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Active Vision and Surface Reconstruction for 
3D Plant Shoot Modelling 
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Abstract - Plant phenotyping is the quantitative description of a plant’s physiological, biochemical and anatomical status which 
can be used in trait selection and helps to provide mechanisms to link underlying genetics with yield. Here, an active vision- 
based pipeline is presented which aims to contribute to reducing the bottleneck associated with phenotyping of architectural 
traits. The pipeline provides a fully automated response to photometric data acquisition and the recovery of three-dimensional 
(3D) models of plants without the dependency of botanical expertise, whilst ensuring a non-intrusive and non-destructive 
approach. Access to complete and accurate 3D models of plants supports computation of a wide variety of structural 
measurements. An Active Vision Cell (AVC) consisting of a camera-mounted robot arm plus combined software interface and a 
novel surface reconstruction algorithm is proposed. This pipeline provides a robust, flexible and accurate method for automating 
the 3D reconstruction of plants. The reconstruction algorithm can reduce noise and provides a promising and extendable 
framework for high throughput phenotyping, improving current state-of-the-art methods. Furthermore, the pipeline can be 
applied to any plant species or form due to the application of an active vision framework combined with the automatic selection 
of key parameters for surface reconstruction. 

Index Terms — 3D reconstruction, Active vision, Calibration, Plant Phenotyping 
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1 INTRODUCTION
Understanding the physiological and molecular mecha-
nisms underlying the growth of plants and crops is in-
creasingly important in order to reach food security goals 
whilst achieving sustainability within agricultural sys-
tems. Therefore, methods are required to identify traits 
that translate into increased crop yield [1].  

 Phenomics, or phenotyping, is the measurement of 
traits which reflect plant growth, performance, composi-
tion and development. Measurements are often captured 
over a period of time, and are affected dynamic interac-
tions with the genetic background (genotype) and the 
environment [2]. A comprehensive understanding of the 
possible range of plant phenotypes would aid breeding 
and genetic modification, facilitating the improvement 
e.g. of nutrient use and photosynthetic efficiency, thereby 
increasing crop yield and stability across diverse envi-
ronments [3], [4]. Dimensions such as height and width, 
leaf area index (LAI), leaf area density (LAD) plus leaf 
angle and curvature are all important parameters that 

directly relate to the growth and light harvesting ability 
of plants. However, retrieving these measurements cur-
rently constitutes a major bottleneck in assessing perfor-
mance, or for the construction of quantitative models of 
plant development and pre-breeding applications. This, 
in part, is due to the drawbacks associated with manual 
measures of phenotypic parameters, which are time con-
suming and subject to inaccuracy [5]. Higher throughput 
methods may also be costly, inaccessible, or require spe-
cific expertise or appropriate analysis tools.  
 In recent years there has been a rapid increase in 
techniques aimed at extracting plant traits from two-
dimensional (2D) images, to generate phenotypic infor-
mation. However, many plant measurements such as area 
and leaf morphological properties can only be obtained 
from three-dimensional (3D) representations of plants. 
Consquently, the recovery of accurate 3D models of 
plants from 2D images is urgently required. High quality 
3D models can provide a wide range of morphological 
and gross developmental data and can also be used to 
support simulations of plant function (e.g. [6]–[8]). While 
image-based modelling has made significant progress 
over the past decade, creating accurate representations of 
plants remains a challenging problem. 
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1.1 Recovery of 3D plant models  
The recovery of 3D descriptions of viewed objects from 
multiple images is a longstanding problem in computer 
vision. In recent years improvements to these descrip-
tions, with respect to both quality and performance, have 
been made. However, most existing methods of repre-
senting objects in 3D have only been applied to relatively 
simple, predominantly convex objects; human heads and 
man-made artefacts such as buildings and vases. 
 Crowded scenes, in which multiple, closely-packed 
objects are present, constitute a more difficult challenge 
and are troublesome to accurately represent. Crowded 
scenes generate high levels of occlusion - where part of 
the object is not visible from the current view - and paral-
lax - the effect of the object appearing to differ when 
viewed at different angles, making accurate reconstruc-
tion harder than for simple convex objects. Plants are par-
ticularly challenging due to self-occlusion, the presence of 
many small, shiny surfaces that appear very similar, lack 
of texture for feature matching and difficulties when se-
lecting camera placements. Moreover, plants are sessile 
organisms that adapt and acclimate to their fluctuating 
environment, from short-term changes such as the reor-
ganisation of foliage to long-term growth patterns. As a 
result, plants have a complex structure which is able to 
change over time, making them difficult to model, partic-
ularly by standardized, fixed camera phenotyping plat-
forms. Pipelines are required that can adapt to the ex-
pected wide variations in plant shape and/or size [9]–
[11]. 
 Many approaches to 3D modelling exist [12]. One 
particularly successful method is known as Multi View 
Stereo (MVS), which produces a series of 3D points, 
known as a point cloud, from an unordered set of 2D im-
ages taken around an object. However, image acquisition 
and selection are currently an insufficiently considered 
resource in MVS; this is particularly important when the 
target objects are complex and feature matching becomes 
more challenging. MVS uses feature matching between 
multiple overlapping views of an object or scene to de-
termine the position of the object in 3D space. Seitz et al. 
[13] demonstrated that the quality and speed of 3D mod-
elling depends significantly on the quantity and selection 
of input images, and that each image does not contribute 
evenly to the overall quality of the model. Without suffi-
cient images, a faithful description of the plant cannot be 
produced, though also, without a prior representation of 
the object to compare to, it is difficult to evaluate whether 
sufficient images have been acquired. For crowded 
scenes, even when a large number of images are availa-
ble, there is a high probability that some 3D data will be 

missing. An increase in the number of input images will 
also increase computational requirements in terms of both 
memory and time. In some instances, unnecessary input 
images can actually decrease the quality of the resulting 
model by introducing false points. 
 The point clouds generated via MVS are often inte-
gral to 3D modelling pipelines, where they are used as a 
basis to create a surface mesh representation. This is nec-
essary for automatic plant measurements or further ap-
plied modelling (e.g. [6]–[8], [14]–[16]). However, missing 
data at the point cloud stage can lead to mesh defects 
such as holes or overlapping datapoints [17] later on. 
Other imperfections may arise due to inherent noise in 
the point cloud itself, which alters the position of points, 
or incomplete sampling of the surface which may lead to 
holes, gaps and missing data. Moreover, the point cloud 
may include outliers; points lying away from the object 
surface that are not part of the object being modelled. 
These imperfections are likely to amplify inaccuracies 
arising during the surface reconstruction process; the pro-
cess of fitting a surface to the point cloud to produce a 3D 
model. The complexity of the target object also leads to 
difficulties, affecting the ability to accurately detect and 
preserve the boundaries of complex shapes, and further 
increasing the processing time required for reconstruc-
tion.  
 In this work, a complete pipeline is proposed for the 
automatic recovery of 3D plant models. The pipeline can 
be split into two parts; 1. The automatic capture of 2D 
images of a given plant using an active vision cell (AVC) 
via manipulation of a camera mounted on a robot arm 
[18].  To do this we utilise an intermediate plant represen-
tation, which is interatively evaluated to ensure it has 
been adequately scanned, and automatically capture ad-
ditional images where necessary. 2. The surface recon-
struction of the model plant, achieved by utilising the 3D 
data obtained from Part 1 and merging the point cloud 
and volumetric data representations together to improve 
the accuracy of the 3D model. We then perform clustering 
on the merged data using a novel binning algorithm; and 
then surface reconstruction using triangulation. Level sets 
and a merging algorithm are applied to the triangulated 
clusters in order to refine the final surface representation. 
An overview of steps in the reconstruction process for 
real life plant is given in Fig. 1. 

2 ACTIVE VISION 
In controlled environment plant phenotyping, image ac-
quisition is currently reliant on either manual capture [14] 
or static camera placements [19]–[21] that are unable to 

Fig. 1. Overview of the reconstruction process on a Bromeliad (Vriesea sp.). (a) sample image acquired by the active vision cell (AVC), 
(b) point cloud representation containing outliers, (c) volumetric proxy representation (PPR), (d) merged model, (e) final 3D mesh model 
following surface reconstruction. 
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adapt to specific plant species or varieties. Consequently, 
there is an increase in labour, reduction in accuracy and 
often very expensive systems are designed only for a 
single plant form [22]–[24]. Here, an active vision ap-
proach is developed to reduce the manual requirements 
of image capture, ensuring that sufficient data is ob-
tained, irrespective of plant species or form.  
 The proposed AVC [18] is composed of three prima-
ry hardware components; 1. A high precision turntable 
(LT360EX – Linear X Systems, Portland, USA) which is 
used to rotate a plant 360 degrees, providing accuracy of 
0.1 degrees. 2. A robot arm, The Universal Robot 5 (UR5 
– Universal Robots, Odense, Denmark), providing 6 de-
grees of freedom, which, in conjunction with the turnta-
ble, ensures the whole object can be viewed. 3. A digital-
SLR camera (Canon 650D – Canon, Tokyo, Japan), for 
acquisition of RGB images (Fig. 2). The 650D was chosen 
due to affordability and high-resolution images of up to 
18 megapixels, as well as the ability to mount it on a ro-
bot arm easily. 
 

2.1 Calibration 
To enable the manipulation of a viewpoint for active vi-
sion, the system must be accurately calibrated; that is, the 
location of the camera with respect to the world must be 
determined. This can be challenging, with the number of 
calibrations required dependent on the number of com-
ponents in the system. 
 Within this cell, calibration of the camera and robot 
with respect to the world, robot base and end effector (the 
point in which a device is connected to a robotic arm) is 
performed. Calibration of this form is achieved by solving 
the linear equation AX = YB (Fig. 3) in which AXYB are 
transformation matrices consisting of rotation and trans-
lation, mapping a point in one space to one in another. B 
is the robot calibration from the base to the end effector, a 
transformation often known as forward kinematics. B is 
easily obtainable using Denavit-Hartenberg [25] parame-
ters, a method for describing the structure of a serial link 
manipulator. A is the camera calibration and involves 
estimating the intrinsic and extrinsic parameters of the 
camera. The intrinsic parameters depend on the physical 
properties of the camera and lens. The extrinsic parame-
ters represent the position and orientation of the camera 
within the world. Camera calibration is performed by 
capturing multiple images of a, planar target (e.g. a 
checkerboard) of known structure and dimensions.  
Once these two calibrations are performed it is possible to 
calculate the position of the robot with respect to the 
world, Y, and the camera with respect to the end effector, 
X. The two unknowns are calculated from the linear 

equation using unit quaternions and a closed-form sepa-
rable solution as proposed by Dornaika and Horaud [26]. 
Finally, the turntable is calibrated by performing multiple 
cell calibrations; in each, the centre of the world (0,0,0) is 
obtained. Opposite rotations are connected, and line in-
tersection is performed to calculate the centre of rotation.  
 Once the system is fully calibrated, the checkerboard 
calibration target can be removed from the environment. 
It remains possible to accurately obtain the position of 
the camera with respect to the world, through the full 
range of robot movement and turntable rotation, ena-
bling 3D reconstruction.  
 For highly complex scenes that lack texture or dis-
tinct features, such as plants, feature matching approach-
es to calibration are unreliable. Thus, many phenotyping 
pipelines perform camera calibration online during re-
construction, requiring that a calibration target is at least 
partially visible in all images [14]. Consequently, the 
range of possible views are restricted, large objects may 
not fit, or may occlude much of the calibration target. The 
calibration method described above eliminates this con-
straint and can calibrate the camera for any position 
without the need for a calibration target, once all parame-
ters are known. 
 
2.2 Performing Active Vision 
Given a calibrated cell, it is possible to capture images of 
any plant that is placed on the turntable. The process of 
selecting views by evaluating the environment to max-
mise some function is typically called next best view 
(NBV). Traditionally, NBV evaluates every possible 
viewpoint to determine which view to select. Within this 
pipeline, the proposed NBV algorithm differs from exist-
ing NBV algorithms in that it uses neither a depth sensor, 
nor a predefined set of images. Moreover, the proposed 
algorithm reduces the search space of viewpoints by us-
ing clusters of voxels, i.e. grouping them together, and an 
incremental view sphere, in which one ‘optimal’ position 
is evaluated and then expanded should it be inappropri-
ate, as opposed to traditional methods which evaluate all 
views and all voxels. Redundant images are discarded to 
further improve efficiency.  The proposed algorithm (Al-
gorithm 1) can be broken down into three phases: 
 Phase 1: Select views that support fast convergence 
towards an initial volumetric representation, which 
broadly represents the object; this is evaluated in Phase 2 
to determine quality and amount of coverage (i.e. the 
number of voxels that have been seen). An octree is used 

 
Fig. 2. The Active Vision Cell (AVC) hardware components: the 
LT360EX high precision turntable (left) and the Canon 650D mount-
ed on the UR5 robot arm 

 
Fig. 3. The relationship between transformations of matrix equation 
AX=YB for the calibration of the robot and camera. 



4 IEEE TRANSACTIONS ON JOURNAL COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 

 

as an initial representation of the object due to the effi-
ciency and ease of manipulation, particularly when per-
forming ray tracing. The octree is initialised as a single 
voxel and, as views are captured, knowledge of the object 
is increased. The initial image set is captured from three 
height positions for 10 turntable rotations, resulting in 30 
images. 
 Phase 2: The voxel representation is clustered, and 
rays are projected from each of the 30 cameras. From this 
a score for each cluster is determined based on the angle 
at which each image (the position which it was taken) 
sees the cluster, and the percentage that has been seen. 
Clusters that do not satisfy the evaluation function (i.e. 
those that are not seen enough) require more views. The 
new views are determined using an incremental view 
sphere in which the intersection of the normal from the 
cluster to the view sphere is used as the optimal position; 
this is evaluated by ray tracing to detect occlusions (Fig. 
4). If the view is occluded, incremental expansion over the 
view sphere is performed until an acceptable view is 
found. 

 
Fig. 4. Incremental examination of the view sphere determinines 
camera positions. The red dot in the centre illustrates the optimal 
viewpoint defined by the normal of the cluster, the green is the 
first increment and the yellow the second. This continues across 
the entire view sphere 

 Phase 3: Redundant images are removed from the 
image set; these are any images that can be removed 
without decreasing the evaluation score (Phase 2) (Eq. 
4.9), based on the number of times the cluster has been 
seen and the angles between the cameras that have seen 
it. 
 A more detailed specification of the process is given 
in Algorithm 1 and discussed in the remainder of this 
chapter. Algorithm 1 requires that the vision cell is cali-
brated and outputs a series of 2D images and correspond-
ing matrices. A volumetric model is initialised, Algorithm 
1 Line 1, and the robot is moved to the starting position in 
line with the turntable, Algorithm 1 Line 2. For each level 
(the position of camera along the vertical axis) a colour 
filter is applied to the cameras live stream and the robot 
arm is moved along the x and y axis until the object is 
encapsulated in the cameras field of view (FOV), Algo-
rithm 1 Line 4, 10 images are captured at the current level 
rotating the turntable after each image and estimating 
camera matrices, Algorithm 1 Line 5-10. The volumetric 
model is then updated, Algorithm 1 Line 11, and the pro-
cess is repeated for the next two levels. The next step in-
volves active vision to obtain images of areas of the object 
that have not been viewed sufficiently. The volumetric 
model is clustered, and a view sphere is created, Algo-

rithm 1 Line 13-15. The clusters are evaluated and if an-
other view is necessary, the view to best see the cluster is 
determined based on the utility function, Algorithm 1 
Line 17-21. If the model requires further evaluation, re-
peat the active vision process, Algorithm 1 Line 23. Once 
the model is sufficiently scanned the volumetric resolu-
tion is increased and redundant images are removed, Al-
gorithm 1 Line 24-25. 
 
Algorithm 1 The NBV algorithm 

 𝑰𝒏𝒑𝒖𝒕 ∶  𝐴 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑒 𝑣𝑖𝑠𝑖𝑜𝑛 𝑐𝑒𝑙𝑙 
 𝑶𝒖𝒕𝒑𝒖𝒕 𝐴 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠, 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑙,  

𝑐𝑎𝑚𝑒𝑟𝑎 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠  1: 𝑉 ←  𝑖𝑛𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑉𝑜𝑥𝑒𝑙() 
2: 𝑃𝑜𝑠 ←  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛() 
3: 𝑓𝑜𝑟 𝑙 ← 1 𝑡𝑜 3 𝑑𝑜  
4:       𝑃𝑜𝑠 ←  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑙,𝑉,𝐶𝑜𝑙𝑜𝑟𝐹𝑖𝑙𝑡𝑒𝑟) 
5:       𝑡 ←  𝑟𝑜𝑡𝑎𝑡𝑒((𝑙 − 1) ∙ 12) 
6:       𝑓𝑜𝑟 𝑛 ← 1 𝑡𝑜 10 𝑑𝑜 
7:                 𝐼!! ← 𝑐𝑎𝑝𝑡𝑢𝑟𝑒(𝑃𝑜𝑠) 
8:          𝑀!

! ← 𝑐𝑎𝑚𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛(𝑃𝑜𝑠) 
9:          𝑡 ← 𝑟𝑜𝑡𝑎𝑡𝑒(𝑛) 
10:       𝑒𝑛𝑑𝑓𝑜𝑟 
11:       𝑉 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝐼! ,𝑀!) 
12: 𝑒𝑛𝑑𝑓𝑜𝑟 
13: 𝑃 ← 𝑝𝑜𝑖𝑛𝑡𝑠(𝑉) 
14: 𝐶 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑃) 
15: 𝑆 ← 𝑣𝑖𝑒𝑤𝑆𝑝ℎ𝑒𝑟𝑒(𝑉) 
16: 𝑓𝑜𝑟 𝑛 ← 1 𝑡𝑜 𝑠𝑖𝑧𝑒 𝐶  𝑑𝑜 
17:    𝐶!! ← 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐶, 𝐼,𝑀) 
18:    𝑖𝑓 𝐶!! < 1 𝑑𝑜 
19:       𝑃𝑜𝑠 ← 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙𝑉𝑖𝑒𝑤𝑆𝑝ℎ𝑒𝑟𝑒(𝑆,𝐶!) 
20:       𝑉 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑃𝑜𝑠 , 𝑐𝑎𝑚𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑠 ) 
21:    𝑒𝑛𝑑𝑖𝑓     
22: 𝑒𝑛𝑑𝑓𝑜𝑟 
23: 𝑖𝑓 ! 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑉,𝐶 𝑔𝑜𝑡𝑜 𝑙𝑖𝑛𝑒 16 
24: 𝐼 ← 𝑟𝑒𝑚𝑜𝑣𝑒𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡() 
25: 𝑉 ← 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑉) 
 
The result of active vision is a set of 2D images that suffi-
ciently capture the whole object, and their corresponding 
transformation matrices. We discuss the results of our 
AVC next, comparing it to more traditional image capture 
methods. 
 
2.3 Evaluation 
Evaluation of the effect of the AVC on surface reconstruc-
tions obtained by the method described in Section 3 was 
performed on six target plant species: Bromeliad (Vriesea 
sp.), Aloe vera, Cordyline (Cordyline sp.), Brassica napus, 
chilli (Capsicum sp.) and pumpkin (Cucurbita pepo). These 
plants were chosen based on their contrasting morpholo-
gy (particularly size and leaf structure), demonstrating 
the generalizability of the approach.  

For evaluation, X-ray µCT images of target plants 
were obtained using a GE v|tome|x M scanner housed in 
the University of Nottingham’s Hounsfield Facility, Sut-
ton Bonington Campus. The v|tome|x M provides vol-
umetric images with a voxel resolution of 5 - 150 µm and, 
more importantly, is not subject to the occlusion problems 
faced by visible light imaging; this therefore provides a 
gold-standard groundtruth dataset. Though some X-ray 
segmentation tasks are highly challenging, plant material 
and air are easily separable in the density data provided 
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by µCT and, following noise reduction, plant material can 
be identified by applying a user-defined threshold. From 
this, a complete 3D model of the target object is formed. 
The surface of each plant can be represented in standard 
triangular mesh format. This ground-truth data structure 
can be compared against point clouds and surface repres-
ntations obtained from the proposed pipeline can be 
evaluated (Fig. 5). 

 

 
Fig. 5. X-ray µCT scans used as ground truth models. (a) Bromeliad 
(Vriesea sp.), (b) Aloe vera, (c) Cordyline (Cordyline sp.), (d) Brassica 
napus, (e) Chilli (Capsicum sp.), (f) Pumpkin (Cucurbita pepo). 
 
 Models used for the ground truth in this work were 
manually checked to ensure that the X-ray µCT scanner 
was able to accurately reproduce the plant. It is worth 
noting that while the X-ray µCT scanner produces accu-
rate, highly detailed models suitable for evaluation, it is 
ill suited to most plant phenotyping tasks due to size re-
strictions, time requirements and a costly setup. Moreo-
ver, it is possible for the scanner to miss very thin areas of 
the plant such as stem material, resulting in an incom-
plete 3D model for some plant types. 
 

2.4 Active Vision Results 
The algorithm proposed here is evaluated against three 
other imaging methods:  
One static; a single static camera is placed at the side of 

the plant at a fixed distance, with the plant placed on a 
turntable;  

Two static uses two fixed cameras, one directly in line 
with the plant, the other placed slightly higher looking 
down, as this is a common approach in phenotyping sys-
tems, again with the plant on a turntable;  
Arbritrary camera placement, which uses a series of 

random views taken from distinct positions, as is typical-
ly produced by manual imaging.  

40 images were taken for each of the three imaging 
methods whilst the removal in redundant images in the 
AVC led to a 10-48% reduction in image set (i.e. between 
21-36 images were required for the six plant species that 
were evaluated). Images are removed if their exclusion 
from the dataset does not decrease the utility function 
such that more views are necessary. Evaluation is based 
on the distance from points to the surface of the ground 
truth (i.e. the X-ray µCT scan) and the number of points 
obtained per image (Table 1).  

In all cases AVC produced more points, with a lower 
mean distance to the ground truth, using a reduced image 
set. While static camera placement can produce a good 

model, success depends on the structure of the target 
plant, and efficiency is limited. By employing active vi-
sion, the amount of data obtained can be significantly 
increased despite requiring fewer images, thus reducing 
computational cost. While arbitrary camera placement 
can perform well, there are no guarantees on accuracy or 
repeatability. 
 

TABLE 1 
EVALUATION OF THE ACTIVE VISION CELL 

 Brom Al Cord Brass Chilli Pump 
 Mean distance of points from the ground truth 

AVC 0.196 1.333 0.738 0.035 0.102 0.359 
One St 0.357 1.452 0.757 0.201 0.238 1.122 
Two St 0.344 1.691 0.864 0.087 0.184 1.210 
Arb 0.269 1.896 1.028 0.168 0.254 0.698 

 Number of points per image 
AVC 7638 5705 3764 16634 10192 34953 
One St 3527 3997 3071 2430 2832 17881 
Two St 3885 4015 2355 3669 6186 12926 
Arb 7638 4576 2004 4461 4976 21311 

The mean distance of points is the average distance of all points in the point 
cloud to the ground truth X-Ray µCT scan. A lower mean indicates higher 
accuracy. The number of points per image is the average number of points that 
each image generates where a higher number indicates higher quality images. 

 The approach described here requires minimal user 
input. The AVC can adapt to objects of different shapes 
and sizes with varying levels of occlusion and complexi-
ty, with the only limitation to size being the reach of the 
robot arm (which could be overcome using a larger robot 
e.g. the Universal Robot 10; a larger version of the robot 
used here). The common difficulty for extremely dense 
scenes in which components, i.e. stems, cannot be sepa-
rated, remains problematic. Static approaches often have 
cameras fixed in the environment making it extremely 
difficult and costly to adjust to different object sizes, 
which is crucial in plant phenotyping when trying to ob-
tain growth information, or when creating a system capa-
ble of measuring multiple different species. The AVC is 
more accurate and requires fewer images than previous 
static imaging approaches, offering more flexibility than 
existing large-scale phenotyping systems by adapting to 
the natural variation of individual plants. As seen from 
Table 1 the AVC produces a set of points with a lower 
mean (root mean squared error) in all instances. The 
method proposed here is automatic with user input lim-
ited to changing the plant and clicking a single button to 
begin the process. 

3 DATA MERGING AND CLUSTERING 
The AVC produces several data forms, namely: a 3D 
point cloud generated by Patched Based Multi-View 
Stessreo (PMVS; Fig. 1b); a volumetric model (the Plant 
Proxy Representation- PPR; Fig. 1c); a series of camera 
calibration matrices; and a set of 2D images. It is im-
portant to note that the 2D images are not required for 
model merging (Section 3.1) or clustering (Section 3.2) but 
are used during level set processing in the surface recon-
struction stage (Section 4). There are a number of chal-
lenges with using each of these data forms individually. 
For example, the point cloud often contains outliers; the 
PPR contains voxels that cannot be verified, that is, it is 
unknown as to whether they exist in the model; and the 
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2D data is not suitable alone due to occlusion and paral-
lax (discussed previously), consequently limiting the abil-
ity to measure plant traits. 
 
3.1 Model Merging 
The accuracy and usefulness of data can be improved 
through merging the volumetric and point cloud repre-
sentations. The model merging phase combines the point 
cloud and the PPR to produce a reduced, yet more faith-
ful, point set which represents the object of interest (Fig. 
1d). Fig. 6 illustrates the two starting datasets, point cloud 
and PPR, and the resulting merged model, from which 
the outliers have successfully been removed, yet the in-
tegrity of the object remains. The merged model produces 
a new point set which is used for the basis of cluster anal-
ysis and surface reconstruction (Fig. 1e). 
 

 
Fig. 6. Model merging. (a) the original point cloud data consisting of 
outliers, (b) the PPR representation containing unverified voxels, (c) 
the merged model with the removal of outliers. 
 
 Merging is performed by evaluating each voxel in the 
PPR, if it contains more than three points (as three are 
enough to form a single triangle) the voxel is considered 
to be part of the object. The points in each voxel that are 
part of the object are averaged to produce a single point. 
There are numerous advantages to model merging, as 
opposed to using either the point cloud or PPR inde-
pendently. Namely; the ability to acquire connectivity 
information from the PPR (which is particularly useful in 
the surface reconstruction) where such information is not 
available in the point cloud, along with normals, and 
more accurate colour estimates which can be obtained 
from the point cloud. However, the biggest advantage is 
the ability to significantly reduce the size of the point set. 
For example, a complex 3D point cloud consisting of 
300,000+ points can be reduced to a set of 3,000 points, 
whilst still retaining a faithful representation of the object. 

  
3.2 Clustering 
Following model merging, we perform clustering of the 
points to allow for efficient surface reconstruction in sec-
tion 4. A hybrid clustering algorithm has been devised, 
manipulating principal component analysis (PCA) and 
1D data representations. The algorithm involves three key 
steps:  
 Step 1. Partition clusters based on the normal, using 
PCA to determine deviation from the plane – satisfying 
the normal constraint. The deviation of points from the 
plane (with respect to the Euclidean distance) determines 
whether the point set is flat, or close to flat, by evaluating 
λ!"#. If the deviation from the plane is too great, the clus-
ter is split. Traditional PCA algorithms split along the 
centre, or along some gap when evaluated using histo-
grams. Here, a novel approach is used in which each 3D 
point is binned such that all points along λ!"# are project-
ed to a single dimension. To determine a potential posi-
tion to split the point set, an angle is calculated for each 
element in the array. The angle is the deviation between 

the current normal and the average sum of normals of 
values to the left and right of the current index. When the 
sum of normals to the left equal or are most similar to 
those on the right, the position to split is found (Fig. 7).  
 

 
Fig. 7. Overview of the clustering algorithm. As you move along the 
array, the sum of differences between the normals (N) either side of 
position X is calculated. When the minimum difference is found such 
that A-B is close to 0, the position to split the points is assigned. 
 
 Step 2. When PCA (Step 1) is unable to improve the 
current point set, a modified automatic divisive hierar-
chical clustering (DIVFRP) [27] algorithm is applied to 
partition clusters if there are two distinct groups – satisfy-
ing the separation constraint. A dissimilarity measure 
based on the furthest reference points is used to overcome 
difficulties of clustering areas containing small distinct 
groups, which often occurs in complex scenes. DIVFRP 
aims to maximise the dissimilarity function in order to 
split points. 

Step 3. Clusters are reclassified using the nearest cen-
troid and proximal points – overcoming the outlier or 
incorrect patch constraint. In some instances, single points 
may be incorrectly placed. These are typically located at 
the most distal points of a clusters (i.e. the outer most 
points of a cluster). This can be due to noise or incorrectly 
estimated normals; arising from the point proximity dur-
ing estimation. The reclassification step aims to move the 
distal points to another neighbouring cluster (usually one 
in close proximity), should the point be closer to the 
neighbouring cluster than the cluster it is currently as-
signed.  

Algorithm 2 summarises the method. Algorithm 2 Line 
3 determines whether some voxel is contained within 𝑣! 
and if it is, adds point 𝑝! to voxel 𝑣!. 𝑆𝑖𝑧𝑒(∙)  returns the 
length of the data structure. Algorithm 2 Line 8 deter-
mines the new point set (obtained from merging volu-
metric and point data). This modified point set, V, is used 
for the remainder of the work. Algorithm 2 Line 11 re-
turns true if the cluster satisfies the constraints for a clus-
ter to be correct and false otherwise. If the criteria func-
tion returns false the cluster is split, Algorithm 2 Line 12, 
which returns two new clusters and appends them to the 
end of the cluster list. Once all clusters meet the criteria, 
Algorithm 2 Line 14, clustering is complete; the criteria is 
defined as a series of constraints these are; points must be 
closer to the centroid of their own cluster and not any 
other (the outlier and incorrect patch constraint), points 
must have minimal deviation from the orthogonal plane 
(the normal constraint) to prevent the creation of long 
triangles, the loss of curvature and the incorrect triangula-
tion of discrete components i.e. two leaves (the separation 
constraint).  
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Algorithm 2 Data Merging and Clustering 

 𝑰𝒏𝒑𝒖𝒕 ∶  𝐴 𝑙𝑖𝑠𝑡 𝑃 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠,𝑉 𝑎 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 
 𝑶𝒖𝒕𝒑𝒖𝒕 ∶  𝐴 𝑙𝑖𝑠𝑡,𝐶, 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠  
1: 𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑠𝑖𝑧𝑒 𝑃  𝑑𝑜 
2:    𝑓𝑜𝑟 𝑛 ← 1 𝑡𝑜 𝑠𝑖𝑧𝑒 𝑉  𝑑𝑜 
3:       𝑖𝑓 𝐵𝐵(𝑃! ,𝑉!)  
4:          𝑉!

!. 𝑎𝑑𝑑(𝑃!) 
5:    𝑒𝑛𝑑 
6: 𝑒𝑛𝑑 

 
7: 𝑉 ← 𝑉 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑧𝑒 𝑉! > 0 
8: 𝐶!

! ← 𝑝𝑎𝑡𝑐ℎ(𝑉) 
9: 𝑤ℎ𝑖𝑙𝑒 (𝑡𝑟𝑢𝑒) 
10:    𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝐶) 
11:       𝑖𝑓 ! 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑐!  
12:          𝐶. 𝑎𝑑𝑑(𝑠𝑝𝑙𝑖𝑡 𝑐! ) 
13:          𝐶. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑐!  
14:    𝑖𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑡𝑟𝑢𝑒 ∀ 𝑐! ∈ 𝐶 
15:       𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒 
16: 𝑒𝑛𝑑 
 

 
3.3 Results 
Evaluating clustering algorithms on complex 3D point 
sets (i.e. those with close and overlapping subsets) from 
scanned data is particularly challenging, the true number 
of clusters is often unknown, and identification of a ‘cor-
rectly’ clustered 3D point set is subject to opinion. There-
fore, evaluation of the clustering algorithm is performed 
on data that can be visually inspected, which is obtained 
by segmenting a plant along the z-axis, and a correct 
number of clusters determined. Consequently, the num-
ber of actual clusters can be accurately identified through 
visual inspection. The clustering algorithm is evaluated 
against three existing algorithms on these segments: 1. K-
Means clustering [28] iteratively groups points based on 
the nearest, 2. Iterative Principal Direction Divisive Parti-
tioning (IPDDP) [29] clusters based on an embedding in a 
higher dimensional Euclidean space and 3. Spectral clus-
tering [30] which clusters in fewer dimensions. These 
were chosen as they represent commonly used (K-means) 
and state of the art (Spectral) clustering methods. Each 
algorithm is evaluated with respect to the number of cor-
rectly clustered points and the time taken to cluster the 
point set (Table 2). The Point Set (Table 2) represents the 
point set which is used for evaluation, in which 6 are cho-
sen varying in complexity as shown in Fig 8. 

For all segments evaluated, only the proposed meth-
od and spectral clustering were able to accurately detect 
the correct number of clusters and the correct number of 
points within each cluster for all segments (Table 2 – Cor-
rectly clustered points), whereas K-means clustering and 
IPDDP often underestimated the number of clusters pre-
sent, in once instance achiving only 45% accuracy. The 
proposed clustering algorithm can perform equally as 
well as the existing spectral clustering method, but with 
lower computational requirements (i.e. increase speed; 
Table 2 – Time taken to cluster), thus provides an im-
provement to current clustering methods in this instance. 
 
 

 
Fig. 8. Example point sets used for cluster analysis varying in com-
plexity from a single cluster (a) to up to 11 clusters (f) present. 
 

 
TABLE 2 

EVALUATION OF THE CLUSTERING ALGORITHM 
Point Set A B C D E F 

 Correctly clustered points (%) 
Proposed  100 100 100 100 100 100 
K-means 100 82 76 82 74 49 
IPDDP 100 45 100 100 71 91 
Spectral 100 100 100 100 100 100 

 Time taken to cluster (s) 
Proposed  0.183 0.374 2.512 2.988 7.008 2.762 
K-means 0.005 0.001 0.005 0.008 0.007 0.006 
IPDDP 0.113 0.121 2.26 1.928 3.106 1.564 
Spectral 0.392 0.513 21.9 29.91 45.13 18.63 

Correctly clustered points refers to the percentage of points that are correctly 
clustered for each of the methods. The time taken to cluster is the time taken to 
finish executing in seconds. 

4 SURFACE RECONSTRUCTION 
A set of clustered points now represents the plant. The 
final stage of the modelling pipeline produces a surface 
representation of the object (Fig. 1e). 

 
4.1 3D Modelling 
Surface reconstruction is broken down into four phases, 
an overview is shown in Fig. 9 (see Algorithm 3). 
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Fig. 9. The surface reconstruction process. (a) starting clusters, (b) 
triangulated clusters (cells), (c) level sets applied to cells, (d) smooth-
ing of the cells, (e) cell merging, (f) final smoothing step. 
 
 Phase 1- Triangulation: Starting with the initial clus-
tering (Fig. 9a), the points in each cluster are projected to 
an orthogonal regression plane through that cluster and 
are triangulated to produce a set of triangulated clusters, 
known from this point forward as cells (Fig. 9b). 
  Phase 2- Level sets: Cell boundaries are expanded 
using level sets which can generate additional points plus 
maintain sharp features and edges (Fig. 9c). Directly ap-
plicable to this work, Pound et al. [14] used levels sets 
during surface reconstruction to expand boundaries of 
clusters, as is done here. However, in Pound et al. [14], 
the resulting boundaries were not adjusted to faithfully 
represent curvature of the object as they were expanded 
on planar surfaces. In this work, this is overcome by re-
projecting to 3D coordinates based on the surrounding 
point projection matrices maintaining the curvature of the 
original object. 
 Phase 3- Mesh modifications: The surfaces are 
smoothed using a Laplacian smoothing algorithm [31], 
long triangles are removed, and holes are filled (Fig. 9d).  
 Phase 4- Cell merging: A merging algorithm is ap-
plied to the cells based on connectivity information ob-
tained from the volumetric model and the Euclidean dis-
tance. Cells are merged together to produce a fully con-
nected surface representation (Figs. 9e and f). 

Algorithm 3 summarises the 4 phases described above. 
A series of clusters and an image set obtained using the 
AVC are used for surface reconstruction. For each of the 
clusters, triangulation is performed, Algorithm 3 Line 2, 
to produce a series of cells, followed by level sets to ex-
pand the boundaries, Algorithm 3 Line 3. The resulting 
cells are smoothed; first, the internal points and then the 
boundary points, Algorithm 3 Line 4. The second stage 
creates a fully connected surface. The boundary for each 
cell is detected, Algorithm 3 Line 10, cells are then evalu-
ated to determine if they are connected, and if so they are 
merged, Algorithm 3 Line 13. 

 
Algorithm 3 Surface reconstruction algorithm 

 𝑰𝒏𝒑𝒖𝒕 ∶  𝐴 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠,𝐶,𝐴𝑛 𝑖𝑚𝑎𝑔𝑒 𝑠𝑒𝑡, 𝐼 
 𝑶𝒖𝒕𝒑𝒖𝒕 ∶  𝐴 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑆  
1. 𝑓𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑠𝑖𝑧𝑒 𝐶  𝑑𝑜 
2.    𝑐!! ← 𝑑𝑒𝑙𝑎𝑢𝑛𝑎𝑦 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑐!) 

 
3.    𝑐!!" ← 𝑙𝑒𝑣𝑒𝑙𝑆𝑒𝑡𝑠(𝑐!) 
4.    𝑐!! ← 𝑠𝑚𝑜𝑜𝑡ℎ(𝑐!! , 𝑐!!) 
5. 𝑒𝑛𝑑 

 

6. 𝑆 = 𝐶 
7. 𝑤ℎ𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 𝐶 > 1   
8.    𝐶 ←  𝑆    
9.    𝑆 ← 𝑛𝑒𝑤𝑆𝑢𝑟𝑓𝑎𝑐𝑒() 
10.    𝐶 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐶) 
11.    𝑓𝑜𝑟 𝑗 ← 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝐶) 
12.       𝑖𝑓 𝑚𝑒𝑟𝑔𝑒𝑑(𝑐!) 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 
13.       𝑆. 𝑎𝑑𝑑(𝑐𝑒𝑙𝑙𝑀𝑒𝑟𝑔𝑒(𝑐!)) 
14.     𝑒𝑛𝑑 
15. 𝑒𝑛𝑑 
16. 𝑆 ← 𝑠𝑚𝑜𝑜𝑡ℎ(𝑆) 

 
4.2 Results 
Example 3D models showing the final surface reconstruc-
tion of six plant species are given in Fig. 10. 

The proposed surface reconstruction algorithm was 
evaluated against the reconstruction algorithm of Pound 
et al. [14] using the X-ray µCT scans as a ground truth. 
Images were captured using the AVC presented in Sec-
tion 2 and the same image set was provided to each re-
construction method (N.B. redundant images were re-
moved by the AVC-based method, as the algorithm ex-
plicitly reduces redundancy, but not for the Pound et al. 
algorithm, so a larger set of images was available for the 
latter method). Evaluation was performed based on the 
mean distance and the percentage of the plant area repre-
sented relative to the ground truth model (Table 4). 

 

 
Fig. 10. The final surface reconstruction. (a) Bromeliad (Vriesea sp.), 
(b) Aloe vera, (c) Cordyline (Cordyline sp.), (d) Brassica napus, (e) Chilli 
(Capsicum sp.), (f) Pumpkin (Cucurbita pepo) 
 

For all plant species, the proposed surface reconstruc-
tion algorithm shows a reduced mean distance relative to 
the ground truth model, compared to the mesh produced 
using the canopy reconstruction algorithm [14]. Further-
more, for all but one tested plant species, a greater per-
centage of the plant is represented (calculated as mesh 
area) using the proposed method (Table 4). In all cases, an 
improved reconstruction is produced in terms of accurate 
surface representation, in which a higher percentage of 
plant area and lower mean (Table 4) constitute a more 
accurate representation. Moreover, in each of the cases, 
the number of images used is at least 10% less due to the 
removal of redundant images in the AVC (Section 2). 
 

TABLE 4 
EVALUATION OF THE SURFACE RECONSTRUCTION ALGORITHM 

 Brom Al Cord Brass Chilli Pump 
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 Mean distance of mesh from the ground truth 
Gibbs 1.18 1.91 1.78 0.32 0.53 1.35 
Pound 3.37 5.54 6.85 0.48 0.55 1.50 

 Percentage of plant area represented (%) 
Gibbs 69.1 75.6 84.2 77.5 93.1 101.9 
Pound 33.6 20.2 78.1 80.2 81.8 61.6 

Mean distance is the distance of the surface reconstruction obtained from 
Gibbs and Pound compared to the groud truth model using euclidean dis-
tance, as root mean square error. The percentage of plant area represented is 
the total surface area of the reconstruction compared to that of the ground 
truth. 

The algorithm of Pound et al. is unable to differentiate 
between correct and incorrect points as it uses a green 
colour filter, though without applying a colour filter, no 
noise is removed and due to the complexity of the objects 
used in this work, numerous outliers in the point clouds 
are green due to erroneous matching in PMVS. This is 
overcome in the algorithm here as model merging, of the 
point cloud and PPR, can eliminate a large number of 
outliers, thus reducing the mean and standard deviation. 
The algorithm of Pound et al. requires parameters that 

determine the size of the clusters (Phase 1); during this 
evaluation, a smaller size was chosen as a larger radius 
results in more erroneous reconstruction with respect to 
mean. Manually specifying parameters can be problemat-
ic, particularly when dealing with objects that vary in size 
and structure. Even plants of the same species and age 
require different parameters due to varying density and 
size. While some parameters are necessary to be specified 
by an operator, others should be calculated automatically 
by inspecting the dataset prior to processing. The pro-
posed algorithm automatically calculates parameters by 
estimating, for example, the α radius and defining a clear 
set of cluster constraints should be satisfied by evaluating 
the data prior to reconstruction.  

The algorithm proposed here significantly improves 
the quality and accuracy of the plant model, in most cases 
producing a fully connected mesh, as opposed to a set of 
patches; the output of the Canopy reconstruction algo-
rithm. Consequently, it provides a more visually com-
plete model and one that faithfully represents the target 
object. By performing cell merging (Phase 4), it is possible 
to cover a greater proportion of the object surface, while 
the algorithm of Pound et al. results in a series of triangu-
lated clusters, each with a surrounding gap, consequently 
reducing the surface area and not faithfully representing 
the object. With respect to plant phenotyping, fully con-
nected models are more desirable due to their realism. 
Moreover, connectivity of surfaces allows for more accu-
rate modelling of light and photosynthesis dynamics, or 
of canopy movement [6]–[8], [15], [16], [32]. 

4 CONCLUSION AND DISCUSSION 
 In recent years, plant phenotyping has become in-
creasingly popular, with an upsurge in affordable hard-
ware and continued improvements in analysis tools. As 
the need for accurate high throughput plant phenotyping 
increases, so too will the demand for a robust reconstruc-
tion method. 
 Active vision (AV) systems have many advantages 
over traditional fixed-view and manual methods, particu-
larly with the ability to overcome occlusions; one of the 
biggest challenges associated with 3D modelling. An AV 
system is able to intelligently manipulate the viewpoint 

such that it evades the part of the object causing the oc-
clusion. Other advantages include the ability to overcome 
the limited field of view and develop image acquisition 
strategies with guaranteed accuracy and repeatability, 
which may not necessarily be possible with a manual ap-
proach. Moreover, manual methods require that some 
calibration target is visible in all images to calculate the 
required camera matrices. For crowded scenes or large 
target objects it is often problematic to ensure the calibra-
tion target is visible in all views, however, AV overcomes 
this by estimating and maintaining the required camera 
matrices through a prior calibration step (Section 2.1). 

The imaging and reconstruction pipeline presented 
here is well-suited for use in a large-scale phenotyping 
system. Image-based systems are highly desirable as a 
method of plant phenotyping; providing the information 
needed to calculate a number of key plant traits [33]–[35]. 
3D reconstruction methods have previously been shown 
to accurately preserve and represent key physiological 
measurements including shoot traits such as leaf curling, 
shape and area or root traits such as morphology, geome-
try and topology [6], [7], [36]. Such features can be im-
portant yield determining traits for crops. Compared to 
other systems required for capturing plant structure (e.g. 
laser scanning such as LiDAR), image-based systems 
based on RGB cameras are cheap, flexible and can be used 
in multiple different settings.  

The issues associated with designing a high through-
put phenotyping system remain a challenging problem, 
with many systems still reliant on static or manual image 
capture. The approach here provides a flexible framework 
from which future systems can be evolved. Within pheno-
typing systems, numerous sensors can be employed to 
gather information on plant growth and function. These 
include hyperspectral cameras, fluorescence and chloro-
phyll fluorescence cameras or sensors, near-infrared cam-
eras and laser scanners. Different modules containing the 
different sensors can be combined within one system (e.g. 
[37]) to maximise the amount of information gathered, 
and thus the AVC and associated pipeline could form an 
image-based reconstruction module for a larger scale sys-
tem. Such a system will be invaluable as the demand for 
increased productivity of crops continues to increase over 
the coming years. Applications for field grown crops may 
face further challenges from occlusion, illumination and 
real time movement. 

Currently, the majority of the pipeline is automated, 
but user interaction is required in order to place the plant 
on the turntable, beginning the process with a single click 
and remove the plant following imaging. Multiple large-
scale phenotyping systems have been created in which 
plants are supplied to the sensors via conveyor belts [19]–
[21]. Alternatively, within the University of Nottingham’s 
Hounsfield Facility, plants are supplied to the X-ray µCT 
scanner via an automated laser guided vehicle and auto-
matic FANUC robotic arm. Similar methods could be 
employed to this pipeline to fully automate 3D recon-
struction of target plants. Future work here will look at 
the addition of other tools to the robot arm, such as a 
gripper, to manipulate the plant based on the 3D model. 
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