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ABSTRACT
Albeit a pervasive desideratum when computing a novel paradigm
wherein agents’ declarations can be partially checked against their
actual costs. in the presence of selfish agents, truthfulness typically
imposes severe limitations to what can be implemented. The price
of these limitations is typically paid either economically, in terms of
the financial resources needed to enforce truthfulness, or algorith-
mically, in terms of restricting the set of implementable objective
functions, which often leads to renouncing optimality and resorting
to approximate allocations. In this paper, with regards to utilitar-
ian problems, we ask two fundamental questions: (i) what is the a
minimum sufficient budget needed by optimal truthful mechanisms,
and (ii) whether it is possible to sacrifice optimality in order to
achieve truthfulness with a lower budget. To answer these questions,
we connect two streams of work on mechanism design and look at
monitoring – a paradigm wherein agents’ actual costs are bound to
their declarations. In this setting, we prove that the social cost is
always a sufficient budget, even for collusion-resistant mechanisms,
and, under mild conditions, also a necessary budget for a large class
of utilitarian problems that encompass set system problems. Fur-
thermore, for facility location, a well-studied problem outside of
this class, we draw a novel picture about the relationship between
approximation and frugality.

1 INTRODUCTION
Truthful mechanisms represent the principal tool to compute in
presence of selfish agents. They guarantee that the objectives of the
designer (e.g., minimize a certain global function) are aligned with
the agents’ individual objectives. This compatibility to the incentives,
however, often requires extravagantly large monetary transfers from
the mechanism to the agents. Consider, e.g., the problem of buying
a path on a given graph whose n edges are owned by selfish agents.
This is an instance of a utilitarian problem – a problem wherein each
agent suffers a cost to implement the mechanism’s outcome and the
designer wants to minimize the sum of individual agents’ costs. In
this case, while truthfulness can be easily guaranteed by using VCG,
the amount of money needed to achieve incentive-compatibility can
be as large as n times the cost of the second cheapest path. The
truthfulness guarantee then loses some of its appeal, as it cannot be
ensured when the budget of the designer is not large enough [21].

This motivates the definition of budget-feasible mechanisms [24],
wherein together with truthfulness we require that the total amount
of payments is within a given budget. The literature on this notion
(cf., e.g., [3, 6, 8]) mainly looks at procurement auctions, in which
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sellers (bidders) have private costs to produce items, and the buyer
(auctioneer) aims at maximizing a social valuation function on sub-
sets of items, under the budget constraint on the total payment. Alas,
this setting is quite different from the path auction setting (and, more
generally, any utilitarian problem) in that the designer’s objective
does not depend on the agents’ declarations. The literature on fru-
gality of truthful mechanisms for utilitarian problems, on the other
hand, proves that the overpayment of VCG is not accidental: any
truthful mechanism for path auctions must overpay by as much [9].
Further research proves that similar results hold true for other utili-
tarian problems, including minimum spanning trees, set systems and
matroids [15, 25]. Therefore, generally speaking, the budget might
be as high as the total payments of VCG, making truthfulness too
expensive to afford for a mechanism designer on a budget.

A related strand of work, which considers the weaker solution
concept of Nash equilibrium instead of dominant strategies, studies
subsidies to selfish agents as a means of enforcing efficient equilibria
in non cooperative games. For instance, subsidies in price compe-
tition games among single product vendors are studied in [5]. In
[4] a cost sharing system is studied where users purchase public
services equally sharing their cost, and a central authority enforces
“good” purchasing choices by reinvesting tax revenue in the form of
subsidies to the public services. In [1] Augustine at al. study network
design games where a set of agents share the cost of building edges
on a network, and subsidies (partially) cover the cost of some of the
edges included in the equilibrium spanning tree.

In this work we pursue two main desiderata: firstly, we want to
make truthfulness less expensive to obtain, and, secondly, we want to
characterize the payments – and hence the budget needed – for any
utilitarian problem. As from the discussion above, making truthful-
ness less expensive requires us to depart from classical mechanism
design; it turns out that our choice of alternative mechanism design
paradigm goes some way towards the latter objective (i.e., obtaining
a characterization of frugal payments). In detail, we look at mecha-
nisms with monitoring, studied in [13, 17, 18]. 1 Mechanisms with
monitoring assume that the designer is able to monitor the agents’
costs so to guarantee that the agents who have exaggerated theirs
end up paying the reported (higher) cost. Intuitively, it is assumed
that the designer can ‘watch’ the agents at “work” and force them to
spend more than their real cost, if they overbid. The designer, how-
ever, neither punishes agents who underbid their cost nor imposes
any extra fines to overbidding agents. For example, let us consider
again the path auction setting where each edge weight represents
its latency time. If an agent overbids her cost, then the designer can

1The terminology is introduced in [18] while [13, 17] study the same model under the
misnomer of mechanisms with verification. In the verification model of [20] it is effec-
tively assumed that the designer can monitoring overbidding and punish underbidding;
in [23] (and related literature) instead the designer only punishes underbidding but does
not monitor overbidding – the difference between the models is furthermore studied
therein. We here only monitor overbidding as in [13, 17, 18].
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detect that, as the observed latency time will be lower than the re-
ported one (unless the agent waits and “simulates” the reported cost
– note that in doing so the agent will effectively pay her reported
cost). In this scenario, it is possible to design a mechanism with
monitoring as the designer can easily enforce this higher cost by,
e.g., charging the difference to the agents or keeping them idle for
the time difference.

1.1 Our contribution
We begin by observing that, irrespectively of the algorithm of in-
terest, paying an agent her declared cost is sufficient to guarantee
collusion-resistant mechanisms with monitoring. This result has
three important implications. Firstly, for mechanisms with monitor-
ing, the authors of [18] prove that any algorithm admits payments
leading to truthful mechanisms with monitoring when agents bid
from finite domains. Our result extends theirs in that: (i) we do not
make any assumption on the bidding domain and (ii) we signifi-
cantly strengthen the incentive-compatibility guarantee to obtain
resistance to collusive behavior and side payments. The second con-
sequence concerns the related research agenda in mechanisms with
verification [21, 23]. The notion defined in [21] is more restrictive
than monitoring since underbidding is punished. We show that the
compensation and bonus mechanism in [21] is unnecessarily com-
plex: simple compensation without punishments guarantees both
truthfulness and collusion-resistance. Lastly, we show that the social
cost (i.e., sum of the agents’ costs) is a sufficient budget for any (not
necessarily utilitarian) problem.

Discounting the payments for a cheaper budget. We subsequently
investigate the extent to which the social cost is a necessary budget.
To do so, we relax voluntary participation and study the feasibil-
ity of diminishing our payment function via discounts (for the de-
signer) while maintaining incentive-compatibility and non-negative
payments (clearly, we do not want to charge agents, for otherwise
any budget would be feasible). There are many real-life scenarios
where voluntary participation is not satisfied and agents are somehow
‘forced’ to play (e.g., abiding a law increasing one’s own cost).

We assume that the discounts are bid-independent functions; e.g.,
the discount applied to the payment to player i does not depend on
her bid bi . While in the classical setting this assumption is w.l.o.g.,
for mechanisms with monitoring it excludes some possible payment
schemes. For example, the payment function in [18] can be seen
as a first-price payment discounted by a bid-dependent function.
However, we make two important observations on more general bid-
dependent discounts. Firstly, we show that bid-dependent discounts
do restrict the class of algorithms that can be used by incentive-
compatible mechanisms. Having bid-independent discounts is then
necessary to keep the focus on algorithms as general as possible.
Furthermore, studying budget feasibility in general would require
an algorithmic characterization of truthful mechanisms with mon-
itoring in order to relate the quality of the algorithmic solution to
the sum of the payments needed. Understanding how truthfulness
depends upon the individual bid-dependent discounts is an open
problem that requires the development of novel techniques, as all
the known ones only deal with bid-independent payments. An initial
study for a specific discount is done in [11]. We however give some
indication that bid-dependent discounts are not much cheaper than

bid-independent discounts, and prove how a particular subclass of
the former is actually not cheaper at all.

Can we trade money for approximation? Under the assumption
of bid-independent discounts, we first show the necessity of the
social cost as a budget for the large class of set system problems
(which include, essentially, all problems on graphs such as path
auctions, shortest path trees, minimum spanning trees, etc.). We then
focus on two well-known variants of the facility location problem,
namely the K-facility location and the obnoxious 1-facility location.
We want to determine the location of some facilities (K desirable
facilities and one obnoxious facility, respectively) on the real line
on input the locations of n agents with the objective of minimizing
the social cost. In the K-facility location problem, facilities provide
some desirable service to the agents, who then want to be as close
as possible to them: the social cost is defined as the sum of the
individual agents’ distances between their location and the nearest
facility. In the obnoxious 1-facility location problem, the facility
causes some discomfort to the agents (e.g., it is a landfill site), hence
they want to be as far away from it as possible: the social cost is
defined as the sum of individual agents’ costs that are non-increasing
in the distance between their location and that of the facility.

The motivation to study the budget for this paradigmatic problem
in algorithmic mechanism design is twofold: (i) it has a combina-
torial structure significantly different from the aforementioned set
system problems that requires an ad hoc analysis and (ii) the state
of the art on the problem suggests that money ought to be used for
truthfulness and good approximations [10, 12].

For K-facility location, we provide a number of results proving
the necessity of the social cost as a budget, depending on the algo-
rithm of interest. Arguably, the most interesting contribution relates
approximation guarantee with frugality and answers the question
of whether the truthful implementation of approximate solutions
might be cheaper than that of the optimum. We prove that there is
no such tradeoff as long as “good” approximations are concerned.
For obnoxious 1-facility location, we show that the social cost is a
necessary budget for optimal mechanisms, but, contrarily to facility
location, we show that money and approximation guarantee can be
traded for one another: a designer can here in fact know how good a
solution they can truthfully implement given their available budget,
or, alternatively, how much they can save on their budget if they are
willing to accept a certain degree of approximation.

Roadmap. The remainder of the paper is organized as follows. In
Section 2 we give some formal definitions. Section 3 shows that the
social cost is a sufficient budget for collusion-resistant mechanisms
with monitoring (Corollary 1) and identifies some properties for this
to be also a necessary budget for any algorithm (Theorem 3.2). Sub-
sequent sections study these properties for a number of optimization
problems studied in the literature: set systems (Section 4), K-facility
location (Section 5) and obnoxious facility location (Section 6).

2 PRELIMINARIES
We have a set of outcomes O and n selfish agents. Each selfish agent
has a cost function, also called type ti : O → R≥0. For x ∈ O, ti (x )
is the cost paid by agent i to implement x . The type ti is private
knowledge of agent i. The set of all admissible cost functions ti is
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called the domain of agent i and is denoted Di . Assuming that each
agent has reported or bid a (true or false) cost function bi ∈ Di , a
mechanism determines an allocation x ∈ O. Furthermore, depending
on the bi ’s, it will determine payments to be given to the agents.
Payments will be denoted by p = (p1, . . . ,pn ). In summary, by
letting D = ×ni=1 Di , a mechanism is a pair ( f ,p) that on input
the agents’ costs uses algorithm f : D → O to return a feasible
solution in O and function p : D → Rn

≥0 to determine payments to
be awarded to each agent i.

For mechanism ( f ,p) and a bid vector b, we let u (f ,p )i (b) denote
the utility of agent i for the output computed by ( f ,p) on input b. To
ease the notation we drop ( f ,p) when this is clear from the context.
Since the types ti are private knowledge of the agents, they might
find it profitable to bid bi , ti . We are interested in mechanisms for
which truthtelling is a dominant strategy for each agent. A mecha-
nism ( f ,p) is truthful if for any i, any bids b−i of the agents other
than i, and any bi ∈ Di , ui (ti , b−i ) ≥ ui (bi , b−i ). A stronger require-
ment demands truthtelling be a dominant strategy for coalitions of
agents. A mechanism ( f ,p) is collusion-resistant if for any C ⊆ [n]
any bids b−C×i<C Di and any bC ∈×i ∈C Di ,

∑
i ∈C ui (tC , b−C ) ≥∑

i ∈C ui (bC , b−C ), tC denoting the vector (ti )i ∈C . A mechanism
( f ,p) satisfies Voluntary Participation (VP) if ui (ti , b−i ) ≥ 0 for all
agents i, ti ∈ Di and b−i ∈×j,i D j . We also say that a mechanism
is budget-feasible (w.r.t. budget B) if, for any b ∈ D,

∑n
i=1 pi (b) ≤ B.

Observe that budget-feasibility makes sense when payments are
non-negative as any mechanism charging agents would be budget-
feasible.

Commonly, ui is defined as a linear combination of the payment
and the agent’s true cost. In mechanisms with monitoring, this quasi-
linear definition is maintained but costs paid by the agents for the
allocated resource are more strictly tied to their declarations. In a
mechanism with monitoring ( f ,p), we have

u
(f ,p )
i (bi , b−i ) := pi (b) −max{ti ( f (b)),bi ( f (b))}.

It is important to stress that the designer does not observe the
agents’ private information but only checks that agents are not more
economical (e.g., faster) than declared. Agents can pretend to have a
higher cost (e.g., processing time) at the expense of being “busy” that
long. Agents can still underbid and at execution time have a higher
cost (e.g., saying to have underestimated their cost or work). There
are many applicative scenarios in which this can be implemented.
In the context of facility location, one might think of facilities as
meeting/conference places, and of costs as travel expenses to reach
the facilities. When agents’ costs are reimbursed, recePlease refer
to the interactive CDR Review Guidance for full instructions.ipts
must be presented. For the agents to be consistent with overbidding
they need to pay the exaggerated (reported) cost. Receipts are then a
“monitoring” tool.

For an instance b of a utilitarian cost-minimization problem Π,
we focus on algorithms f ∗ optimizing the social cost, i.e., f ∗ (b) ∈
argminx ∈O cost (x , b), where cost (x , b) =

∑n
i=1 bi (x ).We say that

algorithm f for a utilitarian cost-minimization problem Π is α-
approximate2 if, for every b, it returns a solution whose cost is
at most cost ( f ∗ (b), b) + α .

3 BOUNDING THE BUDGET
For an algorithm f , define pi (b) = bi ( f (b)) and call ( f ,p) a first-
price mechanism.

THEOREM 3.1. For any f , the first-price mechanism ( f ,p) is a
collusion-resistant mechanism with monitoring.

PROOF. Fix C and b−C . Let t be a shorthand for the bid vector
(tC , b−C ) and, for a given bC , let b be a shorthand for (bC , b−C ).
We observe that∑
i ∈C

u
(f ,p )
i (t) =

∑
i ∈C

pi (t) − ti ( f (t)) =
∑
i ∈C

ti ( f (t)) − ti ( f (t)) = 0;

while∑
i ∈C

u
(f ,p )
i (b) =

∑
i ∈C

pi (b) −max{ti ( f (b)),bi ( f (b))}

=
∑
i ∈C

bi ( f (b)) −max{ti ( f (b)),bi ( f (b))} ≤ 0. □

We can then conclude that the social cost is a sufficient budget.

COROLLARY 1. Let Π be a (utilitarian) cost-minimization prob-
lem. There exists a collusion-resistant budget-feasible first-price
mechanism ( f ,p) with monitoring and budget B if for any instance
b of Π,

cost ( f (b), b) ≤ B.

3.1 When is the social cost necessary?
The minimum budget needed for a budget-feasible first-price mecha-
nism using f for problem Π is B∗ = maxb instance of Π cost ( f (b), b).
Is it possible to maintain incentive-compatibility with a budget
smaller than B∗? A first observation is that if we want our mecha-
nisms to satisfy voluntary participation then B∗ is the smallest budget
possible. However, in some applications, it is reasonable to adopt
mechanisms that do not satisfy this property and therefore it makes
sense to consider the necessity of B∗ for those mechanisms. For
instance, drawing a parallel with the setting where subsidies are
employed to enforce efficient equilibria, [1, 4, 5], relaxing individual
rationality is equivalent to provide partial subsidies that do not cover
the whole cost of the equilibrium solution. We pursue this research
direction in the remainder of the paper.

3.1.1 Payment structure. It is easy to see that the incentive-
compatibility of first-price mechanisms is preserved if

pi (b) = bi ( f (b)) + hi for collusion-resistance

pi (b) = bi ( f (b)) + hi (b−i ) for truthfulness

This is an if and only if for classical mechanisms, see, e.g., [22,
Theorem 9.37], in that payments of truthful mechanisms are unique
up to bidder-dependent discounts dependent on the declarations of
the others. We call the mechanisms that use the payment functions
2Here we depart from the classical definition of multiplicative approximation. Our aim
is not to optimize the approximation but that of identifying a tool that allows to relate
budget with the quality of solutions. In this context, the additive term immediately tells us
the amount of extra payments (prior to the discounts, if any) needed for implementation.
Interestingly, [14] argues the merits of additive approximation for facility location.
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above discounted first-price mechanisms. Since we want to both save
on the payments of a first-price mechanism and have non-negative
payments, we have that for all i and b:

0 ≥ hi ,hi (b−i ) ≥ −bi ( f (b)). 3

We then have proved:

THEOREM 3.2. If for all i, there exists a bid vector b such
that bi ( f (b)) = 0 then there is no collusion-resistant discounted
first-price budget-feasible mechanism with monitoring, using f and
whose budget is smaller than B∗.

If for all i and b−i there exists bi such that bi ( f (b)) = 0 then
there is no truthful discounted first-price budget-feasible mechanism
with monitoring, using f and whose budget is smaller than B∗.

The theorem above gives us a condition for the necessity of B∗ for
discounted first-price mechanisms. Whenever there is no bi and b−i
such that bi ( f (b)) = 0, we do have a discount in terms of payments.
It is not hard to see that to maximize this discount, and reduce the
budget of a truthful discounted first-price mechanism as much as
possible, we simply need to set

hi (b−i ) = inf
b ∈Di

b ( f (b, b−i )). (1)

3.1.2 The limits of general discounts. We justify our focus
on Theorem 3.2 by showing the limitations of more general pay-
ments, such as,

pi (b) = bi ( f (b)) + hi (b)
that we call fully discounted w.r.t. (hi )i and, the very special case,

pi (b) = bi ( f (b)) + hi (bi ),

termed single-bid discounted.

General discounts (might) destroy truthfulness. Theorem 3.2 is
as general as it can be without restricting the class of algorithms it
applies to. We show, in fact, that fully discounted payments restrict
the class of algorithms that can be used by truthful mechanisms.

An algorithm f is said monotone w.r.t. hi if bi ( f (b)) > b ′i ( f (b))
implies hi (bi , b−i ) > hi (b

′
i , b−i ) for some b−i and b ′i , bi . It is then

not too hard to prove:

PROPOSITION 1. An algorithm f monotone w.r.t. hi is not truth-
ful with monitoring when coupled with a payment function that is
fully discounted w.r.t. (hj )j for some hk , k , i.

PROOF. Let b−i be the vector for which f is monotone w.r.t. hi .
Consider a bi ∈ Di and define agent i’s true type to be ti , bi , ti ∈
Di such that bi ( f (b)) ≥ ti ( f (b)) (such a ti always exists as long as
the domain is sufficiently rich). Then, agent i is better off declaring
bi when f is coupled with a fully discounted payment function.
In fact, ui (ti , b−i ) = hi (ti , b−i ) and ui (bi , b−i ) = hi (bi , b−i ). By
monotonicity of f , we have hi (b) > hi (ti , b−i ). □

Money is needed. The observation here directly follows from the
results in [18]. The authors prove that mechanisms with monitoring
without money have very limited power in the context of truthful
allocation of RAM to selfish jobs. Specifically there is no truthful
3One might wonder whether relaxing the upper bound for some agent, and allowing
a surplus for them, would allow to save more on the remaining agents. Our results of
necessity cover also this case since they prove that no single agent can have a negative
discount.

mechanism with monitoring without money with bounded approxi-
mation ratio. This implies that, in general, money needs to be used
(i.e., hi (b) > −bi ( f (b))) and then savings, if any, are somewhat
limited. Furthermore, this suggests that the trade-off between ap-
proximation and frugality is strongly unbalanced.

Single-bid discounts are as bad as bid-independent discounts.
We show in appendix that B∗ is a necessary budget for set systems
and K-facility location, even for single-bid discounts.

4 SET SYSTEMS
In a set system (E,F ) we are given a set E of elements and a family
F ⊆ 2E of feasible subsets of E. A set system is upward closed if for
every S ∈ F and every superset T , with S ⊂ T ⊆ E, we have T ∈ F .
Each element e ∈ E is associated with a non-negative cost function
c : E → R≥0; for S ⊆ E, we let c (S ) =

∑
e ∈S c (e ). The goal is to find

a feasible subset of minimum total cost. For these problems, we can
then assume without loss of generality that (E,F ) is upward closed
and therefore that it is fully defined by the minimal sets (bases) in F ,
defined as B = {S ∈ F : no proper subset of S is in F }. As noted
above, several problems such as minimum spanning tree, shortest
path (tree), etc. can be cast in this framework. To map this setting
with the general mechanism design setting above, we have that
O = B and the set of agents is E – in this context, for bidder i, we
let ti = t (i ) denote i’s true type and bi = b (i ) a generic bid in Di . In
particular, we here have

ti (S ) =

{
ti if i ∈ S
0 otherwise

i.e., an element that does not belong to a set has no cost to “im-
plement” that set. For example, an agent controlling an edge that
does not belong to the minimum spanning tree computed by the
mechanism has no cost, since she will not be part of the output. The
extent to which monitoring can be implemented for this class of
problems is discussed above in the introduction.

THEOREM 4.1. Let f ∗ be an optimal algorithm for a set system.
For all i and b−i there exists bi such that bi ( f ∗ (b)) = 0.

PROOF. Fix i and b−i . Consider f ∗ (b−i ) ∈ O and let C−i =
c ( f ∗ (b−i )). Let S be the set in O including i with minimum cost and
let Ci=0 =

∑
e ∈S,e,i be . If C−i < Ci=0 then no matter bi , i < f ∗ (b)

and then bi ( f
∗ (b)) = 0. If, instead, C−i ≥ Ci=0 then by setting bi =

0, no matter whether i is in f ∗ (b) or not, we have bi ( f ∗ (b)) = 0. □

5 K-FACILITY LOCATION
In K-facility location (or simply facility location) the set of feasible
solutions is comprised of all the K-tuples of possible allocations of
the facilities, whilst the domain of each agent is the real line. For
a given algorithm f and ti ∈ Di , ti ( f (ti , b−i )) = |ti − fti (ti , b−i ) |,
where fti (ti , b−i ) denotes the location of the facility output by
f (ti , b−i ) closer to location ti . In other words, ti ( f (ti , b−i )) denotes
the distance between ti and the location of fti (ti , b−i ).

The following theorem proves that VCG mechanisms charge the
agents rather than paying them in this setting.

THEOREM 5.1. VCG payments for facility location are always
non-positive.
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PROOF. The VCG payment for agent i is defined as pi (b) =
cost ( f ∗ (b−i ), b−i ) − cost ( f ∗ (b), b−i ), where f ∗ is an optimal algo-
rithm. The thesis follows by observing that cost ( f ∗ (b−i ), b−i ) ≤
cost ( f ∗ (b), b−i ) by optimality. □

The fact that the VCG payments are always non-positive makes
VCG a non-viable option for many real life incarnations of facility
location, and motivates the study of monitoring in this setting. To
give an example of such a scenario, consider a crowdsourcing data
mining problem where we want to cluster/classify4 a set of agents
for market-segmentation purposes. The agents might lie in order to
obtain a classification/clustering that more closely matches their own
true labels/cluster membership, thereby creating a bias in the data.
In this case we cannot assume that the agents will pay to take part to
our market analysis study. For another example, consider a scenario
similar to the one in [4] where the payments are interpreted as sub-
sidies taken by the general taxation and paid by the government in
order to support the adoption of environmentally sustainable public
transportation systems (the facilities to be used by the agents) in a
given urban area. Clearly, the subsidies here are meant to be a posi-
tive payment from the mechanism to the agents and not vice versa.
Finally, let us note that we can implement monitoring in this context
whenever evidences of the cost can be provided (and cannot be coun-
terfeited) – e.g., distance is measured in miles/time and/or receipts
are needed for cost reimbursement, as from discussion above.

5.1 Optimal mechanisms
We next prove that social cost is a necessary budget for optimal
mechanisms.

LEMMA 1. For all i, and b−i , ifbi ∈ f ∗ (b−i ) then cost ( f ∗ (bi , b−i ), (bi , b−i )) =
cost ( f ∗ (b−i ), b−i ).

PROOF. Let us first assume that:

cost ( f ∗ (bi , b−i ), (bi , b−i )) < cost ( f ∗ (b−i ), b−i ) (2)

Then, the following holds:

cost ( f ∗ (bi , b−i ), b−i ) ≤ cost ( f ∗ (bi , b−i ), (bi , b−i ))

which combined with (2), yields:

cost ( f ∗ (bi , b−i ), b−i ) < cost ( f ∗ (b−i ), b−i )

thus contradicting the optimality of f ∗. We observe that

cost ( f ∗ (bi , b−i ), (bi , b−i )) > cost ( f ∗ (b−i ), b−i )

does not hold either, as otherwise f ∗ (b−i ) would be a better solu-
tion for (bi , b−i ) than f ∗ (bi , b−i ). Indeed, cost ( f ∗ (b−i ), (bi , b−i )) =
cost ( f ∗ (b−i ), b−i ) holds, since bi ( f ∗ (b−i )) = 0. □

THEOREM 5.2. Let f ∗ be an optimal algorithm for K-facility
location. Then for all i and b−i there exists bi such that bi ( f ∗ (b)) =
0.

PROOF. Fix i and b−i and let y = {y1, . . . ,yK } = f ∗ (b−i ) be
the optimal allocation for bid vector b−i . We set bi = yj for a
generic j ∈ {1, . . . ,K }. We need to prove that bi ∈ f ∗ (bi , b−i ), from
which the theorem follows, since in this case bi ( f

∗ (bi , b−i )) = 0.
For the sake of contradiction, let us suppose that bi < f ∗ (bi , b−i ),
4See [19] for the similarities among facility location and clustering/classification with
strategic data sources.

which implies that bi ( f ∗ (bi , b−i )) > 0. Then f ∗ (bi , b−i ) is a bet-
ter allocation for b−i than f ∗ (b−i ), which contradicts the optimal-
ity of f ∗. Indeed, the following holds: cost ( f ∗ (bi , b−i ), b−i ) <
cost ( f ∗ (bi , b−i ), (bi , b−i )) = cost ( f ∗ (b−i ), b−i ) where the inequal-
ity holds because bi ( f

∗ (b)) > 0 by hypothesis, and the equality
follows from Lemma 1.5 □

By Theorem 3.2 we have the following result.

COROLLARY 2. There is no truthful discounted first-price budget-
feasible mechanism with monitoring for facility location, that uses an
optimal algorithm f ∗ whose budget is smaller than maxb∈D cost ( f ∗ (b), b).

5.2 Collusion-resistant mechanisms
An algorithm f is simple, if f (b) ⊆ b, i.e. the facilities are allo-
cated only at agents’ locations. Observe that the focus on simple
algorithms is w.l.o.g. from the approximation guarantee point of
view. Moreover, as already discussed in [10], this is the most natural
class of (deterministic) algorithms for the problem. An algorithm is
anonymous if its output does not change if agents swap declarations.
Formally, let π : [n] → [n] be a permutation of the agents and let
bπ be the declaration vector b where entries are permuted according
to π ; f is anonymous if f (b) = f (bπ ).

THEOREM 5.3. Let f be a simple and anonymous algorithm for
facility location. Then for all i there ∃b s.t. bi ( f (b)) = 0.

PROOF. Since f is simple, for all b there exists an agent j s.t.
bj ( f (b)) = 0. For all i , j we construct bπ from b where we
swap the declarations of agent i and agent j: bπi = bj , bπj = bi
and bπ

ℓ
= bℓ ∀ℓ < {i, j}. Since f is anonymous, f (b) = f (bπ ) and

bπi ( f (bπ )) = bj ( f (b)) = 0. □

By Theorem 3.2 we have the following result.

COROLLARY 3. There is no collusion-resistant discounted first-
price budget-feasible mechanism with monitoring for facility loca-
tion that utilizes a simple and anonymous algorithm f whose budget
is smaller than maxb∈D cost ( f (b), b).

5.3 Trading approximation for frugality
Given an optimal algorithm f ∗, we define f ∗ε as the algorithm that
shifts by ε the location of the facilities returned by f ∗. Formally, let
f ∗ε (b) = (Fj + ε )j=1, ...,K , where (F1, . . . , Fk ) denotes the output of
f ∗ (b). We ask whether, by moving the allocation from f ∗ to f ∗ε , the
cost paid in terms of approximation guarantee can be compensated
by a lower budget.

It is well known that the optimal solution for an instance b par-
titions the agents into S1, . . . , SK so that all i ∈ Sj are served by Fj ,
defined as a median of Sj . Let Sε1 , . . . , S

ε
K be similarly defined w.r.t.

the allocation (Fj + ε )j=1, ...,K , that is, all i ∈ Sj are served by Fj + ε .
Our analysis assumes that ε is “small enough”; this intuitively means
that the optimal partitions of f ∗ (b) do not change when agents’ lo-
cations and the locations of the facilities shift by ε. Formally, let us
rewrite b as (b1, . . . , bK ), where bj = (b1, . . . ,b |Sj | ) is the vector of
all the locations of the agents connecting to Fj . Now, let bε be the

5 A simpler proof works when agents have unrestricted domains (i.e., simply set bi big
enough with respect to b−i so to force f ∗ to locate one facility on bi ). Our argument
applies also to more restricted settings as considered in, e.g., [2].
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vector (b1, . . . , bεj , . . . , bK ), where bεj = (b1, . . . ,bℓ + ε, . . . ,b |Sj | )

for some 1 ≤ j ≤ K and ℓ ∈ Sj . In words, in bε we shift the loca-
tion of one agent of ε to the right. We say that ε is “small enough”
if f ∗ (b) = f ∗ (bε ) and Sj = Sεj for all j ∈ {1, . . . ,K } and for all
ℓ ∈ {1, . . . , |Sj |}. The following partition of the agents of a given
instance is useful.

DEFINITION 1. Let (F1, . . . , Fk ) denote the output of f ∗ on input
b. For all 1 ≤ j ≤ K , we partition the agents in the following sets:
∆
j
1 = {i |bi ∈ (max∆j−13 , Fj ]}, |∆

j
1 | = δ

j
1; ∆j2 = {i |bi ∈ (Fj , Fj + ε]},

|∆
j
2 | = δ

j
2; and ∆

j
3 = {i |bi ∈ (Fj + ε,min∆j+11 )}, |∆j3 | = δ

j
3 , where

∆0
3 = −∞ and ∆K+11 = ∞. We let ∆i = ∪j∆

j
i and δi =

∑
j δ

j
i .

We next prove the approximation guarantee of our algorithm f ∗ε .

THEOREM 5.4. If ε is small enough, then f ∗ε (b) is ((δ1 + δ2)ε )-
approximate. More specifically, we have (δ1 + δ2)ε > cost ( f ∗ε (b), b)
− cost ( f ∗ (b), b) ≥ (δ1 − δ2 − δ3)ε .

PROOF. Fix b and j ∈ {1, . . . ,K }. Since ε is small enough, for
the solution f ∗ε (b), the agents in ∆

j
1 have to pay the same cost

they paid for f ∗ (b) plus ε. For the lower bound to cost ( f ∗ε (b), b) −
cost ( f ∗ (b), b), we similarly observe that for the solution f ∗ε (b), all
the agents in ∆

j
2 ∪∆

j
3 can save (at most) ε on their cost to implement

f ∗ (b). (That is, the agents in ∆
j
3 save exactly ε whilst those in ∆

j
2

can save less than that.) For the upper bound, instead, we note that
agents in ∆

j
2 might need to pay at most ε more in f ∗ε (b) than in

f ∗ (b) (when their location is very close to Fj ); in the worst case, the
agents in ∆

j
3 will pay exactly as much in f ∗ε (b) as in f ∗ (b) (when

their location is very close to Fj + ε). By summing up on all j, we
prove the claim. □

We next show that, in this context, there cannot be a tradeoff
between approximation quality and frugality of mechanisms. We
begin by establishing a useful property of certain optimal algo-
rithms. We let f ∗ be the optimal algorithm for facility location that
uses a fixed tie-breaking rule, i.e., for every pair of bid vectors
b, b′, if both cost ( f ∗ (b), b) = cost ( f ∗ (b′), b) and cost ( f ∗ (b′), b′) =
cost ( f ∗ (b), b′) hold, then f ∗ (b) = f ∗ (b′). It is easy to check that an
optimal algorithm with fixed tie-breaking always exists. For exam-
ple, the rule that chooses the lexicographically minimal allocation
among all optimal allocations satisfies the property above.

LEMMA 2. Let f ∗ be an optimal algorithm for facility loca-
tion that uses a fixed tie-breaking rule. Then for all i and b−i ,
f ∗ (bi , b−i ) = f ∗ (b−i ) for all bi such that bi ∈ f ∗ (b−i ).

PROOF. Let us fix i and b−i and consider the output of f ∗ (b−i ).
We claim the following hold:

cost ( f ∗ (b−i ), b−i ) = cost ( f ∗ (b), b−i ) (3)

cost ( f ∗ (b−i ), b) = cost ( f ∗ (b), b). (4)

by which, by the fixed-tie breaking rule, we get f ∗ (b−i ) = f ∗ (b).
Indeed, for (3) we have that

cost ( f ∗ (b−i ), b−i ) ≤ cost ( f ∗ (b), b−i ) ≤ cost ( f ∗ (b), b)

where the first inequality follows from optimality of f ∗ (b−i ) and
the second one follows from non-negativity of costs. Equation (3)
then follows since cost ( f ∗ (b−i ), b−i ) = cost ( f ∗ (b), b) by Lemma

1. Equation 4 holds by Lemma 1, because cost ( f ∗ (b−i ), b−i ) =
cost ( f ∗ (b), b) and bi ( f

∗ (b−i )) = 0 by definition. □

We are now ready to state and prove the following.

THEOREM 5.5. Let f ∗ be an optimal algorithm for K-facility
location that returns the lexicographically minimal (or maximal)
allocation among all optimal allocations. For ε small enough, let f ∗ε
be defined as above upon f ∗. If n > 2K , then for all i and b−i there
exists bi such that bi ( f ∗ε (b)) = 0.

PROOF. The proof starts from a vector b and uses f ∗ (b) to prove
that for all agents i there exists a b ′i ∈ Di such that b ′i ( f

∗
ε (b
′
i , b−i )) =

0.
Fix i and let S be the member of the partition of agents induced

by f ∗ (b) to which i belongs. We let F denote the median of S and,
with a slight abuse of notation, ∆1, ∆2 and ∆3 be the partitions of
the agents in S as from Definition 1.

We begin by considering the case that |S | > 1 is odd. If i ∈ ∆2∪∆3,
then the location of F (and then F + ε) does not change as long as
agent i declares a location that does not change the optimal partition
and is to the right of F . Hence, since ε is small enough, the claim is
proved for b ′i = F + ε. Let us now consider the case when i ∈ ∆1.
Let k denote the median agent of S (breaking ties by lexicographic
order if there is more than one agent at the median location) and
let ℓ be the leftmost agent such that F ≤ bℓ and ℓ , k. If i declares
b ′i = bℓ + ε, then since ε is small enough, we have F = bℓ and the
claim is proved.

We now consider the case that |S | > 2 is even. In this case, S
has two medians; we denote their locations as a and b, with a ≤ b,
respectively. Note that, by hypothesis, f ∗ returns either a or b (in
general, all the locations in [a,b] are optimal for S). An argument
similar to the case when |S | > 1 and |S | is odd holds in this case, and
we omit it for the sake of brevity. Finally, we now deal with |S | ≤ 2.
In this case, we look at the biggest partition Sj output of f ∗ (b−i )
and set b ′i = Fj . As n − 1 ≥ 2K then |Sj | ≥

⌈
2K−1
K

⌉
≥ 2. Moreover,

since f ∗ uses a fixed tie-breaking rule (as noted above, returning
lexicographically minimal/maximal solutions is a particular fixed-
tie breaking rule) we can conclude by Lemma 2 that f ∗ (b−i ) =
f ∗ (b ′i , b−i ). Hence, the partition Sj will have now one more agent
than before. But then putting things together we note that i belongs
to a set of the partition induced by f ∗ (b ′i , b−i ) with at least 3 agents.
We can then apply recursively on (b ′i , b−i ) the arguments above. □

By Theorem 3.2 we have the following result.

COROLLARY 4. There is no truthful discounted first-price budg-
et-feasible mechanism with monitoring for facility location, that uses
f ∗ε defined upon an optimal algorithm that returns lexicographically
minimal (or maximal) optimal allocation whose budget is smaller
than maxb∈D cost ( f ∗ε (b), b).

6 OBNOXIOUS FACILITY LOCATION
In the obnoxious facility location problem we have to locate one
obnoxious facility on a fixed interval in such a way as to minimize
the social cost incurred by the agents. The set of feasible solutions
is the set of points in the interval, namely O = {x ∈ R | 0 ≤ x ≤ ℓ},
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where ℓ denotes the length of the interval.6 For a given algorithm
f and ti ∈ Di , ti ( f (ti , b−i )) = ℓ − |ti − f (ti , b−i ) |. It is well known
from [7] that an optimal algorithm allocates the facility either at 0
or at ℓ. In particular, if

∑n
i=1 ti ≥

∑n
i=1 (ℓ − ti ) then the facility is

allocated at 0, otherwise it is allocated at ℓ.
Just like for facility location, VCG payments would charge the

agents (Theorem 5.1 holds for obnoxious facility location as well),
and an analog argument suggests that VCG payments are unsuitable
in some scenarios where we cannot assume that agents will have to
pay to participate in the game.

We then study the budget of truthful mechanisms with monitoring
and show that the social cost is a necessary budget for the optimal
mechanism.

THEOREM 6.1. Let f ∗ be an optimal algorithm for the obnoxious
facility location problem. For all i and for all b−i there exists bi such
that bi ( f ∗ (b)) = 0.

PROOF. Let us consider a generic b−i and let us assume first that∑
j,i bj >

∑
j,i (ℓ − bj ). If this is the case, then f ∗ (b−i ) = 0. If we

choose bi = ℓ, it is easy to see that
∑n
j=1 bj >

∑n
j=1 (ℓ−bj ) still holds

and hence f ∗ (b) = 0. In this case, bi ( f (b)) = 0. A similar argument
holds if

∑
j,i bj <

∑
j,i (ℓ−bj ) and f ∗ (b−i ) = ℓ. The remaining case

to consider is
∑
j,i bj =

∑
j,i (ℓ−bj ). This can only occur when b−i

is symmetric with respect to ℓ
2 . However, irrespective of the output

of f ∗ (b−i ), by setting bi = ℓ, we have
∑n
j=1 bj >

∑n
j=1 (ℓ − bj ) and

hence f ∗ (b) = 0, implying bi ( f (b)) = 0. □

By Theorem 3.2 we have the following result.

COROLLARY 5. There is no truthful discounted first-price budget-
feasible mechanism with monitoring for obnoxious facility location,
that uses an optimal algorithm f ∗, whose budget is smaller than
maxb∈D cost ( f ∗ (b), b).

6.1 Trading approximation for frugality
Given an optimal algorithm f ∗, we define f ∗ε as the algorithm that
shifts by ε the location of the facility returned by f ∗. In particular, if
f ∗ (b) = 0 then f ∗ε (b) = ε, whereas if f ∗ (b) = ℓ then f ∗ε (b) = ℓ − ε.
Unlike the case of facility location, the shift of the facility operated
by f ∗ε is not unidirectional: this is to prevent the facility from being
allocated outside of the interval. We next prove that for f ∗ε savings
are possible.

THEOREM 6.2. For all agents i and for all b−i there is no bi
such that bi ( f ∗ε (b)) = 0.

PROOF. It is easy to see that bi ( f ∗ε (b)) = 0 only if |bi − f ∗ε (b) | =
ℓ, which is the case only when the facility is located at one extreme
of the interval and bi is at the other extreme. For ε > 0, this case can
never occur, as f ∗ε (b) < {0, ℓ}. □

DEFINITION 2. Let f ∗ = f ∗ (b) and f ∗ε = f ∗ε (b). We define
the following partition of agents: ∆+ = {i | bi ( f

∗
ε ) > bi ( f

∗)},
δ+ = |∆+ |; ∆− = {i | bi ( f

∗
ε ) < bi ( f

∗)}, δ− = |∆− |; and ∆= =
{i | bi ( f

∗
ε ) = bi ( f

∗)}, δ= = |∆= |.

6We note that unless the length of the interval is specified, the problem is not well-
defined, as a solution with lower social cost can always be obtained by moving the
facility farther away.

Put in words, ∆+, ∆− and ∆= denote the set of agents whose
cost with respect to the allocation f ∗ε has, respectively, increased,
decreased or stayed the same when compared with the optimal
allocation f ∗. Of course, δ+ + δ− + δ= = n holds.

Lemma 3 proves that f ∗ε is ((δ+−δ−)·ε )-approximate; however, as
proved in Theorem 6.3, this loss in approximation can be recovered
by the budget savings possible.

LEMMA 3. Let f ∗ be an optimal allocation algorithm that al-
ways locates the facility at one extreme of the interval7 and let
f ∗ε be the shifted allocation function defined upon f ∗. It holds:
cost ( f ∗ε (b), b) = cost ( f ∗ (b), b) + (δ+ − δ−) · ε.

PROOF. By definition, the only agents whose cost varies when
the facility is allocated according to f ∗ε instead of f ∗ are those
in ∆+ and ∆−. In particular, their cost changes of exactly ε with
respect to the cost they incur when the facility is allocated optimally.
The following equality follows from the simple observation above:
cost ( f ∗ε (b), b) = cost ( f ∗ (b), b) + (δ+ − δ−) · ε. □

THEOREM 6.3. For 0 < ε < ℓ
2 , algorithm f ∗ε achieves a budget

saving of ε (n+δ−−δ+) with respect to f ∗. For ℓ
2 < ε < ℓ algorithm

f ∗ε achieves a budget saving of nℓ − (n + δ− − δ+)ε with respect to
f ∗.

PROOF. By Theorem 6.1, the budget needed to implement f ∗

is
∑
i bi ( f

∗). By Theorem 6.2 and Lemma 3, the budget needed to
implement f ∗ε is cost ( f ∗ (b), b) + (δ+ − δ−)ε + n · hi (b−i ) where
hi (b−i ) is defined in (1).

For 0 < ε ≤ ℓ
2 , hi (b−i ) = −ε. This yields a budget saving of

(n + δ− − δ+)ε. We observe that the saving is always non-negative
(e.g., the budget required to implement f ∗ε is never higher than the
one required to implement f ∗) since n ≥ δ+.

For ℓ
2 < ε < ℓ, hi (b−i ) = ε − ℓ. This yields a budget saving of

nℓ − (n + δ− − δ+)ε. We observe that the saving in this case can be
negative (e.g., the budget required to implement f ∗ε can be higher
than the one required to implement f ∗) depending on the value of ε
and on the structural configuration of the instance at hand. □

Theorem 6.3 provides a way to compute the budget needed to
implement a solution with a desired level of approximation (with
respect to the optimal solution) or, put otherwise, to estimate in
advance the quality of service (in terms of approximation) we can
afford given a set budget. To illustrate this, Figure 1 refers to an
instance b of obnoxious facility location where n

2 + 1 agents reside
at 0 and n

2 − 1 agents reside at ℓ. The horizontal and vertical axes
represent, respectively, the shift ε controlling the approximation,
and the monetary cost of implementing the solution. The optimal
solution for this instance is to allocate the facility at ℓ, at a cost
( n2 − 1)ℓ, which is above the budget B and cannot be implemented.
To find out the level of efficiency εB we can afford, we just need to
find the leftmost intersection between the budget line B and the cost
of implementing f ∗ε , denoted

∑
i pi ( f

∗
ε ). In this case,

∑
i pi ( f

∗
ε ) is

7Note that we are assuming a fixed tie-breaking rule when there are multiple optimal
allocations (i.e., n is even and n/2 agents are at 0 and n/2 agents at ℓ). We assume that
the algorithm will allocate consistently the facility at one extreme of the interval.
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Figure 1: Approximation vs Frugality for Obnoxious Facility
Location

constituted of two segments, defined as:∑
i
pi ( f

∗
ε ) =




(
n
2 − 1

)
ℓ + (δ+ − δ− − n)ε if 0 < ε ≤ ℓ

2
−n+22 ℓ + (δ+ − δ− + n)ε if ℓ

2 < ε < ℓ

In the general case,
∑
i pi ( f

∗
ε ) is piece-wise linear, where the various

segments originate both from ε ranging over (0, ℓ) as the location of
the facility is shifted, and from the change of δ+, δ= and δ−, that, in
turn modifies the slope of the line segments. In this particular case,
the sets ∆+,∆− and ∆= do not change since the agents reside at 0
and ℓ. We note that, consistently with Figure 1, for ε ∈ (0, ℓ2 ] the
slope of the curve (δ+ − δ− − n) is always negative, whereas for
ε ∈ ( ℓ2 , ℓ) the slope of the curve (δ+−δ−+n) is always positive. The
efficiency loss we incur in implementing f ∗

εB
(b) can be computed an-

alytically as cost ( f ∗
εB

(b), b) − cost ( f ∗ (b), b), where cost ( f ∗
εB

(b), b)
can be computed using Lemma 3.

7 CONCLUSIONS
We study budget-feasible mechanisms with monitoring for utilitar-
ian cost-minimization problems. Our results suggest the kind of
financial resources a designer needs to acquire when facing these
kinds of problems. We show that the social cost is a sufficient and,
in many cases, necessary budget for the implementation of incentive-
compatible mechanisms. We also study a case wherein the social cost
is not necessary to enforce truthfulness, and more frugal mechanisms
are possible, thus allowing a certain degree of freedom in terms of
resources accumulation (paid for with a loss in approximation guar-
antee). In such a case, plots like the one in Figure 1 can be rather
informative for decision makers facing budgeting issues. Our results
can also be read in terms of frugality: while the overpayment implied
by truthfulness is linear in the cost of the second-best solution, we
do prove that there is no overpayment at all when monitoring can be
implemented. In particular, we find the necessity (in many cases) of

having a budgetC to implement a solution of costC to be an element
that introduces some fairness in the dichotomy between the designer
and the agents, as there is no side with an advantage. This is in sharp
contrast with classical mechanisms wherein agents have the upper
hand over the designer.

Our research agenda is very much linked to the concept of ex-
tremal transfers studied in the literature on truthful mechanisms [16],
i.e., the payments that charge the maximum/minimum amount to
the agents. We here care only about the minimum and show that for
a number of problems/algorithms the extremal transfers cannot be
lower than the social cost. Clearly, our results are a first attempt at
characterizing extremal transfers for incentive-compatibility with
monitoring and show an alternative technique to the graph-theoretic
reasoning used for classical truthfulness.

There remain many open questions to address in future research
efforts. Firstly, it would be interesting to study other problems (e.g.,
machine scheduling) where our results can have interesting applica-
tions. It would also be interesting to know what payment functions,
other than discounts of first prices, exist and possibly characterize
them. As discussed above, this would restrict the class of algorithms
that can be used in truthful mechanisms, thus raising the question
of establishing a trade-off between incentive-compatible allocation
rules and corresponding payment functions. More generally, our
research suggests that there are many interesting, yet unanswered,
questions about the computation of truthful payments and the ability
to find the best payments for a given algorithm/problem.
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