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Abstract

The idea of determining the number of fund subgroups is of central importance in the cur-

rently popular academic field of Risk Parity Portfolio Theory, and especially for practitioners’

direct use of Funds-of-Funds (FoF) managers. Can the Gaussian Mixture Distributions plug-

in approach via traditional procedures select the right number of fund subgroups? Probably

not. According to our in-sample/out-of-sample likelihood score analysis, the actual locations

of subgroups in real data (of both U.S. mutual funds and hedge funds) are too close to each

other. The information loss incurred by parameter uncertainty outweigh those incurred by

mis-specification, and can only be slightly alleviated using the nonparametric density estima-

tors. An arbitrary choice of two subgroups only causes affordable information loss relative to

more fund subgroups. These findings challenge the reliability of the Gaussian Mixture Distri-

butions plug-in approach via traditional procedures (e.g., BIC, Likelihood Ratio and Chi-square
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statistics) in selecting the correct number of subgroups.
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1. Introduction

It is a common practice in fund performance evaluation literature, to categorize funds into

subgroups based on their performance indicators (e.g., fund alphas). So, how many subgroups

of funds are there? Theoretically, two subgroups (skilled and unskilled) could coexist but it

is also reasonable to conceptualize three subgroups, with zero, negative, and positive alphas,

respectively. To determine the number of fund subgroups prior to performance evaluation,

most studies use the Gaussian Mixture Distributions (hereafter GMD) plug-in approach (i.e.,

estimating alphas first through factor model regressions and then fitting a GMD model on the

estimated alphas) via traditional procedures, such as the Bayesian Information Criterion (BIC),

Likelihood Ratio (LR) test, and the Chi-squared test. Employing the same sample of mutual

fund monthly returns, Harvey and Liu (2018) find that two subgroups are optimal while Ferson

and Chen (2017) obtain three. Using hedge fund monthly returns over the period from 1994

to 2011, Ferson and Chen (2017) find two subgroups, while Chen et al. (2017) identify four.

Since these authors rely on slightly different variants of the same GMD model, it seems difficult

to reconcile their mixed results, and it is surprising that few rigorous statistical analyses have

been conducted to examine the associated information loss. Given the popularity of the GMD

approach, such analyses are essential to the understanding of the literature and appropriate

applications in future research. Our paper fills this gap using Monte Carlo simulations as well

as two real data samples identical to these of Cai et al. (2018) and similar to these of Ferson and

Chen (2017) and Harvey and Liu (2018) covering both U.S. mutual funds and hedge funds.

The idea of determining the number of fund subgroups is of central importance in the

popular academic field of risk parity portfolio theory, and especially for practitioners’ direct use

of fund-of-funds managers. For instance, in fund performance evaluation studies, our question

is of essential importance for at least two recent strands of literature, including the studies

related to the False Discovery Rate (e.g., Barras et al. (2010); Bajgrowicz and Scaillet (2012);
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Criton and Scaillet (2014); Bajgrowicz et al. (2015); Ferson and Chen (2017); Scaillet et al.

(2018)) and Expectation-Maximization algorithm (e.g., Chen et al. (2017); Harvey and Liu

(2018)). The conclusions of these two strands of literature hinge on the correct presumption

of the number of subgroups, according to traditional wisdom. For instance, if, in reality, there

are only two subgroups of mutual fund managers, a three-subgroup approach will inevitably

cause one entire group to be a false discovery. Hereafter, we refer to this misconception as

model misspecification.

Unfortunately, in reality, the true model specification is not observable, making the de-

termination of the true number of fund subgroups especially difficult. In particular, a model

with more fund subgroups could fit the empirical data better than a counterpart model with

fewer fund subgroups, given the well-known overfitting problem in econometrics.1 Even if we

ignore the overfitting problem, a true fund population with more subgroups, if approximated

parametrically, requires more parameters to be estimated, as in most of the finance literature,

which will inevitably exacerbate the estimation errors (i.e., estimation risk issues). In other

words, since the fund alphas are estimates, the estimation error creates an errors-in-variables

problem, which, following the portfolio selection literature we refer to as parameter uncer-

tainty hereafter in this paper (e.g., Brown (1979); Jobson and Korkie (1980); Jorion (1986);

Garlappi et al. (2006); DeMiguel et al. (2007); Yan and Zhang (2017)).2 Hence, the benefits

of a better-specified model with more fund subgroups could be offset by the disadvantages in-

curred by the increased estimation errors brought about by the greater number of parameters

1For instance, Harvey and Liu (2018, page 29) explicitly state that "A central issue is how we choose the

number of components for the GMD that models the alpha distribution in the cross-section. A more complex

model (i.e., a model with more component distributions) can potentially provide a better approximation to the

underlying alpha distribution, but may overfit, leading to a model that has inferior forecasts out of sample."

2For brevity, we do not fully review the portfolio selection papers regarding parameter uncertainty here.
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to be estimated.

We explicitly investigate the effects of model misspecification and/or parameter uncer-

tainty on three aspects of the GMD via Monte Carlo simulations: mean validity (i.e., bias of

the estimated mean of alphas), density validity (i.e., Mean Integrated Squared Errors) and re-

liability (i.e., Standard Deviation of Integrated Squared Errors). To do so, we first generate

fund returns series from a CAPM-type of single-factor market model with the individual fund

alphas randomly drawn from one of three scenarios: a mixture of two Gaussian distributions

(GMD(2) as in Harvey and Liu (2018), Ferson and Chen (2017)), a mixture of three Gaussian

distributions (GMD(3) as in Ferson and Chen (2017)) and a mixture of four Gaussian distri-

butions (GMD(4) as in Chen et al. (2017)). In every scenario, we estimate the market model

via fund-by-fund Ordinary Least Squares (OLS) and then employ a GMD model to match the

distribution of the estimated individual fund alphas. If model specification/misspecification

is more important, we expect to observe that both the validity loss and reliability loss are

lowest when the number of Gaussian components in the GMD model we use to capture the

distribution of fund alphas equals the number of Gaussian components in the data generat-

ing processes. Alternatively, if parameter uncertainty is more important, we conjecture that

there is a monotonic increase in both the validity loss and reliability loss when the number of

mixed Gaussian distributions grows. We find that, of all the GMD estimators, GMD (2) has the

lowest mean validity loss, density validity loss and reliability loss in every scenario while the

GMD (4) has the largest. In other words, parameter uncertainty is more important than model

specification/misspecification, and the traditional procedures do not always select the correct

number of fund subgroups.3 This challenge the use of GMD plug-in approach in selecting the

3Admittedly, if the distance between different Gaussian mixture components is large enough, the traditional

procedures could still work. However, the fund manager performances from different subgroups are so close to

each other that it is technically challenging to make the traditional methods to work properly. This could change
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optimal number of fund subgroups which subsequently motivates us to evaluate the potential

information loss incurred by using a wrong number of fund subgroups.

To what extent can we improve validity and reliability using alternative estimators to alle-

viate the parameter uncertainty problem? To answer this question, we minimize the parameter

uncertainty problem by employing two popular nonparametric (i.e., global and adaptive) ker-

nel density estimators that require least parameter estimation (bandwidth being the only one

parameter) and hence are affected the least by the parameter uncertainty problem (see, e.g.,

Breiman et al. (1977), Abramson (1982), Silverman (1986)). To our surprise, these two non-

parametric kernel estimators can add only limited value to the GMD approach.4

In terms of real data, we apply the traditional procedures (i.e., BIC, LR, and Chi-squared

test) to two real data samples, similar to Ferson and Chen (2017) and Harvey and Liu (2018),

covering both U.S. mutual funds and hedge funds, and find empirical evidence that supports

our prior results. In general, we find that the traditional procedures do not provide consistent

estimation of the number of fund subgroups, no matter whether we focus on the mutual fund

or hedge fund sample. Since the true density of fund returns is unknown in reality, we employ

the scoring rule proposed by Amisano and Giacomini (2007) to examine both the in-sample

and out-of-sample performance of GMD (1) (a single normal density), GMD (2), GMD (3)

and GMD (4). We find that both the in-sample and out-of-sample likelihood scores for GMD

(2), GMD (3) and GMD (4) do not differ much from each other, whereas all of them differ

substantially from those of GMD (1). This result reaffirms our previous simulation results that

in the future when the performance of fund managers becomes clearly categorized. For instance, if there are four

modes (say, highly skilled, moderately skilled, just skilled and poorly skilled) in the density function, then GMD

(4) could be preferred in this case.

4However, it is possible to enhance the performance of the kernel estimator by correcting or smoothing the

errors-in-variables biases. We thank an anonymous referee for pointing this out.
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the information loss is trivial, whether we use GMD (2), GMD (3) or GMD (4). We apply

two nonparametric (i.e., global and adaptive) kernel density estimators and the scoring rule of

Amisano and Giacomini (2007) to determining the optimal number of fund subgroups, which

constitutes a methodological novelty.

Overall, our findings challenge the reliability of traditional procedures in selecting the

correct number of subgroups, and the traditional wisdom that the results of fund performance

evaluation hinge on the presumption of the correct number of subgroups. As the number

of fund subgroups increases, there is a tradeoff between precisely estimating the model pa-

rameters and a better empirical fit to the data. Therefore, an arbitrary choice of two fund

subgroups might only cause affordable information loss relative to an alternative assumption

of more fund subgroups, even when the latter fits the empirical data better than the former. Al-

though the importance of parameter uncertainty has been underscored in the topic of portfolio

selection, we extend this idea to an entirely new area that has been largely neglected by pre-

vious research. We find that parameter uncertainty plays a dominating role in fund subgroup

selection, suggesting that the effects of parameter uncertainty in Finance could be greater than

people currently think and may not be limited to one or two particular topics.

Our results provide both academic researchers and practitioners with guidance in selecting

the optimal number of fund subgroups in their simulations and real data analysis, intuition

in regards to the potential deficiencies in their specifications, and new insights for generating

alternative fund evaluation approaches. For this, methods that take into account the estimation

uncertainty of alphas and complement the traditional procedures by feeding both the estimated

alphas and their standard errors into the EM algorithm (i.e., Chen et al. (2017)) can represent

a promising direction to pursue, as does specifying the likelihood function for the factor model

regression for each fund (i.e., Harvey and Liu (2018)).

The remainder of the paper proceeds as follows. Sections 2 and 3 present the results
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from Monte Carlo simulations and real data sets (of both mutual funds and hedge funds),

respectively. Section 4 concludes. For brevity, we delegate all technical contents and additional

results to the Appendices.

2. Simulation

In this section we simulate the effects of misspecification and parameter uncertainty on

the performance of a GMD estimator, we examine the reliability of traditional procedures to

select an optimal number of fund subgroups, and we compare the performance of the afore-

mentioned density estimators for the cross-sectional fund alpha density from three aspects:

mean validity, density validity and reliability. According to the Occam’s Razor, we focus on the

Euclidian distance although we are aware of many other more complex density comparing mea-

sures (e.g., Kullback-Leibler divergence (Kullback and Leibler (1951)), Bhattacharyya distance

(Bhattacharyya (1943)), etc.) in the literature. In untabulated results which are available from

the authors upon request, we find supportive evidence using the Kullback-Leibler divergence as

well as the Bhattacharyya distance, and we choose to omit the specific results here for brevity.

We conservatively implement our GMD estimators via the standard expectation-maximization

(EM) algorithm rather than more advanced EM algorithms such as the ones in Harvey and Liu

(2018) and Chen et al. (2017) to stay on the safe side.

2.1. Data Generating Processes

Following Cheng and Yan (2017), Zhang and Yan (2018) and other extant studies, for

simplicity we generate fund returns (ri t) from the CAPM-type of single-factor market model

using the following Data Generating Processes (DGP):

ri t = αi + βi rmt + εi t , for i = 1, · · · , N , t = 1, · · · , T, (1)
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where βi is generated from a uniform distribution over the support [0.5, 1.5]. Market return,

rmt , is generated from a Gaussian distribution with a mean of 0.08/12 and a standard deviation

of
p

0.152/12. The disturbance term, ei t is generated from a Gaussian distribution with mean 0

and standard deviation 0.02 denoted as N(0, 0.022). We consider the following representative

scenarios for the generation of αi.

Scenario 1: Following Table 1 of Harvey and Liu (2018), we generate αi from a mixture of two

Gaussian distributions: 0.283N(−0.02277/12, 1.5132/12)+0.717N(−0.00685/12, 0.5862/12).

Scenario 2: Following Panel C of Table IV of Ferson and Chen (2017), we generate αi from

a mixture of three Gaussian distributions5: 0.507N(0,0.22) + 0.069N(−0.0003,0.22) +

0.424N(−0.002,0.22).

Scenario 3: Following Table A1 of Chen et al. (2017), we generate αi from a mixture of four

Gaussian distributions: 0.1N(0.01,0.72)+0.4N(0.003,0.72)+0.4N(0, 0.72)+0.1N(−0.01,0.72).

We randomly generate R = 500 replications in each scenario with (N , T ) = (400, 200),

after consulting with the size of actual fund samples in the literature (Harvey and Liu (2018),

Ferson and Chen (2017), Chen et al. (2017)). Although we have obtained qualitatively similar

results using a variety of alternative parameter values suggested by earlier literature such as

Barras et al. (2010), we omit them for brevity.

The estimation procedure is as follows.

• For the rth replication (r = 1, 2, · · · , 500), we estimate model (1) via fund-by-fund Or-

dinary Least Squares (OLS) and denote estimated fund alpha as bαi,r , for i = 1,2, · · · , N .

• We then estimate the cross-sectional distribution of alpha based on
�bαi,r

	N

i=1
using GMD

5Strictly speaking, Ferson and Chen (2017) did not rely on normality in their main text but rather extensively

in their (especially internet) appendices. For instance, Ferson and Chen (2017, page 35) end their manuscript

with "We find that the use of an asymptotic normal approximation in these calculations provides improved finite

sample performance for the standard errors. The Internet Appendix provides the details."

7



(2), GMD (3), GMD (4), global and adaptive kernel estimator, and denote the density

estimates as bfGM D(2),r(α), bfGM D(3),r(α), bfGM D(4),r(α), bfglobal,r(α) and bfadaptive,r(α), respec-

tively. The details of global and adaptive kernel estimators are presented in Appendix

A.

2.2. Do traditional procedures such as BIC select the right number of fund subgroups?

Another vital question pertaining to our analysis is whether the prevailing traditional pro-

cedures select the right number of fund subgroups. Given the popularity of using the traditional

procedures to select the number of fund subgroups (for recent examples, see, e.g., Chen et al.

(2017); Ferson and Chen (2017); Harvey and Liu (2018)), no rigorous statistical analysis has

been conducted to examine this question, to the best of our knowledge. Although the tradi-

tional procedures feasible and arguably grounded in the literature, they are mostly designed

for the choice of best empirical fit, and do not necessarily select the right number of fund sub-

groups, given the concerns (e.g., parameter uncertainty) we raised in our previous analysis.

Admittedly, it is difficult, if not impossible, to use the real data to examine this question, as the

true fund population in reality is unobservable and hence the true number of fund subgroups,

in reality, is unknown. Fortunately, our Monte Carlo simulation design offers us an opportu-

nity to answer this question, as we know the true number of fund subgroups is 2, 3, and 4 for

Scenarios 1, 2 and 3, respectively.

In this subsection, we follow Chen et al. (2017) and focus on the popular Bayesian In-

formation Criterion (BIC), for brevity. The results from other traditional procedures such as

Likelihood ratio statistics (see, e.g., Harvey and Liu (2018)) and Chi-squared statistics (Ferson

and Chen (2017)) are qualitatively similar and hence we delegate them to Section 4.

We present our results of BIC values over 500 replications for Scenarios 1, 2 and 3 in

Table 3. To be specific, we report the mean of BIC values over 500 replications when we specify

two subgroups, three subgroups and four subgroups using GMD (2), GMD (3) and GMD (4)
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estimators with the corresponding frequency of being selected in parentheses. It is clear that,

the mean of BIC values over 500 replications for GMD (2), GMD (3) and GMD (4) do not differ

much from each other, no matter which scenario we look into. Interestingly and surprisingly,

in all three scenarios, the BIC suggests us to select GMD (2) as it generates the smallest BIC

value with a probability of at least 96.2% (=481/500 in Scenario 2). In other words, the BIC

does not always select the right number of fund subgroups, which may upset many financial

economists who rely on traditional procedures to select the optimal number of fund subgroups

and motivates us to evaluate the potential information loss incurred by using a wrong number

of fund subgroups in the next subsection.

2.3. Information loss evaluation

We first investigate the mean validity by comparing the bias in mean alpha µα in each

scenario, which is defined as the average distance between the true value of mean alpha and

the estimated value of mean alpha obtained from different density estimators.

Bias =
1
R

R∑
r=1

��bµα,r −µα
�� , (2)

where µα is the true value and bµα,r is the estimated value of mean based on the rth replication.

The results are presented in Panel A of Table 4, from which we can see that i) the mean

validity loss is negligible in magnitude (the maximum is 2.6434982/1000 < 0.3% for GMD

(4) in scenario 3 for all estimators; ii) nonparametric kernel estimators only alleviate mean

validity loss by 0.755070/0.751167− 1 = 0.5%; iii) parameter uncertainty is more important

than model misspecification in using GMD. As in all three scenarios, the mean validity loss

monotonically increases at the number of unknown parameters and is least when there are the

fewest parameters to be estimated, not when the GMD is correctly specified.

We then look at the density validity and reliability in general, using the Mean Integrated
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Squared Errors (MISE) as the criteria for density validity loss, and the Standard Deviation

of Integrated Squared Errors (SDISE) as the criteria for reliability loss, respectively. Before

calculating MISE and SDISE, we choose a sequence of grid points {bαmin,r , · · · , bαmax ,r} for m =

200 and approximate Integrated Squared Errors (ISE) based on the rth replication as follows.

ISE(bfGM D(2),r)≈
1
m

m∑
i=1

�bfGM D(2),r(αi)− f (αi)
�2

, ISE(bfGM D(3),r)≈
1
m

m∑
i=1

�bfGM D(3),r(αi)− f (αi)
�2

ISE(bfGM D(4),r)≈
1
m

m∑
i=1

�bfGM D(4),r(αi)− f (αi)
�2

, ISE(bfglobal,r)≈
1
m

m∑
i=1

�bfglobal,r(αi)− f (αi)
�2

ISE(bfadaptive,r)≈
1
m

m∑
i=1

�bfadaptive,r(αi)− f (αi)
�2

,

where f (αi) denote the true density of alpha evaluated at point αi.

Upon the obtained ISE values, it is straightforward to compute MISE and SDISE. We use

the GMD (2) estimator as an example and the steps for other estimators are likewise.

M ISE(bfGM D(2)) =
1
R

R∑
r=1

ISE(bfGM D(2),r), R= 500 (3)

SDISE(bfGM D(2)) =

√√√1
R

R∑
r=1

�
ISE(bfGM D(2),r)−M ISE(bfGM D(2))

�2
, R= 500. (4)

The MISE values are presented in Panel B of Table 4, from which we find a monotonic

pattern similar to mean validity and the magnitude of density validity loss is tiny (the maximum

is 2.6933% for GMD (4) in scenario 2 for all estimators. In all the scenarios, GMD (2) under-

performs the adaptive kernel estimator but outperforms the global kernel estimator, while the

global kernel estimator performs better than GMD (3) and GMD (4), reaffirming the previous

finding that the validity loss of using GMD estimators (at least GMD (2)) is small.

With regards to reliability and SDISE values in Panel C of Table 4, we also find a monotonic

pattern similar to mean and density validity, and the magnitude of reliability loss is subtle (the
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maximum is 2.7509% for GMD (4) in scenario 1. The GMD estimators no longer outperform

nonparametric estimators, and the SDISE values of nonparametric estimators can be one order

of magnitude smaller than the ones of the GMD (4).

To visualize our results, we plot the corresponding density estimates in Figure 1 and find

that the density estimates obtained from various parametric and nonparametric estimators

are very close to each other (The only exception is GMD (4), which performs slightly less

reliably than the others, probably due to the classical parameter uncertainty problem, which

collaborates with our previous analysis), and reasonably close to the true density of alpha.

Overall, although the traditional procedures may not be a reliable indicator to select the optimal

number of fund subgroups, it will not incur too severe potential information loss using an

incorrect (but not too far from the correct one, of course) number of fund subgroups, which

to some extent comforts the financial economists who rely on traditional procedures to select

the optimal number of fund subgroups.

3. Real data analysis: Mutual funds and hedge funds

In this section, we evaluate the performance of GMD (2), GMD (3) and GMD (4) in real

data of the fund returns net of all management expenses and 12b-fees in two scenarios: for

all U.S. mutual funds and hedge funds, respectively. We first introduce our fund data sets,

employ the traditional procedures to select fund subgroups, and use both in-sample and out-

of-sample likelihood scores to forecast the density of real data of fund returns afterward. As

the true density of fund returns, in reality, is unknown, we employ the scoring rule proposed by

Amisano and Giacomini (2007) to examine both the in-sample and out-of-sample performance

of GMD (1), GMD (2), GMD (3) and GMD (4). Using this scoring rule, we should be able to

decide the best performer among GMD (1), GMD (2), GMD (3) and GMD (4).
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3.1. Data and descriptive statistics

Our data set has been used in a companion paper (i.e., Cai et al. (2018)), and hence the

descriptive statistics necessarily follow Cai et al. (2018). Our cross-section sample of mutual

funds is similar to Ferson and Chen (2017) and Harvey and Liu (2018). To be specific, we obtain

active U.S. equity mutual funds data from the Center for Research in Security Prices (CRSP)

Survivor-Bias-Free Mutual Fund database for the 1984-2011 period. Our sample period is the

same as that of Harvey and Liu (2018) and Ferson and Chen (2017) for comparison reasons.

We exclude the index funds. To mitigate omission bias (Elton et al. (2001)) and incubation

and back-fill bias (Evans (2010)), we exclude observations prior to the reported year when the

mutual funds were first entered into the database, and the funds which do not report a year of

organization. We only include the funds which have initial total net assets (TNA) above $10

million and more than 80% of their holdings in equity markets. To avoid the look-ahead bias,

we do not exclude funds whose TNA subsequently fall below $10 million. These screens leave

us with a sample of 3026 (2557) mutual funds with at least 8 (30) months of returns data for

the 1984-2011 period.6

Our cross-section sample of hedge funds is similar to Ferson and Chen (2017). To be

specific, we obtain U.S. equity-oriented hedge fund data from Lipper TASS for the 1994-2011

period. Our sample period is the same as that of Ferson and Chen (2017) for comparison

reasons. To mitigate back-fill bias, we remove the first 24 months of returns and returns dated

before funds were first entered into the database, and funds with missing values in the field for

the add date (Ferson and Chen (2017)). We only include those categorized for a given month as

either Dedicated short bias, Event-driven, Equity market neutral, Fund-of-Funds or Long/short

6Similarly, Harvey and Liu (2018) and Ferson and Chen (2017) obtained a sample of 3619 and 3716 mutual

funds with at least 8 months of returns over the same period, respectively. We follow Hunter et al. (2014) by

using 30 months as our threshold as it adds robustness to our results.
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equity hedge. Similar to the mutual fund sample, we require that a fund has initial total net

assets (TNA) above $10 million as of the first date. These screens leave us with a sample of

3533 (2072) hedge funds with at least 8 (30) months of returns data for the 1994-2011 period.

Table 5 presents summary statistics of the mutual fund and hedge fund data in our study.

We find that they share similar characteristics with the data sample used in Ferson and Chen

(2017). The main characteristics are listed as follows.

• The range of average returns across funds is much greater in the hedge fund sample

(−0.114∼ 0.173) than that in the mutual fund sample (−0.09∼ 0.06).

• The median of estimated alpha from our linear model for the hedge funds is positive,

while for the mutual funds it is slightly negative. The tails of the cross-sectional alpha

distributions extend to larger values for the hedge funds. For example, the upper 5% tail

value for the alphas in the hedge fund sample is 1.2% per month, while for the mutual

funds it is only 0.4%. In the left tails the two types of funds also present different alpha

distributions, with a thicker lower tail for the alphas in the hedge fund sample.

• The sample volatility of the median hedge fund return (2.8% per month) is smaller than

for the median mutual fund (5.3%). The range of volatilities across the hedge funds

is greater, with more mass in the lower tail. For example, between the 10% and 90%

quantiles of hedge funds the volatility range is 1.2% - 7.5% (1.2% - 6.7% in Ferson and

Chen (2017)), while for the mutual funds it is 3.6% - 7.8% (4.2% - 7.0%) in Ferson and

Chen (2017).

• The autocorrelations of the returns are slightly higher for the hedge funds. The median

autocorrelation for the hedge funds is 0.127, compared with 0.121 for the mutual funds,

and some of the hedge funds have substantially higher autocorrelations. The 5% left tail

for the autocorrelations is -0.304 for the hedge funds, versus only -0.121 for the mutual

funds.
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3.2. Estimating fund alphas via a linear factor model

Before using the likelihood score methodology in Amisano and Giacomini (2007) to ex-

amine the in-sample performance of GMD (2), GMD (3) and GMD (4), we have to estimate

the unobservable fund skills. For brevity, we use the one-factor market model, i.e., model (1)

in the previous simulation section to illustrate our idea, but one factor may not be enough for

empirically analyzing the real data sets, according to the vast strand of asset pricing and fund

performance evaluation literature. As a result, for real data sets, we estimate fund alpha as

the measure of fund skills via various linear factor models. To be specific, for mutual funds,

we consider the Fama-French-Carhart four-factor model as well as its two most famous special

cases: the one-factor market model (i.e., model (1)) and the Fama-French three-factor model.

The Fama-French-Carhart four-factor model can be written as below:

ri t = αi + βi1MKTt + βi2SMBt + βi3HM Lt + βi4MOMt + εi t , t = 1, · · · , T (5)

where ri t denotes the excess return of fund i at time t. MKTt , SMBt , HM Lt and MOMt are the

Fama-French-Carhart four factors, which to be specific denote the Market excess return (MKT)

factor, the Small-Minus-Big (SMB) size factor, the High-Minus-Low (HML) value factor and the

Momentum (MOM) factor at time t, respectively. Different from the Fama-French-Carhart four-

factor model, the Fama-French three-factor model does not include the Momentum (MOM)

factor, while the one-factor market model (i.e., model (1)) excludes the Small-Minus-Big (SMB)

size factor, the High-Minus-Low (HML) value factor as well as the Momentum (MOM) factor.

For hedge funds, we present the results from the analogous Fung-Hsieh seven-factor model

(c.f., Fung and Hsieh (1997, 2001)), instead of the Fama-French-Carhart four-factor model.

These seven factors (i.e., Bond Trend-Following Factor, Currency Trend-Following Factor, Com-

modity Trend-Following Factor, Equity Market Factor, Size Spread Factor constructed from Rus-

sell 2000 index and S&P500, Bond Market Factor and Credit Spread Factor) proposed by Fung
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and Hsieh (1997, 2001) are arguably more suitable for the hedge funds than the Fama-French-

Carhart four factors(for a recent example, see, e.g., Criton and Scaillet (2014)). For robustness,

we have also tried the Fama-French-Carhart four-factor model and the results are available

upon request.

3.3. Using traditional procedures to select the optimal number of fund subgroups from real data

Following previous simulation analysis, we follow Chen et al. (2017) and use the BIC to

select the optimal number of fund subgroup from the real data sets of US mutual funds and

hedge funds. The results from other traditional procedures such as Likelihood ratio statistics

(see, e.g., Harvey and Liu (2018)) and Chi-squared statistics Ferson and Chen (2017)) are

qualitatively similar and hence we delegate them to Appendix B. We present our results of BIC

values over 500 replications for Scenarios 1, 2 and 3 in Table 6. To be specific, we report the

BIC values when we specify two subgroups, three subgroups and four subgroups using GMD

(2), GMD (3) and GMD (4) estimators. In all panels, for robustness, we use two thresholds

to filter out our final sample: at least 8 months of returns, and at least 30 months of returns.

We use the one-factor market model, the Fama-French three-factor model, the Fama-French-

Carhart four-factor model and the Fung-Hsieh seven-factor model to estimate fund alpha in

Panels A, B, C, and D, respectively.

Interestingly and surprisingly, BIC does not provide a consistent suggestion on the number

of fund subgroups, as its suggestions vary from one underlying asset pricing model to another,

and from one sample filtering method to another. In Panels B, C, and D, the BIC suggests the

optimal number of fund subgroups is three if we filter our sample with at least 30 months

of returns, but suggests at least four subgroups when we filter out our sample with at least

8 months of returns. In Panel A, the suggested number of subgroups is reversed, as the BIC
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value of -21729.28 (-24721.70) is smallest for four7 (three) subgroups when we filter our

sample with at least 30 (8) months of returns. Overall, BIC is not a reliable indicator to select

the optimal number of fund subgroups. Consistent with our simulation results, the BIC values

for GMD (2), GMD (3) and GMD (4) do not differ much from each other but greatly differ from

that of GMD (1), no matter which scenario we look into. We further investigate the potential

consequences brought by a not-so-wrong number of fund subgroups via both in-sample and

out-of-sample likelihood score analysis.

3.4. In-sample likelihood score analysis

We first apply the likelihood score methodology in Amisano and Giacomini (2007) to

examine the in-sample performance of GMD (2), GMD (3) and GMD (4).8 For comparison

reasons, we also considered the GMD (1) method (a single normal density). The in-sample

likelihood score for a given density estimator bf (α) can be computed by

LSis(bf (α)) = 1
n

n∑
i=1

bf (bαi), (6)

where bαi is the OLS estimator of fund alpha for the ith fund, n is the total number of funds. In

our case, n= 3026 or 2557 for mutual funds and n= 3533 or 2072 for hedge funds.

Table 7 presents the results of the in-sample likelihood score to two real data samples

7Of course, in this case, the number of fund subgroups suggested by BIC might be larger than four if we

try GMD (5), GMD (6), etc. However, this issue is arguably trivial as more subgroups are not grounded in the

literature and are hard to interpret with economic meaning. Hence, we do not consider this possibility in this

paper.

8Some may argue that in-sample analysis is not necessary here, given our strong results from latter out-of-

sample analysis. We agree to disagree as many existing studies on this topic including Harvey and Liu (2018)

include both in-sample and out-of-sample analyses as well.
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similar to Harvey and Liu (2018) and Ferson and Chen (2017) which cover both U.S. mutual

funds and hedge funds, respectively. We present the values of likelihood score when we spec-

ify one subgroup, two subgroups, three subgroups and four subgroups using GMD (1), GMD

(2), GMD (3) and GMD (4), respectively.9 It is clear in Table 7 that the likelihood scores for

GMD (2), GMD (3) and GMD (4) do not differ much from each other, while all of them differ

substantially from that of GMD (1), which reaffirms our previous simulation results that the

information loss is trivial no matter whether using GMD (2), GMD (3) or GMD (4).

For instance, after estimating alphas via the Fama-French-Carhart four-factor model from

the sample of mutual funds with at least 8 (30) months of return data, in Panel C we find

that the likelihood scores of GMD (2), GMD (3) or GMD (4) (i.e., 108.1890, 109.2931 and

109.4282, respectively) are much larger than that of GMD (1), being 88.2091. The likelihood

only increases by about 1% (i.e., 109.2931/108.1890-1) when we specify three subgroups (i.e.,

using GMD (3)) instead of two subgroups (i.e., using GMD (2)), and only further increases by

less than 0.1% (i.e., 109.4282/109.2931-1) when we specify four subgroups (i.e., using GMD

(4)) instead of three subgroups (i.e., using GMD (3)). This finding becomes stronger if we use

the threshold of 8 months instead of 30 months to filter out our final sample, and the results

obtained from different factor models in Panels A and B are qualitatively similar to the ones in

Panel C.

9Different from the simulation analysis, we add the special case of one subgroup via GMD (1) for two reasons.

i) to have something to compare with the results obtained from GMD (2), GMD (3) or GMD (4), although it is not

the focus of this paper. ii) Ferson and Chen (2017) note that "The approach here also generalizes studies such as

Kosowski et al. (2006); Fama and French (2010), who bootstrap the cross-section of mutual fund alphas. In those

studies, all of the inferences are conducted under the null hypothesis of zero alphas, so there is only one group

of funds. The analysis is directed at the hypothesis that all funds have zero alphas, accounting for the multiple

hypothesis tests. The current approach also accounts for multiple hypothesis tests, but allows that some of the

funds have nonzero alphas."
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Despite a much shorter sample length, the results in Panel D obtained from our sample of

U.S. hedge funds are also qualitatively similar to the ones obtained from our sample of U.S.

mutual funds above. In general, if we use 30 months as the threshold, the likelihood scores of

GMD (2), GMD (3) or GMD (4) (i.e., 62.7366, 62.7479 and 64.6349, respectively) are much

larger than that of GMD (1), which is 50.3654. The likelihood increases by only about 0.01%

(i.e., 62.7479/62.7366-1) when we specify three subgroups (i.e., using GMD (3)) instead of

two subgroups (i.e., using GMD (2)), and further increases by only 3% (i.e., 64.6349/62.7479-

1) when we specify four subgroups (i.e., using GMD (4)) instead of three subgroups (i.e., using

GMD (3)). Again, this finding becomes much stronger if we use the threshold of 8 months

instead of 30 months to filter out our final sample.

It is noteworthy that to stay on the conservative side we have not used any penalty factor

to deal with the parameter uncertainty problem in the above analysis, i.e., we did not take the

increased number of estimable parameters (parameter uncertainty) into consideration. The

benefit regarding increased likelihood score brought by a specification of more fund subgroups,

should be of a smaller magnitude if we take into account the parameter uncertainty (i.e., the

increased number of estimable parameters). In untabulated results which are available from

the authors upon request, we find supportive evidence using the cross-validation method.

3.5. Out-of-sample likelihood score analysis

To evaluate the out-of-sample (oos) performance of those above-mentioned density es-

timators, we first divide the whole sample into two sub-samples. The first sub-sample (in-

sample) contains n1 observations, which are used to estimate the density. The second sub-

sample (out-of-sample) contains the rest of n− n1 observations to validate the estimated den-

sity. According to Cheng et al. (2017), for a given density estimator bf (α), the out-of-sample
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likelihood score of Amisano and Giacomini (2007) can be written as below:

LSoos(bf (α)) = 1
n− n1

n−n1∑
i=1

bf (bαi), (7)

where n1 is the size of in-sample for density estimation, bαi the ordinary least squares estimator

of fund alpha for the ith fund, and n the total number of funds. For brevity we only report

three choices of n1, which are respectively n/3, n/2 and 2n/3. For instance, when we let n1

equal n/3, n/2 and 2n/3 and use 30 months as the threshold, the out-of-sample length is 1705

(1381), 1279 (1036) and 852 (691) for mutual (hedge) funds, respectively.

Table 8 presents the results from applying the aforementioned out-of-sample likelihood

scores to the mutual funds and hedge funds data sets. We can see that the out-of-sample

performance of GMD (1), GMD (2), GMD (3) and GMD (4) has a similar pattern to their in-

sample performance. For all our samples of mutual funds and hedge funds, no matter what

value n1 takes (n/3, n/2 or 2n/3), GMD (2), GMD (3) and GMD (4) have similar performance,

far better than that of GMD (1). Taking the sample of hedge funds with at least 30 months

of returns data as an example, when n1 equals n/3 and the out-of-sample length is 1381, the

out-of-sample likelihood scores for GMD (1), GMD (2), GMD (3) and GMD (4) are 46.6932,

62.3785, 63.0389 and 63.3135, respectively. When n1 equals 2n/3 and the out-of-sample

length is 691, the out-of-sample likelihood scores for GMD (1), GMD (2), GMD (3) and GMD

(4) are 49.0155, 60.4667, 61.9320 and 61.9059, respectively.

4. Concluding remarks

The Gaussian Mixture Distribution (GMD) approach has recently become increasingly pop-

ular in determining the number of fund subgroups prior to performance evaluation, while it is

surprising that no rigorous statistical analysis has been conducted to examine the information

loss of this model. This paper presents evidence that the traditional procedures do not always
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select the correct number of fund subgroups, and we use both Monte Carlo simulations and

real data sets to evaluate the possible information loss in the GMD approach due to model

misspecification and parameter uncertainty. We find that parameter uncertainty is more im-

portant than model misspecification when using GMD, since the information loss (in terms of

mean validity, density validity and reliability under three scenarios) is smallest when there are

the fewest parameters to be estimated, not when the number of GMD components is correctly

specified. Our results stress the importance of parameter uncertainty, which echoes the portfo-

lio selection literature on the same problem (Brown (1979); Jobson and Korkie (1980); Jorion

(1986); Garlappi et al. (2006); DeMiguel et al. (2007); Yan and Zhang (2017)).

There are, of course, caveats to our analysis. Ideally, we need an economic or financial the-

ory that captures the evolution of fund subgroups. In the absence of such a generally accepted

theory, we rely on statistical and econometric tools to gauge the number of fund subgroups

within both simulated and real data. Regarding real data, we follow the mainstream litera-

ture and focus on U.S. equity mutual funds and U.S. equity-oriented hedge funds given the

lion’s share of their market size. In this paper, we consider neither pension funds, bond mu-

tual funds, nor funds in other developed and emerging markets, which is a fruitful direction

for future research. Although we did not look into every possible data generating process and

econometric tool, we believe that our results cannot be easily qualitatively altered given their

current robustness and the information loss in the GMD model is less than theories lead one to

believe. Albeit of importance, in this paper, we did not try to introduce the concepts of Order

Statistics or the bootstrap methodology to differentiate fund subgroups by luck and skill, since

these have been investigated in companion studies (Cheng and Yan (2017); Cai et al. (2018);

Zhang and Yan (2018)). There are surely other exciting related questions to ask, since this

area is of obvious importance and far from completed.
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Figure 1: Graphical performance of density estimators. Density estimates by adaptive kernel estimator,
global kernel estimator, GMD (2), GMD (3) and GMD (4) in Scenario 1, Scenario 2 and Scenario 3 based on one
replication path.
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Table 1: Summary of Density estimators. The first column presents the five density estimators used in this
paper, including adaptive kernel density estimator, global kernel density estimator, GMD (2), GMD (3) and GMD
(4). The second column summarizes the unknown estimable parameters involved in each estimator.

Density estimators Unknown parameters
GMD (2) π1,µ1,µ2,σ1,σ2

GMD (3) π1,π2,µ1,µ2,µ3,σ1,σ2,σ3

GMD (4) π1,π2,π3,µ1,µ2,µ3,µ4,σ1,σ2,σ3,σ4

Global kernel estimator with fixed bandwidth h
Adapative kernel estimator with variable bandwidth hi
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Table 2: Generation of alpha in the simulation study. Based on a CAPM-type of single-factor model, we con-
sidered the following three representative scenarios for the generation of αi , for i = 1, 2, · · · , N . In Scenario 1,
we generate alpha from a mixture of two Gaussian distributions, which follows Table 1 of Harvey and Liu (2018).
In Scenario 2, we generate alpha from a mixture of three Gaussian distributions, which follows Panel C of Table
IV of Ferson and Chen (2017). In Scenario 3, we generate alpha from a mixture of four Gaussian distributions,
which follows Table A1 of Chen et al. (2017).

Scenario Simulated distribution for alpha
Scenario 1 0.283N(−0.02277/12, 1.5132/12) + 0.717N(−0.00685/12, 0.5862/12)
Scenario 2 0.507N(0,0.22) + 0.069N(−0.0003,0.22) + 0.424N(−0.002, 0.22)
Scenario 3 0.1N(0.01, 0.72) + 0.4N(0.003,0.72) + 0.4N(0, 0.72) + 0.1N(−0.01, 0.72)
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Table 3: BIC model selection results for simulated data. This table reports mean of BIC values over 500
replications for GMD (2), GMD (3) and GMD (4) estimators with the corresponding frequency of being selected
in parentheses.

Scenario GMD (2) GMD (3) GMD (4)
Scenario 1 691.4137 (489/500) 710.5049 ( 8/500) 730.4898 (3/500)
Scenario 2 369.3813 (481/500) 390.5060 (18/500) 412.2884 (1/500)
Scenario 3 811.6118 (492/500) 831.3073 ( 8/500) 851.5021 (0/500)
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Table 4: Performance of density estimators. In Panel A, we present the results of mean validity, that is, the
bias(×103) of estimated mean parameter of alpha resulted from adaptive kernel estimator, global kernel estimator,
GMD (2), GMD (3) and GMD (4) based on 200 grid points when (N , T ) = (400,200). In Panel B and Panel C,
we respectively present the results of density validity in terms of MISE and reliability in terms of SDISE resulted
from the above five density estimators. In Panel A, we report the value of bias×103 to be reader-friendly.

Panel A: Mean Validity
Scenario Criteria Adaptive Kernel Global Kernel GMD (2) GMD (3) GMD (4)
Scenario 1 Bias 0.998830 0.998830 0.999095 0.999249 1.002212
Scenario 2 Bias 0.751167 0.751167 0.751628 0.751840 0.755070
Scenario 3 Bias 2.630384 2.630384 2.630893 2.634982 2.640672

Panel B: Density Validity
Scenario Adaptive Kernel Global Kernel GMD (2) GMD (3) GMD (4)
Scenario 1 MISE 0.003435 0.006141 0.003437 0.007097 0.013260
Scenario 2 MISE 0.006366 0.009401 0.008427 0.016075 0.026933
Scenario 3 MISE 0.000716 0.000802 0.000721 0.001379 0.002320

Panel C: Reliability
Scenario Adaptive Kernel Global Kernel GMD (2) GMD (3) GMD (4)
Scenario 1 SDISE 0.002569 0.003728 0.004004 0.007079 0.027509
Scenario 2 SDISE 0.004053 0.006106 0.010818 0.014136 0.025306
Scenario 3 SDISE 0.000478 0.000522 0.001023 0.001227 0.002160
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Table 5: Summary statistics. Monthly returns are summarized for mutual funds (top panel) and hedge funds
(bottom panel), measured in excess of the one-month return of a three-month Treasury bill. The values at the
cutoff points for various quantiles of the cross-sectional distributions of the sample of funds are reported. Each
column is sorted on the statistic shown. Nobs is the number of available monthly returns, where for the left top
(and left bottom) panel, there is no restriction while a minimum of 30 are required for the right top (and right
bottom) panel. Mean is the sample mean return, Std the sample standard deviation of return, and Rho1 the first
order sample autocorrelation. The alpha estimates are based on OLS regressions using the Fama-French-Carhart
four factors (Carhart (1997)) for mutual funds, while the Fung-Hsieh seven factors (Fung and Hsieh (1997, 2001)
are used for the hedge funds.

Quantiles
Mutual funds (full sample) Mutual funds (minimum 30 obs)

Nobs Mean Std Rho1 bαols Nobs Mean Std Rho1 bαols

Top 335 0.060 0.512 0.688 0.032 335 0.060 0.512 0.688 0.024
1% 333 0.021 0.117 0.406 0.008 335 0.018 0.114 0.361 0.008
5% 263 0.013 0.088 0.303 0.004 277 0.012 0.087 0.284 0.004

10% 223 0.010 0.078 0.254 0.003 232 0.010 0.077 0.243 0.003
20% 178 0.008 0.069 0.207 0.001 190 0.007 0.068 0.205 0.001
30% 149 0.006 0.062 0.172 0.001 163 0.006 0.062 0.173 0.001

Median 97 0.004 0.053 0.121 -0.000 118 0.004 0.054 0.127 -0.000
30% 53 0.002 0.046 0.062 -0.001 76 0.002 0.047 0.079 -0.001
20% 38 -0.000 0.042 0.020 -0.002 58 0.001 0.043 0.049 -0.002
10% 22 -0.003 0.036 -0.057 -0.003 44 -0.002 0.038 0.000 -0.003
5% 13 -0.008 0.030 -0.121 -0.005 38 -0.004 0.034 -0.052 -0.005
1% 9 -0.023 0.018 -0.287 -0.010 32 -0.010 0.022 -0.149 -0.009

Bottom 8 -0.090 0.002 -0.627 -0.141 31 -0.035 0.004 -0.551 -0.049

Quantiles
Hedge funds (full sample) Hedge funds (minimum 30 obs)

Nobs Mean Std Rho1 bαols Nobs Mean Std Rho1 bαols

Top 192 0.173 0.695 0.814 0.868 192 0.051 0.324 0.814 0.045
1% 172 0.026 0.173 0.579 0.024 182 0.021 0.156 0.584 0.020
5% 126 0.014 0.098 0.457 0.012 147 0.012 0.090 0.479 0.011

10% 102 0.009 0.075 0.390 0.008 124 0.009 0.071 0.409 0.008
20% 73 0.006 0.053 0.296 0.005 96 0.006 0.052 0.323 0.005
30% 56 0.004 0.042 0.234 0.004 78 0.004 0.042 0.265 0.004

Median 38 0.001 0.028 0.127 0.002 57 0.002 0.029 0.170 0.002
30% 22 -0.002 0.020 0.009 -0.000 46 -0.000 0.022 0.078 0.000
20% 16 -0.005 0.016 -0.072 -0.001 40 -0.002 0.018 0.021 -0.001
10% 11 -0.011 0.012 -0.188 -0.004 36 -0.005 0.014 -0.071 -0.003
5% 8 -0.018 0.009 -0.304 -0.009 33 -0.008 0.010 -0.133 -0.006
1% 3 -0.043 0.005 -0.518 -0.024 31 -0.018 0.007 -0.284 -0.014

Bottom 1 -0.114 0.000 -0.794 -1.513 31 -0.038 0.001 -0.492 -0.031
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Table 6: BIC model selection results for real data. Panel A, B and C report the BIC values to the real data set
of U.S. mutual funds with a sample similar to Ferson and Chen (2017); Harvey and Liu (2018), while Panel D
presents the counterpart results from the real data set of U.S. hedge funds with a sample similar to Ferson and
Chen (2017). In all panels, for robustness we use two thresholds to filter out our final sample: at least 8 months
of returns, and at least 30 months of returns. We use the one-factor market model, the Fama-French three-factor
model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor model to estimate fund alpha
in Panel A, B, C and D, respectively. We present the BIC values when we specify one subgroup, two subgroups,
three subgroups and four subgroups using GMD (1), GMD (2), GMD (3) and GMD (4), respectively. The selected
specifications are in bold.

Real data sample n GMD (1) GMD (2) GMD (3) GMD (4)
Panel A: Mutual funds via the one-factor market model

Mutual funds with at least 8 obs 3026 −23382.27 −24633.67 −24721.70 −24715.99
Mutual funds with at least 30 obs 2557 −21054.07 −21673.89 −21666.05 −21729.28

Panel B: Mutual funds via the Fama-French three-factor model
Mutual funds with at least 8 obs 3026 −23386.16 −25225.93 −25240.73 −25383.28
Mutual funds with at least 30 obs 2557 −21480.77 −22135.80 −22188.04 −22167.64

Panel C: Mutual funds via the Fama-French-Carhart four-factor model
Mutual funds with at least 8 obs 3026 −22638.89 −25123.16 −25367.55 −25384.46
Mutual funds with at least 30 obs 2557 −21587.96 −22246.82 −22282.35 −22263.22

Panel D: Hedge funds via the Fung-Hsieh seven-factor model
Hedge funds with at least 8 obs 3533 −11839.24 −21881.95 −22651.32 −22772.75
Hedge funds with at least 30 obs 2072 −15143.04 −15725.49 −15719.51 −15719.47
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Table 7: In-sample likelihood score comparison for real data. Panel A, B and C present the results when apply
the well-known likelihood score methodology in Amisano and Giacomini (2007) to the real data set of U.S. mutual
funds with a sample similar to Ferson and Chen (2017) and Harvey and Liu (2018), while Panel D presents the
counterpart results from the real data set of U.S. hedge funds with a sample similar to Ferson and Chen (2017).
In all panels, for robustness we use two thresholds to filter out our final sample: at least 8 months of returns,
and at least 30 months of returns. We use the one-factor market model, the Fama-French three-factor model, the
Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor model to estimate fund alpha in Panel A,
B, C and D, respectively. We present the values of in-sample likelihood score when we specify one subgroup, two
subgroups, three subgroups and four subgroups using GMD (1), GMD (2), GMD (3) and GMD (4), respectively.

Real data sample n GMD (1) GMD (2) GMD (3) GMD (4)
Panel A: Mutual funds via the one-factor market model

Mutual funds with at least 8 obs 3026 63.4266 84.8062 86.8392 87.2844
Mutual funds with at least 30 obs 2557 79.3837 95.3619 96.1793 97.9721

Panel B: Mutual funds via the Fama-French three-factor model
Mutual funds with at least 8 obs 3026 65.3312 94.3219 97.1321 98.5232
Mutual funds with at least 30 obs 2557 86.5160 106.1217 107.9068 108.0082

Panel C: Mutual funds via the Fama-French-Carhart four-factor model
Mutual funds with at least 8 obs 3026 59.3210 94.7754 98.5811 99.2925
Mutual funds with at least 30 obs 2557 88.2091 108.1890 109.2931 109.4282

Panel D: Hedge funds via the Fung-Hsieh seven-factor model
Hedge funds with at least 8 obs 3533 8.4653 37.1801 43.4041 43.8901
Hedge funds with at least 30 obs 2072 50.3654 62.7366 62.7479 64.6349
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Table 8: Out-of-sample likelihood score comparison for real data. Panel A, B, and C present the results when
apply the well-known likelihood score methodology in Amisano and Giacomini (2007) to the real data set of
U.S. mutual funds with a sample similar to Ferson and Chen (2017) and Harvey and Liu (2018), while Panel D
presents the counterpart results from the real data set of U.S. hedge funds with a sample similar to Ferson and
Chen (2017). In all panels, for robustness, we use two thresholds to filter out our final sample: at least 8 months
of returns, and at least 30 months of returns. We use the one-factor market model, the Fama-French three-factor
model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor model to estimate fund alpha
in Panel A, B, C, and D, respectively. We present the values of out-of-sample likelihood score when we specify one
subgroup, two subgroups, three subgroups and four subgroups using GMD (1), GMD (2), GMD (3) and GMD (4),
respectively.

Real data sample n− n1 GMD (1) GMD (2) GMD (3) GMD (4)
Panel A: Mutual funds via the one-factor market model

Mutual funds with at least 8 obs 2017 66.3361 86.7579 88.4501 88.5952
1513 66.8874 85.0836 86.6306 86.9012
1009 66.4014 82.7363 82.9075 84.1940

Mutual funds with at least 30 obs 1705 72.6077 96.0531 98.0006 97.6183
1279 76.0994 95.0133 97.3747 97.7754
852 78.1577 94.9824 96.8780 97.6143

Panel B: Mutual funds via the Fama-French three-factor model
Mutual funds with at least 8 obs 2017 73.3779 98.4090 99.2168 99.3773

1513 75.6775 96.0021 97.9590 97.9618
1009 74.0500 92.3150 94.3411 94.3026

Mutual funds with at least 30 obs 1705 80.3043 107.2863 107.3153 108.3281
1279 83.4818 106.0315 107.4896 107.0795
852 84.9855 104.5311 106.2564 105.8741

Panel C: Mutual funds via the Fama-French-Carhart four-factor model
Mutual funds with at least 8 obs 2017 73.5300 99.7986 101.0600 101.0935

1513 75.9806 97.4218 98.8737 98.9133
1009 73.4680 92.7965 94.6067 94.6055

Mutual funds with at least 30 obs 1705 82.8348 109.2539 110.1331 110.1930
1279 85.8566 107.7597 109.0251 109.0295
852 87.3349 105.8908 107.3995 107.4310

Panel D: Hedge funds via the Fung-Hsieh seven-factor model
Hedge funds with at least 8 obs 2355 11.9880 38.4978 44.2847 44.5295

1767 10.7027 38.6438 43.1439 43.4138
1178 10.3157 36.2571 39.6653 39.8822

Hedge funds with at least 30 obs 1381 46.6932 62.3785 63.0389 63.3135
1036 48.6866 62.1095 62.8484 62.9377
691 49.0155 60.4667 61.9320 61.9059
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Appendix A

This appendix briefly introduces three density estimators: the Gaussian Mixture Distri-

bution (GMD) estimator, the global kernel density estimator, and the adaptive kernel density

estimator.

GMD is one of the most common parametric estimators in Economics, and it can provide

a natural representation of heterogeneity in a finite number of latent classes (see Chen et al.,

2014). If fund alpha α is deemed to be generated from a mixture (weighted average) of k

Gaussian distributions, the corresponding GMD (k) estimator of x is:

bfGM D(k)(α) =
k∑

i=1

πi fi(α), (8)

where fi(α) = (2πσi)−1/2 exp
n
− (α−µi)2

2σ2
i

o
,σi > 0,πi are weights satisfyingπi > 0 and

∑k
i=1πi =

1. Empirically, GMD is almost always an approximation of the true density as the components

are unlikely to be normal, especially in Finance. Although a few papers argue that GMD can

capture a large domain of non-normal complex distributions even when the number of Gaus-

sian components, k, is small (e.g., Marron and Wand (1992)), the use of GMD suffers from

two aspects regarding the choice of k: model misspecification and parameter uncertainty. On

the one hand, since the true value of k is unobservable and may not be an integer (if not

non-existent) in real data, it is not uncommon to mis-specify the GMD estimator with a wrong

choice of k, since the extant studies mainly rely on traditional procedures to pick up a reason-

ably small integer. For instance, Harvey and Liu (2018), Ferson and Chen (2017) and Chen

et al. (2017) only rely on a Likelihood Ratio (LR) test, a Chi-squared test and a Bayesian Infor-

mation Criterion (BIC), respectively. Recently, Pittau et al. (2016) proposed a kernel-based test

to determine the number of components k. However, this test does not have sufficient power

to reject the hypothesis of the number of components smaller than that in the true model when
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the components largely overlap. On the other hand, a GMD (k) estimator has 3k−1 unknown

parameters to be estimated, which increases at k as we have made it clear in Table 1. The

larger k is, the more estimation errors occur, and the larger the parameter uncertainty prob-

lem. Albeit these reasonable and probable doubts, the existence and magnitude of information

loss due to these two concerns remain unclear.

To answer this question, we do not only focus on the variation of information loss within

the specified GMD (k) estimators, but also compare them with potential competitors which al-

leviate the above two concerns and better capture the distribution of alphas. Nonparametric es-

timators are of special interests for these purposes: i) we can establish the uniform consistency

results for kernel density estimators (see Hansen, 2008) and their performance is super robust

due to their nonparametric nature and hence can easily beat their parametric counterparts in

the presence of misspecification; ii) usually they suffer the least from the parameter uncertainty

problem as they only require one parameter (bandwidth) to be estimated. There are two basic

nonparametric kernel density estimators: global kernel estimator with fixed bandwidth, and

adaptive kernel estimator with variable bandwidth. For a random sample α1,α2, · · · ,αn drawn

from a density f (α), the global kernel density estimator is as follows:

bfglobal(α) =
1
n

n∑
i=1

1
h

K
�α−αi

h

�
, (9)

where K(·) is the Gaussian kernel function without loss of generality and h is bandwidth sat-

isfying that h→ 0 as n→∞. Observe that 1
h K
�
α−αi

h

�
is actually the density function for the

Gaussian distribution with mean αi and variance h2. Therefore, the above kernel density es-

timator can be regarded as a location-mixture of n Gaussian distributions and the Gaussian

component densities have a common variance (denoted as h2) and individual mean values.

Unlike the traditional GMD (k) estimator with 3k−1 unknown estimable parameters, there is

only one parameter h to be estimated in the nonparametric global kernel density estimator.
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Besides the above global kernel density estimator with fixed bandwidth, we also consider

the sample-point adaptive kernel estimator with variable bandwidth, which was first intro-

duced by Breiman et al. (1977) and nests the global kernel density estimator as a special case.

The functional form of the sample-point adaptive kernel estimator is

bfadaptive(α) =
1
n

n∑
i=1

1
hi

K
�
α−αi

hi

�
, (10)

where hi = h(αi) is a function of αi. Note that the adaptive kernel density estimator can also

be regarded as a mixture of n Gaussian densities but each Gaussian density component has its

own variance (denoted as h2
i ) and individual mean value. Without loss of generality, we simply

let hi ∝ f (αi)−1/2, and Abramson (1982) suggest that this adaptive choice outperforms the

fixed bandwidth estimator bfglobal(α) in general.
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Appendix B

Likelihood ratio test

The likelihood ratio statistic is commonly used to compare the goodness of fit of two

statistical models, one of which (the null model) is a special case of the other (the alternative

model). Let L0 and L1 denote the likelihood function evaluated at the model estimates for

M0 and M1, respectively. Following Harvey and Liu (2018), we compute the likelihood-ratio

statistic by

LR= −2(log L0 − log L1), (11)

When M1 significantly outperforms M0, LR will be large and positive. Therefore, a large like-

lihood ratio statistic provides evidence against M0. We present our results for the simulated

data and real data in Table 9 and Table 10, respectively.

Similar to the fund subgroup selection results using BIC, in all three simulated scenarios

the Likelihood ratio test suggests us to select GMD (2) as GMD (2) beats GMD (3) and GMD

(4) in at least 87.4% (=437/500 in Scenario 2) cases. In other words, the Likelihood ratio test

does not always select the right number of fund subgroups. In real data analysis, the Likelihood

ratio test also does not provide a consistent suggestion on the number of fund subgroups, as

its suggestion varies from one underlying asset pricing model to another, and from one sample

filtering method to another.

Chi-squared test

Following Ferson and Chen (2017), we employ the Pearson Chi-squared statistic below as

one of the criteria for density estimation of fund alphas.

χ2 =
K∑

i=1

(Oi −Mi)2

Oi
, (12)
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where the sum is over K cells, Oi is the frequency of OLS estimated fund alphas that appear in

cell i in the data sample, and Mi is the frequency of fund alphas that appear in cell i using a

certain density estimation method. The null hypothesis is that the expected frequencies from

the density estimation method match those of the data sample. In applications, we choose K

cells, with the cell boundaries set so that an approximately equal number of fund alphas in the

data sample appear in each cell. Since in our simulated data we only have 400 funds which

is much less than the two thousand funds in Ferson and Chen (2017), we set K = 10 to make

sure there are plenty of observations falling into each cell (i.e., 40 fund alphas in each cell).

In real data analysis, we set K = 101 to roughly maintain consistency with Ferson and Chen

(2017). We present our results for the simulated data and real data in Table 11 and Table 12,

respectively. The results are consistent with our previous results using BIC and the Likelihood

ratio test.
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Table 9: Likelihood ratio model selection results for simulated data. This table reports the results of three
likelihood ratio tests, (i) H0 : α ∼ GM D(2) against H1 : α ∼ GM D(3); (ii) H0 : α ∼ GM D(2) against H1 : α ∼
GM D(4); (iii) H0 : α ∼ GM D(3) against H1 : α ∼ GM D(4). Panel A and B respectively present the frequency of
each density estimator being favored for each of the above test under 5% and 1% level of significance.

Scenario GMD (2) VS GMD (3) GMD (2) VS GMD (4) GMD (3) VS GMD (4)
GMD (2) GMD (3) GMD (2) GMD (4) GMD (3) GMD (4)

Panel A: 5% significance level
Scenario 1 452 48 438 62 418 82
Scenario 2 437 63 448 52 407 93
Scenario 3 439 61 445 55 408 92

Panel B: 1% significance level
Scenario 1 482 18 478 22 472 28
Scenario 2 473 27 480 20 465 35
Scenario 3 475 25 482 18 467 33
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Table 10: Likelihood ratio model selection results for real data. Panel A, B and C report the LR test statistics
to the real data set of U.S. mutual funds with a sample similar to Ferson and Chen (2017); Harvey and Liu
(2018), while Panel D presents the counterpart results from the real data set of U.S. hedge funds with a sample
similar to Ferson and Chen (2017). In all panels, for robustness we use two thresholds to filter out our final
sample: at least 8 months of returns, and at least 30 months of returns. We use the one-factor market model,
the Fama-French three-factor model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor
model to estimate fund alpha in Panel A, B, C and D, respectively. We present the LR test statistics when we test
GMD (1) against GMD (2), GMD (2) against GMD (3), GMD (2) against GMD (4) and GMD (3) against GMD (4),
respectively. The cases in which we cannot reject the null that the former is as good as the latter at 1% significance
level are in bold.

Real data sample n (1) vs (2) (2) vs (3) (2) vs (4) (3) vs (4)
Panel A: Mutual funds via the one-factor market model

Mutual funds with at least 8 obs 3026 1275.44 112.08 130.46 18.37
Mutual funds with at least 30 obs 2557 643.36 80.76 101.90 21.13

Panel B: Mutual funds via the Fama-French three-factor model
Mutual funds with at least 8 obs 3026 1863.81 161.24 205.44 44.20
Mutual funds with at least 30 obs 2557 678.57 75.78 84.27 8.49

Panel C: Mutual funds via the Fama-French-Carhart four-factor model
Mutual funds with at least 8 obs 3026 2508.31 268.44 309.40 40.96
Mutual funds with at least 30 obs 2557 682.40 59.07 64.83 5.76

Panel D: Hedge funds via the Fung-Hsieh seven-factor model
Hedge funds with at least 8 obs 3533 10067.23 793.88 939.82 145.94
Hedge funds with at least 30 obs 2072 605.37 35.20 39.80 4.61
1% critical value 11.34 11.34 16.81 11.34
5% critical value 7.81 7.81 12.59 7.81
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Table 11: Chi-squared model selection results for simulated data. This table reports the results of three Chi-
squared tests, (i) H0 : α∼ GM D(2) against H1 : α does not follow GMD (2); (ii) H0 : α∼ GM D(3) against H1 : α
does not follow GMD (3); (iii) H0 : α ∼ GM D(4) against H1 : α does not follow GMD (4). Panel A presents the
averaged Chi-squared statistic for each of the above tests over 500 replications; Panel B and C respectively present
the frequency of each null being supported for the above test under 5% and 1% level of significance.

Scenario GMD (2) GMD (3) GMD (4)
Panel A: Average statistic

Scenario 1 15.91 17.26 18.12
Scenario 2 15.28 16.97 18.33
Scenario 3 16.01 17.73 19.06

Panel B: 5% critical value = 16.92
Scenario 1 348 276 254
Scenario 2 365 272 241
Scenario 3 331 253 206

Panel C: 1% critical value = 21.67
Scenario 1 459 424 374
Scenario 2 464 415 373
Scenario 3 452 405 344
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Table 12: Chi-squared model selection results for real data. Panel A, B and C report the Chi-squared statistic to
the real data set of U.S. mutual funds with a sample similar to Ferson and Chen (2017); Harvey and Liu (2018),
while Panel D presents the counterpart results from the real data set of U.S. hedge funds with a sample similar
to Ferson and Chen (2017). In all panels, for robustness we use two thresholds to filter out our final sample:
at least 8 months of returns, and at least 30 months of returns. We use the one-factor market model, the Fama-
French three-factor model, the Fama-French-Carhart four-factor model and the Fung-Hsieh seven-factor model
to estimate fund alpha in Panel A, B, C and D, respectively. We present the Chi-squared statistic when we specify
one subgroup, two subgroups, three subgroups and four subgroups using GMD (1), GMD (2), GMD (3) and GMD
(4), respectively. The specifications which have passed the Chi-squared test at 1% level are in bold.

Real data sample n GMD (1) GMD (2) GMD (3) GMD (4)
Panel A: Mutual funds via the one-factor market model

Mutual funds with at least 8 obs 3026 1000.66 166.57 93.40 91.13
Mutual funds with at least 30 obs 2557 503.05 142.84 105.53 87.92

Panel B: Mutual funds via the Fama-French three-factor model
Mutual funds with at least 8 obs 3026 1481.71 193.21 115.67 79.91
Mutual funds with at least 30 obs 2557 541.54 126.54 91.22 92.19

Panel C: Mutual funds via the Fama-French-Carhart four-factor model
Mutual funds with at least 8 obs 3026 2136.06 254.30 110.59 95.55
Mutual funds with at least 30 obs 2557 567.83 123.04 95.51 93.47

Panel D: Hedge funds via the Fung-Hsieh seven-factor model
Hedge funds with at least 8 obs 3533 19748.78 896.08 176.38 119.63
Hedge funds with at least 30 obs 2072 516.64 121.16 90.56 88.27
1% critical value is 135.8067
5% critical value is 124.3421
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