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Abstract Lakes can store water for long periods of time, which influences the transport of water and
hydrologic tracers and changes catchment transit times downstream. However, the impact that the transit
time of lakes has on catchment transit times has received little attention to date. We derived water and
isotope mass balances for two lakes and examine the use of time-variant transit time solutions with StorAge
Selection functions to estimate the water ages of evaporation and lake outflows. We used the convolution of
the StorAge Selection function transit time estimations with inflow transit times to estimate the transit
times downstream of each lake. The lakes exhibited contrasting storage effects for discharge; with direct
storage effects (newest water exiting during low flow) for a larger lake fed by a small catchment, and inverse
storage effects (newest water exiting during high flow) for a smaller lake with a large catchment. The water
and isotope mass balance yielded estimates of daily and annual evaporation fluxes, which were similar
between the two lakes. The proposed framework is an effective tool to identify the effects of precipitation,
surface inflow, and evaporation on the transit times for relatively small, shallow lakes, using a combination of
water and isotope mass balance methods.

1. Introduction

Catchment transit time modeling using environmental tracers provides valuable insights into dominant
water flow paths and ages in a parsimonious manner (Kirchner et al., 2001). For this reason, transit time
distributions (TTDs) have been widely used in areas of both high and low topographic relief (e.g., Asano
et al., 2002; Soulsby et al., 2000), tropical (e.g., Birkel et al., 2016; Muñoz-Villers et al., 2016) and semiarid areas
(e.g., Ameli & Creed, 2017; Hrachowitz et al., 2011), and catchments with seasonally variable precipitation (i.e.,
snowfall and rainfall; e.g., Maloszewski et al., 1992; Rodgers et al., 2005). While catchment-scale TTDmodeling
has been extensively explored with time-invariant approaches, there is a deficiency of studies on the effect of
lakes on catchment-scale TTDs. Travel time estimation for catchments with lakes can be complex as the
transit time in lakes may disrupt the smooth shape of the catchment TTD by attenuating the peaks of input
fluxes, contributing large volumes of evaporation, and providing potentially different flow mechanisms.
While transit time mapping and routing in lakes has previously been used to help identify fast and slow flow
paths within a stratified system (e.g., Kalinin et al., 2016), the effect of the lakes on the catchment transit
time has not been assessed. The limited assessment of lakes on catchment TTDs in travel time studies is a
particular concern for catchments in northern latitudes that have a higher proportion of lakes per unit area
than catchments in middle or southerly latitudes (Messager et al., 2016). This complicates the quantification
of catchment transport and restricts transit time estimations in a region where hydrologic measurements are
limited (Laudon et al., 2017). It has also been shown that lake evaporation may have an important influence
on transit time estimations within tracer-aided models, particularly when considering water isotope tracers
(Birkel et al., 2011b). Some attempts have been made to include lakes into catchment transit time analysis
by integrating land cover characteristics with stable isotopes to quantify potential changes in the mean
transit time (MTT) in catchments affected by regulation for hydropower generation (Soulsby, Birkel, Geris,
Dick, et al., 2015).

In recent attempts to decipher transit time estimations, time-variant parameters have been used in the
governing equations to assess how the MTT may change in time (Birkel et al., 2012; Hrachowitz, Soulsby,
Tetzlaff, Malcolm, & Schoups, 2010). Alternative solutions of catchment storage mass balance have also
assessed the time variance of MTTs by implicitly using parcel accounting to track water ages and assign
the probability of water leaving storage at each time via a StorAge Selection (SAS) function (Botter et al.,
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2011). Time-variant TTDs in catchments have been used for investigation of conceptual partial mixing
processes (Hrachowitz et al., 2013; van der Velde et al., 2012; van der Velde et al., 2015), assessment of
effective storage in catchment transport processes (Harman, 2015), constraining transit time estimations
with high resolution data (Benettin et al., 2017), and the changes in flow pathway partitions and flow
rate on TTD shapes and SAS functions (Heidbüchel et al., 2012, 2013; Kim et al., 2016; Pangle et al.,
2017). To reduce incorrect inferences of transit time estimations caused by the effect of evaporation
within the conservative mixing of the tracers, evaporation has also been considered in time-variant
methods through evapoconcentration (Botter, 2012; Botter et al., 2010; Harman, 2015; Queloz et al.,
2015) and fractionation (Benettin et al., 2017). The most recent advances in time-variant transit time
estimations have been applications explicitly linked to catchments with changing storage conditions
(Rinaldo et al., 2015), but these have yet to be applied to other smaller storage compartments such as
lakes.

The conceptualization of SAS functions with the consideration of evaporation, transit time, and residence
time, is potentially well suited to lake transit time estimations where changes in storage may account for
time-variable mixing processes. In lakes, the effect of lake evaporation on the isotopic composition of catch-
ment outflow is largely influenced by the rate of evaporation relative to the outflow (Froehlich et al., 2005;
Gat, 1995, 2010). The evaporative fractionation results in a deviation from the composition of precipitation,
and greater enrichment of heavier isotopes. The nonconservative nature of stable isotopes during evapora-
tion also creates a potential opportunity for improved evaporation estimation (Gibson, 2002; Gibson et al.,
1993; Gibson & Edwards, 1996). The versatility of SAS functions to estimate both transit and residence times
is extremely useful, where transit time is the age of water leaving a lake at a given point in time and the resi-
dence time is the time water spends in a lake. The separation of these two metrics is essential for broader
understanding of the temporal variability of the role of lakes in biogeochemical cycles and their interaction
with the surrounding catchment compared to in-lake processes (Anderson & Cheng, 1993; Brooks et al., 2014;
Cardille et al., 2007).

The River Dee, Scotland, is the largest unregulated river in the UK and provides local drinking water for
>250,000 people, and sustains an economically important Atlantic salmon fishery (Smart et al., 1998;
Soulsby & Tetzlaff, 2008). We examine two lake-influenced headwater catchments of the River Dee to assess
the temporal variability of transit and residence times of two lakes. This study focuses on two shallow lakes: a
larger lake with a small catchment and a smaller lake with a large catchment. Different SAS functions were
tested over a 2-year period with the primary objective of identifying temporal changes in lake transit and resi-
dence times. We specifically aimed to (1) assess the age of lake outflows and evaporation fluxes; (2) qualita-
tively assess lake mixing patterns using SAS functions; and (3) assess the perceived evaporation using stable
water isotope evaporative fractionation under various mixing conditions. Additionally, this work seeks to pro-
vide a general framework for incorporating lakes in time-variant transit time estimations.

2. Study Area

The Dinnet Burn is located in the Cairngorms National Park in Scotland and encompasses a 54.2 km2

catchment, draining into the River Dee (Figure 1). A large area of designated conservation land within
the catchment (The Muir of Dinnet, 11.6 km2) is undergoing forest restoration following intensive agricul-
ture and grazing in the early nineteenth century and initial forest clearance in the Bronze Age (3,000 BP).
The climate is at the transition between temperate/boreal zones, though it is subarctic at higher altitudes
(>500 m), with periods of snow and freezing temperatures during the winter (Soulsby et al., 2001). The
freezing temperatures occasionally result in ice formation on open water bodies. The elevation of the
Dinnet Burn changes significantly from west to east, decreasing 600 m from the headwaters to the outlet.
The highest and lowest elevations are underlain predominately by siliceous schists, while midelevations
are associated with exposed granite batholiths (Smart et al., 1998; Speed et al., 2011). Exposed bedrock
is present in the highest elevation areas (Hrachowitz, Soulsby, Tetzlaff, Malcolm, & Schoups, 2010), and
bedrock fractures result in a preferential flow path for groundwater recharge (Soulsby & Tetzlaff, 2008;
Speed et al., 2011). However, fractured bedrock is minimal in middle- and low-relief areas and preferential
flow paths to groundwater recharge are limited (Ala-aho et al., 2017). The Dinnet Burn catchment is
broadly similar to the extensively studied Bruntland Burn, approximately 8 km away. Both catchments
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are generally underlain by granite and schist, characterized by steep slopes, a valley bottom lined with
bogs and fens, and have virtually identical climatic regimes (Soulsby, Birkel, Geris, & Tetzlaff, 2015;
Tetzlaff et al., 2014).

Below 500 m, glacial drift deposits comprising low permeability till and more freely draining alluvium, cover
the underlying bedrock and result in a hummocky landscape with depressions with raised bogs and fens
(Hrachowitz, Soulsby, Tetzlaff, Malcolm, & Schoups, 2010). Low permeability of the drift and glacial retreat
led to the creation of two kettle holes lakes: Loch Kinord and Loch Davan. The two lakes are near the outlet
of their respective catchments, with the majority of the catchment area upstream of each lake (Table 1). Loch
Kinord and Loch Davan are similar in volumetric size (Table 1) to the majority of lakes in the United Kingdom
(Hughes et al., 2003). The low hydraulic conductivity in the drift (1 · 10�8 m/s) in the surrounding area sug-
gests that there is limited deep groundwater flux and the majority of lake water comes from surface water
inflows (Ala-aho et al., 2017).

Loch Kinord is a large shallow lake (mean depth: 1.5 m, Figure 1) with a small upstream catchment area rela-
tive to its surface area (Table 1). The upstream catchment land cover comprised montane shrubs, conifers,
open water, grassland, broad-leaf/mixed forests, and urban and agricultural usage (Table 1; CEH, 2017).
Loch Kinord is a throughflow lake with continuous inflow and outflow throughout the year. There is limited
variability in the lake level, which has an average level of 0.45 m and a standard deviation of 0.1 m (minimum:
0.28 m, maximum: 1.14 m; Scottish Environment Protection Agency (SEPA), 2018b). Surface water fluxes of
inflow and outflow dominate the lake water balance. In Loch Kinord, surface inflow is 3 times greater than
precipitation inflow.

Loch Davan is smaller but not greatly shallower than Loch Kinord (mean depth: 1.2 m, Figure 1). The upstream
catchment has similar vegetation; however, there are notably fewer montane shrubs and open water areas,
more grasslands areas, and urban and agricultural usage while similar proportions of conifers and broad-leaf/

Figure 1. Catchments of loch Davan and loch Kinord of the Dinnet burn in NE Scotland. Bathymetric contours of each lake are displayed inmeters below a datum of 0
with a spatial scale of 200 m for each lake. Major inlets (black hollow diamonds) and outlet (black hollow squares) of each lake are shown.
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mixed forests to the catchment upstream of Loch Kinord (Table 1; CEH, 2017). Loch Davan is also a
throughflow lake with continuous inflow provided by two surface inflows (Logie Burn is the primary
inflow, and Red Burn is the secondary inflow). The surface inflows provide approximately 41 times more
flow relative to precipitation.

3. Data and Sampling Methods

Rainfall, temperature, wind speed, net radiation, and relative humidity were measured at the Bruntland Burn
experimental catchment (8 km away). Between August 2014 and August 2016, the highest precipitation
occurred from November to January (>3.5 mm/day on average), while late winter (February and March),
spring (May), and early autumn (September) were drier (< 2 mm/day on average; Figure 2a). The long-term
average annual precipitation for the site was 1,090 mm. A comparison of the nearest precipitation stations
within 10 km of the lakes (Glenshiel, Polhollick, and Bruntland Burn) have good agreement on total precipita-
tion between August 2014 and August 2016 (1,834, 1,870, and 1,985 mm, respectively). The deviation
between stations is less than 8%, which is similar to the measurement uncertainty at each station. During

Table 1
Physiographic Properties of Loch Kinord and Loch Davan Catchments and Bathymetry (CEH, 2017)

Lake and Catchment Properties Loch Kinord Loch Davan

Inflow catchment area (km2) 8.4 34
Catchment drainage density (km�1) 0.92 0.78
Primary inflow drainage density (km�1) 1.01 0.75
Secondary inflow drainage density (km�1) N/A 0.72
Surface area (km2) 0.77 0.42
Volume (m3) 1,152,954 505,904
Maximum depth (m) 3.7 2.7
Mean catchment elevation (meters above sea level) 243 275
Lake elevation (meters above sea level) 170 170
Land cover percentage (%)
Montane shrubs 56 35
Conifers 24 21
Open water 8 1
Grassland 4 26
Broadleaf/mixed forest 4 3
Urban and agriculture 4 14

Note. Land cover is allocated with percentages of montane shrubs (MS), conifers (C), open water (O), grassland (G),
broad-leaf/mixed forests (BF), and urban and agriculture (U). N/A = not applicable.

Figure 2. (a) Daily rainfall (mm/day) and air temperature at a weather station 8 km to the lakes, (b) daily measured relative
humidity, and (c) measured water level in Loch Kinord and measured discharge flowing into Loch Davan via the largest
channel (Logie Burn).
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the study period there was a 1-in-200-year storm (December 2015 to early January 2016), which resulted in
the largest flood on the River Dee since 1829 (Marsh et al., 2016; Soulsby et al., 2017). The event greatly
increased the water level and discharge for both study lakes. Relative humidity was high with an annual mean
relative humidity of 80% (Figure 2b). Air temperatures varied between ~0 °C in winter and ~14 °C in summer.

Water level in Loch Kinord has been measured at 15-min intervals at the south end of the lake since February
2008. The primary inflow to Loch Davan, the Logie Burn, drains a catchment area of ~30 km2 and was the only
measured streamflow to the lakes. Discharge measurements were conducted using a pressure transducer
and a previously developed rating curve. Biweekly sampling of the primary surface inflows and outflows
for deuterium (2H) and oxygen-18 (18O) was conducted for the first 12 months of the study period, followed
by 12 months of monthly and additional opportunistic sampling during large events (e.g., December 2015 to
January 2016). Precipitation was sampled daily at the Bruntland Burn (Tetzlaff et al., 2014). The measurement
location at the Bruntland Burn is at approximately the same elevation (250 m above sea level) as the mean
catchment elevations for Loch Kinord and Loch Davan, and less than 100 m higher than the elevation of each
lake (Table 1). It was assumed that the isotopic lapse rate is insignificant due to the small elevation difference
between the Bruntland Burn and the lakes. Any potential effect of elevation on precipitation isotopes is likely
minimal due to the small proportion of precipitation on the lake to the total inflow (2–29%). For long-term
conditions and a precipitation gradient of 1.5‰/100 m for δ2H (Siegenthaler & Oeschger, 1980), an elevation
difference of 100 m would only produce changes of inflow isotopic composition of 0.03–0.44‰
(0.03 = 1.5‰×0.02 and 0.44 = 1.5‰ ×0.29, respectively). Comparison of isotopes in precipitation at the
Bruntland Burn and Lochnagar (sampled in the early 2000s, approximately 10 km from the Bruntland Burn)
reveal a similar relationship between δ2H and δ18O with local meteoric water line (LMWL) slopes of 7.5 and
7.6, respectively (Tyler et al., 2007). Therefore, the relationship between δ2H and δ18O was assumed to remain
the same between the Bruntland Burn and the lakes. Isotope samples were analyzed using a Los Gatos DLT-
100 laser isotope analyzer (Los Gatos Research, Inc., San Jose, United States) with instrument precision of
±0.4‰ for δ2H and ± 0.1‰ for δ18O. Analysis of each liquid sample involved five repeat measurements, with
the initial two discarded to removememory effects. The mean of the remaining three was taken, unless varia-
bility was greater than machine precision (±3 standard deviations), in which case samples were reanalyzed.
Blanks (deionized water to reset the analyzer) and standards (five sets) were run at frequent intervals to keep
lab precision equivalent to the instrument. The isotopic compositions of δ2H and δ18O are given in per mille
(‰), relative to the Vienna Standard Mean Ocean Water.

4. Methodology
4.1. Lake Water Balance

For each lake, the water balance was derived with respect to changing lake volume. Bathymetry surveys for
each lake were conducted prior to isotopic sampling (10 July 1905; NLS, 2017). An algorithm was developed
in Matlab® to digitize the bathymetric surveys to estimate a depth-volume-surface area (D-V-A) relationship
for each lake. Evidence suggests that current sedimentation in each lake is low, as the agricultural expansion
in the nineteenth century was halted and replaced by conservation management and reafforestation in the
twentieth century (Edwards, 1979). There is uncertainty of the D-V-A relationship relative to the measured
lake level elevations due to unknown bathymetric benchmark elevations. To correlate the D-V-A relationships
to themeasured lake level, a lake elevation correction calibration parameter (BE) was applied to themeasured
lake level (Dadj = DM + BE, where DMis the measured lake level). The water balance of each lake was estimated
daily using the D-V-A relationships:

dV tð Þ
dt

¼ I1 tð Þ þ I2 tð Þ þ P tð Þ � Ea tð Þð Þ·A t; V tð Þð Þ � Q t;D t; V tð Þð Þð Þ (1)

where I is the surface inflow to the lake (subscript denotes the number of inflows), P is the precipitation to the
surface of the lake, A is the lake surface area as a function of lake volume (D-V-A relationship), Q is the surface
water discharge from the lake as a function of lake depth, V is the volume within the lake, and Ea is the actual
lake evaporation. Similar to the lake surface area, lake depth is a function of lake volume (D-V-A relationship).
The lake volume was estimated daily using the water balance (equation (1)) for Loch Davan with two surface
inflows (I1(t) and I2(t)), while the water balance was modified for Loch Kinord for only one surface inflow (I1(t)).
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4.1.1. Lake Inflow
Discharge of the largest inflow to Loch Davan (Logie Burn, ~ 30 km2) was measured throughout the study per-
iod; however, the surface inflow discharge to Loch Kinord and the small inflow discharge to Loch Davan were
not measured. The agricultural land use in the Logie Burn catchment prevented the use of the measured dis-
charge to estimate the natural inflows to Loch Kinord and Loch Davan. Discharge scaling has also previously
been used within the upper Dee River catchment to estimate discharge in ungauged basins (Hrachowitz,
Soulsby, Tetzlaff, & Speed, 2010; Wade, 1999). An evaluation of the discharge peak flow and timing in each
of the three closest catchments (Bruntland Burn, Girnock Burn, and River Gairn) using the Engle-Granger coin-
tegration test showed that each catchment can statistically described the flow and timing of the other catch-
ments (p = 1E�3 for all tests; Engle & Granger, 1987). The surrounding catchments also have a consistent
annual rainfall-runoff ratio (0.58–0.65), which is well within the measurement uncertainty of precipitation and
streamflow gauging (±5%; Scottish Environment Protection Agency (SEPA), 2018a). Additionally, the baseflow
indices of the Girnock Burn and River Gairn (adjacent to the Dinnet Burn catchment) have little variability (0.464
and 0.452, respectively; SEPA, 2018b). This suggests that the surrounding region and adjacent catchments have
similar catchment processes, and discharge scaling of the surrounding catchments may be suitable for
ungauged streamflow into each lake. The unmeasured surface inflows of Loch Davan and Loch Kinord share
similar catchment characteristics to the Bruntland Burn, including topology, geology, and temporal trends of
measured isotopic compositions. Red Burn (secondary inflow) in Loch Davan and the inflow to Loch Kinord
were therefore estimated by scaling the discharge of the Bruntland Burn using a ratio of catchment areas:

Qin ¼ QBB·
CAin

CABB

� �
(2)

where Qin is the estimated lake inflow, QBB is the Bruntland Burn inflow, CAin is the catchment area of the lake
inflow, and CABB is the catchment area of the Bruntland Burn. The use of equation (2) with the Girnock Burn or
River Gairn discharge each yield a root mean square error of 0.07 mm/day in comparison to the scaled
Bruntland Burn discharge.
4.1.2. Lake Evaporation
The potential evaporation was estimated using meteorological measurements from a meteorological station
in the Bruntland Burn using the Penman equation (Penman, 1948). The vertical transport efficiency coeffi-
cient (KE) was estimated using an empirical relationship to lake area (KE = (1.69 · 10�5) · A�0.05; Harbek,
1962). Due to spatial differences of the measurement location and potential differences of meteorological
measurements over vegetation at the Bruntland Burn relative to over lake water at Loch Kinord or Loch
Davan, a calibration parameter (χ, parameter range 0 to 2) was applied to the potential evaporation:

Ea ¼ χ·EP (3)

where Ea is the actual lake evaporation. The calibration parameter yields a simple scaled estimate of the
Penman equation and maintains the temporal variability of evaporative flux.
4.1.3. Lake Discharge
Lake discharge was estimated by closing the water balance (equation (1)). The water balance of each lake
uses scaled estimates of surface inflow (equation (2)), measured inflow (Logie Burn, Loch Davan only), cali-
brated evaporation (equation (3)), and measured lake level from Loch Kinord. A simple linear relationship
between discharge to lake depth was used to estimate the discharge:

Q ¼ a·D t; V tð Þð Þ þ b (4)

where a and b are fitting parameters. More complex discharge-lake depth relationships were tested but did
not yield significant improvements to closure of the water balance. For consistency, equation (4) was used for
both lakes. In Loch Kinord, the parameters a and b in equation (4) were iteratively solved by minimizing the
difference of simulated and measured lake depths using equation (1) (min(D(t, V(t)) � Dadj) at all time steps).
In the absence of lake depth for Loch Davan, the average and maximum lake level in Loch Davan (DL and
max(DL), respectively) were assumed to be the same as the average and maximum measured lake level in
Loch Kinord (DK andmax(DK), respectively). For Loch Davan, the parameters a and b in equation (4) were itera-
tively solved by minimization of differences of the simulated average lake level to the assumed average lake
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level ( min D t; V tð Þð Þj j � DL

�� ��� �
), and the simulated maximum lake level and the assumed maximum lake

level (min(max(D(t, V(t))) � max (DL))). The lake level and discharge for each lake were estimated daily using
equations (1)–(4) in conjunction with the D-V-A relationships for each lake.

4.2. StorAge Selection Functions in Lakes

The concepts of storage-dependent transit time functions are well suited to characterize different catchment
storages, including lakes, though the potential with regard to the latter has not yet been explored. The
shallow depths andmoderate temperature regime of Loch Kinord and Loch Dava suggest that the lakes likely
do not result in permanent, uniform stratification. Furthermore, seasons have noticeably different inflow dis-
charge and lake levels (Figure 2), which replicate the annual sinuosity of air and lake temperatures. Changes
in lake transit time functions due to temperature and lake level are therefore related, and the time-variant
transit time function may be described using a storage-dependent function.

The conceptualization of SAS functions is based on accounting for the age of each parcel of water in storage.
This is accomplished by ranking water using the elapsed time it has spent in storage, termed the age-ranked
storage (ST). At any time (t), ST(T, t) represents the volume of water in storage that has an age that is
younger than age T. The age-ranked storage changes in time with the addition of new water via precipitation
and surface inflow, in conjunction with the outward fluxes of lake discharge and evaporation. Each flux is
assigned a distribution (SAS function in cumulative distribution form, Ω), which describes the quantity of
water of age T contributing to the flux. Inflow to storage is represented as a pulse; therefore, the SAS function
for all inflowwere negated (Harman, 2015). For both precipitation and surface inflow, the age of inflow is con-
sidered as new water to the lake and assigned an age of zero days. The new water contributions with age of
zero days are used to define the beginning of the elapsed time water spends in storage prior to exiting via
discharge or evaporation. For each lake, the governing equation of the conservation of mass of ST was
described as follows:

∂ST T ; tð Þ
∂t

¼ I1 tð Þ þ I2 tð Þ þ P tð Þ � Q tð Þ·ΩQ ST T ; tð Þ; tð Þ � E tð Þ·ΩE ST T ; tð Þ; tð Þ � ∂ST T ; tð Þ
∂T

(5)

The SAS functions were defined for lake discharge and evaporation fluxes using the uniform and gamma
distributions. The uniform distribution provides an approximation of random sampling (complete mixing)
of the volume leaving the lake. For very small lakes driven by wind advection this is likely the primary mixing
regime. The uniform distribution SAS function of evaporation and discharge was assigned as follows:

Ω∅ ST ; tð Þ ¼
ST

Su∅ tð Þ ST < Su∅ tð Þ

1 ST > Su∅ tð Þ

8<
: (6)

where ∅ indicates the flux (evaporation or discharge) and Su∅ tð Þ is a uniform distribution parameter. The
distribution parameter is time variant and changes with the volume of water in the lake. While the uniform
distribution can isolate specific water ages younger thanSu∅ tð Þ to leave storage, there is no preferential move-
ment of water younger than Su∅ tð Þ. Preferential movement of water can also occur in small lakes and thereby
influence the age of water flux. For this study, a gamma distribution was assumed to be representative of
preferential water movement:

Ω∅ ST ; tð Þ ¼
γ α; ST

Sg∅ tð Þ
� �
Γ αð Þ (7)

where α is a gamma distribution shape parameter, and Sg∅ tð Þ is a gamma distribution scale parameter. The
variables, Su∅ tð Þ and Sg∅ tð Þ, used in equations (6) and (7) are time variant using lake volume:

S�∅ tð Þ ¼ λ·N V tð Þð Þ � λ·ΔScð Þβ (8)

where * indicates the distribution (u for uniform and g for gamma), λ is a linear slope parameter (λ ≠ 0), N(V(t))

is normalized lake volume (
V � V
σV

), ΔSc is an intercept parameter, and β is a nonlinearity parameter. Similar to

storage discharge parameters, the units of λ change with β to maintain dimensional consistency (Kirchner,
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2009). The linear slope parameter (λ) describes how lake volumes influence the estimated mixing. Negative λ
decreases S�∅ tð Þ and indicates an inverse storage effect (e.g., Harman, 2015), with an emphasized higher
young water preference during high lake levels. Conversely, positive λ increases S�∅ tð Þ and indicates a
direct storage effect and higher old water preference during high lake levels. High β (>1) nonlinearly
exaggerates the variability of S�∅ , while low values of β (0 ≤ β < 1) nonlinearly dampens the variability of
S�∅ . For each time step, ST was updated with lake inflows (T = 0), while the flux and lake water ages were

estimated using the age balance (equation (5)) and SAS functions (equations (6)–(8), Ω∅(ST, t)). The mean
age of lake discharge was defined as τT, and the mean age of lake storage was defined as τR.

4.3. StorAge Selection Isotope Mass Balance
4.3.1. Lake Mass Balance
The isotope mass balance was resolved using the same water selection method as the age balance
(equations (5)–(8)). For each water age, there is a corresponding isotopic composition of lake water (δL(ST,
t)). To estimate the mass balance for all time steps, spline interpolation was used to gap-fill lake surface inflow
isotopic compositions from biweekly or monthly, to daily. The isotopic inflow to the lake (δI and δP, surface
inflow and precipitation, respectively) was flux weighted to a single lake water composition for each time

(t) δL 0; tð Þ ¼ δp·P þ δI 1ð Þ ·I 1ð Þ þ δI 2ð Þ ·I 2ð Þ
� �

= I 1ð Þ þ I 2ð Þ þ P
� �� �

. The isotopic compositions of fluxes (discharge

and evaporation) were estimated by integrating the contribution of water ages:

δQ tð Þ ¼ ∫S0ωQ ST ; tð Þ·δL ST ; tð Þ·dST (9)

where ωQ(ST, t) is the corresponding probability density function of ΩQ(ST, t;i.e., Ω(ST, t) = ∫ ω(ST, t) · dST).
4.3.2. Evaporative Fractionation
Evaporative fractionation has a significant influence on the isotopic composition of lake water. However,
since evaporation may not occur from water parcels of all ages (equations (6) and (7)), fractionation should
be addressed independently for each water age T. The cumulative ranked storage (ST) can be discretized into

each age of T, the noncumulative ranked storage (S
0
T ¼ dST Tð Þ=dT). For each T, the Craig-Gordon (CG) model

was used to estimate the isotopic composition of evaporation vapor (δE; Craig & Gordon, 1965):

δE Tð Þ ¼
δL S

0
Tð Þ

αþ � h·δA � ε
1� hþ εK

1;000

(10)

where α+ is the liquid-vapor fractionation (Horita & Wesolowski, 1994), h is relative humidity, δA is the
ambient atmospheric isotopic composition, and ε is the sum of the equilibrium fractionation (ε+) and kinetic
fractionation (εK). Kinetic fractionation is a function of h, aerodynamic diffusion (n) and the ratio of molecular
diffusion coefficients (CK; εK = n · CK · (1� h)). For small lakes, n = 0.5 and CK = 28.5 and 25.1 for δ2H and δ18O,
respectively (Gat, 2010). The atmospheric isotopic composition, δAwas assumed to be in equilibrium with the
precipitation isotopic composition (δP; Gibson et al., 2016). The mass balance for each time step and each T
(modified from Gibson, 2002):

S
0
T ·
dδL S

0
T ; t

� �
dt

þ δL S
0
T ; t

� �
·
dS

0
T

dt
¼ �Q Tð Þ·δL S

0
T ; t

� �
� E Tð Þ·δE Tð Þ (11)

For a given time step (t), the fluxes (Q and E) and δE do not change. Since T = 0 for lake inflow, for any T > 0
there is no additional inflow and the volume of age T desiccates. The substitution of the CG model
(equation (10)) into equation (11) yields an equation with one unknown (δL S

0
T ; t

� �
), which was solved similarly

to the method shown in Gibson (2002) for each T and t.

4.4. Long-Term Water Age Balance

To provide a first-order estimate of how lakes affect catchment transit times, a comparison of the transit time
downstream of each lake was conducted, first using only lake discharge isotopes (TTD1) and second using the
convolution of lake inflow and lake transit times (TTD2). The time-invariant gamma distribution with the con-
volution integral, corrected for evapotranspiration was used to estimate TTD1 (McGuire & McDonnell, 2006).
The estimation of TTD2 required additional assessment of the transit times within the lake as well as the
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transit times of surface water inflow to the lake. The transit times of the lake were estimated using the long-
term average of the assumed SAS function, termed the marginal distribution (MDL; Benettin et al., 2017;
Heidbüchel et al., 2012). For the reason that there are potential similarities of the marginal distribution, to
the time-invariant transit time in catchments without lakes (Benettin et al., 2015, 2017), we estimated the
inflow (TTDin) using the same method as TTD1. Precipitation (TTDP) was assigned as a pulse input with an
input age of zero days, similar to the definition of precipitation age in equation (5). Weighted convolution
of TTDin, MDL and TTDP was used to estimate TTD2:

TTD2 ¼ FP ·∫
t
0 TTDP tð Þ· MDL tð Þð Þð Þ·dt þ F in 1ð Þ·∫

t
0 TTDin 1ð Þ· MDL tð Þð Þ� �

·dt þ F in 2ð Þ

∫t0 TTDin 2ð Þ MDL tð Þð Þ� �
·dt (12)

where FP is the fraction of precipitation to total lake inflow, Fin(1) is the fraction of primary surface inflow to
total lake inflow, and Fin(2) is the fraction of secondary surface inflow to total lake inflow. The difference
between TTD1and TTD2 shows the apparent influence of not accounting for lakes in the estimation of the
catchment transit times.

4.5. Model Calibration

Dual isotope plots (δ2H versus δ18O) help to visually distinguish different sources of water, detect general
trends in mixing patterns relative to precipitation, and identify the influence of evaporation using deviations
from the precipitation isotopic compositions. The coefficient of variability, the ratio of the standard deviation
to the mean isotopic composition, may help to identify differences in isotopic variability and responsiveness
of different water sources. The deviation from the precipitation compositions can be quantified using line-
conditioned excess (lc-excess). The lc-excess is the Euclidian distance of a measured composition from the
LMWL (Landwehr & Coplen, 2006):

lc� excess ¼ δ2H� SL·δ18O� INT (13)

where SL is the slope and INT is the intercept of the LMWL. Negative values of lc-excess indicate evaporation
enriched water. Using lc-excess helps to account for the large seasonal variability of precipitation, which may
otherwise influence the evaporation line (Benettin et al., 2018). The differences of the mean lc-excess of lake
inflow and outflow were tested for significance using two-tailed t tests (95% confidence).

Water balance parameters (χ and BE) and SAS function parameters (α, λ, and ΔSc for evaporation and dis-
charge) were calibrated simultaneously for the reason that the SAS functional form influences the evapora-
tive fractionation in lake discharge. For example, high values of BE increase total lake evaporation and
fractionation (high BE increases surface area), while the SAS function influences the evaporation and fractio-
nation of each age T (equations (6)–(8)). Therefore, χ estimated using measured isotopic composition of lake
water is dependent on the total evaporation (BE) and the SAS functional form (e.g., young water preferences).

The time variance of lake transit times was assessed using three SAS functional forms: (1) uniform distribution
with linear dependence on storage (UL, β = 1), (2) gamma distribution with linear dependence on storage (ΓL,

β = 1), and (3) gamma distribution with nonlinear dependence on storage (Γβ, 0< β ≤ 2). The UL SAS function
is more parsimonious than ΓL or Γβ and is only dependent on the changes in storage. However, preferential
mixing of water ages is likely in many lakes (Kalinin et al., 2016). The ΓL SAS function considers both changes
in storage and the preferential selection of different water ages (α shape parameter). Preferential mixing
(gamma distribution) is likely for Loch Kinord and Loch Davan due to the close proximity of the inlet relative
to the lake outlet in Loch Davan (Figure 1) and the very shallow lake levels near the lake shores (Loch Kinord
and Loch Davan).

Calibration was conducted using 50,000 Monte Carlo simulations, retaining the 100 best simulations for
analysis. Simulations were evaluated for all times greater than twice the theoretical hydraulic retention time
(HRT = lake volume/lake inflow) tominimize the influence of initial conditions. The HRTs were 260 and 18 days
for Loch Kinord and Loch Davan, respectively. Daily values of lake water level, and δ2H and δ18O in lake
discharge were simulated for each lake from July 2014 to August 2016. Simulated lake discharge δ2H and
δ18O using each SAS function were evaluated on days of measured lake discharge δ2H and δ18O. Isotopic
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simulations were evaluated using the Nash-Sutcliffe (NSE, Nash & Sutcliffe, 1970) and Kling-Gupta (KGE, Kling
et al., 2012) efficiencies. In Loch Kinord, the daily simulated lake level was evaluated against daily measured
lake levels using the NSE and KGE. The efficiencies of NSE and KGE for δ2H and water level were used to
calibrate the SAS functions and water balance. NSE was used to optimize the simulated δ2H for the large
observed peak events (Figure 2c). KGE was used to optimize the simulated temporal variability of the
isotopic compositions within the lakes. Simulations of δ18O were used as an additional objective function
to validate the lake enrichment; however, they were not used to inform the 100 best simulations.

Due to the uncertainty of estimated inflow, the sensitivity of lake isotopic compositions was examined by
varying the inflow discharge of the 100 best calibrated parameter sets. The inflow discharge (scaled dis-
charge, equation (2)) was varied by attenuating the flow using the Muskingum-Cunge equation (Cunge,
1969). The Muskingum parameters were chosen (k = 2 and X = 0.1) to shift the discharge peaks by
1 day and maintain higher attenuated flows relative to the discharge used in calibration. These conditions
were chosen to test potential variability of timing of large precipitation events as well as uncertainty in
precipitation amounts. Temporal sensitivity on isotopic compositions of lake water was assessed using
isotopic residuals:

R ¼ δs � δs;a (14)

where R is the residual isotopic composition, δs is the simulated isotopic composition using area scaled
discharge, and δs, a is the simulated isotopic compositions using area scaling with attenuation of discharge.

5. Results
5.1. Dynamics of Lake Inflow and Outflow Stable Isotope Compositions

The isotopic composition of precipitation had the highest annual variability of all sampled waters, increasing
by 20‰ on average from winter (January) to summer (July) for δ2H (Figure 3). However, the isotopic compo-
sition of lake inflows had limited variability relative to precipitation and rarely deviated from the LMWL.
Generally, inflows were most isotopically depleted during winter high flows and enriched during summer
events. The isotopic compositions of outflows for both lakes were more variable than surface inflow (coeffi-
cient of variation, CV, Table 2), although this was not as visually apparent for Loch Davan (Figure 3). The slope
of the linear regression of δ2H on δ18O for Loch Kinord was lower for outflow than either surface water inflow
or precipitation, but for Loch Davan, the slope of the linear regression of δ2H on δ18O was higher for the lake
outflow than the inflow (Table 2). However, the regression slope of the inflows had high uncertainty (±1.18)

Figure 3. (a) Deuterium and oxygen-18 of lake inflows, outflows, and precipitation samples (n indicates number of samples
and GWML is the Global Meteoric Water Line). The inset plot (b) focuses on the isotopic compositions of lake inflow and
outflows. Boxplots of (c) deuterium and (d) line-conditioned excess are shown for all samples collected.
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and low coefficients of determination (R2 = 0.55 and 0.53, Table 2). With the exception of Loch Kinord outflow,
lake surface inflows and outflows were significantly more depleted for average δ2H and had higher average
lc-excess than the mean of precipitation (95% confidence, Figures 3c and 3d). These two conditions were
most consistent with the isotopic composition of winter precipitation.

The lc-excess of lake surface inflow was less temporally variable than precipitation (flux-weighted values in
Figure 4). The lc-excess of lake outflow for both lakes decreased sharply during June to October prior to an
increase between November to March. Loch Kinord outflow lc-excess was continuously lower during the
winter months than the inflow; however, this was not observed for Loch Davan. The evaporative effects
within Loch Kinord resulted in significantly different mean lc-excess of the inflow relative to the outflow
(p ≪ 0.001). In Loch Davan, the mean outlet lc-excess was significantly different from the Logie Burn inflow
(p = 0.01); however, it was not statistically different to the smaller inflow (Red Burn), which was influenced
by evaporation fromwetlands (p = 0.13). The lc-excess rapidly increased in both lakes during the extreme pre-
cipitation event from the end of December 2015 to the beginning of January 2016.

5.2. Lake Water Balance and Modeling

Reasonable model fits to water level (Loch Kinord) and the isotopic composition of lake outflows were
obtained for each SAS function with NSE and KGE values ranging from 0.70 to 0.97 (Table 3). For Loch
Kinord, the NSE and KGE of δ2H simulations were the best with the ΓL and Γβ SAS functions; however, the
distinction between linear (ΓL) and nonlinear (Γβ) dependence on storage for preferential mixing was not evi-
dent (Table 3). The UL SAS function in Loch Davan had the best model efficiency (δ2H), most notably for KGE.
Similar to Loch Kinord, there was little difference between the linear (ΓL) and nonlinear (Γβ) dependence on
storage for the preferential mixing functional forms.

Table 2
Slopes and Intercepts of Linear Regression of δ2H on δ18O for Primary Inflows and Outflows of Loch Davan and Loch Kinord

Statistical Metrics
of δ2H and δ18O Red burn Logie burn Davan outlet Kinord inlet Kinord outlet Rainfall

Slope 4.51 4.03 4.54 4.61 4.43 7.62
Intercept �19.83 �23.82 �19.57 �18.44 �19.91 3.85
R2 0.55 0.53 0.71 0.62 0.93 0.94
CV (σ/μ) 0.032 (0.039) 0.041 (0.046) 0.050 (0.067) 0.043 (0.049) 0.086 (0.141) 0.434 (0.418)

Note. Also shown is the slope and intercept of the linear regression of the local meteoric water line (rainfall), and the
regression statistics for each inflow and outflow.

Figure 4. Time series of line-conditioned excess (lc-excess) for the surface inflow and outflow of Loch Kinord (circles) and Loch Davan (squares). Additionally shown is
the observed precipitation lc-excess (green cross), shown as flux-weighted values on the lake sample days.
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The sign of the calibrated λ in the SAS function for each lake defines the distinction between a direct storage
effect and inverse storage effect. For discharge from Loch Kinord, UL showed an inverse storage effect and ΓL

and Γβ showed direct storage effects, while evaporation showed direct storage effects for all SAS functions
(Figure 5a). For Loch Kinord, the identifiability of λ (p(λQ) and p(λE)) was similar for both discharge and eva-
poration using the ΓL and Γβ SAS functions. The estimated storage effects in Loch Davan were inverse sto-
rage effects for discharge and direct storage effects for evaporation and were consistent for all SAS
functions. The shape parameter (α) was substantially different for both evaporation and discharge in each
lake than the typically observed value in catchment flow systems (~0.5). For Loch Kinord, βQ had the highest
occurrence near one, which resulted in a linear dependence on storage for Γβ. The difference of ΓL and Γβ

SAS functions in Loch Davan was more pronounced, with the highest occurrence of βQ < 1 indicating non-
linear damping of the storage variability. In each lake, βE had the highest occurrence >1, which increased
the influence of storage variability on the SAS function. However, βE had the highest variability for each lake.
The parameters, ΔSc and BE were insensitive for all discharge and evaporation SAS function forms.

5.3. Evaluation of Lake Isotope Simulations

The simulated isotope compositions captured the annual variability of those measured in the outflow of each
lake (Figure 6). Each SAS function reproduced the ~10‰ annual variability of δ2H in Loch Davan relative to
the larger ~15‰ annual variability of δ2H in Loch Kinord. The SAS functions also simulated the dynamics
of isotopic enrichment due to evaporation and the isotopic response to the large precipitation event in
December 2015/January 2016 for both lakes. However, the uncertainty in simulated δ2H in Loch Davan
was much larger during the event and the SAS functions were unable to capture the isotopic composition
in Loch Kinord during late summer 2016 and October 2014 in Loch Davan. The simulated δ2H was consis-
tently enriched relative to the measured δ2H during the periods the SAS functions were unable reproduce
measured compositions. The difference between UL and ΓL and Γβ SAS functions was apparent in the simu-
lated summer isotopic variability and lake water fractionation (Figure 6). The daily variability of δ2H with the
UL SAS function was more damped than the ΓL or Γβ SAS functions. In Loch Kinord, direct storage effects of
the ΓL and Γβ SAS functions resulted in suppression of the isotopic composition of large inflows. The inverse
storage effect in Loch Davan resulted in a large increase in lake isotopic composition toward the new preci-
pitation composition. TheUL SAS function resulted in periodic overenrichment during the summer months in
Loch Davan and during the winter months in Loch Kinord, which was not observed with the ΓL or Γβ SAS
functions. The lake isotopic composition was most sensitive to changes in inflow discharge (equation (14))
during the peak flow event in December 2015/January 2016 (Figures 6b and 6d). The sensitivity of inflow
discharge on lake compositions was the greatest in Loch Kinord for the UL SAS function. Loch Davan compo-
sition was more sensitive relative to Loch Kinord (±10‰), while the ΓL SAS function was most sensitive to
changes in discharge.

Table 3
Efficiency Criteria of the Best Performance for Each Model

Uniform linear storage-dependent distribution model (UL)

Lake NSE: δ2H (NSE: δ18O) KGE: δ2H (KGE: δ18O) NSE Lake Level
Kinord 0.88(0.86) 0.88(0.82) 0.89
Davan 0.73(0.70) 0.88(0.85) N/A

Gamma linear storage-dependent distribution model (ΓL)

Lake NSE: δ2H (NSE: δ18O) KGE: δ2H (KGE: δ18O) NSE
Kinord 0.93(0.87) 0.97(0.86) 0.89
Davan 0.70(0.69) 0.79(0.76) N/A

Gamma nonlinear storage-dependent distribution model (Γβ)

Lake NSE: δ2H (NSE: δ18O) KGE: δ2H (KGE: δ18O) NSE
Kinord 0.91(0.88) 0.95(0.92) 0.89
Davan 0.72(0.69) 0.79(0.77) N/A

Note. Where applicable, the Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) of the simulated isotopic composition of δ2H,
δ18O, and water level are shown. No statistical fit was applicable for Loch Davan as water level was not measured.
N/A = not applicable.
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In Loch Kinord, simulation confidence bounds did not vary greatly throughout the year, typically ranging
between ±1–2.5‰ in δ2H for the ΓL and Γβ SAS functions and ±0.5–1‰ in δ2H for the UL SAS function
(Figure 6a). The largest confidence bounds for isotopic compositions coincided with the largest precipitation
events. Unlike Loch Kinord, the width of the confidence bounds for δ2H simulations in Lock Davan was tem-
porally variable, being greatest during the summer and the December 2015/January 2016 event. With the
exception of the December 2015/January 2016 event, the inverse storage effect in Loch Davan resulted in
lower uncertainty on average in δ2H during winter (±0.25‰) and higher uncertainty in δ2H during the sum-
mer (±1‰) due to evaporation fractionation for all SAS functions. For each lake, the simulation of δ18O (not
shown) was relatively similar, the isotopic uncertainties were proportionally smaller and did not provide sub-
stantially different information (Table 3).

5.4. Estimated Lake Evaporation

The estimated evaporation rate (χ calibration parameter) changed with each SAS function (Figures 7a
and 7d). Through calibration, the parameter range of χ decreased to 0.43 to 1.0, for all SAS functions and
both lakes. In both lakes, the calculated average annual evaporation was greatest for the Γβ SAS function

Figure 5. Parameter probability distributions for the most sensitive transit time parameters (a) λQ, (b) λE, (c) αQ, (d) αE, (e)
βQ, and (f) βE. Values of λ (discharge and evaporation) were either positive or negative (λ ≠ 0). Parameters used in uniform
distribution with linear dependence on storage (UL) are shown in green, gamma distribution with linear dependence on
storage (ΓL) are shown in orange, and gamma distribution with nonlinear dependence on storage (Γβ) are shown in gray.
Loch Kinord is shown with solid lines and Loch Davan is shown with dotted lines.
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(407 and 438 mm/year for Loch Kinord and Loch Davan, respectively). Conversely, the UL SAS function
resulted in the lowest average annual evaporation for both lakes (342 and 401 mm/year for Loch Kinord
and Loch Davan, respectively). Unlike the evaporation rate, the ratio of evaporation to inflow (E/I)
incorporates the estimation of lake surface area due to differences in the elevation correction parameter
(BE). The ratio E/I was very small for both lakes (<0.15). In both lakes E/I increased with the number of
model parameters (UL > ΓL > Γβ; Figures 7b and 7e). The increase in E/I coincided with greater
evaporation uncertainty and younger estimated evaporation ages (Figures 7c and 7f). While the
uncertainty of evaporation flux was greater for the ΓL and Γβ SAS functions, the uncertainty of the
simulated isotopic compositions was not proportionally larger.

Figure 6. Simulated δ2H for (a) Loch Kinord and (c) Loch Davan for each model. The 95% confidence bounds are shown for
the uniform distribution with linear dependence on storage (UL, green), gamma distribution with linear dependence on
storage (ΓL, orange), and gamma distribution with nonlinear dependence on storage (Γβ, gray) models, with the isotopic
measurements and analytical uncertainty bounds. The sensitivity of lake isotopic compositions to discharge for eachmodel
are shown for (b) Loch Kinord and (d) Loch Davan.
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The estimated age of evaporation changed with each SAS function, with a wider distribution of mean annual
evaporation ages for UL than ΓL and Γβ (Figures 7c and 7f). In Loch Kinord, the direct storage effect for eva-
poration resulted in relatively constant evaporation age during the summer, with minor fluctuations due to
summer precipitation events. The shape of the distribution of mean modeled evaporation age was similar to
a normal distribution for each SAS function (Figure 7c), with distribution median values of 99 (UL), 50 (ΓL), and
43 (Γβ) days. In Loch Davan, the estimated mean daily evaporation age was young, and the SAS functions fre-
quently selected water that was just a few days old. Evaporation age was youngest during the summer due to
the calibrated direct storage effect. The median of the distribution of mean evaporation ages reflected the
differences in each distribution: 17 (UL), 13 (ΓL), and 5 (Γβ) days. However, uncertainty of the evaporation
age increased during the winter (high water level and low evaporation rate). This was likely due to lower influ-
ence of evaporation on the isotopic composition during the “flushing period,” which was dominated by
younger water (inverse storage for discharge effect).

5.5. Temporally Variable Lake Transit and Residence Times

The width of the 95% confidence bounds of the mean age of lake discharge in Loch Kinord (τT, bands in
Figure 8a) generally remained constant after July 2015 for the UL and ΓL SAS functions. The Γβ SAS function
resulted in more temporal variability in the τT confidence bounds throughout the simulation. The inverse sto-
rage effect with the UL SAS function resulted in much younger estimated τT during the December
2015/January 2016 event and smaller variability of τT confidence bounds during the summer months than
the ΓL andΓβ SAS functions. Themean lake discharge age was more sensitive to inflows for the direct storage
effect (ΓL and Γβ SAS functions) than the inverse storage effect (UL SAS function, Figure 8a, summer 2015 and
2016). In Loch Davan, all SAS functions resulted in high intra-annual variability of τT confidence bounds
(Figure 8b). The confidence bounds were generally greatest during the drier summer months in 2015 and
smallest during the large events in January 2016 and June 2016. The differences of the τT confidence

Figure 7. Estimated daily lake evaporation (mm/day), the ratio of evaporation to inflow (E/I), and the probability distribu-
tion of mean daily evaporation age for Loch Kinord (a–c) and Loch Davan (d–f). Wider uncertainty bounds of ΓL and Γβ
resulted in orange and gray appearance of the evaporation bounds (a and d).
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bounds with regard to the SAS functions were not clearly present for Loch Davan, possibly due to the short τT.
In both lakes, the higher preference of younger water to exit via discharge or evaporation resulted in an older
mean lake residence time (τR) than τT for the ΓL and Γβ SAS functions (Figure 8). Conversely, τR for the UL SAS
function in each lake was most consistent with the mean τT during the low flow periods and only showed
distinctly higher τR than τT during the peak event in January 2016.

5.6. Influence of Evaporation and Lake Transit Time Estimations at the Catchment Scale

Themean of TTD1 (MTT1) for each lake was noticeably lower than themean of TTDin (Table 4). The lower MTT1
coincides with a higher coefficient of variation, CV, in lake outflow relative to the inflow. However, the
decrease of MTT1 from inflow to outflowwas not directly proportional to the change of CV from inflow to out-
flow (Table 2). With respect to Loch Davan, Loch Kinord had a smaller difference between the mean of TTDin

andMTT1, relative to the difference of CV for inflow and CV for lake outflow. The CV was consistently larger for
δ18O than δ2H and had a noticeably greater difference at the outflow of each lake. Despite the moderate tran-
sit time of Loch Kinord the mean of the convolution of TTDin and lake marginal distribution (MDL) resulted in
a mean age of TTD2 younger than the mean of TTDin. This is likely due to the proportion of precipitation (FP),
which contributes water of age zero days (Table 4). In Loch Davan, the uncertainty of the mean of TTD2 was
relatively similar to the lake transit time, which shows an insignificant effect of the lake to change the inflow
water ages prior to the lake outflow. Unlike in Loch Kinord, the low proportion of precipitation on Loch Davan

Table 4
The Mean Marginal Age of Fluxes, Ratios of Inflow and Outflow Fluxes, and the Mean of the Marginal Age of the Catchment Downstream of Each Lake (Loch Kinord and
Loch Davan)

Inflow and Outflow Transit Times

Loch Kinord Loch Davan

Outflow convolution

Primary inflow (mean of TTDin(1), years) 2.82 ± 0.47 2.51 ± 0.41
Secondary inflow (mean of TTDin(2), years) N/A 3.14 ± 0.15
Catchment downstream of the lake (mean of TTD1, years) 1.35 ± 0.19 1.92 ± 0.34

Inflow and lake transit time convolution

UL ΓL Γβ UL ΓL Γβ
Mean of the marginal distribution of lake discharge (MDL, days) 122.8 ± 6.6 135.7 ± 10.9 121.7 ± 11.3 11.5 ± 1.9 11.0 ± 2.0 11.6 ± 1.8
Mean of the inflow and lake convolution (TTD2, years) 2.18 ± 0.11 2.12 ± 0.10 2.15 ± 0.12 2.52 ± 0.04 2.52 ± 0.04 2.52 ± 0.04
Primary inflow to iotal Inflow ratio (Fin(1) = Iin(1)/IT) 0.74 ± 0.02 0.71 ± 0.02 0.73 ± 0.02 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01
Precipitation to Total Inflow ratio (FP = P/IT) 0.26 ± 0.02 0.29 ± 0.02 0.27 ± 0.02 0.024 ± 0.01 0.025 ± 0.01 0.026 ± 0.01

Figure 8. The 95% confidence intervals of the mean lake transit time (a) Loch Kinord and (b) Loch Davan are shown with
shaded regions, while the average of the mean residence times are shown as a dotted line.
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(FP< 3%, Table 4) resulted in no noticeable change in lake outflow water age. For both lakes, the transit time
estimated using the convolution of inflow and lake transit time (TTD2) was significantly older than the transit
time estimated using only the lake outflow (TTD1, 99% confidence).

6. Discussion
6.1. What Are the Implications of Lakes for Catchment Isotopic Dynamics and Transit Time Analysis?

Lakes mix and attenuate the isotopic composition of surface water inflow and precipitation and are thus an
important component of hydrological systems that need to be appropriately conceptualized in catchment
travel time studies. However, this issue has received little attention to date. Catchment transit time distribu-
tions have traditionally been assessed using lumped models, though tracer-aided modeling studies have
similarly shown the importance of separating the influence of lake effects on stream water isotopic composi-
tions (Birkel et al., 2011a). For catchment transit times downstream of a lake, the separation of the lake transit
time from the lake inflow transit time was shown here to be essential for the isolation of evaporation fractio-
nation and precipitation effects on the lake from the transport effect in both the catchment and lake. The
decrease of lc-excess in the outflows of each lake relative to their inflows (Figure 3d) indicates evaporative
fractionation within the lakes. The consistently negative lc-excess during low evaporation periods in Loch
Kinord potentially indicates a memory effect from evaporation in the previous summer, whereas the annual
convergence of lc-excess during winter in Loch Davan indicate shorter residence times (Figure 4). The differ-
ences in the coefficient of variation of δ2H and δ18O of inflows and outflows are possible simple indicators of
the relative effects of mixing and evaporation. The magnitude of the increase in the CV from lake inflow to
lake outflow may yield a simple indicator of the effect of evaporation, with a larger increase in CV indicating
greater evaporation fractionation influence (Table 4). With the previously established relationships correlat-
ing MTT to the variability of measured tracers, the lack of consideration of lakes in catchment transit time will
lead to the danger of overestimating mixing and a lower derived MTT (Godsey et al., 2010).

Confounding the obvious expectation that the transit time of lakes will increase overall catchment transit
times, direct precipitation and evaporation have a potential influence on the mean catchment water age
downstream of lakes (Table 4). Precipitation, evaporation, and lake transit time simultaneously influence
water age and isotopic variability. Precipitation decreases mean catchment transit time and increases
isotopic variability, while lake transit time increases mean catchment transit time and decreases isotopic
variability. Evaporation, while not explicit in equation (12), increases the mean transit time through the
lake and increases isotopic variability of the lake outflow. As the mean of MDL increases, the relative
difference of TTDin and TTDp with respect to MDL decreases and TTD2 is more dependent on MDL

(MDL + TTDin ≅ MDL + TTDP). In catchments or events where the lake is predominantly fed by precipitation
(FP ➔ 1) and has a low mean of MDL, the catchment outflow would be mostly event water. In lake systems
with a more balanced precipitation relative to surface water inflow (i.e., Loch Kinord) and low MDL relative
to inflow transit time, this may result in a reduction of the mean catchment transit time due to the con-
tribution of young precipitation on the lake.

6.2. How Do the Flux-Dependent SAS Functions Inform on Lake Mixing?

The capacity of SAS functions to inform on lake mixing is dependent on how well the model captures the
observed dynamics as well as the uncertainty associated with model simulations. There are notable periods
in the simulations of Loch Davan which are overenriched in δ2H while providing reasonable lc-excess simula-
tions. However, the uncertainty of simulated lake isotopes likely does not influence the estimation of λ since
there are few such occurrences. A direct comparison of the lake inflow isotopic composition to the Bruntland
Burn streamflow isotopic composition suggests that the overestimation in Loch Davanmay instead reflect an
occasional effect of the relatively coarse fortnightly sampling of inflow. Although high uncertainty of δ2H in
Loch Davan outflow occurs during the one high storage event in January 2016 (equating to>100-year return
period), the uncertainty is associated primarily with the large volume of new water “flushed” as a pulse by the
SAS function rather than uncertainty in storage effect (λQ). The pulse of new water leaving the lake during a
short period is on occasion overly influenced by evaporation. Lastly, any potential uncertainty of the altitude
effect of precipitation (section 3) is likely minimal as the long-term uncertainty is well within the model con-
fidence bounds for both lakes.
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The consistency of calibrated parameters suggest that Loch Kinord undergoes direct storage effects for
discharge and evaporation, while Loch Davan undergoes inverse storage effects for discharge and direct
storage effects for evaporation. These trends are the most consistent for the preferential mixing SAS
functions (gamma distribution). These storage effects and mixing assumptions (ΓL and Γβ SAS functions)
correlate well to the physical processes within each lake while reproducing the most appropriate isotopic
dynamics, such as limited overfractionation. With the consideration of physically appropriate mixing estima-
tion and reasonable isotope enrichment relative to the UL SAS function, the lake water mixing in Loch Kinord
and Loch Davan is likely best represented by the gamma distribution. The identification of the likelihood of
the storage effect during high (or low) water can help to constrain the parameterization of the SAS function.
Near surface mixing may be influenced by a number of conditions, including vegetation (in the lake margins
or on the lake bed, e.g., Figure 9b), limiting the mixing of newer water (Herb & Stefan, 2004; Sharip et al.,
2012), rapid flow paths (e.g., Figure 9a) of the primary stream inflows to the outlet (Englert & Stewart,
1983), and thermal stratification (e.g., Figures 9c and 9) resulting in only mixing of new water in the upper
layers (e.g., Kalinin et al., 2016).

In Loch Kinord, low lake storage reduces mixing of the lake and results in younger water near the surface,
which is consistent with some stratification of warmer incoming water relative to deeper lake water (e.g., pre-
cipitation dominated, Figure 9c). In other shallow lakes, low water level may expose significant shoreline
vegetation (Figure 9b), which may hinder both horizontal (Herb & Stefan, 2004) and vertical mixing (Rueda
et al., 2006). The limited horizontal mixing due to vegetation reduces the effective lake mixing volume during
summer, thereby increasing the probability for younger surface water to leave via the lake outlet. While a lake
may be affected by both vegetation and stratification, the distinction of dominant processes may be appar-
ent with the evaporation storage effect (Figure 9b versus Figure 9c). Limited vertical mixing in vegetation-
affected lakes (e.g., Figure 9b) may result in older water near the surface for evaporation and more uniform
selection of evaporation age. However, a stratified lake (e.g., Figure 9c) may depict younger evaporated water
since the younger epilimnion water may not mix well with the older hypolimnion water (Castellano et al.,
2010; Pilotti et al., 2014). Furthermore, if stratification was substantial then the actual lake residence time
should be longer than the HRT (Ambrosetti et al., 2003). The opposite storage effect of discharge and eva-
poration in Loch Davan indicated considerably different flow patterns. The relatively close proximity of the
largest inflow (Logie Burn) to the outlet suggests natural short circuiting of the lake (Figure 9a) during high
storage periods (Englert & Stewart, 1983). The small lake area and the high proportion of surface inflow to
total lake volume likely result in the higher proportion of younger water near the surface (young
evaporation age).

Generally, it can be anticipated that many catchments show inverse storage effects, with newer water
bypassing storage during high antecedent storage conditions (Benettin et al., 2017; Birkel et al., 2012;
Harman, 2015; Hrachowitz et al., 2013; van der Velde et al., 2012; van Huijgevoort et al., 2016). However, lakes
likely have additional factors influencing the storage effect including the following: wind, stratification,
groundwater upwelling, surface water flows, and internal waves (Spigel & Imberger, 1987). The use of storage
selection for both discharge and evaporation can help for initial identification of lake mixing processes
(Figure 9). For example, the evaporation storage effect for both lakes in this study, combined with the low
lake storage during the summer, suggests that summer surface water inflows and precipitation preferentially
remained near the lake surface and may have some limited vertical mixing within the lake. In highly seasonal
northern lakes, stratification is the most significant control on the mixing (Gibson, 2002). During the summer
months when evaporation is dominant, the presence of newer water near the surface is dependent on the
temperature of the inflow (Martin & McCutcheon, 1999) and the heat capacity of the lake (Carmack, 1979).
Under the conditions that inflow temperatures are similar to the temperature at the lake surface, newer water
may remain near the surface, readily evaporating and results in a lower discharge transit time (Kalinin et al.,
2016; Waugh et al., 2002). This would suggest either direct storage for both discharge and evaporation
(Figure 9c), or inverse storage for both fluxes (Figure 9d), dependent on the summer lake storage relative
to winter. The framework presented here can be used to test this hypothesis with δ2H and δ18O lakes with
an HRT less than around 5 years, which is generally accepted as the limit of determining isotopic outputs from
inputs in MTT studies (McGuire & McDonnell, 2006). Applications of SAS functions may be further applied to
lakes with a larger surface area or deeper bathymetry by introducing temperature and spatial scales into the
SAS functions. For example, a circular shallow lake may have fewer rapid flow paths if the surface inflow
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Figure 9. Lake mixing patterns shown with plan view (oval) and depth (rectangle) against the estimated water age. The plan view shows the age of water available
for evaporation and width of arrows indicates the preference of discharge from depth. Depth is the age-ranked accumulation of water.
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further rather than closer to the outlet. Accounting for spatial distances in larger lakes could result in different
mixing patterns of precipitation and surface water inflows. However, in deeper and highly seasonal lakes, the
thermal stratification is the key control on how inflow is affected by lake water mixing and therefore influ-
ences the probability of water selection for discharge or evaporation (Ambrosetti et al., 2003; Piontelli &
Tonolli, 1964; Rossi et al., 1975).

The lake residence times and the age of outflows and evaporation flux affect the biogeochemistry and ecol-
ogy of lakes. In general, the evaporation estimated for the study lakes was similar to open water evaporation
reported for other nearby Scottish lakes of 6–7 mm/day during the summer (Tyler et al., 2007). Some of the
differences between the peak summer evaporation rates may be due to the measurement of meteorological
conditions over land rather than over water as well as the use of stable isotopic compositions to calibrate the
evaporation with different mixing assumptions using SAS functions. While the values of χ were lower than
expected (0.43–1.0), this is likely due to the assumption of negligible heat storage within shallow lakes. In
some small lakes, heat storage may result in the overestimation of evaporation when using the Penman
equation and assumed negligible heat storage (Finch & Hall, 2001; McCuen & Asmussen, 1973). The overes-
timation effects are primarily restricted to the summer months and it is anticipated that χ was low to reduce
the summer evaporation from the lakes. The E/I ratio has been shown to be positively correlated to carbon
and nutrient loadings (Brooks et al., 2014; Jeppesen et al., 2011; Yuan et al., 2011), while residence time gen-
erally is negatively correlated to lake nutrient levels (Brooks et al., 2014; Cardille et al., 2007; Hanson et al.,
2003). In lakes with direct storage effects for discharge and inverse storage effects for evaporation, the lake
may simultaneously experience temporal increases in E/I and decreases in residence time, compounding an
increase in anticipated lake nutrient levels. Furthermore, the lakes were shown to have different seasonal
trends in residence time (Figure 8), which may help explain seasonal changes in lake nutrients (Romo et al.,
2013). Clearly, the use of lake travel time analysis has great potential for informing biogeochemical studies
seeking to understand the dynamics of nutrients and other pollutants.

7. Conclusions

Our study extended the use of SAS functions to lake-influenced systems to identify the effect of the temporal
variability of lake discharge and evaporation flux ages on catchment transit times. The use of uniform mixing
and preferential mixing assumptions were related to storage in two lake-influenced catchments using mass
balance of water and stable water isotopes (δ2H and δ18O). The use of SAS functions allowed us to identify
temporal dynamics of the ages of both lake discharge and evaporation. During low lake level periods in
the summer, evaporation preferentially selected young water. The dynamics of lake outflow selection with
time were different for each lake; the large lake selected the youngest water during low lake storage periods,
while the small lake selected the youngest water during the high lake storage periods. These differences are
driven by both the size difference of each lake and the spatial location of the lake inflows and can be
explained with the SAS framework presented here. Furthermore, testing of the catchment-scale approach
of TTD estimation against a disaggregation of upstream and lake influence on the catchment TTD revealed
the sensitivity of transit times to lake evaporation effects.

Time-variant transit time functions have a wide applicability to catchment scale and subcatchment-scale
water age estimation as they simplify the physical mixing mechanisms into a statistical similar physical repre-
sentation. This study has shown successful application for lake-influenced catchments and provides a general
framework for constraining lakemixing processes identified by SAS functions. Further potential application of
SAS functions within lakes could explore the use of probabilistic selections using water temperatures for stra-
tification and possible spatial disaggregation of surface inflow sources at the outlet.
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