20180407Revised Manuscript (PHOTO-D-17-00578)
1 An Analytical Approach to Evaluate Point Cloud
2 Registration Error Utilizing targets
3 Ronghua Yanga;b;c, Xiaolin Mengd, Yibin Yaoe, Bi Yu Chenf , Yangsheng Youa;b, Zejun Xiangc
4
a Key Laboratory of New Technology for Construction of Cities in Mountain Area 5
6 (Chongqing University), Ministry of Education, Chongqing, 400045, China
b School of Civil Engineering, Chongqing University, Chongqing 400045, China 7
c Chongqing Survey Institute, Chongqing, 401121, China 8
d Nottingham Geospatial Institute, the University of Nottingham, Nottingham, NG7 9
10 2TU, UK
e School of Geodesy and Geomatics, Wuhan University, Wuhan, 430079, China 11
f State Key Laboratory of Information Engineering in Surveying, Mapping and Remote 12
13 Sensing, Wuhan University, Wuhan, 430079, China
14 Abstract
15 Point cloud registration is essential for processing terrestrial laser scanning
16 (TLS) point cloud datasets. The registration precision directly in uences
17 and determines the practical usefulness of TLS surveys. However, in terms 18 of target based registration, analytical point cloud registration error models
19 employed by scanner manufactures are only suitable to evaluate target regis20
tration error, rather than point cloud registration error. This paper proposes 21 an new analytical approach called the registration error (RE) model to di 22 rectly evaluate point cloud registration error. We verify the proposed model
23 by comparing RE and root mean square error (RMSE) for all points in
24 three point clouds that are approximately equivalent.
25 Keywords: Point cloud, Registration error, Target, Terrestrial laser
26 scanning
27 1. Introduction
28 Terrestrial laser scanning (TLS) is used for a rapid collection of dense,
29 three-dimensional (3D) spatial point cloud datasets of an entire object. Usu30
ally several scans are required with di erent stations to survey a relatively Preprint submitted to ISPRS Journal of photogrammetry and remote sensingApril 10, 2018

31 large and complex object completely due to occluded surfaces and scanner 32 eld of view limitations [1]. To obtain the object's complete 3D mode1, the 33 point cloud datasets must rst be registered to a chosen coordinate system 34 [2].
35 Previous registration studies mainly include: 1) Matric representation
36 for rotation transformation, such as Euler angle [3, 4], unit quaternion [3\{5],
37 direction cosines [3, 5], dual quaternions [6], etc.; 2) Algorithms to compute
38 3-D rigid body transformation, such as singular value decomposition [7, 8], 39 unit quaternion [7, 9, 10], dual quaternions [6, 7], orthonormal matric [7, 11],
40 Lodrigues matric [12], etc.; 3) Iterative closest point method (ICP) (and 41 variants), such as the feature correspondences [13\{16], registration strategy

42 [13, 17, 18], correspondence search [13, 19, 20], robustness [13, 19, 20], etc.; 4)
43 Point cloud registration error models, such as error propagation for two scans
44 [21], error propagation for multiple scans [2, 21, 22], directly geo-referenced
45 TLS data precision $[23,24]$, the relationship between target precision and 46 distribution relationships [1, 25\{27], etc..
47 For target registration, point cloud registration error models and their
48 statistics employed by scanner manufacturer software are based on how well
49 the targets match. These approaches have been shown to be inadequate [24], Page 1

```
20180407Revised Manuscript (PHOTO-D-17-00578)
```

50 since target registration error is not equal to the point cloud registration er51
ror. Although Fan et a1. [24] recommended a model to evaluate registration 52 error based on how wel1 the point clouds matched, However, the model was 53 derived from simulations, which are not always consistent with actual out54 comes since practical situations are often very complicated. Therefore, this 55 paper derives the target based point cloud registration error mode1 analyti56
cally, and veri es the model by evaluating real-world point cloud registration 57 precision.
58 2. Estimation of registration parameters
59 We rst introduce the common registration model to provide true ob60 servation and transformation parameter values. We then consider true and
61 approximate errors for these parameters, and derive the registration model
62 error analytically using the estimation value and transformation parameter 63 variances. Finally, we derive the analytical model to evaluate target based 64 point cloud registration error.

65 2.1. Registration Mode1
66 Target based registration of two scans is the most common registration
67 approach and is most often performed using 3D rigid body transformation
68 algorithm [4, 7, 12]. The registration mode1 can be expressed as point clouds
69 in Scan i+1 are transformed into Scan i using the true values of three
translation parameters \sim tx, \sim ty, \sim tz and three rotation parameters $\sim a, ~ \sim b$
70 , $\subset \sim[4,5]$,
~pi
$j=$
2
~xi
j
~yij
~zij
3
$5=\sim R$
2
4
$\sim x i+1$
j
$\sim y i+1$
j
~Zi+1
3
$5+\sim \mathrm{T}=\sim \mathrm{R}$
~pi+1
j + ~ T: (1)
where $\sim \mathrm{pi}$
j and ~pi+1
j 71 represent the coordinate true values of the same point in
Scan i and Scan i+1, respectively, i.e., ($\sim x i$
j ; ~yij
; ~zij
) and ($\sim x i+1$
j ; ~yị+1
j ; ~zi+1
j72) ; T~
73 is a 31 translation vector,
~ $\mathrm{T}=$
2
4
~tx
~ty
~tz
3
5; (2)

```
20180407Revised Manuscript (PHOTO-D-17-00578)
```

```
and \(\sim R\)
74 is a 3 rotation matrix,
\(\sim R\)
\(=\)
1
\(1+\sim a 2+\sim b\)
\(+\sim c 2\)
2
4
\(+\sim a 2 \ldots \sim b\)
.. ~c2 \(2(\sim c+\sim a \sim b\)
\(2(\sim a \sim c \ldots \sim b\)
2 (~a~b
\(\therefore \sim c) 1 \quad \dot{\sim} \sim a 2+\sim b\)
\(2 \ldots \sim c 2 \quad 2(\sim a+\sim b\)
2 (~b
\(+\sim a \sim c) \quad 2(\sim b\)
~c .. ~a) 1 .. ~a2 ...~b
\(2+\sim c 2\)
3
5;
(3)
\(\sim\) R
\(T=\sim R .1 ; j \sim R\)
j = 1: (4)
75 Let \(\sim=\) [a~; ~b; c~; t~x; t~y; t~z]T be the vector of transformation
parameters. To
76 uniquely determine \(\sim\) between Scan i and Scan i+1, we normally use three
77 or more targets with known 3D coordinates [1, 27], placed in the overlaps
78 between the two point clouds. This paper assumes the number of targets is
79 k ( 3), hence 2
6664
~pi
1
~pi
2
~pi
\({ }^{2} \mathrm{k}\)
3
7775
2
6664
\(\sim\) R
\(\sim p i+1\)
1
\(\sim R\)
\(\sim_{2}^{p i+1}\)
\(\sim \mathrm{R}\)
\(\sim p i+1\)
~~
7775
\(+\)
6664
~ T
~T...
~ T
3
7775
: (5)
3
```


20180407Revised Manuscript (PHOTO-D-17-00578)

80 2.2. Error Equation of Target Based Registration Mode1
Errors inevitably occur in TLS measurements (including instrumental
errors, environmental errors, object related errors, target centroid errors, saturation errors, blooming errors, etc. [1]). If the observation values of \sim pi j
and $\sim \mathrm{pi}+1$
j are pi
j and $p i+1$
j, respectively, and approximate values of $\sim R$
, ~ T, ~ are
RO, TO, 0 ($0=[a 0 ; b 0 ; c 0 ; t x 0 ; ~ t y 0 ; ~ t z 0] T$ can be calculated by the method
in
Appendix C), then true errors of pi
$j, p i+1$
j, R0, T0, and 0 are pi
pi+1
, R ,
T, and respectively, where
$\sim_{j}{ }^{\mathrm{pi}}$
$j+p i$
; ~pi+1
$j=p i+1$
$+\mathrm{pi}+1$
;
$=\mathrm{RO}+\mathrm{RO} ; \sim \mathrm{T}=\mathrm{T} 0+\mathrm{T} 0$;
and
$\sim=0+0$:
81 Hence, from eq. (5),
$\vee j=R \quad \mathrm{pi}+1$
j + T.. 1 j. ; (6)
where $1 \mathrm{j}=\mathrm{pi}$
j .. ROpi+1
.. T0, j 2 f1; 2; ; kg, vj = .. (R0 pi+1
R pi+1
82)
83 is residual error.
84 Using the linearization theorem [28],
8>>>><
>>>>:
R $\mathrm{dR}=@ \mathrm{R}$
@a da + @R
ab db + aR
ac dc
T dT = [dtx; dty; dtz]T
d $=$ [da; db; dc; dtx; dty; dtz]T
; (7)
85 where $d R, d T, d$ are the approximate values for R, T, , respectively.
86 we can construct the error equations of the target based registration model
87 from eqs. (6) and (7),
88 where V and 1 are $3 \mathrm{k} \quad 1$ matrices, B is a 3 k .6 matrix,
$\mathrm{V}=$
2
6664
v1
v2
ví
3

```
7775
; \({ }^{2}=\)
6664
B1
B2
B́․
Bk
3
7775
; \(1=\)
2
6664
11
12
ì
3
7775
```



```
(9)
4
89
R0 =
1
\(1+\mathrm{a} 20\)
+ b20
\(+\mathrm{c} 20\)
2
4
\(1+\mathrm{a} 20\)
. b20
.. c20
\(2(c 0+a 0 b 0) 2(a 0 c 0 \ldots b 0)\)
\(2(a 0 b 0 \ldots c 0) 1 \ldots a i 0\)
\(+\mathrm{b} 20\)
\(2(a 0+b 0 c 0)\)
\(2(b 0+a 0 c 0) 2(b 0 c 0 \ldots a 0) 1 \ldots a 20\)
.. b20
\(+\mathrm{c} 20\)
3
(10)
90
T0 =
2
4
tx0
ty0
tz0
3
5; pi+1
\(j=\)
4
xi+1
j.
yi+1
zi+1
j
5; (11)
91
\(B j=\)
```

```
@R
@a pi+1
j
@b pi+1
j
@c pi+1
j E3 3
;E3 3 =
2
10}
0}1
0 0 1
3
5; (12)
92 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
@R
@a =
2
6666664
4a0 (b20
+c20
)
(1+a20
+b20
+C20
)2
2b0(1..a20
+b20
+c20
)..4a0c0
(1+a20
+b20
+c20
)2
2c0(1..a20
+b20
+c20
)+4a0b0
(1+a20
+b20
+c20
)2
2b0(1..a20
+b20
+c20
)+4a0c0
(1+a20
+b20
+c20
)2
.4a0(1+b20
(1+a20
+b20
+c20
)2
2(1..a20
+b20
+c20)..4a0b0c0
(1+a20+b20
+c20
)2
2c0(1..a20
2
6666664
. . 4b0 (1+a20
)
(1+a20
+b20
\(+\mathrm{c} 20\)
)2
2a0 (1+a20
. .b20
\(+\mathrm{c} 20\)
). . 4 b 0 c 0
(1+a20
+b20
+c20
)2
. \(2(1+a 20\)
. .b20
+c20
). . 4 a 0 b 0 c 0
(1+a20
+b20
\(+\mathrm{c} 20\)
)2
2a0 (1+a20
. .b20
+c20
) +4 bOc 0
(1+a20
+b20
+c20
)2
4b0 (a20
+c20)
(1+a20
+b20+c20
) 2
2c0 (1+a20
..b20
+c20
). . 4a0b0
(1+a20
+b20
) 2
2 (1+a20
..b20
+c20
). . 4 a 0 b 0 c 0
(1+a20
+b20
\(+\mathrm{c} 20\)
)2
2c0 (1+a20
. .b20
+c20
) +4 a 0 b 0
(1+a20
+b20
+c20
)2
. \(.4 b 0(1+c 20\)
j
(1+a20
+b20
+c20
\({ }_{3} 2\)
7777775
@R
@c =
2
6666664
..4c0 (1+a20
)
(1+a20
+b20
+c20
)2
\(2(1+a 20\)
+b20
..c20
). . 4 a 0 b 0 c 0
(1+a20
+b20
+c20
)2
2a0 (1+a20
+b20
. .c20
) +4 b 0 c 0
(1+a20
+b20
+c20
)2
. 2 (1+a20
+b20
..c20
). . 4 a 0 b 0 c 0
(1+a20
+b20+c20
)2
. \(.4 c 0(1+b 20\)
)
(1+a20
+b20
\(+\mathrm{c} 20\)
)2
2b0 (1+a20
+b20
. .c20
```

)..4a0c0
(1+a20
+b20
+C20
)2
2a0(1+a20
+b20
..c20
)..4b0c0
(1+a20
+b20
+c20
)2
2b0(1+a20
+b20
..c20
)+4a0c0
(1+a20
+b20
+c20
)2
4c0(a20
+b20
)
(1+a20
+b20
+c20
)2
3
7777775
(13)
93
94 Assuming the weight matrix of 1 is P, by using the principle of indirect
adjustment [28] and V TPV = min, we can obtain estimated ^ , ^R
95 , T^ for
5
transformation parameters ~ , ~R
96 , T~ as
~ ^ =
\wedge \ ^b
^c ^ tx ^ ty ^ tz
T
= 0 + d ; (14)
97
d = (BTPB)..1BTP1; (15)
98 and
~
\wedgeR
=
1}+\wedgea2+^
2 + ^c2
2
1+^a2 ..^b
2 .. ^c2 2(^a^b

+ ^c) 2(^a^c..^b
)
2(^a^b
;^c) 1 }\ddot{\wedge}\wedge\textrm{a}2+\wedge
2.. ^c2 \dot{2(^b}
\wedgec}+\wedge\textrm{a}
2(^a^c +^b
) 2(^b
^c .. ^a) 1 .. ^a2 ..^b

```
```

2 + ^c2
3
5;
99 (16)
~ T ^}^\textrm{T}
2
4
^tx
^ty
^ tz
3
5: (17)
100
101 If 0 is the unit weight variance (usually determined in initial process102
ing before registration), then from error propagation [28] and eq. (15), the
1 0 3 ~ v a r i a n c e ~ a n d ~ c o v a r i a n c e ~ o f ~ \wedge ~ c a n ~ b e ~ e x p r e s s e d ~ a s
D^ ^ = 2
OQ^ ^ = 2
OQd d = 2
0N..1
BB = 2
0(BTPB)..1; (18)
104 where D ^ ^ is a 6 6 matrix.
105 2.3. Target based Point Cloud Registration Error Evaluation
106 we can obtain the actual registration value p^i for any point pi+1 from eqs.
107 (16) and (17),
^pi= ^R
pi+1 + ^ T; (19)
108 where the registration error of p^i is in
uenced by both }\wedge\mathrm{ and pi+1 precision.
109 Therefore, partial di erentiation of eq. (19) shows that
d^pi = d^R
pi+1 + d ^ T + ^R
dpi+1; (20)
110 where
pi+1 =
2
4
xi+1
yi+1
zi+1
3
5;Bpi+1 =
h
@ ^R
@a pi+1 @ ^R
@b pi+1 @ ^R
@c pi+1 E3 3
j
; (21)
111 and
8>><
>>>
@ ^R
@a =
2
6666664
4^a(^b
2+^c2)
(1+^a2+^b
2+^c2)2
2^ b(1..^a2+^b
2+^c2)..4^a^c
(1+^a2+^b
2+^c2)2

```
```

2^c(1..^a2+^b
$2+\wedge c 2)+4 \wedge a \wedge b$
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2) 2$
2^ b(1..^a2+^b
$2+\wedge c 2)+4 \wedge a \wedge c$
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2) 2$
$.4 \wedge a(1+\wedge b$
2)
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2) 2$
2 (1..^a2+^b
2+^c2)..4^a^b
$\wedge c$
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2) 2$
2^c(1..^a2+^b
$2+\wedge c 2) . .4 \wedge a \wedge b$
$(1+\wedge a 2+\wedge b$
2+^c2)2
$\ldots 2(1 . . \wedge a 2+\wedge b$
$2+\wedge c 2) . .4 \wedge a \wedge b$
\wedge
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2) 2$
. $.4 \wedge a(1+\wedge c 2)$
(1+^a2+^b
$2+\wedge c 2$) 2
3
7777775
@ $\wedge R$
@b =
2
6666664
. . $^{4 \wedge} \mathrm{~b}(1+\wedge \mathrm{a} 2)$
$(1+\wedge a 2+\wedge b$
2+^c2)2
2^a(1+^a2..^b
$2+\wedge c 2) . .4 \wedge \dot{b}$
\wedge
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2) 2$
. $.2(1+\wedge a 2 . . \wedge b$
$2+\wedge c 2) . .4 \wedge a \wedge b$
$\wedge c$
$(1+\wedge a 2+\wedge b$
2+^c2)2
2^a(1+^a2..^b
$2+c \wedge c 2)+4 \wedge b$
$\wedge c$
$(1+\wedge a 2+\wedge b$
2+^c2) 2
4^ b ($\wedge \mathrm{a} 2+\wedge \mathrm{c} 2)$
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2) 2$
2^c(1+^a2..^b
$2+\wedge c 2) .4 \wedge a \wedge b$
$(1+\wedge a 2+\wedge b$
$2+\wedge c 2$) 2
$2(1+\wedge a 2 . . \wedge b$
2+へc2)..4^a^b
\wedge
$(1+\wedge a 2+\wedge b$
2+^c2) 2
2^c (1+へa2..^b
$2+\wedge c 2)+4 \wedge a \wedge b$
$(1+\wedge a 2+\wedge b$

```
```

2+^c2)2
..4^b
(1+^c2)
(1+^a2+^b
2+^c2)2
3
777775
@ ^R
@c =
2
6666664
.4^c(1+^a2)
(1+^a2+^b
2+^c2)2
2(1+^a2+^b
2..^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
2^a(1+^a2+^b
2..^c2)+4^b
^c
(1+^a2+^b
2+^c2)2
..2(1+^a2+^b
2..^c2)..4^a^b
^c
(1+^a2+^b
2+^c2)2
.4^c(1+^b
2)
(1+^a2+^b
2+^c2)2
2^b
(1+^a2+^b
2..^c2)..4^a^c
(1+^a2+^b
2+^c2)2
2^a(1+^a2+^b
2..^c2)..4^b
^c
(1+^a2+^^b
2+^c2)2
2^ b(1+^a2+^b
2..^c2)+4^a^c
(1+^a2+^b
2+^c2)2
4^c(^a2+^b
2)
(1+^a2+^b
2+^c2)2
3
777775
(22)
112 Assuming coordinate measurements for any point pi+1 have independent
113 and identical distributions, and the variance of coordinate error of pi+1 is
Dpi+1pi+1 = 2
pi+1114 E3 3, then from eq. (20),
D^pi ^pi = DPRE(pi+1) + DORE(pi+1); (23)
115
DPRE(pi+1) = Bpi+1D^ ^ BT
pi+1; (24)
116 and
DORE (pi+1) = ^R
Dpi+1pi+1 ^R
T = Dpi+1pi+1; (25)

```

117 where \(D p \wedge i p \wedge i\) is the registration error ( \(R E\) ) of \(\mathrm{pi}+1, \operatorname{DPRE}(p i+1)\) is the prop118
agated registration error (PRE) of pi+1, and DORE (pi+1) is the observation 119 registration error (ORE) of pi+1.
120 From eqs. (23)-(25), RE for any point pi+1 is related to its coordinate 121 value in Scan i+1 (in
uencing Bpi+1), transformation parameter precision
7
(in
uencing \(122 \mathrm{D} \wedge \wedge\) ), and observation precision (in
uencing Dpi+1pi+1). ORE
123 for \(\mathrm{pi}+1\) is unchanged by the transformation.
124 3. Veri cation
125 we rst introduce the experiment method (including constraint condi126 tions), analyze RE model in
uencing factors, and propose a method to ver127
ifying RE model accuracy. We then design the experiment to verify that
128 rotation parameters do not in
uence PRE. Finally, based on these outcomes,
129 we design the experiment to verifying the proposed RE model accuracy, and
130 analyze the experimental results.
131 3.1. Experiment Method
132 To verify RE mode1 accuracy (eq. (23)), we design several processing
133 schemes with realistic point clouds drawn from previous studies [5] using 134 Riegl VZ-400 laser scanner, as shown in Figs. 1 and 2 . The speci c experi135
mental processes are as follows:
136 Step1: Point cloud extraction.
137 we included three practical point cloud types. case A: completely within
138 (Fig. 2, red zone), case B: partially within and partially outside (Fig. 2,
139 pink zone), and case C: completely outside (Fig. 2, yellow zone) the targets
140 convex polyhedron. We extracted these three point cloud types from realistic
141 point clouds.
142 Step2: Constraint conditions.
143 Similar to [24], we make the following assumptions:
144 (1) Unit weight variance \(0=5 \mathrm{~mm}\), since Riegl VZ-400 laser scanner
145 acquisition error \(=5 \mathrm{mm@50} \mathrm{~m}\) [5].
146 (2) Target coordinate measurement error for Scan i+1 is isotropic, tar147
gets are independent and have equal standard deviation. Hence \(P\), target
148 measurement weight matrix, is diagonal matrix with equal diagonal elements.
149 Step3: Rotation parameter in
uences.
150 Since ORE is unchanged after transformation (eq. (25)), RE on1y de151 pends on PRE magnitude (eq. (24)), PRE is related to Bpi+1 and D \(\wedge \wedge\),
and \(B p i+1\) is only related to \(p i+1\) coordinates and \(\wedge a, \wedge b\)
152 and \(c^{\wedge}\) (eqs. (21) and
153 (22)). Therefore, we need only investigate whether di erent rotation param154
eter values in
uence PRE (eq. (24)).
8
155 Appendix A shows that the rotation parameters can be calculated from
156 the rotation angle and axis, hence we can analyze PRE variation by xing
157 each of these independently.
158 Step4: Verify RE mode1 accuracy .
159 We adopt the root mean square error (RMSE) to evaluate true errors
160 magnitude [24]. For any point pi+1 in Scan \(i+1\), we can calculate true
161 registration errors, RMSE, from eqs. (1) and (19) as
RMSE =
vuut
1
m
Xm
\(\mathrm{s}=1\)

Figure 2: Measured point cloud. (case \(A=\) red, case \(B=\) pink, and case \(C=\) ye110w)
167 3.2. Rotation parameter in
uences
168 we randomly generate 1000 rotation axes for a xed rotation angle (eqs. 169 (A.1) and (A.2)) and calculate \(D \wedge \wedge\) from eqs. (12), (13), and (18) using target
170 observations. We then calculate target PRE, targets barycenter PRE, and
171 point cloud barycenter PRE for case A, case B, case \(C\) using eqs. (21),
172 (22), and (24), respectively. Similarly, we randomly generate 1000 rotation
173 angles for a xed rotation axis, and calculate \(D \wedge \wedge\), target PRE, targets
174 barycenter PRE, and point cloud barycenter PRE.
175 Figure 3 and Table 1 show that rotation parameters have no PRE in-
176
uence for any point, and PRE is inversely proportional to distance to the
177 targets barycenter. Thus, target registration errors are not equal to
178 point cloud registration errors.
10
Table 1 The relationship between the position and PRE.
Position
Distance Ratio
(to Barycenter of targets) (PRE to 0)
target01 45.393 m 1.248
target02 36.263 m 1.161
target03 32.980 m 1.104
target04 14.745 m 0.840
target05 34.768 m 1.083
case A 8.151m 0.797
point cloud barycenter case B 56.018 m 1.439
case C 104.2852 .552
targets barycenter 00.775
Figure 3: Rotation parameter in
uence. (Each \(x\) axis value represents a di erent rotation
matrix case, i.e. di erent rotatin angle and axis; Each y axis represents a
ratio of PRE
to 0)
179 3.3. RE mode1 accuracy
180 we calculate \(\mathrm{D} \wedge \wedge\) from eqs. (12), (13), and (18) using target observations,
181 and random7y generate 1000 di erent approximate errors, d , for the trans182
formation parameters using \(D \wedge \wedge\). Since \(R E\) is independent of the rotation 11

183 parameters (Section 3.2), we can assume
~ \(=0=\)
\(\begin{array}{llllll}0 & 0 & 0 & 100 & 100 & 100\end{array}\)
T
: (28)
\(\dot{1} 84\) we then calculate 1000 di erent \(\wedge\), and the RMSE for all points in case Page 14

185 A, B, C point clouds from eqs. (26), (27), (2), (3), (16), and (17).
186 Finally, we set \(\wedge=0\), and calculate RE for all points in case \(A, B, C\)
187 point clouds from eqs. (21)..(25).
188 Figures 4 and 5 compare the RE and RMSE outcomes for the vari189
ous cases. Maximum RE and RMSE di erences are less than -0.0220 ,
\(190-0.0350\), and 0.030 for in case A, B, C, respectively. These di erences
191 are su ciently small that we can consider RE RMSE, i.e., the proposed
192 RE mode1 is correct.
193 Commercial software can only calculate target registration errors of tar194 gets, and for these experimental data, target registration error calculated by
195 Leica cyclone are 1:1630, 1:070 0, 0:998 0, 0:7460, and 0:9620, for targets
\(19601,02,03,04\), and 05 , respectively. Each point in the point cloud has di er197
ent accuracy, which cannot be evaluated by several numerical values (such
198 as target registration errors). Hence, the proposed RE model is superior to
199 current commercial software to evaluate point cloud registration error.
12
Figure 4: The di erence between RE and RMSE. (Each x axis value represents a di erent
point in the point cloud of case \(A, B, C\) Each \(y\) axis represents a ratio of
RE-RMSE
to 0)
13
Figure 5: Point cloud registration error from the proposed method (RE) for case A, B,
C'point cloud. (Each \(x\) axis value represents a di erent point; Each y axis represents a
ratio of RE to 0 )
14
200 4. Conclusion
201 This paper investigate point cloud registration error (RE) magnitude an202
alytically, and derive a new competent evaluation model of point cloud RE
203 model. We verify the registration error from the proposed RE model and
204 the true error statistics RMSE are signi cantly smaller ( \(<0.0350\) ). Thus,
205 the proposed RE model can directly evaluate point cloud registration error.
206 Several relevant conclusions are evident: (1) Registration error (RE) for
any
207 point in space included propagated registration error (PRE) and observa208
tion registration error (ORE); (2) ORE for any point in a point cloud is
209 only related to its observation precision, and is unchanged after
registration,
210 provided coordinate measurements for any point have independent and iden211
tical distribution; (3) PRE for any point in a point cloud is related to its
212 position and registration parameter precisions, but is independent of rotation
213 parameters; (4) PRE is related to the distance from the targets barycenter,
214 i.e., increased PRE with increasing distance, thus the commercial evaluation
215 models of point cloud registration error are only suitable to evaluate target
216 registration errors, and are unsuitable to evaluate point cloud registration
217 errors.
218 However, it should be noted that "before we use the proposed model,
219 the coordinates information of targets need to be extracted using feature
220 extraction algorithms", "our model is only suitable to evaluate the feature
221 based registration error, including sphere target, plane target, natural
fea222
tures, building corner, etc.", "the relationship between the PRE and the
223 rotation-parameter'requires further analytical investigation" and "we do not
224 consider the e ects of linearization errors or coe cient matrix errors".
225 Appendix A. Rotation Parameters from Rotation Axis and Angle
226 Following [5, 12], if the rotation angle is and rotation axis is \(\sim n\), then Page 15

\section*{20180407Revised Manuscript (PHOTO-D-17-00578)}
we
can express the quaternions, q, of rotation-matrix \(\sim R\)
227 as
q =
cos
2
sin
(A.1)
: (A.1)
228 and hence the rotation parameters are
2
4
\(\sim\) ~
\(\stackrel{\sim}{\sim}\)
\({ }_{3}^{\sim}\)
\(5=\tan\)
2
~n: (A.2)
15
229 Appendix B. Lodrigues Matrix
230 The Lodrigues Matrix [12] is a rotation matrix composed of real skew 231 symmetric matrix, and we can express the Lodrigues Matrix of the rotationmatrix
\(\sim\) R
232 as
~R
\(=(E 33+\sim S) \ldots 1(E 33 \ldots \sim S)=(E 33 \ldots \sim S)(E 33+\sim S) .1\); (B.1)
233 where \(S \sim\) is a real skew symmetric matrix, and
~ \(\mathrm{S}=\)
2
4
\(0 \ldots \sim c \sim b\)
\(\sim c 0 \quad \ldots \sim a\)
\(\ldots \sim b\)
~a 0
3
5: (В.2)
234
235 Thus, from eq. (3) and eq. (B.2), we can get
236
(E3 \(3+\sim S\) ) ~R
= E3 \(3 \ldots \sim S:(B .3)\)
237
238 Assuming \(T \sim=0\), from eq. (1) and eq. (B.3), we can get
(E3 \(3+\sim\) S)
2
~xi
~yi
\(\sim 21\)
3
\(5=(\) E3 \(3 \ldots \sim S)\)
4
\(\sim x i+1\)
\(\sim y i+1\)
\(\sim z i+1\)
3
5: (B.4)
239 and hence,
2
4
\(0 . .(\sim z i+\sim z i+1) \sim y i+\sim y i+1\)
```

 20180407Revised Manuscript (PHOTO-D-17-00578)
 ~zi + ~zi+1 0 ..((~xi + ~xi+1)
; (~yi + ~yi+1) ~xi + ~xi+1 0
3
5
2
~a
~a
~c
3
5=
2
~xi+1 .. ~xi
~yi+1 .. ~yj
~zi+1 .. ~zi
3
5:
(B.5)
240 Appendix C. Approximate Target Transformation Parameters
241 We can compute the approximation 0 = [a0; b0; c0; tx0; ty0; tz0]T of ~
from
242 eq. (B.5) [12] using the following steps
243 Step1: Compute targts barycenter coordinates,
pi
c
2
664
Pk
j=1 xi
P k k
j=1 yij
P < k k j
k
3
775
; pi+1
c
664
Pk
j=1 xi+1
P k k
j=1 yi+1
j k k
j=1 zi+1
j
3
775
:(C.1)
1 6
2 4 4 ~ S t e p 2 : ~ C e n t r a l i z e ~ t h e ~ t a r g e t ~ c o o r d i n a t e s ,
pi
jc = pi
j ..pi
c; pi+1
c = pi+1
j .. pi+1
c : (c.2)
245 Step3: Calculate the coe cient matrices from the centralized target
246 coordinates,
AC =

```
2
64
A1c
Ȧ\mp@code{c}
3
75
; (C.3)
247
1c =
2
6 4
11c
ikc
3
75
; (C.4)
248 where Ac is a 3k 3 matrix, 1c is a 3k 1 matrix, j = 1; ; k; , and
Ajc =
2
4
0 ..(zij
c + zi+1
jc ) yij
c + yi+1
jc
zij
c + zi+1
jc 0 ..(xi
jc + xi+1
jc)
..(yij
c + yi+1
jc ) xi
jc + xi+1
jc 0
5;(C.5)
249
1jc =
2
xi+1
jc .. xi
jc
yi+1
jc .. yij
C
zi+1
jc .. zij
C
5; (c.6)
250 Step4: Compute approximate rotation parameters
2
4
b0
c0
3
5 = (ATC
PAC)..1ATC
P1C; (C.7)
251 where P is the target weight matrix.
252 Step5: Compute the approximate rotation matrix, R0, from eq. (10).
253 Step6: Compute the approximate translation parameters
2

\section*{254 Acknowledgment}

255 This work is supported by the National Natural Science Foundation of
256 China (grant 41304001), Chongqing Natural Science Foundation and Frontier
257 Research Planning Project (grant cstc2014jcyja00011), Chongqing Postdoc258
toral Research Project (grant xm2017097), Chongqing Natura1 Science Foun259 dation and Technology Innovation Special Project of Social Undertaking and
260 Peoples Livelihood Guarantee (grant cstc2016shmszx0299).
261 References
262 [1] Y. Reshetyuk, 2009. Self-calibration and direct georeferencing in terres-
263 trial laser scanning. Ph.D. dissertation, Royal Institute of Technology,
264 Swedish.
265 [2] Y. Zhang, 2012. Research on error propagation of point cloud registra-
266 tion. In: Proceedings of IEEE International conference on Computer
267 Science and Automation Engineering (CSAE), vol. 2, Zhangjiajie, Chi268
na, pp. 18-21, 25-27 May, 2012.
269 [3] D. Lichti, J. Skaloud, 2010. Registration and calibration (Chapter 3).
270 In: G: Vosselman, H.G. Maas (Eds.). Airborne and terrestrial laser
271 scanning, whittles Publishing, ISBN: 190444587X. 2010.
272 [4] Y. Zhang, 2008. Research on point cloud processing of terrestrial laser
273 scanning. Ph.D. dissertation, wuhan University, wuhan China.
274 [5] R.H. Yang, 2011. Research on point cloud angular resolution and pro-
275 cessing mode1 of terrestrial laser scanning. Ph.D. dissertation, wuhan
276 University, wuhan China.
277 [6] M.W.Wałker, L.J. Shao, 1991. Estimating 3-D location parameters using
278 dual number quaternions. CVGIP: Image Understanding, vol. 54, no. 3,
279 pp. 358-367.
280 [7] D.W. Eggert, A. Lorusso, R.B. Fisher, 1997. Estimating 3-D rigid body
281 transformations: a comparison of four major algorithms. Machine vision
282 and applications, vol. 9, no. 5-6, pp. 272-290.
18
283 [8] K.S. Arun, T.S. Huang, S.D. Blostein, 1987. Least-squares tting of t-
284 wo 3D point sets. IEEE Transactions on Pattern Analysis and Machine
285 Intelligence, vol. 9, no. 5, pp. 698-700.
286 [9] O.D. Faugeras, M. Hebert, 1986. The representation, recognition, and
287 locating of 3-D objects. The International Journal of Robotics Research,
288 vol. 5, no. 3, pp. 27-52.
289 [10] B.K.P. Horn, 1987. Closed-form solution of absolute orientation using
290 unit quaternions. Journal of the Optical Society of America A, vol. 4,
291 no. 4, pp. 629-642.
292 [1i] B.K.P. Horn, H.M. Hilden, S. Negahdaripour, 1988. Closed-form solu293 tion of absolute orientation using orthonormal matrices. Journal of the
294 optical Society of America A, vol. 5, no. 7, pp. 1127-1135.
295 [12] Jili Yao, Yufei Xu, Wei Xiao, 2007: Application of Lodrigues Matrix
296 in 3D coordinate transformation. Geomatics and information science of
297 Wuhan University, vol. 10, no. 3, pp. 173-176.
298 [13] J. Salvi, C. Matabosch, D. Fo , J. Forest, 2007. A review of recent range
299 image registration methods with accuracy evaluation. Image and vision
300 computing, vo1. 25, no. 5, pp. 578-596.
301 [14] P.J. Bes1, H.D. Mckay, 1992. A method for registration of 3-D shapes.
302 IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
303 14, no. 2, pp. 239-256.
304 [15] J.P. Tare1, H. Civi, D.B. Cooper, 1998. Pose estimation of free-form
305 3D objects without point matching using algebraic surface models. In:
306 Proceedings of IEEE Workshop on Mode1-based 3D, pp. 13-21.
307 [16] I. Stamos, M. Leordeanu, 2003. Automated feature-based range registraPage 19

308 tion of urban scenes of large scale. In: Proceedings of IEEE Computer 309 Society Conference on Computer Vision and Pattern Recognition, 2003, 310 pp. 555-561.
311 [17] D.H. Chuang, I.D. Yun, S.U. Lee, 1998. Registration of multiple-range 312 views using the reverse-calibration technique. Pattern Recognition, vol. 313 31, no. 4, pp. 457-464.
[18] 314 O. Carmichae1, D.F. Huber, M. Hebert, 1999. Large data sets and con315 fusing scenes in 3-D surface matching and recognition. In: Proceedings
316 of 2nd International Conference on 3D Digital Imaging and Modeling,
317 1999, pp. 358-367.
318 [19] C.K. Chow, H.T. Tsui, T. Lee, 2004. Surface registration using a dynam-
ic genetic algorithm. Pattern Recognition, vol. 37, no. 1, pp. 105-117.
[20] T. Zinsser, J. Schmidt, H. Niemann, 2003. A re ned ICP algorithm for robust 3-D correspondence estimation. In: Proceedings of IEEE Inter 322 ional Conference on Image Processing, 2003, pp. 695-698.
[21] G.L. Wang, 2006. Research on registration of ground lidar range images: Masters dissertation. Beijing University of Civil Engineering and Architecture, Beijing China.
326 [22] G.C. Sharp, S.W. Lee, D.K. Wehe, 2004. Multiview registraion of 3D
327 scenes by minimizing error between coordinate frames. IEEE Transac328 tions on Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp.
329 1037-1050.
330 [23] D.D. Lichti, S.J. Gordon, T. Tipdecho, 2005. Error models and propaga-
331 tion in directly georeferenced terrestrial laser scanner networks. Journal
332 of Surveying Engineering, vo1. 131, no. 4, pp. 135-142.
333 [24] L. Fan, J.A. Smethurst, P.M. Atkinson, W. Powrie, 2015. Error in
334 target-based georeferencing and registration in terrestrial laser scanning.
335 Computers and Geosciences, vol. 83, pp. 54-64.
336 [25] S.J. Gordon, D.D. Lichti, 2004. Terrestrial laser scanners with a narrow
337 eld of view: the e ect on 3D resection solutions. Survey review, vol.
338 37, no. 292, pp. 448-468.
339 [26] B.R. Harvey, 2004. Registration and transformation of multiple site
ter-
340 restrial laser scanning. Geomatics Research Australasia, no. 80, pp. 33-
34150.

342 [27] L. Bornaz, A. Lingus, F. Rinaudo, 2003. Multiple scan registration in
343 LiDAR close- range applications. In: Proceedings of the International
344 Archives of the Photogrammery: Remote Sensing and Spatial Informa345 tion Sciences, vol. XXXIV, 2003, Part 5/w12, pp. 72-77.
20
346 [28] W.N. Qiu, B.Z. Tao, Y.B. Yao, Y. Wu, H.L. Huang, 2008. The theory
347 and method of surveying data processing. Wuhan University press, 1st
348 ed., Wuhan China, pp. 1-6.
21```

