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14 Abstract
15 Point cloud registration is essential for processing terrestrial laser
scanning
16 (TLS) point cloud datasets. The registration precision directly in
uences
17 and determines the practical usefulness of TLS surveys. However, in terms
18 of target based registration, analytical point cloud registration error
models
19 employed by scanner manufactures are only suitable to evaluate target regis20

tration error, rather than point cloud registration error. This paper proposes
21 an new analytical approach called the registration error (RE) model to di22
rectly evaluate point cloud registration error. We verify the proposed model
23 by comparing RE and root mean square error (RMSE) for all points in
24 three point clouds that are approximately equivalent.
25 Keywords: Point cloud, Registration error, Target, Terrestrial laser
26 scanning
27 1. Introduction
28 Terrestrial laser scanning (TLS) is used for a rapid collection of dense,
29 three-dimensional (3D) spatial point cloud datasets of an entire object.
Usu30
ally several scans are required with di erent stations to survey a relatively
Preprint submitted to ISPRS Journal of photogrammetry and remote sensingApril
10, 2018

31 large and complex object completely due to occluded surfaces and scanner
32 eld of view limitations [1]. To obtain the object's complete 3D model, the
33 point cloud datasets must rst be registered to a chosen coordinate system
34 [2].
35 Previous registration studies mainly include: 1) Matric representation
36 for rotation transformation, such as Euler angle [3, 4], unit quaternion
[3{5],
37 direction cosines [3, 5], dual quaternions [6], etc.; 2) Algorithms to
compute
38 3-D rigid body transformation, such as singular value decomposition [7, 8],
39 unit quaternion [7, 9, 10], dual quaternions [6, 7], orthonormal matric [7,
11],
40 Lodrigues matric [12], etc.; 3) Iterative closest point method (ICP) (and
41 variants), such as the feature correspondences [13{16], registration strategy

42 [13, 17, 18], correspondence search [13, 19, 20], robustness [13, 19, 20],
etc.; 4)
43 Point cloud registration error models, such as error propagation for two
scans
44 [21], error propagation for multiple scans [2, 21, 22], directly
geo-referenced
45 TLS data precision [23, 24], the relationship between target precision and
46 distribution relationships [1, 25{27], etc..
47 For target registration, point cloud registration error models and their
48 statistics employed by scanner manufacturer software are based on how well
49 the targets match. These approaches have been shown to be inadequate [24],
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50 since target registration error is not equal to the point cloud registration
er51
ror. Although Fan et al. [24] recommended a model to evaluate registration
52 error based on how well the point clouds matched, However, the model was
53 derived from simulations, which are not always consistent with actual out54
comes since practical situations are often very complicated. Therefore, this
55 paper derives the target based point cloud registration error model analyti56

cally, and veri es the model by evaluating real-world point cloud registration
57 precision.
58 2. Estimation of registration parameters
59 We rst introduce the common registration model to provide true ob60
servation and transformation parameter values. We then consider true and
61 approximate errors for these parameters, and derive the registration model
62 error analytically using the estimation value and transformation parameter
63 variances. Finally, we derive the analytical model to evaluate target based
64 point cloud registration error.
2

65 2.1. Registration Model
66 Target based registration of two scans is the most common registration
67 approach and is most often performed using 3D rigid body transformation
68 algorithm [4, 7, 12]. The registration model can be expressed as point clouds

69 in Scan i+1 are transformed into Scan i using the true values of three
translation parameters ~ tx, ~ ty, ~ tz and three rotation parameters ~a, ~b
70 , c~ [4, 5],
~pi
j =
2
4
~xi
j
~yij
~zij
3
5 = ~R
2
4
~xi+1
j
~yi+1
j
~zi+1
j
3
5 + ~ T = ~R
~pi+1
j + ~ T: (1)
where ~pi
j and ~pi+1
j 71 represent the coordinate true values of the same point in
Scan i and Scan i+1, respectively, i.e., (~xi
j ; ~yij
; ~zij
) and (~xi+1
j ; ~yi+1
j ; ~zi+1
j 72 ); T~
73 is a 3 1 translation vector,
~ T =
2
4
~tx
~ty
~tz
3
5; (2)
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and ~R
74 is a 3 3 rotation matrix,
~R
=
1
1 + ~a2 +~b
2 + ~c2
2
4
1 + ~a2 ..~b
2 .. ~c2 2(~c + ~a~b
) 2(~a~c ..~b
)
2(~a~b
.. ~c) 1 .. ~a2 +~b
2 .. ~c2 2(~a +~b
~c)
2(~b
+ ~a~c) 2(~b
~c .. ~a) 1 .. ~a2 ..~b
2 + ~c2
3
5;
(3)
~R
T = ~R..1; j~R
j = 1: (4)
75 Let ~ = [a~; ~b; c~; t~x; t~y; t~z]T be the vector of transformation
parameters. To
76 uniquely determine ~ between Scan i and Scan i+1, we normally use three
77 or more targets with known 3D coordinates [1, 27], placed in the overlaps
78 between the two point clouds. This paper assumes the number of targets is
79 k( 3 ), hence 2
6664
~pi
1
~pi
2
...
~pi
k
3
7775
=
2
6664
~R
~pi+1
1
~R
~pi+1
2
...
~R
~pi+1
k
3
7775
+
2
6664
~ T
~T...
~ T
3
7775
: (5)
3
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80 2.2. Error Equation of Target Based Registration Model
Errors inevitably occur in TLS measurements (including instrumental
errors, environmental errors, object related errors, target centroid errors,
saturation errors, blooming errors, etc. [1]). If the observation values of ~pi
j
and ~pi+1
j are pi
j and pi+1
j , respectively, and approximate values of ~R
, ~ T, ~ are
R0, T0, 0 ( 0 = [a0; b0; c0; tx0; ty0; tz0]T can be calculated by the method
in
Appendix C ), then true errors of pi
j , pi+1
j , R0, T0, and 0 are pi
j
, pi+1
j
, R,
T , and respectively, where

~pi
j = pi
j + pi
j
; ~pi+1
j = pi+1
j + pi+1
j
;
~R
= R0 + R0 ; ~ T = T0 + T0 ;
and
~ = 0 + 0 :
81 Hence, from eq. (5),
vj = R pi+1
j + T .. lj ; (6)
where lj = pi
j .. R0pi+1
j .. T0, j 2 f1; 2; ; kg, vj = ..(R0 pi+1
j
+ R pi+1
j
82 )
83 is residual error.
84 Using the linearization theorem [28],
8>>>><
>>>>:
R dR = @R

@a da + @R
@b db + @R
@c dc
T dT = [dtx; dty; dtz]T

d = [da; db; dc; dtx; dty; dtz]T
; (7)
85 where dR, dT, d are the approximate values for R, T , , respectively.
86 we can construct the error equations of the target based registration model
87 from eqs. (6) and (7),
V B d .. l; (8)
88 where V and l are 3k 1 matrices, B is a 3k 6 matrix,
V =
2
6664
v1
v2
...
vk
3
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7775
;B =
2
6664
B1
B2
...
Bk
3
7775
; l =
2
6664
l1
l2
...
lk
3
7775
; vj dR pi+1
j +dT ..lj = Bj d ..lj ;
(9)
4

89
R0 =
1
1 + a20
+ b20
+ c20
2
4
1 + a20
.. b20
.. c20
2(c0 + a0b0) 2(a0c0 .. b0)
2(a0b0 .. c0) 1 .. a20
+ b20
.. c20
2(a0 + b0c0)
2(b0 + a0c0) 2(b0c0 .. a0) 1 .. a20
.. b20
+ c20
3
5;
(10)
90
T0 =
2
4
tx0
ty0
tz0
3
5; pi+1
j =
2
4
xi+1
j
yi+1
j
zi+1
j
3
5; (11)
91
Bj =
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@R

@a pi+1
j
@R
@b pi+1
j
@R
@c pi+1
j E3 3

;E3 3 =
2
4
1 0 0
0 1 0
0 0 1
3
5; (12)
92 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
@R
@a =
2
6666664
4a0(b20
+c20
)
(1+a20
+b20
+c20
)2
2b0(1..a20
+b20
+c20
)..4a0c0
(1+a20
+b20
+c20
)2
2c0(1..a20
+b20
+c20
)+4a0b0
(1+a20
+b20
+c20
)2
2b0(1..a20
+b20
+c20
)+4a0c0
(1+a20
+b20
+c20
)2
..4a0(1+b20
)
(1+a20
+b20
+c20
)2
2(1..a20
+b20
+c20)..4a0b0c0
(1+a20+b20
+c20
)2
2c0(1..a20
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+b20
+c20
)..4a0b0
(1+a20
+b20
+c20
)2
..2(1..a20
+b20
+c20
)..4a0b0c0
(1+a20
+b20
+c20
)2
..4a0(1+c20
)
(1+a20
+b20
+c20
)2
3
7777775
@R
@b =
2
6666664
..4b0(1+a20
)
(1+a20
+b20
+c20
)2
2a0(1+a20
..b20
+c20
)..4b0c0
(1+a20
+b20
+c20
)2
..2(1+a20
..b20
+c20
)..4a0b0c0
(1+a20
+b20
+c20
)2
2a0(1+a20
..b20
+c20
)+4b0c0
(1+a20
+b20
+c20
)2
4b0(a20
+c20)
(1+a20
+b20+c20
)2
2c0(1+a20
..b20
+c20
)..4a0b0
(1+a20
+b20
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+c20
)2
2(1+a20
..b20
+c20
)..4a0b0c0
(1+a20
+b20
+c20
)2
2c0(1+a20
..b20
+c20
)+4a0b0
(1+a20
+b20
+c20
)2
..4b0(1+c20
)
(1+a20
+b20
+c20
)2
3
7777775
@R
@c =
2
6666664
..4c0(1+a20
)
(1+a20
+b20
+c20
)2
2(1+a20
+b20
..c20
)..4a0b0c0
(1+a20
+b20
+c20
)2
2a0(1+a20
+b20
..c20
)+4b0c0
(1+a20
+b20
+c20
)2
..2(1+a20
+b20
..c20
)..4a0b0c0
(1+a20
+b20+c20
)2
..4c0(1+b20
)
(1+a20
+b20
+c20
)2
2b0(1+a20
+b20
..c20
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)..4a0c0
(1+a20
+b20
+c20
)2
2a0(1+a20
+b20
..c20
)..4b0c0
(1+a20
+b20
+c20
)2
2b0(1+a20
+b20
..c20
)+4a0c0
(1+a20
+b20
+c20
)2
4c0(a20
+b20
)
(1+a20
+b20
+c20
)2
3
7777775
:
(13)
93
94 Assuming the weight matrix of l is P, by using the principle of indirect
adjustment [28] and V TPV = min, we can obtain estimated ^ , ^R
95 , T^ for
5

transformation parameters ~ , ~R
96 , T~ as
~ ^ =

^a ^b
^c ^ tx ^ ty ^ tz
T
= 0 + d ; (14)
97
d = (BTPB)..1BTPl; (15)
98 and
~R
^R

=
1
1 + ^a2 +^b
2 + ^c2
2
4
1 + ^a2 ..^b
2 .. ^c2 2(^a^b
+ ^c) 2(^a^c ..^b
)
2(^a^b
.. ^c) 1 .. ^a2 +^b
2 .. ^c2 2(^b
^c + ^a)
2(^a^c +^b
) 2(^b
^c .. ^a) 1 .. ^a2 ..^b
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2 + ^c2
3
5;
99 (16)
~ T ^ T =
2
4
^ tx
^ ty
^ tz
3
5: (17)
100
101 If 0 is the unit weight variance (usually determined in initial process102
ing before registration), then from error propagation [28] and eq. (15), the
103 variance and covariance of ^ can be expressed as
D^ ^ = 2
0Q^ ^ = 2
0Qd d = 2
0N..1
BB = 2
0(BTPB)..1; (18)
104 where D ^ ^ is a 6 6 matrix.
105 2.3. Target based Point Cloud Registration Error Evaluation
106 We can obtain the actual registration value p^i for any point pi+1 from eqs.

107 (16) and (17),
^pi = ^R
pi+1 + ^ T; (19)
108 where the registration error of p^i is in
uenced by both ^ and pi+1 precision.
109 Therefore, partial di erentiation of eq. (19) shows that
d^pi = d^R

pi+1 + d ^ T + ^R
dpi+1; (20)

110 where
pi+1 =
2
4
xi+1
yi+1
zi+1
3
5;Bpi+1 =
h
@ ^R
@a pi+1 @ ^R
@b pi+1 @ ^R
@c pi+1 E3 3
i
; (21)
6

111 and
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
@ ^R
@a =
2
6666664
4^a(^b
2+^c2)
(1+^a2+^b
2+^c2)2
2^ b(1..^a2+^b
2+^c2)..4^a^c
(1+^a2+^b
2+^c2)2
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2^c(1..^a2+^b
2+^c2)+4^a^b
(1+^a2+^b
2+^c2)2
2^ b(1..^a2+^b
2+^c2)+4^a^c
(1+^a2+^b
2+^c2)2
..4^a(1+^b
2)
(1+^a2+^b
2+^c2)2
2(1..^a2+^b
2+^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
2^c(1..^a2+^b
2+^c2)..4^a^b
(1+^a2+^b
2+^c2)2
..2(1..^a2+^b
2+^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
..4^a(1+^c2)
(1+^a2+^b
2+^c2)2
3
7777775
@ ^R
@b =
2
6666664
..4^ b(1+^a2)
(1+^a2+^b
2+^c2)2
2^a(1+^a2..^b
2+^c2)..4^b
^c
(1+^a2+^b
2+^c2)2
..2(1+^a2..^b
2+^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
2^a(1+^a2..^b
2+c^c2)+4^b
^c
(1+^a2+^b
2+^c2)2
4^ b(^a2+^c2)
(1+^a2+^b
2+^c2)2
2^c(1+^a2..^b
2+^c2)..4^a^b
(1+^a2+^b
2+^c2)2
2(1+^a2..^b
2+^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
2^c(1+^a2..^b
2+^c2)+4^a^b
(1+^a2+^b

Page 11



（ ）20180407Revised Manuscript PHOTO-D-17-00578
2+^c2)2
..4^b
(1+^c2)
(1+^a2+^b
2+^c2)2
3
7777775
@ ^R
@c =
2
6666664
..4^c(1+^a2)
(1+^a2+^b
2+^c2)2
2(1+^a2+^b
2..^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
2^a(1+^a2+^b
2..^c2)+4^b
^c
(1+^a2+^b
2+^c2)2
..2(1+^a2+^b
2..^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
..4^c(1+^b
2)
(1+^a2+^b
2+^c2)2
2^b
(1+^a2+^b
2..^c2)..4^a^c
(1+^a2+^b
2+^c2)2
2^a(1+^a2+^b
2..^c2)..4^b
^c
(1+^a2+^b
2+^c2)2
2^ b(1+^a2+^b
2..^c2)+4^a^c
(1+^a2+^b
2+^c2)2
4^c(^a2+^b
2)
(1+^a2+^b
2+^c2)2
3
7777775
:
(22)
112 Assuming coordinate measurements for any point pi+1 have independent
113 and identical distributions, and the variance of coordinate error of pi+1 is

Dpi+1pi+1 = 2
pi+1114 E3 3, then from eq. (20),
D^pi ^pi = DPRE(pi+1) + DORE(pi+1); (23)
115
DPRE(pi+1) = Bpi+1D^ ^ BT
pi+1; (24)
116 and
DORE(pi+1) = ^R
Dpi+1pi+1 ^R
T = Dpi+1pi+1; (25)
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117 where Dp^ip^i is the registration error (RE) of pi+1, DPRE(pi+1) is the
prop118
agated registration error (PRE) of pi+1, and DORE(pi+1) is the observation
119 registration error (ORE) of pi+1.
120 From eqs. (23)-(25), RE for any point pi+1 is related to its coordinate
121 value in Scan i+1 (in
uencing Bpi+1), transformation parameter precision
7

(in
uencing 122 D ^ ^), and observation precision (in
uencing Dpi+1pi+1). ORE
123 for pi+1 is unchanged by the transformation.
124 3. Veri cation
125 We rst introduce the experiment method (including constraint condi126
tions), analyze RE model in
uencing factors, and propose a method to ver127
ifying RE model accuracy. We then design the experiment to verify that
128 rotation parameters do not in
uence PRE. Finally, based on these outcomes,
129 we design the experiment to verifying the proposed RE model accuracy, and
130 analyze the experimental results.
131 3.1. Experiment Method
132 To verify RE model accuracy (eq. (23)), we design several processing
133 schemes with realistic point clouds drawn from previous studies [5] using
134 Riegl VZ-400 laser scanner, as shown in Figs. 1 and 2. The speci c experi135

mental processes are as follows:
136 Step1: Point cloud extraction.
137 We included three practical point cloud types. case A: completely within
138 (Fig. 2, red zone), case B: partially within and partially outside (Fig. 2,
139 pink zone), and case C: completely outside (Fig. 2, yellow zone) the targets

140 convex polyhedron. We extracted these three point cloud types from realistic

141 point clouds.
142 Step2: Constraint conditions.
143 Similar to [24], we make the following assumptions:
144 (1) Unit weight variance 0 = 5mm, since Riegl VZ-400 laser scanner
145 acquisition error = 5 mm@50 m [5].
146 (2) Target coordinate measurement error for Scan i+1 is isotropic, tar147
gets are independent and have equal standard deviation. Hence P, target
148 measurement weight matrix, is diagonal matrix with equal diagonal elements.
149 Step3: Rotation parameter in
uences.
150 Since ORE is unchanged after transformation (eq. (25)), RE only de151
pends on PRE magnitude (eq. (24)), PRE is related to Bpi+1 and D ^ ^,
and Bpi+1 is only related to pi+1 coordinates and ^a, ^b
152 and c^ (eqs. (21) and
153 (22)). Therefore, we need only investigate whether di erent rotation
param154
eter values in
uence PRE (eq. (24)).
8

155 Appendix A shows that the rotation parameters can be calculated from
156 the rotation angle and axis, hence we can analyze PRE variation by xing
157 each of these independently.
158 Step4: Verify RE model accuracy .
159 We adopt the root mean square error (RMSE) to evaluate true errors
160 magnitude [24]. For any point pi+1 in Scan i+1, we can calculate true
161 registration errors, RMSE, from eqs. (1) and (19) as
RMSE =
vuut
1
m
Xm
s=1
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2s

; (26)
162 where
s = (~R

.. ^R
)pi+1
s + ( ~ T .. ^ T); (27)
and pi+1
163 s is the s-th sampling value of point pi+1; s = 1; ;m; m is the
total
164 number of random samples.
165 Thus, we compare RE from eqs. (23)-(25) with RMSE from eqs. (26)-
166 (27).
Figure 1: Experimental target geometry.
9

Figure 2: Measured point cloud. (case A = red, case B = pink, and case C =
yellow)
167 3.2. Rotation parameter in
uences
168 We randomly generate 1000 rotation axes for a xed rotation angle (eqs.
169 (A.1) and (A.2)) and calculate D ^ ^ from eqs. (12), (13), and (18) using
target
170 observations. We then calculate target PRE, targets barycenter PRE, and
171 point cloud barycenter PRE for case A, case B, case C using eqs. (21),
172 (22), and (24), respectively. Similarly, we randomly generate 1000 rotation
173 angles for a xed rotation axis, and calculate D ^ ^, target PRE, targets
174 barycenter PRE, and point cloud barycenter PRE.
175 Figure 3 and Table 1 show that rotation parameters have no PRE in-
176
uence for any point, and PRE is inversely proportional to distance to the
177 targets barycenter. Thus, target registration errors are not equal to
178 point cloud registration errors.
10

Table 1 The relationship between the position and PRE.
Position
Distance Ratio
(to Barycenter of targets) (PRE to 0)
target01 45.393m 1.248
target02 36.263m 1.161
target03 32.980m 1.104
target04 14.745m 0.840
target05 34.768m 1.083
case A 8.151m 0.797
point cloud barycenter case B 56.018m 1.439
case C 104.285 2.552
targets barycenter 0 0.775
Figure 3: Rotation parameter in
uence. (Each x axis value represents a di erent rotation
matrix case, i.e. di erent rotatin angle and axis; Each y axis represents a
ratio of PRE
to 0)
179 3.3. RE model accuracy
180 We calculate D ^ ^ from eqs. (12), (13), and (18) using target observations,

181 and randomly generate 1000 di erent approximate errors, d , for the trans182

formation parameters using D ^ ^. Since RE is independent of the rotation
11

183 parameters (Section 3.2), we can assume
~ = 0 =

0 0 0 100 100 100
T
: (28)
184 We then calculate 1000 di erent ^, and the RMSE for all points in case
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185 A, B, C point clouds from eqs. (26), (27), (2), (3), (16), and (17).
186 Finally, we set ^ = 0, and calculate RE for all points in case A, B, C
187 point clouds from eqs. (21)..(25).
188 Figures 4 and 5 compare the RE and RMSE outcomes for the vari189
ous cases. Maximum RE and RMSE di erences are less than -0.022 0,
190 -0.035 0, and 0.03 0 for in case A, B, C, respectively. These di erences
191 are su ciently small that we can consider RE RMSE, i.e., the proposed
192 RE model is correct.
193 Commercial software can only calculate target registration errors of tar194
gets, and for these experimental data, target registration error calculated by
195 Leica cyclone are 1:163 0, 1:070 0, 0:998 0, 0:746 0, and 0:962 0, for
targets
196 01, 02, 03, 04, and 05, respectively. Each point in the point cloud has
di er197
ent accuracy, which cannot be evaluated by several numerical values (such
198 as target registration errors). Hence, the proposed RE model is superior to
199 current commercial software to evaluate point cloud registration error.
12

Figure 4: The di erence between RE and RMSE. (Each x axis value represents a
di erent
point in the point cloud of case A, B, C; Each y axis represents a ratio of
RE-RMSE
to 0)
13

Figure 5: Point cloud registration error from the proposed method (RE) for case
A, B,
C point cloud. (Each x axis value represents a di erent point; Each y axis
represents a
ratio of RE to 0)
14

200 4. Conclusion
201 This paper investigate point cloud registration error (RE) magnitude an202
alytically, and derive a new competent evaluation model of point cloud RE
203 model. We verify the registration error from the proposed RE model and
204 the true error statistics RMSE are signi cantly smaller (<0.035 0). Thus,
205 the proposed RE model can directly evaluate point cloud registration error.
206 Several relevant conclusions are evident: (1) Registration error (RE) for
any
207 point in space included propagated registration error (PRE) and observa208
tion registration error (ORE); (2) ORE for any point in a point cloud is
209 only related to its observation precision, and is unchanged after
registration,
210 provided coordinate measurements for any point have independent and iden211
tical distribution; (3) PRE for any point in a point cloud is related to its
212 position and registration parameter precisions, but is independent of
rotation
213 parameters; (4) PRE is related to the distance from the targets barycenter,
214 i.e., increased PRE with increasing distance, thus the commercial evaluation

215 models of point cloud registration error are only suitable to evaluate
target
216 registration errors, and are unsuitable to evaluate point cloud registration

217 errors.
218 However, it should be noted that "before we use the proposed model,
219 the coordinates information of targets need to be extracted using feature
220 extraction algorithms", "our model is only suitable to evaluate the feature
221 based registration error, including sphere target, plane target, natural
fea222
tures, building corner, etc.", "the relationship between the PRE and the
223 rotation-parameter requires further analytical investigation" and "we do not

224 consider the e ects of linearization errors or coe cient matrix errors".
225 Appendix A. Rotation Parameters from Rotation Axis and Angle
226 Following [5, 12], if the rotation angle is and rotation axis is ~n, then
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we
can express the quaternions, q, of rotation-matrix ~R
227 as
q =

cos
2
sin
2 ~n

: (A.1)
228 and hence the rotation parameters are
2
4
~a
~b
~c
3
5 = tan

2
~n: (A.2)

15

229 Appendix B. Lodrigues Matrix
230 The Lodrigues Matrix [12] is a rotation matrix composed of real skew
231 symmetric matrix, and we can express the Lodrigues Matrix of the
rotationmatrix
~R
232 as
~R
= (E3 3 + ~ S)..1(E3 3 .. ~ S) = (E3 3 .. ~ S)(E3 3 + ~ S)..1; (B.1)
233 where S~ is a real skew symmetric matrix, and
~ S =
2
4
0 ..~c ~b
~c 0 ..~a
..~b
~a 0
3
5: (B.2)
234
235 Thus, from eq. (3) and eq. (B.2), we can get
236
(E3 3 + ~ S)~R
= E3 3 .. ~ S: (B.3)
237
238 Assuming T~ = 0, from eq. (1) and eq. (B.3), we can get
(E3 3 + ~ S)
2
4
~xi
~yi
~zi
3
5 = (E3 3 .. ~ S)
2
4
~xi+1
~yi+1
~zi+1
3
5: (B.4)
239 and hence,
2
4
0 ..(~zi + ~zi+1) ~yi + ~yi+1
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~zi + ~zi+1 0 ..(~xi + ~xi+1)
..(~yi + ~yi+1) ~xi + ~xi+1 0
3
5
2
4
~a
~b
~c
3
5 =
2
4
~xi+1 .. ~xi
~yi+1 .. ~yi
~zi+1 .. ~zi
3
5:
(B.5)
240 Appendix C. Approximate Target Transformation Parameters
241 We can compute the approximation 0 = [a0; b0; c0; tx0; ty0; tz0]T of ~
from
242 eq. (B.5) [12] using the following steps
243 Step1: Compute targts barycenter coordinates,
pi
c =
2
664
Pk
j=1 xi
j
P k k
j=1 yij
P k k
j=1 zij
k
3
775
; pi+1
c =
2
664
Pk
j=1 xi+1
j
P k k
j=1 yi+1
j
P k k
j=1 zi+1
j
k
3
775
: (C.1)
16

244 Step2: Centralize the target coordinates,
pi
jc = pi
j .. pi
c; pi+1
c = pi+1
j .. pi+1
c : (C.2)
245 Step3: Calculate the coe cient matrices from the centralized target
246 coordinates,
Ac =

Page 17



（ ）20180407Revised Manuscript PHOTO-D-17-00578
2
64
A1c
...
Akc
3
75
; (C.3)
247
lc =
2
64
l1c
...
lkc
3
75
; (C.4)
248 where Ac is a 3k 3 matrix, lc is a 3k 1 matrix, j = 1; ; k;, and
Ajc =
2
4
0 ..(zij
c + zi+1
jc ) yij
c + yi+1
jc
zij
c + zi+1
jc 0 ..(xi
jc + xi+1
jc )
..(yij
c + yi+1
jc ) xi
jc + xi+1
jc 0
3
5; (C.5)
249
ljc =
2
4
xi+1
jc .. xi
jc
yi+1
jc .. yij
c
zi+1
jc .. zij
c
3
5; (C.6)
250 Step4: Compute approximate rotation parameters
2
4
a0
b0
c0
3
5 = (ATc
PAc)..1ATc
Plc; (C.7)
251 where P is the target weight matrix.
252 Step5: Compute the approximate rotation matrix, R0, from eq. (10).
253 Step6: Compute the approximate translation parameters
2
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4
tx0
ty0
tz0
3
5 = pi+1
c .. R0pi
c; (C.8)
17
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