0.026	-002	58	0.001	0.043	0.049	-0.002
10%	22	-0.003	0.036	-6:-57	0.003	44	-0.002	0.038	0.000	-0.003
5%	13	-0.008	0.030	-0.121	-0.005	38	-0.004	0.034	-0.052	-0.005
1%	9	-0.023	0.018	287	-0.010	32	-0.010	0.022	-0.149	-0.009
Bottom	8	-0.090	ب 0.0C	-0.6 27	-0.141	31	-0.035	0.004	-0.551	-0.049
Quantiles		Hedge f	und / (fu	n_?.nple		Hedge funds (minimum 30 obs)				
Quantiles	Nobs	Mean	St .	Rho1	$\widehat{\alpha}_{ols}$	Nobs	Mean	Std	Rho1	$\widehat{\alpha}_{ols}$
Тор	192	0.173	0.6>	0.814	0.868	192	0.051	0.324	0.814	0.045
1%	172	0.026	∩ 173	0.579	0.024	182	0.021	0.156	0.584	0.020
5%	126	0.014	8<0.0	0.457	0.012	147	0.012	0.090	0.479	0.011
10%	102	0.′,09	0.075	0.390	0.008	124	0.009	0.071	0.409	0.008
20%	73	0.0u ⁺	0.053	0.296	0.005	96	0.006	0.052	0.323	0.005
30%	56	0.034	0.042	0.234	0.004	78	0.004	0.042	0.265	0.004
Median	38	° 001	0.028	0.127	0.002	57	0.002	0.029	0.170	0.002
30%	24	-0.002	0.020	0.009	-0.000	46	-0.000	0.022	0.078	0.000
20%	. 6	-0.)05	0.016	-0.072	-0.001	40	-0.002	0.018	0.021	-0.001
10%	11	5.011	0.012	-0.188	-0.004	36	-0.005	0.014	-0.071	-0.003
5%	8	-0.018	0.009	-0.304	-0.009	33	-0.008	0.010	-0.133	-0.006
			~ ~ ~ =	0 = 1 0	0 00 4	0.1	0.010		0 00 4	0 01 4
1% Botto. (3	-0.043 -0.114	0.005 0.000	-0.518 -0.794	-0.024 -1.513	31 31	-0.018 -0.038	0.007 0.001	-0.284 -0.492	-0.014 -0.031

Table 6: **BIC model selection results for real data.** Panel A, B and C report the BIC τ_{a} we to the real data set of U.S. mutual funds with a sample similar to Ferson and Chen (2017); Harvey and Liu (2c ' 8), while Panel D presents the counterpart results from the real data set of U.S. hedge funds with a τ_{a} in le similar to Ferson and Chen (2017). In all panels, for robustness we use two thresholds to filter out our for al τ_{a} mple: at least 8 months of returns, and at least 30 months of returns. We use the one-factor market modal, the Tama-French three-factor model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor τ_{a} added to estimate fund alpha in Panel A, B, C and D, respectively. We present the BIC values when we specify one subgroup, two subgroups, three subgroups and four subgroups using GMD (1), GMD (2), GMD (3) and GM τ_{a} (4), respectively. The selected specifications are in bold.

D 1 1										
Real data sample	n	GMD (1)	G (2)	GMD (3)	GMD (4)					
Panel A: Mutual funds via the one far or narket model										
Mutual funds with at least 8 obs	3026	-23382.27	? ,633.67	-24721.70	-24715.99					
Mutual funds with at least 30 obs	2557	-21054.07	-21673.89	-21666.05	-21729.28					
Panel B: Mutual f	unds vi	a the Fama पा	er ch three-fac	tor model						
Mutual funds with at least 8 obs	3026	-23386.16	-25225.93	-25240.73	-25383.28					
Mutual funds with at least 30 obs	2557	-2_480.77	-22135.80	-22188.04	-22167.64					
Panel C: Mutual func	ls via th	e Fama-Fionc	h-Carhart four	-factor model						
Mutual funds with at least 8 obs	3026	38.89د 2? –	-25123.16	-25367.55	-25384.46					
Mutual funds with at least 30 obs	2557	-21587.96	-22246.82	-22282.35	-22263.22					
Panel D: Hedge funds via 'he Fung-Hsieh seven-factor model										
Hedge funds with at least 8 obs	3552	-1839.24	-21881.95	-22651.32	-22772.75					
Hedge funds with at least 30 obs	2072	15143.04	-15725.49	-15719.51	-15719.47					

Table 7: **In-sample likelihood score comparison for real data.** Panel A, B and C prese. the results when apply the well-known likelihood score methodology in Amisano and Giacomini (2007) to the real dat. set of U.S. mutual funds with a sample similar to Ferson and Chen (2017) and Harvey and Liu (2018), wile Panel D presents the counterpart results from the real data set of U.S. hedge funds with a sample similar to erson and Chen (2017). In all panels, for robustness we use two thresholds to filter out our final sample: at rest 8 months of returns, and at least 30 months of returns. We use the one-factor market model, the Fama-Franch three-factor model and the Fung-Hsieh seven-factor model at to estimate fund alpha in Panel A, B, C and D, respectively. We present the values of in-sample likelihood score when we specify one subgroup, two subgroups, three subgroups and four subgroups using GMD (1), GMD (2). GML (3) and GMD (4), respectively.

Real data sample	n	GMD (1)		GMD (3)	GMD (4)				
Panel A: Mutual fu	Panel A: Mutual funds via the one-fa tor incrket model								
Mutual funds with at least 8 obs	3026	63.4261	84 062	86.8392	87.2844				
Mutual funds with at least 30 obs	2557	79.3837	5.3619°	96.1793	97.9721				
Panel B: Mutual funds	s via the	e Fama-ר. יי	chree-fac	tor model					
Mutual funds with at least 8 obs	3026	65.3317	94.3219	97.1321	98.5232				
Mutual funds with at least 30 obs	2557	6-2100	106.1217	107.9068	108.0082				
Panel C: Mutual funds via	the Fa	ma-French-	Carhart four	-factor mod	el				
Mutual funds with at least 8 obs	3026	59.3210	94.7754	98.5811	99.2925				
Mutual funds with at least 30 obs	255	8` 2091	108.1890	109.2931	109.4282				
Panel D: Hedge fund	Panel D: Hedge funds via the Fung-Hsieh seven-factor model								
Hedge funds with at least 8 obs	3243	8.4653	37.1801	43.4041	43.8901				
Hedge funds with at least 30 obs	2072	50.3654	62.7366	62.7479	64.6349				

Table 8: **Out-of-sample likelihood score comparison for real data.** Panel A, B, and C $_{\rm F}$ -sent the results when apply the well-known likelihood score methodology in Amisano and Giacomini (2007) to $\dot{_{\rm C}}$ areal data set of U.S. mutual funds with a sample similar to Ferson and Chen (2017) and Harvey ar $_{\rm d}$ L $_{\rm d}$ (2018), while Panel D presents the counterpart results from the real data set of U.S. hedge funds with ϵ sample similar to Ferson and Chen (2017). In all panels, for robustness, we use two thresholds to filter out our final panel: at least 8 months of returns, and at least 30 months of returns. We use the one-factor market model, $\dot{_{\rm L}}$ are French three-factor model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven- actor model to estimate fund alpha in Panel A, B, C, and D, respectively. We present the values of out-of-sample keli lood score when we specify one subgroup, two subgroups, three subgroups and four subgroups using GMD (1), $\dot{_{\rm M}}$ D (2), GMD (3) and GMD (4), respectively.

Real data sample	$n-n_1$	GMD (1)	G" (2)	GMD (3)	GMD (4)
Panel A: Mutual f	unds via	the one-fac	rm .rket i	nodel	
Mutual funds with at least 8 obs	2017	66.3361	86.7579	88.4501	88.5952
	1513	66.8074	35.0836	86.6306	86.9012
	1009	66. ₄ _14	82.7363	82.9075	84.1940
Mutual funds with at least 30 obs	1705	72.0077	96.0531	98.0006	97.6183
	1279	76.J.294	95.0133	97.3747	97.7754
	852	10.1277	94.9824	96.8780	97.6143
Panel B: Mutual fund	s via ⁄ʰe	Fa na-Fren	ch three-fact	tor model	
Mutual funds with at least 8 obs	2017	73.3779	98.4090	99.2168	99.3773
	1.13	75.6775	96.0021	97.9590	97.9618
	ל100	74.0500	92.3150	94.3411	94.3026
Mutual funds with at least 30 obs	1705	80.3043	107.2863	107.3153	108.3281
	12 '9	83.4818	106.0315	107.4896	107.0795
	2ر ۲	84.9855	104.5311	106.2564	105.8741
Panel C: Mutual fr ads vi	a the Far	na-French-O	Carhart four	factor mode	el
Mutual funds with at least 3 or.	2017	73.5300	99.7986	101.0600	101.0935
	1513	75.9806	97.4218	98.8737	98.9133
	1009	73.4680	92.7965	94.6067	94.6055
Mutual funds with at leas 30 obs	1705	82.8348	109.2539	110.1331	110.1930
	1279	85.8566	107.7597	109.0251	109.0295
	852	87.3349	105.8908	107.3995	107.4310
Panel): Fedge fund	ls via the	e Fung-Hsiel	h seven-facto	or model	
Hedge funds v ith at least 8 obs	2355	11.9880	38.4978	44.2847	44.5295
	1767	10.7027	38.6438	43.1439	43.4138
	1178	10.3157	36.2571	39.6653	39.8822
Hedge fur ds with at least 30 obs	1381	46.6932	62.3785	63.0389	63.3135
	1036	48.6866	62.1095	62.8484	62.9377
	691	49.0155	60.4667	61.9320	61.9059
					-

ACCEPTED MANUSCRIPT

Appendix A

This appendix briefly introduces three density estimators: the Conssian Mixture Distribution (GMD) estimator, the global kernel density estimator, and the adaptive kernel density estimator.

GMD is one of the most common parametric estimator: in Ecohomics, and it can provide a natural representation of heterogeneity in a finite number of latent classes (see Chen et al., 2014). If fund alpha α is deemed to be generated from a maxture (weighted average) of k Gaussian distributions, the corresponding GMD (k) entimetor of x is:

- -

$$\widehat{f}_{GMD(k)}(\alpha) = \sum_{i=1}^{\infty} \pi_i f_i(\alpha), \qquad (8)$$

where $f_i(\alpha) = (2\pi\sigma_i)^{-1/2} \exp\left\{-\frac{(\alpha-\mu_i)^2}{2\sigma_i^2}\right\}$, $\gamma > 0$, π_i are weights satisfying $\pi_i > 0$ and $\sum_{i=1}^k \pi_i = 1$. Empirically, GMD is almost always an approximation of the true density as the components are unlikely to be normal, especially in F nance. Although a few papers argue that GMD can capture a large domain of non normal complex distributions even when the number of Gaussian components, k, is sma¹. (e.g., "arron and Wand (1992)), the use of GMD suffers from two aspects regarding the choice of k: model misspecification and parameter uncertainty. On the one hand, since the true value of k is unobservable and may not be an integer (if not non-existent) in real data, it is not uncommon to mis-specify the GMD estimator with a wrong choice of k, since the extent studies mainly rely on traditional procedures to pick up a reasonably small intege. For instance, Harvey and Liu (2018), Ferson and Chen (2017) and Chen et al. (2017) only rely on a Likelihood Ratio (LR) test, a Chi-squared test and a Bayesian Information C integer of components k. However, this test does not have sufficient power to reject the hypothesis of the number of components smaller than that in the true model when

the components largely overlap. On the other hand, a GMD (k) estimato $1k \le 3k - 1$ unknown parameters to be estimated, which increases at k as we have made it clear in Table 1. The larger k is, the more estimation errors occur, and the larger the parameter uncertainty problem. Albeit these reasonable and probable doubts, the existence and tragnitude of information loss due to these two concerns remain unclear.

To answer this question, we do not only focus on the valiation of information loss within the specified GMD (k) estimators, but also compare then with a otential competitors which alleviate the above two concerns and better capture the distribution of alphas. Nonparametric estimators are of special interests for these purposes: (2) we can establish the uniform consistency results for kernel density estimators (see Hansen, 2008) and their performance is super robust due to their nonparametric nature and hence car casily beat their parametric counterparts in the presence of misspecification; ii) usually they suffer the least from the parameter uncertainty problem as they only require one parameter (candwidth) to be estimated. There are two basic nonparametric kernel density estimators: global kernel estimator with fixed bandwidth, and adaptive kernel estimator with variable bindwidth. For a random sample $\alpha_1, \alpha_2, \dots, \alpha_n$ drawn from a density $f(\alpha)$, the globation kernel density estimator is as follows:

$$\hat{f}_{global}(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{\alpha - \alpha_i}{h}\right),\tag{9}$$

where $K(\cdot)$ is the G assian 'ternel function without loss of generality and h is bandwidth satisfying that $h \to \sigma$ as $r \to \infty$. Observe that $\frac{1}{h}K\left(\frac{\alpha-\alpha_i}{h}\right)$ is actually the density function for the Gaussian distribution with mean α_i and variance h^2 . Therefore, the above kernel density estimator can be regarded as a location-mixture of n Gaussian distributions and the Gaussian component dimensions have a common variance (denoted as h^2) and individual mean values. Unlike the traditional GMD (k) estimator with 3k - 1 unknown estimable parameters, there is only one parameter h to be estimated in the nonparametric global kernel density estimator. Besides the above global kernel density estimator with fixed bandwind we also consider the sample-point adaptive kernel estimator with variable bandwidth, which was first introduced by Breiman et al. (1977) and nests the global kernel density or as a special case. The functional form of the sample-point adaptive kernel estimator i

$$\widehat{f}_{adaptive}(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_i} K\left(\frac{\alpha - i}{h_i}\right), \tag{10}$$

where $h_i = h(\alpha_i)$ is a function of α_i . Note that the adaptive "ternel density estimator can also be regarded as a mixture of *n* Gaussian densities but each *C* aussian density component has its own variance (denoted as h_i^2) and individual mean value. Without loss of generality, we simply let $h_i \propto f(\alpha_i)^{-1/2}$, and Abramson (1982) suggest unat this adaptive choice outperforms the fixed bandwidth estimator $\hat{f}_{global}(\alpha)$ in general.

ACCEPTED MANUSCRIPT

Appendix B

Likelihood ratio test

The likelihood ratio statistic is commonly used to compare the goodness of fit of two statistical models, one of which (the null model) is a special case on the other (the alternative model). Let L_0 and L_1 denote the likelihood function evaluated at the model estimates for M_0 and M_1 , respectively. Following Harvey and Liu (2(18), we compute the likelihood-ratio statistic by

$$LR = -2(\log L_0 - \log^{-1}), \tag{11}$$

When M_1 significantly outperforms M_0 , LR will be large and positive. Therefore, a large likelihood ratio statistic provides evidence agains. M_0 . We present our results for the simulated data and real data in Table 9 and Table 10, hep-ctively.

Similar to the fund subgroup selection results using BIC, in all three simulated scenarios the Likelihood ratio test suggests is to select GMD (2) as GMD (2) beats GMD (3) and GMD (4) in at least 87.4% (=437/50 μ in Scenario 2) cases. In other words, the Likelihood ratio test does not always select the right number of fund subgroups. In real data analysis, the Likelihood ratio test also does not provide consistent suggestion on the number of fund subgroups, as its suggestion varies from one underlying asset pricing model to another, and from one sample filtering method to ϵ nother.

Chi-squared test

Following Ferson and Chen (2017), we employ the Pearson Chi-squared statistic below as one of the cuitoria for density estimation of fund alphas.

$$\chi^2 = \sum_{i=1}^{K} \frac{(O_i - M_i)^2}{O_i},$$
(12)

where the sum is over K cells, O_i is the frequency of OLS estimated fund a_{1k} has that appear in cell i in the data sample, and M_i is the frequency of fund alphas that appear in cell i using a certain density estimation method. The null hypothesis is that the wreached frequencies from the density estimation method match those of the data sample. In specifications, we choose K cells, with the cell boundaries set so that an approximately equival number of fund alphas in the data sample appear in each cell. Since in our simulated data we can have 400 funds which is much less than the two thousand funds in Ferson and Chemical (ne., 40 fund alphas in each cell). In real data analysis, we set K = 101 to roughly maintain consistency with Ferson and Chemical (2017). We present our results for the simulate ' data and real data in Table 11 and Table 12, respectively. The results are consistent with comprovious results using BIC and the Likelihood ratio test.

Table 9: Likelihood ratio model selection results for simulated data. This table reports the results of three likelihood ratio tests, (i) $H_0 : \alpha \sim GMD(2)$ against $H_1 : \alpha \sim GMD(3)$; (ii) $H_0 : \alpha \sim GMD(2)$ against $H_1 : \alpha \sim GMD(4)$; (iii) $H_0 : \alpha \sim GMD(3)$ against $H_1 : \alpha \sim GMD(4)$. Panel A and B respectively present the frequency of each density estimator being favored for each of the above test under 5% and 1% ovel of significance.

Scenario	GMD (2)	VS GMD (3)	GMD (2)	VS GMD (4)	$\overline{(MD(3))}$	VS GMD (4)			
	GMD (2)	GMD (3)	GMD (2)	GMD (4)	(3) MD	GMD (4)			
Panel A: 5% significance leve?									
Scenario 1	452	48	438	62	418	82			
Scenario 2	437	63	448	52	407	93			
Scenario 3	439	61	445	55	408	92			
		Panel B:	1% signific	ar e ievel					
Scenario 1	482	18	478	22	472	28			
Scenario 2	473	27	480	0 ر	465	35			
Scenario 3	475	25	482	18	467	33			

Table 10: Likelihood ratio model selection results for real data. Panel A, B and C $r_{f_{r}}$ rt the LR test statistics to the real data set of U.S. mutual funds with a sample similar to Ferson and Chen (201,). Harvey and Liu (2018), while Panel D presents the counterpart results from the real data set of U.S. no lge funds with a sample similar to Ferson and Chen (2017). In all panels, for robustness we use two the sho ds to filter out our final sample: at least 8 months of returns, and at least 30 months of returns. We use the one-factor market model, the Fama-French three-factor model, the Fama-French-Carhart four-factor model and be Fung-Hsieh seven-factor model to estimate fund alpha in Panel A, B, C and D, respectively. We present the TR test statistics when we test GMD (1) against GMD (2), GMD (2) against GMD (3), GMD (2) against GMT (4) and GMD (3) against GMD (4), respectively. The cases in which we cannot reject the null that the former is as good as the latter at 1% significance level are in bold.

Real data sample	п	(1) vs (2)	(2° v. (3)	(2) vs (4)	(3) vs (4)				
Panel A: Mutual funds via the one-factor m .rket model									
Mutual funds with at least 8 obs	3026	1275.44	112.08	130.46	18.37				
Mutual funds with at least 30 obs	2557	645.26	80.76	101.90	21.13				
Panel B: Mutual fund	Panel B: Mutual funds via the Fama-Trench three-factor model								
Mutual funds with at least 8 obs	3026	1,00.01	161.24	205.44	44.20				
Mutual funds with at least 30 obs	2557	670.57	75.78	84.27	8.49				
Panel C: Mutual funds vi	a the Fa	II. 7-F. cch-(Carhart four	-factor mode	el				
Mutual funds with at least 8 obs	302	2 08.31	268.44	309.40	40.96				
Mutual funds with at least 30 obs	2557	582.40	59.07	64.83	5.76				
Panel D: Hedge func	ls v. ·· iii	: 'ung-Hsie	h seven-fact	or model					
Hedge funds with at least 8 obs	3533	10067.23	793.88	939.82	145.94				
Hedge funds with at least 30 obs	2072	605.37	35.20	39.80	4.61				
1% critical value		11.34	11.34	16.81	11.34				
5% critical value		7.81	7.81	12.59	7.81				

Table 11: **Chi-squared model selection results for simulated data.** This table report be results of three Chi-squared tests, (i) $H_0: \alpha \sim GMD(2)$ against $H_1: \alpha$ does not follow GMD (2); (ii) $H_0: \alpha \sim GM \mathcal{N}(3)$ against $H_1: \alpha$ does not follow GMD (3); (iii) $H_0: \alpha \sim GMD(4)$ against $H_1: \alpha$ does not follow GM $\mathcal{O}(3)$. Panel A presents the averaged Chi-squared statistic for each of the above tests over 500 replications; Par 4 B ε 4. Crespectively present the frequency of each null being supported for the above test under 5% and 1% even ζ significance.

Cooporio	CMD(2)	GMD (3)	$\overline{\text{GN}}$ \overline{O} $(_{\rm f})$						
Scenario									
I	Panel A: Average statistic								
Scenario 1	15.91	17.26	18. 2						
Scenario 2	15.28	16.97	18.33						
Scenario 3	16.01	17.73	19.06						
Panel	B: 5% critic	al value –	16.92						
Scenario 1	348	270	254						
Scenario 2	365	272	241						
Scenario 3	331	255	206						
Panel	C: 1% critic		21.67						
Scenario 1	459	424	374						
Scenario 2	46 '	415	373						
Scenario 3	152	405	344						

Table 12: **Chi-squared model selection results for real data.** Panel A, B and C report t¹. Chi-squared statistic to the real data set of U.S. mutual funds with a sample similar to Ferson and Chen (2017); Har, $\neg \neg$ and Liu (2018), while Panel D presents the counterpart results from the real data set of U.S. hedge .u., is with a sample similar to Ferson and Chen (2017). In all panels, for robustness we use two thresholds \circ fi¹ er out our final sample: at least 8 months of returns, and at least 30 months of returns. We use the one factor model, the Fama-French three-factor model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor model to estimate fund alpha in Panel A, B, C and D, respectively. We present the CFasquared statistic when we specify one subgroup, two subgroups, three subgroups and four subgroups using GP \cap (7), GMD (2), GMD (3) and GMD (4), respectively. The specifications which have passed the Chi-squared test at 1^{-1} level are in bold.

Real data sample	п	GMD (1)	$\overline{GM2}(2)$	GMD (3)	GMD (4)			
Panel A: Mutual funds via the one-fa :tor incrket model								
Mutual funds with at least 8 obs	3026	1000.~6	1/,6.57	93.40	91.13			
Mutual funds with at least 30 obs	2557	503.05	142.84	105.53	87.92			
Panel B: Mutual funds	via the	Fama-ר. יחכ	h chree-fact	tor model				
Mutual funds with at least 8 obs	3026	1481.71	193.21	115.67	79.91			
Mutual funds with at least 30 obs	2557	741.54	126.54	91.22	92.19			
Panel C: Mutual funds via	the Far	Pa-French-C	arhart four-	factor mod	el			
Mutual funds with at least 8 obs	3026	2130.06	254.30	110.59	95.55			
Mutual funds with at least 30 obs	2517	567.83	123.04	95.51	93.47			
Panel D: Hedge funds	via th	Fung-Hsieh	seven-facto	or model				
Hedge funds with at least 8 obs	5.45	19748.78	896.08	176.38	119.63			
Hedge funds with at least 30 obs	2072	516.64	121.16	90.56	88.27			
1% critical value is 135.8067								
5% critical value is 124.3421								