
The minimum spanning tree and duality in graphs

Wim Pijls
Econometric Institute Report EI 2013-14

April 19, 2013

Abstract

Several algorithms for the minimum spanning tree are known. The Blue-red algorithm is
a generic algorithm in this field. A new proof for this algorithm is presented, based upon the
duality of circuits and cuts in a graph.
The Blue-red algorithm is genetic, because the other algorithms can be regarded as special
instances. This is shown using the same duality.

1 Introduction

The problem of the minimum spanning tree is a classical topic in graph theory. In computer science
many textbooks ”Algorithms and Data Structures” have been published, which almost always treat
the minimal spanning tree. The two best-known algorithms for this problem are those which are
named after Kruskal and after Prim. However, yet other algorithms can be mentioned. In this
article, we put all algorithms into one framework.
We denote a graph by G(V,E) where V is a set of nodes and E a set of edges. A tree is a subgraph
without circuits and a spanning tree is a tree that is adjacent to all nodes. In a weighted graph, each
edge has a weight. The weight of a tree is the sum of the weights in the tree. A minimum spanning
tree, MST for short, is a spanning tree with minimal weight. In the eighties several algorithms for
the MST were known (cf. section 6); Tarjan launched a new one, the Blue-red algorithm[12].

Blue-red algorithm

Apply in random order the blue and red rule until all edges have been colored.
Blue rule: find a cut containing uncolored edges but without blue edges, select among
the uncolored edges an edge with minimal weight, color it blue.
Red rule: find a circuit containing uncolored edges but without red edges, select among
the uncolored edges an edge with maximal weight, color it red.

On termination the blue edges make up an MST. In section 6 the classical algorithms are derived
as instances of the Blue-red algorithm. The algorithm gives rise to a few questions. First, there
is of course the question of correctness. Second, how to explain the symmetric role of circuit and
cut? The question of correctness divides into two sub-questions. Is it always possible to select an
edge to be colored red or blue? Why does the set of blue edges make up a MST? In this article we
answer these questions.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18524509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Families, anti-families and dual families

In this section we make a step beyond the area of graphs and discuss some properties of sets. The
key notion is the notion of a family.

Definition 1 Given a set Z, a family F of Z is a collection of subsets Y ⊆ Z with the property:
Y ∈ F ∧X ⊂ Y ⇒ X ∈ F .

So a family is closed under inclusion. A set Y ∈ F such that no superset X ′′ ⊃ Y , X ′′ ∈ F exists,
is called maximal. For any family of Z a so-called anti-family can be defined.

Definition 2 An anti-family F̂ for a family F of Z comprises the subsets of Z that do not belong
to F .

An anti-family F̂ is closed in the reversed direction: any superset of a set in F̂ also belongs to F̂ .
Consequently, an anti-family has minimal sets. Next to a given family one has the dual family.

Definition 3 For a given family F of a set Z the dual family F ′ is the collection of subsets Y ′ ⊆ Z
that are disjoint from at least one maximal set Y in F .

The family F ′ is closed as well under inclusion. The maximal sets in F ′ are exactly the complements
of the maximal sets in F . It is easily shown that (F ′)′ = F . The dual family F ′ in turn has an
anti-family, denoted by F̂ ′. So we have the following schema.

F

F̂

�- F ′

F̂ ′
? ?

Figure 1: The schema of (anti-)families of a set Z.

A simple relation between F̂ and F̂ ′ cannot be established. The following theorem establishes a
relation between F̂ and F ′.

Theorem 1 The intersection of any set in F̂ and any maximal set in F ′ is non-empty.

Proof If some set Ŷ in F̂ has an empty intersection with a maximal set Y ′ in F ′, then Ŷ would
not belong to F̂ but to F . 2

Theorem 1 has a dual counterpart (left to the reader). The above theory is also relevant to the
area of hypergraphs. In that area Ŷ ′ in F̂ ′ is called a transversal for F [2]. The schema of Figure 1
is the basis for the theory of matroids[9].

3 Graphs and dual graphs

This section discusses some concepts related to graphs. As said before, a graph G(V,E) comprises a
set V of nodes and a set E of edges. In a weighted graph, each edge e ∈ E has a real-valued weight
w(e). We assume connected graphs. Connected means that each pair of nodes can be connected
through a path. This condition is not a restriction to our problem, because in a non-connected
graph each component has its own spanning tree. In a connected graph a spanning tree has |V |− 1
edges. It is clear what is meant by a circuit (also known as a cycle). Next to it, we define a cut.

2

Definition 4 A cut S in a graph G(V,E) is a set of S ⊆ E such that the G(V,E\S) is not
connected.

One can construct a cut as follows. Mark each node in the graph at random with a digit 0 or 1.
The edges connecting a 0-node to a 1-node form a cut.
From now, we define a tree as a set of edges without any circuit. The collection of trees is the
family F of circuit-free subsets of E. A spanning tree is a maximum set in F . The complement of
a maximal spanning tree is a cut-free, because after removal of that complement the graph remains
connected. A cut-free set of edges is called a filling in this paper. Figure 2 is a specific imple-
mentation of Figure 1. Obviously, the minimal sets in the family of circuit containing sets are the

(circuit-free sets)
trees

circuit containing sets

�-

(cut-free sets)
fillings

cut containing sets

? ?

Figure 2: Sets of edges in a graph.

circuits. Likewise the cuts are minimal in the family of cut containing sets. Circuits and cuts are
dual counterparts of each other.

For connected planar graphs the duality of circuits and cuts can be illustrated in a visual way.
Each planar graph G(V,E) has a dual graph G′(V ′, E′) which is constructed as follows. In each
face of G a node v′ is placed. Each edge e ∈ E is crossed by an edge e′ that connects the nodes
belonging to the adjacent faces. The new nodes and the edges form the sets V ′ and E′ respectively.
We say that e and e′ are crossing edges of each other. For explanation, see Figure 3, taken from [13].
In this figure: V = {A,B,C,D,E} and V ′ = {X,Y, Z}. The dual of G′(V ′, E′) is G(V,E).
The circuits in G correspond one-to-one with the cuts in G′. Since the dual of G′ is G, there is
also a one-to-one correspondence between the circuits in G′ and the cuts in G. If a subset of E is
circuit-free (a tree), then the corresponding subset in E′ of crossing borders is cut-free (a filling).
Again there is a dual statement.
If a graph G(V,E) itself is a tree, G has no fillings and any set of edges is a cut. In the dual graph
G′, there is only one node and each edge is a circuit.

4 Proof of the algorithm

In this section, the Blue-red algorithm is proved. We start from a graph G(V,E) where each edge
e ∈ E has a weight w(e). The denotations A + b and A − b stand for respectively A ∪ {b} and
A\{b}. We need two properties of graphs. For the proof, see the literature on graph theory, for
example [2, 3].

Properties of a graph
a) Each pair C and S, where C is a circuit and S a cut, has |C ∩ S| ̸= 1.

b) The set B + e, B is a spanning tree and e ∈ E\B, has exactly one circuit C; after deleting
randomly one edge from C a spanning tree is recovered.

3

Figure 3: A graph G(V,E) and its dual G′(V ′, E′).

Property b) has a dual counterpart, which we do not need here.

The correctness proof of the Blue-red algorithm comprises the theorems 2 through 5. In these
theorems B represents the set of edges that have been colored blue, and R the set of edges that
have been colored red. Due to the duality in Figure 2, only half of the proof is given for the theo-
rems 2, 3 and 4. The other half is symmetrical.
The theorems 2 and 4 exhibit invariant properties of the algorithm, i.e. a property that holds after
each step. By a step we mean the execution of the blue or red rule.

Theorem 2 (invariant)
a) Set B is a tree.
b) Set R is a filling.

Proof of a) by contradiction (part b) is dual).
Assume an edge e in a cut S is colored blue and B + e includes a circuit C with e ∈ C. S has no
other blue edges and hence S ∩ C = {e}. This contradicts Property a). 2

The next theorem shows that, as long as any edge is uncolored, it is always possible to apply
the blue or red rule.

Theorem 3 The algorithm terminates.

Proof Suppose e ∈ E is an uncolored edge and E\R does not contain a circuit, so the red rule
cannot be applied. Then E\R is a tree. Since R is a filling and E = R ∪ (E\R), R and E\R are
maximal sets. Since R is a maximal cut-free set, R + e contains a cut S including e. Moreover
R+ e and hence S have no blue edges. The blue rule can be applied to S. 2

Theorem 4 (invariant)
a) Every circuit C includes a non-blue edge e such that w(e) is maximal in C.
b) Every cut S includes a non-red edge e such that w(e) is minimal in S.

Proof Assume that a) en b) hold after some step; we prove that a) holds after the next step (part
b) is dual).

4

Suppose an edge e in a cut S is colored blue according to the blue rule and suppose w(e) is maximal
in a circuit C. As a consequence of b) w(e) is minimal not only among the weights of the uncolored
edges in S, but among all weights in S. (There were no blue edges in S.) Since |S ∩ C| ̸= 1, C
and S have another edge e′ in common. Since S had no blue edges, e′ is not blue. Because w(e) is
minimal in S, w(e′) ≥ w(e). This implies, as w(e) is maximal in C, that w(e′) is maximal in C as
well. 2.

Theorem 5 On termination of the algorithm:
a) B is a minimal spanning tree.
b) R is a maximal filling with maximal weight.

Proof of a)
According to Theorem 2, B is a tree and R is a filling. On termination B ∪ R is a partition of E.
It follows that B and R are maximal sets in the families of respectively trees and fillings.
We prove by contradiction that the weight of B is minimal among the spanning trees. Assume that
B′ is a spanning tree with w(B′) < w(B), where B′ is chosen so that |B′∩B| is as small as possible.
(The total weight of B is denoted by w(B).) Add an edge b ∈ B\B′ to B′. According to Property
b), B′+ b contains a unique circuit C. According to Theorem 4, C has a non-blue edge c such that
w(c) is maximal and hence, w(c) ≥ w(b). Remove c from B′ + b and a new spanning tree B′′ is
obtained. Because w(c) ≥ w(b), we have w(B′′) ≤ w(B′) and hence w(B′′) < w(B). It follows that
B′′ is also an MST. The inequality |B′′ ∩B| < |B′ ∩B| contradicts the above assumption.
Proof of b). The relation B∪R = E implies that B and R are maximal sets. Since B has a minimal
weight, R has a maximal weight. 2

5 The dual graph

When an edge e in a circuit C has been colored red, C is no longer taken into consideration. How-
ever, a cut containing e remains relevant for the rest of the execution. Likewise, a colored edge e
in cut S, makes this cut useless, but any circuit C including e remains useful. These observations
lead us to an alternative formulation of the Blue-red algorithm.
The red rule corresponds to the so-called deletion operation. This operation is explained using
Figure 4. An edge e is deleted from G(V,E). Then the number of faces decreases. In Figure 4 edge
AD is deleted. The faces adjacent to AD are unified. This means that in the dual the nodes X
and Z are unified, i.e. contracted. So the crossing edge XZ of AD vanishes in the dual graph. The
circuits in G(V,E) including AD do not exist any longer. However, the circuits in G′(V,E′) still
exist, as are the cuts in G(V,E).
Dually we have contraction. This operation is deletion in the dual graph G′(V ′, E′). For instance,
in Figure 5 edge YZ has been deleted. The crossing edge BC vanishes and the nodes B and C are
contracted. So the faces associated to X and Z are preserved. The circuits in G(V,E) are also
preserved.

The new operations enable us to describe the blue and red rule in an alternative way.
Blue rule: select an edge e with minimal weight in a cut; apply contraction and add e to B.
Red rule: select an edge e with maximal weight in a circuit; apply deletion and add e to R.
Notice that the sets V and V ′ as well as E and E′ reduce in each step of the algorithm, due to the
deletion and contraction operations, The execution ends with V and V ′ being single node sets and
E and E′ being empty.

5

Figure 4: Applying a deletion operation.

6 Algorithms

In the literature on algorithms, mainly aimed at computer scientists, one always finds the algorithms
of Kruskal and Prim-Dijkstra-Jarnik, see for example [3, 6]. These are the easiest to implement. In
the proofs of those algorithms the Properties a) and b) in section 4 are exploited implicitly. The
algorithm of Boruvka-Sollin is purely of historical interest. For a historical overview, see [5].
In the description below lightest stands for having minimal weight.

Algorithm of Kruskal. Repeat the following steps until |B| = |V | − 1. Select the lightest edge e
that was not selected previously. If B + e contains a circuit C, C has no red edges and e has a
maximal weight in C. If not, then at least one node v is found such that the edges adjacent to v
are not blue. This set of edges (including e) makes up a cut. So, add e respectively to R or B.

Algorithm of Jarnik-Prim-Dijkstra. Choose an arbitrary node v and select the lightest edge e
adjacent to v. Then B = {e}. Repeat the following steps until |B| = |V | − 1. Select the lightest
edge e, adjacent to B and not selected previously. If B+e is not a circuit, add e to B, otherwise to R.

Algoritme of Boruvka-Sollin. Given a graph G(V,E), we construct a tree graph G(V,B). Ini-
tially we have B = ∅ and |V | components each consisting of exactly one node. Select at each
component Ci the lightest adjacent edge ei, where ei is not selected previously. Add the edges ei
to B. (A side ei may be selected from two components.) The graph G(V,B) with the new B has
a smaller number of components. Repeat the action until |B| = |V − 1|.
Note that the algorithm does not work properly if the graph includes equal weights. It is possible
that three edges ei form a triangle. The algorithm is commonly named after Boruvka. In [1] it is
explained why the name Sollin is associated to it.

We might add the Dual Kruskal algorithm to the above overview. Delete the heaviest edge e
from the graph, such that the graph stays connected. Add e to R. Repeat this action until |V − 1|
edges remain. These make up the set B.
The simplest derivative of the Blue-red algorithm can be formulated as follows: open each circuit

6

Figure 5: Applying a contraction operation.

by deleting its heaviest edge.

7 Concluding remarks

The theory in this paper is actually the theory of matroids applied to graphs. That theory is
described in [11] and comprehensively in [9]. The schema in Figure 1 also applies to matroids.
Kruskal’s algorithm is a special case of the Greedy algorithm. By imposing additional requirements
to a family F one obtains a matroid. For each matroid the Properties a) and b) in section 4 are
valid. Property a) gives a relationship between the families F̂ and F̂ in Figure 1.
Most of the literature ignores the duality of circuits and cuts. In the original publication[12] of
the Blue-red algorithm the blue rule and the red rule are proved separately. The papers of Turing
award winner Dijkstra[4] contain a discussion of Kruskal’s algorithm, where duality is recognized
implicitly. Well-known textbooks on algorithms such as [3, 6] do not mention matroids and do not
exploit the duality. In [7] the Blue-red algorithm is discussed on the basis of matroids. Before the
Blue-red algorithm was published[12], a similar algorithm dealing with matroids was mentioned in
[8] citing [10].

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows: Theory, Algorithms, and Appli-
cations, Prentice Hall 1993.

[2] C. Berge, Hypergraphs, Combinatorics of finite Sets, North-Holland Publishing Company,
1973.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction
to Algorithms, Third Edition. MIT Press, 2009.

[4] E.W.Dijkstra Archive, nr. 1273, available at:
http://www.cs.utexas.edu/∼EWD/ewd12xx/EWD1273.PDF

[5] R.L.Graham and Pavol Hell, On the History of the Minimum Spanning Tree Problem, Annals
of the History of Computing, Volume 7, Nr. 1, January 1985.

[6] M.T. Goodrich and R. Tamassia, Algorithm Design, Wiley, 2002.

7

[7] Dexter Kozen, The Design and Analysis of algorithms, Springer, 1991.

[8] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rhinehart and Win-
ston, New York, 1976.

[9] J.G Oxley, Matroid theory, Oxford University Press, 1992.

[10] P. Rosenstiehl, L’Arbre Minimum d’un Graphe, in: Theory of Graphs, Rosenstiehl editor,
Gordon and Breach, New York 1967.

[11] A. Schrijver, Combinatorial Optimization, volume 2, Springer, 2003.

[12] R.E Tarjan, Data Structures and Network Algorihms, CBMS-NSF Regional Conference Series
in Applied Mathematics, 1983.

[13] R.J. Wilson, Introduction to Graph Theory, Longman, 1972.

8

