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Abstract  26 

Roots naturally exert axial and radial pressures during growth which alter the structural 27 

arrangement of soil at the root-soil interface. However empirical models suggest soil 28 

densification, which can have negative impacts on water and nutrient uptake, occurs at 29 

the immediate root surface with decreasing distance from the root. Here we spatially 30 

map structural gradients in the soil surrounding roots using non-invasive imaging, to 31 

ascertain the role of root growth in early stage formation of soil structure. X-ray 32 

Computed Tomography (CT) provided a means to not only visualise a root system in 33 

situ and in 3-D but to assess the precise, root-induced alterations to soil structure close 34 

to, and at selected distances away from the root-soil interface. We spatially quantified 35 

the changes in soil structure generated by three common but contrasting plant species 36 

(Pea, Tomato and Wheat) under different soil texture and compaction treatments. 37 

Across the three plant types significant increases in porosity at the immediate root 38 

surface were found in both clay loam and loamy sand soils and not soil densification, 39 

the currently assumed norm. Densification of the soil was recorded, at some distance 40 

away from the root, dependent on soil texture and plant type. There was a significant 41 

soil texture x bulk density x plant species interaction for the root convex hull, a measure 42 

of the extent to which root systems explore the soil, which suggested pea and wheat 43 

grew better in the clay soil when at a high bulk density, compared to tomato which 44 

preferred lower bulk density soils. These results, only revealed by high resolution non-45 

destructive imagery, show that while the root penetration mechanisms can lead to soil 46 

densification (which could have a negative impact on growth), the immediate root-soil 47 

interface is actually a zone of high porosity, which is very important for several key 48 

rhizosphere processes occurring at this scale including water and nutrient uptake and 49 

gaseous diffusion.  50 
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Introduction 53 

The dynamic nature of the rhizosphere (the zone of soil surrounding a growing root 54 

which is influenced by it) provides a niche environment which exhibits biophysical and 55 

chemical gradients very different to those found away from the soil immediately 56 

influenced by the root, referred to as the bulk soil. These gradients control root activity 57 

through a combination of root-derived exudations and physical structural alterations, 58 

influencing water and nutrient uptake, gaseous exchange, particle rearrangement and 59 

wettability at the immediate root surface. Carminati et al. (2010) revealed the influence 60 

of mucilage on the water holding capacity of the soil immediately around the root and 61 

its implications for hydraulic continuity around the root system was demonstrated by 62 

(Moradi et al. 2011). In compacted soils, the influence of plant derived exudates have 63 

been highlighted to improve mechanical conditions for root penetration (Oleghe et al. 64 

2017). Carminati and Vetterlein (2013) proposed the concept of rhizosphere plasticity to 65 

help understand the bimodal hydraulic responses found at the root-soil interface under 66 

different bulk soil moisture conditions. However soil structural dynamics, particularly 67 

around an actively growing root, have been largely limited to theoretical models (Dexter 68 

1988) or root analogue approaches (Aravena et al. 2011) due to the inherent difficulties 69 

in observing a fragile, opaque system in situ. 70 

 71 

As impeded roots elongate they undergo radial and axial elongations (Misra et al. 1986), 72 

exerting compressive and shear forces on the surrounding soil in horizontal and vertical 73 

directions (Bengough and MacKenzie 1994; Kolb et al. 2012). It is known that root 74 

diameter varies in response to compaction and soil strength, with many studies 75 

demonstrating an increased radial expansion of the root axes in dense soil (Atwell 1988; 76 
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Materechera et al. 1991; Tracy et al. 2012). These pressures, generated by the root, are 77 

partly responsible for soil structural alterations in the rhizosphere, and they in turn 78 

affect, the hydraulic continuity of the pore system (Aravena et al. 2011). However the 79 

exact effect of root growth on soil structure, especially at the scale of the pore, is 80 

uncertain, in large part due to the limited number of studies which have compared root 81 

responses under contrasting physical soil conditions for different plant species (Iijima 82 

and Kato 2007; Materechera et al. 1992). Aravena et al. (2011) reported decreased 83 

porosity around growing roots using a root analogue technique which showed the radial 84 

forces in wet soil reduce inter-aggregate pore space, impacting on the hydraulic contact 85 

between aggregates. Contrary to this, Helliwell et al. (2017) recently reported an 86 

increase in porosity at the immediate root surface at a resolution of 12 µm, surrounding 87 

the growing roots of tomato in both coarse and fine soil textures, with a decrease in 88 

porosity observed away from the root in the bulk soil.  89 

 90 

The functioning of the rhizosphere, and in particular, its role in regulating the hydraulic 91 

behaviour of plants has been an active area of research for many years. Carminati et al. 92 

(2013) showed the importance of gap formation around roots in decreasing 93 

transpirational demand in lupin. Likewise Berli et al. (2008) highlighted the potentially 94 

beneficial role of rhizosphere densification in increasing hydraulic contact and 95 

connectivity between neighbouring aggregates. Hence, understanding how plants 96 

influence the precise arrangement of soil around a root in terms of densification, gap 97 

formation and the resulting impact on water and nutrient flow towards roots is very 98 

important from a plant developmental perspective. Ascertaining the role of root growth 99 

on the structure of the rhizosphere is challenging due to the fragile nature of soils. 100 

Previous attempts to address this have employed thin-section microscopy through resin 101 

impregnation, to ‘fix’ and preserve the root and soil systems prior to analysis (Mooney 102 
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et al. 2007; Veen et al. 1992). However, these techniques are very laborious, still allow 103 

for substantial root and soil disturbance and do not readily enable the study of the 104 

system in 3-D. Non-invasive imaging such as X-ray Computed Tomography (CT), X-105 

ray Radiography, Neutron Radiography and Magnetic Resonance Imaging are now 106 

accepted methods that are assisting us overcoming these limitations having been 107 

successfully employed in studies of plant-soil interactions over the last decade (see 108 

reviews by Helliwell et al. (2013); Mooney et al. (2012); Pires et al. (2010); Taina et al. 109 

(2008)). Recent advances in X-ray detector efficiencies, X-ray source power and image 110 

analysis methodologies have also highlighted X-ray CT as an exciting tool for mapping 111 

microscale alterations to root architectures and soil structures (Helliwell et al. 2013; 112 

Mooney et al. 2012), with previous limitations of coarse resolutions and poor image 113 

quality greatly reduced. 114 

 115 

The objective of this study was to take advantage of the recent advances in imaging 116 

methodology to visualise the root-mediated soil structure in 3D (e.g. Helliwell et al. 117 

2017) and gain a new insight into root-induced physical transformations in the 118 

rhizosphere. The first aim was to assess how three different plant species with 119 

contrasting root architecture modify the soil structure at the immediate soil surface in 120 

comparison with the bulk soil. Secondly, we sought to investigate how the root response 121 

to the soil was influenced by soil texture (or particle size) as this has often been ignored 122 

in previous studies that have tended to focus on one soil type. Finally, we examined the 123 

root response to soil structuring when grown in soils at different bulk densities to assess 124 

the impact of compaction. Based on previous work we hypothesised that while root 125 

growth mechanisms would generate zones of higher soil density, the root-soil interface, 126 

a key zone for water and nutrient exchange, would be a zone of higher porosity 127 

consistent across all species.   128 
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Materials and Methods 129 

Soil Core Preparation and Sampling 130 

Four replicate columns (80 mm height x 25 mm diameter) per soil texture and per bulk 131 

density were uniformly packed to 1.2 Mg m-3 and 1.5 Mg m-3 with air dried sieved (<2 132 

mm) Newport series loamy sand (sand 83.2%, silt 4.7%, and clay 12.1%; pH 6.35; 133 

organic matter 2.93%; FAO Brown Soil) and Worcester series clay loam (sand 35.6%, 134 

silt 31.5%, and clay 32.9%; pH 6.50; organic matter 5.19%; FAO Argillic Pelosol) soil 135 

from the University of Nottingham farm at Bunny (Nottinghamshire, UK - 52.52°N, 136 

1.07°W). The water retention curves for these soils can be found in Helliwell et al. 137 

(2014). To ensure homogeneity in sample preparation and reduce any effects of soil 138 

slumping following packing into the cores, the samples underwent one wetting and 139 

drying cycle using tension table apparatus, before being maintained at a tension of -5 140 

kPa on the tension table throughout seedling establishment and growth. Previous work 141 

in Helliwell et al. (2017) showed that this was optimal for soil structure stabilisation 142 

without inducing noticeable cracking through shrinkage. Surgical micropore tape (3M 143 

United Kingdom PLC, Bracknell) was placed over the columns during soil preparation 144 

to reduce soil surface evaporation and prevent sample contamination, whilst still 145 

enabling gaseous exchange. Seeds of tomato Solanum lycopersicum cv. ‘Ailsa Craig’, 146 

winter wheat Triticum aestivum cv. ‘Cordiale’ and common pea Pisum sativum cv. 147 

‘Kelvedon Wonder’ were germinated in the dark on wetted filter paper for 48 hours 148 

before being planted 5 mm below the soil surface in the replicate columns for each soil 149 

texture and bulk density combination (n=48). Plants were grown under controlled 150 

conditions (22 °C day / 16 °C night); 40% relative humidity; a 12 hour photoperiod with 151 

a photosynthetic photon flux density at plant level of 330 µmol m-2 s-1 in a climate 152 

chamber for a period of 8 days. During this 8 day period the plants are mainly using 153 
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nutrient seed reserves to support growth (Bouaziz and Hicks 1990) and there was 154 

insufficient time for the development of nitrogen-fixing nodules on the pea roots.  155 

 156 

X-ray CT scanning procedure  157 

The samples were scanned using two X-ray microtomography systems, in order to 158 

assess plant-induced structural development across two different spatial resolutions. All 159 

samples were initially scanned using a Phoenix Nanotom 180NF X-ray micro-CT 160 

scanner (GE Sensing and Inspection Technologies, Wunstorf, Germany). The source 161 

had a 3 µm focal spot, with the centre of the sample 5.4 cm from the X-ray source and a 162 

resultant imaged voxel size of 12 µm. The entire sample was imaged with a field of 163 

view of 2308 x 2308 pixels using an X-ray energy of 110 kV, a current of 110 µA and 164 

an exposure time of 750 ms. A 0.2 cm Cu filter was used and 1600 image projections 165 

were taken, with each scan taking 70 minutes to complete. Each sample was scanned 166 

once 8 days after planting, exposing each plant to a calculated dose of 6.33 Gy (Zappala 167 

et al. 2013).  168 

 169 

A subsection of two replicates per plant x soil texture x soil bulk density treatment were 170 

further scanned using a Phoenix v|tome|x m 240kV X-ray micro-CT scanner (GE 171 

Sensing and Inspection Technologies, Wunstorf, Germany). Due to an improved 172 

detector efficiency (allowing enhanced X-ray projection image collection) and higher 173 

X-ray flux in this system, scans at a voxel spatial resolution of 8.5 µm were possible, 174 

with each scan taking 43 minutes to complete. An X-ray energy of 120 kV and current 175 

of 60 µA was used, with 1981 projections taken at a timing of 333 ms per projection. 176 

The centre of the sample was 3.48 cm from the X-ray source. Each sample was scanned 177 

once, also after 8 days, exposing each plant to a calculated dose of 7.52 Gy. 178 

 179 
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Image Processing, Segmentation and Analysis 180 

Image processing was performed in VG StudioMax® 2.2 software, using procedures 181 

largely detailed in Helliwell et al. (2017). Briefly, segmentation of soil, root and pore 182 

phases was undertaken after applying a median filter of radius 3 pixels to remove noise 183 

but preserve structural borders. To segment pore and soil phases, the greyscale 184 

histogram was calibrated (individually for each sample) against pore space and a 185 

common aluminium reference object, segmenting solid material from pore and organic 186 

(including root) material. At this high resolution and early growth stage, the roots were 187 

readily segmented using an adaptive region growing algorithm, starting from the 188 

greyscale value of the user-selected voxel and selecting all connected voxels within the 189 

user defined range. The entire segmented root architecture from this point was analysed 190 

as a whole. To assess changes to soil structure with distance from the root surface, the 191 

surface mesh of the root region was three-dimensionally (3-D) dilated, creating discreet 192 

regions moving away from the root in which pore and soil volumes could be calculated. 193 

The first one-voxel dilation was subtracted from all subsequent dilations to prevent any 194 

mischaracterisation at the immediate root surface due to partial volume effects or noise. 195 

The ‘Volume Analyser’ tool was used to assess the volume of pore and soil material 196 

within each dilated region, giving porosity profiles (where 1 voxel = 12 µm) for each 197 

zone moving away from the root surface. This could be compared to a bulk soil value, 198 

taken as the porosity of a large volume of soil observed at the furthest distance away 199 

from the root, but without being influenced by the container wall (i.e. in most cases, c. 1 200 

cm from the edge). The short growth period of the experiment meant that roots did not 201 

interact with the boundary of the container, however to minimise any potential impact 202 

of this we excluded material from the edges (c. 2 mm) from the analysis. By this method 203 

we analysed the full root system of each plant. No roots overlapped for the imaging 204 

undertaken at 8.5 µm, however for the wheat plants scanned at 12 µm, two samples had 205 
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instances of roots in close proximity or overlapping which were excluded from the 206 

study, however as extra samples had been prepared and scanned, n=4 for each treatment 207 

was maintained. 208 

 209 

Root diameter was assessed by the novel application of an existing image analysis 210 

protocol. A binary image stack of thresholded root material was exported from the VG 211 

Studio Max v2.2 volume, and imported into Image J 1.47 (http://rsbweb.nih.gov/ij/). 212 

Here, 3-D thickness measurements were made on root systems using the BoneJ plugin 213 

(Doube et al. 2010). This plugin places sequentially smaller spheres inside the object of 214 

interest and each sphere never overlaps the object border or each other. The mean 215 

diameter of these spheres is deemed the ‘thickness’, giving a single value for each root 216 

system. A subsequent colour heat map can be used to illustrate changes to relative 217 

sphere size to give an indication of soil pore thickness change along the root axis. 218 

 219 

Root convex hull can be used to provide a measure of potential soil exploration by 220 

different plant root systems (Iyer-Pascuzzi et al. 2010), by assigning straight vertices 221 

between the outer most points of the root system. Convex hull was determined by 222 

importing the segmented root systems into RooTrak software (Mairhofer et al. 2013), 223 

using the QuickHull algorithm (Barber et al. 1996) and estimating hull volume using 224 

Monte Carlo Integration (Rubinstein 1981).  225 

 226 

Statistical analysis 227 

All data were analysed in GenStat Release 15.1 (VSN International) using a single-228 

variate linear mixed model (REML), containing all possible interactions as explanatory 229 

variables and sample as a random effect. For soil porosity analysis, a REML analysis 230 

containing plant species, soil texture, the distance from the root surface and soil bulk 231 

http://rsbweb.nih.gov/ij/
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density as the fixed model and sample as a random effect was used. Standard residual 232 

plots were examined in GenStat to check data normality, with comparisons of means 233 

based on least significant differences (L.S.D.) at the P = 0.05 and P=0.01 probability 234 

levels. 235 

 236 

Results 237 

The Influence of Root Growth on Rhizosphere Porosity 238 

There was a clear gradient in porosity surrounding the root systems in all treatments 239 

after 8 days of growth (Figures 1 and 2), with an enhanced porous zone at the 240 

immediate root surface in all samples and treatment specific localised 241 

compaction/densification at increased distance from the root. ‘Densification’ was 242 

considered as the point at which the porosity of an individual dilated region became 243 

statistically the same or lower than that of the bulk soil. The interaction of bulk density 244 

x plant species x soil texture x distance from the root surface was significant (P<0.001).  245 

 246 

When averaged over all treatments there was a significant increase in soil porosity at the 247 

immediate root surface compared to 48 µm away from the root (mean porosity of 47.3% 248 

and 26.8 % respectively; Figure 1; Figure 2; P<0.001; SE’s available in supplementary 249 

figures 1-4), with a significant interaction for plant species x distance from the root 250 

(P<0.05), soil texture x distance from the root (P<0.001) and bulk density x distance 251 

from the root (P<0.001). Scanning at a higher resolution revealed a clear gap formation 252 

around tap and lateral roots in both soil textures (Figure 3), the diameter of which 253 

approximately equalled the zones of increased porosity quantified in Figures 1 and 2. 254 

Beyond this initial gap formation, changes to porosity at increased distance from the 255 

root surface were explained by soil texture and bulk density.  256 

 257 
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At a bulk density of 1.2 Mg m-3 the loamy sand soil exhibited no further significant 258 

change to porosity compared to the bulk soil at increasing distances away from the root 259 

surface for any plant species (Figure 1a, c, e). At the same bulk density in the clay loam, 260 

there was no significant change in porosity from the bulk soil value for the tomato 261 

treatment (Figure 1d), but significant reductions in porosity of 7.5 and 9.5 % compared 262 

to the bulk soil value to 23.6 and 23.1 % in the wheat and pea species respectively 263 

(Figure 1b, f; P<0.001). This localised densification compared to the bulk soil extended 264 

to 0.36 and 0.42 mm from the root surface in the wheat and pea species respectively, 265 

with the soil particularly compressed at the 0.1 mm location for both species compared 266 

to the root-soil interface. 267 

 268 

At 1.5 Mg m-3, the tomato plants exhibited no further changes in porosity following the 269 

initial increase at the immediate root surface in either soil texture (Figure 2c, d), 270 

although the differences in the soil porosity profile between the two textures were the 271 

most pronounced observed. However, there were significant decreases in porosity in 272 

wheat and pea plants in both soil textures (Figure 2a, b, e, f; P< 0.001), the magnitude 273 

of which were texture specific. In the loamy sand, the wheat and pea plants exhibited 274 

decreases in porosity compared to the bulk soil of 5.6 and 4.0 % respectively, with 275 

localised soil densification extending to 0.14 and 0.12 mm from the root surface. In the 276 

clay loam the wheat and pea plants exhibited greater decreases in porosity of 8.1 and 7.6 277 

% respectively compared to the bulk soil than in the loamy sand. Densification of the 278 

soil surrounding the root extended further than in the loamy sand, to 0.42 and 0.22 mm 279 

from the root surface in the clay loam for the wheat and pea treatments respectively.  280 

 281 

The zone of influence of the root (i.e. the spatial degree of any change in porosity away 282 

from the bulk soil) as an isolated dependent variable was significantly influenced by 283 
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plant species (P<0.001) in the following the order wheat > pea > tomato (means of 284 

694.7, 483.9, 21.2 mm3 respectively). Soil texture also significantly influenced the zone 285 

of influence (P<0.05), with clay loam having a much higher volume of 511.7 mm3 286 

compared to 288.2 mm3 in the loamy sand. The bulk density x texture interaction was 287 

significant (P=0.05), with a larger zone of influence in the clay at 1.5 Mg m-3 than 1.2 288 

Mg m-3 (mean values of 630.3 and 402.9 mm3 respectively) but in sand it was the 289 

converse (mean values of 225.2 and 334.5 mm3 respectively). In comparison with the 290 

lower density soil, the porosity at the root-soil interface and the bulk soil was reduced 291 

by between 25-50% in the 1.5 Mg m-3 treatment. 292 

 293 

Impact of soil physical properties on root characteristics 294 

Representative images of root system architecture segmented from the X-ray CT images 295 

for the three plant species are provided in Figure 4. Mean root thickness increased with 296 

increasing bulk density (0.58 mm vs. 0.74 mm at bulk densities of 1.2 and 1.5 Mg m-3 297 

respectively; P=0.001), with a significant interaction of bulk density x plant species 298 

(Figure 5; P<0.005). Root thickness significantly differed between plant species with 299 

the following the order: pea > tomato > wheat (mean thickness values of 1.16, 0.49 and 300 

0.34 mm respectively; Figure 5; P<0.001). Root thickness varied significantly with soil 301 

type (P<0.001), increasing in the finer textured clay loam (mean thickness of 0.74 vs. 302 

0.58 mm in the clay loam and loamy sand textures respectively). The interaction of 303 

species x texture was significant (P=0.01). Averaged across all treatments there was no 304 

significant effect of root thickness on porosity of the defined rhizosphere region, but a 305 

significant interaction of plant species x root zone of influence (P<0.005) and bulk 306 

density x plant species x root zone of influence (P=0.001). Note, this is based on 307 

analysis of the soil around the roots hence where root architecture varied so did the 308 

volume of soil assessed. 309 
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 310 

Mean values for convex hull volume were higher in the clay loam than loamy sand 311 

(5607 vs. 4060 mm3; Figure 6; P<0.005), and were significantly affected by plant 312 

species (convex hull volumes of 7077, 3940 and 3483 mm3 in the wheat, pea and tomato 313 

respectively; P<0.001). There were significant interactions of bulk density x soil texture 314 

(P<0.05) and bulk density x species x texture (P<0.05). There was a significant 315 

relationship between convex hull volume and the volume of the root zone of influence 316 

(P<0.001), with mean total volumes of both convex hull and the volume of root zone of 317 

influence differing dramatically between plant species (P<0.001) and soil texture 318 

(P<0.005) (Figure 6). 319 

 320 

Discussion 321 

Root growth has a significant impact on soil structure in the rhizosphere which we 322 

observed here after very early growth. The extent of soil reorganisation is influenced not 323 

only by the plant but also by the soil’s physical properties. Previous work has indicated 324 

that soil structure in the rhizosphere has key consequences for soil physical (Gregory 325 

2006; Hinsinger et al. 2009) and hydraulic processes that directly influence root system 326 

development (Carminati et al. 2013; Hallett et al. 2009). While, previous work, such as 327 

Aravena et al. (2011), used root analogues to try disentangle the consequences of root 328 

growth on structural development in the rhizosphere, an as assessment of real growing 329 

roots in field soil on rhizosphere structure evolution has previously been considered not 330 

possible. In this study we used X-ray CT to observe the structural development of the 331 

rhizosphere across multiple plant species and soil treatments at scales down to 8.5 µm 332 

on soil from the field that was structure-less. This approach offer new opportunities to 333 

study in situ how plants influence the soil environment to their advantage/disadvantage 334 

and how this is affected by different abiotic stresses.  335 
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 336 

Impact of root growth on rhizosphere porous architecture 337 

There was a plant species independent increase in porosity immediately at the root 338 

surface, which subsequently declined with distance from the root previously measured 339 

by Helliwell et al. (2017). This contrasts with previous work using root analogues 340 

(Aravena et al. 2011), which demonstrated a soil densification gradient at the immediate 341 

root surface, increasing in porosity with distance from the root. Aravena et al. (2011) 342 

acknowledge limitations to their balloon root analogue, in that it consists of an 343 

unreactive non-dynamic interface, isolating lateral compressive forces due to radial 344 

expansion. Therefore, in a real root system, more dynamic differences in the structural 345 

gradients from the root to the bulk soil are expected. Beyond this zone of increased 346 

porosity, an increase in densification of the soil was observed, governed by soil texture 347 

(Figures 1 and 2). Figure 3b and c highlight the development of cracking behaviour in 348 

the clay loam soil, with root-derived cracks radiating from the root surface in all plant 349 

species. This is almost certainly due to shrinkage induced by soil drying (Hallett and 350 

Newson 2005) and not a sample preparation artefact since great care was taken to 351 

ensure the samples were packed as homogenously as possible following the method of 352 

Helliwell et al. (2017). The plastic nature of the clay loam can lead to the formation of 353 

localised micro-cracks during root growth, corresponding to and accounting for the 354 

increases in porosity quantified at the immediate root surface (Figure 1). The loamy 355 

sand texture, which has a much smaller capacity to shrink than clay loam, exhibited a 356 

smaller, but measurable shrinkage upon drying at the root surface, linked to a loss of 357 

contact which was particularly pronounced in the thicker pea roots (Figure 3a). 358 

However, as this soil did not crack, the magnitude of porosity increase, estimated from 359 

the CT images, was smaller (Figure 2). 360 

 361 
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New lateral root growth was observed in crack shaped pores in the soil, with an 362 

apparent preference for growth into pre-existing pore space as opposed to forging new 363 

pathways. New root proliferation is known to exploit existing pore channels and fissures 364 

where possible (Bengough et al. 2006), due to the relatively unimpeded pathways in 365 

these regions compared to denser surrounding soil, although the extent of this can be 366 

regulated by the overall soil bulk density (Colombi et al. 2017). Hence root growth 367 

often becomes clustered in these channels that by-pass stronger regions of the soil 368 

(White and Kirkegaard 2010), creating hotspots of intense water and nutrient uptake and 369 

zones of relatively unaffected soil in poorly explored, impenetrable areas (Passioura 370 

2002). It is likely that the increased yield observed in some zero tillage systems is due to 371 

enhanced root penetration at depth due to an increased frequency of biopores and 372 

enhanced pore connectivity (Pittelkow et al. 2015). Roots can also proliferate to locally 373 

exploit patches of nutrients (Drew 1975). However, as the soil was homogenised before 374 

packing into columns in this investigation we can discount root exploitation of pre-375 

existing nutrient patches. We observed that roots exhibited a clear strategy where lateral 376 

roots explore newly formed fissures, potentially as an energy conservation mechanism. 377 

This also accounts for a degree of gap formation immediately around the tap and lateral 378 

roots (Figure 3b and c), as the roots often failed to fully fill the pores. The importance of 379 

gap formation around growing roots was highlighted by Carminati et al. (2013), with 380 

the shrinkage of roots responsible for air-filled gaps particularly pronounced around the 381 

tap root. However, Carminati et al. (2013) and other previous investigations (Carminati 382 

et al. 2009) demonstrated shrinkage of the root as opposed to the soil was the driver for 383 

the gap development dynamics. It is possible that shrinkage of the soil was overlooked 384 

in previous work due to the coarser resolution (ca. 100 µm) thus microscale structural 385 

changes were not observed. Also the high sand content (92 %) used by Carminati et al. 386 

(2013) would limit shrinkage of the soil itself, a likely factor influencing rhizosphere 387 
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structure development. The role of root hairs in structural formation is not considered 388 

here due to an inability to observe them in these soils at the prescribed moisture content 389 

(due to an overlap in X-ray attenuation rather than resolution), although Koebernick et 390 

al. (2017) has shown this is possible in a coarse textured soil via synchrotron imaging 391 

when considering air-filled pores only. 392 

 393 

Beyond the initial increase in porosity at the immediate root surface, the contrasting 394 

porosity changes at distances further from the root surface are also likely to be 395 

influenced by the different cohesive properties of the soil. It follows that an apparent 396 

lack of densification surrounding roots growing in coarser, less cohesive soil is due to 397 

its relative ductility, with freely mobile particles able to be reorganised as the root 398 

grows. Conversely the plastic nature of the clay soil creates a readily compressible 399 

mass, clearly influenced by root size. The root effect on increasing densification away 400 

from the root interface was greater in the highest bulk density treatment and was 401 

consistent between the two soil types, though Figure 5 shows that this cannot be 402 

explained by root diameter alone. 403 

 404 

We hypothesised a relationship between the thickness of a root, soil bulk density, and 405 

the degree and size of its impact on the surrounding physical soil environment, with 406 

thicker roots under increased soil bulk density thought to contribute to an increased 407 

deformation of rhizosphere soil. The non-significant effect of root thickness as a factor 408 

determining the ‘zone of influence’ shows that root diameter, although reported to 409 

increase the ability of roots to penetrate compacted soil (Bengough (1997), does not 410 

account for the changes to structure we have observed, once the rhizosphere has 411 

developed. The combination of thicker (Figure 4), blunter pea roots under the 412 
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appropriate soil texture exhibited increased soil deformation compared to tomato and 413 

wheat (Figure 1f and Figure 2f). Whilst the degree of structural change was independent 414 

of root thickness, the displacement of particles was less than one root diameter in all 415 

treatments. This contrasts with Vollsnes et al. (2010) who showed compression of sand 416 

in front of the root tip extending up to eight times the root diameter in maize using 417 

particle image velocimetry.  Aravena et al. (2011) reported lateral densification of ca. 8-418 

12% extending to one root diameter in wet aggregates at a resolution of 4.4 µm. In this 419 

investigation we observed a similar degree of deformation of ca. 4-9% depending on the 420 

soil texture and plant species, extending ca. 0.5x the root diameter (although root-421 

induced cracking often extended beyond this; Figure 4b and c). It is therefore clear that 422 

investigations using artificial sand or a saturated medium may cause differences in the 423 

size and magnitude of structural change observed not representative of field soil 424 

conditions.  425 

 426 

A common feature we observed was that immediately adjacent to the root, there was a 427 

region of increased porosity. This was most likely due some combination of both soil 428 

and root shrinkage alongside the thigmotropic response of root development. The way 429 

in which particles, especially in structure-less samples, are arranged at the root-soil 430 

interface has been proposed to account for the zone of higher porosity (Koebernick et al. 431 

2018), and while we cannot discount that this as a contributing factor, it is clear from 432 

Figures 3 b-d where a particulate structure is not observed, that this is unlikely to 433 

explain our findings.  At greater distances from the root there was a compacted region 434 

(except for Fig. 1d), which was due to either (i) a legacy of soil deformation at the root 435 

tip or (ii) microscale soil shrinkage due to water uptake by the root.  Differences in root 436 

exudate composition between the plant species are also thought to be important in 437 

modifying the physical properties soil (Naveed et al. 2017).  438 
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 439 

Implications for modelling of rhizosphere densification 440 

Dexter (1987) developed a model for the compression of soil surrounding a growing 441 

root by assuming soil porosity is reduced adjacent to the root where compression is 442 

greatest. This was based on work considering a metal probe as a root analogue entering 443 

the soil and expanding to cause a porosity gradient which increased exponentially from 444 

the object surface (Dexter and Tanner 1972). This was later supported by experimental 445 

work using particle image velocimetry in pure sand at a spatial resolution of 0.5 mm 446 

(Vollsnes et al. 2010), where the displacement of sand particles into pores in their 447 

immediate vicinity was facilitated by root growth. Our work confirmed the predictions 448 

by Dexter (1987) that following root-compression of soil to a minimum porosity and an 449 

example of this behaviour is seen in Fig. 3d. However, we more commonly observed a 450 

dual-zone impact of root growth on soil structure in the rhizosphere (Figs 1 and 2), with 451 

the first corresponding to the increase in porosity at the immediate root surface to an 452 

approximate distance of 50 µm, only observable by high resolution imaging and not 453 

previously considered in similar modelling approaches. This high porosity zone where 454 

root-soil contact is somewhat reduced could have profound implications for soil root 455 

interaction: reduced hydraulic conductivity and water flow to the root due to a loss of 456 

hydraulic connection, lower nutrient flux to the root especially nitrate and increased 457 

aeration. The improved aeration could be of considerable benefit to the root while the 458 

effects related to reduced water flux might be compensated by root mucilage production 459 

(Carminati et al. 2009).  460 

 Plant roots donate carbon to encourage the development of beneficial 461 

populations of microbes in the rhizosphere. For example, phosphate-solubilising 462 

microorganisms can mobilise previously inaccessible pools of this important nutrient for 463 

plants (Wang et al. 2016). Microorganisms growing on the root surface contribute to the 464 
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disruption of soil structure at the root surface that can aid aeration and the pathway for 465 

nutrient and water delivery to the root surface (Helliwell et al. 2014). Our finding that 466 

the extent of this root surface phenomenon, the zone of influence, differs between 467 

species and depends on soil type and density (Figure 6) is worthy of further 468 

investigation. For example, pea showed more sensitivity to the soil type when compared 469 

with wheat and tomato at higher bulk density (Figures 6cd). In the thicker pea roots 470 

(Figure 5) the production of specialised exudates particularly rich in hydroxyproline-471 

rich cell wall glycoprotein when compared with cereals (Knee et al. 2001) may be 472 

depend on soil type. There may be the potential to improve this trait in future crop 473 

breeding programmes by manipulating root exudate composition. In addition, the 474 

considerable differences in root-induced structure around and away from the root 475 

surface and the varied response to soil texture and bulk density highlights the needs for 476 

plants breeders to undertake studies under more natural conditions when screening for 477 

beneficial root traits.    478 

 479 

Conclusions 480 

Plants modify the soil environment in the rhizosphere very early on during plant root 481 

growth. Soils with contrasting textures are deformed by roots in different ways, 482 

depending on initial soil bulk density and plant species. X-ray microtomography of 483 

loamy sand and clay loam soils showed an increase in the porosity of soil immediately 484 

adjacent to the root in all three plant species examined, which was independent of root 485 

diameter. Multi-scale scanning at higher resolutions revealed considerable micro-crack 486 

formation around roots, attributable to soil shrinkage. However, subsequent deformation 487 

and compaction created by root growth was spatially highly heterogeneous, and 488 

dependent on a combination of root thickness, higher soil bulk density and finer 489 

textured soils. Imaging approaches, such as those demonstrated here could provide a 490 
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basis for the future development of conceptual root-soil interaction models, especially 491 

important as the soil structure in the rhizosphere has implications for the acquisition of 492 

water and nutrients by plant roots as they engineer new hydraulic pathways through 493 

soils. In addition, they could be used to support the efforts of plant breeders when 494 

seeking to identify idealised root traits as the root-modulated soil porous architecture is 495 

likely to play as an important a role in root development as the root system itself.  496 
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List of Figures 624 

Figure 1 – Porosity distributions at a bulk density of 1.2 Mg m-3 for wheat (a, b), tomato 625 

(c, d) and pea (e, f) roots: a,c,e) loamy sand; b,d,f) clay loam soils, at isolated regions 626 

moving away from the root surface. Error bars represent standard errors of 4 replicates. 627 

 628 

Figure 2 – Porosity distributions at a bulk density of 1.5 Mg m-3 for wheat (a, b), tomato 629 

(c, d) and pea (e, f) roots: a,c,e) loamy sand; b,d,f) clay loam soils, at isolated regions 630 

moving away from the root surface. Error bars represent standard errors of 4 replicates. 631 

 632 

Figure 3 – Representative raw greyscale X-ray CT images showing soil, root and pore 633 

space after 8 days of growth: a) Pea in loamy sand soil showing gap formation 634 

immediately at the root surface; b and c) Wheat in clay loam soil showing cracks 635 

radiating from the root surface; d) Pea in clay loam soil showing densification of the 636 

soil surrounding the root. 637 

 638 

Figure 4 – Example root system architectures at a bulk density of 1.5 Mg m-3 for: a) 639 

tomato; b) wheat; c) pea. 640 

 641 

Figure 5 – The influence of bulk density and plant species on root thickness after 8 days 642 

of growth. Error bars represent standard errors of 4 replicates. Significance: * P<0.05; 643 

** P<0.01. 644 

 645 

Figure 6 – The influence of plant species and soil type on a) Mean root zone of 646 

influence at 1.2 Mg m-3; b) Convex hull volume for 1.2 Mg m-3; c) Mean root zone of 647 

influence at 1.5 Mg m-3; d) Convex hull volume for 1.5 Mg m-3. Error bars associated 648 
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with the histograms represent standard errors of 4 replicates. Significance: * P<0.05; ** 649 

P<0.001. 650 

 651 

Figure 7 – An example of the a) volume of the zone of influence of the root and b) 652 

convex hull for wheat: with the segmented root system in yellow and associated zone of 653 

influence in red.  654 


