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ABSTRACT

Uncertainty in geological interpretations creates an often unquantified risk 
for sub-surface industries. The challenge of quantifying interpretation uncer-
tainty has been addressed using various methods. For interpretation of bore-
hole data, empirical quantification of uncertainties can be derived from com-
parison of interpretations with a withheld set of borehole data not used in the 
interpretation. This approach requires dense, high-quality borehole data sets. 
A proposed alternative is to use expert elicitation to extract expert geologists’ 
mental models of uncertainty. We investigated whether expert elicitations are 
a viable alternative to the direct quantification of uncertainty in three different 
geological settings by comparing elicited distributions to empirically derived 
uncertainty distributions. We show that uncertainty distributions derived from 
expert elicitations are different from those observed in empirical uncertainty 
quantification. This means that expert elicitations are not as appropriate for 
estimating uncertainty as these empirical approaches. Expert elicitations, 
however, offer other benefits to an interpretation workflow, such as providing 
insight into and challenging different conceptual models of the geology.

INTRODUCTION

A key component of many explicit geological modeling workflows is the 
use of raw data by expert geologists to build interpretations of the geology 
along cross sections (e.g., GSI3D; Kessler and Mathers, 2004). These interpre-
tations will always be uncertain to some degree (Mann, 1993). Understanding 
possible differences between models based on interpretations and the true 
geology is important because it allows the end user of a geological model 
to assess a model’s uncertainties and how these may impact decisions made 
using the model.

Differences between the modeled and true geology are considered as er-
rors, the presence of which causes uncertainty that can be described quanti-

tatively by a statistical distribution. The distributions provide an indication of 
the range of probable differences in modeled geology. As a result, they are 
important for end users because they indicate the potential range in model 
outcomes from interpretation.

Methodologies for empirically quantifying uncertainties in cross sections 
derived from borehole data have been developed (Lark et al., 2013, 2014; Ran-
dle et al., 2018). In these methodologies, data are withheld from a set of bore-
holes that are interpreted by geologists to create cross sections. The withheld 
data are used to measure the difference between the interpretations and the 
true geology, as recorded in the withheld borehole. This difference is referred 
to as the error in the interpretation. The distribution of these errors, and hence 
the uncertainty, is analyzed statistically to identify factors (such as the local 
density of boreholes) that determine how the uncertainty behaves. The inten-
tion is to see if prediction of uncertainty is possible in future geological settings 
by using this behavior.

Empirical quantification of uncertainty is time consuming and requires 
dense high-quality data sets, ideally with multiple geologists, to create a range 
of modeled geologies. In situations where these dense borehole data sets and 
geologists are not available, there is no proven methodology to follow.

The most common limiting factor is the availability of data. In built-up 
 areas, quantification of shallow subsurface uncertainty is often viable due to 
the relatively high sampling of the subsurface (from infrastructure projects 
and groundwater management, etc.). Deeper geologies or remote regions 
that have fewer boreholes provide a greater challenge for quantification of 
uncertainty.

An experienced geologist who has undertaken interpretations of many 
data sets may have a mental model of the uncertainty in these interpreta-
tions. A mental model is a mental representation of the geology (e.g., Libar-
kin et al., 2003) and is used here to reflect how a geologist may also visualize 
uncertainty associated with their mental model of the geology. This mental 
model reflects their awareness of how the particular configuration of geo-
logical observations constrains their interpretation. There may be flexibility 
in the position and continuity of interpreted horizons and other geological 
features. If it were possible to access the geologists’ mental model of un-
certainty in a cross section obtained in a particular setting by a particular 
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workflow and to represent this model in terms of a statistical distribution, 
then this may prove a more cost-effective way to quantify uncertainty than 
by empirical methods. While the mental model of uncertainty that a geolo-
gist develops may be tacit, the assumptions that lie behind it need not be. 
The geologist is aware, for example, of whether they consider the possibility 
that a contact between two lithologies is discontinuous because of faulting. 
Any process to extract the mental model of uncertainty (for example through 
expert elicitation) will help to make assumptions associated with the model 
explicit. Expert elicitation facilitates discussion between geologists about 
model assumptions and provides the model user with a context for the in-
terpretation. The objective of this study is to assess the feasibility of using 
expert elicitation for the quantification of uncertainty in cross-section inter-
pretations using one methodology from the set of methods known as expert 
elicitation.

Expert elicitation is an umbrella term for the extraction of information from 
either individual or groups of experts in a chosen field when that information is 
held in tacit form and is not easily written down. Within geoscience, elicitation 
has taken several forms of both structured and unstructured experiments. For 
example, Bond et  al. (2007) investigated the idea of conceptual uncertainty 
through elicitation, observing a large range in mental, or conceptual, models 
for the same seismic image. The work of Polson and Curtis (2010) followed this 
by eliciting the probability of the existence of various geological structures 
within a location. Their results highlighted not only the probability of the exis-
tence of the geological structures but perhaps more interestingly the effects of 
group dynamics and the misunderstandings of the experts on the uncertainty 
ranges elicited.

We are not aware of any studies in the Earth sciences that have evaluated 
the effectiveness of expert elicitation in uncertainty quantification. Other stud-
ies have come close; the work of Bond et al. (2007) found that the majority 
of experts (79%) did not interpret the correct tectonic setting for a synthetic 
seismic image, and Lark et  al. (2015) aimed to quantify uncertainty in map 
line work by eliciting uncertainty in a set of hypothetical locations; however, 
there was no independent validation of the results. So, here we test whether 
uncertainty distributions derived from expert elicitations are comparable with 
distributions obtained empirically.

We do this through expert elicitation of uncertainty in an interpretation 
of specific cross sections where the uncertainty has been quantified empiri-
cally through the experiments of Lark et al. (2014) and Randle et al. (2018). The 
elicited distributions of uncertainty are compared to the empirically derived 
uncertainty distributions built from those experiments. Should the elicited dis-
tributions differ significantly from the empirically derived distributions, then 
the expert elicitation process may be inappropriate for the problem posed, or 
it may indicate that the mental models of the geologists are not representa-
tive of the true uncertainty present. In contrast, if the elicited uncertainties are 
consistently similar to the empirically derived uncertainty distributions, then 
we can conclude that expert elicitation is a suitable alternative to empirical 
approaches.

METHODOLOGY

Group expert elicitation can take two forms. The first involves the elicita-
tion of distributions from each member of the group, then combining each 
member’s distributions with other members’ distributions (e.g., Cooke, 1994). 
The combination is not carried out equally however. The more experienced 
experts’ distributions are given a greater weighting than those with less expe-
rience. This methodology has the advantage of minimizing the risk of issues 
with intragroup dynamics and aims to ensure that the most experienced ex-
perts have the greatest influence.

The second option, employed here, is to use the group to come to a con-
sensus rather than apply a numerical aggregation to each individual’s distribu-
tions (e.g., Oakley and O’Hagan, 2016). This approach is known as behavioral 
aggregation and has the disadvantage of reliance on the group to come to a 
consensus as well as the capability to consider every expert’s opinion. The 
key advantage is that the procedure makes the differences between expert 
views explicit and encourages discussion. If the process is effectively moder-
ated, we might expect the consensus to be more informative than a numeri-
cal weighting of contrasting opinions where the contrasting assumptions are 
never explicitly addressed or resolved. Reagan-Cirincione (1994) showed how 
behavioral aggregation can be effective with careful moderation (to facilitate 
discussion and avoid domination by particular individuals) and visual feed-
back in the form of the elicitation panel’s individual distributions and the group 
consensus distribution as it evolves.

SELECTING WHERE TO ELICIT

Uncertainty was elicited in three geological settings for which previous ex-
periments had quantified the uncertainty (Lark et al., 2014; Randle et al., 2018). 
The first elicitation concerned the uncertainty in the position of the base of 
the London Clay Formation—a marine clay conformably deposited on lower 
units in a layer-cake stratigraphy (Ellison et al., 2004). The second evaluated 
uncertainty is the rockhead at the base of the superficial deposits below the city 
of Glasgow—an erosional surface resulting from glacial and glaciofluvial pro-
cesses (Hall et al., 1998). The final elicitation was for the rockhead at the base of 
the superficial deposits below Manchester—an erosional surface similar to that 
of Glasgow but with less variation in lithology and elevation (Price et al., 2012).

In our experiments, we tested uncertainty through the use of notional bore-
holes. At each notional borehole, we elicited the range of potential positions 
of the geological contact of interest by eliciting the expert’s prediction of the 
uncertainty in the position of the contact in the borehole. Multiple notional 
boreholes were used at each geological setting to capture the predicted un-
certainty in different geological contexts along section lines. Each of these no-
tional boreholes is referred to in the rest of the paper as a “situation.”

Situations were selected to cover a range of the parameters found to be 
related to uncertainty in the empirical uncertainty quantification experiments 
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of Lark et al. (2014) and Randle et al. (2018). In the London setting, Lark et al. 
(2014) found that the variance of interpretation errors can be modeled as a 
function of distance to nearest borehole. We therefore identified situations for 
the London elicitations in which distance to the nearest borehole varied. For 
Glasgow, Randle et al. (2018) found that the variance of interpretation errors 
could be modeled by a combination of the distance along the cross section 
and depth of the rockhead below the present-day land surface; thus, situations 
were selected to cover a range of these values. For Manchester, Randle et al. 
(2018) did not identify any parameter within the individual sections that could 
be used to model the variance in interpretation error; therefore, an alternative 
situation selection method had to be used. In Randle et al. (2018), for Manches-
ter, experts interpreted sections in which boreholes had been removed; then, 
the interpretations were tested against those removed 149 boreholes, giving 
a measure of interpretation error. Elicitation situations were selected from the 
removed borehole locations in Randle et al. (2018) to cover the range of inter-
pretation errors, representing the uncertainty.

Images of each situation were created using the section viewer in the soft-
ware GSI3D. GSI3D was used to create the image because this is the software 
used for similar interpretations at the British Geological Survey (BGS). The aim 
is to replicate a typical view that a British Geological Survey expert would have 
while carrying out an interpretation. Each image included a scale centered at 
the elevation at which the target surface had been interpreted in the corre-
sponding empirical uncertainty quantification experiment. This was done to 
minimize any bias that could occur if the experts were asked to interpret rela-
tive to some other point such as the ground surface or sea level. This also en-
sured that the elicited distributions were easily comparable to the uncertainty 
quantification experiments, where uncertainty was presented relative to an 
interpretation. The images used are available in the Supplemental Material1.

EXPERT SELECTION

All experts were from geological modeling teams within the British Geo-
logical Survey. This single source of experts was chosen so that all participants 
would have a similar approach to geological modeling, having been trained 
on and with experience of using the cross-section modeling package GSI3D, 
while still having individual experience and prior knowledge. Each expert was 
also chosen for their experience in carrying out interpretations within the spe-
cific geological settings studied or their experience in similar settings (i.e., on 
sedimentary packages above bedrock). Each participant was asked to self- 
assess their experience at the start of the elicitation process to confirm our 
selection was appropriate. No apparently significant differences in experience 
were noted. In total, we recruited six experts to the London elicitation exercise 
and four experts each for Manchester and Glasgow. All the experts were in-
vited to take part on a voluntary basis. Note that the methodology can be ap-
plied to any group of any composition, and this experiment was not designed 
to evaluate geological modeling at the British Geological Survey specifically.

ELICITATION PROCESS

The Sheffield Elicitation Framework (SHELF) procedure as described in 
Oakley and O’Hagan (2010) was used as a guideline for all three of our elici-
ta tions. Elements of the procedure were omitted (registration of conflict of in-
terest and post-elicitation meetings) due to logistical constraints, but the over-
all form of the elicitation mirrored the SHELF procedure. Each started with a 
briefing document (available in Supplemental Material [footnote 1]) sent out 
to all participants two weeks before the date of the elicitation. The briefing 
document contained a description of the process, the reasoning for taking part 
in the elicitations, and a detailed description of how the experts should con-
sider the elicited uncertainty distributions to work, with demonstrations of the 
principles of accuracy and precision and how to treat them in the elicitations.

On the day of the elicitation, the session started with a brief run-through of 
the elicitation process, with the briefing document providing a frame of refer-
ence. Care was taken to ensure that the participants fully understood the pro-
cess and principles and that any misunderstandings were addressed for each 
of the experts. This was to ensure that all participants had the same under-
standing of the elicitation process and the thinking behind it.

For each elicitation situation, the same four-step process was followed 
(Fig. 1). The first step was to present the group with the geological situation 
both in paper in the form of a handout for each expert and simultaneously on 
a projector visible to the whole group (Fig. 1A). The experts were permitted 
to draw on and annotate their handouts as they saw fit, something that the 
majority of the experts did for most situations.

After a brief period, the experts were asked as a group to suggest minimum 
and maximum elevations of the target contact (the base of the London Clay 
for London and rockheads for Glasgow and Manchester; Fig. 1B). The reason 
for this step is that a group exercise will ensure that the group is considering 
the same range of possibilities, thus easing the process of coming to a con-
sensus later.

Step 3 (Fig. 1C) is the elicitation of the median and upper and lower quar-
tiles of the distribution. This was done individually at first, with the experts 
writing their numbers on a form. After all experts had written their values, 
the forms were retrieved, and the values were presented on a flip board. Care 
was taken to ensure that no expert felt rushed to determine their values. In all 
cases, there was no conferring between experts.

For the final step (Fig. 1D), the experts were asked to come to a consensus on 
the values for the median, lower, and upper quartiles. The order in which the con-
sensus was reached for each quartile varied depending on the exact situation and 
the difference in experts’ values. More often than not, the median was the first 
consensus reached. Experts were not required to state which of the values were 
their own, and although all of the separate distributions were shown on the flip 
board, they were not attributed to individuals. However, in all cases where a con-
sensus was not quickly reached, the experts stated which values were theirs and 
their thinking behind them. While the experts were coming to a consensus, the 
distributions arising from their individual quartile values were presented graph-
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ically on the projector. This allowed them to visualize the differences in each of 
their distributions when coming to a consensus proved more challenging.

After all distributions had been elicited, there was a brief recap of each of 
the situations to ensure that each expert was happy with the resulting distri-
butions. This was completed with the intention of allowing the experts to take 
what they have learned through the elicitation and apply it to all situations, 
ensuring that the elicited distribution for the first situation was as valid as the 
last situation. The experts were then asked to give feedback on the elicitation 
procedure. This included suggestions of procedural improvements and often 
also included discussion of uncertainty as a whole and how expert elicitations 
could fit into current workflows.

UNCERTAINTY VALIDATION

After the elicitations, the resulting distributions of uncertainty were com-
pared to statistical uncertainty models built from the results of the relevant un-
certainty quantification experiments. Lark et al. (2014) and Randle at al. (2018) 
created statistical models that were used to determine the causes and indica-
tors of interpretation error. These models also allowed the prediction of the 
standard deviation of interpretation error. To validate our elicitations, we took 
the empirically derived standard deviations of error and created uncertainty 

distributions from them; we refer to these distributions as the empirical uncer-
tainty. Determination of the empirical uncertainty for each geological setting is 
summarized below.

For London, interpretation error was found to be related to the distance to 
the nearest borehole, along with a spatial dependence (i.e., uncertainty at two 
points close to each other was more similar than the uncertainty at two points 
far from each other). We simulated this error across all of the expert elicitation 
situations using the rnorm function within the R statistical framework in order 
to provide a comparable uncertainty distribution. A normal distribution with 
a mean of zero was simulated because this was the distribution observed in 
Lark et al. (2014) and Randle at al. (2018). For Glasgow and Manchester, de-
termining the distributions of uncertainty was simpler, because error was not 
spatially dependent. In Glasgow, the standard deviation of error was found to 
be related to depth below surface and distance along section, with no spatial 
dependence. We determined the standard deviation of error for each expert 
elicitation situation based on these parameters; then we determined the distri-
bution using the qnorm function to determine the quantiles of the distribution. 
For Manchester, there was no variation in error standard deviation; therefore, 
the distribution was treated as uniform across all situations and was derived 
in the same manner as Glasgow. From here on, uncertainty distributions are 
referred to as empirical uncertainty.

A  The group is presented with the situation in the 
form of a cross-section image with the location that 
we want to elicit marked with a line

C  Each expert individually provides where they expect 
the median, lower quartile and upper quartile of the 
distribution to be 

B  As a group, the experts decide on the highest 
and lowest position of the contact that is possible

D  The group comes to a consensus on the 
quartiles and median, resulting in a �nal distribution

Figure 1. Summary of each step of the Shef-
field Elicitation Framework (SHELF) pro-
cess (A)–(D) used to elicit the uncertainty.
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RESULTS

London

Results

Table 1 and Figure 2 present the elicited uncertainty distributions for the 
eight studied situations. We observe a variety of ranges and interquartile 
ranges, along with both symmetrical and skewed distributions. Discussion 

was focused on the boreholes adjacent to the situation elicited and the trends 
in the elevation of the London Clay suggested from them. The variability in the 
elevation of the London Clay expected by the experts at the scale of the section 
informed these discussions. In the feedback phase, the participants said that 
they were happy with the procedure, with the only comment being that the 
breaks on the scale bar were too widely spaced for the low variability of the 
London Clay (more closely spaced ticks on the vertical scale bar were used 
in the later elicitations to aid interpreters). A further point made was that the 
boreholes presented to the participants showed stratigraphic rather than litho-
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Figure 2. Boxplots comparing the elicited 
distributions of uncertainty to the empiri-
cal distributions for each of the London 
situations. The ends of the whiskers here 
represent the 5th and 95th percentiles.

TABLE 1. THE RESULTS OF THE LONDON ELICITATION

(A) Situation
(B) Minimum

(m)
(C) Lower quartile

(m)
(D) Median

(m)
(E) Upper quartile

(m)
(F) Maximum

(m)

1 –10 –2 0 5 10
2 –10 –3 –1.5 0 5
3 –5 –1 0 1 5
4 –15 –2.5 1 4.5 12
5 –15 –4.5 0.5 5.5 11
6 –18 –6 0 6 18
7 –18 –7 0 5 11
8 –18 –6 0 5 13

Note: Column (A) is the situation number; (B) is the elicited minimum; (C) is the elicited lower quartile; (D) is the elicited median; (E) is the 
elicited upper quartile; and (F) is the elicited maximum elevation of the base of the London Clay.
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logical logs. The participants felt that while it is how the data were presented 
when the BGS created a 3D model for this region, there may be insights into 
the potential structures present within lithological logs, and litho logical logs 
would have been available to the modeling geologist. Criti cal to us is that the 
same amount of information was presented to the experts in the elicitation 
experiment as the empirical experiments to which we  compare them.

Validation

Table 2 presents the empirical distributions of uncertainty, and Figure 2 
shows a comparison of them with our elicited uncertainty distributions. Fig-
ure 2 demonstrates that the elicited uncertainty distributions are consistently 
different from the empirical distributions. The elicited ranges and interquartile 
ranges are wider than the empirical ranges in six of the eight situations, and 

the remaining two are narrower. The near-zero median of the empirical distri-
butions is also evident in the elicitations, except for situations 2 and 4, where 
the distribution is symmetrical but shifted deeper and shallower, respectively. 
In these two situations, there were boreholes in close proximity that did not 
prove the base of the London Clay but showed a considerable portion of its 
thickness—proving where the contact was not present.

Glasgow

Results

For the Glasgow elicitation, we have also observed a wide range of distri-
butions, interquartile ranges and skews (Table 3 and Fig. 3), and the variety is 
much greater than recorded in London. Discussion was focused on the geo-

TABLE 2. QUANTILES FOR EMPIRICAL UNCERTAINTY OF THE POSITION OF THE LONDON CLAY 
DERIVED FROM THE WORK OF LARK ET AL. (2014) AT EACH OF THE ELICITED SITUATIONS

(A) Situation
(B) 5th percentile

(m)
(C) Lower quartile

(m)
(D) Median

(m)
(E) Upper quartile

(m)
(F) 95th percentile

(m)

1 –5.1 –2 0 2 4.9
2 –5.1 –2 0 2.1 5
3 –4.7 –1.9 0 1.9 4.7
4 –5.5 –2.3 0 2.3 5.5
5 –5.9 –2.4 0 2.5 5.9
6 –5.4 –2.2 0 2.3 5.5
7 –6.4 –2.6 0 2.6 6.3
8 –6.1 –2.5 0 2.4 5.9

Note: Column (A) is the situation number; (B) is the empirical 5th percentile; (C) is the empirical lower quartile; (D) is the empirical median;
(E) is the empirical upper quartile; and (F) is the empirical 95th percentile.

TABLE 3. RESULTS OF THE GLASGOW ELICITATION

(A) Situation
(B) Minimum

(m)
(C) Lower quartile

(m)
(D) Median

(m)
(E) Upper quartile

(m)
(F) Maximum

(m)

1 –10 –3 –0.5 2 9
2 –3.5 –2 –0.5 1 3
3 –9 –4 –2 2 4
4 –13 –5 –2 3 10
5 –4 –2 –1 1 3
6 –5 –1.5 0.5 2 5
7 –10 –6 –2.5 4 7
8 –8 –4 –1 5 10
9 –9 –6 –2 1 7
10 –10 –1 6 10 20
11 –25 –15 –6 0 10

Note: Column (A) is the situation number; (B) is the elicited minimum; (C) is the elicited lower quartile; (D) is the elicited median; (E) is the 
elicited upper quartile; (F) is the elicited maximum elevation of the rockhead.
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logic structures present within the superficial deposits, such as drumlins, and 
their effects on rockhead elevation, along with changes in the bedrock geol-
ogy, such as faulting. In addition, the topography of the ground surface around 
the elicited situations was repeatedly discussed, with questions posed as to 
how representative variations in the surface topography are of the underlying 
geology in built-up areas such as Glasgow where the surface is likely altered 
by human activity.

Two situations (8 and 10) were identified as locations where a bimodal dis-
tribution would be a more appropriate representation of the uncertainty than 
the options presented by the SHELF process. This is due to there being two 
conceptual models for the edge of glaciofluvial valleys present in both situa-
tions. Situations 8 and 10 were in close proximity to what the experts believed 
to be a steep-sided glaciofluvial valley. The experts felt that it was unlikely for 
the slope to be represented within the borehole due to the valley’s steep sides; 
instead, it was more likely for the borehole to intersect with either the base of 
the valley or the surface outside of the valley structure.

After all situations had been elicited, the experts were presented again 
with situations 10 and 11 and told that both were situations within the same 
area, albeit from different boreholes. The results of the elicitations showed 
two very different interpretations for, effectively, the same cross section. The 

experts were initially surprised that their elicited distribution was too narrow 
based on borehole 10 and too broad based on borehole 11. After discussion, 
the experts felt that their mental models were reflected by the elicited dis-
tribution for borehole 10, but they felt that their mental models were incor-
rect and that they had underestimated the uncertainty present. This example 
shows the influence of point data in anchoring interpretations (see Bond 
et  al., 2008, and Bond, 2015) for descriptions of anchoring in a geological 
context).

Validation

Table 4 presents the empirical uncertainty distributions for Glasgow. Com-
paring them to the elicited distributions (Fig. 3) shows that the elicited uncer-
tainty was close to the empirical uncertainty in five of the 11 situations (2, 4, 5, 
7, and 8). In situation 11, the elicited uncertainty was greater than the empirical 
uncertainty, suggesting underconfidence in this situation. In the remainder of 
the situations, empirical uncertainty was smaller than elicited uncertainty. This 
indicates that the experts were overconfident in these situations, underesti-
mating the uncertainty present.
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Figure 3. Boxplots comparing the elicited 
distributions of uncertainty for each of the  
Manchester situations to the empiri cal dis-
tribution. The ends of the whiskers here 
represent the 5th and 95th percentiles.
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Manchester

Results

The elicited uncertainty distributions are presented in Table 5 and Fig-
ure 4. In general, the distributions are narrower than those elicited for Lon-
don and Glasgow, indicating that the experts believed that uncertainty was 
lower in Manchester. Discussion centered on the variability of the rockhead 

at and around each situation and the resulting features of the rockhead that 
were plausible. Surface topography again proved to be a significant factor in 
the experts’ decisions with repeated mentions of how much the topography 
had been altered by manmade processes. If the topography were to be sig-
nificantly altered, it could not be used to determine the subsurface geology. 
Bimodal distributions were suggested for situations 1 and 4. Situation 1 was 
the result of the potential presence of either a bench or a channel with an 
intermediate position of the rockhead not plausible. Situation 4 was affected 

TABLE 4. QUANTILES FOR THE EMPIRICAL UNCERTAINTY FOR GLASGOW DERIVED FROM 
THE WORK OF RANDLE ET AL. (2018) AT EACH OF THE ELICITED SITUATIONS

(A) Situation
(B) 5th percentile

(m)
(C) Lower quartile

(m)
(D) Median

(m)
(E) Upper quartile

(m)
(F) 95th percentile

(m)

1 –12.6 –5.1 0 5.1 12.6
2 –5.2 –2.1 0 2.1 5.2
3 –5.3 –2.2 0 2.2 5.3
4 –12 –4.9 0 4.9 12
5 –4.7 –1.9 0 1.9 4.7
6 –10.6 –4.3 0 4.3 10.6
7 –8.7 –3.6 0 3.6 8.7
8 –9.4 –3.9 0 3.9 9.4
9 –20.2 –8.3 0 8.3 20.2
10 –24.5 –10 0 10 24.5
11 –13 –5.3 0 5.3 13

Note: Column (A) is the situation number; (B) is the empirical 5th percentile; (C) is the empirical lower quartile: (D) is the empirical median;
(E) is the empirical upper quartile; and (F) is the empirical 95th percentile.

TABLE 5. RESULTS OF THE MANCHESTER ELICITATION

(A) Situation
(B) Minimum

(m)
(C) Lower quartile

(m)
(D) Median

(m)
(E) Upper quartile

(m)
(F) Maximum

(m)

1 –4.5 –2 2 or 0 3 or 1 5
2 –2 –0.75 –0.25 0.375 1
3 –6 –3.5 –1.5 0.5 2
4 –5 –1.5 0.5 2.5 5
5 –3.25 –2 –0.5 1 2.5
6 –12.5 –11.75 –11 –10 –9
7 –3 –1.75 –1 1.75 2.5
8 –12 –6 –4.5 –2.3 1.5
9 –1.5 –0.75 –0.5 –0.2 0.5
10 –2.5 –1.25 –0.5 0.25 1
11 –5 –2 0 2.5 5

(G) 5th percentile
(m)

(H) Lower quartile
(m)

(I) Median
(m)

(J) Upper quartile
(m)

(K) 95th percentile
(m)

Empirical –4.4 –1.8 0 1.8 4.4

Note: Column (A) is the situation number; (B) is the elicited minimum; (C) is the elicited lower quartile; (D) is the elicited median; (E) is the 
elicited upper quartile; and (F) is the elicited maximum elevation of the rockhead. The values for situation 6 are significantly different due to
an error in the positioning of the zero point on the images presented to the experts; hence, their entire distribution appears to be lower in 
elevation than it should be. The empirical uncertainty derived from Randle et al (2018) is also presented here, showing its (G) 5th percentile,
(H) Lower quartile, (I) Median, (J) Upper quartile, and (K) 95th percentile.
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by the potential presence of a backfilled quarry evident from an adjacent bore-
hole with a considerable thickness of artificial ground. Similar to the Glasgow 
bimodal situations, the experts felt that the sides of the quarry would be steep 
sided, and, therefore, it would be unlikely for the rockhead defining the quarry 
wall to be found within the notional borehole, with the borehole likely to sam-
ple either the floor of the quarry or the rockhead outside the quarry.

During the discussion phase of the elicitation, after uncertainty had been 
elicited for all situations, the experts were presented with situations 10 and 11 
from the Glasgow experiment as an example of where the elicited uncertainty 
was significantly different from the empirical uncertainty. The experts felt that 
the way in which the situations were presented may make a situation seem 
more certain than it actually is. They also mentioned that they would typically 
have more data available, in the form of downhole interpretations showing the 
exact lithology as well as a 3D network of boreholes, which would enable bet-
ter determination of the processes that could have caused rockhead variation.

Validation

The uncertainty quantification experiment for Manchester in Randle et al. 
(2018) found no relationship between uncertainty and any parameter relating 
to the data; hence, the empirical distribution of uncertainty is uniform across 
all situations (Table 5) and is modeled from the measured distribution of inter-
pretation error.

The empirical uncertainty was similar to the elicited uncertainty for situ-
ations 1, 3, 4, 8, and 11; however, the skew and median of the distributions 
were different in all but situations 11 and 4. The rest of the distributions were 
narrower than the empirical uncertainty, indicating that the experts were over-
confident, resulting in an underestimation of uncertainty in these situations. 
The medians are also often far from zero, especially situation 6. This indicates 
that the experts felt that the zero point was set away from where they felt a 
typical interpretation would be.

SUMMARY

In our three elicitations, we observed both underestimation (Glasgow and 
Manchester) and overestimation (London) of uncertainty. However, we also 
observed situations where the elicitations have provided accurate estimations 
of uncertainty. The overall results are presented in Table 6.

In terms of methodology, the consensus-based approach was successful, 
with each group capable of coming to a consensus for all but one situation, and 
with no expert stating that their opinion was being marginalized. The primary 
drawback found was the existence of bimodal distributions, where a standard 
single-peaked distribution was not representative of what the experts felt was 
the actual distribution of error. Combining distributions resulting from two (or 
more) different geological concepts does not make sense, because the final dis-
tribution does not represent expert understanding of the conceptual uncertainty.
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Figure 4. Boxplots comparing the elicited 
distributions of uncertainty to the empiri-
cal distributions for each of the Manchester 
situations. The ends of the whiskers here 
represent the 5th and 95th percentiles.
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DISCUSSION

The experiments were designed to test the hypothesis that uncertainty dis-
tributions derived from expert elicitations are comparable with distributions 
obtained empirically. Based on our results, this hypothesis has been rejected. 
We have observed that elicited distributions often differ from empirically de-
rived uncertainty distributions. In addition, the nature of these differences is 
inconsistent, with the elicited uncertainty for London being too great and for 
Glasgow and Manchester too small.

Differences in Uncertainty

There are two potential causes of the difference between the elicited uncer-
tainty and the empirical uncertainty. The first is that the elicitation methodol-
ogy did not extract the mental model correctly, meaning that some aspect of 
the methodology was flawed. The evidence to support a flaw in mental model 
extraction based on feedback from the experts is, however, limited. The only 
methodological aspect mentioned by the experts was that of data availabil-
ity, where in a typical interpretation methodology, they would have additional 
data such as detailed borehole logs, geologic maps, or 3D data. The counterar-
gument to this was that the only additional information available to the inter-
preters taking part in Lark at al. (2014) and Randle et al. (2018) was a simplified 
geologic map. Therefore, the comparison of the elicited uncertainty to the em-
pirically derived uncertainty is not biased by a lack of data available to experts 
in the elicitation experiments described here.

The alternative is that the mental model was extracted correctly but is 
not representative of the true uncertainty. In many sciences, experts often 
have their interpretations validated. For example, a doctor will often discover 
whether their diagnoses are correct; engineering experts will find out whether 
their designs work appropriately. In some cases within geoscience, this is also 
true. For example, a geotechnical surveyor will discover if their estimations of 
slope stability are flawed, and a resource geologist will discover if their esti-
mations of ore grade are correct. However, in many cases, there ceases to be 
opportunity for validation, especially at the scale of an entire interpretation. 
Locally, interpretations may be validated, via tunnels and further surveys, etc.; 
but this feedback is not a part of a normal workflow and would be an excep-
tion to what typically occurs. Hence the expert’s mental model is often poorly 

calibrated and not refined through validation feedback. Addressing this in a 
reasonable manner is a challenge. One solution is to take an iterative approach 
to geologic modeling in which a portion of the data is initially withheld from 
the interpreting experts. The resulting model is then compared to the withheld 
data. This provides the expert with an indication of the uncertainty in their own 
interpretations. The expert would then correct their model using the additional 
data to ensure that all data available have been utilized. Such approaches 
would also result in indications as to how the uncertainty behaves through 
statistical analyses (e.g., Lark et al., 2014) and may also be used to give a pre-
diction of the uncertainty within a final model. This approach does have the 
major drawback of essentially requiring the expert to carry out two interpreta-
tions, though this could be mitigated by automating some aspect of the initial 
interpretation or carrying out this process on a small portion of the model and 
then interpreting the rest of the model using that knowledge. There is also 
evidence of anchoring bias in geological interpretation (Rankey and Mitchell, 
2003), and such a workflow could be influenced by anchoring of experts to the 
initial data provided, thus resulting in a likely underestimation of uncertainty.

Elicitations as a Qualitative Tool

Aside from testing how appropriate elicitations are for uncertainty quan-
tification, our results also give insight into how elicitations can be used as 
a qualitative tool to improve interpretations. In post-elicitation discussions, 
the experts mentioned that they appreciated the opportunity to discuss the 
geology with their peers, and that they felt that their understanding of the 
geology had improved as a result. This suggests that discussion of models 
and assumptions with peers is a valuable component in better understanding 
the potential uncertainties in models. This conclusion supports the findings 
of Polson and Curtis (2010), who highlight changes in the understanding of 
the presence of reservoirs, seals, and faults through the elicitation discussion 
process. The challenge is how to best use qualitative information from dis-
cussions to inform uncertainty. Here we have shown that expert elicitations 
were not useful for the prediction of uncertainty in the situations tested, but 
such discussion may reduce uncertainty in future interpretations. How infor-
mation from discussions is used to inform uncertainty requires testing. With 
studies such as that of Polson and Curtis (2010) highlighting potential evidence 
of herding around a single expert, care is needed to understand the dynamics 

TABLE 6. OVERALL RESULTS COMPARING ELICITED AND EMPIRICAL UNCERTAINTY DISTRIBUTIONS

(A) Setting (B) Number of situations
(C) Number of 

underestimates of uncertainty
(D) Number of appropriate 
estimates of uncertainty

(E) Number of 
overestimates of uncertainty

London 8 2 1 5
Glasgow 11 5 5 1
Manchester 11 6 5 0

Note: Column (A) is the setting; (B) the number of situations; (C) the number of times the elicited distribution underestimated; (D) was approximately 
equal to; and (E) overestimated the uncertainty relative to the empirical uncertainty distributions.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/doi/10.1130/GES01586.1/4610852/ges01586.pdf
by University of Aberdeen user
on 14 January 2019

http://geosphere.gsapubs.org


Research Note

11Randle et al. | Uncertainty in geological interpretations: Effectiveness of expert elicitationsGEOSPHERE | Volume 15 | Number 1

of group discussion and decision-making based on group consensus. An ex-
periment involving the interpretation of a cross section carried out before and 
after a discussion could be validated against real data (i.e., Lark et al., 2014; 
Randle et al., 2018). This would allow the quantification of any change in cer-
tainty resulting from the discussion.

CONCLUSION

We have shown through our experiments that expert elicitations do not 
result in accurate predictions of interpretation error; hence, they are not a suit-
able alternative to empirical approaches. However, they serve a purpose in 
that they offer opportunities for discussion that are typically not available in 
a standard modeling workflow. Our observations suggest that better geologic 
models and an understanding of the concepts and uncertainties that underpin 
them would result from the use of expert elicitations.
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